1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_vblank_crtc_config.disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static struct drm_vblank_crtc * 170 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe) 171 { 172 return &dev->vblank[pipe]; 173 } 174 175 struct drm_vblank_crtc * 176 drm_crtc_vblank_crtc(struct drm_crtc *crtc) 177 { 178 return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc)); 179 } 180 EXPORT_SYMBOL(drm_crtc_vblank_crtc); 181 182 static void store_vblank(struct drm_device *dev, unsigned int pipe, 183 u32 vblank_count_inc, 184 ktime_t t_vblank, u32 last) 185 { 186 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 187 188 assert_spin_locked(&dev->vblank_time_lock); 189 190 vblank->last = last; 191 192 write_seqlock(&vblank->seqlock); 193 vblank->time = t_vblank; 194 atomic64_add(vblank_count_inc, &vblank->count); 195 write_sequnlock(&vblank->seqlock); 196 } 197 198 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 199 { 200 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 201 202 return vblank->max_vblank_count ?: dev->max_vblank_count; 203 } 204 205 /* 206 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 207 * if there is no usable hardware frame counter available. 208 */ 209 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 210 { 211 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 212 return 0; 213 } 214 215 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 216 { 217 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 218 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 219 220 if (drm_WARN_ON(dev, !crtc)) 221 return 0; 222 223 if (crtc->funcs->get_vblank_counter) 224 return crtc->funcs->get_vblank_counter(crtc); 225 } 226 227 return drm_vblank_no_hw_counter(dev, pipe); 228 } 229 230 /* 231 * Reset the stored timestamp for the current vblank count to correspond 232 * to the last vblank occurred. 233 * 234 * Only to be called from drm_crtc_vblank_on(). 235 * 236 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 237 * device vblank fields. 238 */ 239 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 240 { 241 u32 cur_vblank; 242 bool rc; 243 ktime_t t_vblank; 244 int count = DRM_TIMESTAMP_MAXRETRIES; 245 246 spin_lock(&dev->vblank_time_lock); 247 248 /* 249 * sample the current counter to avoid random jumps 250 * when drm_vblank_enable() applies the diff 251 */ 252 do { 253 cur_vblank = __get_vblank_counter(dev, pipe); 254 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 255 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 256 257 /* 258 * Only reinitialize corresponding vblank timestamp if high-precision query 259 * available and didn't fail. Otherwise reinitialize delayed at next vblank 260 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 261 */ 262 if (!rc) 263 t_vblank = 0; 264 265 /* 266 * +1 to make sure user will never see the same 267 * vblank counter value before and after a modeset 268 */ 269 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 270 271 spin_unlock(&dev->vblank_time_lock); 272 } 273 274 /* 275 * Call back into the driver to update the appropriate vblank counter 276 * (specified by @pipe). Deal with wraparound, if it occurred, and 277 * update the last read value so we can deal with wraparound on the next 278 * call if necessary. 279 * 280 * Only necessary when going from off->on, to account for frames we 281 * didn't get an interrupt for. 282 * 283 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 284 * device vblank fields. 285 */ 286 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 287 bool in_vblank_irq) 288 { 289 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 290 u32 cur_vblank, diff; 291 bool rc; 292 ktime_t t_vblank; 293 int count = DRM_TIMESTAMP_MAXRETRIES; 294 int framedur_ns = vblank->framedur_ns; 295 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 296 297 /* 298 * Interrupts were disabled prior to this call, so deal with counter 299 * wrap if needed. 300 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 301 * here if the register is small or we had vblank interrupts off for 302 * a long time. 303 * 304 * We repeat the hardware vblank counter & timestamp query until 305 * we get consistent results. This to prevent races between gpu 306 * updating its hardware counter while we are retrieving the 307 * corresponding vblank timestamp. 308 */ 309 do { 310 cur_vblank = __get_vblank_counter(dev, pipe); 311 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 312 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 313 314 if (max_vblank_count) { 315 /* trust the hw counter when it's around */ 316 diff = (cur_vblank - vblank->last) & max_vblank_count; 317 } else if (rc && framedur_ns) { 318 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 319 320 /* 321 * Figure out how many vblanks we've missed based 322 * on the difference in the timestamps and the 323 * frame/field duration. 324 */ 325 326 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 327 " diff_ns = %lld, framedur_ns = %d)\n", 328 pipe, (long long)diff_ns, framedur_ns); 329 330 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 331 332 if (diff == 0 && in_vblank_irq) 333 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 334 pipe); 335 } else { 336 /* some kind of default for drivers w/o accurate vbl timestamping */ 337 diff = in_vblank_irq ? 1 : 0; 338 } 339 340 /* 341 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 342 * interval? If so then vblank irqs keep running and it will likely 343 * happen that the hardware vblank counter is not trustworthy as it 344 * might reset at some point in that interval and vblank timestamps 345 * are not trustworthy either in that interval. Iow. this can result 346 * in a bogus diff >> 1 which must be avoided as it would cause 347 * random large forward jumps of the software vblank counter. 348 */ 349 if (diff > 1 && (vblank->inmodeset & 0x2)) { 350 drm_dbg_vbl(dev, 351 "clamping vblank bump to 1 on crtc %u: diffr=%u" 352 " due to pre-modeset.