1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_vblank_crtc_config.disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static struct drm_vblank_crtc * 170 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe) 171 { 172 return &dev->vblank[pipe]; 173 } 174 175 struct drm_vblank_crtc * 176 drm_crtc_vblank_crtc(struct drm_crtc *crtc) 177 { 178 return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc)); 179 } 180 EXPORT_SYMBOL(drm_crtc_vblank_crtc); 181 182 static void store_vblank(struct drm_device *dev, unsigned int pipe, 183 u32 vblank_count_inc, 184 ktime_t t_vblank, u32 last) 185 { 186 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 187 188 assert_spin_locked(&dev->vblank_time_lock); 189 190 vblank->last = last; 191 192 write_seqlock(&vblank->seqlock); 193 vblank->time = t_vblank; 194 atomic64_add(vblank_count_inc, &vblank->count); 195 write_sequnlock(&vblank->seqlock); 196 } 197 198 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 199 { 200 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 201 202 return vblank->max_vblank_count ?: dev->max_vblank_count; 203 } 204 205 /* 206 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 207 * if there is no usable hardware frame counter available. 208 */ 209 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 210 { 211 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 212 return 0; 213 } 214 215 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 216 { 217 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 218 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 219 220 if (drm_WARN_ON(dev, !crtc)) 221 return 0; 222 223 if (crtc->funcs->get_vblank_counter) 224 return crtc->funcs->get_vblank_counter(crtc); 225 } 226 227 return drm_vblank_no_hw_counter(dev, pipe); 228 } 229 230 /* 231 * Reset the stored timestamp for the current vblank count to correspond 232 * to the last vblank occurred. 233 * 234 * Only to be called from drm_crtc_vblank_on(). 235 * 236 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 237 * device vblank fields. 238 */ 239 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 240 { 241 u32 cur_vblank; 242 bool rc; 243 ktime_t t_vblank; 244 int count = DRM_TIMESTAMP_MAXRETRIES; 245 246 spin_lock(&dev->vblank_time_lock); 247 248 /* 249 * sample the current counter to avoid random jumps 250 * when drm_vblank_enable() applies the diff 251 */ 252 do { 253 cur_vblank = __get_vblank_counter(dev, pipe); 254 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 255 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 256 257 /* 258 * Only reinitialize corresponding vblank timestamp if high-precision query 259 * available and didn't fail. Otherwise reinitialize delayed at next vblank 260 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 261 */ 262 if (!rc) 263 t_vblank = 0; 264 265 /* 266 * +1 to make sure user will never see the same 267 * vblank counter value before and after a modeset 268 */ 269 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 270 271 spin_unlock(&dev->vblank_time_lock); 272 } 273 274 /* 275 * Call back into the driver to update the appropriate vblank counter 276 * (specified by @pipe). Deal with wraparound, if it occurred, and 277 * update the last read value so we can deal with wraparound on the next 278 * call if necessary. 279 * 280 * Only necessary when going from off->on, to account for frames we 281 * didn't get an interrupt for. 282 * 283 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 284 * device vblank fields. 285 */ 286 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 287 bool in_vblank_irq) 288 { 289 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 290 u32 cur_vblank, diff; 291 bool rc; 292 ktime_t t_vblank; 293 int count = DRM_TIMESTAMP_MAXRETRIES; 294 int framedur_ns = vblank->framedur_ns; 295 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 296 297 /* 298 * Interrupts were disabled prior to this call, so deal with counter 299 * wrap if needed. 300 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 301 * here if the register is small or we had vblank interrupts off for 302 * a long time. 303 * 304 * We repeat the hardware vblank counter & timestamp query until 305 * we get consistent results. This to prevent races between gpu 306 * updating its hardware counter while we are retrieving the 307 * corresponding vblank timestamp. 308 */ 309 do { 310 cur_vblank = __get_vblank_counter(dev, pipe); 311 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 312 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 313 314 if (max_vblank_count) { 315 /* trust the hw counter when it's around */ 316 diff = (cur_vblank - vblank->last) & max_vblank_count; 317 } else if (rc && framedur_ns) { 318 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 319 320 /* 321 * Figure out how many vblanks we've missed based 322 * on the difference in the timestamps and the 323 * frame/field duration. 324 */ 325 326 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 327 " diff_ns = %lld, framedur_ns = %d)\n", 328 pipe, (long long)diff_ns, framedur_ns); 329 330 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 331 332 if (diff == 0 && in_vblank_irq) 333 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 334 pipe); 335 } else { 336 /* some kind of default for drivers w/o accurate vbl timestamping */ 337 diff = in_vblank_irq ? 1 : 0; 338 } 339 340 /* 341 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 342 * interval? If so then vblank irqs keep running and it will likely 343 * happen that the hardware vblank counter is not trustworthy as it 344 * might reset at some point in that interval and vblank timestamps 345 * are not trustworthy either in that interval. Iow. this can result 346 * in a bogus diff >> 1 which must be avoided as it would cause 347 * random large forward jumps of the software vblank counter. 348 */ 349 if (diff > 1 && (vblank->inmodeset & 0x2)) { 350 drm_dbg_vbl(dev, 351 "clamping vblank bump to 1 on crtc %u: diffr=%u" 352 " due to pre-modeset.\n", pipe, diff); 353 diff = 1; 354 } 355 356 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 357 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 358 pipe, (unsigned long long)atomic64_read(&vblank->count), 359 diff, cur_vblank, vblank->last); 360 361 if (diff == 0) { 362 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 363 return; 364 } 365 366 /* 367 * Only reinitialize corresponding vblank timestamp if high-precision query 368 * available and didn't fail, or we were called from the vblank interrupt. 369 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 370 * for now, to mark the vblanktimestamp as invalid. 371 */ 372 if (!rc && !in_vblank_irq) 373 t_vblank = 0; 374 375 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 376 } 377 378 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 379 { 380 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 381 u64 count; 382 383 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 384 return 0; 385 386 count = atomic64_read(&vblank->count); 387 388 /* 389 * This read barrier corresponds to the implicit write barrier of the 390 * write seqlock in store_vblank(). Note that this is the only place 391 * where we need an explicit barrier, since all other access goes 392 * through drm_vblank_count_and_time(), which already has the required 393 * read barrier curtesy of the read seqlock. 394 */ 395 smp_rmb(); 396 397 return count; 398 } 399 400 /** 401 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 402 * @crtc: which counter to retrieve 403 * 404 * This function is similar to drm_crtc_vblank_count() but this function 405 * interpolates to handle a race with vblank interrupts using the high precision 406 * timestamping support. 407 * 408 * This is mostly useful for hardware that can obtain the scanout position, but 409 * doesn't have a hardware frame counter. 