1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_vblank_crtc_config.disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts can 140 * use DRM vblank timers to send vblank events at the rate of the current 141 * display mode's refresh. While not synchronized to the hardware's 142 * vertical-blanking regions, the timer helps DRM clients and compositors to 143 * adapt their update cycle to the display output. Drivers should set up 144 * vblanking as usual, but call drm_crtc_vblank_start_timer() and 145 * drm_crtc_vblank_cancel_timer() as part of their atomic mode setting. 146 * See also DRM vblank helpers for more information. 147 * 148 * Drivers without support for vertical-blanking interrupts nor timers must 149 * not call drm_vblank_init(). For these drivers, atomic helpers will 150 * automatically generate fake vblank events as part of the display update. 151 * This functionality also can be controlled by the driver by enabling and 152 * disabling struct drm_crtc_state.no_vblank. 153 */ 154 155 /* Retry timestamp calculation up to 3 times to satisfy 156 * drm_timestamp_precision before giving up. 157 */ 158 #define DRM_TIMESTAMP_MAXRETRIES 3 159 160 /* Threshold in nanoseconds for detection of redundant 161 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 162 */ 163 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 164 165 static bool 166 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 167 ktime_t *tvblank, bool in_vblank_irq); 168 169 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 170 171 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 172 173 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 174 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 175 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 176 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 177 178 static struct drm_vblank_crtc * 179 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe) 180 { 181 return &dev->vblank[pipe]; 182 } 183 184 struct drm_vblank_crtc * 185 drm_crtc_vblank_crtc(struct drm_crtc *crtc) 186 { 187 return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc)); 188 } 189 EXPORT_SYMBOL(drm_crtc_vblank_crtc); 190 191 static void store_vblank(struct drm_device *dev, unsigned int pipe, 192 u32 vblank_count_inc, 193 ktime_t t_vblank, u32 last) 194 { 195 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 196 197 assert_spin_locked(&dev->vblank_time_lock); 198 199 vblank->last = last; 200 201 write_seqlock(&vblank->seqlock); 202 vblank->time = t_vblank; 203 atomic64_add(vblank_count_inc, &vblank->count); 204 write_sequnlock(&vblank->seqlock); 205 } 206 207 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 208 { 209 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 210 211 return vblank->max_vblank_count ?: dev->max_vblank_count; 212 } 213 214 /* 215 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 216 * if there is no usable hardware frame counter available. 217 */ 218 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 219 { 220 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 221 return 0; 222 } 223 224 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 225 { 226 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 227 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 228 229 if (drm_WARN_ON(dev, !crtc)) 230 return 0; 231 232 if (crtc->funcs->get_vblank_counter) 233 return crtc->funcs->get_vblank_counter(crtc); 234 } 235 236 return drm_vblank_no_hw_counter(dev, pipe); 237 } 238 239 /* 240 * Reset the stored timestamp for the current vblank count to correspond 241 * to the last vblank occurred. 242 * 243 * Only to be called from drm_crtc_vblank_on(). 244 * 245 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 246 * device vblank fields. 247 */ 248 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 249 { 250 u32 cur_vblank; 251 bool rc; 252 ktime_t t_vblank; 253 int count = DRM_TIMESTAMP_MAXRETRIES; 254 255 spin_lock(&dev->vblank_time_lock); 256 257 /* 258 * sample the current counter to avoid random jumps 259 * when drm_vblank_enable() applies the diff 260 */ 261 do { 262 cur_vblank = __get_vblank_counter(dev, pipe); 263 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 264 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 265 266 /* 267 * Only reinitialize corresponding vblank timestamp if high-precision query 268 * available and didn't fail. Otherwise reinitialize delayed at next vblank 269 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 270 */ 271 if (!rc) 272 t_vblank = 0; 273 274 /* 275 * +1 to make sure user will never see the same 276 * vblank counter value before and after a modeset 277 */ 278 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 279 280 spin_unlock(&dev->vblank_time_lock); 281 } 282 283 /* 284 * Call back into the driver to update the appropriate vblank counter 285 * (specified by @pipe). Deal with wraparound, if it occurred, and 286 * update the last read value so we can deal with wraparound on the next 287 * call if necessary. 288 * 289 * Only necessary when going from off->on, to account for frames we 290 * didn't get an interrupt for. 291 * 292 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 293 * device vblank fields. 294 */ 295 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 296 bool in_vblank_irq) 297 { 298 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 299 u32 cur_vblank, diff; 300 bool rc; 301 ktime_t t_vblank; 302 int count = DRM_TIMESTAMP_MAXRETRIES; 303 int framedur_ns = vblank->framedur_ns; 304 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 305 306 /* 307 * Interrupts were disabled prior to this call, so deal with counter 308 * wrap if needed. 309 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 310 * here if the register is small or we had vblank interrupts off for 311 * a long time. 312 * 313 * We repeat the hardware vblank counter & timestamp query until 314 * we get consistent results. This to prevent races between gpu 315 * updating its hardware counter while we are retrieving the 316 * corresponding vblank timestamp. 317 */ 318 do { 319 cur_vblank = __get_vblank_counter(dev, pipe); 320 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 321 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 322 323 if (max_vblank_count) { 324 /* trust the hw counter when it's around */ 325 diff = (cur_vblank - vblank->last) & max_vblank_count; 326 } else if (rc && framedur_ns) { 327 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 328 329 /* 330 * Figure out how many vblanks we've missed based 331 * on the difference in the timestamps and the 332 * frame/field duration. 333 */ 334 335 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 336 " diff_ns = %lld, framedur_ns = %d)\n", 337 pipe, (long long)diff_ns, framedur_ns); 338 339 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 340 341 if (diff == 0 && in_vblank_irq) 342 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 343 pipe); 344 } else { 345 /* some kind of default for drivers w/o accurate vbl timestamping */ 346 diff = in_vblank_irq ? 1 : 0; 347 } 348 349 /* 350 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 351 * interval? If so then vblank irqs keep running and it will likely 352 * happen that the hardware vblank counter is not trustworthy as it 353 * might reset at some point in that interval and vblank timestamps 354 * are not trustworthy either in that interval. Iow. this can result 355 * in a bogus diff >> 1 which must be avoided as it would cause 356 * random large forward jumps of the software vblank counter. 357 */ 358 if (diff > 1 && (vblank->inmodeset & 0x2)) { 359 drm_dbg_vbl(dev, 360 "clamping vblank bump to 1 on crtc %u: diffr=%u" 361 " due to pre-modeset.\n", pipe, diff); 362 diff = 1; 363 } 364 365 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 366 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 367 pipe, (unsigned long long)atomic64_read(&vblank->count), 368 diff, cur_vblank, vblank->last); 369 370 if (diff == 0) { 371 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 372 return; 373 } 374 375 /* 376 * Only reinitialize corresponding vblank timestamp if high-precision query 377 * available and didn't fail, or we were called from the vblank interrupt. 378 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 379 * for now, to mark the vblanktimestamp as invalid. 380 */ 381 if (!rc && !in_vblank_irq) 382 t_vblank = 0; 383 384 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 385 } 386 387 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 388 { 389 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 390 u64 count; 391 392 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 393 return 0; 394 395 count = atomic64_read(&vblank->count); 396 397 /* 398 * This read barrier corresponds to the implicit write barrier of the 399 * write seqlock in store_vblank(). Note that this is the only place 400 * where we need an explicit barrier, since all other access goes 401 * through drm_vblank_count_and_time(), which already has the required 402 * read barrier curtesy of the read seqlock. 