\n", pipe, diff); 353 diff = 1; 354 } 355 356 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 357 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 358 pipe, (unsigned long long)atomic64_read(&vblank->count), 359 diff, cur_vblank, vblank->last); 360 361 if (diff == 0) { 362 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 363 return; 364 } 365 366 /* 367 * Only reinitialize corresponding vblank timestamp if high-precision query 368 * available and didn't fail, or we were called from the vblank interrupt. 369 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 370 * for now, to mark the vblanktimestamp as invalid. 371 */ 372 if (!rc && !in_vblank_irq) 373 t_vblank = 0; 374 375 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 376 } 377 378 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 379 { 380 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 381 u64 count; 382 383 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 384 return 0; 385 386 count = atomic64_read(&vblank->count); 387 388 /* 389 * This read barrier corresponds to the implicit write barrier of the 390 * write seqlock in store_vblank(). Note that this is the only place 391 * where we need an explicit barrier, since all other access goes 392 * through drm_vblank_count_and_time(), which already has the required 393 * read barrier curtesy of the read seqlock. 394 */ 395 smp_rmb(); 396 397 return count; 398 } 399 400 /** 401 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 402 * @crtc: which counter to retrieve 403 * 404 * This function is similar to drm_crtc_vblank_count() but this function 405 * interpolates to handle a race with vblank interrupts using the high precision 406 * timestamping support. 407 * 408 * This is mostly useful for hardware that can obtain the scanout position, but 409 * doesn't have a hardware frame counter. 410 */ 411 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 412 { 413 struct drm_device *dev = crtc->dev; 414 unsigned int pipe = drm_crtc_index(crtc); 415 u64 vblank; 416 unsigned long flags; 417 418 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 419 !crtc->funcs->get_vblank_timestamp, 420 "This function requires support for accurate vblank timestamps."); 421 422 spin_lock_irqsave(&dev->vblank_time_lock, flags); 423 424 drm_update_vblank_count(dev, pipe, false); 425 vblank = drm_vblank_count(dev, pipe); 426 427 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 428 429 return vblank; 430 } 431 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 432 433 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 434 { 435 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 436 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 437 438 if (drm_WARN_ON(dev, !crtc)) 439 return; 440 441 if (crtc->funcs->disable_vblank) 442 crtc->funcs->disable_vblank(crtc); 443 } 444 } 445 446 /* 447 * Disable vblank irq's on crtc, make sure that last vblank count 448 * of hardware and corresponding consistent software vblank counter 449 * are preserved, even if there are any spurious vblank irq's after 450 * disable. 451 */ 452 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 453 { 454 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 455 unsigned long irqflags; 456 457 assert_spin_locked(&dev->vbl_lock); 458 459 /* Prevent vblank irq processing while disabling vblank irqs, 460 * so no updates of timestamps or count can happen after we've 461 * disabled. Needed to prevent races in case of delayed irq's. 462 */ 463 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 464 465 /* 466 * Update vblank count and disable vblank interrupts only if the 467 * interrupts were enabled. This avoids calling the ->disable_vblank() 468 * operation in atomic context with the hardware potentially runtime 469 * suspended. 470 */ 471 if (!vblank->enabled) 472 goto out; 473 474 /* 475 * Update the count and timestamp to maintain the 476 * appearance that the counter has been ticking all along until 477 * this time. This makes the count account for the entire time 478 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 479 */ 480 drm_update_vblank_count(dev, pipe, false); 481 __disable_vblank(dev, pipe); 482 vblank->enabled = false; 483 484 out: 485 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 486 } 487 488 static void vblank_disable_fn(struct timer_list *t) 489 { 490 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 491 struct drm_device *dev = vblank->dev; 492 unsigned int pipe = vblank->pipe; 493 unsigned long irqflags; 494 495 spin_lock_irqsave(&dev->vbl_lock, irqflags); 496 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 497 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 498 drm_vblank_disable_and_save(dev, pipe); 499 } 500 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 501 } 502 503 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 504 { 505 struct drm_vblank_crtc *vblank = ptr; 506 507 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 508 drm_core_check_feature(dev, DRIVER_MODESET)); 509 510 drm_vblank_destroy_worker(vblank); 511 del_timer_sync(&vblank->disable_timer); 512 } 513 514 /** 515 * drm_vblank_init - initialize vblank support 516 * @dev: DRM device 517 * @num_crtcs: number of CRTCs supported by @dev 518 * 519 * This function initializes vblank support for @num_crtcs display pipelines. 520 * Cleanup is handled automatically through a cleanup function added with 521 * drmm_add_action_or_reset(). 522 * 523 * Returns: 524 * Zero on success or a negative error code on failure. 