xref: /linux/drivers/gpu/drm/drm_vblank.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/moduleparam.h>
29 
30 #include <drm/drm_crtc.h>
31 #include <drm/drm_drv.h>
32 #include <drm/drm_framebuffer.h>
33 #include <drm/drm_print.h>
34 #include <drm/drm_vblank.h>
35 
36 #include "drm_internal.h"
37 #include "drm_trace.h"
38 
39 /**
40  * DOC: vblank handling
41  *
42  * Vertical blanking plays a major role in graphics rendering. To achieve
43  * tear-free display, users must synchronize page flips and/or rendering to
44  * vertical blanking. The DRM API offers ioctls to perform page flips
45  * synchronized to vertical blanking and wait for vertical blanking.
46  *
47  * The DRM core handles most of the vertical blanking management logic, which
48  * involves filtering out spurious interrupts, keeping race-free blanking
49  * counters, coping with counter wrap-around and resets and keeping use counts.
50  * It relies on the driver to generate vertical blanking interrupts and
51  * optionally provide a hardware vertical blanking counter.
52  *
53  * Drivers must initialize the vertical blanking handling core with a call to
54  * drm_vblank_init(). Minimally, a driver needs to implement
55  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
56  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
57  * support.
58  *
59  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
60  * themselves (for instance to handle page flipping operations).  The DRM core
61  * maintains a vertical blanking use count to ensure that the interrupts are not
62  * disabled while a user still needs them. To increment the use count, drivers
63  * call drm_crtc_vblank_get() and release the vblank reference again with
64  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
65  * guaranteed to be enabled.
66  *
67  * On many hardware disabling the vblank interrupt cannot be done in a race-free
68  * manner, see &drm_driver.vblank_disable_immediate and
69  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
70  * vblanks after a timer has expired, which can be configured through the
71  * ``vblankoffdelay`` module parameter.
72  */
73 
74 /* Retry timestamp calculation up to 3 times to satisfy
75  * drm_timestamp_precision before giving up.
76  */
77 #define DRM_TIMESTAMP_MAXRETRIES 3
78 
79 /* Threshold in nanoseconds for detection of redundant
80  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
81  */
82 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
83 
84 static bool
85 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
86 			  ktime_t *tvblank, bool in_vblank_irq);
87 
88 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
89 
90 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
91 
92 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
93 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
94 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
95 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
96 
97 static void store_vblank(struct drm_device *dev, unsigned int pipe,
98 			 u32 vblank_count_inc,
99 			 ktime_t t_vblank, u32 last)
100 {
101 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
102 
103 	assert_spin_locked(&dev->vblank_time_lock);
104 
105 	vblank->last = last;
106 
107 	write_seqlock(&vblank->seqlock);
108 	vblank->time = t_vblank;
109 	atomic64_add(vblank_count_inc, &vblank->count);
110 	write_sequnlock(&vblank->seqlock);
111 }
112 
113 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
114 {
115 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
116 
117 	return vblank->max_vblank_count ?: dev->max_vblank_count;
118 }
119 
120 /*
121  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
122  * if there is no useable hardware frame counter available.
123  */
124 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
125 {
126 	WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
127 	return 0;
128 }
129 
130 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
131 {
132 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
133 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
134 
135 		if (WARN_ON(!crtc))
136 			return 0;
137 
138 		if (crtc->funcs->get_vblank_counter)
139 			return crtc->funcs->get_vblank_counter(crtc);
140 	}
141 
142 	if (dev->driver->get_vblank_counter)
143 		return dev->driver->get_vblank_counter(dev, pipe);
144 
145 	return drm_vblank_no_hw_counter(dev, pipe);
146 }
147 
148 /*
149  * Reset the stored timestamp for the current vblank count to correspond
150  * to the last vblank occurred.
151  *
152  * Only to be called from drm_crtc_vblank_on().
153  *
154  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
155  * device vblank fields.
156  */
157 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
158 {
159 	u32 cur_vblank;
160 	bool rc;
161 	ktime_t t_vblank;
162 	int count = DRM_TIMESTAMP_MAXRETRIES;
163 
164 	spin_lock(&dev->vblank_time_lock);
165 
166 	/*
167 	 * sample the current counter to avoid random jumps
168 	 * when drm_vblank_enable() applies the diff
169 	 */
170 	do {
171 		cur_vblank = __get_vblank_counter(dev, pipe);
172 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
173 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
174 
175 	/*
176 	 * Only reinitialize corresponding vblank timestamp if high-precision query
177 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
178 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
179 	 */
180 	if (!rc)
181 		t_vblank = 0;
182 
183 	/*
184 	 * +1 to make sure user will never see the same
185 	 * vblank counter value before and after a modeset
186 	 */
187 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
188 
189 	spin_unlock(&dev->vblank_time_lock);
190 }
191 
192 /*
193  * Call back into the driver to update the appropriate vblank counter
194  * (specified by @pipe).  Deal with wraparound, if it occurred, and
195  * update the last read value so we can deal with wraparound on the next
196  * call if necessary.
197  *
198  * Only necessary when going from off->on, to account for frames we
199  * didn't get an interrupt for.
200  *
201  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
202  * device vblank fields.
203  */
204 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
205 				    bool in_vblank_irq)
206 {
207 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
208 	u32 cur_vblank, diff;
209 	bool rc;
210 	ktime_t t_vblank;
211 	int count = DRM_TIMESTAMP_MAXRETRIES;
212 	int framedur_ns = vblank->framedur_ns;
213 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
214 
215 	/*
216 	 * Interrupts were disabled prior to this call, so deal with counter
217 	 * wrap if needed.
218 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
219 	 * here if the register is small or we had vblank interrupts off for
220 	 * a long time.
221 	 *
222 	 * We repeat the hardware vblank counter & timestamp query until
223 	 * we get consistent results. This to prevent races between gpu
224 	 * updating its hardware counter while we are retrieving the
225 	 * corresponding vblank timestamp.
226 	 */
227 	do {
228 		cur_vblank = __get_vblank_counter(dev, pipe);
229 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
230 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
231 
232 	if (max_vblank_count) {
233 		/* trust the hw counter when it's around */
234 		diff = (cur_vblank - vblank->last) & max_vblank_count;
235 	} else if (rc && framedur_ns) {
236 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
237 
238 		/*
239 		 * Figure out how many vblanks we've missed based
240 		 * on the difference in the timestamps and the
241 		 * frame/field duration.
242 		 */
243 
244 		DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
245 			      " diff_ns = %lld, framedur_ns = %d)\n",
246 			      pipe, (long long) diff_ns, framedur_ns);
247 
248 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
249 
250 		if (diff == 0 && in_vblank_irq)
251 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
252 				      pipe);
253 	} else {
254 		/* some kind of default for drivers w/o accurate vbl timestamping */
255 		diff = in_vblank_irq ? 1 : 0;
256 	}
257 
258 	/*
259 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
260 	 * interval? If so then vblank irqs keep running and it will likely
261 	 * happen that the hardware vblank counter is not trustworthy as it
262 	 * might reset at some point in that interval and vblank timestamps
263 	 * are not trustworthy either in that interval. Iow. this can result
264 	 * in a bogus diff >> 1 which must be avoided as it would cause
265 	 * random large forward jumps of the software vblank counter.