410 */ 411 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 412 { 413 struct drm_device *dev = crtc->dev; 414 unsigned int pipe = drm_crtc_index(crtc); 415 u64 vblank; 416 unsigned long flags; 417 418 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 419 !crtc->funcs->get_vblank_timestamp, 420 "This function requires support for accurate vblank timestamps."); 421 422 spin_lock_irqsave(&dev->vblank_time_lock, flags); 423 424 drm_update_vblank_count(dev, pipe, false); 425 vblank = drm_vblank_count(dev, pipe); 426 427 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 428 429 return vblank; 430 } 431 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 432 433 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 434 { 435 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 436 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 437 438 if (drm_WARN_ON(dev, !crtc)) 439 return; 440 441 if (crtc->funcs->disable_vblank) 442 crtc->funcs->disable_vblank(crtc); 443 } 444 } 445 446 /* 447 * Disable vblank irq's on crtc, make sure that last vblank count 448 * of hardware and corresponding consistent software vblank counter 449 * are preserved, even if there are any spurious vblank irq's after 450 * disable. 451 */ 452 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 453 { 454 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 455 unsigned long irqflags; 456 457 assert_spin_locked(&dev->vbl_lock); 458 459 /* Prevent vblank irq processing while disabling vblank irqs, 460 * so no updates of timestamps or count can happen after we've 461 * disabled. Needed to prevent races in case of delayed irq's. 462 */ 463 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 464 465 /* 466 * Update vblank count and disable vblank interrupts only if the 467 * interrupts were enabled. This avoids calling the ->disable_vblank() 468 * operation in atomic context with the hardware potentially runtime 469 * suspended. 470 */ 471 if (!vblank->enabled) 472 goto out; 473 474 /* 475 * Update the count and timestamp to maintain the 476 * appearance that the counter has been ticking all along until 477 * this time. This makes the count account for the entire time 478 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 479 */ 480 drm_update_vblank_count(dev, pipe, false); 481 __disable_vblank(dev, pipe); 482 vblank->enabled = false; 483 484 out: 485 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 486 } 487 488 static void vblank_disable_fn(struct timer_list *t) 489 { 490 struct drm_vblank_crtc *vblank = timer_container_of(vblank, t, 491 disable_timer); 492 struct drm_device *dev = vblank->dev; 493 unsigned int pipe = vblank->pipe; 494 unsigned long irqflags; 495 496 spin_lock_irqsave(&dev->vbl_lock, irqflags); 497 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 498 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 499 drm_vblank_disable_and_save(dev, pipe); 500 } 501 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 502 } 503 504 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 505 { 506 struct drm_vblank_crtc *vblank = ptr; 507 508 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 509 drm_core_check_feature(dev, DRIVER_MODESET)); 510 511 drm_vblank_destroy_worker(vblank); 512 timer_delete_sync(&vblank->disable_timer); 513 } 514 515 /** 516 * drm_vblank_init - initialize vblank support 517 * @dev: DRM device 518 * @num_crtcs: number of CRTCs supported by @dev 519 * 520 * This function initializes vblank support for @num_crtcs display pipelines. 521 * Cleanup is handled automatically through a cleanup function added with 522 * drmm_add_action_or_reset(). 523 * 524 * Returns: 525 * Zero on success or a negative error code on failure. 526 */ 527 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 528 { 529 int ret; 530 unsigned int i; 531 532 spin_lock_init(&dev->vbl_lock); 533 spin_lock_init(&dev->vblank_time_lock); 534 535 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 536 if (!dev->vblank) 537 return -ENOMEM; 538 539 dev->num_crtcs = num_crtcs; 540 541 for (i = 0; i < num_crtcs; i++) { 542 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 543 544 vblank->dev = dev; 545 vblank->pipe = i; 546 init_waitqueue_head(&vblank->queue); 547 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 548 seqlock_init(&vblank->seqlock); 549 550 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 551 vblank); 552 if (ret) 553 return ret; 554 555 ret = drm_vblank_worker_init(vblank); 556 if (ret) 557 return ret; 558 } 559 560 return 0; 561 } 562 EXPORT_SYMBOL(drm_vblank_init); 563 564 /** 565 * drm_dev_has_vblank - test if vblanking has been initialized for 566 * a device 567 * @dev: the device 568 * 569 * Drivers may call this function to test if vblank support is 570 * initialized for a device. For most hardware this means that vblanking 571 * can also be enabled. 572 * 573 * Atomic helpers use this function to initialize 574 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 575 * 576 * Returns: 577 * True if vblanking has been initialized for the given device, false 578 * otherwise. 579 */ 580 bool drm_dev_has_vblank(const struct drm_device *dev) 581 { 582 return dev->num_crtcs != 0; 583 } 584 EXPORT_SYMBOL(drm_dev_has_vblank); 585 586 /** 587 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 588 * @crtc: which CRTC's vblank waitqueue to retrieve 589 * 590 * This function returns a pointer to the vblank waitqueue for the CRTC. 591 * Drivers can use this to implement vblank waits using wait_event() and related 592 * functions. 593 */ 594 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 595 { 596 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 597 } 598 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 599 600 601 /** 602 * drm_calc_timestamping_constants - calculate vblank timestamp constants 603 * @crtc: drm_crtc whose timestamp constants should be updated. 604 * @mode: display mode containing the scanout timings 605 * 606 * Calculate and store various constants which are later needed by vblank and 607 * swap-completion timestamping, e.g, by 608 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 609 * CRTC's true scanout timing, so they take things like panel scaling or 610 * other adjustments into account. 611 */ 612 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 613 const struct drm_display_mode *mode) 614 { 615 struct drm_device *dev = crtc->dev; 616 unsigned int pipe = drm_crtc_index(crtc); 617 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 618 int linedur_ns = 0, framedur_ns = 0; 619 int dotclock = mode->crtc_clock; 620 621 if (!drm_dev_has_vblank(dev)) 622 return; 623 624 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 625 return; 626 627 /* Valid dotclock? */ 628 if (dotclock > 0) { 629 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 630 631 /* 632 * Convert scanline length in pixels and video 633 * dot clock to line duration and frame duration 634 * in nanoseconds: 635 */ 636 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 637 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 638 639 /* 640 * Fields of interlaced scanout modes are only half a frame duration. 641 */ 642 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 643 framedur_ns /= 2; 644 } else { 645 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 646 crtc->base.id); 647 } 648 649 vblank->linedur_ns = linedur_ns; 650 vblank->framedur_ns = framedur_ns; 651 drm_mode_copy(&vblank->hwmode, mode); 652 653 drm_dbg_core(dev, 654 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 655 crtc->base.id, mode->crtc_htotal, 656 mode->crtc_vtotal, mode->crtc_vdisplay); 657 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 658 crtc->base.id, dotclock, framedur_ns, linedur_ns); 659 } 660 EXPORT_SYMBOL(drm_calc_timestamping_constants); 661 662 /** 663 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 664 * timestamp helper 665 * @crtc: CRTC whose vblank timestamp to retrieve 666 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 667 * On return contains true maximum error of timestamp 668 * @vblank_time: Pointer to time which should receive the timestamp 669 * @in_vblank_irq: 670 * True when called from drm_crtc_handle_vblank(). Some drivers 671 * need to apply some workarounds for gpu-specific vblank irq quirks 672 * if flag is set. 673 * @get_scanout_position: 674 * Callback function to retrieve the scanout position. See 675 * @struct drm_crtc_helper_funcs.get_scanout_position. 