525 */ 526 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 527 { 528 int ret; 529 unsigned int i; 530 531 spin_lock_init(&dev->vbl_lock); 532 spin_lock_init(&dev->vblank_time_lock); 533 534 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 535 if (!dev->vblank) 536 return -ENOMEM; 537 538 dev->num_crtcs = num_crtcs; 539 540 for (i = 0; i < num_crtcs; i++) { 541 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 542 543 vblank->dev = dev; 544 vblank->pipe = i; 545 init_waitqueue_head(&vblank->queue); 546 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 547 seqlock_init(&vblank->seqlock); 548 549 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 550 vblank); 551 if (ret) 552 return ret; 553 554 ret = drm_vblank_worker_init(vblank); 555 if (ret) 556 return ret; 557 } 558 559 return 0; 560 } 561 EXPORT_SYMBOL(drm_vblank_init); 562 563 /** 564 * drm_dev_has_vblank - test if vblanking has been initialized for 565 * a device 566 * @dev: the device 567 * 568 * Drivers may call this function to test if vblank support is 569 * initialized for a device. For most hardware this means that vblanking 570 * can also be enabled. 571 * 572 * Atomic helpers use this function to initialize 573 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 574 * 575 * Returns: 576 * True if vblanking has been initialized for the given device, false 577 * otherwise. 578 */ 579 bool drm_dev_has_vblank(const struct drm_device *dev) 580 { 581 return dev->num_crtcs != 0; 582 } 583 EXPORT_SYMBOL(drm_dev_has_vblank); 584 585 /** 586 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 587 * @crtc: which CRTC's vblank waitqueue to retrieve 588 * 589 * This function returns a pointer to the vblank waitqueue for the CRTC. 590 * Drivers can use this to implement vblank waits using wait_event() and related 591 * functions. 592 */ 593 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 594 { 595 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 596 } 597 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 598 599 600 /** 601 * drm_calc_timestamping_constants - calculate vblank timestamp constants 602 * @crtc: drm_crtc whose timestamp constants should be updated. 603 * @mode: display mode containing the scanout timings 604 * 605 * Calculate and store various constants which are later needed by vblank and 606 * swap-completion timestamping, e.g, by 607 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 608 * CRTC's true scanout timing, so they take things like panel scaling or 609 * other adjustments into account. 610 */ 611 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 612 const struct drm_display_mode *mode) 613 { 614 struct drm_device *dev = crtc->dev; 615 unsigned int pipe = drm_crtc_index(crtc); 616 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 617 int linedur_ns = 0, framedur_ns = 0; 618 int dotclock = mode->crtc_clock; 619 620 if (!drm_dev_has_vblank(dev)) 621 return; 622 623 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 624 return; 625 626 /* Valid dotclock? */ 627 if (dotclock > 0) { 628 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 629 630 /* 631 * Convert scanline length in pixels and video 632 * dot clock to line duration and frame duration 633 * in nanoseconds: 634 */ 635 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 636 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 637 638 /* 639 * Fields of interlaced scanout modes are only half a frame duration. 640 */ 641 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 642 framedur_ns /= 2; 643 } else { 644 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 645 crtc->base.id); 646 } 647 648 vblank->linedur_ns = linedur_ns; 649 vblank->framedur_ns = framedur_ns; 650 drm_mode_copy(&vblank->hwmode, mode); 651 652 drm_dbg_core(dev, 653 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 654 crtc->base.id, mode->crtc_htotal, 655 mode->crtc_vtotal, mode->crtc_vdisplay); 656 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 657 crtc->base.id, dotclock, framedur_ns, linedur_ns); 658 } 659 EXPORT_SYMBOL(drm_calc_timestamping_constants); 660 661 /** 662 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 663 * timestamp helper 664 * @crtc: CRTC whose vblank timestamp to retrieve 665 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 666 * On return contains true maximum error of timestamp 667 * @vblank_time: Pointer to time which should receive the timestamp 668 * @in_vblank_irq: 669 * True when called from drm_crtc_handle_vblank(). Some drivers 670 * need to apply some workarounds for gpu-specific vblank irq quirks 671 * if flag is set. 672 * @get_scanout_position: 673 * Callback function to retrieve the scanout position. See 674 * @struct drm_crtc_helper_funcs.get_scanout_position. 675 * 676 * Implements calculation of exact vblank timestamps from given drm_display_mode 677 * timings and current video scanout position of a CRTC. 678 * 679 * The current implementation only handles standard video modes. For double scan 680 * and interlaced modes the driver is supposed to adjust the hardware mode 681 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 682 * match the scanout position reported. 683 * 684 * Note that atomic drivers must call drm_calc_timestamping_constants() before 685 * enabling a CRTC. The atomic helpers already take care of that in 686 * drm_atomic_helper_calc_timestamping_constants(). 687 * 688 * Returns: 689 * 690 * Returns true on success, and false on failure, i.e. when no accurate 691 * timestamp could be acquired. 692 */ 693 bool 694 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 695 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 696 bool in_vblank_irq, 697 drm_vblank_get_scanout_position_func get_scanout_position) 698 { 699 struct drm_device *dev = crtc->dev; 700 unsigned int pipe = crtc->index; 701 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 702 struct timespec64 ts_etime, ts_vblank_time; 703 ktime_t stime, etime; 704 bool vbl_status; 705 const struct drm_display_mode *mode; 706 int vpos, hpos, i; 707 int delta_ns, duration_ns; 708 709 if (pipe >= dev->num_crtcs) { 710 drm_err(dev, "Invalid crtc %u\n", pipe); 711 return false; 712 } 713 714 /* Scanout position query not supported? Should not happen. */ 715 if (!get_scanout_position) { 716 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 717 return false; 718 } 719 720 if (drm_drv_uses_atomic_modeset(dev)) 721 mode = &vblank->hwmode; 722 else 723 mode = &crtc->hwmode; 724 725 /* If mode timing undefined, just return as no-op: 726 * Happens during initial modesetting of a crtc. 727 */ 728 if (mode->crtc_clock == 0) { 729 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 730 pipe); 731 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 732 return false; 733 } 734 735 /* Get current scanout position with system timestamp. 