266 	 */
267 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
268 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
269 			      " due to pre-modeset.\n", pipe, diff);
270 		diff = 1;
271 	}
272 
273 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
274 		      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
275 		      pipe, atomic64_read(&vblank->count), diff,
276 		      cur_vblank, vblank->last);
277 
278 	if (diff == 0) {
279 		WARN_ON_ONCE(cur_vblank != vblank->last);
280 		return;
281 	}
282 
283 	/*
284 	 * Only reinitialize corresponding vblank timestamp if high-precision query
285 	 * available and didn't fail, or we were called from the vblank interrupt.
286 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
287 	 * for now, to mark the vblanktimestamp as invalid.
288 	 */
289 	if (!rc && !in_vblank_irq)
290 		t_vblank = 0;
291 
292 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
293 }
294 
295 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
296 {
297 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
298 	u64 count;
299 
300 	if (WARN_ON(pipe >= dev->num_crtcs))
301 		return 0;
302 
303 	count = atomic64_read(&vblank->count);
304 
305 	/*
306 	 * This read barrier corresponds to the implicit write barrier of the
307 	 * write seqlock in store_vblank(). Note that this is the only place
308 	 * where we need an explicit barrier, since all other access goes
309 	 * through drm_vblank_count_and_time(), which already has the required
310 	 * read barrier curtesy of the read seqlock.
311 	 */
312 	smp_rmb();
313 
314 	return count;
315 }
316 
317 /**
318  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
319  * @crtc: which counter to retrieve
320  *
321  * This function is similar to drm_crtc_vblank_count() but this function
322  * interpolates to handle a race with vblank interrupts using the high precision
323  * timestamping support.
324  *
325  * This is mostly useful for hardware that can obtain the scanout position, but
326  * doesn't have a hardware frame counter.
327  */
328 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
329 {
330 	struct drm_device *dev = crtc->dev;
331 	unsigned int pipe = drm_crtc_index(crtc);
332 	u64 vblank;
333 	unsigned long flags;
334 
335 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
336 		  "This function requires support for accurate vblank timestamps.");
337 
338 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
339 
340 	drm_update_vblank_count(dev, pipe, false);
341 	vblank = drm_vblank_count(dev, pipe);
342 
343 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
344 
345 	return vblank;
346 }
347 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
348 
349 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
350 {
351 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
352 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
353 
354 		if (WARN_ON(!crtc))
355 			return;
356 
357 		if (crtc->funcs->disable_vblank) {
358 			crtc->funcs->disable_vblank(crtc);
359 			return;
360 		}
361 	}
362 
363 	dev->driver->disable_vblank(dev, pipe);
364 }
365 
366 /*
367  * Disable vblank irq's on crtc, make sure that last vblank count
368  * of hardware and corresponding consistent software vblank counter
369  * are preserved, even if there are any spurious vblank irq's after
370  * disable.
371  */
372 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
373 {
374 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
375 	unsigned long irqflags;
376 
377 	assert_spin_locked(&dev->vbl_lock);
378 
379 	/* Prevent vblank irq processing while disabling vblank irqs,
380 	 * so no updates of timestamps or count can happen after we've
381 	 * disabled. Needed to prevent races in case of delayed irq's.
382 	 */
383 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
384 
385 	/*
386 	 * Update vblank count and disable vblank interrupts only if the
387 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
388 	 * operation in atomic context with the hardware potentially runtime
389 	 * suspended.
390 	 */
391 	if (!vblank->enabled)
392 		goto out;
393 
394 	/*
395 	 * Update the count and timestamp to maintain the
396 	 * appearance that the counter has been ticking all along until
397 	 * this time. This makes the count account for the entire time
398 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
399 	 */
400 	drm_update_vblank_count(dev, pipe, false);
401 	__disable_vblank(dev, pipe);
402 	vblank->enabled = false;
403 
404 out:
405 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
406 }
407 
408 static void vblank_disable_fn(struct timer_list *t)
409 {
410 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
411 	struct drm_device *dev = vblank->dev;
412 	unsigned int pipe = vblank->pipe;
413 	unsigned long irqflags;
414 
415 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
416 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
417 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
418 		drm_vblank_disable_and_save(dev, pipe);
419 	}
420 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
421 }
422 
423 void drm_vblank_cleanup(struct drm_device *dev)
424 {
425 	unsigned int pipe;
426 
427 	/* Bail if the driver didn't call drm_vblank_init() */
428 	if (dev->num_crtcs == 0)
429 		return;
430 
431 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
432 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
433 
434 		WARN_ON(READ_ONCE(vblank->enabled) &&
435 			drm_core_check_feature(dev, DRIVER_MODESET));
436 
437 		del_timer_sync(&vblank->disable_timer);
438 	}
439 
440 	kfree(dev->vblank);
441 
442 	dev->num_crtcs = 0;
443 }
444 
445 /**
446  * drm_vblank_init - initialize vblank support
447  * @dev: DRM device
448  * @num_crtcs: number of CRTCs supported by @dev
449  *
450  * This function initializes vblank support for @num_crtcs display pipelines.
451  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
452  * drivers with a &drm_driver.release callback.
453  *
454  * Returns:
455  * Zero on success or a negative error code on failure.
456  */
457 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
458 {
459 	int ret = -ENOMEM;
460 	unsigned int i;
461 
462 	spin_lock_init(&dev->vbl_lock);
463 	spin_lock_init(&dev->vblank_time_lock);
464 
465 	dev->num_crtcs = num_crtcs;
466 
467 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
468 	if (!dev->vblank)
469 		goto err;
470 
471 	for (i = 0; i < num_crtcs; i++) {
472 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
473 
474 		vblank->dev = dev;
475 		vblank->pipe = i;
476 		init_waitqueue_head(&vblank->queue);
477 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
478 		seqlock_init(&vblank->seqlock);
479 	}
480 
481 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
482 
483 	/* Driver specific high-precision vblank timestamping supported? */
484 	if (dev->driver->get_vblank_timestamp)
485 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
486 	else
487 		DRM_INFO("No driver support for vblank timestamp query.\n");
488 
489 	/* Must have precise timestamping for reliable vblank instant disable */
490 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
491 		dev->vblank_disable_immediate = false;
492 		DRM_INFO("Setting vblank_disable_immediate to false because "
493 			 "get_vblank_timestamp == NULL\n");
494 	}
495 
496 	return 0;
497 
498 err:
499 	dev->num_crtcs = 0;
500 	return ret;
501 }
502 EXPORT_SYMBOL(drm_vblank_init);
503 
504 /**
505  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
506  * @crtc: which CRTC's vblank waitqueue to retrieve
507  *
508  * This function returns a pointer to the vblank waitqueue for the CRTC.
509  * Drivers can use this to implement vblank waits using wait_event() and related
510  * functions.
511  */
512 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
513 {
514 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
515 }
516 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
517 
518 
519 /**
520  * drm_calc_timestamping_constants - calculate vblank timestamp constants
521  * @crtc: drm_crtc whose timestamp constants should be updated.
522  * @mode: display mode containing the scanout timings
523  *
524  * Calculate and store various constants which are later needed by vblank and
525  * swap-completion timestamping, e.g, by
526  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
527  * scanout timing, so they take things like panel scaling or other adjustments
528  * into account.
529  */
530 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
531 				     const struct drm_display_mode *mode)
532 {
533 	struct drm_device *dev = crtc->dev;
534 	unsigned int pipe = drm_crtc_index(crtc);
535 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
536 	int linedur_ns = 0, framedur_ns = 0;
537 	int dotclock = mode->crtc_clock;
538 
539 	if (!dev->num_crtcs)
540 		return;
541 
542 	if (WARN_ON(pipe >= dev->num_crtcs))
543 		return;
544 
545 	/* Valid dotclock? */
546 	if (dotclock > 0) {
547 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
548 
549 		/*
550 		 * Convert scanline length in pixels and video
551 		 * dot clock to line duration and frame duration
552 		 * in nanoseconds:
553 		 */
554 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
555 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
556 
557 		/*
558 		 * Fields of interlaced scanout modes are only half a frame duration.
