xref: /linux/drivers/gpu/drm/drm_vma_manager.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
3  * Copyright (c) 2012 David Airlie <airlied@linux.ie>
4  * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/drm_mm.h>
27 #include <drm/drm_vma_manager.h>
28 #include <linux/fs.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/rbtree.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/types.h>
35 
36 /**
37  * DOC: vma offset manager
38  *
39  * The vma-manager is responsible to map arbitrary driver-dependent memory
40  * regions into the linear user address-space. It provides offsets to the
41  * caller which can then be used on the address_space of the drm-device. It
42  * takes care to not overlap regions, size them appropriately and to not
43  * confuse mm-core by inconsistent fake vm_pgoff fields.
44  * Drivers shouldn't use this for object placement in VMEM. This manager should
45  * only be used to manage mappings into linear user-space VMs.
46  *
47  * We use drm_mm as backend to manage object allocations. But it is highly
48  * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
49  * speed up offset lookups.
50  *
51  * You must not use multiple offset managers on a single address_space.
52  * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
53  * no longer be linear.
54  *
55  * This offset manager works on page-based addresses. That is, every argument
56  * and return code (with the exception of drm_vma_node_offset_addr()) is given
57  * in number of pages, not number of bytes. That means, object sizes and offsets
58  * must always be page-aligned (as usual).
59  * If you want to get a valid byte-based user-space address for a given offset,
60  * please see drm_vma_node_offset_addr().
61  *
62  * Additionally to offset management, the vma offset manager also handles access
63  * management. For every open-file context that is allowed to access a given
64  * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
65  * open-file with the offset of the node will fail with -EACCES. To revoke
66  * access again, use drm_vma_node_revoke(). However, the caller is responsible
67  * for destroying already existing mappings, if required.
68  */
69 
70 /**
71  * drm_vma_offset_manager_init - Initialize new offset-manager
72  * @mgr: Manager object
73  * @page_offset: Offset of available memory area (page-based)
74  * @size: Size of available address space range (page-based)
75  *
76  * Initialize a new offset-manager. The offset and area size available for the
77  * manager are given as @page_offset and @size. Both are interpreted as
78  * page-numbers, not bytes.
79  *
80  * Adding/removing nodes from the manager is locked internally and protected
81  * against concurrent access. However, node allocation and destruction is left
82  * for the caller. While calling into the vma-manager, a given node must
83  * always be guaranteed to be referenced.
84  */
85 void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
86 				 unsigned long page_offset, unsigned long size)
87 {
88 	rwlock_init(&mgr->vm_lock);
89 	mgr->vm_addr_space_rb = RB_ROOT;
90 	drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
91 }
92 EXPORT_SYMBOL(drm_vma_offset_manager_init);
93 
94 /**
95  * drm_vma_offset_manager_destroy() - Destroy offset manager
96  * @mgr: Manager object
97  *
98  * Destroy an object manager which was previously created via
99  * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
100  * before destroying the manager. Otherwise, drm_mm will refuse to free the
101  * requested resources.
102  *
103  * The manager must not be accessed after this function is called.
104  */
105 void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
106 {
107 	/* take the lock to protect against buggy drivers */
108 	write_lock(&mgr->vm_lock);
109 	drm_mm_takedown(&mgr->vm_addr_space_mm);
110 	write_unlock(&mgr->vm_lock);
111 }
112 EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
113 
114 /**
115  * drm_vma_offset_lookup() - Find node in offset space
116  * @mgr: Manager object
117  * @start: Start address for object (page-based)
118  * @pages: Size of object (page-based)
119  *
120  * Find a node given a start address and object size. This returns the _best_
121  * match for the given node. That is, @start may point somewhere into a valid
122  * region and the given node will be returned, as long as the node spans the
123  * whole requested area (given the size in number of pages as @pages).
124  *
125  * RETURNS:
126  * Returns NULL if no suitable node can be found. Otherwise, the best match
127  * is returned. It's the caller's responsibility to make sure the node doesn't
128  * get destroyed before the caller can access it.
129  */
130 struct drm_vma_offset_node *drm_vma_offset_lookup(struct drm_vma_offset_manager *mgr,
131 						  unsigned long start,
132 						  unsigned long pages)
133 {
134 	struct drm_vma_offset_node *node;
135 
136 	read_lock(&mgr->vm_lock);
137 	node = drm_vma_offset_lookup_locked(mgr, start, pages);
138 	read_unlock(&mgr->vm_lock);
139 
140 	return node;
141 }
142 EXPORT_SYMBOL(drm_vma_offset_lookup);
143 
144 /**
145  * drm_vma_offset_lookup_locked() - Find node in offset space
146  * @mgr: Manager object
147  * @start: Start address for object (page-based)
148  * @pages: Size of object (page-based)
149  *
150  * Same as drm_vma_offset_lookup() but requires the caller to lock offset lookup
151  * manually. See drm_vma_offset_lock_lookup() for an example.