736 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 737 * if single query takes longer than max_error nanoseconds. 738 * 739 * This guarantees a tight bound on maximum error if 740 * code gets preempted or delayed for some reason. 741 */ 742 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 743 /* 744 * Get vertical and horizontal scanout position vpos, hpos, 745 * and bounding timestamps stime, etime, pre/post query. 746 */ 747 vbl_status = get_scanout_position(crtc, in_vblank_irq, 748 &vpos, &hpos, 749 &stime, &etime, 750 mode); 751 752 /* Return as no-op if scanout query unsupported or failed. */ 753 if (!vbl_status) { 754 drm_dbg_core(dev, 755 "crtc %u : scanoutpos query failed.\n", 756 pipe); 757 return false; 758 } 759 760 /* Compute uncertainty in timestamp of scanout position query. */ 761 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 762 763 /* Accept result with < max_error nsecs timing uncertainty. */ 764 if (duration_ns <= *max_error) 765 break; 766 } 767 768 /* Noisy system timing? */ 769 if (i == DRM_TIMESTAMP_MAXRETRIES) { 770 drm_dbg_core(dev, 771 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 772 pipe, duration_ns / 1000, *max_error / 1000, i); 773 } 774 775 /* Return upper bound of timestamp precision error. */ 776 *max_error = duration_ns; 777 778 /* Convert scanout position into elapsed time at raw_time query 779 * since start of scanout at first display scanline. delta_ns 780 * can be negative if start of scanout hasn't happened yet. 781 */ 782 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 783 mode->crtc_clock); 784 785 /* Subtract time delta from raw timestamp to get final 786 * vblank_time timestamp for end of vblank. 787 */ 788 *vblank_time = ktime_sub_ns(etime, delta_ns); 789 790 if (!drm_debug_enabled(DRM_UT_VBL)) 791 return true; 792 793 ts_etime = ktime_to_timespec64(etime); 794 ts_vblank_time = ktime_to_timespec64(*vblank_time); 795 796 drm_dbg_vbl(dev, 797 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 798 pipe, hpos, vpos, 799 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 800 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 801 duration_ns / 1000, i); 802 803 return true; 804 } 805 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 806 807 /** 808 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 809 * helper 810 * @crtc: CRTC whose vblank timestamp to retrieve 811 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 812 * On return contains true maximum error of timestamp 813 * @vblank_time: Pointer to time which should receive the timestamp 814 * @in_vblank_irq: 815 * True when called from drm_crtc_handle_vblank(). Some drivers 816 * need to apply some workarounds for gpu-specific vblank irq quirks 817 * if flag is set. 818 * 819 * Implements calculation of exact vblank timestamps from given drm_display_mode 820 * timings and current video scanout position of a CRTC. This can be directly 821 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 822 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 823 * 824 * The current implementation only handles standard video modes. For double scan 825 * and interlaced modes the driver is supposed to adjust the hardware mode 826 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 827 * match the scanout position reported. 828 * 829 * Note that atomic drivers must call drm_calc_timestamping_constants() before 830 * enabling a CRTC. The atomic helpers already take care of that in 831 * drm_atomic_helper_calc_timestamping_constants(). 832 * 833 * Returns: 834 * 835 * Returns true on success, and false on failure, i.e. when no accurate 836 * timestamp could be acquired. 837 */ 838 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 839 int *max_error, 840 ktime_t *vblank_time, 841 bool in_vblank_irq) 842 { 843 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 844 crtc, max_error, vblank_time, in_vblank_irq, 845 crtc->helper_private->get_scanout_position); 846 } 847 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 848 849 /** 850 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most 851 * recent vblank interval 852 * @crtc: CRTC whose vblank timestamp to retrieve 853 * @tvblank: Pointer to target time which should receive the timestamp 854 * @in_vblank_irq: 855 * True when called from drm_crtc_handle_vblank(). Some drivers 856 * need to apply some workarounds for gpu-specific vblank irq quirks 857 * if flag is set. 858 * 859 * Fetches the system timestamp corresponding to the time of the most recent 860 * vblank interval on specified CRTC. May call into kms-driver to 861 * compute the timestamp with a high-precision GPU specific method. 862 * 863 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 864 * call, i.e., it isn't very precisely locked to the true vblank. 865 * 866 * Returns: 867 * True if timestamp is considered to be very precise, false otherwise. 868 */ 869 static bool 870 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank, 871 bool in_vblank_irq) 872 { 873 bool ret = false; 874 875 /* Define requested maximum error on timestamps (nanoseconds). */ 876 int max_error = (int) drm_timestamp_precision * 1000; 877 878 /* Query driver if possible and precision timestamping enabled. */ 879 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 880 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 881 tvblank, in_vblank_irq); 882 } 883 884 /* GPU high precision timestamp query unsupported or failed. 885 * Return current monotonic/gettimeofday timestamp as best estimate. 