1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2011 Samsung Electronics Co.Ltd 4 * Authors: 5 * Seung-Woo Kim <sw0312.kim@samsung.com> 6 * Inki Dae <inki.dae@samsung.com> 7 * Joonyoung Shim <jy0922.shim@samsung.com> 8 * 9 * Based on drivers/media/video/s5p-tv/mixer_reg.c 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/component.h> 14 #include <linux/delay.h> 15 #include <linux/i2c.h> 16 #include <linux/interrupt.h> 17 #include <linux/irq.h> 18 #include <linux/kernel.h> 19 #include <linux/ktime.h> 20 #include <linux/of.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/spinlock.h> 25 #include <linux/wait.h> 26 27 #include <drm/drm_blend.h> 28 #include <drm/drm_edid.h> 29 #include <drm/drm_fourcc.h> 30 #include <drm/drm_framebuffer.h> 31 #include <drm/drm_vblank.h> 32 #include <drm/exynos_drm.h> 33 34 #include "exynos_drm_crtc.h" 35 #include "exynos_drm_drv.h" 36 #include "exynos_drm_fb.h" 37 #include "exynos_drm_plane.h" 38 #include "regs-mixer.h" 39 #include "regs-vp.h" 40 41 #define MIXER_WIN_NR 3 42 #define VP_DEFAULT_WIN 2 43 44 /* 45 * Mixer color space conversion coefficient triplet. 46 * Used for CSC from RGB to YCbCr. 47 * Each coefficient is a 10-bit fixed point number with 48 * sign and no integer part, i.e. 49 * [0:8] = fractional part (representing a value y = x / 2^9) 50 * [9] = sign 51 * Negative values are encoded with two's complement. 52 */ 53 #define MXR_CSC_C(x) ((int)((x) * 512.0) & 0x3ff) 54 #define MXR_CSC_CT(a0, a1, a2) \ 55 ((MXR_CSC_C(a0) << 20) | (MXR_CSC_C(a1) << 10) | (MXR_CSC_C(a2) << 0)) 56 57 /* YCbCr value, used for mixer background color configuration. */ 58 #define MXR_YCBCR_VAL(y, cb, cr) (((y) << 16) | ((cb) << 8) | ((cr) << 0)) 59 60 /* The pixelformats that are natively supported by the mixer. */ 61 #define MXR_FORMAT_RGB565 4 62 #define MXR_FORMAT_ARGB1555 5 63 #define MXR_FORMAT_ARGB4444 6 64 #define MXR_FORMAT_ARGB8888 7 65 66 enum mixer_version_id { 67 MXR_VER_0_0_0_16, 68 MXR_VER_16_0_33_0, 69 MXR_VER_128_0_0_184, 70 }; 71 72 enum mixer_flag_bits { 73 MXR_BIT_POWERED, 74 MXR_BIT_VSYNC, 75 MXR_BIT_INTERLACE, 76 MXR_BIT_VP_ENABLED, 77 MXR_BIT_HAS_SCLK, 78 }; 79 80 static const uint32_t mixer_formats[] = { 81 DRM_FORMAT_XRGB4444, 82 DRM_FORMAT_ARGB4444, 83 DRM_FORMAT_XRGB1555, 84 DRM_FORMAT_ARGB1555, 85 DRM_FORMAT_RGB565, 86 DRM_FORMAT_XRGB8888, 87 DRM_FORMAT_ARGB8888, 88 }; 89 90 static const uint32_t vp_formats[] = { 91 DRM_FORMAT_NV12, 92 DRM_FORMAT_NV21, 93 }; 94 95 struct mixer_context { 96 struct platform_device *pdev; 97 struct device *dev; 98 struct drm_device *drm_dev; 99 void *dma_priv; 100 struct exynos_drm_crtc *crtc; 101 struct exynos_drm_plane planes[MIXER_WIN_NR]; 102 unsigned long flags; 103 104 int irq; 105 void __iomem *mixer_regs; 106 void __iomem *vp_regs; 107 spinlock_t reg_slock; 108 struct clk *mixer; 109 struct clk *vp; 110 struct clk *hdmi; 111 struct clk *sclk_mixer; 112 struct clk *sclk_hdmi; 113 struct clk *mout_mixer; 114 enum mixer_version_id mxr_ver; 115 int scan_value; 116 }; 117 118 struct mixer_drv_data { 119 enum mixer_version_id version; 120 bool is_vp_enabled; 121 bool has_sclk; 122 }; 123 124 static const struct exynos_drm_plane_config plane_configs[MIXER_WIN_NR] = { 125 { 126 .zpos = 0, 127 .type = DRM_PLANE_TYPE_PRIMARY, 128 .pixel_formats = mixer_formats, 129 .num_pixel_formats = ARRAY_SIZE(mixer_formats), 130 .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE | 131 EXYNOS_DRM_PLANE_CAP_ZPOS | 132 EXYNOS_DRM_PLANE_CAP_PIX_BLEND | 133 EXYNOS_DRM_PLANE_CAP_WIN_BLEND, 134 }, { 135 .zpos = 1, 136 .type = DRM_PLANE_TYPE_CURSOR, 137 .pixel_formats = mixer_formats, 138 .num_pixel_formats = ARRAY_SIZE(mixer_formats), 139 .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE | 140 EXYNOS_DRM_PLANE_CAP_ZPOS | 141 EXYNOS_DRM_PLANE_CAP_PIX_BLEND | 142 EXYNOS_DRM_PLANE_CAP_WIN_BLEND, 143 }, { 144 .zpos = 2, 145 .type = DRM_PLANE_TYPE_OVERLAY, 146 .pixel_formats = vp_formats, 147 .num_pixel_formats = ARRAY_SIZE(vp_formats), 148 .capabilities = EXYNOS_DRM_PLANE_CAP_SCALE | 149 EXYNOS_DRM_PLANE_CAP_ZPOS | 150 EXYNOS_DRM_PLANE_CAP_TILE | 151 EXYNOS_DRM_PLANE_CAP_WIN_BLEND, 152 }, 153 }; 154 155 static const u8 filter_y_horiz_tap8[] = { 156 0, -1, -1, -1, -1, -1, -1, -1, 157 -1, -1, -1, -1, -1, 0, 0, 0, 158 0, 2, 4, 5, 6, 6, 6, 6, 159 6, 5, 5, 4, 3, 2, 1, 1, 160 0, -6, -12, -16, -18, -20, -21, -20, 161 -20, -18, -16, -13, -10, -8, -5, -2, 162 127, 126, 125, 121, 114, 107, 99, 89, 163 79, 68, 57, 46, 35, 25, 16, 8, 164 }; 165 166 static const u8 filter_y_vert_tap4[] = { 167 0, -3, -6, -8, -8, -8, -8, -7, 168 -6, -5, -4, -3, -2, -1, -1, 0, 169 127, 126, 124, 118, 111, 102, 92, 81, 170 70, 59, 48, 37, 27, 19, 11, 5, 171 0, 5, 11, 19, 27, 37, 48, 59, 172 70, 81, 92, 102, 111, 118, 124, 126, 173 0, 0, -1, -1, -2, -3, -4, -5, 174 -6, -7, -8, -8, -8, -8, -6, -3, 175 }; 176 177 static const u8 