xref: /linux/drivers/gpu/drm/drm_vblank.c (revision dbcedec3a31119d7594baacc743300d127c99c56)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30 
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38 
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41 
42 /**
43  * DOC: vblank handling
44  *
45  * From the computer's perspective, every time the monitor displays
46  * a new frame the scanout engine has "scanned out" the display image
47  * from top to bottom, one row of pixels at a time. The current row
48  * of pixels is referred to as the current scanline.
49  *
50  * In addition to the display's visible area, there's usually a couple of
51  * extra scanlines which aren't actually displayed on the screen.
52  * These extra scanlines don't contain image data and are occasionally used
53  * for features like audio and infoframes. The region made up of these
54  * scanlines is referred to as the vertical blanking region, or vblank for
55  * short.
56  *
57  * For historical reference, the vertical blanking period was designed to
58  * give the electron gun (on CRTs) enough time to move back to the top of
59  * the screen to start scanning out the next frame. Similar for horizontal
60  * blanking periods. They were designed to give the electron gun enough
61  * time to move back to the other side of the screen to start scanning the
62  * next scanline.
63  *
64  * ::
65  *
66  *
67  *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68  *    top of      |                                        |
69  *    display     |                                        |
70  *                |               New frame                |
71  *                |                                        |
72  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73  *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75  *                |                                        |   frame as it
76  *                |                                        |   travels down
77  *                |                                        |   ("scan out")
78  *                |               Old frame                |
79  *                |                                        |
80  *                |                                        |
81  *                |                                        |
82  *                |                                        |   physical
83  *                |                                        |   bottom of
84  *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85  *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86  *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87  *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88  *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89  *    new frame
90  *
91  * "Physical top of display" is the reference point for the high-precision/
92  * corrected timestamp.
93  *
94  * On a lot of display hardware, programming needs to take effect during the
95  * vertical blanking period so that settings like gamma, the image buffer
96  * buffer to be scanned out, etc. can safely be changed without showing
97  * any visual artifacts on the screen. In some unforgiving hardware, some of
98  * this programming has to both start and end in the same vblank. To help
99  * with the timing of the hardware programming, an interrupt is usually
100  * available to notify the driver when it can start the updating of registers.
101  * The interrupt is in this context named the vblank interrupt.
102  *
103  * The vblank interrupt may be fired at different points depending on the
104  * hardware. Some hardware implementations will fire the interrupt when the
105  * new frame start, other implementations will fire the interrupt at different
106  * points in time.
107  *
108  * Vertical blanking plays a major role in graphics rendering. To achieve
109  * tear-free display, users must synchronize page flips and/or rendering to
110  * vertical blanking. The DRM API offers ioctls to perform page flips
111  * synchronized to vertical blanking and wait for vertical blanking.
112  *
113  * The DRM core handles most of the vertical blanking management logic, which
114  * involves filtering out spurious interrupts, keeping race-free blanking
115  * counters, coping with counter wrap-around and resets and keeping use counts.
116  * It relies on the driver to generate vertical blanking interrupts and
117  * optionally provide a hardware vertical blanking counter.
118  *
119  * Drivers must initialize the vertical blanking handling core with a call to
120  * drm_vblank_init(). Minimally, a driver needs to implement
121  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123  * support.
124  *
125  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126  * themselves (for instance to handle page flipping operations).  The DRM core
127  * maintains a vertical blanking use count to ensure that the interrupts are not
128  * disabled while a user still needs them. To increment the use count, drivers
129  * call drm_crtc_vblank_get() and release the vblank reference again with
130  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131  * guaranteed to be enabled.
132  *
133  * On many hardware disabling the vblank interrupt cannot be done in a race-free
134  * manner, see &drm_driver.vblank_disable_immediate and
135  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136  * vblanks after a timer has expired, which can be configured through the
137  * ``vblankoffdelay`` module parameter.
138  *
139  * Drivers for hardware without support for vertical-blanking interrupts
140  * must not call drm_vblank_init(). For such drivers, atomic helpers will
141  * automatically generate fake vblank events as part of the display update.
142  * This functionality also can be controlled by the driver by enabling and
143  * disabling struct drm_crtc_state.no_vblank.
144  */
145 
146 /* Retry timestamp calculation up to 3 times to satisfy
147  * drm_timestamp_precision before giving up.
148  */
149 #define DRM_TIMESTAMP_MAXRETRIES 3
150 
151 /* Threshold in nanoseconds for detection of redundant
152  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153  */
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155 
156 static bool
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 			  ktime_t *tvblank, bool in_vblank_irq);
159 
160 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
161 
162 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
163 
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168 
169 static void store_vblank(struct drm_device *dev, unsigned int pipe,
170 			 u32 vblank_count_inc,
171 			 ktime_t t_vblank, u32 last)
172 {
173 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
174 
175 	assert_spin_locked(&dev->vblank_time_lock);
176 
177 	vblank->last = last;
178 
179 	write_seqlock(&vblank->seqlock);
180 	vblank->time = t_vblank;
181 	atomic64_add(vblank_count_inc, &vblank->count);
182 	write_sequnlock(&vblank->seqlock);
183 }
184 
185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
186 {
187 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
188 
189 	return vblank->max_vblank_count ?: dev->max_vblank_count;
190 }
191 
192 /*
193  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194  * if there is no usable hardware frame counter available.
195  */
196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
197 {
198 	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
199 	return 0;
200 }
201 
202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
203 {
204 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
206 
207 		if (drm_WARN_ON(dev, !crtc))
208 			return 0;
209 
210 		if (crtc->funcs->get_vblank_counter)
211 			return crtc->funcs->get_vblank_counter(crtc);
212 	}
213 
214 	return drm_vblank_no_hw_counter(dev, pipe);
215 }
216 
217 /*
218  * Reset the stored timestamp for the current vblank count to correspond
219  * to the last vblank occurred.
220  *
221  * Only to be called from drm_crtc_vblank_on().
222  *
223  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
224  * device vblank fields.
225  */
226 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
227 {
228 	u32 cur_vblank;
229 	bool rc;
230 	ktime_t t_vblank;
231 	int count = DRM_TIMESTAMP_MAXRETRIES;
232 
233 	spin_lock(&dev->vblank_time_lock);
234 
235 	/*
236 	 * sample the current counter to avoid random jumps
237 	 * when drm_vblank_enable() applies the diff
238 	 */
239 	do {
240 		cur_vblank = __get_vblank_counter(dev, pipe);
241 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
242 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
243 
244 	/*
245 	 * Only reinitialize corresponding vblank timestamp if high-precision query
246 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
247 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
248 	 */
249 	if (!rc)
250 		t_vblank = 0;
251 
252 	/*
253 	 * +1 to make sure user will never see the same
254 	 * vblank counter value before and after a modeset
255 	 */
256 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
257 
258 	spin_unlock(&dev->vblank_time_lock);
259 }
260 
261 /*
262  * Call back into the driver to update the appropriate vblank counter
263  * (specified by @pipe).  Deal with wraparound, if it occurred, and
264  * update the last read value so we can deal with wraparound on the next
265  * call if necessary.
266  *
267  * Only necessary when going from off->on, to account for frames we
268  * didn't get an interrupt for.
269  *
270  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
271  * device vblank fields.
272  */
273 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
274 				    bool in_vblank_irq)
275 {
276 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
277 	u32 cur_vblank, diff;
278 	bool rc;
279 	ktime_t t_vblank;
280 	int count = DRM_TIMESTAMP_MAXRETRIES;
281 	int framedur_ns = vblank->framedur_ns;
282 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
283 
284 	/*
285 	 * Interrupts were disabled prior to this call, so deal with counter
286 	 * wrap if needed.
287 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
288 	 * here if the register is small or we had vblank interrupts off for
289 	 * a long time.
290 	 *
291 	 * We repeat the hardware vblank counter & timestamp query until
292 	 * we get consistent results. This to prevent races between gpu
293 	 * updating its hardware counter while we are retrieving the
294 	 * corresponding vblank timestamp.