559 		 */
560 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
561 			framedur_ns /= 2;
562 	} else
563 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
564 			  crtc->base.id);
565 
566 	vblank->linedur_ns  = linedur_ns;
567 	vblank->framedur_ns = framedur_ns;
568 	vblank->hwmode = *mode;
569 
570 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
571 		  crtc->base.id, mode->crtc_htotal,
572 		  mode->crtc_vtotal, mode->crtc_vdisplay);
573 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
574 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
575 }
576 EXPORT_SYMBOL(drm_calc_timestamping_constants);
577 
578 /**
579  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
580  * @dev: DRM device
581  * @pipe: index of CRTC whose vblank timestamp to retrieve
582  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
583  *             On return contains true maximum error of timestamp
584  * @vblank_time: Pointer to time which should receive the timestamp
585  * @in_vblank_irq:
586  *     True when called from drm_crtc_handle_vblank().  Some drivers
587  *     need to apply some workarounds for gpu-specific vblank irq quirks
588  *     if flag is set.
589  *
590  * Implements calculation of exact vblank timestamps from given drm_display_mode
591  * timings and current video scanout position of a CRTC. This can be directly
592  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
593  * if &drm_driver.get_scanout_position is implemented.
594  *
595  * The current implementation only handles standard video modes. For double scan
596  * and interlaced modes the driver is supposed to adjust the hardware mode
597  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
598  * match the scanout position reported.
599  *
600  * Note that atomic drivers must call drm_calc_timestamping_constants() before
601  * enabling a CRTC. The atomic helpers already take care of that in
602  * drm_atomic_helper_update_legacy_modeset_state().
603  *
604  * Returns:
605  *
606  * Returns true on success, and false on failure, i.e. when no accurate
607  * timestamp could be acquired.
608  */
609 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
610 					   unsigned int pipe,
611 					   int *max_error,
612 					   ktime_t *vblank_time,
613 					   bool in_vblank_irq)
614 {
615 	struct timespec64 ts_etime, ts_vblank_time;
616 	ktime_t stime, etime;
617 	bool vbl_status;
618 	struct drm_crtc *crtc;
619 	const struct drm_display_mode *mode;
620 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
621 	int vpos, hpos, i;
622 	int delta_ns, duration_ns;
623 
624 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
625 		return false;
626 
627 	crtc = drm_crtc_from_index(dev, pipe);
628 
629 	if (pipe >= dev->num_crtcs || !crtc) {
630 		DRM_ERROR("Invalid crtc %u\n", pipe);
631 		return false;
632 	}
633 
634 	/* Scanout position query not supported? Should not happen. */
635 	if (!dev->driver->get_scanout_position) {
636 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
637 		return false;
638 	}
639 
640 	if (drm_drv_uses_atomic_modeset(dev))
641 		mode = &vblank->hwmode;
642 	else
643 		mode = &crtc->hwmode;
644 
645 	/* If mode timing undefined, just return as no-op:
646 	 * Happens during initial modesetting of a crtc.
647 	 */
648 	if (mode->crtc_clock == 0) {
649 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
650 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
651 
652 		return false;
653 	}
654 
655 	/* Get current scanout position with system timestamp.
656 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
657 	 * if single query takes longer than max_error nanoseconds.
658 	 *
659 	 * This guarantees a tight bound on maximum error if
660 	 * code gets preempted or delayed for some reason.
661 	 */
662 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
663 		/*
664 		 * Get vertical and horizontal scanout position vpos, hpos,
665 		 * and bounding timestamps stime, etime, pre/post query.
666 		 */
667 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
668 							       in_vblank_irq,
669 							       &vpos, &hpos,
670 							       &stime, &etime,
671 							       mode);
672 
673 		/* Return as no-op if scanout query unsupported or failed. */
674 		if (!vbl_status) {
675 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
676 				  pipe);
677 			return false;
678 		}
679 
680 		/* Compute uncertainty in timestamp of scanout position query. */
681 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
682 
683 		/* Accept result with <  max_error nsecs timing uncertainty. */
684 		if (duration_ns <= *max_error)
685 			break;
686 	}
687 
688 	/* Noisy system timing? */
689 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
690 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
691 			  pipe, duration_ns/1000, *max_error/1000, i);
692 	}
693 
694 	/* Return upper bound of timestamp precision error. */
695 	*max_error = duration_ns;
696 
697 	/* Convert scanout position into elapsed time at raw_time query
698 	 * since start of scanout at first display scanline. delta_ns
699 	 * can be negative if start of scanout hasn't happened yet.
700 	 */
701 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
702 			   mode->crtc_clock);
703 
704 	/* Subtract time delta from raw timestamp to get final
705 	 * vblank_time timestamp for end of vblank.
706 	 */
707 	*vblank_time = ktime_sub_ns(etime, delta_ns);
708 
709 	if (!drm_debug_enabled(DRM_UT_VBL))
710 		return true;
711 
712 	ts_etime = ktime_to_timespec64(etime);
713 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
714 
715 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
716 		      pipe, hpos, vpos,
717 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
718 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
719 		      duration_ns / 1000, i);
720 
721 	return true;
722 }
723 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
724 
725 /**
726  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
727  *                             vblank interval
728  * @dev: DRM device
729  * @pipe: index of CRTC whose vblank timestamp to retrieve
730  * @tvblank: Pointer to target time which should receive the timestamp
731  * @in_vblank_irq:
732  *     True when called from drm_crtc_handle_vblank().  Some drivers
733  *     need to apply some workarounds for gpu-specific vblank irq quirks
734  *     if flag is set.
735  *
736  * Fetches the system timestamp corresponding to the time of the most recent
737  * vblank interval on specified CRTC. May call into kms-driver to
738  * compute the timestamp with a high-precision GPU specific method.
739  *
740  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
741  * call, i.e., it isn't very precisely locked to the true vblank.
742  *
743  * Returns:
744  * True if timestamp is considered to be very precise, false otherwise.
745  */
746 static bool
747 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
748 			  ktime_t *tvblank, bool in_vblank_irq)
749 {
750 	bool ret = false;
751 
752 	/* Define requested maximum error on timestamps (nanoseconds). */
753 	int max_error = (int) drm_timestamp_precision * 1000;
754 
755 	/* Query driver if possible and precision timestamping enabled. */
756 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
757 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
758 							tvblank, in_vblank_irq);
759 
760 	/* GPU high precision timestamp query unsupported or failed.
761 	 * Return current monotonic/gettimeofday timestamp as best estimate.
762 	 */
763 	if (!ret)
764 		*tvblank = ktime_get();
765 
766 	return ret;
767 }
768 
769 /**
770  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
771  * @crtc: which counter to retrieve
772  *
773  * Fetches the "cooked" vblank count value that represents the number of
774  * vblank events since the system was booted, including lost events due to
775  * modesetting activity. Note that this timer isn't correct against a racing
776  * vblank interrupt (since it only reports the software vblank counter), see
777  * drm_crtc_accurate_vblank_count() for such use-cases.
778  *
779  * Note that for a given vblank counter value drm_crtc_handle_vblank()
780  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
781  * provide a barrier: Any writes done before calling
782  * drm_crtc_handle_vblank() will be visible to callers of the later
783  * functions, iff the vblank count is the same or a later one.