676 * 677 * Implements calculation of exact vblank timestamps from given drm_display_mode 678 * timings and current video scanout position of a CRTC. 679 * 680 * The current implementation only handles standard video modes. For double scan 681 * and interlaced modes the driver is supposed to adjust the hardware mode 682 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 683 * match the scanout position reported. 684 * 685 * Note that atomic drivers must call drm_calc_timestamping_constants() before 686 * enabling a CRTC. The atomic helpers already take care of that in 687 * drm_atomic_helper_calc_timestamping_constants(). 688 * 689 * Returns: 690 * Returns true on success, and false on failure, i.e. when no accurate 691 * timestamp could be acquired. 692 */ 693 bool 694 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 695 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 696 bool in_vblank_irq, 697 drm_vblank_get_scanout_position_func get_scanout_position) 698 { 699 struct drm_device *dev = crtc->dev; 700 unsigned int pipe = crtc->index; 701 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 702 struct timespec64 ts_etime, ts_vblank_time; 703 ktime_t stime, etime; 704 bool vbl_status; 705 const struct drm_display_mode *mode; 706 int vpos, hpos, i; 707 int delta_ns, duration_ns; 708 709 if (pipe >= dev->num_crtcs) { 710 drm_err(dev, "Invalid crtc %u\n", pipe); 711 return false; 712 } 713 714 /* Scanout position query not supported? Should not happen. */ 715 if (!get_scanout_position) { 716 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 717 return false; 718 } 719 720 if (drm_drv_uses_atomic_modeset(dev)) 721 mode = &vblank->hwmode; 722 else 723 mode = &crtc->hwmode; 724 725 /* If mode timing undefined, just return as no-op: 726 * Happens during initial modesetting of a crtc. 727 */ 728 if (mode->crtc_clock == 0) { 729 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 730 pipe); 731 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 732 return false; 733 } 734 735 /* Get current scanout position with system timestamp. 736 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 737 * if single query takes longer than max_error nanoseconds. 738 * 739 * This guarantees a tight bound on maximum error if 740 * code gets preempted or delayed for some reason. 741 */ 742 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 743 /* 744 * Get vertical and horizontal scanout position vpos, hpos, 745 * and bounding timestamps stime, etime, pre/post query. 746 */ 747 vbl_status = get_scanout_position(crtc, in_vblank_irq, 748 &vpos, &hpos, 749 &stime, &etime, 750 mode); 751 752 /* Return as no-op if scanout query unsupported or failed. */ 753 if (!vbl_status) { 754 drm_dbg_core(dev, 755 "crtc %u : scanoutpos query failed.\n", 756 pipe); 757 return false; 758 } 759 760 /* Compute uncertainty in timestamp of scanout position query. */ 761 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 762 763 /* Accept result with < max_error nsecs timing uncertainty. */ 764 if (duration_ns <= *max_error) 765 break; 766 } 767 768 /* Noisy system timing? */ 769 if (i == DRM_TIMESTAMP_MAXRETRIES) { 770 drm_dbg_core(dev, 771 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 772 pipe, duration_ns / 1000, *max_error / 1000, i); 773 } 774 775 /* Return upper bound of timestamp precision error. */ 776 *max_error = duration_ns; 777 778 /* Convert scanout position into elapsed time at raw_time query 779 * since start of scanout at first display scanline. delta_ns 780 * can be negative if start of scanout hasn't happened yet. 781 */ 782 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 783 mode->crtc_clock); 784 785 /* Subtract time delta from raw timestamp to get final 786 * vblank_time timestamp for end of vblank. 787 */ 788 *vblank_time = ktime_sub_ns(etime, delta_ns); 789 790 if (!drm_debug_enabled(DRM_UT_VBL)) 791 return true; 792 793 ts_etime = ktime_to_timespec64(etime); 794 ts_vblank_time = ktime_to_timespec64(*vblank_time); 795 796 drm_dbg_vbl(dev, 797 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 798 pipe, hpos, vpos, 799 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 800 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 801 duration_ns / 1000, i); 802 803 return true; 804 } 805 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 806 807 /** 808 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 809 * helper 810 * @crtc: CRTC whose vblank timestamp to retrieve 811 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 812 * On return contains true maximum error of timestamp 813 * @vblank_time: Pointer to time which should receive the timestamp 814 * @in_vblank_irq: 815 * True when called from drm_crtc_handle_vblank(). Some drivers 816 * need to apply some workarounds for gpu-specific vblank irq quirks 817 * if flag is set. 818 * 819 * Implements calculation of exact vblank timestamps from given drm_display_mode 820 * timings and current video scanout position of a CRTC. This can be directly 821 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 822 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 823 * 824 * The current implementation only handles standard video modes. For double scan 825 * and interlaced modes the driver is supposed to adjust the hardware mode 826 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 827 * match the scanout position reported. 828 * 829 * Note that atomic drivers must call drm_calc_timestamping_constants() before 830 * enabling a CRTC. The atomic helpers already take care of that in 831 * drm_atomic_helper_calc_timestamping_constants(). 832 * 833 * Returns: 834 * Returns true on success, and false on failure, i.e. when no accurate 835 * timestamp could be acquired. 836 */ 837 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 838 int *max_error, 839 ktime_t *vblank_time, 840 bool in_vblank_irq) 841 { 842 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 843 crtc, max_error, vblank_time, in_vblank_irq, 844 crtc->helper_private->get_scanout_position); 845 } 846 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 847 848 /** 849 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most 850 * recent vblank interval 851 * @crtc: CRTC whose vblank timestamp to retrieve 852 * @tvblank: Pointer to target time which should receive the timestamp 853 * @in_vblank_irq: 854 * True when called from drm_crtc_handle_vblank(). Some drivers 855 * need to apply some workarounds for gpu-specific vblank irq quirks 856 * if flag is set. 857 * 858 * Fetches the system timestamp corresponding to the time of the most recent 859 * vblank interval on specified CRTC. May call into kms-driver to 860 * compute the timestamp with a high-precision GPU specific method. 861 * 862 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 863 * call, i.e., it isn't very precisely locked to the true vblank. 864 * 865 * Returns: 866 * True if timestamp is considered to be very precise, false otherwise. 867 */ 868 static bool 869 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank, 870 bool in_vblank_irq) 871 { 872 bool ret = false; 873 874 /* Define requested maximum error on timestamps (nanoseconds). */ 875 int max_error = (int) drm_timestamp_precision * 1000; 876 877 /* Query driver if possible and precision timestamping enabled. */ 878 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 879 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 880 tvblank, in_vblank_irq); 881 } 882 883 /* GPU high precision timestamp query unsupported or failed. 884 * Return current monotonic/gettimeofday timestamp as best estimate. 885 */ 886 if (!ret) 887 *tvblank = ktime_get(); 888 889 return ret; 890 } 891 892 static bool 893 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 894 ktime_t *tvblank, bool in_vblank_irq) 895 { 896 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 897 898 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq); 899 } 900 901 /** 902 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 903 * @crtc: which counter to retrieve 904 * 905 * Fetches the "cooked" vblank count value that represents the number of 906 * vblank events since the system was booted, including lost events due to 907 * modesetting activity. Note that this timer isn't correct against a racing 908 * vblank interrupt (since it only reports the software vblank counter), see 909 * drm_crtc_accurate_vblank_count() for such use-cases. 