filter_cr_horiz_tap4[] = { 178 0, -3, -6, -8, -8, -8, -8, -7, 179 -6, -5, -4, -3, -2, -1, -1, 0, 180 127, 126, 124, 118, 111, 102, 92, 81, 181 70, 59, 48, 37, 27, 19, 11, 5, 182 }; 183 184 static inline u32 vp_reg_read(struct mixer_context *ctx, u32 reg_id) 185 { 186 return readl(ctx->vp_regs + reg_id); 187 } 188 189 static inline void vp_reg_write(struct mixer_context *ctx, u32 reg_id, 190 u32 val) 191 { 192 writel(val, ctx->vp_regs + reg_id); 193 } 194 195 static inline void vp_reg_writemask(struct mixer_context *ctx, u32 reg_id, 196 u32 val, u32 mask) 197 { 198 u32 old = vp_reg_read(ctx, reg_id); 199 200 val = (val & mask) | (old & ~mask); 201 writel(val, ctx->vp_regs + reg_id); 202 } 203 204 static inline u32 mixer_reg_read(struct mixer_context *ctx, u32 reg_id) 205 { 206 return readl(ctx->mixer_regs + reg_id); 207 } 208 209 static inline void mixer_reg_write(struct mixer_context *ctx, u32 reg_id, 210 u32 val) 211 { 212 writel(val, ctx->mixer_regs + reg_id); 213 } 214 215 static inline void mixer_reg_writemask(struct mixer_context *ctx, 216 u32 reg_id, u32 val, u32 mask) 217 { 218 u32 old = mixer_reg_read(ctx, reg_id); 219 220 val = (val & mask) | (old & ~mask); 221 writel(val, ctx->mixer_regs + reg_id); 222 } 223 224 static void mixer_regs_dump(struct mixer_context *ctx) 225 { 226 #define DUMPREG(reg_id) \ 227 do { \ 228 DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \ 229 (u32)readl(ctx->mixer_regs + reg_id)); \ 230 } while (0) 231 232 DUMPREG(MXR_STATUS); 233 DUMPREG(MXR_CFG); 234 DUMPREG(MXR_INT_EN); 235 DUMPREG(MXR_INT_STATUS); 236 237 DUMPREG(MXR_LAYER_CFG); 238 DUMPREG(MXR_VIDEO_CFG); 239 240 DUMPREG(MXR_GRAPHIC0_CFG); 241 DUMPREG(MXR_GRAPHIC0_BASE); 242 DUMPREG(MXR_GRAPHIC0_SPAN); 243 DUMPREG(MXR_GRAPHIC0_WH); 244 DUMPREG(MXR_GRAPHIC0_SXY); 245 DUMPREG(MXR_GRAPHIC0_DXY); 246 247 DUMPREG(MXR_GRAPHIC1_CFG); 248 DUMPREG(MXR_GRAPHIC1_BASE); 249 DUMPREG(MXR_GRAPHIC1_SPAN); 250 DUMPREG(MXR_GRAPHIC1_WH); 251 DUMPREG(MXR_GRAPHIC1_SXY); 252 DUMPREG(MXR_GRAPHIC1_DXY); 253 #undef DUMPREG 254 } 255 256 static void vp_regs_dump(struct mixer_context *ctx) 257 { 258 #define DUMPREG(reg_id) \ 259 do { \ 260 DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \ 261 (u32) readl(ctx->vp_regs + reg_id)); \ 262 } while (0) 263 264 DUMPREG(VP_ENABLE); 265 DUMPREG(VP_SRESET); 266 DUMPREG(VP_SHADOW_UPDATE); 267 DUMPREG(VP_FIELD_ID); 268 DUMPREG(VP_MODE); 269 DUMPREG(VP_IMG_SIZE_Y); 270 DUMPREG(VP_IMG_SIZE_C); 271 DUMPREG(VP_PER_RATE_CTRL); 272 DUMPREG(VP_TOP_Y_PTR); 273 DUMPREG(VP_BOT_Y_PTR); 274 DUMPREG(VP_TOP_C_PTR); 275 DUMPREG(VP_BOT_C_PTR); 276 DUMPREG(VP_ENDIAN_MODE); 277 DUMPREG(VP_SRC_H_POSITION); 278 DUMPREG(VP_SRC_V_POSITION); 279 DUMPREG(VP_SRC_WIDTH); 280 DUMPREG(VP_SRC_HEIGHT); 281 DUMPREG(VP_DST_H_POSITION); 282 DUMPREG(VP_DST_V_POSITION); 283 DUMPREG(VP_DST_WIDTH); 284 DUMPREG(VP_DST_HEIGHT); 285 DUMPREG(VP_H_RATIO); 286 DUMPREG(VP_V_RATIO); 287 288 #undef DUMPREG 289 } 290 291 static inline void vp_filter_set(struct mixer_context *ctx, 292 int reg_id, const u8 *data, unsigned int size) 293 { 294 /* assure 4-byte align */ 295 BUG_ON(size & 3); 296 for (; size; size -= 4, reg_id += 4, data += 4) { 297 u32 val = (data[0] << 24) | (data[1] << 16) | 298 (data[2] << 8) | data[3]; 299 vp_reg_write(ctx, reg_id, val); 300 } 301 } 302 303 static void vp_default_filter(struct mixer_context *ctx) 304 { 305 vp_filter_set(ctx, VP_POLY8_Y0_LL, 306 filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8)); 307 vp_filter_set(ctx, VP_POLY4_Y0_LL, 308 filter_y_vert_tap4, sizeof(filter_y_vert_tap4)); 309 vp_filter_set(ctx, VP_POLY4_C0_LL, 310 filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4)); 311 } 312 313 static void mixer_cfg_gfx_blend(struct mixer_context *ctx, unsigned int win, 314 unsigned int pixel_alpha, unsigned int alpha) 315 { 316 u32 win_alpha = alpha >> 8; 317 u32 val; 318 319 val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */ 320 switch (pixel_alpha) { 321 case DRM_MODE_BLEND_PIXEL_NONE: 322 break; 323 case DRM_MODE_BLEND_COVERAGE: 324 val |= MXR_GRP_CFG_PIXEL_BLEND_EN; 325 break; 326 case DRM_MODE_BLEND_PREMULTI: 327 default: 328 val |= MXR_GRP_CFG_BLEND_PRE_MUL; 329 val |= MXR_GRP_CFG_PIXEL_BLEND_EN; 330 break; 331 } 332 333 if (alpha != DRM_BLEND_ALPHA_OPAQUE) { 334 val |= MXR_GRP_CFG_WIN_BLEND_EN; 335 val |= win_alpha; 336 } 337 mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win), 338 val, MXR_GRP_CFG_MISC_MASK); 339 } 340 341 static void mixer_cfg_vp_blend(struct mixer_context *ctx, unsigned int alpha) 342 { 343 u32 win_alpha = alpha >> 8; 344 u32 val = 0; 345 346 if (alpha != DRM_BLEND_ALPHA_OPAQUE) { 347 val |= MXR_VID_CFG_BLEND_EN; 348 val |= win_alpha; 349 } 350 mixer_reg_write(ctx, MXR_VIDEO_CFG, val); 351 } 352 353 static bool mixer_is_synced(struct mixer_context *ctx) 354 { 355 u32 base, shadow; 356 357 if (ctx->mxr_ver == MXR_VER_16_0_33_0 || 358 ctx->mxr_ver == MXR_VER_128_0_0_184) 359 return !