784  *
785  * See also &drm_vblank_crtc.count.
786  *
787  * Returns:
788  * The software vblank counter.
789  */
790 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
791 {
792 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
793 }
794 EXPORT_SYMBOL(drm_crtc_vblank_count);
795 
796 /**
797  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
798  *     system timestamp corresponding to that vblank counter value.
799  * @dev: DRM device
800  * @pipe: index of CRTC whose counter to retrieve
801  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
802  *
803  * Fetches the "cooked" vblank count value that represents the number of
804  * vblank events since the system was booted, including lost events due to
805  * modesetting activity. Returns corresponding system timestamp of the time
806  * of the vblank interval that corresponds to the current vblank counter value.
807  *
808  * This is the legacy version of drm_crtc_vblank_count_and_time().
809  */
810 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
811 				     ktime_t *vblanktime)
812 {
813 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
814 	u64 vblank_count;
815 	unsigned int seq;
816 
817 	if (WARN_ON(pipe >= dev->num_crtcs)) {
818 		*vblanktime = 0;
819 		return 0;
820 	}
821 
822 	do {
823 		seq = read_seqbegin(&vblank->seqlock);
824 		vblank_count = atomic64_read(&vblank->count);
825 		*vblanktime = vblank->time;
826 	} while (read_seqretry(&vblank->seqlock, seq));
827 
828 	return vblank_count;
829 }
830 
831 /**
832  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
833  *     and the system timestamp corresponding to that vblank counter value
834  * @crtc: which counter to retrieve
835  * @vblanktime: Pointer to time to receive the vblank timestamp.
836  *
837  * Fetches the "cooked" vblank count value that represents the number of
838  * vblank events since the system was booted, including lost events due to
839  * modesetting activity. Returns corresponding system timestamp of the time
840  * of the vblank interval that corresponds to the current vblank counter value.
841  *
842  * Note that for a given vblank counter value drm_crtc_handle_vblank()
843  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
844  * provide a barrier: Any writes done before calling
845  * drm_crtc_handle_vblank() will be visible to callers of the later
846  * functions, iff the vblank count is the same or a later one.
847  *
848  * See also &drm_vblank_crtc.count.
849  */
850 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
851 				   ktime_t *vblanktime)
852 {
853 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
854 					 vblanktime);
855 }
856 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
857 
858 static void send_vblank_event(struct drm_device *dev,
859 		struct drm_pending_vblank_event *e,
860 		u64 seq, ktime_t now)
861 {
862 	struct timespec64 tv;
863 
864 	switch (e->event.base.type) {
865 	case DRM_EVENT_VBLANK:
866 	case DRM_EVENT_FLIP_COMPLETE:
867 		tv = ktime_to_timespec64(now);
868 		e->event.vbl.sequence = seq;
869 		/*
870 		 * e->event is a user space structure, with hardcoded unsigned
871 		 * 32-bit seconds/microseconds. This is safe as we always use
872 		 * monotonic timestamps since linux-4.15
873 		 */
874 		e->event.vbl.tv_sec = tv.tv_sec;
875 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
876 		break;
877 	case DRM_EVENT_CRTC_SEQUENCE:
878 		if (seq)
879 			e->event.seq.sequence = seq;
880 		e->event.seq.time_ns = ktime_to_ns(now);
881 		break;
882 	}
883 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
884 	drm_send_event_locked(dev, &e->base);
885 }
886 
887 /**
888  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
889  * @crtc: the source CRTC of the vblank event
890  * @e: the event to send
891  *
892  * A lot of drivers need to generate vblank events for the very next vblank
893  * interrupt. For example when the page flip interrupt happens when the page
894  * flip gets armed, but not when it actually executes within the next vblank
895  * period. This helper function implements exactly the required vblank arming
896  * behaviour.
897  *
898  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
899  * atomic commit must ensure that the next vblank happens at exactly the same
900  * time as the atomic commit is committed to the hardware. This function itself
901  * does **not** protect against the next vblank interrupt racing with either this
902  * function call or the atomic commit operation. A possible sequence could be:
903  *
904  * 1. Driver commits new hardware state into vblank-synchronized registers.
905  * 2. A vblank happens, committing the hardware state. Also the corresponding
906  *    vblank interrupt is fired off and fully processed by the interrupt
907  *    handler.
908  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
909  * 4. The event is only send out for the next vblank, which is wrong.
910  *
911  * An equivalent race can happen when the driver calls
912  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
913  *
914  * The only way to make this work safely is to prevent the vblank from firing
915  * (and the hardware from committing anything else) until the entire atomic
916  * commit sequence has run to completion. If the hardware does not have such a
917  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
918  * Instead drivers need to manually send out the event from their interrupt
919  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
920  * possible race with the hardware committing the atomic update.
921  *
922  * Caller must hold a vblank reference for the event @e acquired by a
923  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
924  */
925 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
926 			       struct drm_pending_vblank_event *e)
927 {
928 	struct drm_device *dev = crtc->dev;
929 	unsigned int pipe = drm_crtc_index(crtc);
930 
931 	assert_spin_locked(&dev->event_lock);
932 
933 	e->pipe = pipe;
934 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
935 	list_add_tail(&e->base.link, &dev->vblank_event_list);
936 }
937 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
938 
939 /**
940  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
941  * @crtc: the source CRTC of the vblank event
942  * @e: the event to send
943  *
944  * Updates sequence # and timestamp on event for the most recently processed
945  * vblank, and sends it to userspace.  Caller must hold event lock.
946  *
947  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
948  * situation, especially to send out events for atomic commit operations.
949  */
950 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
951 				struct drm_pending_vblank_event *e)
952 {
953 	struct drm_device *dev = crtc->dev;
954 	u64 seq;
955 	unsigned int pipe = drm_crtc_index(crtc);
956 	ktime_t now;
957 
958 	if (dev->num_crtcs > 0) {
959 		seq = drm_vblank_count_and_time(dev, pipe, &now);
960 	} else {
961 		seq = 0;
962 
963 		now = ktime_get();
964 	}
965 	e->pipe = pipe;
966 	send_vblank_event(dev, e, seq, now);
967 }
968 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
969 
970 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
971 {
972 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
973 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
974 
975 		if (WARN_ON(!crtc))
976 			return 0;
977 
978 		if (crtc->funcs->enable_vblank)
979 			return crtc->funcs->enable_vblank(crtc);
980 	}
981 
982 	return dev->driver->enable_vblank(dev, pipe);
983 }
984 
985 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
986 {
987 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
988 	int ret = 0;
989 
990 	assert_spin_locked(&dev->vbl_lock);
991 
992 	spin_lock(&dev->vblank_time_lock);
993 
994 	if (!vblank->enabled) {
995 		/*
996 		 * Enable vblank irqs under vblank_time_lock protection.
997 		 * All vblank count & timestamp updates are held off
998 		 * until we are done reinitializing master counter and
999 		 * timestamps. Filtercode in drm_handle_vblank() will
1000 		 * prevent double-accounting of same vblank interval.
1001 		 */
1002 		ret = __enable_vblank(dev, pipe);
1003 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1004 		if (ret) {
1005 			atomic_dec(&vblank->refcount);
1006 		} else {
1007 			drm_update_vblank_count(dev, pipe, 0);
1008 			/* drm_update_vblank_count() includes a wmb so we just
1009 			 * need to ensure that the compiler emits the write
1010 			 * to mark the vblank as enabled after the call
1011 			 * to drm_update_vblank_count().