910 * 911 * Note that for a given vblank counter value drm_crtc_handle_vblank() 912 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 913 * provide a barrier: Any writes done before calling 914 * drm_crtc_handle_vblank() will be visible to callers of the later 915 * functions, if the vblank count is the same or a later one. 916 * 917 * See also &drm_vblank_crtc.count. 918 * 919 * Returns: 920 * The software vblank counter. 921 */ 922 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 923 { 924 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 925 } 926 EXPORT_SYMBOL(drm_crtc_vblank_count); 927 928 /** 929 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 930 * system timestamp corresponding to that vblank counter value. 931 * @dev: DRM device 932 * @pipe: index of CRTC whose counter to retrieve 933 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 934 * 935 * Fetches the "cooked" vblank count value that represents the number of 936 * vblank events since the system was booted, including lost events due to 937 * modesetting activity. Returns corresponding system timestamp of the time 938 * of the vblank interval that corresponds to the current vblank counter value. 939 * 940 * This is the legacy version of drm_crtc_vblank_count_and_time(). 941 */ 942 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 943 ktime_t *vblanktime) 944 { 945 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 946 u64 vblank_count; 947 unsigned int seq; 948 949 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 950 *vblanktime = 0; 951 return 0; 952 } 953 954 do { 955 seq = read_seqbegin(&vblank->seqlock); 956 vblank_count = atomic64_read(&vblank->count); 957 *vblanktime = vblank->time; 958 } while (read_seqretry(&vblank->seqlock, seq)); 959 960 return vblank_count; 961 } 962 963 /** 964 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 965 * and the system timestamp corresponding to that vblank counter value 966 * @crtc: which counter to retrieve 967 * @vblanktime: Pointer to time to receive the vblank timestamp. 968 * 969 * Fetches the "cooked" vblank count value that represents the number of 970 * vblank events since the system was booted, including lost events due to 971 * modesetting activity. Returns corresponding system timestamp of the time 972 * of the vblank interval that corresponds to the current vblank counter value. 973 * 974 * Note that for a given vblank counter value drm_crtc_handle_vblank() 975 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 976 * provide a barrier: Any writes done before calling 977 * drm_crtc_handle_vblank() will be visible to callers of the later 978 * functions, if the vblank count is the same or a later one. 979 * 980 * See also &drm_vblank_crtc.count. 981 */ 982 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 983 ktime_t *vblanktime) 984 { 985 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 986 vblanktime); 987 } 988 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 989 990 /** 991 * drm_crtc_next_vblank_start - calculate the time of the next vblank 992 * @crtc: the crtc for which to calculate next vblank time 993 * @vblanktime: pointer to time to receive the next vblank timestamp. 994 * 995 * Calculate the expected time of the start of the next vblank period, 996 * based on time of previous vblank and frame duration 997 */ 998 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime) 999 { 1000 struct drm_vblank_crtc *vblank; 1001 struct drm_display_mode *mode; 1002 u64 vblank_start; 1003 1004 if (!drm_dev_has_vblank(crtc->dev)) 1005 return -EINVAL; 1006 1007 vblank = drm_crtc_vblank_crtc(crtc); 1008 mode = &vblank->hwmode; 1009 1010 if (!vblank->framedur_ns || !vblank->linedur_ns) 1011 return -EINVAL; 1012 1013 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false)) 1014 return -EINVAL; 1015 1016 vblank_start = DIV_ROUND_DOWN_ULL( 1017 (u64)vblank->framedur_ns * mode->crtc_vblank_start, 1018 mode->crtc_vtotal); 1019 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start)); 1020 1021 return 0; 1022 } 1023 EXPORT_SYMBOL(drm_crtc_next_vblank_start); 1024 1025 static void send_vblank_event(struct drm_device *dev, 1026 struct drm_pending_vblank_event *e, 1027 u64 seq, ktime_t now) 1028 { 1029 struct timespec64 tv; 1030 1031 switch (e->event.base.type) { 1032 case DRM_EVENT_VBLANK: 1033 case DRM_EVENT_FLIP_COMPLETE: 1034 tv = ktime_to_timespec64(now); 1035 e->event.vbl.sequence = seq; 1036 /* 1037 * e->event is a user space structure, with hardcoded unsigned 1038 * 32-bit seconds/microseconds. This is safe as we always use 1039 * monotonic timestamps since linux-4.15 1040 */ 1041 e->event.vbl.tv_sec = tv.tv_sec; 1042 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1043 break; 1044 case DRM_EVENT_CRTC_SEQUENCE: 1045 if (seq) 1046 e->event.seq.sequence = seq; 1047 e->event.seq.time_ns = ktime_to_ns(now); 1048 break; 1049 } 1050 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1051 /* 1052 * Use the same timestamp for any associated fence signal to avoid 1053 * mismatch in timestamps for vsync & fence events triggered by the 1054 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1055 * retire-fence timestamp to match exactly with HW vsync as it uses it 1056 * for its software vsync modeling. 1057 */ 1058 drm_send_event_timestamp_locked(dev, &e->base, now); 1059 } 1060 1061 /** 1062 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1063 * @crtc: the source CRTC of the vblank event 1064 * @e: the event to send 1065 * 1066 * A lot of drivers need to generate vblank events for the very next vblank 1067 * interrupt. For example when the page flip interrupt happens when the page 1068 * flip gets armed, but not when it actually executes within the next vblank 1069 * period. This helper function implements exactly the required vblank arming 1070 * behaviour. 1071 * 1072 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1073 * atomic commit must ensure that the next vblank happens at exactly the same 1074 * time as the atomic commit is committed to the hardware. This function itself 1075 * does **not** protect against the next vblank interrupt racing with either this 1076 * function call or the atomic commit operation. A possible sequence could be: 1077 * 1078 * 1. Driver commits new hardware state into vblank-synchronized registers. 1079 * 2. A vblank happens, committing the hardware state. Also the corresponding 1080 * vblank interrupt is fired off and fully processed by the interrupt 1081 * handler. 1082 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1083 * 4. The event is only send out for the next vblank, which is wrong. 1084 * 1085 * An equivalent race can happen when the driver calls 1086 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1087 * 1088 * The only way to make this work safely is to prevent the vblank from firing 1089 * (and the hardware from committing anything else) until the entire atomic 1090 * commit sequence has run to completion. If the hardware does not have such a 1091 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1092 * Instead drivers need to manually send out the event from their interrupt 1093 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1094 * possible race with the hardware committing the atomic update. 