403 */ 404 smp_rmb(); 405 406 return count; 407 } 408 409 /** 410 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 411 * @crtc: which counter to retrieve 412 * 413 * This function is similar to drm_crtc_vblank_count() but this function 414 * interpolates to handle a race with vblank interrupts using the high precision 415 * timestamping support. 416 * 417 * This is mostly useful for hardware that can obtain the scanout position, but 418 * doesn't have a hardware frame counter. 419 */ 420 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 421 { 422 struct drm_device *dev = crtc->dev; 423 unsigned int pipe = drm_crtc_index(crtc); 424 u64 vblank; 425 unsigned long flags; 426 427 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 428 !crtc->funcs->get_vblank_timestamp, 429 "This function requires support for accurate vblank timestamps."); 430 431 spin_lock_irqsave(&dev->vblank_time_lock, flags); 432 433 drm_update_vblank_count(dev, pipe, false); 434 vblank = drm_vblank_count(dev, pipe); 435 436 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 437 438 return vblank; 439 } 440 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 441 442 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 443 { 444 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 445 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 446 447 if (drm_WARN_ON(dev, !crtc)) 448 return; 449 450 if (crtc->funcs->disable_vblank) 451 crtc->funcs->disable_vblank(crtc); 452 } 453 } 454 455 /* 456 * Disable vblank irq's on crtc, make sure that last vblank count 457 * of hardware and corresponding consistent software vblank counter 458 * are preserved, even if there are any spurious vblank irq's after 459 * disable. 460 */ 461 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 462 { 463 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 464 unsigned long irqflags; 465 466 assert_spin_locked(&dev->vbl_lock); 467 468 /* Prevent vblank irq processing while disabling vblank irqs, 469 * so no updates of timestamps or count can happen after we've 470 * disabled. Needed to prevent races in case of delayed irq's. 471 */ 472 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 473 474 /* 475 * Update vblank count and disable vblank interrupts only if the 476 * interrupts were enabled. This avoids calling the ->disable_vblank() 477 * operation in atomic context with the hardware potentially runtime 478 * suspended. 479 */ 480 if (!vblank->enabled) 481 goto out; 482 483 /* 484 * Update the count and timestamp to maintain the 485 * appearance that the counter has been ticking all along until 486 * this time. This makes the count account for the entire time 487 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 488 */ 489 drm_update_vblank_count(dev, pipe, false); 490 __disable_vblank(dev, pipe); 491 vblank->enabled = false; 492 493 out: 494 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 495 } 496 497 static void vblank_disable_fn(struct timer_list *t) 498 { 499 struct drm_vblank_crtc *vblank = timer_container_of(vblank, t, 500 disable_timer); 501 struct drm_device *dev = vblank->dev; 502 unsigned int pipe = vblank->pipe; 503 unsigned long irqflags; 504 505 spin_lock_irqsave(&dev->vbl_lock, irqflags); 506 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 507 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 508 drm_vblank_disable_and_save(dev, pipe); 509 } 510 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 511 } 512 513 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 514 { 515 struct drm_vblank_crtc *vblank = ptr; 516 517 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 518 drm_core_check_feature(dev, DRIVER_MODESET)); 519 520 if (vblank->vblank_timer.crtc) 521 hrtimer_cancel(&vblank->vblank_timer.timer); 522 523 drm_vblank_destroy_worker(vblank); 524 timer_delete_sync(&vblank->disable_timer); 525 } 526 527 /** 528 * drm_vblank_init - initialize vblank support 529 * @dev: DRM device 530 * @num_crtcs: number of CRTCs supported by @dev 531 * 532 * This function initializes vblank support for @num_crtcs display pipelines. 533 * Cleanup is handled automatically through a cleanup function added with 534 * drmm_add_action_or_reset(). 535 * 536 * Returns: 537 * Zero on success or a negative error code on failure. 538 */ 539 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 540 { 541 int ret; 542 unsigned int i; 543 544 spin_lock_init(&dev->vbl_lock); 545 spin_lock_init(&dev->vblank_time_lock); 546 547 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 548 if (!dev->vblank) 549 return -ENOMEM; 550 551 dev->num_crtcs = num_crtcs; 552 553 for (i = 0; i < num_crtcs; i++) { 554 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, i); 555 556 vblank->dev = dev; 557 vblank->pipe = i; 558 init_waitqueue_head(&vblank->queue); 559 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 560 seqlock_init(&vblank->seqlock); 561 562 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 563 vblank); 564 if (ret) 565 return ret; 566 567 ret = drm_vblank_worker_init(vblank); 568 if (ret) 569 return ret; 570 } 571 572 return 0; 573 } 574 EXPORT_SYMBOL(drm_vblank_init); 575 576 /** 577 * drm_dev_has_vblank - test if vblanking has been initialized for 578 * a device 579 * @dev: the device 580 * 581 * Drivers may call this function to test if vblank support is 582 * initialized for a device. For most hardware this means that vblanking 583 * can also be enabled. 584 * 585 * Atomic helpers use this function to initialize 586 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 587 * 588 * Returns: 589 * True if vblanking has been initialized for the given device, false 590 * otherwise. 591 */ 592 bool drm_dev_has_vblank(const struct drm_device *dev) 593 { 594 return dev->num_crtcs != 0; 595 } 596 EXPORT_SYMBOL(drm_dev_has_vblank); 597 598 /** 599 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 600 * @crtc: which CRTC's vblank waitqueue to retrieve 601 * 602 * This function returns a pointer to the vblank waitqueue for the CRTC. 603 * Drivers can use this to implement vblank waits using wait_event() and related 604 * functions. 605 */ 606 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 607 { 608 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 609 610 return &vblank->queue; 611 } 612 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 613 614 615 /** 616 * drm_calc_timestamping_constants - calculate vblank timestamp constants 617 * @crtc: drm_crtc whose timestamp constants should be updated. 618 * @mode: display mode containing the scanout timings 619 * 620 * Calculate and store various constants which are later needed by vblank and 621 * swap-completion timestamping, e.g, by 622 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 623 * CRTC's true scanout timing, so they take things like panel scaling or 624 * other adjustments into account. 625 */ 626 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 627 const struct drm_display_mode *mode) 628 { 629 struct drm_device *dev = crtc->dev; 630 unsigned int pipe = drm_crtc_index(crtc); 631 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 632 int linedur_ns = 0, framedur_ns = 0; 633 int dotclock = mode->crtc_clock; 634 635 if (!drm_dev_has_vblank(dev)) 636 return; 637 638 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 639 return; 640 641 /* Valid dotclock? */ 642 if (dotclock > 0) { 643 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 644 645 /* 646 * Convert scanline length in pixels and video 647 * dot clock to line duration and frame duration 648 * in nanoseconds: 649 */ 650 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 651 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 652 653 /* 654 * Fields of interlaced scanout modes are only half a frame duration. 655 */ 656 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 657 framedur_ns /= 2; 658 } else { 659 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 660 crtc->base.id); 661 } 662 663 vblank->linedur_ns = linedur_ns; 664 vblank->framedur_ns = framedur_ns; 665 drm_mode_copy(&vblank->hwmode, mode); 666 667 drm_dbg_core(dev, 668 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 669 crtc->base.id, mode->crtc_htotal, 670 mode->crtc_vtotal, mode->crtc_vdisplay); 671 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 672 crtc->base.id, dotclock, framedur_ns, linedur_ns); 673 } 674 EXPORT_SYMBOL(drm_calc_timestamping_constants); 675 676 /** 677 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 678 * timestamp helper 679 * @crtc: CRTC whose vblank timestamp to retrieve 680 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 681 * On return contains true maximum error of timestamp 682 * @vblank_time: Pointer to time which should receive the timestamp 683 * @in_vblank_irq: 684 * True when called from drm_crtc_handle_vblank(). Some drivers 685 * need to apply some workarounds for gpu-specific vblank irq quirks 686 * if flag is set. 687 * @get_scanout_position: 688 * Callback function to retrieve the scanout position. See 689 * @struct drm_crtc_helper_funcs.get_scanout_position. 