1012 			 */
1013 			WRITE_ONCE(vblank->enabled, true);
1014 		}
1015 	}
1016 
1017 	spin_unlock(&dev->vblank_time_lock);
1018 
1019 	return ret;
1020 }
1021 
1022 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1023 {
1024 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1025 	unsigned long irqflags;
1026 	int ret = 0;
1027 
1028 	if (!dev->num_crtcs)
1029 		return -EINVAL;
1030 
1031 	if (WARN_ON(pipe >= dev->num_crtcs))
1032 		return -EINVAL;
1033 
1034 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1035 	/* Going from 0->1 means we have to enable interrupts again */
1036 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1037 		ret = drm_vblank_enable(dev, pipe);
1038 	} else {
1039 		if (!vblank->enabled) {
1040 			atomic_dec(&vblank->refcount);
1041 			ret = -EINVAL;
1042 		}
1043 	}
1044 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  * drm_crtc_vblank_get - get a reference count on vblank events
1051  * @crtc: which CRTC to own
1052  *
1053  * Acquire a reference count on vblank events to avoid having them disabled
1054  * while in use.
1055  *
1056  * Returns:
1057  * Zero on success or a negative error code on failure.
1058  */
1059 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1060 {
1061 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1062 }
1063 EXPORT_SYMBOL(drm_crtc_vblank_get);
1064 
1065 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1066 {
1067 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1068 
1069 	if (WARN_ON(pipe >= dev->num_crtcs))
1070 		return;
1071 
1072 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1073 		return;
1074 
1075 	/* Last user schedules interrupt disable */
1076 	if (atomic_dec_and_test(&vblank->refcount)) {
1077 		if (drm_vblank_offdelay == 0)
1078 			return;
1079 		else if (drm_vblank_offdelay < 0)
1080 			vblank_disable_fn(&vblank->disable_timer);
1081 		else if (!dev->vblank_disable_immediate)
1082 			mod_timer(&vblank->disable_timer,
1083 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1084 	}
1085 }
1086 
1087 /**
1088  * drm_crtc_vblank_put - give up ownership of vblank events
1089  * @crtc: which counter to give up
1090  *
1091  * Release ownership of a given vblank counter, turning off interrupts
1092  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1093  */
1094 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1095 {
1096 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1097 }
1098 EXPORT_SYMBOL(drm_crtc_vblank_put);
1099 
1100 /**
1101  * drm_wait_one_vblank - wait for one vblank
1102  * @dev: DRM device
1103  * @pipe: CRTC index
1104  *
1105  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1106  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1107  * due to lack of driver support or because the crtc is off.
1108  *
1109  * This is the legacy version of drm_crtc_wait_one_vblank().
1110  */
1111 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1112 {
1113 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1114 	int ret;
1115 	u64 last;
1116 
1117 	if (WARN_ON(pipe >= dev->num_crtcs))
1118 		return;
1119 
1120 	ret = drm_vblank_get(dev, pipe);
1121 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1122 		return;
1123 
1124 	last = drm_vblank_count(dev, pipe);
1125 
1126 	ret = wait_event_timeout(vblank->queue,
1127 				 last != drm_vblank_count(dev, pipe),
1128 				 msecs_to_jiffies(100));
1129 
1130 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1131 
1132 	drm_vblank_put(dev, pipe);
1133 }
1134 EXPORT_SYMBOL(drm_wait_one_vblank);
1135 
1136 /**
1137  * drm_crtc_wait_one_vblank - wait for one vblank
1138  * @crtc: DRM crtc
1139  *
1140  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1141  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1142  * due to lack of driver support or because the crtc is off.
1143  */
1144 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1145 {
1146 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1147 }
1148 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1149 
1150 /**
1151  * drm_crtc_vblank_off - disable vblank events on a CRTC
1152  * @crtc: CRTC in question
1153  *
1154  * Drivers can use this function to shut down the vblank interrupt handling when
1155  * disabling a crtc. This function ensures that the latest vblank frame count is
1156  * stored so that drm_vblank_on can restore it again.
1157  *
1158  * Drivers must use this function when the hardware vblank counter can get
1159  * reset, e.g. when suspending or disabling the @crtc in general.
1160  */
1161 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1162 {
1163 	struct drm_device *dev = crtc->dev;
1164 	unsigned int pipe = drm_crtc_index(crtc);
1165 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1166 	struct drm_pending_vblank_event *e, *t;
1167 
1168 	ktime_t now;
1169 	unsigned long irqflags;
1170 	u64 seq;
1171 
1172 	if (WARN_ON(pipe >= dev->num_crtcs))
1173 		return;
1174 
1175 	spin_lock_irqsave(&dev->event_lock, irqflags);
1176 
1177 	spin_lock(&dev->vbl_lock);
1178 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1179 		      pipe, vblank->enabled, vblank->inmodeset);
1180 
1181 	/* Avoid redundant vblank disables without previous
1182 	 * drm_crtc_vblank_on(). */
1183 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1184 		drm_vblank_disable_and_save(dev, pipe);
1185 
1186 	wake_up(&vblank->queue);
1187 
1188 	/*
1189 	 * Prevent subsequent drm_vblank_get() from re-enabling
1190 	 * the vblank interrupt by bumping the refcount.
1191 	 */
1192 	if (!vblank->inmodeset) {
1193 		atomic_inc(&vblank->refcount);
1194 		vblank->inmodeset = 1;
1195 	}
1196 	spin_unlock(&dev->vbl_lock);
1197 
1198 	/* Send any queued vblank events, lest the natives grow disquiet */
1199 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1200 
1201 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1202 		if (e->pipe != pipe)
1203 			continue;
1204 		DRM_DEBUG("Sending premature vblank event on disable: "
1205 			  "wanted %llu, current %llu\n",
1206 			  e->sequence, seq);
1207 		list_del(&e->base.link);
1208 		drm_vblank_put(dev, pipe);
1209 		send_vblank_event(dev, e, seq, now);
1210 	}
1211 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1212 
1213 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1214 	 * calling drm_calc_timestamping_constants(). */
1215 	vblank->hwmode.crtc_clock = 0;
1216 }
1217 EXPORT_SYMBOL(drm_crtc_vblank_off);
1218 
1219 /**
1220  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1221  * @crtc: CRTC in question
1222  *
1223  * Drivers can use this function to reset the vblank state to off at load time.
1224  * Drivers should use this together with the drm_crtc_vblank_off() and
1225  * drm_crtc_vblank_on() functions. The difference compared to
1226  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1227  * and hence doesn't need to call any driver hooks.
1228  *
1229  * This is useful for recovering driver state e.g. on driver load, or on resume.
1230  */
1231 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1232 {
1233 	struct drm_device *dev = crtc->dev;
1234 	unsigned long irqflags;
1235 	unsigned int pipe = drm_crtc_index(crtc);
1236 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1237 
1238 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1239 	/*
1240 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1241 	 * interrupt by bumping the refcount.
1242 	 */
1243 	if (!vblank->inmodeset) {
1244 		atomic_inc(&vblank->refcount);
1245 		vblank->inmodeset = 1;
1246 	}
1247 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1248 
1249 	WARN_ON(!list_empty(&dev->vblank_event_list));
1250 }
1251 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1252 
1253 /**
1254  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1255  * @crtc: CRTC in question
1256  * @max_vblank_count: max hardware vblank counter value
1257  *
1258  * Update the maximum hardware vblank counter value for @crtc
1259  * at runtime. Useful for hardware where the operation of the
1260  * hardware vblank counter depends on the currently active
1261  * display configuration.