(mixer_reg_read(ctx, MXR_CFG) & 360 MXR_CFG_LAYER_UPDATE_COUNT_MASK); 361 362 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags) && 363 vp_reg_read(ctx, VP_SHADOW_UPDATE)) 364 return false; 365 366 base = mixer_reg_read(ctx, MXR_CFG); 367 shadow = mixer_reg_read(ctx, MXR_CFG_S); 368 if (base != shadow) 369 return false; 370 371 base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(0)); 372 shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(0)); 373 if (base != shadow) 374 return false; 375 376 base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(1)); 377 shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(1)); 378 if (base != shadow) 379 return false; 380 381 return true; 382 } 383 384 static int mixer_wait_for_sync(struct mixer_context *ctx) 385 { 386 ktime_t timeout = ktime_add_us(ktime_get(), 100000); 387 388 while (!mixer_is_synced(ctx)) { 389 usleep_range(1000, 2000); 390 if (ktime_compare(ktime_get(), timeout) > 0) 391 return -ETIMEDOUT; 392 } 393 return 0; 394 } 395 396 static void mixer_disable_sync(struct mixer_context *ctx) 397 { 398 mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_SYNC_ENABLE); 399 } 400 401 static void mixer_enable_sync(struct mixer_context *ctx) 402 { 403 if (ctx->mxr_ver == MXR_VER_16_0_33_0 || 404 ctx->mxr_ver == MXR_VER_128_0_0_184) 405 mixer_reg_writemask(ctx, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE); 406 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SYNC_ENABLE); 407 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) 408 vp_reg_write(ctx, VP_SHADOW_UPDATE, VP_SHADOW_UPDATE_ENABLE); 409 } 410 411 static void mixer_cfg_scan(struct mixer_context *ctx, int width, int height) 412 { 413 u32 val; 414 415 /* choosing between interlace and progressive mode */ 416 val = test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? 417 MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRESSIVE; 418 419 if (ctx->mxr_ver == MXR_VER_128_0_0_184) 420 mixer_reg_write(ctx, MXR_RESOLUTION, 421 MXR_MXR_RES_HEIGHT(height) | MXR_MXR_RES_WIDTH(width)); 422 else 423 val |= ctx->scan_value; 424 425 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_SCAN_MASK); 426 } 427 428 static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, struct drm_display_mode *mode) 429 { 430 enum hdmi_quantization_range range = drm_default_rgb_quant_range(mode); 431 u32 val; 432 433 if (mode->vdisplay < 720) { 434 val = MXR_CFG_RGB601; 435 } else { 436 val = MXR_CFG_RGB709; 437 438 /* Configure the BT.709 CSC matrix for full range RGB. */ 439 mixer_reg_write(ctx, MXR_CM_COEFF_Y, 440 MXR_CSC_CT( 0.184, 0.614, 0.063) | 441 MXR_CM_COEFF_RGB_FULL); 442 mixer_reg_write(ctx, MXR_CM_COEFF_CB, 443 MXR_CSC_CT(-0.102, -0.338, 0.440)); 444 mixer_reg_write(ctx, MXR_CM_COEFF_CR, 445 MXR_CSC_CT( 0.440, -0.399, -0.040)); 446 } 447 448 if (range == HDMI_QUANTIZATION_RANGE_FULL) 449 val |= MXR_CFG_QUANT_RANGE_FULL; 450 else 451 val |= MXR_CFG_QUANT_RANGE_LIMITED; 452 453 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK); 454 } 455 456 static void mixer_cfg_layer(struct mixer_context *ctx, unsigned int win, 457 unsigned int priority, bool enable) 458 { 459 u32 val = enable ? ~0 : 0; 460 461 switch (win) { 462 case 0: 463 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP0_ENABLE); 464 mixer_reg_writemask(ctx, MXR_LAYER_CFG, 465 MXR_LAYER_CFG_GRP0_VAL(priority), 466 MXR_LAYER_CFG_GRP0_MASK); 467 break; 468 case 1: 469 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP1_ENABLE); 470 mixer_reg_writemask(ctx, MXR_LAYER_CFG, 471 MXR_LAYER_CFG_GRP1_VAL(priority), 472 MXR_LAYER_CFG_GRP1_MASK); 473 474 break; 475 case VP_DEFAULT_WIN: 476 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 477 vp_reg_writemask(ctx, VP_ENABLE, val, VP_ENABLE_ON); 478 mixer_reg_writemask(ctx, MXR_CFG, val, 479 MXR_CFG_VP_ENABLE); 480 mixer_reg_writemask(ctx, MXR_LAYER_CFG, 481 MXR_LAYER_CFG_VP_VAL(priority), 482 MXR_LAYER_CFG_VP_MASK); 483 } 484 break; 485 } 486 } 487 488 static void mixer_run(struct mixer_context *ctx) 489 { 490 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_REG_RUN); 491 } 492 493 static void mixer_stop(struct mixer_context *ctx) 494 { 495 int timeout = 20; 496 497 mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_REG_RUN); 498 499 while (!