690 * 691 * Implements calculation of exact vblank timestamps from given drm_display_mode 692 * timings and current video scanout position of a CRTC. 693 * 694 * The current implementation only handles standard video modes. For double scan 695 * and interlaced modes the driver is supposed to adjust the hardware mode 696 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 697 * match the scanout position reported. 698 * 699 * Note that atomic drivers must call drm_calc_timestamping_constants() before 700 * enabling a CRTC. The atomic helpers already take care of that in 701 * drm_atomic_helper_calc_timestamping_constants(). 702 * 703 * Returns: 704 * Returns true on success, and false on failure, i.e. when no accurate 705 * timestamp could be acquired. 706 */ 707 bool 708 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 709 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 710 bool in_vblank_irq, 711 drm_vblank_get_scanout_position_func get_scanout_position) 712 { 713 struct drm_device *dev = crtc->dev; 714 unsigned int pipe = crtc->index; 715 struct timespec64 ts_etime, ts_vblank_time; 716 ktime_t stime, etime; 717 bool vbl_status; 718 const struct drm_display_mode *mode; 719 int vpos, hpos, i; 720 int delta_ns, duration_ns; 721 722 if (pipe >= dev->num_crtcs) { 723 drm_err(dev, "Invalid crtc %u\n", pipe); 724 return false; 725 } 726 727 /* Scanout position query not supported? Should not happen. */ 728 if (!get_scanout_position) { 729 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 730 return false; 731 } 732 733 if (drm_drv_uses_atomic_modeset(dev)) { 734 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 735 736 mode = &vblank->hwmode; 737 } else { 738 mode = &crtc->hwmode; 739 } 740 741 /* If mode timing undefined, just return as no-op: 742 * Happens during initial modesetting of a crtc. 743 */ 744 if (mode->crtc_clock == 0) { 745 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 746 pipe); 747 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 748 return false; 749 } 750 751 /* Get current scanout position with system timestamp. 752 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 753 * if single query takes longer than max_error nanoseconds. 754 * 755 * This guarantees a tight bound on maximum error if 756 * code gets preempted or delayed for some reason. 757 */ 758 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 759 /* 760 * Get vertical and horizontal scanout position vpos, hpos, 761 * and bounding timestamps stime, etime, pre/post query. 762 */ 763 vbl_status = get_scanout_position(crtc, in_vblank_irq, 764 &vpos, &hpos, 765 &stime, &etime, 766 mode); 767 768 /* Return as no-op if scanout query unsupported or failed. */ 769 if (!vbl_status) { 770 drm_dbg_core(dev, 771 "crtc %u : scanoutpos query failed.\n", 772 pipe); 773 return false; 774 } 775 776 /* Compute uncertainty in timestamp of scanout position query. */ 777 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 778 779 /* Accept result with < max_error nsecs timing uncertainty. */ 780 if (duration_ns <= *max_error) 781 break; 782 } 783 784 /* Noisy system timing? */ 785 if (i == DRM_TIMESTAMP_MAXRETRIES) { 786 drm_dbg_core(dev, 787 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 788 pipe, duration_ns / 1000, *max_error / 1000, i); 789 } 790 791 /* Return upper bound of timestamp precision error. */ 792 *max_error = duration_ns; 793 794 /* Convert scanout position into elapsed time at raw_time query 795 * since start of scanout at first display scanline. delta_ns 796 * can be negative if start of scanout hasn't happened yet. 797 */ 798 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 799 mode->crtc_clock); 800 801 /* Subtract time delta from raw timestamp to get final 802 * vblank_time timestamp for end of vblank. 803 */ 804 *vblank_time = ktime_sub_ns(etime, delta_ns); 805 806 if (!drm_debug_enabled(DRM_UT_VBL)) 807 return true; 808 809 ts_etime = ktime_to_timespec64(etime); 810 ts_vblank_time = ktime_to_timespec64(*vblank_time); 811 812 drm_dbg_vbl(dev, 813 "crtc %u : v p(%d,%d)@ %ptSp -> %ptSp [e %d us, %d rep]\n", 814 pipe, hpos, vpos, &ts_etime, &ts_vblank_time, 815 duration_ns / 1000, i); 816 817 return true; 818 } 819 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 820 821 /** 822 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 823 * helper 824 * @crtc: CRTC whose vblank timestamp to retrieve 825 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 826 * On return contains true maximum error of timestamp 827 * @vblank_time: Pointer to time which should receive the timestamp 828 * @in_vblank_irq: 829 * True when called from drm_crtc_handle_vblank(). Some drivers 830 * need to apply some workarounds for gpu-specific vblank irq quirks 831 * if flag is set. 832 * 833 * Implements calculation of exact vblank timestamps from given drm_display_mode 834 * timings and current video scanout position of a CRTC. This can be directly 835 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 836 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 837 * 838 * The current implementation only handles standard video modes. For double scan 839 * and interlaced modes the driver is supposed to adjust the hardware mode 840 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 841 * match the scanout position reported. 842 * 843 * Note that atomic drivers must call drm_calc_timestamping_constants() before 844 * enabling a CRTC. The atomic helpers already take care of that in 845 * drm_atomic_helper_calc_timestamping_constants(). 846 * 847 * Returns: 848 * Returns true on success, and false on failure, i.e. when no accurate 849 * timestamp could be acquired. 850 */ 851 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 852 int *max_error, 853 ktime_t *vblank_time, 854 bool in_vblank_irq) 855 { 856 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 857 crtc, max_error, vblank_time, in_vblank_irq, 858 crtc->helper_private->get_scanout_position); 859 } 860 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 861 862 /** 863 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most 864 * recent vblank interval 865 * @crtc: CRTC whose vblank timestamp to retrieve 866 * @tvblank: Pointer to target time which should receive the timestamp 867 * @in_vblank_irq: 868 * True when called from drm_crtc_handle_vblank(). Some drivers 869 * need to apply some workarounds for gpu-specific vblank irq quirks 870 * if flag is set. 871 * 872 * Fetches the system timestamp corresponding to the time of the most recent 873 * vblank interval on specified CRTC. May call into kms-driver to 874 * compute the timestamp with a high-precision GPU specific method. 875 * 876 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 877 * call, i.e., it isn't very precisely locked to the true vblank. 878 * 879 * Returns: 880 * True if timestamp is considered to be very precise, false otherwise. 881 */ 882 static bool 883 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank, 884 bool in_vblank_irq) 885 { 886 bool ret = false; 887 888 /* Define requested maximum error on timestamps (nanoseconds). */ 889 int max_error = (int) drm_timestamp_precision * 1000; 890 891 /* Query driver if possible and precision timestamping enabled. */ 892 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 893 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 894 tvblank, in_vblank_irq); 895 } 896 897 /* GPU high precision timestamp query unsupported or failed. 898 * Return current monotonic/gettimeofday timestamp as best estimate. 899 */ 900 if (!ret) 901 *tvblank = ktime_get(); 902 903 return ret; 904 } 905 906 static bool 907 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 908 ktime_t *tvblank, bool in_vblank_irq) 909 { 910 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 911 912 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq); 913 } 914 915 /** 916 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 917 * @crtc: which counter to retrieve 918 * 919 * Fetches the "cooked" vblank count value that represents the number of 920 * vblank events since the system was booted, including lost events due to 921 * modesetting activity. Note that this timer isn't correct against a racing 922 * vblank interrupt (since it only reports the software vblank counter), see 923 * drm_crtc_accurate_vblank_count() for such use-cases. 924 * 925 * Note that for a given vblank counter value drm_crtc_handle_vblank() 926 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 927 * provide a barrier: Any writes done before calling 928 * drm_crtc_handle_vblank() will be visible to callers of the later 929 * functions, if the vblank count is the same or a later one. 930 * 931 * See also &drm_vblank_crtc.count. 