1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/moduleparam.h> 29 30 #include <drm/drm_crtc.h> 31 #include <drm/drm_drv.h> 32 #include <drm/drm_framebuffer.h> 33 #include <drm/drm_managed.h> 34 #include <drm/drm_modeset_helper_vtables.h> 35 #include <drm/drm_print.h> 36 #include <drm/drm_vblank.h> 37 38 #include "drm_internal.h" 39 #include "drm_trace.h" 40 41 /** 42 * DOC: vblank handling 43 * 44 * From the computer's perspective, every time the monitor displays 45 * a new frame the scanout engine has "scanned out" the display image 46 * from top to bottom, one row of pixels at a time. The current row 47 * of pixels is referred to as the current scanline. 48 * 49 * In addition to the display's visible area, there's usually a couple of 50 * extra scanlines which aren't actually displayed on the screen. 51 * These extra scanlines don't contain image data and are occasionally used 52 * for features like audio and infoframes. The region made up of these 53 * scanlines is referred to as the vertical blanking region, or vblank for 54 * short. 55 * 56 * For historical reference, the vertical blanking period was designed to 57 * give the electron gun (on CRTs) enough time to move back to the top of 58 * the screen to start scanning out the next frame. Similar for horizontal 59 * blanking periods. They were designed to give the electron gun enough 60 * time to move back to the other side of the screen to start scanning the 61 * next scanline. 62 * 63 * :: 64 * 65 * 66 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 67 * top of | | 68 * display | | 69 * | New frame | 70 * | | 71 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 72 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 73 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 74 * | | frame as it 75 * | | travels down 76 * | | ("sacn out") 77 * | Old frame | 78 * | | 79 * | | 80 * | | 81 * | | physical 82 * | | bottom of 83 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 84 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 85 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 88 * new frame 89 * 90 * "Physical top of display" is the reference point for the high-precision/ 91 * corrected timestamp. 92 * 93 * On a lot of display hardware, programming needs to take effect during the 94 * vertical blanking period so that settings like gamma, the image buffer 95 * buffer to be scanned out, etc. can safely be changed without showing 96 * any visual artifacts on the screen. In some unforgiving hardware, some of 97 * this programming has to both start and end in the same vblank. To help 98 * with the timing of the hardware programming, an interrupt is usually 99 * available to notify the driver when it can start the updating of registers. 100 * The interrupt is in this context named the vblank interrupt. 101 * 102 * The vblank interrupt may be fired at different points depending on the 103 * hardware. Some hardware implementations will fire the interrupt when the 104 * new frame start, other implementations will fire the interrupt at different 105 * points in time. 106 * 107 * Vertical blanking plays a major role in graphics rendering. To achieve 108 * tear-free display, users must synchronize page flips and/or rendering to 109 * vertical blanking. The DRM API offers ioctls to perform page flips 110 * synchronized to vertical blanking and wait for vertical blanking. 111 * 112 * The DRM core handles most of the vertical blanking management logic, which 113 * involves filtering out spurious interrupts, keeping race-free blanking 114 * counters, coping with counter wrap-around and resets and keeping use counts. 115 * It relies on the driver to generate vertical blanking interrupts and 116 * optionally provide a hardware vertical blanking counter. 117 * 118 * Drivers must initialize the vertical blanking handling core with a call to 119 * drm_vblank_init(). Minimally, a driver needs to implement 120 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 121 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 122 * support. 123 * 124 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 125 * themselves (for instance to handle page flipping operations). The DRM core 126 * maintains a vertical blanking use count to ensure that the interrupts are not 127 * disabled while a user still needs them. To increment the use count, drivers 128 * call drm_crtc_vblank_get() and release the vblank reference again with 129 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 130 * guaranteed to be enabled. 131 * 132 * On many hardware disabling the vblank interrupt cannot be done in a race-free 133 * manner, see &drm_driver.vblank_disable_immediate and 134 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 135 * vblanks after a timer has expired, which can be configured through the 136 * ``vblankoffdelay`` module parameter. 137 * 138 * Drivers for hardware without support for vertical-blanking interrupts 139 * must not call drm_vblank_init(). For such drivers, atomic helpers will 140 * automatically generate fake vblank events as part of the display update. 141 * This functionality also can be controlled by the driver by enabling and 142 * disabling struct drm_crtc_state.no_vblank. 143 */ 144 145 /* Retry timestamp calculation up to 3 times to satisfy 146 * drm_timestamp_precision before giving up. 147 */ 148 #define DRM_TIMESTAMP_MAXRETRIES 3 149 150 /* Threshold in nanoseconds for detection of redundant 151 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 152 */ 153 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 154 155 static bool 156 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 157 ktime_t *tvblank, bool in_vblank_irq); 158 159 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 160 161 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 162 163 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 164 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 165 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 166 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 167 168 static void store_vblank(struct drm_device *dev, unsigned int pipe, 169 u32 vblank_count_inc, 170 ktime_t t_vblank, u32 last) 171 { 172 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 173 174 assert_spin_locked(&dev->vblank_time_lock); 175 176 vblank->last = last; 177 178 write_seqlock(&vblank->seqlock); 179 vblank->time = t_vblank; 180 atomic64_add(vblank_count_inc, &vblank->count); 181 write_sequnlock(&vblank->seqlock); 182 } 183 184 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 185 { 186 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 187 188 return vblank->max_vblank_count ?: dev->max_vblank_count; 189 } 190 191 /* 192 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 193 * if there is no useable hardware frame counter available. 194 */ 195 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 196 { 197 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0); 198 return 0; 199 } 200 201 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 202 { 203 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 204 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 205 206 if (WARN_ON(!crtc)) 207 return 0; 208 209 if (crtc->funcs->get_vblank_counter) 210 return crtc->funcs->get_vblank_counter(crtc); 211 } else if (dev->driver->get_vblank_counter) { 212 return dev->driver->get_vblank_counter(dev, pipe); 213 } 214 215 return drm_vblank_no_hw_counter(dev, pipe); 216 } 217 218 /* 219 * Reset the stored timestamp for the current vblank count to correspond 220 * to the last vblank occurred. 221 * 222 * Only to be called from drm_crtc_vblank_on(). 223 * 224 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 225 * device vblank fields. 226 */ 227 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 228 { 229 u32 cur_vblank; 230 bool rc; 231 ktime_t t_vblank; 232 int count = DRM_TIMESTAMP_MAXRETRIES; 233 234 spin_lock(&dev->vblank_time_lock); 235 236 /* 237 * sample the current counter to avoid random jumps 238 * when drm_vblank_enable() applies the diff 239 */ 240 do { 241 cur_vblank = __get_vblank_counter(dev, pipe); 242 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 243 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 244 245 /* 246 * Only reinitialize corresponding vblank timestamp if high-precision query 247 * available and didn't fail. Otherwise reinitialize delayed at next vblank 248 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 249 */ 250 if (!rc) 251 t_vblank = 0; 252 253 /* 254 * +1 to make sure user will never see the same 255 * vblank counter value before and after a modeset 256 */ 257 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 258 259 spin_unlock(&dev->vblank_time_lock); 260 } 261 262 /* 263 * Call back into the driver to update the appropriate vblank counter 264 * (specified by @pipe). Deal with wraparound, if it occurred, and 265 * update the last read value so we can deal with wraparound on the next 266 * call if necessary. 