xref: /linux/drivers/gpu/drm/drm_vblank.c (revision c0d6f52f9b62479d61f8cd4faf9fb2f8bce6e301)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30 
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38 
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41 
42 /**
43  * DOC: vblank handling
44  *
45  * From the computer's perspective, every time the monitor displays
46  * a new frame the scanout engine has "scanned out" the display image
47  * from top to bottom, one row of pixels at a time. The current row
48  * of pixels is referred to as the current scanline.
49  *
50  * In addition to the display's visible area, there's usually a couple of
51  * extra scanlines which aren't actually displayed on the screen.
52  * These extra scanlines don't contain image data and are occasionally used
53  * for features like audio and infoframes. The region made up of these
54  * scanlines is referred to as the vertical blanking region, or vblank for
55  * short.
56  *
57  * For historical reference, the vertical blanking period was designed to
58  * give the electron gun (on CRTs) enough time to move back to the top of
59  * the screen to start scanning out the next frame. Similar for horizontal
60  * blanking periods. They were designed to give the electron gun enough
61  * time to move back to the other side of the screen to start scanning the
62  * next scanline.
63  *
64  * ::
65  *
66  *
67  *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68  *    top of      |                                        |
69  *    display     |                                        |
70  *                |               New frame                |
71  *                |                                        |
72  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73  *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75  *                |                                        |   frame as it
76  *                |                                        |   travels down
77  *                |                                        |   ("scan out")
78  *                |               Old frame                |
79  *                |                                        |
80  *                |                                        |
81  *                |                                        |
82  *                |                                        |   physical
83  *                |                                        |   bottom of
84  *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85  *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86  *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87  *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88  *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89  *    new frame
90  *
91  * "Physical top of display" is the reference point for the high-precision/
92  * corrected timestamp.
93  *
94  * On a lot of display hardware, programming needs to take effect during the
95  * vertical blanking period so that settings like gamma, the image buffer
96  * buffer to be scanned out, etc. can safely be changed without showing
97  * any visual artifacts on the screen. In some unforgiving hardware, some of
98  * this programming has to both start and end in the same vblank. To help
99  * with the timing of the hardware programming, an interrupt is usually
100  * available to notify the driver when it can start the updating of registers.
101  * The interrupt is in this context named the vblank interrupt.
102  *
103  * The vblank interrupt may be fired at different points depending on the
104  * hardware. Some hardware implementations will fire the interrupt when the
105  * new frame start, other implementations will fire the interrupt at different
106  * points in time.
107  *
108  * Vertical blanking plays a major role in graphics rendering. To achieve
109  * tear-free display, users must synchronize page flips and/or rendering to
110  * vertical blanking. The DRM API offers ioctls to perform page flips
111  * synchronized to vertical blanking and wait for vertical blanking.
112  *
113  * The DRM core handles most of the vertical blanking management logic, which
114  * involves filtering out spurious interrupts, keeping race-free blanking
115  * counters, coping with counter wrap-around and resets and keeping use counts.
116  * It relies on the driver to generate vertical blanking interrupts and
117  * optionally provide a hardware vertical blanking counter.
118  *
119  * Drivers must initialize the vertical blanking handling core with a call to
120  * drm_vblank_init(). Minimally, a driver needs to implement
121  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123  * support.
124  *
125  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126  * themselves (for instance to handle page flipping operations).  The DRM core
127  * maintains a vertical blanking use count to ensure that the interrupts are not
128  * disabled while a user still needs them. To increment the use count, drivers
129  * call drm_crtc_vblank_get() and release the vblank reference again with
130  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131  * guaranteed to be enabled.
132  *
133  * On many hardware disabling the vblank interrupt cannot be done in a race-free
134  * manner, see &drm_vblank_crtc_config.disable_immediate and
135  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136  * vblanks after a timer has expired, which can be configured through the
137  * ``vblankoffdelay`` module parameter.
138  *
139  * Drivers for hardware without support for vertical-blanking interrupts can
140  * use DRM vblank timers to send vblank events at the rate of the current
141  * display mode's refresh. While not synchronized to the hardware's
142  * vertical-blanking regions, the timer helps DRM clients and compositors to
143  * adapt their update cycle to the display output. Drivers should set up
144  * vblanking as usual, but call drm_crtc_vblank_start_timer() and
145  * drm_crtc_vblank_cancel_timer() as part of their atomic mode setting.
146  * See also DRM vblank helpers for more information.
147  *
148  * Drivers without support for vertical-blanking interrupts nor timers must
149  * not call drm_vblank_init(). For these drivers, atomic helpers will
150  * automatically generate fake vblank events as part of the display update.
151  * This functionality also can be controlled by the driver by enabling and
152  * disabling struct drm_crtc_state.no_vblank.
153  */
154 
155 /* Retry timestamp calculation up to 3 times to satisfy
156  * drm_timestamp_precision before giving up.
157  */
158 #define DRM_TIMESTAMP_MAXRETRIES 3
159 
160 /* Threshold in nanoseconds for detection of redundant
161  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
162  */
163 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
164 
165 static bool
166 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
167 			  ktime_t *tvblank, bool in_vblank_irq);
168 
169 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
170 
171 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
172 
173 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
174 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
175 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
176 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
177 
178 static struct drm_vblank_crtc *
179 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe)
180 {
181 	return &dev->vblank[pipe];
182 }
183 
184 struct drm_vblank_crtc *
185 drm_crtc_vblank_crtc(struct drm_crtc *crtc)
186 {
187 	return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc));
188 }
189 EXPORT_SYMBOL(drm_crtc_vblank_crtc);
190 
191 static void store_vblank(struct drm_device *dev, unsigned int pipe,
192 			 u32 vblank_count_inc,
193 			 ktime_t t_vblank, u32 last)
194 {
195 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
196 
197 	assert_spin_locked(&dev->vblank_time_lock);
198 
199 	vblank->last = last;
200 
201 	write_seqlock(&vblank->seqlock);
202 	vblank->time = t_vblank;
203 	atomic64_add(vblank_count_inc, &vblank->count);
204 	write_sequnlock(&vblank->seqlock);
205 }
206 
207 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
208 {
209 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
210 
211 	return vblank->max_vblank_count ?: dev->max_vblank_count;
212 }
213 
214 /*
215  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
216  * if there is no usable hardware frame counter available.
217  */
218 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
219 {
220 	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
221 	return 0;
222 }
223 
224 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
225 {
226 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
227 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
228 
229 		if (drm_WARN_ON(dev, !crtc))
230 			return 0;
231 
232 		if (crtc->funcs->get_vblank_counter)
233 			return crtc->funcs->get_vblank_counter(crtc);
234 	}
235 
236 	return drm_vblank_no_hw_counter(dev, pipe);
237 }
238 
239 /*
240  * Reset the stored timestamp for the current vblank count to correspond
241  * to the last vblank occurred.
242  *
243  * Only to be called from drm_crtc_vblank_on().
244  *
245  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
246  * device vblank fields.
247  */
248 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
249 {
250 	u32 cur_vblank;
251 	bool rc;
252 	ktime_t t_vblank;
253 	int count = DRM_TIMESTAMP_MAXRETRIES;
254 
255 	spin_lock(&dev->vblank_time_lock);
256 
257 	/*
258 	 * sample the current counter to avoid random jumps
259 	 * when drm_vblank_enable() applies the diff
260 	 */
261 	do {
262 		cur_vblank = __get_vblank_counter(dev, pipe);
263 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
264 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
265 
266 	/*
267 	 * Only reinitialize corresponding vblank timestamp if high-precision query
268 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
269 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
270 	 */
271 	if (!rc)
272 		t_vblank = 0;
273 
274 	/*
275 	 * +1 to make sure user will never see the same
276 	 * vblank counter value before and after a modeset
277 	 */
278 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
279 
280 	spin_unlock(&dev->vblank_time_lock);
281 }
282 
283 /*
284  * Call back into the driver to update the appropriate vblank counter
285  * (specified by @pipe).  Deal with wraparound, if it occurred, and
286  * update the last read value so we can deal with wraparound on the next
287  * call if necessary.
288  *
289  * Only necessary when going from off->on, to account for frames we
290  * didn't get an interrupt for.
291  *
292  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
293  * device vblank fields.
294  */
295 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
296 				    bool in_vblank_irq)
297 {
298 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
299 	u32 cur_vblank, diff;
300 	bool rc;
301 	ktime_t t_vblank;
302 	int count = DRM_TIMESTAMP_MAXRETRIES;
303 	int framedur_ns = vblank->framedur_ns;
304 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
305 
306 	/*
307 	 * Interrupts were disabled prior to this call, so deal with counter
308 	 * wrap if needed.
309 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
310 	 * here if the register is small or we had vblank interrupts off for
311 	 * a long time.
312 	 *
313 	 * We repeat the hardware vblank counter & timestamp query until
314 	 * we get consistent results. This to prevent races between gpu
315 	 * updating its hardware counter while we are retrieving the
316 	 * corresponding vblank timestamp.