152  *
153  * RETURNS:
154  * Returns NULL if no suitable node can be found. Otherwise, the best match
155  * is returned.
156  */
157 struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
158 							 unsigned long start,
159 							 unsigned long pages)
160 {
161 	struct drm_vma_offset_node *node, *best;
162 	struct rb_node *iter;
163 	unsigned long offset;
164 
165 	iter = mgr->vm_addr_space_rb.rb_node;
166 	best = NULL;
167 
168 	while (likely(iter)) {
169 		node = rb_entry(iter, struct drm_vma_offset_node, vm_rb);
170 		offset = node->vm_node.start;
171 		if (start >= offset) {
172 			iter = iter->rb_right;
173 			best = node;
174 			if (start == offset)
175 				break;
176 		} else {
177 			iter = iter->rb_left;
178 		}
179 	}
180 
181 	/* verify that the node spans the requested area */
182 	if (best) {
183 		offset = best->vm_node.start + best->vm_node.size;
184 		if (offset < start + pages)
185 			best = NULL;
186 	}
187 
188 	return best;
189 }
190 EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
191 
192 /* internal helper to link @node into the rb-tree */
193 static void _drm_vma_offset_add_rb(struct drm_vma_offset_manager *mgr,
194 				   struct drm_vma_offset_node *node)
195 {
196 	struct rb_node **iter = &mgr->vm_addr_space_rb.rb_node;
197 	struct rb_node *parent = NULL;
198 	struct drm_vma_offset_node *iter_node;
199 
200 	while (likely(*iter)) {
201 		parent = *iter;
202 		iter_node = rb_entry(*iter, struct drm_vma_offset_node, vm_rb);
203 
204 		if (node->vm_node.start < iter_node->vm_node.start)
205 			iter = &(*iter)->rb_left;
206 		else if (node->vm_node.start > iter_node->vm_node.start)
207 			iter = &(*iter)->rb_right;
208 		else
209 			BUG();
210 	}
211 
212 	rb_link_node(&node->vm_rb, parent, iter);
213 	rb_insert_color(&node->vm_rb, &mgr->vm_addr_space_rb);
214 }
215 
216 /**
217  * drm_vma_offset_add() - Add offset node to manager
218  * @mgr: Manager object
219  * @node: Node to be added
220  * @pages: Allocation size visible to user-space (in number of pages)
221  *
222  * Add a node to the offset-manager. If the node was already added, this does
223  * nothing and return 0. @pages is the size of the object given in number of
224  * pages.
225  * After this call succeeds, you can access the offset of the node until it
226  * is removed again.
227  *
228  * If this call fails, it is safe to retry the operation or call
229  * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
230  * case.
231  *
232  * @pages is not required to be the same size as the underlying memory object
233  * that you want to map. It only limits the size that user-space can map into
234  * their address space.
235  *
236  * RETURNS:
237  * 0 on success, negative error code on failure.
238  */
239 int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
240 		       struct drm_vma_offset_node *node, unsigned long pages)
241 {
242 	int ret;
243 
244 	write_lock(&mgr->vm_lock);
245 
246 	if (drm_mm_node_allocated(&node->vm_node)) {
247 		ret = 0;
248 		goto out_unlock;
249 	}
250 
251 	ret = drm_mm_insert_node(&mgr->vm_addr_space_mm, &node->vm_node,
252 				 pages, 0, DRM_MM_SEARCH_DEFAULT);
253 	if (ret)
254 		goto out_unlock;
255 
256 	_drm_vma_offset_add_rb(mgr, node);
257 
258 out_unlock:
259 	write_unlock(&mgr->vm_lock);
260 	return ret;
261 }
262 EXPORT_SYMBOL(drm_vma_offset_add);
263 
264 /**
265  * drm_vma_offset_remove() - Remove offset node from manager
266  * @mgr: Manager object
267  * @node: Node to be removed
268  *
269  * Remove a node from the offset manager. If the node wasn't added before, this
270  * does nothing. After this call returns, the offset and size will be 0 until a
271  * new offset is allocated via drm_vma_offset_add() again. Helper functions like
272  * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
273  * offset is allocated.
274  */
275 void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
276 			   struct drm_vma_offset_node *node)
277 {
278 	write_lock(&mgr->vm_lock);
279 
280 	if (drm_mm_node_allocated(&node->vm_node)) {
281 		rb_erase(&node->vm_rb, &mgr->vm_addr_space_rb);
282 		drm_mm_remove_node(&node->vm_node);
283 		memset(&node->vm_node, 0, sizeof(node->vm_node));
284 	}
285 
286 	write_unlock(&mgr->vm_lock);
287 }
288 EXPORT_SYMBOL(drm_vma_offset_remove);
289 
290 /**
291  * drm_vma_node_allow - Add open-file to list of allowed users
292  * @node: Node to modify
293  * @filp: Open file to add
294  *
295  * Add @filp to the list of allowed open-files for this node. If @filp is
296  * already on this list, the ref-count is incremented.