295 	 */
296 	do {
297 		cur_vblank = __get_vblank_counter(dev, pipe);
298 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
299 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
300 
301 	if (max_vblank_count) {
302 		/* trust the hw counter when it's around */
303 		diff = (cur_vblank - vblank->last) & max_vblank_count;
304 	} else if (rc && framedur_ns) {
305 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
306 
307 		/*
308 		 * Figure out how many vblanks we've missed based
309 		 * on the difference in the timestamps and the
310 		 * frame/field duration.
311 		 */
312 
313 		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
314 			    " diff_ns = %lld, framedur_ns = %d)\n",
315 			    pipe, (long long)diff_ns, framedur_ns);
316 
317 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
318 
319 		if (diff == 0 && in_vblank_irq)
320 			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
321 				    pipe);
322 	} else {
323 		/* some kind of default for drivers w/o accurate vbl timestamping */
324 		diff = in_vblank_irq ? 1 : 0;
325 	}
326 
327 	/*
328 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
329 	 * interval? If so then vblank irqs keep running and it will likely
330 	 * happen that the hardware vblank counter is not trustworthy as it
331 	 * might reset at some point in that interval and vblank timestamps
332 	 * are not trustworthy either in that interval. Iow. this can result
333 	 * in a bogus diff >> 1 which must be avoided as it would cause
334 	 * random large forward jumps of the software vblank counter.
335 	 */
336 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
337 		drm_dbg_vbl(dev,
338 			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
339 			    " due to pre-modeset.\n", pipe, diff);
340 		diff = 1;
341 	}
342 
343 	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
344 		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
345 		    pipe, (unsigned long long)atomic64_read(&vblank->count),
346 		    diff, cur_vblank, vblank->last);
347 
348 	if (diff == 0) {
349 		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
350 		return;
351 	}
352 
353 	/*
354 	 * Only reinitialize corresponding vblank timestamp if high-precision query
355 	 * available and didn't fail, or we were called from the vblank interrupt.
356 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
357 	 * for now, to mark the vblanktimestamp as invalid.
358 	 */
359 	if (!rc && !in_vblank_irq)
360 		t_vblank = 0;
361 
362 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
363 }
364 
365 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
366 {
367 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
368 	u64 count;
369 
370 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
371 		return 0;
372 
373 	count = atomic64_read(&vblank->count);
374 
375 	/*
376 	 * This read barrier corresponds to the implicit write barrier of the
377 	 * write seqlock in store_vblank(). Note that this is the only place
378 	 * where we need an explicit barrier, since all other access goes
379 	 * through drm_vblank_count_and_time(), which already has the required
380 	 * read barrier curtesy of the read seqlock.
381 	 */
382 	smp_rmb();
383 
384 	return count;
385 }
386 
387 /**
388  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
389  * @crtc: which counter to retrieve
390  *
391  * This function is similar to drm_crtc_vblank_count() but this function
392  * interpolates to handle a race with vblank interrupts using the high precision
393  * timestamping support.
394  *
395  * This is mostly useful for hardware that can obtain the scanout position, but
396  * doesn't have a hardware frame counter.
397  */
398 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
399 {
400 	struct drm_device *dev = crtc->dev;
401 	unsigned int pipe = drm_crtc_index(crtc);
402 	u64 vblank;
403 	unsigned long flags;
404 
405 	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
406 		      !crtc->funcs->get_vblank_timestamp,
407 		      "This function requires support for accurate vblank timestamps.");
408 
409 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
410 
411 	drm_update_vblank_count(dev, pipe, false);
412 	vblank = drm_vblank_count(dev, pipe);
413 
414 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
415 
416 	return vblank;
417 }
418 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
419 
420 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
421 {
422 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
423 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
424 
425 		if (drm_WARN_ON(dev, !crtc))
426 			return;
427 
428 		if (crtc->funcs->disable_vblank)
429 			crtc->funcs->disable_vblank(crtc);
430 	}
431 }
432 
433 /*
434  * Disable vblank irq's on crtc, make sure that last vblank count
435  * of hardware and corresponding consistent software vblank counter
436  * are preserved, even if there are any spurious vblank irq's after
437  * disable.
438  */
439 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
440 {
441 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
442 	unsigned long irqflags;
443 
444 	assert_spin_locked(&dev->vbl_lock);
445 
446 	/* Prevent vblank irq processing while disabling vblank irqs,
447 	 * so no updates of timestamps or count can happen after we've
448 	 * disabled. Needed to prevent races in case of delayed irq's.
449 	 */
450 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
451 
452 	/*
453 	 * Update vblank count and disable vblank interrupts only if the
454 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
455 	 * operation in atomic context with the hardware potentially runtime
456 	 * suspended.
457 	 */
458 	if (!vblank->enabled)
459 		goto out;
460 
461 	/*
462 	 * Update the count and timestamp to maintain the
463 	 * appearance that the counter has been ticking all along until
464 	 * this time. This makes the count account for the entire time
465 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
466 	 */
467 	drm_update_vblank_count(dev, pipe, false);
468 	__disable_vblank(dev, pipe);
469 	vblank->enabled = false;
470 
471 out:
472 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
473 }
474 
475 static void vblank_disable_fn(struct timer_list *t)
476 {
477 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
478 	struct drm_device *dev = vblank->dev;
479 	unsigned int pipe = vblank->pipe;
480 	unsigned long irqflags;
481 
482 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
483 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
484 		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
485 		drm_vblank_disable_and_save(dev, pipe);
486 	}
487 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
488 }
489 
490 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
491 {
492 	struct drm_vblank_crtc *vblank = ptr;
493 
494 	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
495 		    drm_core_check_feature(dev, DRIVER_MODESET));
496 
497 	drm_vblank_destroy_worker(vblank);
498 	del_timer_sync(&vblank->disable_timer);
499 }
500 
501 /**
502  * drm_vblank_init - initialize vblank support
503  * @dev: DRM device
504  * @num_crtcs: number of CRTCs supported by @dev
505  *
506  * This function initializes vblank support for @num_crtcs display pipelines.
507  * Cleanup is handled automatically through a cleanup function added with
508  * drmm_add_action_or_reset().
509  *
510  * Returns:
511  * Zero on success or a negative error code on failure.
512  */
513 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
514 {
515 	int ret;
516 	unsigned int i;
517 
518 	spin_lock_init(&dev->vbl_lock);
519 	spin_lock_init(&dev->vblank_time_lock);
520 
521 	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
522 	if (!dev->vblank)
523 		return -ENOMEM;
524 
525 	dev->num_crtcs = num_crtcs;
526 
527 	for (i = 0; i < num_crtcs; i++) {
528 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
529 
530 		vblank->dev = dev;
531 		vblank->pipe = i;
532 		init_waitqueue_head(&vblank->queue);
533 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
534 		seqlock_init(&vblank->seqlock);
535 
536 		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
537 					       vblank);
538 		if (ret)
539 			return ret;
540 
541 		ret = drm_vblank_worker_init(vblank);
542 		if (ret)
543 			return ret;
544 	}
545 
546 	return 0;
547 }
548 EXPORT_SYMBOL(drm_vblank_init);
549 
550 /**
551  * drm_dev_has_vblank - test if vblanking has been initialized for
552  *                      a device
553  * @dev: the device
554  *
555  * Drivers may call this function to test if vblank support is
556  * initialized for a device. For most hardware this means that vblanking
557  * can also be enabled.
558  *
559  * Atomic helpers use this function to initialize
560  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
561  *
562  * Returns:
563  * True if vblanking has been initialized for the given device, false
564  * otherwise.
565  */
566 bool drm_dev_has_vblank(const struct drm_device *dev)
567 {
568 	return dev->num_crtcs != 0;
569 }
570 EXPORT_SYMBOL(drm_dev_has_vblank);
571 
572 /**
573  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
574  * @crtc: which CRTC's vblank waitqueue to retrieve
575  *
576  * This function returns a pointer to the vblank waitqueue for the CRTC.