317 	 */
318 	do {
319 		cur_vblank = __get_vblank_counter(dev, pipe);
320 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
321 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
322 
323 	if (max_vblank_count) {
324 		/* trust the hw counter when it's around */
325 		diff = (cur_vblank - vblank->last) & max_vblank_count;
326 	} else if (rc && framedur_ns) {
327 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
328 
329 		/*
330 		 * Figure out how many vblanks we've missed based
331 		 * on the difference in the timestamps and the
332 		 * frame/field duration.
333 		 */
334 
335 		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
336 			    " diff_ns = %lld, framedur_ns = %d)\n",
337 			    pipe, (long long)diff_ns, framedur_ns);
338 
339 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
340 
341 		if (diff == 0 && in_vblank_irq)
342 			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
343 				    pipe);
344 	} else {
345 		/* some kind of default for drivers w/o accurate vbl timestamping */
346 		diff = in_vblank_irq ? 1 : 0;
347 	}
348 
349 	/*
350 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
351 	 * interval? If so then vblank irqs keep running and it will likely
352 	 * happen that the hardware vblank counter is not trustworthy as it
353 	 * might reset at some point in that interval and vblank timestamps
354 	 * are not trustworthy either in that interval. Iow. this can result
355 	 * in a bogus diff >> 1 which must be avoided as it would cause
356 	 * random large forward jumps of the software vblank counter.
357 	 */
358 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
359 		drm_dbg_vbl(dev,
360 			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
361 			    " due to pre-modeset.\n", pipe, diff);
362 		diff = 1;
363 	}
364 
365 	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
366 		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
367 		    pipe, (unsigned long long)atomic64_read(&vblank->count),
368 		    diff, cur_vblank, vblank->last);
369 
370 	if (diff == 0) {
371 		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
372 		return;
373 	}
374 
375 	/*
376 	 * Only reinitialize corresponding vblank timestamp if high-precision query
377 	 * available and didn't fail, or we were called from the vblank interrupt.
378 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
379 	 * for now, to mark the vblanktimestamp as invalid.
380 	 */
381 	if (!rc && !in_vblank_irq)
382 		t_vblank = 0;
383 
384 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
385 }
386 
387 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
388 {
389 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
390 	u64 count;
391 
392 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
393 		return 0;
394 
395 	count = atomic64_read(&vblank->count);
396 
397 	/*
398 	 * This read barrier corresponds to the implicit write barrier of the
399 	 * write seqlock in store_vblank(). Note that this is the only place
400 	 * where we need an explicit barrier, since all other access goes
401 	 * through drm_vblank_count_and_time(), which already has the required
402 	 * read barrier curtesy of the read seqlock.
403 	 */
404 	smp_rmb();
405 
406 	return count;
407 }
408 
409 /**
410  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
411  * @crtc: which counter to retrieve
412  *
413  * This function is similar to drm_crtc_vblank_count() but this function
414  * interpolates to handle a race with vblank interrupts using the high precision
415  * timestamping support.
416  *
417  * This is mostly useful for hardware that can obtain the scanout position, but
418  * doesn't have a hardware frame counter.
419  */
420 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
421 {
422 	struct drm_device *dev = crtc->dev;
423 	unsigned int pipe = drm_crtc_index(crtc);
424 	u64 vblank;
425 	unsigned long flags;
426 
427 	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
428 		      !crtc->funcs->get_vblank_timestamp,
429 		      "This function requires support for accurate vblank timestamps.");
430 
431 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
432 
433 	drm_update_vblank_count(dev, pipe, false);
434 	vblank = drm_vblank_count(dev, pipe);
435 
436 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
437 
438 	return vblank;
439 }
440 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
441 
442 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
443 {
444 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
445 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
446 
447 		if (drm_WARN_ON(dev, !crtc))
448 			return;
449 
450 		if (crtc->funcs->disable_vblank)
451 			crtc->funcs->disable_vblank(crtc);
452 	}
453 }
454 
455 /*
456  * Disable vblank irq's on crtc, make sure that last vblank count
457  * of hardware and corresponding consistent software vblank counter
458  * are preserved, even if there are any spurious vblank irq's after
459  * disable.
460  */
461 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
462 {
463 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
464 	unsigned long irqflags;
465 
466 	assert_spin_locked(&dev->vbl_lock);
467 
468 	/* Prevent vblank irq processing while disabling vblank irqs,
469 	 * so no updates of timestamps or count can happen after we've
470 	 * disabled. Needed to prevent races in case of delayed irq's.
471 	 */
472 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
473 
474 	/*
475 	 * Update vblank count and disable vblank interrupts only if the
476 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
477 	 * operation in atomic context with the hardware potentially runtime
478 	 * suspended.
479 	 */
480 	if (!vblank->enabled)
481 		goto out;
482 
483 	/*
484 	 * Update the count and timestamp to maintain the
485 	 * appearance that the counter has been ticking all along until
486 	 * this time. This makes the count account for the entire time
487 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
488 	 */
489 	drm_update_vblank_count(dev, pipe, false);
490 	__disable_vblank(dev, pipe);
491 	vblank->enabled = false;
492 
493 out:
494 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
495 }
496 
497 static void vblank_disable_fn(struct timer_list *t)
498 {
499 	struct drm_vblank_crtc *vblank = timer_container_of(vblank, t,
500 							    disable_timer);
501 	struct drm_device *dev = vblank->dev;
502 	unsigned int pipe = vblank->pipe;
503 	unsigned long irqflags;
504 
505 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
506 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
507 		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
508 		drm_vblank_disable_and_save(dev, pipe);
509 	}
510 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
511 }
512 
513 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
514 {
515 	struct drm_vblank_crtc *vblank = ptr;
516 
517 	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
518 		    drm_core_check_feature(dev, DRIVER_MODESET));
519 
520 	if (vblank->vblank_timer.crtc)
521 		hrtimer_cancel(&vblank->vblank_timer.timer);
522 
523 	drm_vblank_destroy_worker(vblank);
524 	timer_delete_sync(&vblank->disable_timer);
525 }
526 
527 /**
528  * drm_vblank_init - initialize vblank support
529  * @dev: DRM device
530  * @num_crtcs: number of CRTCs supported by @dev
531  *
532  * This function initializes vblank support for @num_crtcs display pipelines.
533  * Cleanup is handled automatically through a cleanup function added with
534  * drmm_add_action_or_reset().
535  *
536  * Returns:
537  * Zero on success or a negative error code on failure.
538  */
539 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
540 {
541 	int ret;
542 	unsigned int i;
543 
544 	spin_lock_init(&dev->vbl_lock);
545 	spin_lock_init(&dev->vblank_time_lock);
546 
547 	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
548 	if (!dev->vblank)
549 		return -ENOMEM;
550 
551 	dev->num_crtcs = num_crtcs;
552 
553 	for (i = 0; i < num_crtcs; i++) {
554 		struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, i);
555 
556 		vblank->dev = dev;
557 		vblank->pipe = i;
558 		init_waitqueue_head(&vblank->queue);
559 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
560 		seqlock_init(&vblank->seqlock);
561 
562 		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
563 					       vblank);
564 		if (ret)
565 			return ret;
566 
567 		ret = drm_vblank_worker_init(vblank);
568 		if (ret)
569 			return ret;
570 	}
571 
572 	return 0;
573 }
574 EXPORT_SYMBOL(drm_vblank_init);
575 
576 /**
577  * drm_dev_has_vblank - test if vblanking has been initialized for
578  *                      a device
579  * @dev: the device
580  *
581  * Drivers may call this function to test if vblank support is
582  * initialized for a device. For most hardware this means that vblanking
583  * can also be enabled.
584  *
585  * Atomic helpers use this function to initialize
586  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
587  *
588  * Returns:
589  * True if vblanking has been initialized for the given device, false
590  * otherwise.
591  */
592 bool drm_dev_has_vblank(const struct drm_device *dev)
593 {
594 	return dev->num_crtcs != 0;
595 }
596 EXPORT_SYMBOL(drm_dev_has_vblank);
597 
598 /**
599  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
600  * @crtc: which CRTC's vblank waitqueue to retrieve
601  *
602  * This function returns a pointer to the vblank waitqueue for the CRTC.
603  * Drivers can use this to implement vblank waits using wait_event() and related
604  * functions.
605  */
606 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
607 {
608 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
609 
610 	return &vblank->queue;
611 }
612 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
613 
614 
615 /**
616  * drm_calc_timestamping_constants - calculate vblank timestamp constants
617  * @crtc: drm_crtc whose timestamp constants should be updated.
618  * @mode: display mode containing the scanout timings
619  *
620  * Calculate and store various constants which are later needed by vblank and
621  * swap-completion timestamping, e.g, by
622  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
623  * CRTC's true scanout timing, so they take things like panel scaling or
624  * other adjustments into account.
625  */
626 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
627 				     const struct drm_display_mode *mode)
628 {
629 	struct drm_device *dev = crtc->dev;
630 	unsigned int pipe = drm_crtc_index(crtc);
631 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
632 	int linedur_ns = 0, framedur_ns = 0;
633 	int dotclock = mode->crtc_clock;
634 
635 	if (!drm_dev_has_vblank(dev))
636 		return;
637 
638 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
639 		return;
640 
641 	/* Valid dotclock? */
642 	if (dotclock > 0) {
643 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
644 
645 		/*
646 		 * Convert scanline length in pixels and video
647 		 * dot clock to line duration and frame duration
648 		 * in nanoseconds:
649 		 */
650 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
651 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
652 
653 		/*
654 		 * Fields of interlaced scanout modes are only half a frame duration.