1095 * 1096 * Caller must hold a vblank reference for the event @e acquired by a 1097 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1098 */ 1099 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1100 struct drm_pending_vblank_event *e) 1101 { 1102 struct drm_device *dev = crtc->dev; 1103 unsigned int pipe = drm_crtc_index(crtc); 1104 1105 assert_spin_locked(&dev->event_lock); 1106 1107 e->pipe = pipe; 1108 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1109 list_add_tail(&e->base.link, &dev->vblank_event_list); 1110 } 1111 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1112 1113 /** 1114 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1115 * @crtc: the source CRTC of the vblank event 1116 * @e: the event to send 1117 * 1118 * Updates sequence # and timestamp on event for the most recently processed 1119 * vblank, and sends it to userspace. Caller must hold event lock. 1120 * 1121 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1122 * situation, especially to send out events for atomic commit operations. 1123 */ 1124 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1125 struct drm_pending_vblank_event *e) 1126 { 1127 struct drm_device *dev = crtc->dev; 1128 u64 seq; 1129 unsigned int pipe = drm_crtc_index(crtc); 1130 ktime_t now; 1131 1132 if (drm_dev_has_vblank(dev)) { 1133 seq = drm_vblank_count_and_time(dev, pipe, &now); 1134 } else { 1135 seq = 0; 1136 1137 now = ktime_get(); 1138 } 1139 e->pipe = pipe; 1140 send_vblank_event(dev, e, seq, now); 1141 } 1142 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1143 1144 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1145 { 1146 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1147 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1148 1149 if (drm_WARN_ON(dev, !crtc)) 1150 return 0; 1151 1152 if (crtc->funcs->enable_vblank) 1153 return crtc->funcs->enable_vblank(crtc); 1154 } 1155 1156 return -EINVAL; 1157 } 1158 1159 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1160 { 1161 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1162 int ret = 0; 1163 1164 assert_spin_locked(&dev->vbl_lock); 1165 1166 spin_lock(&dev->vblank_time_lock); 1167 1168 if (!vblank->enabled) { 1169 /* 1170 * Enable vblank irqs under vblank_time_lock protection. 1171 * All vblank count & timestamp updates are held off 1172 * until we are done reinitializing master counter and 1173 * timestamps. Filtercode in drm_handle_vblank() will 1174 * prevent double-accounting of same vblank interval. 1175 */ 1176 ret = __enable_vblank(dev, pipe); 1177 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1178 pipe, ret); 1179 if (ret) { 1180 atomic_dec(&vblank->refcount); 1181 } else { 1182 drm_update_vblank_count(dev, pipe, 0); 1183 /* drm_update_vblank_count() includes a wmb so we just 1184 * need to ensure that the compiler emits the write 1185 * to mark the vblank as enabled after the call 1186 * to drm_update_vblank_count(). 1187 */ 1188 WRITE_ONCE(vblank->enabled, true); 1189 } 1190 } 1191 1192 spin_unlock(&dev->vblank_time_lock); 1193 1194 return ret; 1195 } 1196 1197 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1198 { 1199 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1200 unsigned long irqflags; 1201 int ret = 0; 1202 1203 if (!drm_dev_has_vblank(dev)) 1204 return -EINVAL; 1205 1206 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1207 return -EINVAL; 1208 1209 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1210 /* Going from 0->1 means we have to enable interrupts again */ 1211 if (atomic_add_return(1, &vblank->refcount) == 1) { 1212 ret = drm_vblank_enable(dev, pipe); 1213 } else { 1214 if (!vblank->enabled) { 1215 atomic_dec(&vblank->refcount); 1216 ret = -EINVAL; 1217 } 1218 } 1219 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1220 1221 return ret; 1222 } 1223 1224 /** 1225 * drm_crtc_vblank_get - get a reference count on vblank events 1226 * @crtc: which CRTC to own 1227 * 1228 * Acquire a reference count on vblank events to avoid having them disabled 1229 * while in use. 1230 * 1231 * Returns: 1232 * Zero on success or a negative error code on failure. 1233 */ 1234 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1235 { 1236 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1237 } 1238 EXPORT_SYMBOL(drm_crtc_vblank_get); 1239 1240 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1241 { 1242 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1243 int vblank_offdelay = vblank->config.offdelay_ms; 1244 1245 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1246 return; 1247 1248 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1249 return; 1250 1251 /* Last user schedules interrupt disable */ 1252 if (atomic_dec_and_test(&vblank->refcount)) { 1253 if (!vblank_offdelay) 1254 return; 1255 else if (vblank_offdelay < 0) 1256 vblank_disable_fn(&vblank->disable_timer); 1257 else if (!vblank->config.disable_immediate) 1258 mod_timer(&vblank->disable_timer, 1259 jiffies + ((vblank_offdelay * HZ) / 1000)); 1260 } 1261 } 1262 1263 /** 1264 * drm_crtc_vblank_put - give up ownership of vblank events 1265 * @crtc: which counter to give up 1266 * 1267 * Release ownership of a given vblank counter, turning off interrupts 1268 * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms 1269 * milliseconds. 1270 */ 1271 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1272 { 1273 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1274 } 1275 EXPORT_SYMBOL(drm_crtc_vblank_put); 1276 1277 /** 1278 * drm_wait_one_vblank - wait for one vblank 1279 * @dev: DRM device 1280 * @pipe: CRTC index 1281 * 1282 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1283 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1284 * due to lack of driver support or because the crtc is off. 1285 * 1286 * This is the legacy version of drm_crtc_wait_one_vblank(). 1287 */ 1288 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1289 { 1290 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1291 int ret; 1292 u64 last; 1293 1294 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1295 return; 1296 1297 ret = drm_vblank_get(dev, pipe); 1298 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1299 pipe, ret)) 1300 return; 1301 1302 last = drm_vblank_count(dev, pipe); 1303 1304 ret = wait_event_timeout(vblank->queue, 1305 last != drm_vblank_count(dev, pipe), 1306 msecs_to_jiffies(100)); 1307 1308 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1309 1310 drm_vblank_put(dev, pipe); 1311 } 1312 EXPORT_SYMBOL(drm_wait_one_vblank); 1313 1314 /** 1315 * drm_crtc_wait_one_vblank - wait for one vblank 1316 * @crtc: DRM crtc 1317 * 1318 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1319 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1320 * due to lack of driver support or because the crtc is off. 1321 */ 1322 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1323 { 1324 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1325 } 1326 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1327 1328 /** 1329 * drm_crtc_vblank_off - disable vblank events on a CRTC 1330 * @crtc: CRTC in question 1331 * 1332 * Drivers can use this function to shut down the vblank interrupt handling when 1333 * disabling a crtc. This function ensures that the latest vblank frame count is 1334 * stored so that drm_vblank_on can restore it again. 1335 * 1336 * Drivers must use this function when the hardware vblank counter can get 1337 * reset, e.g. when suspending or disabling the @crtc in general. 1338 */ 1339 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1340 { 1341 struct drm_device *dev = crtc->dev; 1342 unsigned int pipe = drm_crtc_index(crtc); 1343 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1344 struct drm_pending_vblank_event *e, *t; 1345 ktime_t now; 1346 u64 seq; 1347 1348 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1349 return; 1350 1351 /* 1352 * Grab event_lock early to prevent vblank work from being scheduled 1353 * while we're in the middle of shutting down vblank interrupts 1354 */ 1355 spin_lock_irq(&dev->event_lock); 1356 1357 spin_lock(&dev->vbl_lock); 1358 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1359 pipe, vblank->enabled, vblank->inmodeset); 1360 1361 /* Avoid redundant vblank disables without previous 1362 * drm_crtc_vblank_on(). */ 1363 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1364 drm_vblank_disable_and_save(dev, pipe); 1365 1366 wake_up(&vblank->queue); 1367 1368 /* 1369 * Prevent subsequent drm_vblank_get() from re-enabling 1370 * the vblank interrupt by bumping the refcount. 