577  * Drivers can use this to implement vblank waits using wait_event() and related
578  * functions.
579  */
580 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
581 {
582 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
583 }
584 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
585 
586 
587 /**
588  * drm_calc_timestamping_constants - calculate vblank timestamp constants
589  * @crtc: drm_crtc whose timestamp constants should be updated.
590  * @mode: display mode containing the scanout timings
591  *
592  * Calculate and store various constants which are later needed by vblank and
593  * swap-completion timestamping, e.g, by
594  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
595  * CRTC's true scanout timing, so they take things like panel scaling or
596  * other adjustments into account.
597  */
598 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
599 				     const struct drm_display_mode *mode)
600 {
601 	struct drm_device *dev = crtc->dev;
602 	unsigned int pipe = drm_crtc_index(crtc);
603 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
604 	int linedur_ns = 0, framedur_ns = 0;
605 	int dotclock = mode->crtc_clock;
606 
607 	if (!drm_dev_has_vblank(dev))
608 		return;
609 
610 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
611 		return;
612 
613 	/* Valid dotclock? */
614 	if (dotclock > 0) {
615 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
616 
617 		/*
618 		 * Convert scanline length in pixels and video
619 		 * dot clock to line duration and frame duration
620 		 * in nanoseconds:
621 		 */
622 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
623 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
624 
625 		/*
626 		 * Fields of interlaced scanout modes are only half a frame duration.
627 		 */
628 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
629 			framedur_ns /= 2;
630 	} else {
631 		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
632 			crtc->base.id);
633 	}
634 
635 	vblank->linedur_ns  = linedur_ns;
636 	vblank->framedur_ns = framedur_ns;
637 	drm_mode_copy(&vblank->hwmode, mode);
638 
639 	drm_dbg_core(dev,
640 		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
641 		     crtc->base.id, mode->crtc_htotal,
642 		     mode->crtc_vtotal, mode->crtc_vdisplay);
643 	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
644 		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
645 }
646 EXPORT_SYMBOL(drm_calc_timestamping_constants);
647 
648 /**
649  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
650  *                                                        timestamp helper
651  * @crtc: CRTC whose vblank timestamp to retrieve
652  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
653  *             On return contains true maximum error of timestamp
654  * @vblank_time: Pointer to time which should receive the timestamp
655  * @in_vblank_irq:
656  *     True when called from drm_crtc_handle_vblank().  Some drivers
657  *     need to apply some workarounds for gpu-specific vblank irq quirks
658  *     if flag is set.
659  * @get_scanout_position:
660  *     Callback function to retrieve the scanout position. See
661  *     @struct drm_crtc_helper_funcs.get_scanout_position.
662  *
663  * Implements calculation of exact vblank timestamps from given drm_display_mode
664  * timings and current video scanout position of a CRTC.
665  *
666  * The current implementation only handles standard video modes. For double scan
667  * and interlaced modes the driver is supposed to adjust the hardware mode
668  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
669  * match the scanout position reported.
670  *
671  * Note that atomic drivers must call drm_calc_timestamping_constants() before
672  * enabling a CRTC. The atomic helpers already take care of that in
673  * drm_atomic_helper_calc_timestamping_constants().
674  *
675  * Returns:
676  *
677  * Returns true on success, and false on failure, i.e. when no accurate
678  * timestamp could be acquired.
679  */
680 bool
681 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
682 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
683 	bool in_vblank_irq,
684 	drm_vblank_get_scanout_position_func get_scanout_position)
685 {
686 	struct drm_device *dev = crtc->dev;
687 	unsigned int pipe = crtc->index;
688 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
689 	struct timespec64 ts_etime, ts_vblank_time;
690 	ktime_t stime, etime;
691 	bool vbl_status;
692 	const struct drm_display_mode *mode;
693 	int vpos, hpos, i;
694 	int delta_ns, duration_ns;
695 
696 	if (pipe >= dev->num_crtcs) {
697 		drm_err(dev, "Invalid crtc %u\n", pipe);
698 		return false;
699 	}
700 
701 	/* Scanout position query not supported? Should not happen. */
702 	if (!get_scanout_position) {
703 		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
704 		return false;
705 	}
706 
707 	if (drm_drv_uses_atomic_modeset(dev))
708 		mode = &vblank->hwmode;
709 	else
710 		mode = &crtc->hwmode;
711 
712 	/* If mode timing undefined, just return as no-op:
713 	 * Happens during initial modesetting of a crtc.
714 	 */
715 	if (mode->crtc_clock == 0) {
716 		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
717 			     pipe);
718 		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
719 		return false;
720 	}
721 
722 	/* Get current scanout position with system timestamp.
723 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
724 	 * if single query takes longer than max_error nanoseconds.
725 	 *
726 	 * This guarantees a tight bound on maximum error if
727 	 * code gets preempted or delayed for some reason.
728 	 */
729 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
730 		/*
731 		 * Get vertical and horizontal scanout position vpos, hpos,
732 		 * and bounding timestamps stime, etime, pre/post query.
733 		 */
734 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
735 						  &vpos, &hpos,
736 						  &stime, &etime,
737 						  mode);
738 
739 		/* Return as no-op if scanout query unsupported or failed. */
740 		if (!vbl_status) {
741 			drm_dbg_core(dev,
742 				     "crtc %u : scanoutpos query failed.\n",
743 				     pipe);
744 			return false;
745 		}
746 
747 		/* Compute uncertainty in timestamp of scanout position query. */
748 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
749 
750 		/* Accept result with <  max_error nsecs timing uncertainty. */
751 		if (duration_ns <= *max_error)
752 			break;
753 	}
754 
755 	/* Noisy system timing? */
756 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
757 		drm_dbg_core(dev,
758 			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
759 			     pipe, duration_ns / 1000, *max_error / 1000, i);
760 	}
761 
762 	/* Return upper bound of timestamp precision error. */
763 	*max_error = duration_ns;
764 
765 	/* Convert scanout position into elapsed time at raw_time query
766 	 * since start of scanout at first display scanline. delta_ns
767 	 * can be negative if start of scanout hasn't happened yet.
768 	 */
769 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
770 			   mode->crtc_clock);
771 
772 	/* Subtract time delta from raw timestamp to get final
773 	 * vblank_time timestamp for end of vblank.
774 	 */
775 	*vblank_time = ktime_sub_ns(etime, delta_ns);
776 
777 	if (!drm_debug_enabled(DRM_UT_VBL))
778 		return true;
779 
780 	ts_etime = ktime_to_timespec64(etime);
781 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
782 
783 	drm_dbg_vbl(dev,
784 		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
785 		    pipe, hpos, vpos,
786 		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
787 		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
788 		    duration_ns / 1000, i);
789 
790 	return true;
791 }
792 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
793 
794 /**
795  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
796  *                                               helper
797  * @crtc: CRTC whose vblank timestamp to retrieve
798  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
799  *             On return contains true maximum error of timestamp
800  * @vblank_time: Pointer to time which should receive the timestamp
801  * @in_vblank_irq:
802  *     True when called from drm_crtc_handle_vblank().  Some drivers
803  *     need to apply some workarounds for gpu-specific vblank irq quirks
804  *     if flag is set.
805  *
806  * Implements calculation of exact vblank timestamps from given drm_display_mode
807  * timings and current video scanout position of a CRTC. This can be directly
808  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
809  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
810  *
811  * The current implementation only handles standard video modes. For double scan
812  * and interlaced modes the driver is supposed to adjust the hardware mode
813  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
814  * match the scanout position reported.
815  *
816  * Note that atomic drivers must call drm_calc_timestamping_constants() before
817  * enabling a CRTC. The atomic helpers already take care of that in
818  * drm_atomic_helper_calc_timestamping_constants().
819  *
820  * Returns:
821  *
822  * Returns true on success, and false on failure, i.e. when no accurate
823  * timestamp could be acquired.