655 		 */
656 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
657 			framedur_ns /= 2;
658 	} else {
659 		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
660 			crtc->base.id);
661 	}
662 
663 	vblank->linedur_ns  = linedur_ns;
664 	vblank->framedur_ns = framedur_ns;
665 	drm_mode_copy(&vblank->hwmode, mode);
666 
667 	drm_dbg_core(dev,
668 		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
669 		     crtc->base.id, mode->crtc_htotal,
670 		     mode->crtc_vtotal, mode->crtc_vdisplay);
671 	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
672 		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
673 }
674 EXPORT_SYMBOL(drm_calc_timestamping_constants);
675 
676 /**
677  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
678  *                                                        timestamp helper
679  * @crtc: CRTC whose vblank timestamp to retrieve
680  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
681  *             On return contains true maximum error of timestamp
682  * @vblank_time: Pointer to time which should receive the timestamp
683  * @in_vblank_irq:
684  *     True when called from drm_crtc_handle_vblank().  Some drivers
685  *     need to apply some workarounds for gpu-specific vblank irq quirks
686  *     if flag is set.
687  * @get_scanout_position:
688  *     Callback function to retrieve the scanout position. See
689  *     @struct drm_crtc_helper_funcs.get_scanout_position.
690  *
691  * Implements calculation of exact vblank timestamps from given drm_display_mode
692  * timings and current video scanout position of a CRTC.
693  *
694  * The current implementation only handles standard video modes. For double scan
695  * and interlaced modes the driver is supposed to adjust the hardware mode
696  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
697  * match the scanout position reported.
698  *
699  * Note that atomic drivers must call drm_calc_timestamping_constants() before
700  * enabling a CRTC. The atomic helpers already take care of that in
701  * drm_atomic_helper_calc_timestamping_constants().
702  *
703  * Returns:
704  * Returns true on success, and false on failure, i.e. when no accurate
705  * timestamp could be acquired.
706  */
707 bool
708 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
709 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
710 	bool in_vblank_irq,
711 	drm_vblank_get_scanout_position_func get_scanout_position)
712 {
713 	struct drm_device *dev = crtc->dev;
714 	unsigned int pipe = crtc->index;
715 	struct timespec64 ts_etime, ts_vblank_time;
716 	ktime_t stime, etime;
717 	bool vbl_status;
718 	const struct drm_display_mode *mode;
719 	int vpos, hpos, i;
720 	int delta_ns, duration_ns;
721 
722 	if (pipe >= dev->num_crtcs) {
723 		drm_err(dev, "Invalid crtc %u\n", pipe);
724 		return false;
725 	}
726 
727 	/* Scanout position query not supported? Should not happen. */
728 	if (!get_scanout_position) {
729 		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
730 		return false;
731 	}
732 
733 	if (drm_drv_uses_atomic_modeset(dev)) {
734 		struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
735 
736 		mode = &vblank->hwmode;
737 	} else {
738 		mode = &crtc->hwmode;
739 	}
740 
741 	/* If mode timing undefined, just return as no-op:
742 	 * Happens during initial modesetting of a crtc.
743 	 */
744 	if (mode->crtc_clock == 0) {
745 		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
746 			     pipe);
747 		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
748 		return false;
749 	}
750 
751 	/* Get current scanout position with system timestamp.
752 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
753 	 * if single query takes longer than max_error nanoseconds.
754 	 *
755 	 * This guarantees a tight bound on maximum error if
756 	 * code gets preempted or delayed for some reason.
757 	 */
758 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
759 		/*
760 		 * Get vertical and horizontal scanout position vpos, hpos,
761 		 * and bounding timestamps stime, etime, pre/post query.
762 		 */
763 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
764 						  &vpos, &hpos,
765 						  &stime, &etime,
766 						  mode);
767 
768 		/* Return as no-op if scanout query unsupported or failed. */
769 		if (!vbl_status) {
770 			drm_dbg_core(dev,
771 				     "crtc %u : scanoutpos query failed.\n",
772 				     pipe);
773 			return false;
774 		}
775 
776 		/* Compute uncertainty in timestamp of scanout position query. */
777 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
778 
779 		/* Accept result with <  max_error nsecs timing uncertainty. */
780 		if (duration_ns <= *max_error)
781 			break;
782 	}
783 
784 	/* Noisy system timing? */
785 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
786 		drm_dbg_core(dev,
787 			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
788 			     pipe, duration_ns / 1000, *max_error / 1000, i);
789 	}
790 
791 	/* Return upper bound of timestamp precision error. */
792 	*max_error = duration_ns;
793 
794 	/* Convert scanout position into elapsed time at raw_time query
795 	 * since start of scanout at first display scanline. delta_ns
796 	 * can be negative if start of scanout hasn't happened yet.
797 	 */
798 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
799 			   mode->crtc_clock);
800 
801 	/* Subtract time delta from raw timestamp to get final
802 	 * vblank_time timestamp for end of vblank.
803 	 */
804 	*vblank_time = ktime_sub_ns(etime, delta_ns);
805 
806 	if (!drm_debug_enabled(DRM_UT_VBL))
807 		return true;
808 
809 	ts_etime = ktime_to_timespec64(etime);
810 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
811 
812 	drm_dbg_vbl(dev,
813 		    "crtc %u : v p(%d,%d)@ %ptSp -> %ptSp [e %d us, %d rep]\n",
814 		    pipe, hpos, vpos, &ts_etime, &ts_vblank_time,
815 		    duration_ns / 1000, i);
816 
817 	return true;
818 }
819 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
820 
821 /**
822  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
823  *                                               helper
824  * @crtc: CRTC whose vblank timestamp to retrieve
825  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
826  *             On return contains true maximum error of timestamp
827  * @vblank_time: Pointer to time which should receive the timestamp
828  * @in_vblank_irq:
829  *     True when called from drm_crtc_handle_vblank().  Some drivers
830  *     need to apply some workarounds for gpu-specific vblank irq quirks
831  *     if flag is set.
832  *
833  * Implements calculation of exact vblank timestamps from given drm_display_mode
834  * timings and current video scanout position of a CRTC. This can be directly
835  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
836  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
837  *
838  * The current implementation only handles standard video modes. For double scan
839  * and interlaced modes the driver is supposed to adjust the hardware mode
840  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
841  * match the scanout position reported.
842  *
843  * Note that atomic drivers must call drm_calc_timestamping_constants() before
844  * enabling a CRTC. The atomic helpers already take care of that in
845  * drm_atomic_helper_calc_timestamping_constants().
846  *
847  * Returns:
848  * Returns true on success, and false on failure, i.e. when no accurate
849  * timestamp could be acquired.
850  */
851 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
852 						 int *max_error,
853 						 ktime_t *vblank_time,
854 						 bool in_vblank_irq)
855 {
856 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
857 		crtc, max_error, vblank_time, in_vblank_irq,
858 		crtc->helper_private->get_scanout_position);
859 }
860 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
861 
862 /**
863  * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
864  *                                  recent vblank interval
865  * @crtc: CRTC whose vblank timestamp to retrieve
866  * @tvblank: Pointer to target time which should receive the timestamp
867  * @in_vblank_irq:
868  *     True when called from drm_crtc_handle_vblank().  Some drivers
869  *     need to apply some workarounds for gpu-specific vblank irq quirks
870  *     if flag is set.
871  *
872  * Fetches the system timestamp corresponding to the time of the most recent
873  * vblank interval on specified CRTC. May call into kms-driver to
874  * compute the timestamp with a high-precision GPU specific method.
875  *
876  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
877  * call, i.e., it isn't very precisely locked to the true vblank.
878  *
879  * Returns:
880  * True if timestamp is considered to be very precise, false otherwise.
881  */
882 static bool
883 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
884 			       bool in_vblank_irq)
885 {
886 	bool ret = false;
887 
888 	/* Define requested maximum error on timestamps (nanoseconds). */
889 	int max_error = (int) drm_timestamp_precision * 1000;
890 
891 	/* Query driver if possible and precision timestamping enabled. */
892 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
893 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
894 							tvblank, in_vblank_irq);
895 	}
896 
897 	/* GPU high precision timestamp query unsupported or failed.
898 	 * Return current monotonic/gettimeofday timestamp as best estimate.
899 	 */
900 	if (!ret)
901 		*tvblank = ktime_get();
902 
903 	return ret;
904 }
905 
906 static bool
907 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
908 			  ktime_t *tvblank, bool in_vblank_irq)
909 {
910 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
911 
912 	return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
913 }
914 
915 /**
916  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
917  * @crtc: which counter to retrieve
918  *
919  * Fetches the "cooked" vblank count value that represents the number of
920  * vblank events since the system was booted, including lost events due to
921  * modesetting activity. Note that this timer isn't correct against a racing
922  * vblank interrupt (since it only reports the software vblank counter), see
923  * drm_crtc_accurate_vblank_count() for such use-cases.