932 * 933 * Returns: 934 * The software vblank counter. 935 */ 936 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 937 { 938 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 939 } 940 EXPORT_SYMBOL(drm_crtc_vblank_count); 941 942 /** 943 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 944 * system timestamp corresponding to that vblank counter value. 945 * @dev: DRM device 946 * @pipe: index of CRTC whose counter to retrieve 947 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 948 * 949 * Fetches the "cooked" vblank count value that represents the number of 950 * vblank events since the system was booted, including lost events due to 951 * modesetting activity. Returns corresponding system timestamp of the time 952 * of the vblank interval that corresponds to the current vblank counter value. 953 * 954 * This is the legacy version of drm_crtc_vblank_count_and_time(). 955 */ 956 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 957 ktime_t *vblanktime) 958 { 959 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 960 u64 vblank_count; 961 unsigned int seq; 962 963 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 964 *vblanktime = 0; 965 return 0; 966 } 967 968 do { 969 seq = read_seqbegin(&vblank->seqlock); 970 vblank_count = atomic64_read(&vblank->count); 971 *vblanktime = vblank->time; 972 } while (read_seqretry(&vblank->seqlock, seq)); 973 974 return vblank_count; 975 } 976 977 /** 978 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 979 * and the system timestamp corresponding to that vblank counter value 980 * @crtc: which counter to retrieve 981 * @vblanktime: Pointer to time to receive the vblank timestamp. 982 * 983 * Fetches the "cooked" vblank count value that represents the number of 984 * vblank events since the system was booted, including lost events due to 985 * modesetting activity. Returns corresponding system timestamp of the time 986 * of the vblank interval that corresponds to the current vblank counter value. 987 * 988 * Note that for a given vblank counter value drm_crtc_handle_vblank() 989 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 990 * provide a barrier: Any writes done before calling 991 * drm_crtc_handle_vblank() will be visible to callers of the later 992 * functions, if the vblank count is the same or a later one. 993 * 994 * See also &drm_vblank_crtc.count. 995 */ 996 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 997 ktime_t *vblanktime) 998 { 999 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 1000 vblanktime); 1001 } 1002 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 1003 1004 /** 1005 * drm_crtc_next_vblank_start - calculate the time of the next vblank 1006 * @crtc: the crtc for which to calculate next vblank time 1007 * @vblanktime: pointer to time to receive the next vblank timestamp. 1008 * 1009 * Calculate the expected time of the start of the next vblank period, 1010 * based on time of previous vblank and frame duration 1011 */ 1012 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime) 1013 { 1014 struct drm_vblank_crtc *vblank; 1015 struct drm_display_mode *mode; 1016 u64 vblank_start; 1017 1018 if (!drm_dev_has_vblank(crtc->dev)) 1019 return -EINVAL; 1020 1021 vblank = drm_crtc_vblank_crtc(crtc); 1022 mode = &vblank->hwmode; 1023 1024 if (!vblank->framedur_ns || !vblank->linedur_ns) 1025 return -EINVAL; 1026 1027 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false)) 1028 return -EINVAL; 1029 1030 vblank_start = DIV_ROUND_DOWN_ULL( 1031 (u64)vblank->framedur_ns * mode->crtc_vblank_start, 1032 mode->crtc_vtotal); 1033 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start)); 1034 1035 return 0; 1036 } 1037 EXPORT_SYMBOL(drm_crtc_next_vblank_start); 1038 1039 static void send_vblank_event(struct drm_device *dev, 1040 struct drm_pending_vblank_event *e, 1041 u64 seq, ktime_t now) 1042 { 1043 struct timespec64 tv; 1044 1045 switch (e->event.base.type) { 1046 case DRM_EVENT_VBLANK: 1047 case DRM_EVENT_FLIP_COMPLETE: 1048 tv = ktime_to_timespec64(now); 1049 e->event.vbl.sequence = seq; 1050 /* 1051 * e->event is a user space structure, with hardcoded unsigned 1052 * 32-bit seconds/microseconds. This is safe as we always use 1053 * monotonic timestamps since linux-4.15 1054 */ 1055 e->event.vbl.tv_sec = tv.tv_sec; 1056 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1057 break; 1058 case DRM_EVENT_CRTC_SEQUENCE: 1059 if (seq) 1060 e->event.seq.sequence = seq; 1061 e->event.seq.time_ns = ktime_to_ns(now); 1062 break; 1063 } 1064 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1065 /* 1066 * Use the same timestamp for any associated fence signal to avoid 1067 * mismatch in timestamps for vsync & fence events triggered by the 1068 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1069 * retire-fence timestamp to match exactly with HW vsync as it uses it 1070 * for its software vsync modeling. 1071 */ 1072 drm_send_event_timestamp_locked(dev, &e->base, now); 1073 } 1074 1075 /** 1076 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1077 * @crtc: the source CRTC of the vblank event 1078 * @e: the event to send 1079 * 1080 * A lot of drivers need to generate vblank events for the very next vblank 1081 * interrupt. For example when the page flip interrupt happens when the page 1082 * flip gets armed, but not when it actually executes within the next vblank 1083 * period. This helper function implements exactly the required vblank arming 1084 * behaviour. 1085 * 1086 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1087 * atomic commit must ensure that the next vblank happens at exactly the same 1088 * time as the atomic commit is committed to the hardware. This function itself 1089 * does **not** protect against the next vblank interrupt racing with either this 1090 * function call or the atomic commit operation. A possible sequence could be: 1091 * 1092 * 1. Driver commits new hardware state into vblank-synchronized registers. 1093 * 2. A vblank happens, committing the hardware state. Also the corresponding 1094 * vblank interrupt is fired off and fully processed by the interrupt 1095 * handler. 1096 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1097 * 4. The event is only send out for the next vblank, which is wrong. 1098 * 1099 * An equivalent race can happen when the driver calls 1100 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1101 * 1102 * The only way to make this work safely is to prevent the vblank from firing 1103 * (and the hardware from committing anything else) until the entire atomic 1104 * commit sequence has run to completion. If the hardware does not have such a 1105 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1106 * Instead drivers need to manually send out the event from their interrupt 1107 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1108 * possible race with the hardware committing the atomic update. 1109 * 1110 * Caller must hold a vblank reference for the event @e acquired by a 1111 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1112 */ 1113 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1114 struct drm_pending_vblank_event *e) 1115 { 1116 struct drm_device *dev = crtc->dev; 1117 unsigned int pipe = drm_crtc_index(crtc); 1118 1119 assert_spin_locked(&dev->event_lock); 1120 1121 e->pipe = pipe; 1122 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1123 list_add_tail(&e->base.link, &dev->vblank_event_list); 1124 } 1125 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1126 1127 /** 1128 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1129 * @crtc: the source CRTC of the vblank event 1130 * @e: the event to send 1131 * 1132 * Updates sequence # and timestamp on event for the most recently processed 1133 * vblank, and sends it to userspace. Caller must hold event lock. 1134 * 1135 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1136 * situation, especially to send out events for atomic commit operations. 1137 */ 1138 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1139 struct drm_pending_vblank_event *e) 1140 { 1141 struct drm_device *dev = crtc->dev; 1142 u64 seq; 1143 unsigned int pipe = drm_crtc_index(crtc); 1144 ktime_t now; 1145 1146 if (drm_dev_has_vblank(dev)) { 1147 seq = drm_vblank_count_and_time(dev, pipe, &now); 1148 } else { 1149 seq = 0; 1150 1151 now = ktime_get(); 1152 } 1153 e->pipe = pipe; 1154 send_vblank_event(dev, e, seq, now); 1155 } 1156 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1157 1158 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1159 { 1160 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1161 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1162 1163 if (drm_WARN_ON(dev, !crtc)) 1164 return 0; 1165 1166 if (crtc->funcs->enable_vblank) 1167 return crtc->funcs->enable_vblank(crtc); 1168 } 1169 1170 return -EINVAL; 1171 } 1172 1173 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1174 { 1175 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1176 int ret = 0; 1177 1178 assert_spin_locked(&dev->vbl_lock); 1179 1180 spin_lock(&dev->vblank_time_lock); 1181 1182 if (!vblank->enabled) { 1183 /* 1184 * Enable vblank irqs under vblank_time_lock protection. 