824  */
825 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
826 						 int *max_error,
827 						 ktime_t *vblank_time,
828 						 bool in_vblank_irq)
829 {
830 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
831 		crtc, max_error, vblank_time, in_vblank_irq,
832 		crtc->helper_private->get_scanout_position);
833 }
834 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
835 
836 /**
837  * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
838  *                                  recent vblank interval
839  * @crtc: CRTC whose vblank timestamp to retrieve
840  * @tvblank: Pointer to target time which should receive the timestamp
841  * @in_vblank_irq:
842  *     True when called from drm_crtc_handle_vblank().  Some drivers
843  *     need to apply some workarounds for gpu-specific vblank irq quirks
844  *     if flag is set.
845  *
846  * Fetches the system timestamp corresponding to the time of the most recent
847  * vblank interval on specified CRTC. May call into kms-driver to
848  * compute the timestamp with a high-precision GPU specific method.
849  *
850  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
851  * call, i.e., it isn't very precisely locked to the true vblank.
852  *
853  * Returns:
854  * True if timestamp is considered to be very precise, false otherwise.
855  */
856 static bool
857 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
858 			       bool in_vblank_irq)
859 {
860 	bool ret = false;
861 
862 	/* Define requested maximum error on timestamps (nanoseconds). */
863 	int max_error = (int) drm_timestamp_precision * 1000;
864 
865 	/* Query driver if possible and precision timestamping enabled. */
866 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
867 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
868 							tvblank, in_vblank_irq);
869 	}
870 
871 	/* GPU high precision timestamp query unsupported or failed.
872 	 * Return current monotonic/gettimeofday timestamp as best estimate.
873 	 */
874 	if (!ret)
875 		*tvblank = ktime_get();
876 
877 	return ret;
878 }
879 
880 static bool
881 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
882 			  ktime_t *tvblank, bool in_vblank_irq)
883 {
884 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
885 
886 	return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
887 }
888 
889 /**
890  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
891  * @crtc: which counter to retrieve
892  *
893  * Fetches the "cooked" vblank count value that represents the number of
894  * vblank events since the system was booted, including lost events due to
895  * modesetting activity. Note that this timer isn't correct against a racing
896  * vblank interrupt (since it only reports the software vblank counter), see
897  * drm_crtc_accurate_vblank_count() for such use-cases.
898  *
899  * Note that for a given vblank counter value drm_crtc_handle_vblank()
900  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
901  * provide a barrier: Any writes done before calling
902  * drm_crtc_handle_vblank() will be visible to callers of the later
903  * functions, if the vblank count is the same or a later one.
904  *
905  * See also &drm_vblank_crtc.count.
906  *
907  * Returns:
908  * The software vblank counter.
909  */
910 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
911 {
912 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
913 }
914 EXPORT_SYMBOL(drm_crtc_vblank_count);
915 
916 /**
917  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
918  *     system timestamp corresponding to that vblank counter value.
919  * @dev: DRM device
920  * @pipe: index of CRTC whose counter to retrieve
921  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
922  *
923  * Fetches the "cooked" vblank count value that represents the number of
924  * vblank events since the system was booted, including lost events due to
925  * modesetting activity. Returns corresponding system timestamp of the time
926  * of the vblank interval that corresponds to the current vblank counter value.
927  *
928  * This is the legacy version of drm_crtc_vblank_count_and_time().
929  */
930 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
931 				     ktime_t *vblanktime)
932 {
933 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
934 	u64 vblank_count;
935 	unsigned int seq;
936 
937 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
938 		*vblanktime = 0;
939 		return 0;
940 	}
941 
942 	do {
943 		seq = read_seqbegin(&vblank->seqlock);
944 		vblank_count = atomic64_read(&vblank->count);
945 		*vblanktime = vblank->time;
946 	} while (read_seqretry(&vblank->seqlock, seq));
947 
948 	return vblank_count;
949 }
950 
951 /**
952  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
953  *     and the system timestamp corresponding to that vblank counter value
954  * @crtc: which counter to retrieve
955  * @vblanktime: Pointer to time to receive the vblank timestamp.
956  *
957  * Fetches the "cooked" vblank count value that represents the number of
958  * vblank events since the system was booted, including lost events due to
959  * modesetting activity. Returns corresponding system timestamp of the time
960  * of the vblank interval that corresponds to the current vblank counter value.
961  *
962  * Note that for a given vblank counter value drm_crtc_handle_vblank()
963  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
964  * provide a barrier: Any writes done before calling
965  * drm_crtc_handle_vblank() will be visible to callers of the later
966  * functions, if the vblank count is the same or a later one.
967  *
968  * See also &drm_vblank_crtc.count.
969  */
970 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
971 				   ktime_t *vblanktime)
972 {
973 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
974 					 vblanktime);
975 }
976 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
977 
978 /**
979  * drm_crtc_next_vblank_start - calculate the time of the next vblank
980  * @crtc: the crtc for which to calculate next vblank time
981  * @vblanktime: pointer to time to receive the next vblank timestamp.
982  *
983  * Calculate the expected time of the start of the next vblank period,
984  * based on time of previous vblank and frame duration
985  */
986 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
987 {
988 	unsigned int pipe = drm_crtc_index(crtc);
989 	struct drm_vblank_crtc *vblank;
990 	struct drm_display_mode *mode;
991 	u64 vblank_start;
992 
993 	if (!drm_dev_has_vblank(crtc->dev))
994 		return -EINVAL;
995 
996 	vblank = &crtc->dev->vblank[pipe];
997 	mode = &vblank->hwmode;
998 
999 	if (!vblank->framedur_ns || !vblank->linedur_ns)
1000 		return -EINVAL;
1001 
1002 	if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1003 		return -EINVAL;
1004 
1005 	vblank_start = DIV_ROUND_DOWN_ULL(
1006 			(u64)vblank->framedur_ns * mode->crtc_vblank_start,
1007 			mode->crtc_vtotal);
1008 	*vblanktime  = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1009 
1010 	return 0;
1011 }
1012 EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1013 
1014 static void send_vblank_event(struct drm_device *dev,
1015 		struct drm_pending_vblank_event *e,
1016 		u64 seq, ktime_t now)
1017 {
1018 	struct timespec64 tv;
1019 
1020 	switch (e->event.base.type) {
1021 	case DRM_EVENT_VBLANK:
1022 	case DRM_EVENT_FLIP_COMPLETE:
1023 		tv = ktime_to_timespec64(now);
1024 		e->event.vbl.sequence = seq;
1025 		/*
1026 		 * e->event is a user space structure, with hardcoded unsigned
1027 		 * 32-bit seconds/microseconds. This is safe as we always use
1028 		 * monotonic timestamps since linux-4.15
1029 		 */
1030 		e->event.vbl.tv_sec = tv.tv_sec;
1031 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1032 		break;
1033 	case DRM_EVENT_CRTC_SEQUENCE:
1034 		if (seq)
1035 			e->event.seq.sequence = seq;
1036 		e->event.seq.time_ns = ktime_to_ns(now);
1037 		break;
1038 	}
1039 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1040 	/*
1041 	 * Use the same timestamp for any associated fence signal to avoid
1042 	 * mismatch in timestamps for vsync & fence events triggered by the
1043 	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1044 	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1045 	 * for its software vsync modeling.
1046 	 */
1047 	drm_send_event_timestamp_locked(dev, &e->base, now);
1048 }
1049 
1050 /**
1051  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1052  * @crtc: the source CRTC of the vblank event
1053  * @e: the event to send
1054  *
1055  * A lot of drivers need to generate vblank events for the very next vblank
1056  * interrupt. For example when the page flip interrupt happens when the page
1057  * flip gets armed, but not when it actually executes within the next vblank
1058  * period. This helper function implements exactly the required vblank arming
1059  * behaviour.
1060  *
1061  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1062  * atomic commit must ensure that the next vblank happens at exactly the same
1063  * time as the atomic commit is committed to the hardware. This function itself
1064  * does **not** protect against the next vblank interrupt racing with either this
1065  * function call or the atomic commit operation. A possible sequence could be:
1066  *
1067  * 1. Driver commits new hardware state into vblank-synchronized registers.