1371 */ 1372 if (!vblank->inmodeset) { 1373 atomic_inc(&vblank->refcount); 1374 vblank->inmodeset = 1; 1375 } 1376 spin_unlock(&dev->vbl_lock); 1377 1378 /* Send any queued vblank events, lest the natives grow disquiet */ 1379 seq = drm_vblank_count_and_time(dev, pipe, &now); 1380 1381 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1382 if (e->pipe != pipe) 1383 continue; 1384 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1385 "wanted %llu, current %llu\n", 1386 e->sequence, seq); 1387 list_del(&e->base.link); 1388 drm_vblank_put(dev, pipe); 1389 send_vblank_event(dev, e, seq, now); 1390 } 1391 1392 /* Cancel any leftover pending vblank work */ 1393 drm_vblank_cancel_pending_works(vblank); 1394 1395 spin_unlock_irq(&dev->event_lock); 1396 1397 /* Will be reset by the modeset helpers when re-enabling the crtc by 1398 * calling drm_calc_timestamping_constants(). */ 1399 vblank->hwmode.crtc_clock = 0; 1400 1401 /* Wait for any vblank work that's still executing to finish */ 1402 drm_vblank_flush_worker(vblank); 1403 } 1404 EXPORT_SYMBOL(drm_crtc_vblank_off); 1405 1406 /** 1407 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1408 * @crtc: CRTC in question 1409 * 1410 * Drivers can use this function to reset the vblank state to off at load time. 1411 * Drivers should use this together with the drm_crtc_vblank_off() and 1412 * drm_crtc_vblank_on() functions. The difference compared to 1413 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1414 * and hence doesn't need to call any driver hooks. 1415 * 1416 * This is useful for recovering driver state e.g. on driver load, or on resume. 1417 */ 1418 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1419 { 1420 struct drm_device *dev = crtc->dev; 1421 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1422 1423 spin_lock_irq(&dev->vbl_lock); 1424 /* 1425 * Prevent subsequent drm_vblank_get() from enabling the vblank 1426 * interrupt by bumping the refcount. 1427 */ 1428 if (!vblank->inmodeset) { 1429 atomic_inc(&vblank->refcount); 1430 vblank->inmodeset = 1; 1431 } 1432 spin_unlock_irq(&dev->vbl_lock); 1433 1434 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1435 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1436 } 1437 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1438 1439 /** 1440 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1441 * @crtc: CRTC in question 1442 * @max_vblank_count: max hardware vblank counter value 1443 * 1444 * Update the maximum hardware vblank counter value for @crtc 1445 * at runtime. Useful for hardware where the operation of the 1446 * hardware vblank counter depends on the currently active 1447 * display configuration. 1448 * 1449 * For example, if the hardware vblank counter does not work 1450 * when a specific connector is active the maximum can be set 1451 * to zero. And when that specific connector isn't active the 1452 * maximum can again be set to the appropriate non-zero value. 1453 * 1454 * If used, must be called before drm_vblank_on(). 1455 */ 1456 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1457 u32 max_vblank_count) 1458 { 1459 struct drm_device *dev = crtc->dev; 1460 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1461 1462 drm_WARN_ON(dev, dev->max_vblank_count); 1463 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1464 1465 vblank->max_vblank_count = max_vblank_count; 1466 } 1467 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1468 1469 /** 1470 * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom 1471 * configuration options 1472 * @crtc: CRTC in question 1473 * @config: Vblank configuration value 1474 * 1475 * See drm_crtc_vblank_on(). In addition, this function allows you to provide a 1476 * custom vblank configuration for a given CRTC. 1477 * 1478 * Note that @config is copied, the pointer does not need to stay valid beyond 1479 * this function call. For details of the parameters see 1480 * struct drm_vblank_crtc_config. 1481 */ 1482 void drm_crtc_vblank_on_config(struct drm_crtc *crtc, 1483 const struct drm_vblank_crtc_config *config) 1484 { 1485 struct drm_device *dev = crtc->dev; 1486 unsigned int pipe = drm_crtc_index(crtc); 1487 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1488 1489 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1490 return; 1491 1492 spin_lock_irq(&dev->vbl_lock); 1493 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1494 pipe, vblank->enabled, vblank->inmodeset); 1495 1496 vblank->config = *config; 1497 1498 /* Drop our private "prevent drm_vblank_get" refcount */ 1499 if (vblank->inmodeset) { 1500 atomic_dec(&vblank->refcount); 1501 vblank->inmodeset = 0; 1502 } 1503 1504 drm_reset_vblank_timestamp(dev, pipe); 1505 1506 /* 1507 * re-enable interrupts if there are users left, or the 1508 * user wishes vblank interrupts to be enabled all the time. 1509 */ 1510 if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms) 1511 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1512 spin_unlock_irq(&dev->vbl_lock); 1513 } 1514 EXPORT_SYMBOL(drm_crtc_vblank_on_config); 1515 1516 /** 1517 * drm_crtc_vblank_on - enable vblank events on a CRTC 1518 * @crtc: CRTC in question 1519 * 1520 * This functions restores the vblank interrupt state captured with 1521 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1522 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1523 * unbalanced and so can also be unconditionally called in driver load code to 1524 * reflect the current hardware state of the crtc. 1525 * 1526 * Note that unlike in drm_crtc_vblank_on_config(), default values are used. 1527 */ 1528 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1529 { 1530 const struct drm_vblank_crtc_config config = { 1531 .offdelay_ms = drm_vblank_offdelay, 1532 .disable_immediate = crtc->dev->vblank_disable_immediate 1533 }; 1534 1535 drm_crtc_vblank_on_config(crtc, &config); 1536 } 1537 EXPORT_SYMBOL(drm_crtc_vblank_on); 1538 1539 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1540 { 1541 ktime_t t_vblank; 1542 struct drm_vblank_crtc *vblank; 1543 int framedur_ns; 1544 u64 diff_ns; 1545 u32 cur_vblank, diff = 1; 1546 int count = DRM_TIMESTAMP_MAXRETRIES; 1547 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1548 1549 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1550 return; 1551 1552 assert_spin_locked(&dev->vbl_lock); 1553 assert_spin_locked(&dev->vblank_time_lock); 1554 1555 vblank = drm_vblank_crtc(dev, pipe); 1556 drm_WARN_ONCE(dev, 1557 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1558 "Cannot compute missed vblanks without frame duration\n"); 1559 framedur_ns = vblank->framedur_ns; 1560 1561 do { 1562 cur_vblank = __get_vblank_counter(dev, pipe); 1563 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1564 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1565 1566 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1567 if (framedur_ns) 1568 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1569 1570 1571 drm_dbg_vbl(dev, 1572 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1573 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1574 vblank->last = (cur_vblank - diff) & max_vblank_count; 1575 } 1576 1577 /** 1578 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1579 * @crtc: CRTC in question 1580 * 1581 * Power manamement features can cause frame counter resets between vblank 1582 * disable and enable. Drivers can use this function in their 1583 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1584 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1585 * vblank counter. 1586 * 1587 * Note that drivers must have race-free high-precision timestamping support, 1588 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1589 * &drm_vblank_crtc_config.disable_immediate must be set to indicate the 1590 * time-stamping functions are race-free against vblank hardware counter 1591 * increments. 