1262  *
1263  * For example, if the hardware vblank counter does not work
1264  * when a specific connector is active the maximum can be set
1265  * to zero. And when that specific connector isn't active the
1266  * maximum can again be set to the appropriate non-zero value.
1267  *
1268  * If used, must be called before drm_vblank_on().
1269  */
1270 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1271 				   u32 max_vblank_count)
1272 {
1273 	struct drm_device *dev = crtc->dev;
1274 	unsigned int pipe = drm_crtc_index(crtc);
1275 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1276 
1277 	WARN_ON(dev->max_vblank_count);
1278 	WARN_ON(!READ_ONCE(vblank->inmodeset));
1279 
1280 	vblank->max_vblank_count = max_vblank_count;
1281 }
1282 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1283 
1284 /**
1285  * drm_crtc_vblank_on - enable vblank events on a CRTC
1286  * @crtc: CRTC in question
1287  *
1288  * This functions restores the vblank interrupt state captured with
1289  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1290  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1291  * unbalanced and so can also be unconditionally called in driver load code to
1292  * reflect the current hardware state of the crtc.
1293  */
1294 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1295 {
1296 	struct drm_device *dev = crtc->dev;
1297 	unsigned int pipe = drm_crtc_index(crtc);
1298 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1299 	unsigned long irqflags;
1300 
1301 	if (WARN_ON(pipe >= dev->num_crtcs))
1302 		return;
1303 
1304 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1305 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1306 		      pipe, vblank->enabled, vblank->inmodeset);
1307 
1308 	/* Drop our private "prevent drm_vblank_get" refcount */
1309 	if (vblank->inmodeset) {
1310 		atomic_dec(&vblank->refcount);
1311 		vblank->inmodeset = 0;
1312 	}
1313 
1314 	drm_reset_vblank_timestamp(dev, pipe);
1315 
1316 	/*
1317 	 * re-enable interrupts if there are users left, or the
1318 	 * user wishes vblank interrupts to be enabled all the time.
1319 	 */
1320 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1321 		WARN_ON(drm_vblank_enable(dev, pipe));
1322 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1323 }
1324 EXPORT_SYMBOL(drm_crtc_vblank_on);
1325 
1326 /**
1327  * drm_vblank_restore - estimate missed vblanks and update vblank count.
1328  * @dev: DRM device
1329  * @pipe: CRTC index
1330  *
1331  * Power manamement features can cause frame counter resets between vblank
1332  * disable and enable. Drivers can use this function in their
1333  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1334  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1335  * vblank counter.
1336  *
1337  * This function is the legacy version of drm_crtc_vblank_restore().
1338  */
1339 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1340 {
1341 	ktime_t t_vblank;
1342 	struct drm_vblank_crtc *vblank;
1343 	int framedur_ns;
1344 	u64 diff_ns;
1345 	u32 cur_vblank, diff = 1;
1346 	int count = DRM_TIMESTAMP_MAXRETRIES;
1347 
1348 	if (WARN_ON(pipe >= dev->num_crtcs))
1349 		return;
1350 
1351 	assert_spin_locked(&dev->vbl_lock);
1352 	assert_spin_locked(&dev->vblank_time_lock);
1353 
1354 	vblank = &dev->vblank[pipe];
1355 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1356 		  "Cannot compute missed vblanks without frame duration\n");
1357 	framedur_ns = vblank->framedur_ns;
1358 
1359 	do {
1360 		cur_vblank = __get_vblank_counter(dev, pipe);
1361 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1362 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1363 
1364 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1365 	if (framedur_ns)
1366 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1367 
1368 
1369 	DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1370 		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1371 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1372 }
1373 EXPORT_SYMBOL(drm_vblank_restore);
1374 
1375 /**
1376  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1377  * @crtc: CRTC in question
1378  *
1379  * Power manamement features can cause frame counter resets between vblank
1380  * disable and enable. Drivers can use this function in their
1381  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1382  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1383  * vblank counter.
1384  */
1385 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1386 {
1387 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1388 }
1389 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1390 
1391 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1392 					  unsigned int pipe)
1393 {
1394 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1395 
1396 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1397 	if (!dev->num_crtcs)
1398 		return;
1399 
1400 	if (WARN_ON(pipe >= dev->num_crtcs))
1401 		return;
1402 
1403 	/*
1404 	 * To avoid all the problems that might happen if interrupts
1405 	 * were enabled/disabled around or between these calls, we just
1406 	 * have the kernel take a reference on the CRTC (just once though
1407 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1408 	 * so that interrupts remain enabled in the interim.
1409 	 */
1410 	if (!vblank->inmodeset) {
1411 		vblank->inmodeset = 0x1;
1412 		if (drm_vblank_get(dev, pipe) == 0)
1413 			vblank->inmodeset |= 0x2;
1414 	}
1415 }
1416 
1417 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1418 					   unsigned int pipe)
1419 {
1420 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1421 	unsigned long irqflags;
1422 
1423 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1424 	if (!dev->num_crtcs)
1425 		return;
1426 
1427 	if (WARN_ON(pipe >= dev->num_crtcs))
1428 		return;
1429 
1430 	if (vblank->inmodeset) {
1431 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1432 		drm_reset_vblank_timestamp(dev, pipe);
1433 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1434 
1435 		if (vblank->inmodeset & 0x2)
1436 			drm_vblank_put(dev, pipe);
1437 
1438 		vblank->inmodeset = 0;
1439 	}
1440 }
1441 
1442 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1443 				 struct drm_file *file_priv)
1444 {
1445 	struct drm_modeset_ctl *modeset = data;
1446 	unsigned int pipe;
1447 
1448 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1449 	if (!dev->num_crtcs)
1450 		return 0;
1451 
1452 	/* KMS drivers handle this internally */
1453 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1454 		return 0;
1455 
1456 	pipe = modeset->crtc;
1457 	if (pipe >= dev->num_crtcs)
1458 		return -EINVAL;
1459 
1460 	switch (modeset->cmd) {
1461 	case _DRM_PRE_MODESET:
1462 		drm_legacy_vblank_pre_modeset(dev, pipe);
1463 		break;
1464 	case _DRM_POST_MODESET:
1465 		drm_legacy_vblank_post_modeset(dev, pipe);
1466 		break;
1467 	default:
1468 		return -EINVAL;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static inline bool vblank_passed(u64 seq, u64 ref)
1475 {
1476 	return (seq - ref) <= (1 << 23);
1477 }
1478 
1479 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1480 				  u64 req_seq,
1481 				  union drm_wait_vblank *vblwait,
1482 				  struct drm_file *file_priv)
1483 {
1484 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1485 	struct drm_pending_vblank_event *e;
1486 	ktime_t now;
1487 	unsigned long flags;
1488 	u64 seq;
1489 	int ret;
1490 
1491 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1492 	if (e == NULL) {
1493 		ret = -ENOMEM;
1494 		goto err_put;
1495 	}
1496 
1497 	e->pipe = pipe;
1498 	e->event.base.type = DRM_EVENT_VBLANK;
1499 	e->event.base.length = sizeof(e->event.vbl);
1500 	e->event.vbl.user_data = vblwait->request.signal;
1501 	e->event.vbl.crtc_id = 0;
1502 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1503 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1504 		if (crtc)
1505 			e->event.vbl.crtc_id = crtc->base.id;
1506 	}
1507 
1508 	spin_lock_irqsave(&dev->event_lock, flags);
1509 
1510 	/*
1511 	 * drm_crtc_vblank_off() might have been called after we called
1512 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1513 	 * vblank disable, so no need for further locking.  The reference from
1514 	 * drm_vblank_get() protects against vblank disable from another source.