1068  * 2. A vblank happens, committing the hardware state. Also the corresponding
1069  *    vblank interrupt is fired off and fully processed by the interrupt
1070  *    handler.
1071  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1072  * 4. The event is only send out for the next vblank, which is wrong.
1073  *
1074  * An equivalent race can happen when the driver calls
1075  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1076  *
1077  * The only way to make this work safely is to prevent the vblank from firing
1078  * (and the hardware from committing anything else) until the entire atomic
1079  * commit sequence has run to completion. If the hardware does not have such a
1080  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1081  * Instead drivers need to manually send out the event from their interrupt
1082  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1083  * possible race with the hardware committing the atomic update.
1084  *
1085  * Caller must hold a vblank reference for the event @e acquired by a
1086  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1087  */
1088 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1089 			       struct drm_pending_vblank_event *e)
1090 {
1091 	struct drm_device *dev = crtc->dev;
1092 	unsigned int pipe = drm_crtc_index(crtc);
1093 
1094 	assert_spin_locked(&dev->event_lock);
1095 
1096 	e->pipe = pipe;
1097 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1098 	list_add_tail(&e->base.link, &dev->vblank_event_list);
1099 }
1100 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1101 
1102 /**
1103  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1104  * @crtc: the source CRTC of the vblank event
1105  * @e: the event to send
1106  *
1107  * Updates sequence # and timestamp on event for the most recently processed
1108  * vblank, and sends it to userspace.  Caller must hold event lock.
1109  *
1110  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1111  * situation, especially to send out events for atomic commit operations.
1112  */
1113 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1114 				struct drm_pending_vblank_event *e)
1115 {
1116 	struct drm_device *dev = crtc->dev;
1117 	u64 seq;
1118 	unsigned int pipe = drm_crtc_index(crtc);
1119 	ktime_t now;
1120 
1121 	if (drm_dev_has_vblank(dev)) {
1122 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1123 	} else {
1124 		seq = 0;
1125 
1126 		now = ktime_get();
1127 	}
1128 	e->pipe = pipe;
1129 	send_vblank_event(dev, e, seq, now);
1130 }
1131 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1132 
1133 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1134 {
1135 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1136 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1137 
1138 		if (drm_WARN_ON(dev, !crtc))
1139 			return 0;
1140 
1141 		if (crtc->funcs->enable_vblank)
1142 			return crtc->funcs->enable_vblank(crtc);
1143 	}
1144 
1145 	return -EINVAL;
1146 }
1147 
1148 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1149 {
1150 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1151 	int ret = 0;
1152 
1153 	assert_spin_locked(&dev->vbl_lock);
1154 
1155 	spin_lock(&dev->vblank_time_lock);
1156 
1157 	if (!vblank->enabled) {
1158 		/*
1159 		 * Enable vblank irqs under vblank_time_lock protection.
1160 		 * All vblank count & timestamp updates are held off
1161 		 * until we are done reinitializing master counter and
1162 		 * timestamps. Filtercode in drm_handle_vblank() will
1163 		 * prevent double-accounting of same vblank interval.
1164 		 */
1165 		ret = __enable_vblank(dev, pipe);
1166 		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1167 			     pipe, ret);
1168 		if (ret) {
1169 			atomic_dec(&vblank->refcount);
1170 		} else {
1171 			drm_update_vblank_count(dev, pipe, 0);
1172 			/* drm_update_vblank_count() includes a wmb so we just
1173 			 * need to ensure that the compiler emits the write
1174 			 * to mark the vblank as enabled after the call
1175 			 * to drm_update_vblank_count().
1176 			 */
1177 			WRITE_ONCE(vblank->enabled, true);
1178 		}
1179 	}
1180 
1181 	spin_unlock(&dev->vblank_time_lock);
1182 
1183 	return ret;
1184 }
1185 
1186 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1187 {
1188 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1189 	unsigned long irqflags;
1190 	int ret = 0;
1191 
1192 	if (!drm_dev_has_vblank(dev))
1193 		return -EINVAL;
1194 
1195 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1196 		return -EINVAL;
1197 
1198 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1199 	/* Going from 0->1 means we have to enable interrupts again */
1200 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1201 		ret = drm_vblank_enable(dev, pipe);
1202 	} else {
1203 		if (!vblank->enabled) {
1204 			atomic_dec(&vblank->refcount);
1205 			ret = -EINVAL;
1206 		}
1207 	}
1208 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1209 
1210 	return ret;
1211 }
1212 
1213 /**
1214  * drm_crtc_vblank_get - get a reference count on vblank events
1215  * @crtc: which CRTC to own
1216  *
1217  * Acquire a reference count on vblank events to avoid having them disabled
1218  * while in use.
1219  *
1220  * Returns:
1221  * Zero on success or a negative error code on failure.
1222  */
1223 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1224 {
1225 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1226 }
1227 EXPORT_SYMBOL(drm_crtc_vblank_get);
1228 
1229 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1230 {
1231 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1232 
1233 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1234 		return;
1235 
1236 	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1237 		return;
1238 
1239 	/* Last user schedules interrupt disable */
1240 	if (atomic_dec_and_test(&vblank->refcount)) {
1241 		if (drm_vblank_offdelay == 0)
1242 			return;
1243 		else if (drm_vblank_offdelay < 0)
1244 			vblank_disable_fn(&vblank->disable_timer);
1245 		else if (!dev->vblank_disable_immediate)
1246 			mod_timer(&vblank->disable_timer,
1247 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1248 	}
1249 }
1250 
1251 /**
1252  * drm_crtc_vblank_put - give up ownership of vblank events
1253  * @crtc: which counter to give up
1254  *
1255  * Release ownership of a given vblank counter, turning off interrupts
1256  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1257  */
1258 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1259 {
1260 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1261 }
1262 EXPORT_SYMBOL(drm_crtc_vblank_put);
1263 
1264 /**
1265  * drm_wait_one_vblank - wait for one vblank
1266  * @dev: DRM device
1267  * @pipe: CRTC index
1268  *
1269  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1270  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1271  * due to lack of driver support or because the crtc is off.
1272  *
1273  * This is the legacy version of drm_crtc_wait_one_vblank().
1274  */
1275 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1276 {
1277 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1278 	int ret;
1279 	u64 last;
1280 
1281 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1282 		return;
1283 
1284 	ret = drm_vblank_get(dev, pipe);
1285 	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1286 		     pipe, ret))
1287 		return;
1288 
1289 	last = drm_vblank_count(dev, pipe);
1290 
1291 	ret = wait_event_timeout(vblank->queue,
1292 				 last != drm_vblank_count(dev, pipe),
1293 				 msecs_to_jiffies(100));
1294 
1295 	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1296 
1297 	drm_vblank_put(dev, pipe);
1298 }
1299 EXPORT_SYMBOL(drm_wait_one_vblank);
1300 
1301 /**
1302  * drm_crtc_wait_one_vblank - wait for one vblank
1303  * @crtc: DRM crtc
1304  *
1305  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1306  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1307  * due to lack of driver support or because the crtc is off.
1308  */
1309 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1310 {
1311 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1312 }
1313 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1314 
1315 /**
1316  * drm_crtc_vblank_off - disable vblank events on a CRTC
1317  * @crtc: CRTC in question
1318  *
1319  * Drivers can use this function to shut down the vblank interrupt handling when
1320  * disabling a crtc. This function ensures that the latest vblank frame count is
1321  * stored so that drm_vblank_on can restore it again.
1322  *
1323  * Drivers must use this function when the hardware vblank counter can get
1324  * reset, e.g. when suspending or disabling the @crtc in general.