(mixer_reg_read(ctx, MXR_STATUS) & MXR_STATUS_REG_IDLE) && 500 --timeout) 501 usleep_range(10000, 12000); 502 } 503 504 static void mixer_commit(struct mixer_context *ctx) 505 { 506 struct drm_display_mode *mode = &ctx->crtc->base.state->adjusted_mode; 507 508 mixer_cfg_scan(ctx, mode->hdisplay, mode->vdisplay); 509 mixer_cfg_rgb_fmt(ctx, mode); 510 mixer_run(ctx); 511 } 512 513 static void vp_video_buffer(struct mixer_context *ctx, 514 struct exynos_drm_plane *plane) 515 { 516 struct exynos_drm_plane_state *state = 517 to_exynos_plane_state(plane->base.state); 518 struct drm_framebuffer *fb = state->base.fb; 519 unsigned int priority = state->base.normalized_zpos + 1; 520 unsigned long flags; 521 dma_addr_t luma_addr[2], chroma_addr[2]; 522 bool is_tiled, is_nv21; 523 u32 val; 524 525 is_nv21 = (fb->format->format == DRM_FORMAT_NV21); 526 is_tiled = (fb->modifier == DRM_FORMAT_MOD_SAMSUNG_64_32_TILE); 527 528 luma_addr[0] = exynos_drm_fb_dma_addr(fb, 0); 529 chroma_addr[0] = exynos_drm_fb_dma_addr(fb, 1); 530 531 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) { 532 if (is_tiled) { 533 luma_addr[1] = luma_addr[0] + 0x40; 534 chroma_addr[1] = chroma_addr[0] + 0x40; 535 } else { 536 luma_addr[1] = luma_addr[0] + fb->pitches[0]; 537 chroma_addr[1] = chroma_addr[0] + fb->pitches[1]; 538 } 539 } else { 540 luma_addr[1] = 0; 541 chroma_addr[1] = 0; 542 } 543 544 spin_lock_irqsave(&ctx->reg_slock, flags); 545 546 /* interlace or progressive scan mode */ 547 val = (test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? ~0 : 0); 548 vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_LINE_SKIP); 549 550 /* setup format */ 551 val = (is_nv21 ? VP_MODE_NV21 : VP_MODE_NV12); 552 val |= (is_tiled ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR); 553 vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_FMT_MASK); 554 555 /* setting size of input image */ 556 vp_reg_write(ctx, VP_IMG_SIZE_Y, VP_IMG_HSIZE(fb->pitches[0]) | 557 VP_IMG_VSIZE(fb->height)); 558 /* chroma plane for NV12/NV21 is half the height of the luma plane */ 559 vp_reg_write(ctx, VP_IMG_SIZE_C, VP_IMG_HSIZE(fb->pitches[1]) | 560 VP_IMG_VSIZE(fb->height / 2)); 561 562 vp_reg_write(ctx, VP_SRC_WIDTH, state->src.w); 563 vp_reg_write(ctx, VP_SRC_H_POSITION, 564 VP_SRC_H_POSITION_VAL(state->src.x)); 565 vp_reg_write(ctx, VP_DST_WIDTH, state->crtc.w); 566 vp_reg_write(ctx, VP_DST_H_POSITION, state->crtc.x); 567 568 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) { 569 vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h / 2); 570 vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y / 2); 571 vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h / 2); 572 vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y / 2); 573 } else { 574 vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h); 575 vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y); 576 vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h); 577 vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y); 578 } 579 580 vp_reg_write(ctx, VP_H_RATIO, state->h_ratio); 581 vp_reg_write(ctx, VP_V_RATIO, state->v_ratio); 582 583 vp_reg_write(ctx, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE); 584 585 /* set buffer address to vp */ 586 vp_reg_write(ctx, VP_TOP_Y_PTR, luma_addr[0]); 587 vp_reg_write(ctx, VP_BOT_Y_PTR, luma_addr[1]); 588 vp_reg_write(ctx, VP_TOP_C_PTR, chroma_addr[0]); 589 vp_reg_write(ctx, VP_BOT_C_PTR, chroma_addr[1]); 590 591 mixer_cfg_layer(ctx, plane->index, priority, true); 592 mixer_cfg_vp_blend(ctx, state->base.alpha); 593 594 spin_unlock_irqrestore(&ctx->reg_slock, flags); 595 596 mixer_regs_dump(ctx); 597 vp_regs_dump(ctx); 598 } 599 600 static void mixer_graph_buffer(struct mixer_context *ctx, 601 struct exynos_drm_plane *plane) 602 { 603 struct exynos_drm_plane_state *state = 604 to_exynos_plane_state(plane->base.state); 605 struct drm_framebuffer *fb = state->base.fb; 606 unsigned int priority = state->base.normalized_zpos + 1; 607 unsigned long flags; 608 unsigned int win = plane->index; 609 unsigned int x_ratio = 0, y_ratio = 0; 610 unsigned int dst_x_offset, dst_y_offset; 611 unsigned int pixel_alpha; 612 dma_addr_t dma_addr; 613 unsigned int fmt; 614 u32 val; 615 616 if (fb->format->has_alpha) 617 pixel_alpha = state->base.pixel_blend_mode; 618 else 619 pixel_alpha = DRM_MODE_BLEND_PIXEL_NONE; 620 621 switch (fb->format->format) { 622 case DRM_FORMAT_XRGB4444: 623 case DRM_FORMAT_ARGB4444: 624 fmt = MXR_FORMAT_ARGB4444; 625 break; 626 627 case DRM_FORMAT_XRGB1555: 628 case DRM_FORMAT_ARGB1555: 629 fmt = MXR_FORMAT_ARGB1555; 630 break; 631 632 case DRM_FORMAT_RGB565: 633 fmt = MXR_FORMAT_RGB565; 634 break; 635 636 case DRM_FORMAT_XRGB8888: 637 case DRM_FORMAT_ARGB8888: 638 default: 639 fmt = MXR_FORMAT_ARGB8888; 640 break; 641 } 642 643 /* ratio is already checked by common plane code */ 644 x_ratio = state->h_ratio == (1 << 15); 645 y_ratio = state->v_ratio == (1 << 15); 646 647 dst_x_offset = state->crtc.x; 648 dst_y_offset = state->crtc.y; 649 650 /* translate dma address base s.t. the source image offset is zero */ 651 dma_addr = exynos_drm_fb_dma_addr(fb, 0) 652 + (state->src.x * fb->format->cpp[0]) 653 + (state->src.y * fb->pitches[0]); 654 655 spin_lock_irqsave(&ctx->reg_slock, flags); 656 657 /* setup format */ 658 mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win), 659 MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK); 