924  *
925  * Note that for a given vblank counter value drm_crtc_handle_vblank()
926  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
927  * provide a barrier: Any writes done before calling
928  * drm_crtc_handle_vblank() will be visible to callers of the later
929  * functions, if the vblank count is the same or a later one.
930  *
931  * See also &drm_vblank_crtc.count.
932  *
933  * Returns:
934  * The software vblank counter.
935  */
936 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
937 {
938 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
939 }
940 EXPORT_SYMBOL(drm_crtc_vblank_count);
941 
942 /**
943  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
944  *     system timestamp corresponding to that vblank counter value.
945  * @dev: DRM device
946  * @pipe: index of CRTC whose counter to retrieve
947  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
948  *
949  * Fetches the "cooked" vblank count value that represents the number of
950  * vblank events since the system was booted, including lost events due to
951  * modesetting activity. Returns corresponding system timestamp of the time
952  * of the vblank interval that corresponds to the current vblank counter value.
953  *
954  * This is the legacy version of drm_crtc_vblank_count_and_time().
955  */
956 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
957 				     ktime_t *vblanktime)
958 {
959 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
960 	u64 vblank_count;
961 	unsigned int seq;
962 
963 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
964 		*vblanktime = 0;
965 		return 0;
966 	}
967 
968 	do {
969 		seq = read_seqbegin(&vblank->seqlock);
970 		vblank_count = atomic64_read(&vblank->count);
971 		*vblanktime = vblank->time;
972 	} while (read_seqretry(&vblank->seqlock, seq));
973 
974 	return vblank_count;
975 }
976 
977 /**
978  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
979  *     and the system timestamp corresponding to that vblank counter value
980  * @crtc: which counter to retrieve
981  * @vblanktime: Pointer to time to receive the vblank timestamp.
982  *
983  * Fetches the "cooked" vblank count value that represents the number of
984  * vblank events since the system was booted, including lost events due to
985  * modesetting activity. Returns corresponding system timestamp of the time
986  * of the vblank interval that corresponds to the current vblank counter value.
987  *
988  * Note that for a given vblank counter value drm_crtc_handle_vblank()
989  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
990  * provide a barrier: Any writes done before calling
991  * drm_crtc_handle_vblank() will be visible to callers of the later
992  * functions, if the vblank count is the same or a later one.
993  *
994  * See also &drm_vblank_crtc.count.
995  */
996 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
997 				   ktime_t *vblanktime)
998 {
999 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
1000 					 vblanktime);
1001 }
1002 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
1003 
1004 /**
1005  * drm_crtc_next_vblank_start - calculate the time of the next vblank
1006  * @crtc: the crtc for which to calculate next vblank time
1007  * @vblanktime: pointer to time to receive the next vblank timestamp.
1008  *
1009  * Calculate the expected time of the start of the next vblank period,
1010  * based on time of previous vblank and frame duration
1011  */
1012 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
1013 {
1014 	struct drm_vblank_crtc *vblank;
1015 	struct drm_display_mode *mode;
1016 	u64 vblank_start;
1017 
1018 	if (!drm_dev_has_vblank(crtc->dev))
1019 		return -EINVAL;
1020 
1021 	vblank = drm_crtc_vblank_crtc(crtc);
1022 	mode = &vblank->hwmode;
1023 
1024 	if (!vblank->framedur_ns || !vblank->linedur_ns)
1025 		return -EINVAL;
1026 
1027 	if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1028 		return -EINVAL;
1029 
1030 	vblank_start = DIV_ROUND_DOWN_ULL(
1031 			(u64)vblank->framedur_ns * mode->crtc_vblank_start,
1032 			mode->crtc_vtotal);
1033 	*vblanktime  = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1034 
1035 	return 0;
1036 }
1037 EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1038 
1039 static void send_vblank_event(struct drm_device *dev,
1040 		struct drm_pending_vblank_event *e,
1041 		u64 seq, ktime_t now)
1042 {
1043 	struct timespec64 tv;
1044 
1045 	switch (e->event.base.type) {
1046 	case DRM_EVENT_VBLANK:
1047 	case DRM_EVENT_FLIP_COMPLETE:
1048 		tv = ktime_to_timespec64(now);
1049 		e->event.vbl.sequence = seq;
1050 		/*
1051 		 * e->event is a user space structure, with hardcoded unsigned
1052 		 * 32-bit seconds/microseconds. This is safe as we always use
1053 		 * monotonic timestamps since linux-4.15
1054 		 */
1055 		e->event.vbl.tv_sec = tv.tv_sec;
1056 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1057 		break;
1058 	case DRM_EVENT_CRTC_SEQUENCE:
1059 		if (seq)
1060 			e->event.seq.sequence = seq;
1061 		e->event.seq.time_ns = ktime_to_ns(now);
1062 		break;
1063 	}
1064 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1065 	/*
1066 	 * Use the same timestamp for any associated fence signal to avoid
1067 	 * mismatch in timestamps for vsync & fence events triggered by the
1068 	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1069 	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1070 	 * for its software vsync modeling.
1071 	 */
1072 	drm_send_event_timestamp_locked(dev, &e->base, now);
1073 }
1074 
1075 /**
1076  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1077  * @crtc: the source CRTC of the vblank event
1078  * @e: the event to send
1079  *
1080  * A lot of drivers need to generate vblank events for the very next vblank
1081  * interrupt. For example when the page flip interrupt happens when the page
1082  * flip gets armed, but not when it actually executes within the next vblank
1083  * period. This helper function implements exactly the required vblank arming
1084  * behaviour.
1085  *
1086  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1087  * atomic commit must ensure that the next vblank happens at exactly the same
1088  * time as the atomic commit is committed to the hardware. This function itself
1089  * does **not** protect against the next vblank interrupt racing with either this
1090  * function call or the atomic commit operation. A possible sequence could be:
1091  *
1092  * 1. Driver commits new hardware state into vblank-synchronized registers.
1093  * 2. A vblank happens, committing the hardware state. Also the corresponding
1094  *    vblank interrupt is fired off and fully processed by the interrupt
1095  *    handler.
1096  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1097  * 4. The event is only send out for the next vblank, which is wrong.
1098  *
1099  * An equivalent race can happen when the driver calls
1100  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1101  *
1102  * The only way to make this work safely is to prevent the vblank from firing
1103  * (and the hardware from committing anything else) until the entire atomic
1104  * commit sequence has run to completion. If the hardware does not have such a
1105  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1106  * Instead drivers need to manually send out the event from their interrupt
1107  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1108  * possible race with the hardware committing the atomic update.
1109  *
1110  * Caller must hold a vblank reference for the event @e acquired by a
1111  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1112  */
1113 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1114 			       struct drm_pending_vblank_event *e)
1115 {
1116 	struct drm_device *dev = crtc->dev;
1117 	unsigned int pipe = drm_crtc_index(crtc);
1118 
1119 	assert_spin_locked(&dev->event_lock);
1120 
1121 	e->pipe = pipe;
1122 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1123 	list_add_tail(&e->base.link, &dev->vblank_event_list);
1124 }
1125 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1126 
1127 /**
1128  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1129  * @crtc: the source CRTC of the vblank event
1130  * @e: the event to send
1131  *
1132  * Updates sequence # and timestamp on event for the most recently processed
1133  * vblank, and sends it to userspace.  Caller must hold event lock.
1134  *
1135  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1136  * situation, especially to send out events for atomic commit operations.
1137  */
1138 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1139 				struct drm_pending_vblank_event *e)
1140 {
1141 	struct drm_device *dev = crtc->dev;
1142 	u64 seq;
1143 	unsigned int pipe = drm_crtc_index(crtc);
1144 	ktime_t now;
1145 
1146 	if (drm_dev_has_vblank(dev)) {
1147 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1148 	} else {
1149 		seq = 0;
1150 
1151 		now = ktime_get();
1152 	}
1153 	e->pipe = pipe;
1154 	send_vblank_event(dev, e, seq, now);
1155 }
1156 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1157 
1158 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1159 {
1160 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1161 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1162 
1163 		if (drm_WARN_ON(dev, !crtc))
1164 			return 0;
1165 
1166 		if (crtc->funcs->enable_vblank)
1167 			return crtc->funcs->enable_vblank(crtc);
1168 	}
1169 
1170 	return -EINVAL;
1171 }
1172 
1173 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1174 {
1175 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1176 	int ret = 0;
1177 
1178 	assert_spin_locked(&dev->vbl_lock);
1179 
1180 	spin_lock(&dev->vblank_time_lock);
1181 
1182 	if (!vblank->enabled) {
1183 		/*
1184 		 * Enable vblank irqs under vblank_time_lock protection.
1185 		 * All vblank count & timestamp updates are held off
1186 		 * until we are done reinitializing master counter and
1187 		 * timestamps. Filtercode in drm_handle_vblank() will
1188 		 * prevent double-accounting of same vblank interval.