1185 * All vblank count & timestamp updates are held off 1186 * until we are done reinitializing master counter and 1187 * timestamps. Filtercode in drm_handle_vblank() will 1188 * prevent double-accounting of same vblank interval. 1189 */ 1190 ret = __enable_vblank(dev, pipe); 1191 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1192 pipe, ret); 1193 if (ret) { 1194 atomic_dec(&vblank->refcount); 1195 } else { 1196 drm_update_vblank_count(dev, pipe, 0); 1197 /* drm_update_vblank_count() includes a wmb so we just 1198 * need to ensure that the compiler emits the write 1199 * to mark the vblank as enabled after the call 1200 * to drm_update_vblank_count(). 1201 */ 1202 WRITE_ONCE(vblank->enabled, true); 1203 } 1204 } 1205 1206 spin_unlock(&dev->vblank_time_lock); 1207 1208 return ret; 1209 } 1210 1211 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1212 { 1213 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1214 unsigned long irqflags; 1215 int ret = 0; 1216 1217 if (!drm_dev_has_vblank(dev)) 1218 return -EINVAL; 1219 1220 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1221 return -EINVAL; 1222 1223 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1224 /* Going from 0->1 means we have to enable interrupts again */ 1225 if (atomic_add_return(1, &vblank->refcount) == 1) { 1226 ret = drm_vblank_enable(dev, pipe); 1227 } else { 1228 if (!vblank->enabled) { 1229 atomic_dec(&vblank->refcount); 1230 ret = -EINVAL; 1231 } 1232 } 1233 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1234 1235 return ret; 1236 } 1237 1238 /** 1239 * drm_crtc_vblank_get - get a reference count on vblank events 1240 * @crtc: which CRTC to own 1241 * 1242 * Acquire a reference count on vblank events to avoid having them disabled 1243 * while in use. 1244 * 1245 * Returns: 1246 * Zero on success or a negative error code on failure. 1247 */ 1248 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1249 { 1250 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1251 } 1252 EXPORT_SYMBOL(drm_crtc_vblank_get); 1253 1254 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1255 { 1256 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1257 int vblank_offdelay = vblank->config.offdelay_ms; 1258 1259 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1260 return; 1261 1262 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1263 return; 1264 1265 /* Last user schedules interrupt disable */ 1266 if (atomic_dec_and_test(&vblank->refcount)) { 1267 if (!vblank_offdelay) 1268 return; 1269 else if (vblank_offdelay < 0) 1270 vblank_disable_fn(&vblank->disable_timer); 1271 else if (!vblank->config.disable_immediate) 1272 mod_timer(&vblank->disable_timer, 1273 jiffies + ((vblank_offdelay * HZ) / 1000)); 1274 } 1275 } 1276 1277 /** 1278 * drm_crtc_vblank_put - give up ownership of vblank events 1279 * @crtc: which counter to give up 1280 * 1281 * Release ownership of a given vblank counter, turning off interrupts 1282 * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms 1283 * milliseconds. 1284 */ 1285 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1286 { 1287 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1288 } 1289 EXPORT_SYMBOL(drm_crtc_vblank_put); 1290 1291 /** 1292 * drm_crtc_wait_one_vblank - wait for one vblank 1293 * @crtc: DRM crtc 1294 * 1295 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1296 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1297 * due to lack of driver support or because the crtc is off. 1298 * 1299 * Returns: 0 on success, negative error on failures. 1300 */ 1301 int drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1302 { 1303 struct drm_device *dev = crtc->dev; 1304 int pipe = drm_crtc_index(crtc); 1305 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1306 int ret; 1307 u64 last; 1308 1309 ret = drm_vblank_get(dev, pipe); 1310 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1311 pipe, ret)) 1312 return ret; 1313 1314 last = drm_vblank_count(dev, pipe); 1315 1316 ret = wait_event_timeout(vblank->queue, 1317 last != drm_vblank_count(dev, pipe), 1318 msecs_to_jiffies(1000)); 1319 1320 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1321 1322 drm_vblank_put(dev, pipe); 1323 1324 return ret ? 0 : -ETIMEDOUT; 1325 } 1326 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1327 1328 /** 1329 * drm_crtc_vblank_off - disable vblank events on a CRTC 1330 * @crtc: CRTC in question 1331 * 1332 * Drivers can use this function to shut down the vblank interrupt handling when 1333 * disabling a crtc. This function ensures that the latest vblank frame count is 1334 * stored so that drm_vblank_on can restore it again. 1335 * 1336 * Drivers must use this function when the hardware vblank counter can get 1337 * reset, e.g. when suspending or disabling the @crtc in general. 1338 */ 1339 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1340 { 1341 struct drm_device *dev = crtc->dev; 1342 unsigned int pipe = drm_crtc_index(crtc); 1343 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1344 struct drm_pending_vblank_event *e, *t; 1345 ktime_t now; 1346 u64 seq; 1347 1348 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1349 return; 1350 1351 /* 1352 * Grab event_lock early to prevent vblank work from being scheduled 1353 * while we're in the middle of shutting down vblank interrupts 1354 */ 1355 spin_lock_irq(&dev->event_lock); 1356 1357 spin_lock(&dev->vbl_lock); 1358 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1359 pipe, vblank->enabled, vblank->inmodeset); 1360 1361 /* Avoid redundant vblank disables without previous 1362 * drm_crtc_vblank_on(). */ 1363 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1364 drm_vblank_disable_and_save(dev, pipe); 1365 1366 wake_up(&vblank->queue); 1367 1368 /* 1369 * Prevent subsequent drm_vblank_get() from re-enabling 1370 * the vblank interrupt by bumping the refcount. 1371 */ 1372 if (!vblank->inmodeset) { 1373 atomic_inc(&vblank->refcount); 1374 vblank->inmodeset = 1; 1375 } 1376 spin_unlock(&dev->vbl_lock); 1377 1378 /* Send any queued vblank events, lest the natives grow disquiet */ 1379 seq = drm_vblank_count_and_time(dev, pipe, &now); 1380 1381 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1382 if (e->pipe != pipe) 1383 continue; 1384 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1385 "wanted %llu, current %llu\n", 1386 e->sequence, seq); 1387 list_del(&e->base.link); 1388 drm_vblank_put(dev, pipe); 1389 send_vblank_event(dev, e, seq, now); 1390 } 1391 1392 /* Cancel any leftover pending vblank work */ 1393 drm_vblank_cancel_pending_works(vblank); 1394 1395 spin_unlock_irq(&dev->event_lock); 1396 1397 /* Will be reset by the modeset helpers when re-enabling the crtc by 1398 * calling drm_calc_timestamping_constants(). */ 1399 vblank->hwmode.crtc_clock = 0; 1400 1401 /* Wait for any vblank work that's still executing to finish */ 1402 drm_vblank_flush_worker(vblank); 1403 } 1404 EXPORT_SYMBOL(drm_crtc_vblank_off); 1405 1406 /** 1407 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1408 * @crtc: CRTC in question 1409 * 1410 * Drivers can use this function to reset the vblank state to off at load time. 1411 * Drivers should use this together with the drm_crtc_vblank_off() and 1412 * drm_crtc_vblank_on() functions. The difference compared to 1413 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1414 * and hence doesn't need to call any driver hooks. 1415 * 1416 * This is useful for recovering driver state e.g. on driver load, or on resume. 1417 */ 1418 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1419 { 1420 struct drm_device *dev = crtc->dev; 1421 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1422 1423 spin_lock_irq(&dev->vbl_lock); 1424 /* 1425 * Prevent subsequent drm_vblank_get() from enabling the vblank 1426 * interrupt by bumping the refcount. 1427 */ 1428 if (!vblank->inmodeset) { 1429 atomic_inc(&vblank->refcount); 1430 vblank->inmodeset = 1; 1431 } 1432 spin_unlock_irq(&dev->vbl_lock); 1433 1434 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1435 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1436 } 1437 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1438 1439 /** 1440 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1441 * @crtc: CRTC in question 1442 * @max_vblank_count: max hardware vblank counter value 1443 * 1444 * Update the maximum hardware vblank counter value for @crtc 1445 * at runtime. Useful for hardware where the operation of the 1446 * hardware vblank counter depends on the currently active 1447 * display configuration. 1448 * 1449 * For example, if the hardware vblank counter does not work 1450 * when a specific connector is active the maximum can be set 1451 * to zero. And when that specific connector isn't active the 1452 * maximum can again be set to the appropriate non-zero value. 