1325  */
1326 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1327 {
1328 	struct drm_device *dev = crtc->dev;
1329 	unsigned int pipe = drm_crtc_index(crtc);
1330 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1331 	struct drm_pending_vblank_event *e, *t;
1332 	ktime_t now;
1333 	u64 seq;
1334 
1335 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1336 		return;
1337 
1338 	/*
1339 	 * Grab event_lock early to prevent vblank work from being scheduled
1340 	 * while we're in the middle of shutting down vblank interrupts
1341 	 */
1342 	spin_lock_irq(&dev->event_lock);
1343 
1344 	spin_lock(&dev->vbl_lock);
1345 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1346 		    pipe, vblank->enabled, vblank->inmodeset);
1347 
1348 	/* Avoid redundant vblank disables without previous
1349 	 * drm_crtc_vblank_on(). */
1350 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1351 		drm_vblank_disable_and_save(dev, pipe);
1352 
1353 	wake_up(&vblank->queue);
1354 
1355 	/*
1356 	 * Prevent subsequent drm_vblank_get() from re-enabling
1357 	 * the vblank interrupt by bumping the refcount.
1358 	 */
1359 	if (!vblank->inmodeset) {
1360 		atomic_inc(&vblank->refcount);
1361 		vblank->inmodeset = 1;
1362 	}
1363 	spin_unlock(&dev->vbl_lock);
1364 
1365 	/* Send any queued vblank events, lest the natives grow disquiet */
1366 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1367 
1368 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1369 		if (e->pipe != pipe)
1370 			continue;
1371 		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1372 			     "wanted %llu, current %llu\n",
1373 			     e->sequence, seq);
1374 		list_del(&e->base.link);
1375 		drm_vblank_put(dev, pipe);
1376 		send_vblank_event(dev, e, seq, now);
1377 	}
1378 
1379 	/* Cancel any leftover pending vblank work */
1380 	drm_vblank_cancel_pending_works(vblank);
1381 
1382 	spin_unlock_irq(&dev->event_lock);
1383 
1384 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1385 	 * calling drm_calc_timestamping_constants(). */
1386 	vblank->hwmode.crtc_clock = 0;
1387 
1388 	/* Wait for any vblank work that's still executing to finish */
1389 	drm_vblank_flush_worker(vblank);
1390 }
1391 EXPORT_SYMBOL(drm_crtc_vblank_off);
1392 
1393 /**
1394  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1395  * @crtc: CRTC in question
1396  *
1397  * Drivers can use this function to reset the vblank state to off at load time.
1398  * Drivers should use this together with the drm_crtc_vblank_off() and
1399  * drm_crtc_vblank_on() functions. The difference compared to
1400  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1401  * and hence doesn't need to call any driver hooks.
1402  *
1403  * This is useful for recovering driver state e.g. on driver load, or on resume.
1404  */
1405 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1406 {
1407 	struct drm_device *dev = crtc->dev;
1408 	unsigned int pipe = drm_crtc_index(crtc);
1409 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1410 
1411 	spin_lock_irq(&dev->vbl_lock);
1412 	/*
1413 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1414 	 * interrupt by bumping the refcount.
1415 	 */
1416 	if (!vblank->inmodeset) {
1417 		atomic_inc(&vblank->refcount);
1418 		vblank->inmodeset = 1;
1419 	}
1420 	spin_unlock_irq(&dev->vbl_lock);
1421 
1422 	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1423 	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1424 }
1425 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1426 
1427 /**
1428  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1429  * @crtc: CRTC in question
1430  * @max_vblank_count: max hardware vblank counter value
1431  *
1432  * Update the maximum hardware vblank counter value for @crtc
1433  * at runtime. Useful for hardware where the operation of the
1434  * hardware vblank counter depends on the currently active
1435  * display configuration.
1436  *
1437  * For example, if the hardware vblank counter does not work
1438  * when a specific connector is active the maximum can be set
1439  * to zero. And when that specific connector isn't active the
1440  * maximum can again be set to the appropriate non-zero value.
1441  *
1442  * If used, must be called before drm_vblank_on().
1443  */
1444 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1445 				   u32 max_vblank_count)
1446 {
1447 	struct drm_device *dev = crtc->dev;
1448 	unsigned int pipe = drm_crtc_index(crtc);
1449 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1450 
1451 	drm_WARN_ON(dev, dev->max_vblank_count);
1452 	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1453 
1454 	vblank->max_vblank_count = max_vblank_count;
1455 }
1456 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1457 
1458 /**
1459  * drm_crtc_vblank_on - enable vblank events on a CRTC
1460  * @crtc: CRTC in question
1461  *
1462  * This functions restores the vblank interrupt state captured with
1463  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1464  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1465  * unbalanced and so can also be unconditionally called in driver load code to
1466  * reflect the current hardware state of the crtc.
1467  */
1468 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1469 {
1470 	struct drm_device *dev = crtc->dev;
1471 	unsigned int pipe = drm_crtc_index(crtc);
1472 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1473 
1474 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1475 		return;
1476 
1477 	spin_lock_irq(&dev->vbl_lock);
1478 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1479 		    pipe, vblank->enabled, vblank->inmodeset);
1480 
1481 	/* Drop our private "prevent drm_vblank_get" refcount */
1482 	if (vblank->inmodeset) {
1483 		atomic_dec(&vblank->refcount);
1484 		vblank->inmodeset = 0;
1485 	}
1486 
1487 	drm_reset_vblank_timestamp(dev, pipe);
1488 
1489 	/*
1490 	 * re-enable interrupts if there are users left, or the
1491 	 * user wishes vblank interrupts to be enabled all the time.
1492 	 */
1493 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1494 		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1495 	spin_unlock_irq(&dev->vbl_lock);
1496 }
1497 EXPORT_SYMBOL(drm_crtc_vblank_on);
1498 
1499 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1500 {
1501 	ktime_t t_vblank;
1502 	struct drm_vblank_crtc *vblank;
1503 	int framedur_ns;
1504 	u64 diff_ns;
1505 	u32 cur_vblank, diff = 1;
1506 	int count = DRM_TIMESTAMP_MAXRETRIES;
1507 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1508 
1509 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1510 		return;
1511 
1512 	assert_spin_locked(&dev->vbl_lock);
1513 	assert_spin_locked(&dev->vblank_time_lock);
1514 
1515 	vblank = &dev->vblank[pipe];
1516 	drm_WARN_ONCE(dev,
1517 		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1518 		      "Cannot compute missed vblanks without frame duration\n");
1519 	framedur_ns = vblank->framedur_ns;
1520 
1521 	do {
1522 		cur_vblank = __get_vblank_counter(dev, pipe);
1523 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1524 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1525 
1526 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1527 	if (framedur_ns)
1528 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1529 
1530 
1531 	drm_dbg_vbl(dev,
1532 		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1533 		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1534 	vblank->last = (cur_vblank - diff) & max_vblank_count;
1535 }
1536 
1537 /**
1538  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1539  * @crtc: CRTC in question
1540  *
1541  * Power manamement features can cause frame counter resets between vblank
1542  * disable and enable. Drivers can use this function in their
1543  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1544  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1545  * vblank counter.
1546  *
1547  * Note that drivers must have race-free high-precision timestamping support,
1548  * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1549  * &drm_driver.vblank_disable_immediate must be set to indicate the
1550  * time-stamping functions are race-free against vblank hardware counter
1551  * increments.
1552  */
1553 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1554 {
1555 	WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
1556 	WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
1557 
1558 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1559 }
1560 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1561 
1562 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1563 				  u64 req_seq,
1564 				  union drm_wait_vblank *vblwait,
1565 				  struct drm_file *file_priv)
1566 {
1567 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1568 	struct drm_pending_vblank_event *e;
1569 	ktime_t now;
1570 	u64 seq;
1571 	int ret;
1572 
1573 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1574 	if (e == NULL) {
1575 		ret = -ENOMEM;
1576 		goto err_put;
1577 	}
1578 
1579 	e->pipe = pipe;
1580 	e->event.base.type = DRM_EVENT_VBLANK;
1581 	e->event.base.length = sizeof(e->event.vbl);
1582 	e->event.vbl.user_data = vblwait->request.signal;
1583 	e->event.vbl.crtc_id = 0;
1584 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1585 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1586 
1587 		if (crtc)
1588 			e->event.vbl.crtc_id = crtc->base.id;
1589 	}
1590 
1591 	spin_lock_irq(&dev->event_lock);
1592 
1593 	/*
1594 	 * drm_crtc_vblank_off() might have been called after we called
1595 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1596 	 * vblank disable, so no need for further locking.  The reference from
1597 	 * drm_vblank_get() protects against vblank disable from another source.