267 * 268 * Only necessary when going from off->on, to account for frames we 269 * didn't get an interrupt for. 270 * 271 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 272 * device vblank fields. 273 */ 274 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 275 bool in_vblank_irq) 276 { 277 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 278 u32 cur_vblank, diff; 279 bool rc; 280 ktime_t t_vblank; 281 int count = DRM_TIMESTAMP_MAXRETRIES; 282 int framedur_ns = vblank->framedur_ns; 283 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 284 285 /* 286 * Interrupts were disabled prior to this call, so deal with counter 287 * wrap if needed. 288 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 289 * here if the register is small or we had vblank interrupts off for 290 * a long time. 291 * 292 * We repeat the hardware vblank counter & timestamp query until 293 * we get consistent results. This to prevent races between gpu 294 * updating its hardware counter while we are retrieving the 295 * corresponding vblank timestamp. 296 */ 297 do { 298 cur_vblank = __get_vblank_counter(dev, pipe); 299 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 300 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 301 302 if (max_vblank_count) { 303 /* trust the hw counter when it's around */ 304 diff = (cur_vblank - vblank->last) & max_vblank_count; 305 } else if (rc && framedur_ns) { 306 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 307 308 /* 309 * Figure out how many vblanks we've missed based 310 * on the difference in the timestamps and the 311 * frame/field duration. 312 */ 313 314 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks." 315 " diff_ns = %lld, framedur_ns = %d)\n", 316 pipe, (long long) diff_ns, framedur_ns); 317 318 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 319 320 if (diff == 0 && in_vblank_irq) 321 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n", 322 pipe); 323 } else { 324 /* some kind of default for drivers w/o accurate vbl timestamping */ 325 diff = in_vblank_irq ? 1 : 0; 326 } 327 328 /* 329 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 330 * interval? If so then vblank irqs keep running and it will likely 331 * happen that the hardware vblank counter is not trustworthy as it 332 * might reset at some point in that interval and vblank timestamps 333 * are not trustworthy either in that interval. Iow. this can result 334 * in a bogus diff >> 1 which must be avoided as it would cause 335 * random large forward jumps of the software vblank counter. 336 */ 337 if (diff > 1 && (vblank->inmodeset & 0x2)) { 338 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 339 " due to pre-modeset.\n", pipe, diff); 340 diff = 1; 341 } 342 343 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 344 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 345 pipe, (unsigned long long)atomic64_read(&vblank->count), 346 diff, cur_vblank, vblank->last); 347 348 if (diff == 0) { 349 WARN_ON_ONCE(cur_vblank != vblank->last); 350 return; 351 } 352 353 /* 354 * Only reinitialize corresponding vblank timestamp if high-precision query 355 * available and didn't fail, or we were called from the vblank interrupt. 356 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 357 * for now, to mark the vblanktimestamp as invalid. 358 */ 359 if (!rc && !in_vblank_irq) 360 t_vblank = 0; 361 362 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 363 } 364 365 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 366 { 367 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 368 u64 count; 369 370 if (WARN_ON(pipe >= dev->num_crtcs)) 371 return 0; 372 373 count = atomic64_read(&vblank->count); 374 375 /* 376 * This read barrier corresponds to the implicit write barrier of the 377 * write seqlock in store_vblank(). Note that this is the only place 378 * where we need an explicit barrier, since all other access goes 379 * through drm_vblank_count_and_time(), which already has the required 380 * read barrier curtesy of the read seqlock. 381 */ 382 smp_rmb(); 383 384 return count; 385 } 386 387 /** 388 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 389 * @crtc: which counter to retrieve 390 * 391 * This function is similar to drm_crtc_vblank_count() but this function 392 * interpolates to handle a race with vblank interrupts using the high precision 393 * timestamping support. 394 * 395 * This is mostly useful for hardware that can obtain the scanout position, but 396 * doesn't have a hardware frame counter. 397 */ 398 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 399 { 400 struct drm_device *dev = crtc->dev; 401 unsigned int pipe = drm_crtc_index(crtc); 402 u64 vblank; 403 unsigned long flags; 404 405 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && 406 !crtc->funcs->get_vblank_timestamp, 407 "This function requires support for accurate vblank timestamps."); 408 409 spin_lock_irqsave(&dev->vblank_time_lock, flags); 410 411 drm_update_vblank_count(dev, pipe, false); 412 vblank = drm_vblank_count(dev, pipe); 413 414 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 415 416 return vblank; 417 } 418 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 419 420 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 421 { 422 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 423 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 424 425 if (WARN_ON(!crtc)) 426 return; 427 428 if (crtc->funcs->disable_vblank) 429 crtc->funcs->disable_vblank(crtc); 430 } else { 431 dev->driver->disable_vblank(dev, pipe); 432 } 433 } 434 435 /* 436 * Disable vblank irq's on crtc, make sure that last vblank count 437 * of hardware and corresponding consistent software vblank counter 438 * are preserved, even if there are any spurious vblank irq's after 439 * disable. 440 */ 441 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 442 { 443 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 444 unsigned long irqflags; 445 446 assert_spin_locked(&dev->vbl_lock); 447 448 /* Prevent vblank irq processing while disabling vblank irqs, 449 * so no updates of timestamps or count can happen after we've 450 * disabled. Needed to prevent races in case of delayed irq's. 451 */ 452 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 453 454 /* 455 * Update vblank count and disable vblank interrupts only if the 456 * interrupts were enabled. This avoids calling the ->disable_vblank() 457 * operation in atomic context with the hardware potentially runtime 458 * suspended. 459 */ 460 if (!vblank->enabled) 461 goto out; 462 463 /* 464 * Update the count and timestamp to maintain the 465 * appearance that the counter has been ticking all along until 466 * this time. This makes the count account for the entire time 467 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 468 */ 469 drm_update_vblank_count(dev, pipe, false); 470 __disable_vblank(dev, pipe); 471 vblank->enabled = false; 472 473 out: 474 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 475 } 476 477 static void vblank_disable_fn(struct timer_list *t) 478 { 479 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 480 struct drm_device *dev = vblank->dev; 481 unsigned int pipe = vblank->pipe; 482 unsigned long irqflags; 483 484 spin_lock_irqsave(&dev->vbl_lock, irqflags); 485 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 486 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 487 drm_vblank_disable_and_save(dev, pipe); 488 } 489 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 490 } 491 492 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 493 { 494 unsigned int pipe; 495 496 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 497 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 498 499 WARN_ON(READ_ONCE(vblank->enabled) && 500 drm_core_check_feature(dev, DRIVER_MODESET)); 501 502 del_timer_sync(&vblank->disable_timer); 503 } 504 } 505 506 /** 507 * drm_vblank_init - initialize vblank support 508 * @dev: DRM device 509 * @num_crtcs: number of CRTCs supported by @dev 510 * 511 * This function initializes vblank support for @num_crtcs display pipelines. 512 * Cleanup is handled automatically through a cleanup function added with 513 * drmm_add_action(). 514 * 515 * Returns: 516 * Zero on success or a negative error code on failure. 