660 661 /* setup geometry */ 662 mixer_reg_write(ctx, MXR_GRAPHIC_SPAN(win), 663 fb->pitches[0] / fb->format->cpp[0]); 664 665 val = MXR_GRP_WH_WIDTH(state->src.w); 666 val |= MXR_GRP_WH_HEIGHT(state->src.h); 667 val |= MXR_GRP_WH_H_SCALE(x_ratio); 668 val |= MXR_GRP_WH_V_SCALE(y_ratio); 669 mixer_reg_write(ctx, MXR_GRAPHIC_WH(win), val); 670 671 /* setup offsets in display image */ 672 val = MXR_GRP_DXY_DX(dst_x_offset); 673 val |= MXR_GRP_DXY_DY(dst_y_offset); 674 mixer_reg_write(ctx, MXR_GRAPHIC_DXY(win), val); 675 676 /* set buffer address to mixer */ 677 mixer_reg_write(ctx, MXR_GRAPHIC_BASE(win), dma_addr); 678 679 mixer_cfg_layer(ctx, win, priority, true); 680 mixer_cfg_gfx_blend(ctx, win, pixel_alpha, state->base.alpha); 681 682 spin_unlock_irqrestore(&ctx->reg_slock, flags); 683 684 mixer_regs_dump(ctx); 685 } 686 687 static void vp_win_reset(struct mixer_context *ctx) 688 { 689 unsigned int tries = 100; 690 691 vp_reg_write(ctx, VP_SRESET, VP_SRESET_PROCESSING); 692 while (--tries) { 693 /* waiting until VP_SRESET_PROCESSING is 0 */ 694 if (~vp_reg_read(ctx, VP_SRESET) & VP_SRESET_PROCESSING) 695 break; 696 mdelay(10); 697 } 698 WARN(tries == 0, "failed to reset Video Processor\n"); 699 } 700 701 static void mixer_win_reset(struct mixer_context *ctx) 702 { 703 unsigned long flags; 704 705 spin_lock_irqsave(&ctx->reg_slock, flags); 706 707 mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK); 708 709 /* set output in RGB888 mode */ 710 mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK); 711 712 /* 16 beat burst in DMA */ 713 mixer_reg_writemask(ctx, MXR_STATUS, MXR_STATUS_16_BURST, 714 MXR_STATUS_BURST_MASK); 715 716 /* reset default layer priority */ 717 mixer_reg_write(ctx, MXR_LAYER_CFG, 0); 718 719 /* set all background colors to RGB (0,0,0) */ 720 mixer_reg_write(ctx, MXR_BG_COLOR0, MXR_YCBCR_VAL(0, 128, 128)); 721 mixer_reg_write(ctx, MXR_BG_COLOR1, MXR_YCBCR_VAL(0, 128, 128)); 722 mixer_reg_write(ctx, MXR_BG_COLOR2, MXR_YCBCR_VAL(0, 128, 128)); 723 724 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 725 /* configuration of Video Processor Registers */ 726 vp_win_reset(ctx); 727 vp_default_filter(ctx); 728 } 729 730 /* disable all layers */ 731 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE); 732 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE); 733 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) 734 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_VP_ENABLE); 735 736 /* set all source image offsets to zero */ 737 mixer_reg_write(ctx, MXR_GRAPHIC_SXY(0), 0); 738 mixer_reg_write(ctx, MXR_GRAPHIC_SXY(1), 0); 739 740 spin_unlock_irqrestore(&ctx->reg_slock, flags); 741 } 742 743 static irqreturn_t mixer_irq_handler(int irq, void *arg) 744 { 745 struct mixer_context *ctx = arg; 746 u32 val; 747 748 spin_lock(&ctx->reg_slock); 749 750 /* read interrupt status for handling and clearing flags for VSYNC */ 751 val = mixer_reg_read(ctx, MXR_INT_STATUS); 752 753 /* handling VSYNC */ 754 if (val & MXR_INT_STATUS_VSYNC) { 755 /* vsync interrupt use different bit for read and clear */ 756 val |= MXR_INT_CLEAR_VSYNC; 757 val &= ~MXR_INT_STATUS_VSYNC; 758 759 /* interlace scan need to check shadow register */ 760 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags) 761 && !mixer_is_synced(ctx)) 762 goto out; 763 764 drm_crtc_handle_vblank(&ctx->crtc->base); 765 } 766 767 out: 768 /* clear interrupts */ 769 mixer_reg_write(ctx, MXR_INT_STATUS, val); 770 771 spin_unlock(&ctx->reg_slock); 772 773 return IRQ_HANDLED; 774 } 775 776 static int mixer_resources_init(struct mixer_context *mixer_ctx) 777 { 778 struct device *dev = &mixer_ctx->pdev->dev; 779 struct resource *res; 780 int ret; 781 782 spin_lock_init(&mixer_ctx->reg_slock); 783 784 mixer_ctx->mixer = devm_clk_get(dev, "mixer"); 785 if (IS_ERR(mixer_ctx->mixer)) { 786 dev_err(dev, "failed to get clock 'mixer'\n"); 787 return -ENODEV; 788 } 789 790 mixer_ctx->hdmi = devm_clk_get(dev, "hdmi"); 791 if (IS_ERR(mixer_ctx->hdmi)) { 792 dev_err(dev, "failed to get clock 'hdmi'\n"); 793 return PTR_ERR(mixer_ctx->hdmi); 794 } 795 796 mixer_ctx->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi"); 797 if (IS_ERR(mixer_ctx->sclk_hdmi)) { 798 dev_err(dev, "failed to get clock 'sclk_hdmi'\n"); 799 return -ENODEV; 800 } 801 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 0); 802 if (res == NULL) { 803 dev_err(dev, "get memory resource failed.\n"); 804 return -ENXIO; 805 } 806 807 mixer_ctx->mixer_regs = devm_ioremap(dev, res->start, 808 resource_size(res)); 809 if (mixer_ctx->mixer_regs == NULL) { 810 dev_err(dev, "register mapping failed.\n"); 811 return -ENXIO; 812 } 813 814 ret = platform_get_irq(mixer_ctx->pdev, 0); 815 if (ret < 0) 816 return ret; 817 mixer_ctx->irq = ret; 818 819 ret = devm_request_irq(dev, mixer_ctx->irq, mixer_irq_handler, 820 0, "drm_mixer", mixer_ctx); 821 if (ret) { 822 dev_err(dev, "request interrupt failed.