1515 	 */
1516 	if (!READ_ONCE(vblank->enabled)) {
1517 		ret = -EINVAL;
1518 		goto err_unlock;
1519 	}
1520 
1521 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1522 					    &e->event.base);
1523 
1524 	if (ret)
1525 		goto err_unlock;
1526 
1527 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1528 
1529 	DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1530 		  req_seq, seq, pipe);
1531 
1532 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1533 
1534 	e->sequence = req_seq;
1535 	if (vblank_passed(seq, req_seq)) {
1536 		drm_vblank_put(dev, pipe);
1537 		send_vblank_event(dev, e, seq, now);
1538 		vblwait->reply.sequence = seq;
1539 	} else {
1540 		/* drm_handle_vblank_events will call drm_vblank_put */
1541 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1542 		vblwait->reply.sequence = req_seq;
1543 	}
1544 
1545 	spin_unlock_irqrestore(&dev->event_lock, flags);
1546 
1547 	return 0;
1548 
1549 err_unlock:
1550 	spin_unlock_irqrestore(&dev->event_lock, flags);
1551 	kfree(e);
1552 err_put:
1553 	drm_vblank_put(dev, pipe);
1554 	return ret;
1555 }
1556 
1557 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1558 {
1559 	if (vblwait->request.sequence)
1560 		return false;
1561 
1562 	return _DRM_VBLANK_RELATIVE ==
1563 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1564 					  _DRM_VBLANK_EVENT |
1565 					  _DRM_VBLANK_NEXTONMISS));
1566 }
1567 
1568 /*
1569  * Widen a 32-bit param to 64-bits.
1570  *
1571  * \param narrow 32-bit value (missing upper 32 bits)
1572  * \param near 64-bit value that should be 'close' to near
1573  *
1574  * This function returns a 64-bit value using the lower 32-bits from
1575  * 'narrow' and constructing the upper 32-bits so that the result is
1576  * as close as possible to 'near'.
1577  */
1578 
1579 static u64 widen_32_to_64(u32 narrow, u64 near)
1580 {
1581 	return near + (s32) (narrow - near);
1582 }
1583 
1584 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1585 				  struct drm_wait_vblank_reply *reply)
1586 {
1587 	ktime_t now;
1588 	struct timespec64 ts;
1589 
1590 	/*
1591 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1592 	 * to store the seconds. This is safe as we always use monotonic
1593 	 * timestamps since linux-4.15.
1594 	 */
1595 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1596 	ts = ktime_to_timespec64(now);
1597 	reply->tval_sec = (u32)ts.tv_sec;
1598 	reply->tval_usec = ts.tv_nsec / 1000;
1599 }
1600 
1601 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1602 			  struct drm_file *file_priv)
1603 {
1604 	struct drm_crtc *crtc;
1605 	struct drm_vblank_crtc *vblank;
1606 	union drm_wait_vblank *vblwait = data;
1607 	int ret;
1608 	u64 req_seq, seq;
1609 	unsigned int pipe_index;
1610 	unsigned int flags, pipe, high_pipe;
1611 
1612 	if (!dev->irq_enabled)
1613 		return -EOPNOTSUPP;
1614 
1615 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1616 		return -EINVAL;
1617 
1618 	if (vblwait->request.type &
1619 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1620 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1621 		DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1622 			  vblwait->request.type,
1623 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1624 			   _DRM_VBLANK_HIGH_CRTC_MASK));
1625 		return -EINVAL;
1626 	}
1627 
1628 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1629 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1630 	if (high_pipe)
1631 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1632 	else
1633 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1634 
1635 	/* Convert lease-relative crtc index into global crtc index */
1636 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1637 		pipe = 0;
1638 		drm_for_each_crtc(crtc, dev) {
1639 			if (drm_lease_held(file_priv, crtc->base.id)) {
1640 				if (pipe_index == 0)
1641 					break;
1642 				pipe_index--;
1643 			}
1644 			pipe++;
1645 		}
1646 	} else {
1647 		pipe = pipe_index;
1648 	}
1649 
1650 	if (pipe >= dev->num_crtcs)
1651 		return -EINVAL;
1652 
1653 	vblank = &dev->vblank[pipe];
1654 
1655 	/* If the counter is currently enabled and accurate, short-circuit
1656 	 * queries to return the cached timestamp of the last vblank.
1657 	 */
1658 	if (dev->vblank_disable_immediate &&
1659 	    drm_wait_vblank_is_query(vblwait) &&
1660 	    READ_ONCE(vblank->enabled)) {
1661 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1662 		return 0;
1663 	}
1664 
1665 	ret = drm_vblank_get(dev, pipe);
1666 	if (ret) {
1667 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1668 		return ret;
1669 	}
1670 	seq = drm_vblank_count(dev, pipe);
1671 
1672 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1673 	case _DRM_VBLANK_RELATIVE:
1674 		req_seq = seq + vblwait->request.sequence;
1675 		vblwait->request.sequence = req_seq;
1676 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1677 		break;
1678 	case _DRM_VBLANK_ABSOLUTE:
1679 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1680 		break;
1681 	default:
1682 		ret = -EINVAL;
1683 		goto done;
1684 	}
1685 
1686 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1687 	    vblank_passed(seq, req_seq)) {
1688 		req_seq = seq + 1;
1689 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1690 		vblwait->request.sequence = req_seq;
1691 	}
1692 
1693 	if (flags & _DRM_VBLANK_EVENT) {
1694 		/* must hold on to the vblank ref until the event fires
1695 		 * drm_vblank_put will be called asynchronously
1696 		 */
1697 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1698 	}
1699 
1700 	if (req_seq != seq) {
1701 		int wait;
1702 
1703 		DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1704 			  req_seq, pipe);
1705 		wait = wait_event_interruptible_timeout(vblank->queue,
1706 			vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1707 				      !READ_ONCE(vblank->enabled),
1708 			msecs_to_jiffies(3000));
1709 
1710 		switch (wait) {
1711 		case 0:
1712 			/* timeout */
1713 			ret = -EBUSY;
1714 			break;
1715 		case -ERESTARTSYS:
1716 			/* interrupted by signal */
1717 			ret = -EINTR;
1718 			break;
1719 		default:
1720 			ret = 0;
1721 			break;
1722 		}
1723 	}
1724 
1725 	if (ret != -EINTR) {
1726 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1727 
1728 		DRM_DEBUG("crtc %d returning %u to client\n",
1729 			  pipe, vblwait->reply.sequence);
1730 	} else {
1731 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1732 	}
1733 
1734 done:
1735 	drm_vblank_put(dev, pipe);
1736 	return ret;
1737 }
1738 
1739 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1740 {
1741 	struct drm_pending_vblank_event *e, *t;
1742 	ktime_t now;
1743 	u64 seq;
1744 
1745 	assert_spin_locked(&dev->event_lock);
1746 
1747 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1748 
1749 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1750 		if (e->pipe != pipe)
1751 			continue;
1752 		if (!vblank_passed(seq, e->sequence))
1753 			continue;
1754 
1755 		DRM_DEBUG("vblank event on %llu, current %llu\n",
1756 			  e->sequence, seq);
1757 
1758 		list_del(&e->base.link);
1759 		drm_vblank_put(dev, pipe);
1760 		send_vblank_event(dev, e, seq, now);
1761 	}
1762 
1763 	trace_drm_vblank_event(pipe, seq, now,
1764 			dev->driver->get_vblank_timestamp != NULL);
1765 }
1766 
1767 /**
1768  * drm_handle_vblank - handle a vblank event
1769  * @dev: DRM device
1770  * @pipe: index of CRTC where this event occurred
1771  *
1772  * Drivers should call this routine in their vblank interrupt handlers to
1773  * update the vblank counter and send any signals that may be pending.