1592 */ 1593 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1594 { 1595 struct drm_device *dev = crtc->dev; 1596 unsigned int pipe = drm_crtc_index(crtc); 1597 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1598 1599 drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp); 1600 drm_WARN_ON_ONCE(dev, vblank->inmodeset); 1601 drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate); 1602 1603 drm_vblank_restore(dev, pipe); 1604 } 1605 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1606 1607 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1608 u64 req_seq, 1609 union drm_wait_vblank *vblwait, 1610 struct drm_file *file_priv) 1611 { 1612 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1613 struct drm_pending_vblank_event *e; 1614 ktime_t now; 1615 u64 seq; 1616 int ret; 1617 1618 e = kzalloc(sizeof(*e), GFP_KERNEL); 1619 if (e == NULL) { 1620 ret = -ENOMEM; 1621 goto err_put; 1622 } 1623 1624 e->pipe = pipe; 1625 e->event.base.type = DRM_EVENT_VBLANK; 1626 e->event.base.length = sizeof(e->event.vbl); 1627 e->event.vbl.user_data = vblwait->request.signal; 1628 e->event.vbl.crtc_id = 0; 1629 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1630 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1631 1632 if (crtc) 1633 e->event.vbl.crtc_id = crtc->base.id; 1634 } 1635 1636 spin_lock_irq(&dev->event_lock); 1637 1638 /* 1639 * drm_crtc_vblank_off() might have been called after we called 1640 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1641 * vblank disable, so no need for further locking. The reference from 1642 * drm_vblank_get() protects against vblank disable from another source. 1643 */ 1644 if (!READ_ONCE(vblank->enabled)) { 1645 ret = -EINVAL; 1646 goto err_unlock; 1647 } 1648 1649 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1650 &e->event.base); 1651 1652 if (ret) 1653 goto err_unlock; 1654 1655 seq = drm_vblank_count_and_time(dev, pipe, &now); 1656 1657 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1658 req_seq, seq, pipe); 1659 1660 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1661 1662 e->sequence = req_seq; 1663 if (drm_vblank_passed(seq, req_seq)) { 1664 drm_vblank_put(dev, pipe); 1665 send_vblank_event(dev, e, seq, now); 1666 vblwait->reply.sequence = seq; 1667 } else { 1668 /* drm_handle_vblank_events will call drm_vblank_put */ 1669 list_add_tail(&e->base.link, &dev->vblank_event_list); 1670 vblwait->reply.sequence = req_seq; 1671 } 1672 1673 spin_unlock_irq(&dev->event_lock); 1674 1675 return 0; 1676 1677 err_unlock: 1678 spin_unlock_irq(&dev->event_lock); 1679 kfree(e); 1680 err_put: 1681 drm_vblank_put(dev, pipe); 1682 return ret; 1683 } 1684 1685 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1686 { 1687 if (vblwait->request.sequence) 1688 return false; 1689 1690 return _DRM_VBLANK_RELATIVE == 1691 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1692 _DRM_VBLANK_EVENT | 1693 _DRM_VBLANK_NEXTONMISS)); 1694 } 1695 1696 /* 1697 * Widen a 32-bit param to 64-bits. 1698 * 1699 * \param narrow 32-bit value (missing upper 32 bits) 1700 * \param near 64-bit value that should be 'close' to near 1701 * 1702 * This function returns a 64-bit value using the lower 32-bits from 1703 * 'narrow' and constructing the upper 32-bits so that the result is 1704 * as close as possible to 'near'. 1705 */ 1706 1707 static u64 widen_32_to_64(u32 narrow, u64 near) 1708 { 1709 return near + (s32) (narrow - near); 1710 } 1711 1712 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1713 struct drm_wait_vblank_reply *reply) 1714 { 1715 ktime_t now; 1716 struct timespec64 ts; 1717 1718 /* 1719 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1720 * to store the seconds. This is safe as we always use monotonic 1721 * timestamps since linux-4.15. 1722 */ 1723 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1724 ts = ktime_to_timespec64(now); 1725 reply->tval_sec = (u32)ts.tv_sec; 1726 reply->tval_usec = ts.tv_nsec / 1000; 1727 } 1728 1729 static bool drm_wait_vblank_supported(struct drm_device *dev) 1730 { 1731 return drm_dev_has_vblank(dev); 1732 } 1733 1734 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1735 struct drm_file *file_priv) 1736 { 1737 struct drm_crtc *crtc; 1738 struct drm_vblank_crtc *vblank; 1739 union drm_wait_vblank *vblwait = data; 1740 int ret; 1741 u64 req_seq, seq; 1742 unsigned int pipe_index; 1743 unsigned int flags, pipe, high_pipe; 1744 1745 if (!drm_wait_vblank_supported(dev)) 1746 return -EOPNOTSUPP; 1747 1748 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1749 return -EINVAL; 1750 1751 if (vblwait->request.type & 1752 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1753 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1754 drm_dbg_core(dev, 1755 "Unsupported type value 0x%x, supported mask 0x%x\n", 1756 vblwait->request.type, 1757 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1758 _DRM_VBLANK_HIGH_CRTC_MASK)); 1759 return -EINVAL; 1760 } 1761 1762 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1763 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1764 if (high_pipe) 1765 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1766 else 1767 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1768 1769 /* Convert lease-relative crtc index into global crtc index */ 1770 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1771 pipe = 0; 1772 drm_for_each_crtc(crtc, dev) { 1773 if (drm_lease_held(file_priv, crtc->base.id)) { 1774 if (pipe_index == 0) 1775 break; 1776 pipe_index--; 1777 } 1778 pipe++; 1779 } 1780 } else { 1781 pipe = pipe_index; 1782 } 1783 1784 if (pipe >= dev->num_crtcs) 1785 return -EINVAL; 1786 1787 vblank = &dev->vblank[pipe]; 1788 1789 /* If the counter is currently enabled and accurate, short-circuit 1790 * queries to return the cached timestamp of the last vblank. 1791 */ 1792 if (vblank->config.disable_immediate && 1793 drm_wait_vblank_is_query(vblwait) && 1794 READ_ONCE(vblank->enabled)) { 1795 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1796 return 0; 1797 } 1798 1799 ret = drm_vblank_get(dev, pipe); 1800 if (ret) { 1801 drm_dbg_core(dev, 1802 "crtc %d failed to acquire vblank counter, %d\n", 1803 pipe, ret); 1804 return ret; 1805 } 1806 seq = drm_vblank_count(dev, pipe); 1807 1808 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1809 case _DRM_VBLANK_RELATIVE: 1810 req_seq = seq + vblwait->request.sequence; 1811 vblwait->request.sequence = req_seq; 1812 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1813 break; 1814 case _DRM_VBLANK_ABSOLUTE: 1815 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1816 break; 1817 default: 1818 ret = -EINVAL; 1819 goto done; 1820 } 1821 1822 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1823 drm_vblank_passed(seq, req_seq)) { 1824 req_seq = seq + 1; 1825 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1826 vblwait->request.sequence = req_seq; 1827 } 1828 1829 if (flags & _DRM_VBLANK_EVENT) { 1830 /* must hold on to the vblank ref until the event fires 1831 * drm_vblank_put will be called asynchronously 1832 */ 1833 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1834 } 1835 1836 if (req_seq != seq) { 1837 int wait; 1838 1839 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1840 req_seq, pipe); 1841 wait = wait_event_interruptible_timeout(vblank->queue, 1842 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1843 !READ_ONCE(vblank->enabled), 1844 msecs_to_jiffies(3000)); 1845 1846 switch (wait) { 1847 case 0: 1848 /* timeout */ 1849 ret = -EBUSY; 1850 break; 1851 case -ERESTARTSYS: 1852 /* interrupted by signal */ 1853 ret = -EINTR; 1854 break; 1855 default: 1856 ret = 0; 1857 break; 1858 } 1859 } 1860 1861 if (ret != -EINTR) { 1862 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1863 1864 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1865 pipe, vblwait->reply.sequence); 1866 } else { 1867 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1868 pipe); 1869 } 1870 1871 done: 1872 drm_vblank_put(dev, pipe); 1873 return ret; 1874 } 1875 1876 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1877 { 1878 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1879 bool high_prec = false; 1880 struct drm_pending_vblank_event *e, *t; 1881 ktime_t now; 1882 u64 seq; 1883 1884 assert_spin_locked(&dev->event_lock); 1885 1886 seq = drm_vblank_count_and_time(dev, pipe, &now); 1887 1888 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1889 if (e->pipe != pipe) 1890 continue; 1891 if (!drm_vblank_passed(seq, e->sequence)) 1892 continue; 1893 1894 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1895 e->sequence, seq); 1896 1897 list_del(&e->base.link); 1898 drm_vblank_put(dev, pipe); 1899 send_vblank_event(dev, e, seq, now); 1900 } 1901 1902 if (crtc && crtc->funcs->get_vblank_timestamp) 1903 high_prec = true; 1904 1905 trace_drm_vblank_event(pipe, seq, now, high_prec); 1906 } 1907 1908 /** 1909 * drm_handle_vblank - handle a vblank event 1910 * @dev: DRM device 1911 * @pipe: index of CRTC where this event occurred 1912 * 1913 * Drivers should call this routine in their vblank interrupt handlers to 1914 * update the vblank counter and send any signals that may be pending. 