1453 * 1454 * If used, must be called before drm_vblank_on(). 1455 */ 1456 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1457 u32 max_vblank_count) 1458 { 1459 struct drm_device *dev = crtc->dev; 1460 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1461 1462 drm_WARN_ON(dev, dev->max_vblank_count); 1463 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1464 1465 vblank->max_vblank_count = max_vblank_count; 1466 } 1467 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1468 1469 /** 1470 * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom 1471 * configuration options 1472 * @crtc: CRTC in question 1473 * @config: Vblank configuration value 1474 * 1475 * See drm_crtc_vblank_on(). In addition, this function allows you to provide a 1476 * custom vblank configuration for a given CRTC. 1477 * 1478 * Note that @config is copied, the pointer does not need to stay valid beyond 1479 * this function call. For details of the parameters see 1480 * struct drm_vblank_crtc_config. 1481 */ 1482 void drm_crtc_vblank_on_config(struct drm_crtc *crtc, 1483 const struct drm_vblank_crtc_config *config) 1484 { 1485 struct drm_device *dev = crtc->dev; 1486 unsigned int pipe = drm_crtc_index(crtc); 1487 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1488 1489 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1490 return; 1491 1492 spin_lock_irq(&dev->vbl_lock); 1493 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1494 pipe, vblank->enabled, vblank->inmodeset); 1495 1496 vblank->config = *config; 1497 1498 /* Drop our private "prevent drm_vblank_get" refcount */ 1499 if (vblank->inmodeset) { 1500 atomic_dec(&vblank->refcount); 1501 vblank->inmodeset = 0; 1502 } 1503 1504 drm_reset_vblank_timestamp(dev, pipe); 1505 1506 /* 1507 * re-enable interrupts if there are users left, or the 1508 * user wishes vblank interrupts to be enabled all the time. 1509 */ 1510 if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms) 1511 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1512 spin_unlock_irq(&dev->vbl_lock); 1513 } 1514 EXPORT_SYMBOL(drm_crtc_vblank_on_config); 1515 1516 /** 1517 * drm_crtc_vblank_on - enable vblank events on a CRTC 1518 * @crtc: CRTC in question 1519 * 1520 * This functions restores the vblank interrupt state captured with 1521 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1522 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1523 * unbalanced and so can also be unconditionally called in driver load code to 1524 * reflect the current hardware state of the crtc. 1525 * 1526 * Note that unlike in drm_crtc_vblank_on_config(), default values are used. 1527 */ 1528 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1529 { 1530 const struct drm_vblank_crtc_config config = { 1531 .offdelay_ms = drm_vblank_offdelay, 1532 .disable_immediate = crtc->dev->vblank_disable_immediate 1533 }; 1534 1535 drm_crtc_vblank_on_config(crtc, &config); 1536 } 1537 EXPORT_SYMBOL(drm_crtc_vblank_on); 1538 1539 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1540 { 1541 ktime_t t_vblank; 1542 struct drm_vblank_crtc *vblank; 1543 int framedur_ns; 1544 u64 diff_ns; 1545 u32 cur_vblank, diff = 1; 1546 int count = DRM_TIMESTAMP_MAXRETRIES; 1547 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1548 1549 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1550 return; 1551 1552 assert_spin_locked(&dev->vbl_lock); 1553 assert_spin_locked(&dev->vblank_time_lock); 1554 1555 vblank = drm_vblank_crtc(dev, pipe); 1556 drm_WARN_ONCE(dev, 1557 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1558 "Cannot compute missed vblanks without frame duration\n"); 1559 framedur_ns = vblank->framedur_ns; 1560 1561 do { 1562 cur_vblank = __get_vblank_counter(dev, pipe); 1563 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1564 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1565 1566 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1567 if (framedur_ns) 1568 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1569 1570 1571 drm_dbg_vbl(dev, 1572 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1573 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1574 vblank->last = (cur_vblank - diff) & max_vblank_count; 1575 } 1576 1577 /** 1578 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1579 * @crtc: CRTC in question 1580 * 1581 * Power manamement features can cause frame counter resets between vblank 1582 * disable and enable. Drivers can use this function in their 1583 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1584 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1585 * vblank counter. 1586 * 1587 * Note that drivers must have race-free high-precision timestamping support, 1588 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1589 * &drm_vblank_crtc_config.disable_immediate must be set to indicate the 1590 * time-stamping functions are race-free against vblank hardware counter 1591 * increments. 1592 */ 1593 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1594 { 1595 struct drm_device *dev = crtc->dev; 1596 unsigned int pipe = drm_crtc_index(crtc); 1597 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1598 1599 drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp); 1600 drm_WARN_ON_ONCE(dev, vblank->inmodeset); 1601 drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate); 1602 1603 drm_vblank_restore(dev, pipe); 1604 } 1605 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1606 1607 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1608 u64 req_seq, 1609 union drm_wait_vblank *vblwait, 1610 struct drm_file *file_priv) 1611 { 1612 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1613 struct drm_pending_vblank_event *e; 1614 ktime_t now; 1615 u64 seq; 1616 int ret; 1617 1618 e = kzalloc(sizeof(*e), GFP_KERNEL); 1619 if (e == NULL) { 1620 ret = -ENOMEM; 1621 goto err_put; 1622 } 1623 1624 e->pipe = pipe; 1625 e->event.base.type = DRM_EVENT_VBLANK; 1626 e->event.base.length = sizeof(e->event.vbl); 1627 e->event.vbl.user_data = vblwait->request.signal; 1628 e->event.vbl.crtc_id = 0; 1629 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1630 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1631 1632 if (crtc) 1633 e->event.vbl.crtc_id = crtc->base.id; 1634 } 1635 1636 spin_lock_irq(&dev->event_lock); 1637 1638 /* 1639 * drm_crtc_vblank_off() might have been called after we called 1640 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1641 * vblank disable, so no need for further locking. The reference from 1642 * drm_vblank_get() protects against vblank disable from another source. 1643 */ 1644 if (!READ_ONCE(vblank->enabled)) { 1645 ret = -EINVAL; 1646 goto err_unlock; 1647 } 1648 1649 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1650 &e->event.base); 1651 1652 if (ret) 1653 goto err_unlock; 1654 1655 seq = drm_vblank_count_and_time(dev, pipe, &now); 1656 1657 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1658 req_seq, seq, pipe); 1659 1660 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1661 1662 e->sequence = req_seq; 1663 if (drm_vblank_passed(seq, req_seq)) { 1664 drm_vblank_put(dev, pipe); 1665 send_vblank_event(dev, e, seq, now); 1666 vblwait->reply.sequence = seq; 1667 } else { 1668 /* drm_handle_vblank_events will call drm_vblank_put */ 1669 list_add_tail(&e->base.link, &dev->vblank_event_list); 1670 vblwait->reply.sequence = req_seq; 1671 } 1672 1673 spin_unlock_irq(&dev->event_lock); 1674 1675 return 0; 1676 1677 err_unlock: 1678 spin_unlock_irq(&dev->event_lock); 1679 kfree(e); 1680 err_put: 1681 drm_vblank_put(dev, pipe); 1682 return ret; 1683 } 1684 1685 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1686 { 1687 if (vblwait->request.sequence) 1688 return false; 1689 1690 return _DRM_VBLANK_RELATIVE == 1691 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1692 _DRM_VBLANK_EVENT | 1693 _DRM_VBLANK_NEXTONMISS)); 1694 } 1695 1696 /* 1697 * Widen a 32-bit param to 64-bits. 1698 * 1699 * \param narrow 32-bit value (missing upper 32 bits) 1700 * \param near 64-bit value that should be 'close' to near 1701 * 1702 * This function returns a 64-bit value using the lower 32-bits from 1703 * 'narrow' and constructing the upper 32-bits so that the result is 1704 * as close as possible to 'near'. 1705 */ 1706 1707 static u64 widen_32_to_64(u32 narrow, u64 near) 1708 { 1709 return near + (s32) (narrow - near); 1710 } 1711 1712 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1713 struct drm_wait_vblank_reply *reply) 1714 { 1715 ktime_t now; 1716 struct timespec64 ts; 1717 1718 /* 1719 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1720 * to store the seconds. This is safe as we always use monotonic 1721 * timestamps since linux-4.15. 