517 */ 518 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 519 { 520 int ret; 521 unsigned int i; 522 523 spin_lock_init(&dev->vbl_lock); 524 spin_lock_init(&dev->vblank_time_lock); 525 526 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 527 if (!dev->vblank) 528 return -ENOMEM; 529 530 dev->num_crtcs = num_crtcs; 531 532 ret = drmm_add_action(dev, drm_vblank_init_release, NULL); 533 if (ret) 534 return ret; 535 536 for (i = 0; i < num_crtcs; i++) { 537 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 538 539 vblank->dev = dev; 540 vblank->pipe = i; 541 init_waitqueue_head(&vblank->queue); 542 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 543 seqlock_init(&vblank->seqlock); 544 } 545 546 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 547 548 return 0; 549 } 550 EXPORT_SYMBOL(drm_vblank_init); 551 552 /** 553 * drm_dev_has_vblank - test if vblanking has been initialized for 554 * a device 555 * @dev: the device 556 * 557 * Drivers may call this function to test if vblank support is 558 * initialized for a device. For most hardware this means that vblanking 559 * can also be enabled. 560 * 561 * Atomic helpers use this function to initialize 562 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 563 * 564 * Returns: 565 * True if vblanking has been initialized for the given device, false 566 * otherwise. 567 */ 568 bool drm_dev_has_vblank(const struct drm_device *dev) 569 { 570 return dev->num_crtcs != 0; 571 } 572 EXPORT_SYMBOL(drm_dev_has_vblank); 573 574 /** 575 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 576 * @crtc: which CRTC's vblank waitqueue to retrieve 577 * 578 * This function returns a pointer to the vblank waitqueue for the CRTC. 579 * Drivers can use this to implement vblank waits using wait_event() and related 580 * functions. 581 */ 582 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 583 { 584 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 585 } 586 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 587 588 589 /** 590 * drm_calc_timestamping_constants - calculate vblank timestamp constants 591 * @crtc: drm_crtc whose timestamp constants should be updated. 592 * @mode: display mode containing the scanout timings 593 * 594 * Calculate and store various constants which are later needed by vblank and 595 * swap-completion timestamping, e.g, by 596 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 597 * CRTC's true scanout timing, so they take things like panel scaling or 598 * other adjustments into account. 599 */ 600 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 601 const struct drm_display_mode *mode) 602 { 603 struct drm_device *dev = crtc->dev; 604 unsigned int pipe = drm_crtc_index(crtc); 605 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 606 int linedur_ns = 0, framedur_ns = 0; 607 int dotclock = mode->crtc_clock; 608 609 if (!dev->num_crtcs) 610 return; 611 612 if (WARN_ON(pipe >= dev->num_crtcs)) 613 return; 614 615 /* Valid dotclock? */ 616 if (dotclock > 0) { 617 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 618 619 /* 620 * Convert scanline length in pixels and video 621 * dot clock to line duration and frame duration 622 * in nanoseconds: 623 */ 624 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 625 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 626 627 /* 628 * Fields of interlaced scanout modes are only half a frame duration. 629 */ 630 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 631 framedur_ns /= 2; 632 } else 633 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 634 crtc->base.id); 635 636 vblank->linedur_ns = linedur_ns; 637 vblank->framedur_ns = framedur_ns; 638 vblank->hwmode = *mode; 639 640 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 641 crtc->base.id, mode->crtc_htotal, 642 mode->crtc_vtotal, mode->crtc_vdisplay); 643 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 644 crtc->base.id, dotclock, framedur_ns, linedur_ns); 645 } 646 EXPORT_SYMBOL(drm_calc_timestamping_constants); 647 648 /** 649 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 650 * timestamp helper 651 * @crtc: CRTC whose vblank timestamp to retrieve 652 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 653 * On return contains true maximum error of timestamp 654 * @vblank_time: Pointer to time which should receive the timestamp 655 * @in_vblank_irq: 656 * True when called from drm_crtc_handle_vblank(). Some drivers 657 * need to apply some workarounds for gpu-specific vblank irq quirks 658 * if flag is set. 659 * @get_scanout_position: 660 * Callback function to retrieve the scanout position. See 661 * @struct drm_crtc_helper_funcs.get_scanout_position. 662 * 663 * Implements calculation of exact vblank timestamps from given drm_display_mode 664 * timings and current video scanout position of a CRTC. 665 * 666 * The current implementation only handles standard video modes. For double scan 667 * and interlaced modes the driver is supposed to adjust the hardware mode 668 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 669 * match the scanout position reported. 670 * 671 * Note that atomic drivers must call drm_calc_timestamping_constants() before 672 * enabling a CRTC. The atomic helpers already take care of that in 673 * drm_atomic_helper_update_legacy_modeset_state(). 674 * 675 * Returns: 676 * 677 * Returns true on success, and false on failure, i.e. when no accurate 678 * timestamp could be acquired. 679 */ 680 bool 681 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 682 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 683 bool in_vblank_irq, 684 drm_vblank_get_scanout_position_func get_scanout_position) 685 { 686 struct drm_device *dev = crtc->dev; 687 unsigned int pipe = crtc->index; 688 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 689 struct timespec64 ts_etime, ts_vblank_time; 690 ktime_t stime, etime; 691 bool vbl_status; 692 const struct drm_display_mode *mode; 693 int vpos, hpos, i; 694 int delta_ns, duration_ns; 695 696 if (pipe >= dev->num_crtcs) { 697 DRM_ERROR("Invalid crtc %u\n", pipe); 698 return false; 699 } 700 701 /* Scanout position query not supported? Should not happen. */ 702 if (!get_scanout_position) { 703 DRM_ERROR("Called from CRTC w/o get_scanout_position()!?\n"); 704 return false; 705 } 706 707 if (drm_drv_uses_atomic_modeset(dev)) 708 mode = &vblank->hwmode; 709 else 710 mode = &crtc->hwmode; 711 712 /* If mode timing undefined, just return as no-op: 713 * Happens during initial modesetting of a crtc. 714 */ 715 if (mode->crtc_clock == 0) { 716 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 717 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 718 return false; 719 } 720 721 /* Get current scanout position with system timestamp. 722 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 723 * if single query takes longer than max_error nanoseconds. 724 * 725 * This guarantees a tight bound on maximum error if 726 * code gets preempted or delayed for some reason. 727 */ 728 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 729 /* 730 * Get vertical and horizontal scanout position vpos, hpos, 731 * and bounding timestamps stime, etime, pre/post query. 732 */ 733 vbl_status = get_scanout_position(crtc, in_vblank_irq, 734 &vpos, &hpos, 735 &stime, &etime, 736 mode); 737 738 /* Return as no-op if scanout query unsupported or failed. */ 739 if (!vbl_status) { 740 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 741 pipe); 742 return false; 743 } 744 745 /* Compute uncertainty in timestamp of scanout position query. */ 746 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 747 748 /* Accept result with < max_error nsecs timing uncertainty. */ 749 if (duration_ns <= *max_error) 750 break; 751 } 752 753 /* Noisy system timing? */ 754 if (i == DRM_TIMESTAMP_MAXRETRIES) { 755 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 756 pipe, duration_ns/1000, *max_error/1000, i); 757 } 758 759 /* Return upper bound of timestamp precision error. */ 760 *max_error = duration_ns; 761 762 /* Convert scanout position into elapsed time at raw_time query 763 * since start of scanout at first display scanline. delta_ns 764 * can be negative if start of scanout hasn't happened yet. 765 */ 766 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 767 mode->crtc_clock); 768 769 /* Subtract time delta from raw timestamp to get final 770 * vblank_time timestamp for end of vblank. 