\n"); 823 return ret; 824 } 825 826 return 0; 827 } 828 829 static int vp_resources_init(struct mixer_context *mixer_ctx) 830 { 831 struct device *dev = &mixer_ctx->pdev->dev; 832 struct resource *res; 833 834 mixer_ctx->vp = devm_clk_get(dev, "vp"); 835 if (IS_ERR(mixer_ctx->vp)) { 836 dev_err(dev, "failed to get clock 'vp'\n"); 837 return -ENODEV; 838 } 839 840 if (test_bit(MXR_BIT_HAS_SCLK, &mixer_ctx->flags)) { 841 mixer_ctx->sclk_mixer = devm_clk_get(dev, "sclk_mixer"); 842 if (IS_ERR(mixer_ctx->sclk_mixer)) { 843 dev_err(dev, "failed to get clock 'sclk_mixer'\n"); 844 return -ENODEV; 845 } 846 mixer_ctx->mout_mixer = devm_clk_get(dev, "mout_mixer"); 847 if (IS_ERR(mixer_ctx->mout_mixer)) { 848 dev_err(dev, "failed to get clock 'mout_mixer'\n"); 849 return -ENODEV; 850 } 851 852 if (mixer_ctx->sclk_hdmi && mixer_ctx->mout_mixer) 853 clk_set_parent(mixer_ctx->mout_mixer, 854 mixer_ctx->sclk_hdmi); 855 } 856 857 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 1); 858 if (res == NULL) { 859 dev_err(dev, "get memory resource failed.\n"); 860 return -ENXIO; 861 } 862 863 mixer_ctx->vp_regs = devm_ioremap(dev, res->start, 864 resource_size(res)); 865 if (mixer_ctx->vp_regs == NULL) { 866 dev_err(dev, "register mapping failed.\n"); 867 return -ENXIO; 868 } 869 870 return 0; 871 } 872 873 static int mixer_initialize(struct mixer_context *mixer_ctx, 874 struct drm_device *drm_dev) 875 { 876 int ret; 877 878 mixer_ctx->drm_dev = drm_dev; 879 880 /* acquire resources: regs, irqs, clocks */ 881 ret = mixer_resources_init(mixer_ctx); 882 if (ret) { 883 DRM_DEV_ERROR(mixer_ctx->dev, 884 "mixer_resources_init failed ret=%d\n", ret); 885 return ret; 886 } 887 888 if (test_bit(MXR_BIT_VP_ENABLED, &mixer_ctx->flags)) { 889 /* acquire vp resources: regs, irqs, clocks */ 890 ret = vp_resources_init(mixer_ctx); 891 if (ret) { 892 DRM_DEV_ERROR(mixer_ctx->dev, 893 "vp_resources_init failed ret=%d\n", ret); 894 return ret; 895 } 896 } 897 898 return exynos_drm_register_dma(drm_dev, mixer_ctx->dev, 899 &mixer_ctx->dma_priv); 900 } 901 902 static void mixer_ctx_remove(struct mixer_context *mixer_ctx) 903 { 904 exynos_drm_unregister_dma(mixer_ctx->drm_dev, mixer_ctx->dev, 905 &mixer_ctx->dma_priv); 906 } 907 908 static int mixer_enable_vblank(struct exynos_drm_crtc *crtc) 909 { 910 struct mixer_context *mixer_ctx = crtc->ctx; 911 912 __set_bit(MXR_BIT_VSYNC, &mixer_ctx->flags); 913 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 914 return 0; 915 916 /* enable vsync interrupt */ 917 mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC); 918 mixer_reg_writemask(mixer_ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC); 919 920 return 0; 921 } 922 923 static void mixer_disable_vblank(struct exynos_drm_crtc *crtc) 924 { 925 struct mixer_context *mixer_ctx = crtc->ctx; 926 927 __clear_bit(MXR_BIT_VSYNC, &mixer_ctx->flags); 928 929 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 930 return; 931 932 /* disable vsync interrupt */ 933 mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC); 934 mixer_reg_writemask(mixer_ctx, MXR_INT_EN, 0, MXR_INT_EN_VSYNC); 935 } 936 937 static void mixer_atomic_begin(struct exynos_drm_crtc *crtc) 938 { 939 struct mixer_context *ctx = crtc->ctx; 940 941 if (!test_bit(MXR_BIT_POWERED, &ctx->flags)) 942 return; 943 944 if (mixer_wait_for_sync(ctx)) 945 dev_err(ctx->dev, "timeout waiting for VSYNC\n"); 946 mixer_disable_sync(ctx); 947 } 948 949 static void mixer_update_plane(struct exynos_drm_crtc *crtc, 950 struct exynos_drm_plane *plane) 951 { 952 struct mixer_context *mixer_ctx = crtc->ctx; 953 954 DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index); 955 956 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 957 return; 958 959 if (plane->index == VP_DEFAULT_WIN) 960 vp_video_buffer(mixer_ctx, plane); 961 else 962 mixer_graph_buffer(mixer_ctx, plane); 963 } 964 965 static void mixer_disable_plane(struct exynos_drm_crtc *crtc, 966 struct exynos_drm_plane *plane) 967 { 968 struct mixer_context *mixer_ctx = crtc->ctx; 969 unsigned long flags; 970 971 DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index); 972 973 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 974 return; 975 976 spin_lock_irqsave(&mixer_ctx->reg_slock, flags); 977 mixer_cfg_layer(mixer_ctx, plane->index, 0, false); 978 spin_unlock_irqrestore(&mixer_ctx->reg_slock, flags); 979 } 980 981 static void mixer_atomic_flush(struct exynos_drm_crtc *crtc) 982 { 983 struct mixer_context *mixer_ctx = crtc->ctx; 984 985 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) 986 return; 987 988 mixer_enable_sync(mixer_ctx); 989 exynos_crtc_handle_event(crtc); 990 } 991 992 static void mixer_atomic_enable(struct exynos_drm_crtc *crtc) 993 { 994 struct mixer_context *ctx = crtc->ctx; 995 int ret; 996 997 if (test_bit(MXR_BIT_POWERED, &ctx->flags)) 998 return; 999 1000 ret = pm_runtime_resume_and_get(ctx->dev); 1001 if (ret < 0) { 1002 dev_err(ctx->dev, "failed to enable MIXER device.