886 */ 887 if (!ret) 888 *tvblank = ktime_get(); 889 890 return ret; 891 } 892 893 static bool 894 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 895 ktime_t *tvblank, bool in_vblank_irq) 896 { 897 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 898 899 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq); 900 } 901 902 /** 903 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 904 * @crtc: which counter to retrieve 905 * 906 * Fetches the "cooked" vblank count value that represents the number of 907 * vblank events since the system was booted, including lost events due to 908 * modesetting activity. Note that this timer isn't correct against a racing 909 * vblank interrupt (since it only reports the software vblank counter), see 910 * drm_crtc_accurate_vblank_count() for such use-cases. 911 * 912 * Note that for a given vblank counter value drm_crtc_handle_vblank() 913 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 914 * provide a barrier: Any writes done before calling 915 * drm_crtc_handle_vblank() will be visible to callers of the later 916 * functions, if the vblank count is the same or a later one. 917 * 918 * See also &drm_vblank_crtc.count. 919 * 920 * Returns: 921 * The software vblank counter. 922 */ 923 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 924 { 925 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 926 } 927 EXPORT_SYMBOL(drm_crtc_vblank_count); 928 929 /** 930 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 931 * system timestamp corresponding to that vblank counter value. 932 * @dev: DRM device 933 * @pipe: index of CRTC whose counter to retrieve 934 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 935 * 936 * Fetches the "cooked" vblank count value that represents the number of 937 * vblank events since the system was booted, including lost events due to 938 * modesetting activity. Returns corresponding system timestamp of the time 939 * of the vblank interval that corresponds to the current vblank counter value. 940 * 941 * This is the legacy version of drm_crtc_vblank_count_and_time(). 942 */ 943 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 944 ktime_t *vblanktime) 945 { 946 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 947 u64 vblank_count; 948 unsigned int seq; 949 950 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 951 *vblanktime = 0; 952 return 0; 953 } 954 955 do { 956 seq = read_seqbegin(&vblank->seqlock); 957 vblank_count = atomic64_read(&vblank->count); 958 *vblanktime = vblank->time; 959 } while (read_seqretry(&vblank->seqlock, seq)); 960 961 return vblank_count; 962 } 963 964 /** 965 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 966 * and the system timestamp corresponding to that vblank counter value 967 * @crtc: which counter to retrieve 968 * @vblanktime: Pointer to time to receive the vblank timestamp. 969 * 970 * Fetches the "cooked" vblank count value that represents the number of 971 * vblank events since the system was booted, including lost events due to 972 * modesetting activity. Returns corresponding system timestamp of the time 973 * of the vblank interval that corresponds to the current vblank counter value. 974 * 975 * Note that for a given vblank counter value drm_crtc_handle_vblank() 976 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 977 * provide a barrier: Any writes done before calling 978 * drm_crtc_handle_vblank() will be visible to callers of the later 979 * functions, if the vblank count is the same or a later one. 980 * 981 * See also &drm_vblank_crtc.count. 982 */ 983 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 984 ktime_t *vblanktime) 985 { 986 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 987 vblanktime); 988 } 989 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 990 991 /** 992 * drm_crtc_next_vblank_start - calculate the time of the next vblank 993 * @crtc: the crtc for which to calculate next vblank time 994 * @vblanktime: pointer to time to receive the next vblank timestamp. 995 * 996 * Calculate the expected time of the start of the next vblank period, 997 * based on time of previous vblank and frame duration 998 */ 999 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime) 1000 { 1001 struct drm_vblank_crtc *vblank; 1002 struct drm_display_mode *mode; 1003 u64 vblank_start; 1004 1005 if (!drm_dev_has_vblank(crtc->dev)) 1006 return -EINVAL; 1007 1008 vblank = drm_crtc_vblank_crtc(crtc); 1009 mode = &vblank->hwmode; 1010 1011 if (!vblank->framedur_ns || !vblank->linedur_ns) 1012 return -EINVAL; 1013 1014 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false)) 1015 return -EINVAL; 1016 1017 vblank_start = DIV_ROUND_DOWN_ULL( 1018 (u64)vblank->framedur_ns * mode->crtc_vblank_start, 1019 mode->crtc_vtotal); 1020 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start)); 1021 1022 return 0; 1023 } 1024 EXPORT_SYMBOL(drm_crtc_next_vblank_start); 1025 1026 static void send_vblank_event(struct drm_device *dev, 1027 struct drm_pending_vblank_event *e, 1028 u64 seq, ktime_t now) 1029 { 1030 struct timespec64 tv; 1031 1032 switch (e->event.base.type) { 1033 case DRM_EVENT_VBLANK: 1034 case DRM_EVENT_FLIP_COMPLETE: 1035 tv = ktime_to_timespec64(now); 1036 e->event.vbl.sequence = seq; 1037 /* 1038 * e->event is a user space structure, with hardcoded unsigned 1039 * 32-bit seconds/microseconds. This is safe as we always use 1040 * monotonic timestamps since linux-4.15 1041 */ 1042 e->event.vbl.tv_sec = tv.tv_sec; 1043 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1044 break; 1045 case DRM_EVENT_CRTC_SEQUENCE: 1046 if (seq) 1047 e->event.seq.sequence = seq; 1048 e->event.seq.time_ns = ktime_to_ns(now); 1049 break; 1050 } 1051 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1052 /* 1053 * Use the same timestamp for any associated fence signal to avoid 1054 * mismatch in timestamps for vsync & fence events triggered by the 1055 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1056 * retire-fence timestamp to match exactly with HW vsync as it uses it 1057 * for its software vsync modeling. 