771 */ 772 *vblank_time = ktime_sub_ns(etime, delta_ns); 773 774 if (!drm_debug_enabled(DRM_UT_VBL)) 775 return true; 776 777 ts_etime = ktime_to_timespec64(etime); 778 ts_vblank_time = ktime_to_timespec64(*vblank_time); 779 780 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 781 pipe, hpos, vpos, 782 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 783 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 784 duration_ns / 1000, i); 785 786 return true; 787 } 788 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 789 790 /** 791 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 792 * helper 793 * @crtc: CRTC whose vblank timestamp to retrieve 794 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 795 * On return contains true maximum error of timestamp 796 * @vblank_time: Pointer to time which should receive the timestamp 797 * @in_vblank_irq: 798 * True when called from drm_crtc_handle_vblank(). Some drivers 799 * need to apply some workarounds for gpu-specific vblank irq quirks 800 * if flag is set. 801 * 802 * Implements calculation of exact vblank timestamps from given drm_display_mode 803 * timings and current video scanout position of a CRTC. This can be directly 804 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 805 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 806 * 807 * The current implementation only handles standard video modes. For double scan 808 * and interlaced modes the driver is supposed to adjust the hardware mode 809 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 810 * match the scanout position reported. 811 * 812 * Note that atomic drivers must call drm_calc_timestamping_constants() before 813 * enabling a CRTC. The atomic helpers already take care of that in 814 * drm_atomic_helper_update_legacy_modeset_state(). 815 * 816 * Returns: 817 * 818 * Returns true on success, and false on failure, i.e. when no accurate 819 * timestamp could be acquired. 820 */ 821 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 822 int *max_error, 823 ktime_t *vblank_time, 824 bool in_vblank_irq) 825 { 826 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 827 crtc, max_error, vblank_time, in_vblank_irq, 828 crtc->helper_private->get_scanout_position); 829 } 830 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 831 832 /** 833 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 834 * vblank interval 835 * @dev: DRM device 836 * @pipe: index of CRTC whose vblank timestamp to retrieve 837 * @tvblank: Pointer to target time which should receive the timestamp 838 * @in_vblank_irq: 839 * True when called from drm_crtc_handle_vblank(). Some drivers 840 * need to apply some workarounds for gpu-specific vblank irq quirks 841 * if flag is set. 842 * 843 * Fetches the system timestamp corresponding to the time of the most recent 844 * vblank interval on specified CRTC. May call into kms-driver to 845 * compute the timestamp with a high-precision GPU specific method. 846 * 847 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 848 * call, i.e., it isn't very precisely locked to the true vblank. 849 * 850 * Returns: 851 * True if timestamp is considered to be very precise, false otherwise. 852 */ 853 static bool 854 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 855 ktime_t *tvblank, bool in_vblank_irq) 856 { 857 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 858 bool ret = false; 859 860 /* Define requested maximum error on timestamps (nanoseconds). */ 861 int max_error = (int) drm_timestamp_precision * 1000; 862 863 /* Query driver if possible and precision timestamping enabled. */ 864 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 865 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 866 867 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 868 tvblank, in_vblank_irq); 869 } 870 871 /* GPU high precision timestamp query unsupported or failed. 872 * Return current monotonic/gettimeofday timestamp as best estimate. 873 */ 874 if (!ret) 875 *tvblank = ktime_get(); 876 877 return ret; 878 } 879 880 /** 881 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 882 * @crtc: which counter to retrieve 883 * 884 * Fetches the "cooked" vblank count value that represents the number of 885 * vblank events since the system was booted, including lost events due to 886 * modesetting activity. Note that this timer isn't correct against a racing 887 * vblank interrupt (since it only reports the software vblank counter), see 888 * drm_crtc_accurate_vblank_count() for such use-cases. 889 * 890 * Note that for a given vblank counter value drm_crtc_handle_vblank() 891 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 892 * provide a barrier: Any writes done before calling 893 * drm_crtc_handle_vblank() will be visible to callers of the later 894 * functions, iff the vblank count is the same or a later one. 895 * 896 * See also &drm_vblank_crtc.count. 897 * 898 * Returns: 899 * The software vblank counter. 900 */ 901 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 902 { 903 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 904 } 905 EXPORT_SYMBOL(drm_crtc_vblank_count); 906 907 /** 908 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 909 * system timestamp corresponding to that vblank counter value. 910 * @dev: DRM device 911 * @pipe: index of CRTC whose counter to retrieve 912 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 913 * 914 * Fetches the "cooked" vblank count value that represents the number of 915 * vblank events since the system was booted, including lost events due to 916 * modesetting activity. Returns corresponding system timestamp of the time 917 * of the vblank interval that corresponds to the current vblank counter value. 918 * 919 * This is the legacy version of drm_crtc_vblank_count_and_time(). 920 */ 921 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 922 ktime_t *vblanktime) 923 { 924 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 925 u64 vblank_count; 926 unsigned int seq; 927 928 if (WARN_ON(pipe >= dev->num_crtcs)) { 929 *vblanktime = 0; 930 return 0; 931 } 932 933 do { 934 seq = read_seqbegin(&vblank->seqlock); 935 vblank_count = atomic64_read(&vblank->count); 936 *vblanktime = vblank->time; 937 } while (read_seqretry(&vblank->seqlock, seq)); 938 939 return vblank_count; 940 } 941 942 /** 943 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 944 * and the system timestamp corresponding to that vblank counter value 945 * @crtc: which counter to retrieve 946 * @vblanktime: Pointer to time to receive the vblank timestamp. 947 * 948 * Fetches the "cooked" vblank count value that represents the number of 949 * vblank events since the system was booted, including lost events due to 950 * modesetting activity. Returns corresponding system timestamp of the time 951 * of the vblank interval that corresponds to the current vblank counter value. 952 * 953 * Note that for a given vblank counter value drm_crtc_handle_vblank() 954 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 955 * provide a barrier: Any writes done before calling 956 * drm_crtc_handle_vblank() will be visible to callers of the later 957 * functions, iff the vblank count is the same or a later one. 958 * 959 * See also &drm_vblank_crtc.count. 960 */ 961 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 962 ktime_t *vblanktime) 963 { 964 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 965 vblanktime); 966 } 967 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 968 969 static void send_vblank_event(struct drm_device *dev, 970 struct drm_pending_vblank_event *e, 971 u64 seq, ktime_t now) 972 { 973 struct timespec64 tv; 974 975 switch (e->event.base.type) { 976 case DRM_EVENT_VBLANK: 977 case DRM_EVENT_FLIP_COMPLETE: 978 tv = ktime_to_timespec64(now); 979 e->event.vbl.sequence = seq; 980 /* 981 * e->event is a user space structure, with hardcoded unsigned 982 * 32-bit seconds/microseconds. This is safe as we always use 983 * monotonic timestamps since linux-4.15 984 */ 985 e->event.vbl.tv_sec = tv.tv_sec; 986 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 987 break; 988 case DRM_EVENT_CRTC_SEQUENCE: 989 if (seq) 990 e->event.seq.sequence = seq; 991 e->event.seq.time_ns = ktime_to_ns(now); 992 break; 993 } 994 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 995 drm_send_event_locked(dev, &e->base); 996 } 997 998 /** 999 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1000 * @crtc: the source CRTC of the vblank event 1001 * @e: the event to send 1002 * 1003 * A lot of drivers need to generate vblank events for the very next vblank 1004 * interrupt. For example when the page flip interrupt happens when the page 1005 * flip gets armed, but not when it actually executes within the next vblank 1006 * period. This helper function implements exactly the required vblank arming 1007 * behaviour. 