1189 		 */
1190 		ret = __enable_vblank(dev, pipe);
1191 		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1192 			     pipe, ret);
1193 		if (ret) {
1194 			atomic_dec(&vblank->refcount);
1195 		} else {
1196 			drm_update_vblank_count(dev, pipe, 0);
1197 			/* drm_update_vblank_count() includes a wmb so we just
1198 			 * need to ensure that the compiler emits the write
1199 			 * to mark the vblank as enabled after the call
1200 			 * to drm_update_vblank_count().
1201 			 */
1202 			WRITE_ONCE(vblank->enabled, true);
1203 		}
1204 	}
1205 
1206 	spin_unlock(&dev->vblank_time_lock);
1207 
1208 	return ret;
1209 }
1210 
1211 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1212 {
1213 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1214 	unsigned long irqflags;
1215 	int ret = 0;
1216 
1217 	if (!drm_dev_has_vblank(dev))
1218 		return -EINVAL;
1219 
1220 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1221 		return -EINVAL;
1222 
1223 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1224 	/* Going from 0->1 means we have to enable interrupts again */
1225 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1226 		ret = drm_vblank_enable(dev, pipe);
1227 	} else {
1228 		if (!vblank->enabled) {
1229 			atomic_dec(&vblank->refcount);
1230 			ret = -EINVAL;
1231 		}
1232 	}
1233 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1234 
1235 	return ret;
1236 }
1237 
1238 /**
1239  * drm_crtc_vblank_get - get a reference count on vblank events
1240  * @crtc: which CRTC to own
1241  *
1242  * Acquire a reference count on vblank events to avoid having them disabled
1243  * while in use.
1244  *
1245  * Returns:
1246  * Zero on success or a negative error code on failure.
1247  */
1248 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1249 {
1250 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1251 }
1252 EXPORT_SYMBOL(drm_crtc_vblank_get);
1253 
1254 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1255 {
1256 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1257 	int vblank_offdelay = vblank->config.offdelay_ms;
1258 
1259 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1260 		return;
1261 
1262 	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1263 		return;
1264 
1265 	/* Last user schedules interrupt disable */
1266 	if (atomic_dec_and_test(&vblank->refcount)) {
1267 		if (!vblank_offdelay)
1268 			return;
1269 		else if (vblank_offdelay < 0)
1270 			vblank_disable_fn(&vblank->disable_timer);
1271 		else if (!vblank->config.disable_immediate)
1272 			mod_timer(&vblank->disable_timer,
1273 				  jiffies + ((vblank_offdelay * HZ) / 1000));
1274 	}
1275 }
1276 
1277 /**
1278  * drm_crtc_vblank_put - give up ownership of vblank events
1279  * @crtc: which counter to give up
1280  *
1281  * Release ownership of a given vblank counter, turning off interrupts
1282  * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms
1283  * milliseconds.
1284  */
1285 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1286 {
1287 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1288 }
1289 EXPORT_SYMBOL(drm_crtc_vblank_put);
1290 
1291 /**
1292  * drm_crtc_wait_one_vblank - wait for one vblank
1293  * @crtc: DRM crtc
1294  *
1295  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1296  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1297  * due to lack of driver support or because the crtc is off.
1298  *
1299  * Returns: 0 on success, negative error on failures.
1300  */
1301 int drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1302 {
1303 	struct drm_device *dev = crtc->dev;
1304 	int pipe = drm_crtc_index(crtc);
1305 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1306 	int ret;
1307 	u64 last;
1308 
1309 	ret = drm_vblank_get(dev, pipe);
1310 	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1311 		     pipe, ret))
1312 		return ret;
1313 
1314 	last = drm_vblank_count(dev, pipe);
1315 
1316 	ret = wait_event_timeout(vblank->queue,
1317 				 last != drm_vblank_count(dev, pipe),
1318 				 msecs_to_jiffies(1000));
1319 
1320 	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1321 
1322 	drm_vblank_put(dev, pipe);
1323 
1324 	return ret ? 0 : -ETIMEDOUT;
1325 }
1326 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1327 
1328 /**
1329  * drm_crtc_vblank_off - disable vblank events on a CRTC
1330  * @crtc: CRTC in question
1331  *
1332  * Drivers can use this function to shut down the vblank interrupt handling when
1333  * disabling a crtc. This function ensures that the latest vblank frame count is
1334  * stored so that drm_vblank_on can restore it again.
1335  *
1336  * Drivers must use this function when the hardware vblank counter can get
1337  * reset, e.g. when suspending or disabling the @crtc in general.
1338  */
1339 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1340 {
1341 	struct drm_device *dev = crtc->dev;
1342 	unsigned int pipe = drm_crtc_index(crtc);
1343 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1344 	struct drm_pending_vblank_event *e, *t;
1345 	ktime_t now;
1346 	u64 seq;
1347 
1348 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1349 		return;
1350 
1351 	/*
1352 	 * Grab event_lock early to prevent vblank work from being scheduled
1353 	 * while we're in the middle of shutting down vblank interrupts
1354 	 */
1355 	spin_lock_irq(&dev->event_lock);
1356 
1357 	spin_lock(&dev->vbl_lock);
1358 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1359 		    pipe, vblank->enabled, vblank->inmodeset);
1360 
1361 	/* Avoid redundant vblank disables without previous
1362 	 * drm_crtc_vblank_on(). */
1363 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1364 		drm_vblank_disable_and_save(dev, pipe);
1365 
1366 	wake_up(&vblank->queue);
1367 
1368 	/*
1369 	 * Prevent subsequent drm_vblank_get() from re-enabling
1370 	 * the vblank interrupt by bumping the refcount.
1371 	 */
1372 	if (!vblank->inmodeset) {
1373 		atomic_inc(&vblank->refcount);
1374 		vblank->inmodeset = 1;
1375 	}
1376 	spin_unlock(&dev->vbl_lock);
1377 
1378 	/* Send any queued vblank events, lest the natives grow disquiet */
1379 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1380 
1381 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1382 		if (e->pipe != pipe)
1383 			continue;
1384 		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1385 			     "wanted %llu, current %llu\n",
1386 			     e->sequence, seq);
1387 		list_del(&e->base.link);
1388 		drm_vblank_put(dev, pipe);
1389 		send_vblank_event(dev, e, seq, now);
1390 	}
1391 
1392 	/* Cancel any leftover pending vblank work */
1393 	drm_vblank_cancel_pending_works(vblank);
1394 
1395 	spin_unlock_irq(&dev->event_lock);
1396 
1397 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1398 	 * calling drm_calc_timestamping_constants(). */
1399 	vblank->hwmode.crtc_clock = 0;
1400 
1401 	/* Wait for any vblank work that's still executing to finish */
1402 	drm_vblank_flush_worker(vblank);
1403 }
1404 EXPORT_SYMBOL(drm_crtc_vblank_off);
1405 
1406 /**
1407  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1408  * @crtc: CRTC in question
1409  *
1410  * Drivers can use this function to reset the vblank state to off at load time.
1411  * Drivers should use this together with the drm_crtc_vblank_off() and
1412  * drm_crtc_vblank_on() functions. The difference compared to
1413  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1414  * and hence doesn't need to call any driver hooks.
1415  *
1416  * This is useful for recovering driver state e.g. on driver load, or on resume.
1417  */
1418 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1419 {
1420 	struct drm_device *dev = crtc->dev;
1421 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1422 
1423 	spin_lock_irq(&dev->vbl_lock);
1424 	/*
1425 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1426 	 * interrupt by bumping the refcount.
1427 	 */
1428 	if (!vblank->inmodeset) {
1429 		atomic_inc(&vblank->refcount);
1430 		vblank->inmodeset = 1;
1431 	}
1432 	spin_unlock_irq(&dev->vbl_lock);
1433 
1434 	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1435 	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1436 }
1437 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1438 
1439 /**
1440  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1441  * @crtc: CRTC in question
1442  * @max_vblank_count: max hardware vblank counter value
1443  *
1444  * Update the maximum hardware vblank counter value for @crtc
1445  * at runtime. Useful for hardware where the operation of the
1446  * hardware vblank counter depends on the currently active
1447  * display configuration.
1448  *
1449  * For example, if the hardware vblank counter does not work
1450  * when a specific connector is active the maximum can be set
1451  * to zero. And when that specific connector isn't active the
1452  * maximum can again be set to the appropriate non-zero value.
1453  *
1454  * If used, must be called before drm_vblank_on().
1455  */
1456 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1457 				   u32 max_vblank_count)
1458 {
1459 	struct drm_device *dev = crtc->dev;
1460 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1461 
1462 	drm_WARN_ON(dev, dev->max_vblank_count);
1463 	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1464 
1465 	vblank->max_vblank_count = max_vblank_count;
1466 }
1467 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1468 
1469 /**
1470  * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom
1471  *     configuration options
1472  * @crtc: CRTC in question
1473  * @config: Vblank configuration value
1474  *
1475  * See drm_crtc_vblank_on(). In addition, this function allows you to provide a
1476  * custom vblank configuration for a given CRTC.
1477  *
1478  * Note that @config is copied, the pointer does not need to stay valid beyond
1479  * this function call. For details of the parameters see
1480  * struct drm_vblank_crtc_config.