1598 	 */
1599 	if (!READ_ONCE(vblank->enabled)) {
1600 		ret = -EINVAL;
1601 		goto err_unlock;
1602 	}
1603 
1604 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1605 					    &e->event.base);
1606 
1607 	if (ret)
1608 		goto err_unlock;
1609 
1610 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1611 
1612 	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1613 		     req_seq, seq, pipe);
1614 
1615 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1616 
1617 	e->sequence = req_seq;
1618 	if (drm_vblank_passed(seq, req_seq)) {
1619 		drm_vblank_put(dev, pipe);
1620 		send_vblank_event(dev, e, seq, now);
1621 		vblwait->reply.sequence = seq;
1622 	} else {
1623 		/* drm_handle_vblank_events will call drm_vblank_put */
1624 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1625 		vblwait->reply.sequence = req_seq;
1626 	}
1627 
1628 	spin_unlock_irq(&dev->event_lock);
1629 
1630 	return 0;
1631 
1632 err_unlock:
1633 	spin_unlock_irq(&dev->event_lock);
1634 	kfree(e);
1635 err_put:
1636 	drm_vblank_put(dev, pipe);
1637 	return ret;
1638 }
1639 
1640 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1641 {
1642 	if (vblwait->request.sequence)
1643 		return false;
1644 
1645 	return _DRM_VBLANK_RELATIVE ==
1646 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1647 					  _DRM_VBLANK_EVENT |
1648 					  _DRM_VBLANK_NEXTONMISS));
1649 }
1650 
1651 /*
1652  * Widen a 32-bit param to 64-bits.
1653  *
1654  * \param narrow 32-bit value (missing upper 32 bits)
1655  * \param near 64-bit value that should be 'close' to near
1656  *
1657  * This function returns a 64-bit value using the lower 32-bits from
1658  * 'narrow' and constructing the upper 32-bits so that the result is
1659  * as close as possible to 'near'.
1660  */
1661 
1662 static u64 widen_32_to_64(u32 narrow, u64 near)
1663 {
1664 	return near + (s32) (narrow - near);
1665 }
1666 
1667 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1668 				  struct drm_wait_vblank_reply *reply)
1669 {
1670 	ktime_t now;
1671 	struct timespec64 ts;
1672 
1673 	/*
1674 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1675 	 * to store the seconds. This is safe as we always use monotonic
1676 	 * timestamps since linux-4.15.
1677 	 */
1678 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1679 	ts = ktime_to_timespec64(now);
1680 	reply->tval_sec = (u32)ts.tv_sec;
1681 	reply->tval_usec = ts.tv_nsec / 1000;
1682 }
1683 
1684 static bool drm_wait_vblank_supported(struct drm_device *dev)
1685 {
1686 	return drm_dev_has_vblank(dev);
1687 }
1688 
1689 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1690 			  struct drm_file *file_priv)
1691 {
1692 	struct drm_crtc *crtc;
1693 	struct drm_vblank_crtc *vblank;
1694 	union drm_wait_vblank *vblwait = data;
1695 	int ret;
1696 	u64 req_seq, seq;
1697 	unsigned int pipe_index;
1698 	unsigned int flags, pipe, high_pipe;
1699 
1700 	if (!drm_wait_vblank_supported(dev))
1701 		return -EOPNOTSUPP;
1702 
1703 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1704 		return -EINVAL;
1705 
1706 	if (vblwait->request.type &
1707 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1708 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1709 		drm_dbg_core(dev,
1710 			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1711 			     vblwait->request.type,
1712 			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1713 			      _DRM_VBLANK_HIGH_CRTC_MASK));
1714 		return -EINVAL;
1715 	}
1716 
1717 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1718 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1719 	if (high_pipe)
1720 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1721 	else
1722 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1723 
1724 	/* Convert lease-relative crtc index into global crtc index */
1725 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1726 		pipe = 0;
1727 		drm_for_each_crtc(crtc, dev) {
1728 			if (drm_lease_held(file_priv, crtc->base.id)) {
1729 				if (pipe_index == 0)
1730 					break;
1731 				pipe_index--;
1732 			}
1733 			pipe++;
1734 		}
1735 	} else {
1736 		pipe = pipe_index;
1737 	}
1738 
1739 	if (pipe >= dev->num_crtcs)
1740 		return -EINVAL;
1741 
1742 	vblank = &dev->vblank[pipe];
1743 
1744 	/* If the counter is currently enabled and accurate, short-circuit
1745 	 * queries to return the cached timestamp of the last vblank.
1746 	 */
1747 	if (dev->vblank_disable_immediate &&
1748 	    drm_wait_vblank_is_query(vblwait) &&
1749 	    READ_ONCE(vblank->enabled)) {
1750 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1751 		return 0;
1752 	}
1753 
1754 	ret = drm_vblank_get(dev, pipe);
1755 	if (ret) {
1756 		drm_dbg_core(dev,
1757 			     "crtc %d failed to acquire vblank counter, %d\n",
1758 			     pipe, ret);
1759 		return ret;
1760 	}
1761 	seq = drm_vblank_count(dev, pipe);
1762 
1763 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1764 	case _DRM_VBLANK_RELATIVE:
1765 		req_seq = seq + vblwait->request.sequence;
1766 		vblwait->request.sequence = req_seq;
1767 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1768 		break;
1769 	case _DRM_VBLANK_ABSOLUTE:
1770 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1771 		break;
1772 	default:
1773 		ret = -EINVAL;
1774 		goto done;
1775 	}
1776 
1777 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1778 	    drm_vblank_passed(seq, req_seq)) {
1779 		req_seq = seq + 1;
1780 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1781 		vblwait->request.sequence = req_seq;
1782 	}
1783 
1784 	if (flags & _DRM_VBLANK_EVENT) {
1785 		/* must hold on to the vblank ref until the event fires
1786 		 * drm_vblank_put will be called asynchronously
1787 		 */
1788 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1789 	}
1790 
1791 	if (req_seq != seq) {
1792 		int wait;
1793 
1794 		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1795 			     req_seq, pipe);
1796 		wait = wait_event_interruptible_timeout(vblank->queue,
1797 			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1798 				      !READ_ONCE(vblank->enabled),
1799 			msecs_to_jiffies(3000));
1800 
1801 		switch (wait) {
1802 		case 0:
1803 			/* timeout */
1804 			ret = -EBUSY;
1805 			break;
1806 		case -ERESTARTSYS:
1807 			/* interrupted by signal */
1808 			ret = -EINTR;
1809 			break;
1810 		default:
1811 			ret = 0;
1812 			break;
1813 		}
1814 	}
1815 
1816 	if (ret != -EINTR) {
1817 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1818 
1819 		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1820 			     pipe, vblwait->reply.sequence);
1821 	} else {
1822 		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1823 			     pipe);
1824 	}
1825 
1826 done:
1827 	drm_vblank_put(dev, pipe);
1828 	return ret;
1829 }
1830 
1831 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1832 {
1833 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1834 	bool high_prec = false;
1835 	struct drm_pending_vblank_event *e, *t;
1836 	ktime_t now;
1837 	u64 seq;
1838 
1839 	assert_spin_locked(&dev->event_lock);
1840 
1841 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1842 
1843 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1844 		if (e->pipe != pipe)
1845 			continue;
1846 		if (!drm_vblank_passed(seq, e->sequence))
1847 			continue;
1848 
1849 		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1850 			     e->sequence, seq);
1851 
1852 		list_del(&e->base.link);
1853 		drm_vblank_put(dev, pipe);
1854 		send_vblank_event(dev, e, seq, now);
1855 	}
1856 
1857 	if (crtc && crtc->funcs->get_vblank_timestamp)
1858 		high_prec = true;
1859 
1860 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1861 }
1862 
1863 /**
1864  * drm_handle_vblank - handle a vblank event
1865  * @dev: DRM device
1866  * @pipe: index of CRTC where this event occurred
1867  *
1868  * Drivers should call this routine in their vblank interrupt handlers to
1869  * update the vblank counter and send any signals that may be pending.