1008 * 1009 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1010 * atomic commit must ensure that the next vblank happens at exactly the same 1011 * time as the atomic commit is committed to the hardware. This function itself 1012 * does **not** protect against the next vblank interrupt racing with either this 1013 * function call or the atomic commit operation. A possible sequence could be: 1014 * 1015 * 1. Driver commits new hardware state into vblank-synchronized registers. 1016 * 2. A vblank happens, committing the hardware state. Also the corresponding 1017 * vblank interrupt is fired off and fully processed by the interrupt 1018 * handler. 1019 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1020 * 4. The event is only send out for the next vblank, which is wrong. 1021 * 1022 * An equivalent race can happen when the driver calls 1023 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1024 * 1025 * The only way to make this work safely is to prevent the vblank from firing 1026 * (and the hardware from committing anything else) until the entire atomic 1027 * commit sequence has run to completion. If the hardware does not have such a 1028 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1029 * Instead drivers need to manually send out the event from their interrupt 1030 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1031 * possible race with the hardware committing the atomic update. 1032 * 1033 * Caller must hold a vblank reference for the event @e acquired by a 1034 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1035 */ 1036 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1037 struct drm_pending_vblank_event *e) 1038 { 1039 struct drm_device *dev = crtc->dev; 1040 unsigned int pipe = drm_crtc_index(crtc); 1041 1042 assert_spin_locked(&dev->event_lock); 1043 1044 e->pipe = pipe; 1045 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1046 list_add_tail(&e->base.link, &dev->vblank_event_list); 1047 } 1048 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1049 1050 /** 1051 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1052 * @crtc: the source CRTC of the vblank event 1053 * @e: the event to send 1054 * 1055 * Updates sequence # and timestamp on event for the most recently processed 1056 * vblank, and sends it to userspace. Caller must hold event lock. 1057 * 1058 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1059 * situation, especially to send out events for atomic commit operations. 1060 */ 1061 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1062 struct drm_pending_vblank_event *e) 1063 { 1064 struct drm_device *dev = crtc->dev; 1065 u64 seq; 1066 unsigned int pipe = drm_crtc_index(crtc); 1067 ktime_t now; 1068 1069 if (dev->num_crtcs > 0) { 1070 seq = drm_vblank_count_and_time(dev, pipe, &now); 1071 } else { 1072 seq = 0; 1073 1074 now = ktime_get(); 1075 } 1076 e->pipe = pipe; 1077 send_vblank_event(dev, e, seq, now); 1078 } 1079 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1080 1081 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1082 { 1083 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1084 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1085 1086 if (WARN_ON(!crtc)) 1087 return 0; 1088 1089 if (crtc->funcs->enable_vblank) 1090 return crtc->funcs->enable_vblank(crtc); 1091 } else if (dev->driver->enable_vblank) { 1092 return dev->driver->enable_vblank(dev, pipe); 1093 } 1094 1095 return -EINVAL; 1096 } 1097 1098 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1099 { 1100 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1101 int ret = 0; 1102 1103 assert_spin_locked(&dev->vbl_lock); 1104 1105 spin_lock(&dev->vblank_time_lock); 1106 1107 if (!vblank->enabled) { 1108 /* 1109 * Enable vblank irqs under vblank_time_lock protection. 1110 * All vblank count & timestamp updates are held off 1111 * until we are done reinitializing master counter and 1112 * timestamps. Filtercode in drm_handle_vblank() will 1113 * prevent double-accounting of same vblank interval. 1114 */ 1115 ret = __enable_vblank(dev, pipe); 1116 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 1117 if (ret) { 1118 atomic_dec(&vblank->refcount); 1119 } else { 1120 drm_update_vblank_count(dev, pipe, 0); 1121 /* drm_update_vblank_count() includes a wmb so we just 1122 * need to ensure that the compiler emits the write 1123 * to mark the vblank as enabled after the call 1124 * to drm_update_vblank_count(). 1125 */ 1126 WRITE_ONCE(vblank->enabled, true); 1127 } 1128 } 1129 1130 spin_unlock(&dev->vblank_time_lock); 1131 1132 return ret; 1133 } 1134 1135 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1136 { 1137 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1138 unsigned long irqflags; 1139 int ret = 0; 1140 1141 if (!dev->num_crtcs) 1142 return -EINVAL; 1143 1144 if (WARN_ON(pipe >= dev->num_crtcs)) 1145 return -EINVAL; 1146 1147 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1148 /* Going from 0->1 means we have to enable interrupts again */ 1149 if (atomic_add_return(1, &vblank->refcount) == 1) { 1150 ret = drm_vblank_enable(dev, pipe); 1151 } else { 1152 if (!vblank->enabled) { 1153 atomic_dec(&vblank->refcount); 1154 ret = -EINVAL; 1155 } 1156 } 1157 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1158 1159 return ret; 1160 } 1161 1162 /** 1163 * drm_crtc_vblank_get - get a reference count on vblank events 1164 * @crtc: which CRTC to own 1165 * 1166 * Acquire a reference count on vblank events to avoid having them disabled 1167 * while in use. 1168 * 1169 * Returns: 1170 * Zero on success or a negative error code on failure. 1171 */ 1172 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1173 { 1174 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1175 } 1176 EXPORT_SYMBOL(drm_crtc_vblank_get); 1177 1178 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1179 { 1180 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1181 1182 if (WARN_ON(pipe >= dev->num_crtcs)) 1183 return; 1184 1185 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1186 return; 1187 1188 /* Last user schedules interrupt disable */ 1189 if (atomic_dec_and_test(&vblank->refcount)) { 1190 if (drm_vblank_offdelay == 0) 1191 return; 1192 else if (drm_vblank_offdelay < 0) 1193 vblank_disable_fn(&vblank->disable_timer); 1194 else if (!dev->vblank_disable_immediate) 1195 mod_timer(&vblank->disable_timer, 1196 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1197 } 1198 } 1199 1200 /** 1201 * drm_crtc_vblank_put - give up ownership of vblank events 1202 * @crtc: which counter to give up 1203 * 1204 * Release ownership of a given vblank counter, turning off interrupts 1205 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1206 */ 1207 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1208 { 1209 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1210 } 1211 EXPORT_SYMBOL(drm_crtc_vblank_put); 1212 1213 /** 1214 * drm_wait_one_vblank - wait for one vblank 1215 * @dev: DRM device 1216 * @pipe: CRTC index 1217 * 1218 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1219 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1220 * due to lack of driver support or because the crtc is off. 1221 * 1222 * This is the legacy version of drm_crtc_wait_one_vblank(). 1223 */ 1224 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1225 { 1226 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1227 int ret; 1228 u64 last; 1229 1230 if (WARN_ON(pipe >= dev->num_crtcs)) 1231 return; 1232 1233 ret = drm_vblank_get(dev, pipe); 1234 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1235 return; 1236 1237 last = drm_vblank_count(dev, pipe); 1238 1239 ret = wait_event_timeout(vblank->queue, 1240 last != drm_vblank_count(dev, pipe), 1241 msecs_to_jiffies(100)); 1242 1243 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1244 1245 drm_vblank_put(dev, pipe); 1246 } 1247 EXPORT_SYMBOL(drm_wait_one_vblank); 1248 1249 /** 1250 * drm_crtc_wait_one_vblank - wait for one vblank 1251 * @crtc: DRM crtc 1252 * 1253 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1254 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1255 * due to lack of driver support or because the crtc is off. 1256 */ 1257 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1258 { 1259 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1260 } 1261 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1262 1263 /** 1264 * drm_crtc_vblank_off - disable vblank events on a CRTC 1265 * @crtc: CRTC in question 1266 * 1267 * Drivers can use this function to shut down the vblank interrupt handling when 1268 * disabling a crtc. This function ensures that the latest vblank frame count is 1269 * stored so that drm_vblank_on can restore it again. 1270 * 1271 * Drivers must use this function when the hardware vblank counter can get 1272 * reset, e.g. when suspending or disabling the @crtc in general. 