1481  */
1482 void drm_crtc_vblank_on_config(struct drm_crtc *crtc,
1483 			       const struct drm_vblank_crtc_config *config)
1484 {
1485 	struct drm_device *dev = crtc->dev;
1486 	unsigned int pipe = drm_crtc_index(crtc);
1487 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1488 
1489 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1490 		return;
1491 
1492 	spin_lock_irq(&dev->vbl_lock);
1493 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1494 		    pipe, vblank->enabled, vblank->inmodeset);
1495 
1496 	vblank->config = *config;
1497 
1498 	/* Drop our private "prevent drm_vblank_get" refcount */
1499 	if (vblank->inmodeset) {
1500 		atomic_dec(&vblank->refcount);
1501 		vblank->inmodeset = 0;
1502 	}
1503 
1504 	drm_reset_vblank_timestamp(dev, pipe);
1505 
1506 	/*
1507 	 * re-enable interrupts if there are users left, or the
1508 	 * user wishes vblank interrupts to be enabled all the time.
1509 	 */
1510 	if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms)
1511 		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1512 	spin_unlock_irq(&dev->vbl_lock);
1513 }
1514 EXPORT_SYMBOL(drm_crtc_vblank_on_config);
1515 
1516 /**
1517  * drm_crtc_vblank_on - enable vblank events on a CRTC
1518  * @crtc: CRTC in question
1519  *
1520  * This functions restores the vblank interrupt state captured with
1521  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1522  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1523  * unbalanced and so can also be unconditionally called in driver load code to
1524  * reflect the current hardware state of the crtc.
1525  *
1526  * Note that unlike in drm_crtc_vblank_on_config(), default values are used.
1527  */
1528 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1529 {
1530 	const struct drm_vblank_crtc_config config = {
1531 		.offdelay_ms = drm_vblank_offdelay,
1532 		.disable_immediate = crtc->dev->vblank_disable_immediate
1533 	};
1534 
1535 	drm_crtc_vblank_on_config(crtc, &config);
1536 }
1537 EXPORT_SYMBOL(drm_crtc_vblank_on);
1538 
1539 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1540 {
1541 	ktime_t t_vblank;
1542 	struct drm_vblank_crtc *vblank;
1543 	int framedur_ns;
1544 	u64 diff_ns;
1545 	u32 cur_vblank, diff = 1;
1546 	int count = DRM_TIMESTAMP_MAXRETRIES;
1547 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1548 
1549 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1550 		return;
1551 
1552 	assert_spin_locked(&dev->vbl_lock);
1553 	assert_spin_locked(&dev->vblank_time_lock);
1554 
1555 	vblank = drm_vblank_crtc(dev, pipe);
1556 	drm_WARN_ONCE(dev,
1557 		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1558 		      "Cannot compute missed vblanks without frame duration\n");
1559 	framedur_ns = vblank->framedur_ns;
1560 
1561 	do {
1562 		cur_vblank = __get_vblank_counter(dev, pipe);
1563 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1564 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1565 
1566 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1567 	if (framedur_ns)
1568 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1569 
1570 
1571 	drm_dbg_vbl(dev,
1572 		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1573 		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1574 	vblank->last = (cur_vblank - diff) & max_vblank_count;
1575 }
1576 
1577 /**
1578  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1579  * @crtc: CRTC in question
1580  *
1581  * Power manamement features can cause frame counter resets between vblank
1582  * disable and enable. Drivers can use this function in their
1583  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1584  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1585  * vblank counter.
1586  *
1587  * Note that drivers must have race-free high-precision timestamping support,
1588  * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1589  * &drm_vblank_crtc_config.disable_immediate must be set to indicate the
1590  * time-stamping functions are race-free against vblank hardware counter
1591  * increments.
1592  */
1593 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1594 {
1595 	struct drm_device *dev = crtc->dev;
1596 	unsigned int pipe = drm_crtc_index(crtc);
1597 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1598 
1599 	drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp);
1600 	drm_WARN_ON_ONCE(dev, vblank->inmodeset);
1601 	drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate);
1602 
1603 	drm_vblank_restore(dev, pipe);
1604 }
1605 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1606 
1607 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1608 				  u64 req_seq,
1609 				  union drm_wait_vblank *vblwait,
1610 				  struct drm_file *file_priv)
1611 {
1612 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1613 	struct drm_pending_vblank_event *e;
1614 	ktime_t now;
1615 	u64 seq;
1616 	int ret;
1617 
1618 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1619 	if (e == NULL) {
1620 		ret = -ENOMEM;
1621 		goto err_put;
1622 	}
1623 
1624 	e->pipe = pipe;
1625 	e->event.base.type = DRM_EVENT_VBLANK;
1626 	e->event.base.length = sizeof(e->event.vbl);
1627 	e->event.vbl.user_data = vblwait->request.signal;
1628 	e->event.vbl.crtc_id = 0;
1629 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1630 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1631 
1632 		if (crtc)
1633 			e->event.vbl.crtc_id = crtc->base.id;
1634 	}
1635 
1636 	spin_lock_irq(&dev->event_lock);
1637 
1638 	/*
1639 	 * drm_crtc_vblank_off() might have been called after we called
1640 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1641 	 * vblank disable, so no need for further locking.  The reference from
1642 	 * drm_vblank_get() protects against vblank disable from another source.
1643 	 */
1644 	if (!READ_ONCE(vblank->enabled)) {
1645 		ret = -EINVAL;
1646 		goto err_unlock;
1647 	}
1648 
1649 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1650 					    &e->event.base);
1651 
1652 	if (ret)
1653 		goto err_unlock;
1654 
1655 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1656 
1657 	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1658 		     req_seq, seq, pipe);
1659 
1660 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1661 
1662 	e->sequence = req_seq;
1663 	if (drm_vblank_passed(seq, req_seq)) {
1664 		drm_vblank_put(dev, pipe);
1665 		send_vblank_event(dev, e, seq, now);
1666 		vblwait->reply.sequence = seq;
1667 	} else {
1668 		/* drm_handle_vblank_events will call drm_vblank_put */
1669 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1670 		vblwait->reply.sequence = req_seq;
1671 	}
1672 
1673 	spin_unlock_irq(&dev->event_lock);
1674 
1675 	return 0;
1676 
1677 err_unlock:
1678 	spin_unlock_irq(&dev->event_lock);
1679 	kfree(e);
1680 err_put:
1681 	drm_vblank_put(dev, pipe);
1682 	return ret;
1683 }
1684 
1685 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1686 {
1687 	if (vblwait->request.sequence)
1688 		return false;
1689 
1690 	return _DRM_VBLANK_RELATIVE ==
1691 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1692 					  _DRM_VBLANK_EVENT |
1693 					  _DRM_VBLANK_NEXTONMISS));
1694 }
1695 
1696 /*
1697  * Widen a 32-bit param to 64-bits.
1698  *
1699  * \param narrow 32-bit value (missing upper 32 bits)
1700  * \param near 64-bit value that should be 'close' to near
1701  *
1702  * This function returns a 64-bit value using the lower 32-bits from
1703  * 'narrow' and constructing the upper 32-bits so that the result is
1704  * as close as possible to 'near'.
1705  */
1706 
1707 static u64 widen_32_to_64(u32 narrow, u64 near)
1708 {
1709 	return near + (s32) (narrow - near);
1710 }
1711 
1712 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1713 				  struct drm_wait_vblank_reply *reply)
1714 {
1715 	ktime_t now;
1716 	struct timespec64 ts;
1717 
1718 	/*
1719 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1720 	 * to store the seconds. This is safe as we always use monotonic
1721 	 * timestamps since linux-4.15.
1722 	 */
1723 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1724 	ts = ktime_to_timespec64(now);
1725 	reply->tval_sec = (u32)ts.tv_sec;
1726 	reply->tval_usec = ts.tv_nsec / 1000;
1727 }
1728 
1729 static bool drm_wait_vblank_supported(struct drm_device *dev)
1730 {
1731 	return drm_dev_has_vblank(dev);
1732 }
1733 
1734 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1735 			  struct drm_file *file_priv)
1736 {
1737 	struct drm_crtc *crtc;
1738 	struct drm_vblank_crtc *vblank;
1739 	union drm_wait_vblank *vblwait = data;
1740 	int ret;
1741 	u64 req_seq, seq;
1742 	unsigned int pipe_index;
1743 	unsigned int flags, pipe, high_pipe;
1744 
1745 	if (!drm_wait_vblank_supported(dev))
1746 		return -EOPNOTSUPP;
1747 
1748 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1749 		return -EINVAL;
1750 
1751 	if (vblwait->request.type &
1752 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1753 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1754 		drm_dbg_core(dev,
1755 			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1756 			     vblwait->request.type,
1757 			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1758 			      _DRM_VBLANK_HIGH_CRTC_MASK));
1759 		return -EINVAL;
1760 	}
1761 
1762 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1763 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1764 	if (high_pipe)
1765 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1766 	else
1767 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1768 
1769 	/* Convert lease-relative crtc index into global crtc index */
1770 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1771 		pipe = 0;
1772 		drm_for_each_crtc(crtc, dev) {
1773 			if (drm_lease_held(file_priv, crtc->base.id)) {
1774 				if (pipe_index == 0)
1775 					break;
1776 				pipe_index--;
1777 			}
1778 			pipe++;
1779 		}
1780 	} else {
1781 		pipe = pipe_index;
1782 	}
1783 
1784 	if (pipe >= dev->num_crtcs)
1785 		return -EINVAL;
1786 
1787 	vblank = drm_vblank_crtc(dev, pipe);
1788 
1789 	/* If the counter is currently enabled and accurate, short-circuit
1790 	 * queries to return the cached timestamp of the last vblank.