\n"); 1003 return; 1004 } 1005 1006 exynos_drm_pipe_clk_enable(crtc, true); 1007 1008 mixer_disable_sync(ctx); 1009 1010 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SOFT_RESET); 1011 1012 if (test_bit(MXR_BIT_VSYNC, &ctx->flags)) { 1013 mixer_reg_writemask(ctx, MXR_INT_STATUS, ~0, 1014 MXR_INT_CLEAR_VSYNC); 1015 mixer_reg_writemask(ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC); 1016 } 1017 mixer_win_reset(ctx); 1018 1019 mixer_commit(ctx); 1020 1021 mixer_enable_sync(ctx); 1022 1023 set_bit(MXR_BIT_POWERED, &ctx->flags); 1024 } 1025 1026 static void mixer_atomic_disable(struct exynos_drm_crtc *crtc) 1027 { 1028 struct mixer_context *ctx = crtc->ctx; 1029 int i; 1030 1031 if (!test_bit(MXR_BIT_POWERED, &ctx->flags)) 1032 return; 1033 1034 mixer_stop(ctx); 1035 mixer_regs_dump(ctx); 1036 1037 for (i = 0; i < MIXER_WIN_NR; i++) 1038 mixer_disable_plane(crtc, &ctx->planes[i]); 1039 1040 exynos_drm_pipe_clk_enable(crtc, false); 1041 1042 pm_runtime_put(ctx->dev); 1043 1044 clear_bit(MXR_BIT_POWERED, &ctx->flags); 1045 } 1046 1047 static enum drm_mode_status mixer_mode_valid(struct exynos_drm_crtc *crtc, 1048 const struct drm_display_mode *mode) 1049 { 1050 struct mixer_context *ctx = crtc->ctx; 1051 u32 w = mode->hdisplay, h = mode->vdisplay; 1052 1053 DRM_DEV_DEBUG_KMS(ctx->dev, "xres=%d, yres=%d, refresh=%d, intl=%d\n", 1054 w, h, drm_mode_vrefresh(mode), 1055 !!(mode->flags & DRM_MODE_FLAG_INTERLACE)); 1056 1057 if (ctx->mxr_ver == MXR_VER_128_0_0_184) 1058 return MODE_OK; 1059 1060 if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) || 1061 (w >= 1024 && w <= 1280 && h >= 576 && h <= 720) || 1062 (w >= 1664 && w <= 1920 && h >= 936 && h <= 1080)) 1063 return MODE_OK; 1064 1065 if ((w == 1024 && h == 768) || 1066 (w == 1366 && h == 768) || 1067 (w == 1280 && h == 1024)) 1068 return MODE_OK; 1069 1070 return MODE_BAD; 1071 } 1072 1073 static bool mixer_mode_fixup(struct exynos_drm_crtc *crtc, 1074 const struct drm_display_mode *mode, 1075 struct drm_display_mode *adjusted_mode) 1076 { 1077 struct mixer_context *ctx = crtc->ctx; 1078 int width = mode->hdisplay, height = mode->vdisplay, i; 1079 1080 static const struct { 1081 int hdisplay, vdisplay, htotal, vtotal, scan_val; 1082 } modes[] = { 1083 { 720, 480, 858, 525, MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD }, 1084 { 720, 576, 864, 625, MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD }, 1085 { 1280, 720, 1650, 750, MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD }, 1086 { 1920, 1080, 2200, 1125, MXR_CFG_SCAN_HD_1080 | 1087 MXR_CFG_SCAN_HD } 1088 }; 1089 1090 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1091 __set_bit(MXR_BIT_INTERLACE, &ctx->flags); 1092 else 1093 __clear_bit(MXR_BIT_INTERLACE, &ctx->flags); 1094 1095 if (ctx->mxr_ver == MXR_VER_128_0_0_184) 1096 return true; 1097 1098 for (i = 0; i < ARRAY_SIZE(modes); ++i) 1099 if (width <= modes[i].hdisplay && height <= modes[i].vdisplay) { 1100 ctx->scan_value = modes[i].scan_val; 1101 if (width < modes[i].hdisplay || 1102 height < modes[i].vdisplay) { 1103 adjusted_mode->hdisplay = modes[i].hdisplay; 1104 adjusted_mode->hsync_start = modes[i].hdisplay; 1105 adjusted_mode->hsync_end = modes[i].htotal; 1106 adjusted_mode->htotal = modes[i].htotal; 1107 adjusted_mode->vdisplay = modes[i].vdisplay; 1108 adjusted_mode->vsync_start = modes[i].vdisplay; 1109 adjusted_mode->vsync_end = modes[i].vtotal; 1110 adjusted_mode->vtotal = modes[i].vtotal; 1111 } 1112 1113 return true; 1114 } 1115 1116 return false; 1117 } 1118 1119 static const struct exynos_drm_crtc_ops mixer_crtc_ops = { 1120 .atomic_enable = mixer_atomic_enable, 1121 .atomic_disable = mixer_atomic_disable, 1122 .enable_vblank = mixer_enable_vblank, 1123 .disable_vblank = mixer_disable_vblank, 1124 .atomic_begin = mixer_atomic_begin, 1125 .update_plane = mixer_update_plane, 1126 .disable_plane = mixer_disable_plane, 1127 .atomic_flush = mixer_atomic_flush, 1128 .mode_valid = mixer_mode_valid, 1129 .mode_fixup = mixer_mode_fixup, 1130 }; 1131 1132 static const struct mixer_drv_data exynos5420_mxr_drv_data = { 1133 .version = MXR_VER_128_0_0_184, 1134 .is_vp_enabled = 0, 1135 }; 1136 1137 static const struct mixer_drv_data exynos5250_mxr_drv_data = { 1138 .version = MXR_VER_16_0_33_0, 1139 .is_vp_enabled = 0, 1140 }; 1141 1142 static const struct mixer_drv_data exynos4212_mxr_drv_data = { 1143 .version = MXR_VER_0_0_0_16, 1144 .is_vp_enabled = 1, 1145 }; 1146 1147 static const struct mixer_drv_data exynos4210_mxr_drv_data = { 1148 .version = MXR_VER_0_0_0_16, 1149 .is_vp_enabled = 1, 1150 .has_sclk = 1, 1151 }; 1152 1153 static const struct of_device_id mixer_match_types[] = { 1154 { 1155 .compatible = "samsung,exynos4210-mixer", 1156 .data = &exynos4210_mxr_drv_data, 1157 }, { 1158 .compatible = "samsung,exynos4212-mixer", 1159 .data = &exynos4212_mxr_drv_data, 1160 }, { 1161 .compatible = "samsung,exynos5-mixer", 1162 .data = &exynos5250_mxr_drv_data, 1163 }, { 1164 .compatible = "samsung,exynos5250-mixer", 1165 .data = &exynos5250_mxr_drv_data, 1166 }, { 1167 .compatible = "samsung,exynos5420-mixer", 1168 .data = &exynos5420_mxr_drv_data, 1169 }, { 1170 /* end node */ 1171 } 1172 }; 1173 MODULE_DEVICE_TABLE(of, mixer_match_types); 1174 1175 static int mixer_bind(struct device *dev, struct device *manager, void *data) 1176 { 1177 struct mixer_context *ctx = dev_get_drvdata(dev); 1178 struct drm_device *drm_dev = data; 1179 struct exynos_drm_plane *exynos_plane; 1180 unsigned int i; 1181 int ret; 1182 1183 ret = mixer_initialize(ctx, drm_dev); 1184 if (ret) 1185 return ret; 1186 1187 for (i = 0; i < MIXER_WIN_NR; i++) { 1188 if (i == VP_DEFAULT_WIN && !test_bit(MXR_BIT_VP_ENABLED, 1189 &ctx->flags)) 1190 continue; 1191 1192 ret = exynos_plane_init(drm_dev, &ctx->planes[i], i, 1193 &plane_configs[i]); 1194 if (ret) 1195 return ret; 1196 } 1197 1198 exynos_plane = &ctx->planes[DEFAULT_WIN]; 1199 ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base, 1200 EXYNOS_DISPLAY_TYPE_HDMI, &mixer_crtc_ops, ctx); 1201 if (IS_ERR(ctx->crtc)) { 1202 mixer_ctx_remove(ctx); 1203 ret = PTR_ERR(ctx->crtc); 1204 goto free_ctx; 1205 } 1206 1207 return 0; 1208 1209 free_ctx: 1210 devm_kfree(dev, ctx); 1211 return ret; 1212 } 1213 1214 static void mixer_unbind(struct device *dev, struct device *master, void *data) 1215 { 1216 struct mixer_context *ctx = dev_get_drvdata(dev); 1217 1218 mixer_ctx_remove(ctx); 1219 } 1220 1221 static const struct component_ops mixer_component_ops = { 1222 .bind = mixer_bind, 1223 .unbind = mixer_unbind, 1224 }; 1225 1226 static int mixer_probe(struct platform_device *pdev) 1227 { 1228 struct device *dev = &pdev->dev; 1229 const struct mixer_drv_data *drv; 1230 struct mixer_context *ctx; 1231 int ret; 1232 1233 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); 1234 if (!ctx) { 1235 DRM_DEV_ERROR(dev, "failed to alloc mixer context.\n"); 1236 return -ENOMEM; 1237 } 1238 1239 drv = of_device_get_match_data(dev); 1240 1241 ctx->pdev = pdev; 1242 ctx->dev = dev; 1243 ctx->mxr_ver = drv->version; 1244 1245 if (drv->is_vp_enabled) 1246 __set_bit(MXR_BIT_VP_ENABLED, &ctx->flags); 1247 if (drv->has_sclk) 1248 __set_bit(MXR_BIT_HAS_SCLK, &ctx->flags); 1249 1250 platform_set_drvdata(pdev, ctx); 1251 1252 pm_runtime_enable(dev); 1253 1254 ret = component_add(&pdev->dev, &mixer_component_ops); 1255 if (ret) 1256 pm_runtime_disable(dev); 1257 1258 return ret; 1259 } 1260 1261 static void mixer_remove(struct platform_device *pdev) 1262 { 1263 pm_runtime_disable(&pdev->dev); 1264 1265 component_del(&pdev->dev, &mixer_component_ops); 1266 } 1267 1268 static int __maybe_unused exynos_mixer_suspend(struct device *dev) 1269 { 1270 struct mixer_context *ctx = dev_get_drvdata(dev); 1271 1272 clk_disable_unprepare(ctx->hdmi); 1273 clk_disable_unprepare(ctx->mixer); 1274 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 1275 clk_disable_unprepare(ctx->vp); 1276 if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) 1277 clk_disable_unprepare(ctx->sclk_mixer); 1278 } 1279 1280 return 0; 1281 } 1282 1283 static int __maybe_unused exynos_mixer_resume(struct device *dev) 1284 { 1285 struct mixer_context *ctx = dev_get_drvdata(dev); 1286 int ret; 1287 1288 ret = clk_prepare_enable(ctx->mixer); 1289 if (ret < 0) { 1290 DRM_DEV_ERROR(ctx->dev, 1291 "Failed to prepare_enable the mixer clk [%d]\n", 1292 ret); 1293 return ret; 1294 } 1295 ret = clk_prepare_enable(ctx->hdmi); 1296 if (ret < 0) { 1297 DRM_DEV_ERROR(dev, 1298 "Failed to prepare_enable the hdmi clk [%d]\n", 1299 ret); 1300 return ret; 1301 } 1302 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { 1303 ret = clk_prepare_enable(ctx->vp); 1304 if (ret < 0) { 1305 DRM_DEV_ERROR(dev, 1306 "Failed to prepare_enable the vp clk [%d]\n", 1307 ret); 1308 return ret; 1309 } 1310 if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) { 1311 ret = clk_prepare_enable(ctx->sclk_mixer); 1312 if (ret < 0) { 1313 DRM_DEV_ERROR(dev, 1314 "Failed to prepare_enable the " \ 1315 "sclk_mixer clk [%d]\n", 1316 ret); 1317 return ret; 1318 } 1319 } 1320 } 1321 1322 return 0; 1323 } 1324 1325 static const struct dev_pm_ops exynos_mixer_pm_ops = { 1326 SET_RUNTIME_PM_OPS(exynos_mixer_suspend, exynos_mixer_resume, NULL) 1327 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1328 pm_runtime_force_resume) 1329 }; 1330 1331 struct platform_driver mixer_driver = { 1332 .driver = { 1333 .name = "exynos-mixer", 1334 .pm = &exynos_mixer_pm_ops, 1335 .of_match_table = mixer_match_types, 1336 }, 1337 .probe = mixer_probe, 1338 .remove = mixer_remove, 1339 }; 1340