1273 */ 1274 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1275 { 1276 struct drm_device *dev = crtc->dev; 1277 unsigned int pipe = drm_crtc_index(crtc); 1278 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1279 struct drm_pending_vblank_event *e, *t; 1280 1281 ktime_t now; 1282 unsigned long irqflags; 1283 u64 seq; 1284 1285 if (WARN_ON(pipe >= dev->num_crtcs)) 1286 return; 1287 1288 spin_lock_irqsave(&dev->event_lock, irqflags); 1289 1290 spin_lock(&dev->vbl_lock); 1291 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1292 pipe, vblank->enabled, vblank->inmodeset); 1293 1294 /* Avoid redundant vblank disables without previous 1295 * drm_crtc_vblank_on(). */ 1296 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1297 drm_vblank_disable_and_save(dev, pipe); 1298 1299 wake_up(&vblank->queue); 1300 1301 /* 1302 * Prevent subsequent drm_vblank_get() from re-enabling 1303 * the vblank interrupt by bumping the refcount. 1304 */ 1305 if (!vblank->inmodeset) { 1306 atomic_inc(&vblank->refcount); 1307 vblank->inmodeset = 1; 1308 } 1309 spin_unlock(&dev->vbl_lock); 1310 1311 /* Send any queued vblank events, lest the natives grow disquiet */ 1312 seq = drm_vblank_count_and_time(dev, pipe, &now); 1313 1314 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1315 if (e->pipe != pipe) 1316 continue; 1317 DRM_DEBUG("Sending premature vblank event on disable: " 1318 "wanted %llu, current %llu\n", 1319 e->sequence, seq); 1320 list_del(&e->base.link); 1321 drm_vblank_put(dev, pipe); 1322 send_vblank_event(dev, e, seq, now); 1323 } 1324 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1325 1326 /* Will be reset by the modeset helpers when re-enabling the crtc by 1327 * calling drm_calc_timestamping_constants(). */ 1328 vblank->hwmode.crtc_clock = 0; 1329 } 1330 EXPORT_SYMBOL(drm_crtc_vblank_off); 1331 1332 /** 1333 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1334 * @crtc: CRTC in question 1335 * 1336 * Drivers can use this function to reset the vblank state to off at load time. 1337 * Drivers should use this together with the drm_crtc_vblank_off() and 1338 * drm_crtc_vblank_on() functions. The difference compared to 1339 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1340 * and hence doesn't need to call any driver hooks. 1341 * 1342 * This is useful for recovering driver state e.g. on driver load, or on resume. 1343 */ 1344 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1345 { 1346 struct drm_device *dev = crtc->dev; 1347 unsigned long irqflags; 1348 unsigned int pipe = drm_crtc_index(crtc); 1349 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1350 1351 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1352 /* 1353 * Prevent subsequent drm_vblank_get() from enabling the vblank 1354 * interrupt by bumping the refcount. 1355 */ 1356 if (!vblank->inmodeset) { 1357 atomic_inc(&vblank->refcount); 1358 vblank->inmodeset = 1; 1359 } 1360 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1361 1362 WARN_ON(!list_empty(&dev->vblank_event_list)); 1363 } 1364 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1365 1366 /** 1367 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1368 * @crtc: CRTC in question 1369 * @max_vblank_count: max hardware vblank counter value 1370 * 1371 * Update the maximum hardware vblank counter value for @crtc 1372 * at runtime. Useful for hardware where the operation of the 1373 * hardware vblank counter depends on the currently active 1374 * display configuration. 1375 * 1376 * For example, if the hardware vblank counter does not work 1377 * when a specific connector is active the maximum can be set 1378 * to zero. And when that specific connector isn't active the 1379 * maximum can again be set to the appropriate non-zero value. 1380 * 1381 * If used, must be called before drm_vblank_on(). 1382 */ 1383 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1384 u32 max_vblank_count) 1385 { 1386 struct drm_device *dev = crtc->dev; 1387 unsigned int pipe = drm_crtc_index(crtc); 1388 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1389 1390 WARN_ON(dev->max_vblank_count); 1391 WARN_ON(!READ_ONCE(vblank->inmodeset)); 1392 1393 vblank->max_vblank_count = max_vblank_count; 1394 } 1395 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1396 1397 /** 1398 * drm_crtc_vblank_on - enable vblank events on a CRTC 1399 * @crtc: CRTC in question 1400 * 1401 * This functions restores the vblank interrupt state captured with 1402 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1403 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1404 * unbalanced and so can also be unconditionally called in driver load code to 1405 * reflect the current hardware state of the crtc. 1406 */ 1407 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1408 { 1409 struct drm_device *dev = crtc->dev; 1410 unsigned int pipe = drm_crtc_index(crtc); 1411 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1412 unsigned long irqflags; 1413 1414 if (WARN_ON(pipe >= dev->num_crtcs)) 1415 return; 1416 1417 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1418 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1419 pipe, vblank->enabled, vblank->inmodeset); 1420 1421 /* Drop our private "prevent drm_vblank_get" refcount */ 1422 if (vblank->inmodeset) { 1423 atomic_dec(&vblank->refcount); 1424 vblank->inmodeset = 0; 1425 } 1426 1427 drm_reset_vblank_timestamp(dev, pipe); 1428 1429 /* 1430 * re-enable interrupts if there are users left, or the 1431 * user wishes vblank interrupts to be enabled all the time. 1432 */ 1433 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1434 WARN_ON(drm_vblank_enable(dev, pipe)); 1435 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1436 } 1437 EXPORT_SYMBOL(drm_crtc_vblank_on); 1438 1439 /** 1440 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1441 * @dev: DRM device 1442 * @pipe: CRTC index 1443 * 1444 * Power manamement features can cause frame counter resets between vblank 1445 * disable and enable. Drivers can use this function in their 1446 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1447 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1448 * vblank counter. 1449 * 1450 * This function is the legacy version of drm_crtc_vblank_restore(). 1451 */ 1452 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1453 { 1454 ktime_t t_vblank; 1455 struct drm_vblank_crtc *vblank; 1456 int framedur_ns; 1457 u64 diff_ns; 1458 u32 cur_vblank, diff = 1; 1459 int count = DRM_TIMESTAMP_MAXRETRIES; 1460 1461 if (WARN_ON(pipe >= dev->num_crtcs)) 1462 return; 1463 1464 assert_spin_locked(&dev->vbl_lock); 1465 assert_spin_locked(&dev->vblank_time_lock); 1466 1467 vblank = &dev->vblank[pipe]; 1468 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1469 "Cannot compute missed vblanks without frame duration\n"); 1470 framedur_ns = vblank->framedur_ns; 1471 1472 do { 1473 cur_vblank = __get_vblank_counter(dev, pipe); 1474 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1475 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1476 1477 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1478 if (framedur_ns) 1479 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1480 1481 1482 DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1483 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1484 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1485 } 1486 EXPORT_SYMBOL(drm_vblank_restore); 1487 1488 /** 1489 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1490 * @crtc: CRTC in question 1491 * 1492 * Power manamement features can cause frame counter resets between vblank 1493 * disable and enable. Drivers can use this function in their 1494 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1495 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1496 * vblank counter. 1497 */ 1498 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1499 { 1500 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1501 } 1502 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1503 1504 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1505 unsigned int pipe) 1506 { 1507 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1508 1509 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1510 if (!dev->num_crtcs) 1511 return; 1512 1513 if (WARN_ON(pipe >= dev->num_crtcs)) 1514 return; 1515 1516 /* 1517 * To avoid all the problems that might happen if interrupts 1518 * were enabled/disabled around or between these calls, we just 1519 * have the kernel take a reference on the CRTC (just once though 1520 * to avoid corrupting the count if multiple, mismatch calls occur), 1521 * so that interrupts remain enabled in the interim. 