297  *
298  * The list of allowed-users is preserved across drm_vma_offset_add() and
299  * drm_vma_offset_remove() calls. You may even call it if the node is currently
300  * not added to any offset-manager.
301  *
302  * You must remove all open-files the same number of times as you added them
303  * before destroying the node. Otherwise, you will leak memory.
304  *
305  * This is locked against concurrent access internally.
306  *
307  * RETURNS:
308  * 0 on success, negative error code on internal failure (out-of-mem)
309  */
310 int drm_vma_node_allow(struct drm_vma_offset_node *node, struct file *filp)
311 {
312 	struct rb_node **iter;
313 	struct rb_node *parent = NULL;
314 	struct drm_vma_offset_file *new, *entry;
315 	int ret = 0;
316 
317 	/* Preallocate entry to avoid atomic allocations below. It is quite
318 	 * unlikely that an open-file is added twice to a single node so we
319 	 * don't optimize for this case. OOM is checked below only if the entry
320 	 * is actually used. */
321 	new = kmalloc(sizeof(*entry), GFP_KERNEL);
322 
323 	write_lock(&node->vm_lock);
324 
325 	iter = &node->vm_files.rb_node;
326 
327 	while (likely(*iter)) {
328 		parent = *iter;
329 		entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
330 
331 		if (filp == entry->vm_filp) {
332 			entry->vm_count++;
333 			goto unlock;
334 		} else if (filp > entry->vm_filp) {
335 			iter = &(*iter)->rb_right;
336 		} else {
337 			iter = &(*iter)->rb_left;
338 		}
339 	}
340 
341 	if (!new) {
342 		ret = -ENOMEM;
343 		goto unlock;
344 	}
345 
346 	new->vm_filp = filp;
347 	new->vm_count = 1;
348 	rb_link_node(&new->vm_rb, parent, iter);
349 	rb_insert_color(&new->vm_rb, &node->vm_files);
350 	new = NULL;
351 
352 unlock:
353 	write_unlock(&node->vm_lock);
354 	kfree(new);
355 	return ret;
356 }
357 EXPORT_SYMBOL(drm_vma_node_allow);
358 
359 /**
360  * drm_vma_node_revoke - Remove open-file from list of allowed users
361  * @node: Node to modify
362  * @filp: Open file to remove
363  *
364  * Decrement the ref-count of @filp in the list of allowed open-files on @node.
365  * If the ref-count drops to zero, remove @filp from the list. You must call
366  * this once for every drm_vma_node_allow() on @filp.
367  *
368  * This is locked against concurrent access internally.
369  *
370  * If @filp is not on the list, nothing is done.
371  */
372 void drm_vma_node_revoke(struct drm_vma_offset_node *node, struct file *filp)
373 {
374 	struct drm_vma_offset_file *entry;
375 	struct rb_node *iter;
376 
377 	write_lock(&node->vm_lock);
378 
379 	iter = node->vm_files.rb_node;
380 	while (likely(iter)) {
381 		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
382 		if (filp == entry->vm_filp) {
383 			if (!--entry->vm_count) {
384 				rb_erase(&entry->vm_rb, &node->vm_files);
385 				kfree(entry);
386 			}
387 			break;
388 		} else if (filp > entry->vm_filp) {
389 			iter = iter->rb_right;
390 		} else {
391 			iter = iter->rb_left;
392 		}
393 	}
394 
395 	write_unlock(&node->vm_lock);
396 }
397 EXPORT_SYMBOL(drm_vma_node_revoke);
398 
399 /**
400  * drm_vma_node_is_allowed - Check whether an open-file is granted access
401  * @node: Node to check
402  * @filp: Open-file to check for
403  *
404  * Search the list in @node whether @filp is currently on the list of allowed
405  * open-files (see drm_vma_node_allow()).
406  *
407  * This is locked against concurrent access internally.
408  *
409  * RETURNS:
410  * true iff @filp is on the list
411  */
412 bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
413 			     struct file *filp)
414 {
415 	struct drm_vma_offset_file *entry;
416 	struct rb_node *iter;
417 
418 	read_lock(&node->vm_lock);
419 
420 	iter = node->vm_files.rb_node;
421 	while (likely(iter)) {
422 		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
423 		if (filp == entry->vm_filp)
424 			break;
425 		else if (filp > entry->vm_filp)
426 			iter = iter->rb_right;
427 		else
428 			iter = iter->rb_left;
429 	}
430 
431 	read_unlock(&node->vm_lock);
432 
433 	return iter;
434 }
435 EXPORT_SYMBOL(drm_vma_node_is_allowed);
436