1058 */ 1059 drm_send_event_timestamp_locked(dev, &e->base, now); 1060 } 1061 1062 /** 1063 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1064 * @crtc: the source CRTC of the vblank event 1065 * @e: the event to send 1066 * 1067 * A lot of drivers need to generate vblank events for the very next vblank 1068 * interrupt. For example when the page flip interrupt happens when the page 1069 * flip gets armed, but not when it actually executes within the next vblank 1070 * period. This helper function implements exactly the required vblank arming 1071 * behaviour. 1072 * 1073 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1074 * atomic commit must ensure that the next vblank happens at exactly the same 1075 * time as the atomic commit is committed to the hardware. This function itself 1076 * does **not** protect against the next vblank interrupt racing with either this 1077 * function call or the atomic commit operation. A possible sequence could be: 1078 * 1079 * 1. Driver commits new hardware state into vblank-synchronized registers. 1080 * 2. A vblank happens, committing the hardware state. Also the corresponding 1081 * vblank interrupt is fired off and fully processed by the interrupt 1082 * handler. 1083 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1084 * 4. The event is only send out for the next vblank, which is wrong. 1085 * 1086 * An equivalent race can happen when the driver calls 1087 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1088 * 1089 * The only way to make this work safely is to prevent the vblank from firing 1090 * (and the hardware from committing anything else) until the entire atomic 1091 * commit sequence has run to completion. If the hardware does not have such a 1092 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1093 * Instead drivers need to manually send out the event from their interrupt 1094 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1095 * possible race with the hardware committing the atomic update. 1096 * 1097 * Caller must hold a vblank reference for the event @e acquired by a 1098 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1099 */ 1100 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1101 struct drm_pending_vblank_event *e) 1102 { 1103 struct drm_device *dev = crtc->dev; 1104 unsigned int pipe = drm_crtc_index(crtc); 1105 1106 assert_spin_locked(&dev->event_lock); 1107 1108 e->pipe = pipe; 1109 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1110 list_add_tail(&e->base.link, &dev->vblank_event_list); 1111 } 1112 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1113 1114 /** 1115 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1116 * @crtc: the source CRTC of the vblank event 1117 * @e: the event to send 1118 * 1119 * Updates sequence # and timestamp on event for the most recently processed 1120 * vblank, and sends it to userspace. Caller must hold event lock. 1121 * 1122 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1123 * situation, especially to send out events for atomic commit operations. 1124 */ 1125 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1126 struct drm_pending_vblank_event *e) 1127 { 1128 struct drm_device *dev = crtc->dev; 1129 u64 seq; 1130 unsigned int pipe = drm_crtc_index(crtc); 1131 ktime_t now; 1132 1133 if (drm_dev_has_vblank(dev)) { 1134 seq = drm_vblank_count_and_time(dev, pipe, &now); 1135 } else { 1136 seq = 0; 1137 1138 now = ktime_get(); 1139 } 1140 e->pipe = pipe; 1141 send_vblank_event(dev, e, seq, now); 1142 } 1143 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1144 1145 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1146 { 1147 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1148 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1149 1150 if (drm_WARN_ON(dev, !crtc)) 1151 return 0; 1152 1153 if (crtc->funcs->enable_vblank) 1154 return crtc->funcs->enable_vblank(crtc); 1155 } 1156 1157 return -EINVAL; 1158 } 1159 1160 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1161 { 1162 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1163 int ret = 0; 1164 1165 assert_spin_locked(&dev->vbl_lock); 1166 1167 spin_lock(&dev->vblank_time_lock); 1168 1169 if (!vblank->enabled) { 1170 /* 1171 * Enable vblank irqs under vblank_time_lock protection. 1172 * All vblank count & timestamp updates are held off 1173 * until we are done reinitializing master counter and 1174 * timestamps. Filtercode in drm_handle_vblank() will 1175 * prevent double-accounting of same vblank interval. 1176 */ 1177 ret = __enable_vblank(dev, pipe); 1178 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1179 pipe, ret); 1180 if (ret) { 1181 atomic_dec(&vblank->refcount); 1182 } else { 1183 drm_update_vblank_count(dev, pipe, 0); 1184 /* drm_update_vblank_count() includes a wmb so we just 1185 * need to ensure that the compiler emits the write 1186 * to mark the vblank as enabled after the call 1187 * to drm_update_vblank_count(). 1188 */ 1189 WRITE_ONCE(vblank->enabled, true); 1190 } 1191 } 1192 1193 spin_unlock(&dev->vblank_time_lock); 1194 1195 return ret; 1196 } 1197 1198 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1199 { 1200 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1201 unsigned long irqflags; 1202 int ret = 0; 1203 1204 if (!drm_dev_has_vblank(dev)) 1205 return -EINVAL; 1206 1207 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1208 return -EINVAL; 1209 1210 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1211 /* Going from 0->1 means we have to enable interrupts again */ 1212 if (atomic_add_return(1, &vblank->refcount) == 1) { 1213 ret = drm_vblank_enable(dev, pipe); 1214 } else { 1215 if (!vblank->enabled) { 1216 atomic_dec(&vblank->refcount); 1217 ret = -EINVAL; 1218 } 1219 } 1220 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1221 1222 return ret; 1223 } 1224 1225 /** 1226 * drm_crtc_vblank_get - get a reference count on vblank events 1227 * @crtc: which CRTC to own 1228 * 1229 * Acquire a reference count on vblank events to avoid having them disabled 1230 * while in use. 1231 * 1232 * Returns: 1233 * Zero on success or a negative error code on failure. 