1522 */ 1523 if (!vblank->inmodeset) { 1524 vblank->inmodeset = 0x1; 1525 if (drm_vblank_get(dev, pipe) == 0) 1526 vblank->inmodeset |= 0x2; 1527 } 1528 } 1529 1530 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1531 unsigned int pipe) 1532 { 1533 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1534 unsigned long irqflags; 1535 1536 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1537 if (!dev->num_crtcs) 1538 return; 1539 1540 if (WARN_ON(pipe >= dev->num_crtcs)) 1541 return; 1542 1543 if (vblank->inmodeset) { 1544 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1545 drm_reset_vblank_timestamp(dev, pipe); 1546 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1547 1548 if (vblank->inmodeset & 0x2) 1549 drm_vblank_put(dev, pipe); 1550 1551 vblank->inmodeset = 0; 1552 } 1553 } 1554 1555 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1556 struct drm_file *file_priv) 1557 { 1558 struct drm_modeset_ctl *modeset = data; 1559 unsigned int pipe; 1560 1561 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1562 if (!dev->num_crtcs) 1563 return 0; 1564 1565 /* KMS drivers handle this internally */ 1566 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1567 return 0; 1568 1569 pipe = modeset->crtc; 1570 if (pipe >= dev->num_crtcs) 1571 return -EINVAL; 1572 1573 switch (modeset->cmd) { 1574 case _DRM_PRE_MODESET: 1575 drm_legacy_vblank_pre_modeset(dev, pipe); 1576 break; 1577 case _DRM_POST_MODESET: 1578 drm_legacy_vblank_post_modeset(dev, pipe); 1579 break; 1580 default: 1581 return -EINVAL; 1582 } 1583 1584 return 0; 1585 } 1586 1587 static inline bool vblank_passed(u64 seq, u64 ref) 1588 { 1589 return (seq - ref) <= (1 << 23); 1590 } 1591 1592 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1593 u64 req_seq, 1594 union drm_wait_vblank *vblwait, 1595 struct drm_file *file_priv) 1596 { 1597 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1598 struct drm_pending_vblank_event *e; 1599 ktime_t now; 1600 unsigned long flags; 1601 u64 seq; 1602 int ret; 1603 1604 e = kzalloc(sizeof(*e), GFP_KERNEL); 1605 if (e == NULL) { 1606 ret = -ENOMEM; 1607 goto err_put; 1608 } 1609 1610 e->pipe = pipe; 1611 e->event.base.type = DRM_EVENT_VBLANK; 1612 e->event.base.length = sizeof(e->event.vbl); 1613 e->event.vbl.user_data = vblwait->request.signal; 1614 e->event.vbl.crtc_id = 0; 1615 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1616 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1617 if (crtc) 1618 e->event.vbl.crtc_id = crtc->base.id; 1619 } 1620 1621 spin_lock_irqsave(&dev->event_lock, flags); 1622 1623 /* 1624 * drm_crtc_vblank_off() might have been called after we called 1625 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1626 * vblank disable, so no need for further locking. The reference from 1627 * drm_vblank_get() protects against vblank disable from another source. 1628 */ 1629 if (!READ_ONCE(vblank->enabled)) { 1630 ret = -EINVAL; 1631 goto err_unlock; 1632 } 1633 1634 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1635 &e->event.base); 1636 1637 if (ret) 1638 goto err_unlock; 1639 1640 seq = drm_vblank_count_and_time(dev, pipe, &now); 1641 1642 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1643 req_seq, seq, pipe); 1644 1645 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1646 1647 e->sequence = req_seq; 1648 if (vblank_passed(seq, req_seq)) { 1649 drm_vblank_put(dev, pipe); 1650 send_vblank_event(dev, e, seq, now); 1651 vblwait->reply.sequence = seq; 1652 } else { 1653 /* drm_handle_vblank_events will call drm_vblank_put */ 1654 list_add_tail(&e->base.link, &dev->vblank_event_list); 1655 vblwait->reply.sequence = req_seq; 1656 } 1657 1658 spin_unlock_irqrestore(&dev->event_lock, flags); 1659 1660 return 0; 1661 1662 err_unlock: 1663 spin_unlock_irqrestore(&dev->event_lock, flags); 1664 kfree(e); 1665 err_put: 1666 drm_vblank_put(dev, pipe); 1667 return ret; 1668 } 1669 1670 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1671 { 1672 if (vblwait->request.sequence) 1673 return false; 1674 1675 return _DRM_VBLANK_RELATIVE == 1676 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1677 _DRM_VBLANK_EVENT | 1678 _DRM_VBLANK_NEXTONMISS)); 1679 } 1680 1681 /* 1682 * Widen a 32-bit param to 64-bits. 1683 * 1684 * \param narrow 32-bit value (missing upper 32 bits) 1685 * \param near 64-bit value that should be 'close' to near 1686 * 1687 * This function returns a 64-bit value using the lower 32-bits from 1688 * 'narrow' and constructing the upper 32-bits so that the result is 1689 * as close as possible to 'near'. 1690 */ 1691 1692 static u64 widen_32_to_64(u32 narrow, u64 near) 1693 { 1694 return near + (s32) (narrow - near); 1695 } 1696 1697 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1698 struct drm_wait_vblank_reply *reply) 1699 { 1700 ktime_t now; 1701 struct timespec64 ts; 1702 1703 /* 1704 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1705 * to store the seconds. This is safe as we always use monotonic 1706 * timestamps since linux-4.15. 1707 */ 1708 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1709 ts = ktime_to_timespec64(now); 1710 reply->tval_sec = (u32)ts.tv_sec; 1711 reply->tval_usec = ts.tv_nsec / 1000; 1712 } 1713 1714 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1715 struct drm_file *file_priv) 1716 { 1717 struct drm_crtc *crtc; 1718 struct drm_vblank_crtc *vblank; 1719 union drm_wait_vblank *vblwait = data; 1720 int ret; 1721 u64 req_seq, seq; 1722 unsigned int pipe_index; 1723 unsigned int flags, pipe, high_pipe; 1724 1725 if (!dev->irq_enabled) 1726 return -EOPNOTSUPP; 1727 1728 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1729 return -EINVAL; 1730 1731 if (vblwait->request.type & 1732 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1733 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1734 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n", 1735 vblwait->request.type, 1736 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1737 _DRM_VBLANK_HIGH_CRTC_MASK)); 1738 return -EINVAL; 1739 } 1740 1741 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1742 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1743 if (high_pipe) 1744 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1745 else 1746 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1747 1748 /* Convert lease-relative crtc index into global crtc index */ 1749 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1750 pipe = 0; 1751 drm_for_each_crtc(crtc, dev) { 1752 if (drm_lease_held(file_priv, crtc->base.id)) { 1753 if (pipe_index == 0) 1754 break; 1755 pipe_index--; 1756 } 1757 pipe++; 1758 } 1759 } else { 1760 pipe = pipe_index; 1761 } 1762 1763 if (pipe >= dev->num_crtcs) 1764 return -EINVAL; 1765 1766 vblank = &dev->vblank[pipe]; 1767 1768 /* If the counter is currently enabled and accurate, short-circuit 1769 * queries to return the cached timestamp of the last vblank. 1770 */ 1771 if (dev->vblank_disable_immediate && 1772 drm_wait_vblank_is_query(vblwait) && 1773 READ_ONCE(vblank->enabled)) { 1774 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1775 return 0; 1776 } 1777 1778 ret = drm_vblank_get(dev, pipe); 1779 if (ret) { 1780 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1781 return ret; 1782 } 1783 seq = drm_vblank_count(dev, pipe); 1784 1785 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1786 case _DRM_VBLANK_RELATIVE: 1787 req_seq = seq + vblwait->request.sequence; 1788 vblwait->request.sequence = req_seq; 1789 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1790 break; 1791 case _DRM_VBLANK_ABSOLUTE: 1792 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1793 break; 1794 default: 1795 ret = -EINVAL; 1796 goto done; 1797 } 1798 1799 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1800 vblank_passed(seq, req_seq)) { 1801 req_seq = seq + 1; 1802 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1803 vblwait->request.sequence = req_seq; 1804 } 1805 1806 if (flags & _DRM_VBLANK_EVENT) { 1807 /* must hold on to the vblank ref until the event fires 1808 * drm_vblank_put will be called asynchronously 1809 */ 1810 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1811 } 1812 1813 if (req_seq != seq) { 1814 int wait; 1815 1816 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1817 req_seq, pipe); 1818 wait = wait_event_interruptible_timeout(vblank->queue, 1819 vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1820 !READ_ONCE(vblank->enabled), 1821 msecs_to_jiffies(3000)); 1822 1823 switch (wait) { 1824 case 0: 1825 /* timeout */ 1826 ret = -EBUSY; 1827 break; 1828 case -ERESTARTSYS: 1829 /* interrupted by signal */ 1830 ret = -EINTR; 1831 break; 1832 