1915 * 1916 * This is the legacy version of drm_crtc_handle_vblank(). 1917 */ 1918 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1919 { 1920 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1921 unsigned long irqflags; 1922 bool disable_irq; 1923 1924 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1925 return false; 1926 1927 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1928 return false; 1929 1930 spin_lock_irqsave(&dev->event_lock, irqflags); 1931 1932 /* Need timestamp lock to prevent concurrent execution with 1933 * vblank enable/disable, as this would cause inconsistent 1934 * or corrupted timestamps and vblank counts. 1935 */ 1936 spin_lock(&dev->vblank_time_lock); 1937 1938 /* Vblank irq handling disabled. Nothing to do. */ 1939 if (!vblank->enabled) { 1940 spin_unlock(&dev->vblank_time_lock); 1941 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1942 return false; 1943 } 1944 1945 drm_update_vblank_count(dev, pipe, true); 1946 1947 spin_unlock(&dev->vblank_time_lock); 1948 1949 wake_up(&vblank->queue); 1950 1951 /* With instant-off, we defer disabling the interrupt until after 1952 * we finish processing the following vblank after all events have 1953 * been signaled. The disable has to be last (after 1954 * drm_handle_vblank_events) so that the timestamp is always accurate. 1955 */ 1956 disable_irq = (vblank->config.disable_immediate && 1957 vblank->config.offdelay_ms > 0 && 1958 !atomic_read(&vblank->refcount)); 1959 1960 drm_handle_vblank_events(dev, pipe); 1961 drm_handle_vblank_works(vblank); 1962 1963 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1964 1965 if (disable_irq) 1966 vblank_disable_fn(&vblank->disable_timer); 1967 1968 return true; 1969 } 1970 EXPORT_SYMBOL(drm_handle_vblank); 1971 1972 /** 1973 * drm_crtc_handle_vblank - handle a vblank event 1974 * @crtc: where this event occurred 1975 * 1976 * Drivers should call this routine in their vblank interrupt handlers to 1977 * update the vblank counter and send any signals that may be pending. 1978 * 1979 * This is the native KMS version of drm_handle_vblank(). 1980 * 1981 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1982 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1983 * provide a barrier: Any writes done before calling 1984 * drm_crtc_handle_vblank() will be visible to callers of the later 1985 * functions, if the vblank count is the same or a later one. 1986 * 1987 * See also &drm_vblank_crtc.count. 1988 * 1989 * Returns: 1990 * True if the event was successfully handled, false on failure. 1991 */ 1992 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1993 { 1994 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1995 } 1996 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1997 1998 /* 1999 * Get crtc VBLANK count. 2000 * 2001 * \param dev DRM device 2002 * \param data user argument, pointing to a drm_crtc_get_sequence structure. 2003 * \param file_priv drm file private for the user's open file descriptor 2004 */ 2005 2006 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2007 struct drm_file *file_priv) 2008 { 2009 struct drm_crtc *crtc; 2010 struct drm_vblank_crtc *vblank; 2011 int pipe; 2012 struct drm_crtc_get_sequence *get_seq = data; 2013 ktime_t now; 2014 bool vblank_enabled; 2015 int ret; 2016 2017 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2018 return -EOPNOTSUPP; 2019 2020 if (!drm_dev_has_vblank(dev)) 2021 return -EOPNOTSUPP; 2022 2023 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2024 if (!crtc) 2025 return -ENOENT; 2026 2027 pipe = drm_crtc_index(crtc); 2028 2029 vblank = drm_crtc_vblank_crtc(crtc); 2030 vblank_enabled = READ_ONCE(vblank->config.disable_immediate) && 2031 READ_ONCE(vblank->enabled); 2032 2033 if (!vblank_enabled) { 2034 ret = drm_crtc_vblank_get(crtc); 2035 if (ret) { 2036 drm_dbg_core(dev, 2037 "crtc %d failed to acquire vblank counter, %d\n", 2038 pipe, ret); 2039 return ret; 2040 } 2041 } 2042 drm_modeset_lock(&crtc->mutex, NULL); 2043 if (crtc->state) 2044 get_seq->active = crtc->state->enable; 2045 else 2046 get_seq->active = crtc->enabled; 2047 drm_modeset_unlock(&crtc->mutex); 2048 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2049 get_seq->sequence_ns = ktime_to_ns(now); 2050 if (!vblank_enabled) 2051 drm_crtc_vblank_put(crtc); 2052 return 0; 2053 } 2054 2055 /* 2056 * Queue a event for VBLANK sequence 2057 * 2058 * \param dev DRM device 2059 * \param data user argument, pointing to a drm_crtc_queue_sequence structure. 2060 * \param file_priv drm file private for the user's open file descriptor 2061 */ 2062 2063 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2064 struct drm_file *file_priv) 2065 { 2066 struct drm_crtc *crtc; 2067 struct drm_vblank_crtc *vblank; 2068 int pipe; 2069 struct drm_crtc_queue_sequence *queue_seq = data; 2070 ktime_t now; 2071 struct drm_pending_vblank_event *e; 2072 u32 flags; 2073 u64 seq; 2074 u64 req_seq; 2075 int ret; 2076 2077 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2078 return -EOPNOTSUPP; 2079 2080 if (!drm_dev_has_vblank(dev)) 2081 return -EOPNOTSUPP; 2082 2083 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2084 if (!crtc) 2085 return -ENOENT; 2086 2087 flags = queue_seq->flags; 2088 /* Check valid flag bits */ 2089 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2090 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2091 return -EINVAL; 2092 2093 pipe = drm_crtc_index(crtc); 2094 2095 vblank = drm_crtc_vblank_crtc(crtc); 2096 2097 e = kzalloc(sizeof(*e), GFP_KERNEL); 2098 if (e == NULL) 2099 return -ENOMEM; 2100 2101 ret = drm_crtc_vblank_get(crtc); 2102 if (ret) { 2103 drm_dbg_core(dev, 2104 "crtc %d failed to acquire vblank counter, %d\n", 2105 pipe, ret); 2106 goto err_free; 2107 } 2108 2109 seq = drm_vblank_count_and_time(dev, pipe, &now); 2110 req_seq = queue_seq->sequence; 2111 2112 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2113 req_seq += seq; 2114 2115 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2116 req_seq = seq + 1; 2117 2118 e->pipe = pipe; 2119 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2120 e->event.base.length = sizeof(e->event.seq); 2121 e->event.seq.user_data = queue_seq->user_data; 2122 2123 spin_lock_irq(&dev->event_lock); 2124 2125 /* 2126 * drm_crtc_vblank_off() might have been called after we called 2127 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2128 * vblank disable, so no need for further locking. The reference from 2129 * drm_crtc_vblank_get() protects against vblank disable from another source. 2130 */ 2131 if (!READ_ONCE(vblank->enabled)) { 2132 ret = -EINVAL; 2133 goto err_unlock; 2134 } 2135 2136 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2137 &e->event.base); 2138 2139 if (ret) 2140 goto err_unlock; 2141 2142 e->sequence = req_seq; 2143 2144 if (drm_vblank_passed(seq, req_seq)) { 2145 drm_crtc_vblank_put(crtc); 2146 send_vblank_event(dev, e, seq, now); 2147 queue_seq->sequence = seq; 2148 } else { 2149 /* drm_handle_vblank_events will call drm_vblank_put */ 2150 list_add_tail(&e->base.link, &dev->vblank_event_list); 2151 queue_seq->sequence = req_seq; 2152 } 2153 2154 spin_unlock_irq(&dev->event_lock); 2155 return 0; 2156 2157 err_unlock: 2158 spin_unlock_irq(&dev->event_lock); 2159 drm_crtc_vblank_put(crtc); 2160 err_free: 2161 kfree(e); 2162 return ret; 2163 } 2164 2165