1234 */ 1235 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1236 { 1237 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1238 } 1239 EXPORT_SYMBOL(drm_crtc_vblank_get); 1240 1241 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1242 { 1243 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1244 int vblank_offdelay = vblank->config.offdelay_ms; 1245 1246 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1247 return; 1248 1249 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1250 return; 1251 1252 /* Last user schedules interrupt disable */ 1253 if (atomic_dec_and_test(&vblank->refcount)) { 1254 if (!vblank_offdelay) 1255 return; 1256 else if (vblank_offdelay < 0) 1257 vblank_disable_fn(&vblank->disable_timer); 1258 else if (!vblank->config.disable_immediate) 1259 mod_timer(&vblank->disable_timer, 1260 jiffies + ((vblank_offdelay * HZ) / 1000)); 1261 } 1262 } 1263 1264 /** 1265 * drm_crtc_vblank_put - give up ownership of vblank events 1266 * @crtc: which counter to give up 1267 * 1268 * Release ownership of a given vblank counter, turning off interrupts 1269 * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms 1270 * milliseconds. 1271 */ 1272 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1273 { 1274 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1275 } 1276 EXPORT_SYMBOL(drm_crtc_vblank_put); 1277 1278 /** 1279 * drm_wait_one_vblank - wait for one vblank 1280 * @dev: DRM device 1281 * @pipe: CRTC index 1282 * 1283 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1284 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1285 * due to lack of driver support or because the crtc is off. 1286 * 1287 * This is the legacy version of drm_crtc_wait_one_vblank(). 1288 */ 1289 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1290 { 1291 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1292 int ret; 1293 u64 last; 1294 1295 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1296 return; 1297 1298 ret = drm_vblank_get(dev, pipe); 1299 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1300 pipe, ret)) 1301 return; 1302 1303 last = drm_vblank_count(dev, pipe); 1304 1305 ret = wait_event_timeout(vblank->queue, 1306 last != drm_vblank_count(dev, pipe), 1307 msecs_to_jiffies(100)); 1308 1309 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1310 1311 drm_vblank_put(dev, pipe); 1312 } 1313 EXPORT_SYMBOL(drm_wait_one_vblank); 1314 1315 /** 1316 * drm_crtc_wait_one_vblank - wait for one vblank 1317 * @crtc: DRM crtc 1318 * 1319 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1320 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1321 * due to lack of driver support or because the crtc is off. 1322 */ 1323 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1324 { 1325 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1326 } 1327 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1328 1329 /** 1330 * drm_crtc_vblank_off - disable vblank events on a CRTC 1331 * @crtc: CRTC in question 1332 * 1333 * Drivers can use this function to shut down the vblank interrupt handling when 1334 * disabling a crtc. This function ensures that the latest vblank frame count is 1335 * stored so that drm_vblank_on can restore it again. 1336 * 1337 * Drivers must use this function when the hardware vblank counter can get 1338 * reset, e.g. when suspending or disabling the @crtc in general. 1339 */ 1340 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1341 { 1342 struct drm_device *dev = crtc->dev; 1343 unsigned int pipe = drm_crtc_index(crtc); 1344 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1345 struct drm_pending_vblank_event *e, *t; 1346 ktime_t now; 1347 u64 seq; 1348 1349 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1350 return; 1351 1352 /* 1353 * Grab event_lock early to prevent vblank work from being scheduled 1354 * while we're in the middle of shutting down vblank interrupts 1355 */ 1356 spin_lock_irq(&dev->event_lock); 1357 1358 spin_lock(&dev->vbl_lock); 1359 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1360 pipe, vblank->enabled, vblank->inmodeset); 1361 1362 /* Avoid redundant vblank disables without previous 1363 * drm_crtc_vblank_on(). */ 1364 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1365 drm_vblank_disable_and_save(dev, pipe); 1366 1367 wake_up(&vblank->queue); 1368 1369 /* 1370 * Prevent subsequent drm_vblank_get() from re-enabling 1371 * the vblank interrupt by bumping the refcount. 1372 */ 1373 if (!vblank->inmodeset) { 1374 atomic_inc(&vblank->refcount); 1375 vblank->inmodeset = 1; 1376 } 1377 spin_unlock(&dev->vbl_lock); 1378 1379 /* Send any queued vblank events, lest the natives grow disquiet */ 1380 seq = drm_vblank_count_and_time(dev, pipe, &now); 1381 1382 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1383 if (e->pipe != pipe) 1384 continue; 1385 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1386 "wanted %llu, current %llu\n", 1387 e->sequence, seq); 1388 list_del(&e->base.link); 1389 drm_vblank_put(dev, pipe); 1390 send_vblank_event(dev, e, seq, now); 1391 } 1392 1393 /* Cancel any leftover pending vblank work */ 1394 drm_vblank_cancel_pending_works(vblank); 1395 1396 spin_unlock_irq(&dev->event_lock); 1397 1398 /* Will be reset by the modeset helpers when re-enabling the crtc by 1399 * calling drm_calc_timestamping_constants(). */ 1400 vblank->hwmode.crtc_clock = 0; 1401 1402 /* Wait for any vblank work that's still executing to finish */ 1403 drm_vblank_flush_worker(vblank); 1404 } 1405 EXPORT_SYMBOL(drm_crtc_vblank_off); 1406 1407 /** 1408 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1409 * @crtc: CRTC in question 1410 * 1411 * Drivers can use this function to reset the vblank state to off at load time. 1412 * Drivers should use this together with the drm_crtc_vblank_off() and 1413 * drm_crtc_vblank_on() functions. The difference compared to 1414 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1415 * and hence doesn't need to call any driver hooks. 