1791 	 */
1792 	if (vblank->config.disable_immediate &&
1793 	    drm_wait_vblank_is_query(vblwait) &&
1794 	    READ_ONCE(vblank->enabled)) {
1795 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1796 		return 0;
1797 	}
1798 
1799 	ret = drm_vblank_get(dev, pipe);
1800 	if (ret) {
1801 		drm_dbg_core(dev,
1802 			     "crtc %d failed to acquire vblank counter, %d\n",
1803 			     pipe, ret);
1804 		return ret;
1805 	}
1806 	seq = drm_vblank_count(dev, pipe);
1807 
1808 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1809 	case _DRM_VBLANK_RELATIVE:
1810 		req_seq = seq + vblwait->request.sequence;
1811 		vblwait->request.sequence = req_seq;
1812 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1813 		break;
1814 	case _DRM_VBLANK_ABSOLUTE:
1815 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1816 		break;
1817 	default:
1818 		ret = -EINVAL;
1819 		goto done;
1820 	}
1821 
1822 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1823 	    drm_vblank_passed(seq, req_seq)) {
1824 		req_seq = seq + 1;
1825 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1826 		vblwait->request.sequence = req_seq;
1827 	}
1828 
1829 	if (flags & _DRM_VBLANK_EVENT) {
1830 		/* must hold on to the vblank ref until the event fires
1831 		 * drm_vblank_put will be called asynchronously
1832 		 */
1833 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1834 	}
1835 
1836 	if (req_seq != seq) {
1837 		int wait;
1838 
1839 		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1840 			     req_seq, pipe);
1841 		wait = wait_event_interruptible_timeout(vblank->queue,
1842 			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1843 				      !READ_ONCE(vblank->enabled),
1844 			msecs_to_jiffies(3000));
1845 
1846 		switch (wait) {
1847 		case 0:
1848 			/* timeout */
1849 			ret = -EBUSY;
1850 			break;
1851 		case -ERESTARTSYS:
1852 			/* interrupted by signal */
1853 			ret = -EINTR;
1854 			break;
1855 		default:
1856 			ret = 0;
1857 			break;
1858 		}
1859 	}
1860 
1861 	if (ret != -EINTR) {
1862 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1863 
1864 		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1865 			     pipe, vblwait->reply.sequence);
1866 	} else {
1867 		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1868 			     pipe);
1869 	}
1870 
1871 done:
1872 	drm_vblank_put(dev, pipe);
1873 	return ret;
1874 }
1875 
1876 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1877 {
1878 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1879 	bool high_prec = false;
1880 	struct drm_pending_vblank_event *e, *t;
1881 	ktime_t now;
1882 	u64 seq;
1883 
1884 	assert_spin_locked(&dev->event_lock);
1885 
1886 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1887 
1888 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1889 		if (e->pipe != pipe)
1890 			continue;
1891 		if (!drm_vblank_passed(seq, e->sequence))
1892 			continue;
1893 
1894 		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1895 			     e->sequence, seq);
1896 
1897 		list_del(&e->base.link);
1898 		drm_vblank_put(dev, pipe);
1899 		send_vblank_event(dev, e, seq, now);
1900 	}
1901 
1902 	if (crtc && crtc->funcs->get_vblank_timestamp)
1903 		high_prec = true;
1904 
1905 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1906 }
1907 
1908 /**
1909  * drm_handle_vblank - handle a vblank event
1910  * @dev: DRM device
1911  * @pipe: index of CRTC where this event occurred
1912  *
1913  * Drivers should call this routine in their vblank interrupt handlers to
1914  * update the vblank counter and send any signals that may be pending.
1915  *
1916  * This is the legacy version of drm_crtc_handle_vblank().
1917  */
1918 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1919 {
1920 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1921 	unsigned long irqflags;
1922 	bool disable_irq;
1923 
1924 	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1925 		return false;
1926 
1927 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1928 		return false;
1929 
1930 	spin_lock_irqsave(&dev->event_lock, irqflags);
1931 
1932 	/* Need timestamp lock to prevent concurrent execution with
1933 	 * vblank enable/disable, as this would cause inconsistent
1934 	 * or corrupted timestamps and vblank counts.
1935 	 */
1936 	spin_lock(&dev->vblank_time_lock);
1937 
1938 	/* Vblank irq handling disabled. Nothing to do. */
1939 	if (!vblank->enabled) {
1940 		spin_unlock(&dev->vblank_time_lock);
1941 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1942 		return false;
1943 	}
1944 
1945 	drm_update_vblank_count(dev, pipe, true);
1946 
1947 	spin_unlock(&dev->vblank_time_lock);
1948 
1949 	wake_up(&vblank->queue);
1950 
1951 	/* With instant-off, we defer disabling the interrupt until after
1952 	 * we finish processing the following vblank after all events have
1953 	 * been signaled. The disable has to be last (after
1954 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1955 	 */
1956 	disable_irq = (vblank->config.disable_immediate &&
1957 		       vblank->config.offdelay_ms > 0 &&
1958 		       !atomic_read(&vblank->refcount));
1959 
1960 	drm_handle_vblank_events(dev, pipe);
1961 	drm_handle_vblank_works(vblank);
1962 
1963 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1964 
1965 	if (disable_irq)
1966 		vblank_disable_fn(&vblank->disable_timer);
1967 
1968 	return true;
1969 }
1970 EXPORT_SYMBOL(drm_handle_vblank);
1971 
1972 /**
1973  * drm_crtc_handle_vblank - handle a vblank event
1974  * @crtc: where this event occurred
1975  *
1976  * Drivers should call this routine in their vblank interrupt handlers to
1977  * update the vblank counter and send any signals that may be pending.
1978  *
1979  * This is the native KMS version of drm_handle_vblank().
1980  *
1981  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1982  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1983  * provide a barrier: Any writes done before calling
1984  * drm_crtc_handle_vblank() will be visible to callers of the later
1985  * functions, if the vblank count is the same or a later one.
1986  *
1987  * See also &drm_vblank_crtc.count.
1988  *
1989  * Returns:
1990  * True if the event was successfully handled, false on failure.
1991  */
1992 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1993 {
1994 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1995 }
1996 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1997 
1998 /*
1999  * Get crtc VBLANK count.