1722 */ 1723 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1724 ts = ktime_to_timespec64(now); 1725 reply->tval_sec = (u32)ts.tv_sec; 1726 reply->tval_usec = ts.tv_nsec / 1000; 1727 } 1728 1729 static bool drm_wait_vblank_supported(struct drm_device *dev) 1730 { 1731 return drm_dev_has_vblank(dev); 1732 } 1733 1734 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1735 struct drm_file *file_priv) 1736 { 1737 struct drm_crtc *crtc; 1738 struct drm_vblank_crtc *vblank; 1739 union drm_wait_vblank *vblwait = data; 1740 int ret; 1741 u64 req_seq, seq; 1742 unsigned int pipe_index; 1743 unsigned int flags, pipe, high_pipe; 1744 1745 if (!drm_wait_vblank_supported(dev)) 1746 return -EOPNOTSUPP; 1747 1748 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1749 return -EINVAL; 1750 1751 if (vblwait->request.type & 1752 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1753 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1754 drm_dbg_core(dev, 1755 "Unsupported type value 0x%x, supported mask 0x%x\n", 1756 vblwait->request.type, 1757 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1758 _DRM_VBLANK_HIGH_CRTC_MASK)); 1759 return -EINVAL; 1760 } 1761 1762 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1763 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1764 if (high_pipe) 1765 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1766 else 1767 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1768 1769 /* Convert lease-relative crtc index into global crtc index */ 1770 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1771 pipe = 0; 1772 drm_for_each_crtc(crtc, dev) { 1773 if (drm_lease_held(file_priv, crtc->base.id)) { 1774 if (pipe_index == 0) 1775 break; 1776 pipe_index--; 1777 } 1778 pipe++; 1779 } 1780 } else { 1781 pipe = pipe_index; 1782 } 1783 1784 if (pipe >= dev->num_crtcs) 1785 return -EINVAL; 1786 1787 vblank = drm_vblank_crtc(dev, pipe); 1788 1789 /* If the counter is currently enabled and accurate, short-circuit 1790 * queries to return the cached timestamp of the last vblank. 1791 */ 1792 if (vblank->config.disable_immediate && 1793 drm_wait_vblank_is_query(vblwait) && 1794 READ_ONCE(vblank->enabled)) { 1795 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1796 return 0; 1797 } 1798 1799 ret = drm_vblank_get(dev, pipe); 1800 if (ret) { 1801 drm_dbg_core(dev, 1802 "crtc %d failed to acquire vblank counter, %d\n", 1803 pipe, ret); 1804 return ret; 1805 } 1806 seq = drm_vblank_count(dev, pipe); 1807 1808 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1809 case _DRM_VBLANK_RELATIVE: 1810 req_seq = seq + vblwait->request.sequence; 1811 vblwait->request.sequence = req_seq; 1812 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1813 break; 1814 case _DRM_VBLANK_ABSOLUTE: 1815 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1816 break; 1817 default: 1818 ret = -EINVAL; 1819 goto done; 1820 } 1821 1822 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1823 drm_vblank_passed(seq, req_seq)) { 1824 req_seq = seq + 1; 1825 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1826 vblwait->request.sequence = req_seq; 1827 } 1828 1829 if (flags & _DRM_VBLANK_EVENT) { 1830 /* must hold on to the vblank ref until the event fires 1831 * drm_vblank_put will be called asynchronously 1832 */ 1833 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1834 } 1835 1836 if (req_seq != seq) { 1837 int wait; 1838 1839 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1840 req_seq, pipe); 1841 wait = wait_event_interruptible_timeout(vblank->queue, 1842 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1843 !READ_ONCE(vblank->enabled), 1844 msecs_to_jiffies(3000)); 1845 1846 switch (wait) { 1847 case 0: 1848 /* timeout */ 1849 ret = -EBUSY; 1850 break; 1851 case -ERESTARTSYS: 1852 /* interrupted by signal */ 1853 ret = -EINTR; 1854 break; 1855 default: 1856 ret = 0; 1857 break; 1858 } 1859 } 1860 1861 if (ret != -EINTR) { 1862 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1863 1864 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1865 pipe, vblwait->reply.sequence); 1866 } else { 1867 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1868 pipe); 1869 } 1870 1871 done: 1872 drm_vblank_put(dev, pipe); 1873 return ret; 1874 } 1875 1876 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1877 { 1878 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1879 bool high_prec = false; 1880 struct drm_pending_vblank_event *e, *t; 1881 ktime_t now; 1882 u64 seq; 1883 1884 assert_spin_locked(&dev->event_lock); 1885 1886 seq = drm_vblank_count_and_time(dev, pipe, &now); 1887 1888 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1889 if (e->pipe != pipe) 1890 continue; 1891 if (!drm_vblank_passed(seq, e->sequence)) 1892 continue; 1893 1894 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1895 e->sequence, seq); 1896 1897 list_del(&e->base.link); 1898 drm_vblank_put(dev, pipe); 1899 send_vblank_event(dev, e, seq, now); 1900 } 1901 1902 if (crtc && crtc->funcs->get_vblank_timestamp) 1903 high_prec = true; 1904 1905 trace_drm_vblank_event(pipe, seq, now, high_prec); 1906 } 1907 1908 /** 1909 * drm_handle_vblank - handle a vblank event 1910 * @dev: DRM device 1911 * @pipe: index of CRTC where this event occurred 1912 * 1913 * Drivers should call this routine in their vblank interrupt handlers to 1914 * update the vblank counter and send any signals that may be pending. 1915 * 1916 * This is the legacy version of drm_crtc_handle_vblank(). 1917 */ 1918 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1919 { 1920 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1921 unsigned long irqflags; 1922 bool disable_irq; 1923 1924 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1925 return false; 1926 1927 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1928 return false; 1929 1930 spin_lock_irqsave(&dev->event_lock, irqflags); 1931 1932 /* Need timestamp lock to prevent concurrent execution with 1933 * vblank enable/disable, as this would cause inconsistent 1934 * or corrupted timestamps and vblank counts. 1935 */ 1936 spin_lock(&dev->vblank_time_lock); 1937 1938 /* Vblank irq handling disabled. Nothing to do. */ 1939 if (!vblank->enabled) { 1940 spin_unlock(&dev->vblank_time_lock); 1941 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1942 return false; 1943 } 1944 1945 drm_update_vblank_count(dev, pipe, true); 1946 1947 spin_unlock(&dev->vblank_time_lock); 1948 1949 wake_up(&vblank->queue); 1950 1951 /* With instant-off, we defer disabling the interrupt until after 1952 * we finish processing the following vblank after all events have 1953 * been signaled. The disable has to be last (after 1954 * drm_handle_vblank_events) so that the timestamp is always accurate. 1955 */ 1956 disable_irq = (vblank->config.disable_immediate && 1957 vblank->config.offdelay_ms > 0 && 1958 !atomic_read(&vblank->refcount)); 1959 1960 drm_handle_vblank_events(dev, pipe); 1961 drm_handle_vblank_works(vblank); 1962 1963 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1964 1965 if (disable_irq) 1966 vblank_disable_fn(&vblank->disable_timer); 1967 1968 return true; 1969 } 1970 EXPORT_SYMBOL(drm_handle_vblank); 1971 1972 /** 1973 * drm_crtc_handle_vblank - handle a vblank event 1974 * @crtc: where this event occurred 1975 * 1976 * Drivers should call this routine in their vblank interrupt handlers to 1977 * update the vblank counter and send any signals that may be pending. 1978 * 1979 * This is the native KMS version of drm_handle_vblank(). 1980 * 1981 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1982 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1983 * provide a barrier: Any writes done before calling 1984 * drm_crtc_handle_vblank() will be visible to callers of the later 1985 * functions, if the vblank count is the same or a later one. 1986 * 1987 * See also &drm_vblank_crtc.count. 1988 * 1989 * Returns: 1990 * True if the event was successfully handled, false on failure. 1991 */ 1992 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1993 { 1994 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1995 } 1996 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1997 1998 /* 1999 * Get crtc VBLANK count. 2000 * 2001 * \param dev DRM device 2002 * \param data user argument, pointing to a drm_crtc_get_sequence structure. 2003 * \param file_priv drm file private for the user's open file descriptor 2004 */ 2005 2006 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2007 struct drm_file *file_priv) 2008 { 2009 struct drm_crtc *crtc; 2010 struct drm_vblank_crtc *vblank; 2011 int pipe; 2012 struct drm_crtc_get_sequence *get_seq = data; 2013 ktime_t now; 2014 bool vblank_enabled; 2015 int ret; 2016 2017 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2018 return -EOPNOTSUPP; 2019 2020 if (!drm_dev_has_vblank(dev)) 2021 return -EOPNOTSUPP; 2022 2023 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2024 if (!crtc) 2025 return -ENOENT; 2026 2027 pipe = drm_crtc_index(crtc); 2028 2029 vblank = drm_crtc_vblank_crtc(crtc); 2030 vblank_enabled = READ_ONCE(vblank->config.disable_immediate) && 2031 READ_ONCE(vblank->enabled); 2032 2033 if (!vblank_enabled) { 2034 ret = drm_crtc_vblank_get(crtc); 2035 if (ret) { 2036 drm_dbg_core(dev, 2037 "crtc %d failed to acquire vblank counter, %d\n", 2038 pipe, ret); 2039 return ret; 2040 } 2041 } 2042 drm_modeset_lock(&crtc->mutex, NULL); 2043 if (crtc->state) 2044 get_seq->active = crtc->state->enable; 2045 else 2046 get_seq->active = crtc->enabled; 2047 drm_modeset_unlock(&crtc->mutex); 2048 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2049 get_seq->sequence_ns = ktime_to_ns(now); 2050 if (!vblank_enabled) 2051 drm_crtc_vblank_put(crtc); 2052 return 0; 2053 } 2054 2055 /* 2056 * Queue a event for VBLANK sequence 2057 * 2058 * \param dev DRM device 2059 * \param data user argument, pointing to a drm_crtc_queue_sequence structure. 