default: 1833 ret = 0; 1834 break; 1835 } 1836 } 1837 1838 if (ret != -EINTR) { 1839 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1840 1841 DRM_DEBUG("crtc %d returning %u to client\n", 1842 pipe, vblwait->reply.sequence); 1843 } else { 1844 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1845 } 1846 1847 done: 1848 drm_vblank_put(dev, pipe); 1849 return ret; 1850 } 1851 1852 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1853 { 1854 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1855 bool high_prec = false; 1856 struct drm_pending_vblank_event *e, *t; 1857 ktime_t now; 1858 u64 seq; 1859 1860 assert_spin_locked(&dev->event_lock); 1861 1862 seq = drm_vblank_count_and_time(dev, pipe, &now); 1863 1864 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1865 if (e->pipe != pipe) 1866 continue; 1867 if (!vblank_passed(seq, e->sequence)) 1868 continue; 1869 1870 DRM_DEBUG("vblank event on %llu, current %llu\n", 1871 e->sequence, seq); 1872 1873 list_del(&e->base.link); 1874 drm_vblank_put(dev, pipe); 1875 send_vblank_event(dev, e, seq, now); 1876 } 1877 1878 if (crtc && crtc->funcs->get_vblank_timestamp) 1879 high_prec = true; 1880 1881 trace_drm_vblank_event(pipe, seq, now, high_prec); 1882 } 1883 1884 /** 1885 * drm_handle_vblank - handle a vblank event 1886 * @dev: DRM device 1887 * @pipe: index of CRTC where this event occurred 1888 * 1889 * Drivers should call this routine in their vblank interrupt handlers to 1890 * update the vblank counter and send any signals that may be pending. 1891 * 1892 * This is the legacy version of drm_crtc_handle_vblank(). 1893 */ 1894 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1895 { 1896 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1897 unsigned long irqflags; 1898 bool disable_irq; 1899 1900 if (WARN_ON_ONCE(!dev->num_crtcs)) 1901 return false; 1902 1903 if (WARN_ON(pipe >= dev->num_crtcs)) 1904 return false; 1905 1906 spin_lock_irqsave(&dev->event_lock, irqflags); 1907 1908 /* Need timestamp lock to prevent concurrent execution with 1909 * vblank enable/disable, as this would cause inconsistent 1910 * or corrupted timestamps and vblank counts. 1911 */ 1912 spin_lock(&dev->vblank_time_lock); 1913 1914 /* Vblank irq handling disabled. Nothing to do. */ 1915 if (!vblank->enabled) { 1916 spin_unlock(&dev->vblank_time_lock); 1917 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1918 return false; 1919 } 1920 1921 drm_update_vblank_count(dev, pipe, true); 1922 1923 spin_unlock(&dev->vblank_time_lock); 1924 1925 wake_up(&vblank->queue); 1926 1927 /* With instant-off, we defer disabling the interrupt until after 1928 * we finish processing the following vblank after all events have 1929 * been signaled. The disable has to be last (after 1930 * drm_handle_vblank_events) so that the timestamp is always accurate. 1931 */ 1932 disable_irq = (dev->vblank_disable_immediate && 1933 drm_vblank_offdelay > 0 && 1934 !atomic_read(&vblank->refcount)); 1935 1936 drm_handle_vblank_events(dev, pipe); 1937 1938 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1939 1940 if (disable_irq) 1941 vblank_disable_fn(&vblank->disable_timer); 1942 1943 return true; 1944 } 1945 EXPORT_SYMBOL(drm_handle_vblank); 1946 1947 /** 1948 * drm_crtc_handle_vblank - handle a vblank event 1949 * @crtc: where this event occurred 1950 * 1951 * Drivers should call this routine in their vblank interrupt handlers to 1952 * update the vblank counter and send any signals that may be pending. 1953 * 1954 * This is the native KMS version of drm_handle_vblank(). 1955 * 1956 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1957 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1958 * provide a barrier: Any writes done before calling 1959 * drm_crtc_handle_vblank() will be visible to callers of the later 1960 * functions, iff the vblank count is the same or a later one. 1961 * 1962 * See also &drm_vblank_crtc.count. 1963 * 1964 * Returns: 1965 * True if the event was successfully handled, false on failure. 1966 */ 1967 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1968 { 1969 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1970 } 1971 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1972 1973 /* 1974 * Get crtc VBLANK count. 1975 * 1976 * \param dev DRM device 1977 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1978 * \param file_priv drm file private for the user's open file descriptor 1979 */ 1980 1981 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1982 struct drm_file *file_priv) 1983 { 1984 struct drm_crtc *crtc; 1985 struct drm_vblank_crtc *vblank; 1986 int pipe; 1987 struct drm_crtc_get_sequence *get_seq = data; 1988 ktime_t now; 1989 bool vblank_enabled; 1990 int ret; 1991 1992 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1993 return -EOPNOTSUPP; 1994 1995 if (!dev->irq_enabled) 1996 return -EOPNOTSUPP; 1997 1998 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1999 if (!crtc) 2000 return -ENOENT; 2001 2002 pipe = drm_crtc_index(crtc); 2003 2004 vblank = &dev->vblank[pipe]; 2005 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 2006 2007 if (!vblank_enabled) { 2008 ret = drm_crtc_vblank_get(crtc); 2009 if (ret) { 2010 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 2011 return ret; 2012 } 2013 } 2014 drm_modeset_lock(&crtc->mutex, NULL); 2015 if (crtc->state) 2016 get_seq->active = crtc->state->enable; 2017 else 2018 get_seq->active = crtc->enabled; 2019 drm_modeset_unlock(&crtc->mutex); 2020 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2021 get_seq->sequence_ns = ktime_to_ns(now); 2022 if (!vblank_enabled) 2023 drm_crtc_vblank_put(crtc); 2024 return 0; 2025 } 2026 2027 /* 2028 * Queue a event for VBLANK sequence 2029 * 2030 * \param dev DRM device 2031 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 2032 * \param file_priv drm file private for the user's open file descriptor 2033 */ 2034 2035 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2036 struct drm_file *file_priv) 2037 { 2038 struct drm_crtc *crtc; 2039 struct drm_vblank_crtc *vblank; 2040 int pipe; 2041 struct drm_crtc_queue_sequence *queue_seq = data; 2042 ktime_t now; 2043 struct drm_pending_vblank_event *e; 2044 u32 flags; 2045 u64 seq; 2046 u64 req_seq; 2047 int ret; 2048 unsigned long spin_flags; 2049 2050 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2051 return -EOPNOTSUPP; 2052 2053 if (!dev->irq_enabled) 2054 return -EOPNOTSUPP; 2055 2056 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2057 if (!crtc) 2058 return -ENOENT; 2059 2060 flags = queue_seq->flags; 2061 /* Check valid flag bits */ 2062 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2063 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2064 return -EINVAL; 2065 2066 pipe = drm_crtc_index(crtc); 2067 2068 vblank = &dev->vblank[pipe]; 2069 2070 e = kzalloc(sizeof(*e), GFP_KERNEL); 2071 if (e == NULL) 2072 return -ENOMEM; 2073 2074 ret = drm_crtc_vblank_get(crtc); 2075 if (ret) { 2076 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 2077 goto err_free; 2078 } 2079 2080 seq = drm_vblank_count_and_time(dev, pipe, &now); 2081 req_seq = queue_seq->sequence; 2082 2083 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2084 req_seq += seq; 2085 2086 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 2087 req_seq = seq + 1; 2088 2089 e->pipe = pipe; 2090 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2091 e->event.base.length = sizeof(e->event.seq); 2092 e->event.seq.user_data = queue_seq->user_data; 2093 2094 spin_lock_irqsave(&dev->event_lock, spin_flags); 2095 2096 /* 2097 * drm_crtc_vblank_off() might have been called after we called 2098 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2099 * vblank disable, so no need for further locking. The reference from 2100 * drm_crtc_vblank_get() protects against vblank disable from another source. 2101 */ 2102 if (!READ_ONCE(vblank->enabled)) { 2103 ret = -EINVAL; 2104 goto err_unlock; 2105 } 2106 2107 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2108 &e->event.base); 2109 2110 if (ret) 2111 goto err_unlock; 2112 2113 e->sequence = req_seq; 2114 2115 if (vblank_passed(seq, req_seq)) { 2116 drm_crtc_vblank_put(crtc); 2117 send_vblank_event(dev, e, seq, now); 2118 queue_seq->sequence = seq; 2119 } else { 2120 /* drm_handle_vblank_events will call drm_vblank_put */ 2121 list_add_tail(&e->base.link, &dev->vblank_event_list); 2122 queue_seq->sequence = req_seq; 2123 } 2124 2125 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2126 return 0; 2127 2128 err_unlock: 2129 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2130 drm_crtc_vblank_put(crtc); 2131 err_free: 2132 kfree(e); 2133 return ret; 2134 } 2135