2000  *
2001  * \param dev DRM device
2002  * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2003  * \param file_priv drm file private for the user's open file descriptor
2004  */
2005 
2006 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2007 				struct drm_file *file_priv)
2008 {
2009 	struct drm_crtc *crtc;
2010 	struct drm_vblank_crtc *vblank;
2011 	int pipe;
2012 	struct drm_crtc_get_sequence *get_seq = data;
2013 	ktime_t now;
2014 	bool vblank_enabled;
2015 	int ret;
2016 
2017 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2018 		return -EOPNOTSUPP;
2019 
2020 	if (!drm_dev_has_vblank(dev))
2021 		return -EOPNOTSUPP;
2022 
2023 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2024 	if (!crtc)
2025 		return -ENOENT;
2026 
2027 	pipe = drm_crtc_index(crtc);
2028 
2029 	vblank = drm_crtc_vblank_crtc(crtc);
2030 	vblank_enabled = READ_ONCE(vblank->config.disable_immediate) &&
2031 		READ_ONCE(vblank->enabled);
2032 
2033 	if (!vblank_enabled) {
2034 		ret = drm_crtc_vblank_get(crtc);
2035 		if (ret) {
2036 			drm_dbg_core(dev,
2037 				     "crtc %d failed to acquire vblank counter, %d\n",
2038 				     pipe, ret);
2039 			return ret;
2040 		}
2041 	}
2042 	drm_modeset_lock(&crtc->mutex, NULL);
2043 	if (crtc->state)
2044 		get_seq->active = crtc->state->enable;
2045 	else
2046 		get_seq->active = crtc->enabled;
2047 	drm_modeset_unlock(&crtc->mutex);
2048 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2049 	get_seq->sequence_ns = ktime_to_ns(now);
2050 	if (!vblank_enabled)
2051 		drm_crtc_vblank_put(crtc);
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Queue a event for VBLANK sequence
2057  *
2058  * \param dev DRM device
2059  * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2060  * \param file_priv drm file private for the user's open file descriptor
2061  */
2062 
2063 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2064 				  struct drm_file *file_priv)
2065 {
2066 	struct drm_crtc *crtc;
2067 	struct drm_vblank_crtc *vblank;
2068 	int pipe;
2069 	struct drm_crtc_queue_sequence *queue_seq = data;
2070 	ktime_t now;
2071 	struct drm_pending_vblank_event *e;
2072 	u32 flags;
2073 	u64 seq;
2074 	u64 req_seq;
2075 	int ret;
2076 
2077 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2078 		return -EOPNOTSUPP;
2079 
2080 	if (!drm_dev_has_vblank(dev))
2081 		return -EOPNOTSUPP;
2082 
2083 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2084 	if (!crtc)
2085 		return -ENOENT;
2086 
2087 	flags = queue_seq->flags;
2088 	/* Check valid flag bits */
2089 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2090 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2091 		return -EINVAL;
2092 
2093 	pipe = drm_crtc_index(crtc);
2094 
2095 	vblank = drm_crtc_vblank_crtc(crtc);
2096 
2097 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2098 	if (e == NULL)
2099 		return -ENOMEM;
2100 
2101 	ret = drm_crtc_vblank_get(crtc);
2102 	if (ret) {
2103 		drm_dbg_core(dev,
2104 			     "crtc %d failed to acquire vblank counter, %d\n",
2105 			     pipe, ret);
2106 		goto err_free;
2107 	}
2108 
2109 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2110 	req_seq = queue_seq->sequence;
2111 
2112 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2113 		req_seq += seq;
2114 
2115 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2116 		req_seq = seq + 1;
2117 
2118 	e->pipe = pipe;
2119 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2120 	e->event.base.length = sizeof(e->event.seq);
2121 	e->event.seq.user_data = queue_seq->user_data;
2122 
2123 	spin_lock_irq(&dev->event_lock);
2124 
2125 	/*
2126 	 * drm_crtc_vblank_off() might have been called after we called
2127 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2128 	 * vblank disable, so no need for further locking.  The reference from
2129 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2130 	 */
2131 	if (!READ_ONCE(vblank->enabled)) {
2132 		ret = -EINVAL;
2133 		goto err_unlock;
2134 	}
2135 
2136 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2137 					    &e->event.base);
2138 
2139 	if (ret)
2140 		goto err_unlock;
2141 
2142 	e->sequence = req_seq;
2143 
2144 	if (drm_vblank_passed(seq, req_seq)) {
2145 		drm_crtc_vblank_put(crtc);
2146 		send_vblank_event(dev, e, seq, now);
2147 		queue_seq->sequence = seq;
2148 	} else {
2149 		/* drm_handle_vblank_events will call drm_vblank_put */
2150 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2151 		queue_seq->sequence = req_seq;
2152 	}
2153 
2154 	spin_unlock_irq(&dev->event_lock);
2155 	return 0;
2156 
2157 err_unlock:
2158 	spin_unlock_irq(&dev->event_lock);
2159 	drm_crtc_vblank_put(crtc);
2160 err_free:
2161 	kfree(e);
2162 	return ret;
2163 }
2164 
2165 /*
2166  * VBLANK timer
2167  */
2168 
2169 static enum hrtimer_restart drm_vblank_timer_function(struct hrtimer *timer)
2170 {
2171 	struct drm_vblank_crtc_timer *vtimer =
2172 		container_of(timer, struct drm_vblank_crtc_timer, timer);
2173 	struct drm_crtc *crtc = vtimer->crtc;
2174 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2175 	struct drm_device *dev = crtc->dev;
2176 	unsigned long flags;
2177 	ktime_t interval;
2178 	u64 ret_overrun;
2179 	bool succ;
2180 
2181 	spin_lock_irqsave(&vtimer->interval_lock, flags);
2182 	interval = vtimer->interval;
2183 	spin_unlock_irqrestore(&vtimer->interval_lock, flags);
2184 
2185 	if (!interval)
2186 		return HRTIMER_NORESTART;
2187 
2188 	ret_overrun = hrtimer_forward_now(&vtimer->timer, interval);
2189 	if (ret_overrun != 1)
2190 		drm_dbg_vbl(dev, "vblank timer overrun\n");
2191 
2192 	if (crtc_funcs->handle_vblank_timeout)
2193 		succ = crtc_funcs->handle_vblank_timeout(crtc);
2194 	else
2195 		succ = drm_crtc_handle_vblank(crtc);
2196 	if (!succ)
2197 		return HRTIMER_NORESTART;
2198 
2199 	return HRTIMER_RESTART;
2200 }
2201 
2202 /**
2203  * drm_crtc_vblank_start_timer - Starts the vblank timer on the given CRTC
2204  * @crtc: the CRTC
2205  *
2206  * Drivers should call this function from their CRTC's enable_vblank
2207  * function to start a vblank timer. The timer will fire after the duration
2208  * of a full frame. drm_crtc_vblank_cancel_timer() disables a running timer.
2209  *
2210  * Returns:
2211  * 0 on success, or a negative errno code otherwise.
2212  */
2213 int drm_crtc_vblank_start_timer(struct drm_crtc *crtc)
2214 {
2215 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
2216 	struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer;
2217 	unsigned long flags;
2218 
2219 	if (!vtimer->crtc) {
2220 		/*
2221 		 * Set up the data structures on the first invocation.
2222 		 */
2223 		vtimer->crtc = crtc;
2224 		spin_lock_init(&vtimer->interval_lock);
2225 		hrtimer_setup(&vtimer->timer, drm_vblank_timer_function,
2226 			      CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2227 	} else {
2228 		/*
2229 		 * Timer should not be active. If it is, wait for the
2230 		 * previous cancel operations to finish.
2231 		 */
2232 		while (hrtimer_active(&vtimer->timer))
2233 			hrtimer_try_to_cancel(&vtimer->timer);
2234 	}
2235 
2236 	drm_calc_timestamping_constants(crtc, &crtc->mode);
2237 
2238 	spin_lock_irqsave(&vtimer->interval_lock, flags);
2239 	vtimer->interval = ns_to_ktime(vblank->framedur_ns);
2240 	spin_unlock_irqrestore(&vtimer->interval_lock, flags);
2241 
2242 	hrtimer_start(&vtimer->timer, vtimer->interval, HRTIMER_MODE_REL);
2243 
2244 	return 0;
2245 }
2246 EXPORT_SYMBOL(drm_crtc_vblank_start_timer);
2247 
2248 /**
2249  * drm_crtc_vblank_cancel_timer - Cancels the given CRTC's vblank timer
2250  * @crtc: the CRTC
2251  *
2252  * Drivers should call this function from their CRTC's disable_vblank
2253  * function to stop a vblank timer.
2254  */
2255 void drm_crtc_vblank_cancel_timer(struct drm_crtc *crtc)
2256 {
2257 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
2258 	struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer;
2259 	unsigned long flags;
2260 
2261 	/*
2262 	 * Calling hrtimer_cancel() can result in a deadlock with DRM's
2263 	 * vblank_time_lime_lock and hrtimers' softirq_expiry_lock. So
2264 	 * clear interval and indicate cancellation. The timer function
2265 	 * will cancel itself on the next invocation.
2266 	 */
2267 
2268 	spin_lock_irqsave(&vtimer->interval_lock, flags);
2269 	vtimer->interval = 0;
2270 	spin_unlock_irqrestore(&vtimer->interval_lock, flags);
2271 
2272 	hrtimer_try_to_cancel(&vtimer->timer);
2273 }
2274 EXPORT_SYMBOL(drm_crtc_vblank_cancel_timer);
2275 
2276 /**
2277  * drm_crtc_vblank_get_vblank_timeout - Returns the vblank timeout
2278  * @crtc: The CRTC
2279  * @vblank_time: Returns the next vblank timestamp
2280  *
2281  * The helper drm_crtc_vblank_get_vblank_timeout() returns the next vblank
2282  * timestamp of the CRTC's vblank timer according to the timer's expiry
2283  * time.
2284  */
2285 void drm_crtc_vblank_get_vblank_timeout(struct drm_crtc *crtc, ktime_t *vblank_time)
2286 {
2287 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
2288 	struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer;
2289 	u64 cur_count;
2290 	ktime_t cur_time;
2291 
2292 	if (!READ_ONCE(vblank->enabled)) {
2293 		*vblank_time = ktime_get();
2294 		return;
2295 	}
2296 
2297 	/*
2298 	 * A concurrent vblank timeout could update the expires field before
2299 	 * we compare it with the vblank time. Hence we'd compare the old
2300 	 * expiry time to the new vblank time; deducing the timer had already
2301 	 * expired. Reread until we get consistent values from both fields.
2302 	 */
2303 	do {
2304 		cur_count = drm_crtc_vblank_count_and_time(crtc, &cur_time);
2305 		*vblank_time = READ_ONCE(vtimer->timer.node.expires);
2306 	} while (cur_count != drm_crtc_vblank_count_and_time(crtc, &cur_time));
2307 
2308 	if (drm_WARN_ON(crtc->dev, !ktime_compare(*vblank_time, cur_time)))
2309 		return; /* Already expired */
2310 
2311 	/*
2312 	 * To prevent races we roll the hrtimer forward before we do any
2313 	 * interrupt processing - this is how real hw works (the interrupt
2314 	 * is only generated after all the vblank registers are updated)
2315 	 * and what the vblank core expects. Therefore we need to always
2316 	 * correct the timestamp by one frame.
2317 	 */
2318 	*vblank_time = ktime_sub(*vblank_time, vtimer->interval);
2319 }
2320 EXPORT_SYMBOL(drm_crtc_vblank_get_vblank_timeout);
2321