2060 * \param file_priv drm file private for the user's open file descriptor 2061 */ 2062 2063 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2064 struct drm_file *file_priv) 2065 { 2066 struct drm_crtc *crtc; 2067 struct drm_vblank_crtc *vblank; 2068 int pipe; 2069 struct drm_crtc_queue_sequence *queue_seq = data; 2070 ktime_t now; 2071 struct drm_pending_vblank_event *e; 2072 u32 flags; 2073 u64 seq; 2074 u64 req_seq; 2075 int ret; 2076 2077 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2078 return -EOPNOTSUPP; 2079 2080 if (!drm_dev_has_vblank(dev)) 2081 return -EOPNOTSUPP; 2082 2083 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2084 if (!crtc) 2085 return -ENOENT; 2086 2087 flags = queue_seq->flags; 2088 /* Check valid flag bits */ 2089 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2090 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2091 return -EINVAL; 2092 2093 pipe = drm_crtc_index(crtc); 2094 2095 vblank = drm_crtc_vblank_crtc(crtc); 2096 2097 e = kzalloc(sizeof(*e), GFP_KERNEL); 2098 if (e == NULL) 2099 return -ENOMEM; 2100 2101 ret = drm_crtc_vblank_get(crtc); 2102 if (ret) { 2103 drm_dbg_core(dev, 2104 "crtc %d failed to acquire vblank counter, %d\n", 2105 pipe, ret); 2106 goto err_free; 2107 } 2108 2109 seq = drm_vblank_count_and_time(dev, pipe, &now); 2110 req_seq = queue_seq->sequence; 2111 2112 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2113 req_seq += seq; 2114 2115 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2116 req_seq = seq + 1; 2117 2118 e->pipe = pipe; 2119 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2120 e->event.base.length = sizeof(e->event.seq); 2121 e->event.seq.user_data = queue_seq->user_data; 2122 2123 spin_lock_irq(&dev->event_lock); 2124 2125 /* 2126 * drm_crtc_vblank_off() might have been called after we called 2127 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2128 * vblank disable, so no need for further locking. The reference from 2129 * drm_crtc_vblank_get() protects against vblank disable from another source. 2130 */ 2131 if (!READ_ONCE(vblank->enabled)) { 2132 ret = -EINVAL; 2133 goto err_unlock; 2134 } 2135 2136 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2137 &e->event.base); 2138 2139 if (ret) 2140 goto err_unlock; 2141 2142 e->sequence = req_seq; 2143 2144 if (drm_vblank_passed(seq, req_seq)) { 2145 drm_crtc_vblank_put(crtc); 2146 send_vblank_event(dev, e, seq, now); 2147 queue_seq->sequence = seq; 2148 } else { 2149 /* drm_handle_vblank_events will call drm_vblank_put */ 2150 list_add_tail(&e->base.link, &dev->vblank_event_list); 2151 queue_seq->sequence = req_seq; 2152 } 2153 2154 spin_unlock_irq(&dev->event_lock); 2155 return 0; 2156 2157 err_unlock: 2158 spin_unlock_irq(&dev->event_lock); 2159 drm_crtc_vblank_put(crtc); 2160 err_free: 2161 kfree(e); 2162 return ret; 2163 } 2164 2165 /* 2166 * VBLANK timer 2167 */ 2168 2169 static enum hrtimer_restart drm_vblank_timer_function(struct hrtimer *timer) 2170 { 2171 struct drm_vblank_crtc_timer *vtimer = 2172 container_of(timer, struct drm_vblank_crtc_timer, timer); 2173 struct drm_crtc *crtc = vtimer->crtc; 2174 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 2175 struct drm_device *dev = crtc->dev; 2176 unsigned long flags; 2177 ktime_t interval; 2178 u64 ret_overrun; 2179 bool succ; 2180 2181 spin_lock_irqsave(&vtimer->interval_lock, flags); 2182 interval = vtimer->interval; 2183 spin_unlock_irqrestore(&vtimer->interval_lock, flags); 2184 2185 if (!interval) 2186 return HRTIMER_NORESTART; 2187 2188 ret_overrun = hrtimer_forward_now(&vtimer->timer, interval); 2189 if (ret_overrun != 1) 2190 drm_dbg_vbl(dev, "vblank timer overrun\n"); 2191 2192 if (crtc_funcs->handle_vblank_timeout) 2193 succ = crtc_funcs->handle_vblank_timeout(crtc); 2194 else 2195 succ = drm_crtc_handle_vblank(crtc); 2196 if (!succ) 2197 return HRTIMER_NORESTART; 2198 2199 return HRTIMER_RESTART; 2200 } 2201 2202 /** 2203 * drm_crtc_vblank_start_timer - Starts the vblank timer on the given CRTC 2204 * @crtc: the CRTC 2205 * 2206 * Drivers should call this function from their CRTC's enable_vblank 2207 * function to start a vblank timer. The timer will fire after the duration 2208 * of a full frame. drm_crtc_vblank_cancel_timer() disables a running timer. 2209 * 2210 * Returns: 2211 * 0 on success, or a negative errno code otherwise. 2212 */ 2213 int drm_crtc_vblank_start_timer(struct drm_crtc *crtc) 2214 { 2215 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 2216 struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer; 2217 unsigned long flags; 2218 2219 if (!vtimer->crtc) { 2220 /* 2221 * Set up the data structures on the first invocation. 2222 */ 2223 vtimer->crtc = crtc; 2224 spin_lock_init(&vtimer->interval_lock); 2225 hrtimer_setup(&vtimer->timer, drm_vblank_timer_function, 2226 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2227 } else { 2228 /* 2229 * Timer should not be active. If it is, wait for the 2230 * previous cancel operations to finish. 2231 */ 2232 while (hrtimer_active(&vtimer->timer)) 2233 hrtimer_try_to_cancel(&vtimer->timer); 2234 } 2235 2236 drm_calc_timestamping_constants(crtc, &crtc->mode); 2237 2238 spin_lock_irqsave(&vtimer->interval_lock, flags); 2239 vtimer->interval = ns_to_ktime(vblank->framedur_ns); 2240 spin_unlock_irqrestore(&vtimer->interval_lock, flags); 2241 2242 hrtimer_start(&vtimer->timer, vtimer->interval, HRTIMER_MODE_REL); 2243 2244 return 0; 2245 } 2246 EXPORT_SYMBOL(drm_crtc_vblank_start_timer); 2247 2248 /** 2249 * drm_crtc_vblank_cancel_timer - Cancels the given CRTC's vblank timer 2250 * @crtc: the CRTC 2251 * 2252 * Drivers should call this function from their CRTC's disable_vblank 2253 * function to stop a vblank timer. 2254 */ 2255 void drm_crtc_vblank_cancel_timer(struct drm_crtc *crtc) 2256 { 2257 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 2258 struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer; 2259 unsigned long flags; 2260 2261 /* 2262 * Calling hrtimer_cancel() can result in a deadlock with DRM's 2263 * vblank_time_lime_lock and hrtimers' softirq_expiry_lock. So 2264 * clear interval and indicate cancellation. The timer function 2265 * will cancel itself on the next invocation. 2266 */ 2267 2268 spin_lock_irqsave(&vtimer->interval_lock, flags); 2269 vtimer->interval = 0; 2270 spin_unlock_irqrestore(&vtimer->interval_lock, flags); 2271 2272 hrtimer_try_to_cancel(&vtimer->timer); 2273 } 2274 EXPORT_SYMBOL(drm_crtc_vblank_cancel_timer); 2275 2276 /** 2277 * drm_crtc_vblank_get_vblank_timeout - Returns the vblank timeout 2278 * @crtc: The CRTC 2279 * @vblank_time: Returns the next vblank timestamp 2280 * 2281 * The helper drm_crtc_vblank_get_vblank_timeout() returns the next vblank 2282 * timestamp of the CRTC's vblank timer according to the timer's expiry 2283 * time. 2284 */ 2285 void drm_crtc_vblank_get_vblank_timeout(struct drm_crtc *crtc, ktime_t *vblank_time) 2286 { 2287 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 2288 struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer; 2289 u64 cur_count; 2290 ktime_t cur_time; 2291 2292 if (!READ_ONCE(vblank->enabled)) { 2293 *vblank_time = ktime_get(); 2294 return; 2295 } 2296 2297 /* 2298 * A concurrent vblank timeout could update the expires field before 2299 * we compare it with the vblank time. Hence we'd compare the old 2300 * expiry time to the new vblank time; deducing the timer had already 2301 * expired. Reread until we get consistent values from both fields. 2302 */ 2303 do { 2304 cur_count = drm_crtc_vblank_count_and_time(crtc, &cur_time); 2305 *vblank_time = READ_ONCE(vtimer->timer.node.expires); 2306 } while (cur_count != drm_crtc_vblank_count_and_time(crtc, &cur_time)); 2307 2308 if (drm_WARN_ON(crtc->dev, !ktime_compare(*vblank_time, cur_time))) 2309 return; /* Already expired */ 2310 2311 /* 2312 * To prevent races we roll the hrtimer forward before we do any 2313 * interrupt processing - this is how real hw works (the interrupt 2314 * is only generated after all the vblank registers are updated) 2315 * and what the vblank core expects. Therefore we need to always 2316 * correct the timestamp by one frame. 2317 */ 2318 *vblank_time = ktime_sub(*vblank_time, vtimer->interval); 2319 } 2320 EXPORT_SYMBOL(drm_crtc_vblank_get_vblank_timeout); 2321