1774  *
1775  * This is the legacy version of drm_crtc_handle_vblank().
1776  */
1777 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1778 {
1779 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1780 	unsigned long irqflags;
1781 	bool disable_irq;
1782 
1783 	if (WARN_ON_ONCE(!dev->num_crtcs))
1784 		return false;
1785 
1786 	if (WARN_ON(pipe >= dev->num_crtcs))
1787 		return false;
1788 
1789 	spin_lock_irqsave(&dev->event_lock, irqflags);
1790 
1791 	/* Need timestamp lock to prevent concurrent execution with
1792 	 * vblank enable/disable, as this would cause inconsistent
1793 	 * or corrupted timestamps and vblank counts.
1794 	 */
1795 	spin_lock(&dev->vblank_time_lock);
1796 
1797 	/* Vblank irq handling disabled. Nothing to do. */
1798 	if (!vblank->enabled) {
1799 		spin_unlock(&dev->vblank_time_lock);
1800 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1801 		return false;
1802 	}
1803 
1804 	drm_update_vblank_count(dev, pipe, true);
1805 
1806 	spin_unlock(&dev->vblank_time_lock);
1807 
1808 	wake_up(&vblank->queue);
1809 
1810 	/* With instant-off, we defer disabling the interrupt until after
1811 	 * we finish processing the following vblank after all events have
1812 	 * been signaled. The disable has to be last (after
1813 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1814 	 */
1815 	disable_irq = (dev->vblank_disable_immediate &&
1816 		       drm_vblank_offdelay > 0 &&
1817 		       !atomic_read(&vblank->refcount));
1818 
1819 	drm_handle_vblank_events(dev, pipe);
1820 
1821 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1822 
1823 	if (disable_irq)
1824 		vblank_disable_fn(&vblank->disable_timer);
1825 
1826 	return true;
1827 }
1828 EXPORT_SYMBOL(drm_handle_vblank);
1829 
1830 /**
1831  * drm_crtc_handle_vblank - handle a vblank event
1832  * @crtc: where this event occurred
1833  *
1834  * Drivers should call this routine in their vblank interrupt handlers to
1835  * update the vblank counter and send any signals that may be pending.
1836  *
1837  * This is the native KMS version of drm_handle_vblank().
1838  *
1839  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1840  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1841  * provide a barrier: Any writes done before calling
1842  * drm_crtc_handle_vblank() will be visible to callers of the later
1843  * functions, iff the vblank count is the same or a later one.
1844  *
1845  * See also &drm_vblank_crtc.count.
1846  *
1847  * Returns:
1848  * True if the event was successfully handled, false on failure.
1849  */
1850 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1851 {
1852 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1853 }
1854 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1855 
1856 /*
1857  * Get crtc VBLANK count.
1858  *
1859  * \param dev DRM device
1860  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1861  * \param file_priv drm file private for the user's open file descriptor
1862  */
1863 
1864 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1865 				struct drm_file *file_priv)
1866 {
1867 	struct drm_crtc *crtc;
1868 	struct drm_vblank_crtc *vblank;
1869 	int pipe;
1870 	struct drm_crtc_get_sequence *get_seq = data;
1871 	ktime_t now;
1872 	bool vblank_enabled;
1873 	int ret;
1874 
1875 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1876 		return -EOPNOTSUPP;
1877 
1878 	if (!dev->irq_enabled)
1879 		return -EOPNOTSUPP;
1880 
1881 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1882 	if (!crtc)
1883 		return -ENOENT;
1884 
1885 	pipe = drm_crtc_index(crtc);
1886 
1887 	vblank = &dev->vblank[pipe];
1888 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1889 
1890 	if (!vblank_enabled) {
1891 		ret = drm_crtc_vblank_get(crtc);
1892 		if (ret) {
1893 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1894 			return ret;
1895 		}
1896 	}
1897 	drm_modeset_lock(&crtc->mutex, NULL);
1898 	if (crtc->state)
1899 		get_seq->active = crtc->state->enable;
1900 	else
1901 		get_seq->active = crtc->enabled;
1902 	drm_modeset_unlock(&crtc->mutex);
1903 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1904 	get_seq->sequence_ns = ktime_to_ns(now);
1905 	if (!vblank_enabled)
1906 		drm_crtc_vblank_put(crtc);
1907 	return 0;
1908 }
1909 
1910 /*
1911  * Queue a event for VBLANK sequence
1912  *
1913  * \param dev DRM device
1914  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1915  * \param file_priv drm file private for the user's open file descriptor
1916  */
1917 
1918 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1919 				  struct drm_file *file_priv)
1920 {
1921 	struct drm_crtc *crtc;
1922 	struct drm_vblank_crtc *vblank;
1923 	int pipe;
1924 	struct drm_crtc_queue_sequence *queue_seq = data;
1925 	ktime_t now;
1926 	struct drm_pending_vblank_event *e;
1927 	u32 flags;
1928 	u64 seq;
1929 	u64 req_seq;
1930 	int ret;
1931 	unsigned long spin_flags;
1932 
1933 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1934 		return -EOPNOTSUPP;
1935 
1936 	if (!dev->irq_enabled)
1937 		return -EOPNOTSUPP;
1938 
1939 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1940 	if (!crtc)
1941 		return -ENOENT;
1942 
1943 	flags = queue_seq->flags;
1944 	/* Check valid flag bits */
1945 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1946 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1947 		return -EINVAL;
1948 
1949 	pipe = drm_crtc_index(crtc);
1950 
1951 	vblank = &dev->vblank[pipe];
1952 
1953 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1954 	if (e == NULL)
1955 		return -ENOMEM;
1956 
1957 	ret = drm_crtc_vblank_get(crtc);
1958 	if (ret) {
1959 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1960 		goto err_free;
1961 	}
1962 
1963 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1964 	req_seq = queue_seq->sequence;
1965 
1966 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1967 		req_seq += seq;
1968 
1969 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1970 		req_seq = seq + 1;
1971 
1972 	e->pipe = pipe;
1973 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1974 	e->event.base.length = sizeof(e->event.seq);
1975 	e->event.seq.user_data = queue_seq->user_data;
1976 
1977 	spin_lock_irqsave(&dev->event_lock, spin_flags);
1978 
1979 	/*
1980 	 * drm_crtc_vblank_off() might have been called after we called
1981 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1982 	 * vblank disable, so no need for further locking.  The reference from
1983 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
1984 	 */
1985 	if (!READ_ONCE(vblank->enabled)) {
1986 		ret = -EINVAL;
1987 		goto err_unlock;
1988 	}
1989 
1990 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1991 					    &e->event.base);
1992 
1993 	if (ret)
1994 		goto err_unlock;
1995 
1996 	e->sequence = req_seq;
1997 
1998 	if (vblank_passed(seq, req_seq)) {
1999 		drm_crtc_vblank_put(crtc);
2000 		send_vblank_event(dev, e, seq, now);
2001 		queue_seq->sequence = seq;
2002 	} else {
2003 		/* drm_handle_vblank_events will call drm_vblank_put */
2004 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2005 		queue_seq->sequence = req_seq;
2006 	}
2007 
2008 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2009 	return 0;
2010 
2011 err_unlock:
2012 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2013 	drm_crtc_vblank_put(crtc);
2014 err_free:
2015 	kfree(e);
2016 	return ret;
2017 }
2018