1870  *
1871  * This is the legacy version of drm_crtc_handle_vblank().
1872  */
1873 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1874 {
1875 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1876 	unsigned long irqflags;
1877 	bool disable_irq;
1878 
1879 	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1880 		return false;
1881 
1882 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1883 		return false;
1884 
1885 	spin_lock_irqsave(&dev->event_lock, irqflags);
1886 
1887 	/* Need timestamp lock to prevent concurrent execution with
1888 	 * vblank enable/disable, as this would cause inconsistent
1889 	 * or corrupted timestamps and vblank counts.
1890 	 */
1891 	spin_lock(&dev->vblank_time_lock);
1892 
1893 	/* Vblank irq handling disabled. Nothing to do. */
1894 	if (!vblank->enabled) {
1895 		spin_unlock(&dev->vblank_time_lock);
1896 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1897 		return false;
1898 	}
1899 
1900 	drm_update_vblank_count(dev, pipe, true);
1901 
1902 	spin_unlock(&dev->vblank_time_lock);
1903 
1904 	wake_up(&vblank->queue);
1905 
1906 	/* With instant-off, we defer disabling the interrupt until after
1907 	 * we finish processing the following vblank after all events have
1908 	 * been signaled. The disable has to be last (after
1909 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1910 	 */
1911 	disable_irq = (dev->vblank_disable_immediate &&
1912 		       drm_vblank_offdelay > 0 &&
1913 		       !atomic_read(&vblank->refcount));
1914 
1915 	drm_handle_vblank_events(dev, pipe);
1916 	drm_handle_vblank_works(vblank);
1917 
1918 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1919 
1920 	if (disable_irq)
1921 		vblank_disable_fn(&vblank->disable_timer);
1922 
1923 	return true;
1924 }
1925 EXPORT_SYMBOL(drm_handle_vblank);
1926 
1927 /**
1928  * drm_crtc_handle_vblank - handle a vblank event
1929  * @crtc: where this event occurred
1930  *
1931  * Drivers should call this routine in their vblank interrupt handlers to
1932  * update the vblank counter and send any signals that may be pending.
1933  *
1934  * This is the native KMS version of drm_handle_vblank().
1935  *
1936  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1937  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1938  * provide a barrier: Any writes done before calling
1939  * drm_crtc_handle_vblank() will be visible to callers of the later
1940  * functions, if the vblank count is the same or a later one.
1941  *
1942  * See also &drm_vblank_crtc.count.
1943  *
1944  * Returns:
1945  * True if the event was successfully handled, false on failure.
1946  */
1947 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1948 {
1949 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1950 }
1951 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1952 
1953 /*
1954  * Get crtc VBLANK count.
1955  *
1956  * \param dev DRM device
1957  * \param data user argument, pointing to a drm_crtc_get_sequence structure.
1958  * \param file_priv drm file private for the user's open file descriptor
1959  */
1960 
1961 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1962 				struct drm_file *file_priv)
1963 {
1964 	struct drm_crtc *crtc;
1965 	struct drm_vblank_crtc *vblank;
1966 	int pipe;
1967 	struct drm_crtc_get_sequence *get_seq = data;
1968 	ktime_t now;
1969 	bool vblank_enabled;
1970 	int ret;
1971 
1972 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1973 		return -EOPNOTSUPP;
1974 
1975 	if (!drm_dev_has_vblank(dev))
1976 		return -EOPNOTSUPP;
1977 
1978 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1979 	if (!crtc)
1980 		return -ENOENT;
1981 
1982 	pipe = drm_crtc_index(crtc);
1983 
1984 	vblank = &dev->vblank[pipe];
1985 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1986 
1987 	if (!vblank_enabled) {
1988 		ret = drm_crtc_vblank_get(crtc);
1989 		if (ret) {
1990 			drm_dbg_core(dev,
1991 				     "crtc %d failed to acquire vblank counter, %d\n",
1992 				     pipe, ret);
1993 			return ret;
1994 		}
1995 	}
1996 	drm_modeset_lock(&crtc->mutex, NULL);
1997 	if (crtc->state)
1998 		get_seq->active = crtc->state->enable;
1999 	else
2000 		get_seq->active = crtc->enabled;
2001 	drm_modeset_unlock(&crtc->mutex);
2002 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2003 	get_seq->sequence_ns = ktime_to_ns(now);
2004 	if (!vblank_enabled)
2005 		drm_crtc_vblank_put(crtc);
2006 	return 0;
2007 }
2008 
2009 /*
2010  * Queue a event for VBLANK sequence
2011  *
2012  * \param dev DRM device
2013  * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2014  * \param file_priv drm file private for the user's open file descriptor
2015  */
2016 
2017 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2018 				  struct drm_file *file_priv)
2019 {
2020 	struct drm_crtc *crtc;
2021 	struct drm_vblank_crtc *vblank;
2022 	int pipe;
2023 	struct drm_crtc_queue_sequence *queue_seq = data;
2024 	ktime_t now;
2025 	struct drm_pending_vblank_event *e;
2026 	u32 flags;
2027 	u64 seq;
2028 	u64 req_seq;
2029 	int ret;
2030 
2031 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2032 		return -EOPNOTSUPP;
2033 
2034 	if (!drm_dev_has_vblank(dev))
2035 		return -EOPNOTSUPP;
2036 
2037 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2038 	if (!crtc)
2039 		return -ENOENT;
2040 
2041 	flags = queue_seq->flags;
2042 	/* Check valid flag bits */
2043 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2044 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2045 		return -EINVAL;
2046 
2047 	pipe = drm_crtc_index(crtc);
2048 
2049 	vblank = &dev->vblank[pipe];
2050 
2051 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2052 	if (e == NULL)
2053 		return -ENOMEM;
2054 
2055 	ret = drm_crtc_vblank_get(crtc);
2056 	if (ret) {
2057 		drm_dbg_core(dev,
2058 			     "crtc %d failed to acquire vblank counter, %d\n",
2059 			     pipe, ret);
2060 		goto err_free;
2061 	}
2062 
2063 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2064 	req_seq = queue_seq->sequence;
2065 
2066 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2067 		req_seq += seq;
2068 
2069 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2070 		req_seq = seq + 1;
2071 
2072 	e->pipe = pipe;
2073 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2074 	e->event.base.length = sizeof(e->event.seq);
2075 	e->event.seq.user_data = queue_seq->user_data;
2076 
2077 	spin_lock_irq(&dev->event_lock);
2078 
2079 	/*
2080 	 * drm_crtc_vblank_off() might have been called after we called
2081 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2082 	 * vblank disable, so no need for further locking.  The reference from
2083 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2084 	 */
2085 	if (!READ_ONCE(vblank->enabled)) {
2086 		ret = -EINVAL;
2087 		goto err_unlock;
2088 	}
2089 
2090 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2091 					    &e->event.base);
2092 
2093 	if (ret)
2094 		goto err_unlock;
2095 
2096 	e->sequence = req_seq;
2097 
2098 	if (drm_vblank_passed(seq, req_seq)) {
2099 		drm_crtc_vblank_put(crtc);
2100 		send_vblank_event(dev, e, seq, now);
2101 		queue_seq->sequence = seq;
2102 	} else {
2103 		/* drm_handle_vblank_events will call drm_vblank_put */
2104 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2105 		queue_seq->sequence = req_seq;
2106 	}
2107 
2108 	spin_unlock_irq(&dev->event_lock);
2109 	return 0;
2110 
2111 err_unlock:
2112 	spin_unlock_irq(&dev->event_lock);
2113 	drm_crtc_vblank_put(crtc);
2114 err_free:
2115 	kfree(e);
2116 	return ret;
2117 }
2118 
2119