1416 * 1417 * This is useful for recovering driver state e.g. on driver load, or on resume. 1418 */ 1419 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1420 { 1421 struct drm_device *dev = crtc->dev; 1422 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1423 1424 spin_lock_irq(&dev->vbl_lock); 1425 /* 1426 * Prevent subsequent drm_vblank_get() from enabling the vblank 1427 * interrupt by bumping the refcount. 1428 */ 1429 if (!vblank->inmodeset) { 1430 atomic_inc(&vblank->refcount); 1431 vblank->inmodeset = 1; 1432 } 1433 spin_unlock_irq(&dev->vbl_lock); 1434 1435 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1436 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1437 } 1438 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1439 1440 /** 1441 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1442 * @crtc: CRTC in question 1443 * @max_vblank_count: max hardware vblank counter value 1444 * 1445 * Update the maximum hardware vblank counter value for @crtc 1446 * at runtime. Useful for hardware where the operation of the 1447 * hardware vblank counter depends on the currently active 1448 * display configuration. 1449 * 1450 * For example, if the hardware vblank counter does not work 1451 * when a specific connector is active the maximum can be set 1452 * to zero. And when that specific connector isn't active the 1453 * maximum can again be set to the appropriate non-zero value. 1454 * 1455 * If used, must be called before drm_vblank_on(). 1456 */ 1457 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1458 u32 max_vblank_count) 1459 { 1460 struct drm_device *dev = crtc->dev; 1461 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1462 1463 drm_WARN_ON(dev, dev->max_vblank_count); 1464 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1465 1466 vblank->max_vblank_count = max_vblank_count; 1467 } 1468 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1469 1470 /** 1471 * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom 1472 * configuration options 1473 * @crtc: CRTC in question 1474 * @config: Vblank configuration value 1475 * 1476 * See drm_crtc_vblank_on(). In addition, this function allows you to provide a 1477 * custom vblank configuration for a given CRTC. 1478 * 1479 * Note that @config is copied, the pointer does not need to stay valid beyond 1480 * this function call. For details of the parameters see 1481 * struct drm_vblank_crtc_config. 1482 */ 1483 void drm_crtc_vblank_on_config(struct drm_crtc *crtc, 1484 const struct drm_vblank_crtc_config *config) 1485 { 1486 struct drm_device *dev = crtc->dev; 1487 unsigned int pipe = drm_crtc_index(crtc); 1488 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1489 1490 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1491 return; 1492 1493 spin_lock_irq(&dev->vbl_lock); 1494 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1495 pipe, vblank->enabled, vblank->inmodeset); 1496 1497 vblank->config = *config; 1498 1499 /* Drop our private "prevent drm_vblank_get" refcount */ 1500 if (vblank->inmodeset) { 1501 atomic_dec(&vblank->refcount); 1502 vblank->inmodeset = 0; 1503 } 1504 1505 drm_reset_vblank_timestamp(dev, pipe); 1506 1507 /* 1508 * re-enable interrupts if there are users left, or the 1509 * user wishes vblank interrupts to be enabled all the time. 1510 */ 1511 if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms) 1512 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1513 spin_unlock_irq(&dev->vbl_lock); 1514 } 1515 EXPORT_SYMBOL(drm_crtc_vblank_on_config); 1516 1517 /** 1518 * drm_crtc_vblank_on - enable vblank events on a CRTC 1519 * @crtc: CRTC in question 1520 * 1521 * This functions restores the vblank interrupt state captured with 1522 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1523 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1524 * unbalanced and so can also be unconditionally called in driver load code to 1525 * reflect the current hardware state of the crtc. 1526 * 1527 * Note that unlike in drm_crtc_vblank_on_config(), default values are used. 1528 */ 1529 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1530 { 1531 const struct drm_vblank_crtc_config config = { 1532 .offdelay_ms = drm_vblank_offdelay, 1533 .disable_immediate = crtc->dev->vblank_disable_immediate 1534 }; 1535 1536 drm_crtc_vblank_on_config(crtc, &config); 1537 } 1538 EXPORT_SYMBOL(drm_crtc_vblank_on); 1539 1540 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1541 { 1542 ktime_t t_vblank; 1543 struct drm_vblank_crtc *vblank; 1544 int framedur_ns; 1545 u64 diff_ns; 1546 u32 cur_vblank, diff = 1; 1547 int count = DRM_TIMESTAMP_MAXRETRIES; 1548 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1549 1550 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1551 return; 1552 1553 assert_spin_locked(&dev->vbl_lock); 1554 assert_spin_locked(&dev->vblank_time_lock); 1555 1556 vblank = drm_vblank_crtc(dev, pipe); 1557 drm_WARN_ONCE(dev, 1558 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1559 "Cannot compute missed vblanks without frame duration\n"); 1560 framedur_ns = vblank->framedur_ns; 1561 1562 do { 1563 cur_vblank = __get_vblank_counter(dev, pipe); 1564 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1565 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1566 1567 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1568 if (framedur_ns) 1569 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1570 1571 1572 drm_dbg_vbl(dev, 1573 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1574 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1575 vblank->last = (cur_vblank - diff) & max_vblank_count; 1576 } 1577 1578 /** 1579 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1580 * @crtc: CRTC in question 1581 * 1582 * Power manamement features can cause frame counter resets between vblank 1583 * disable and enable. Drivers can use this function in their 1584 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1585 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1586 * vblank counter. 1587 * 1588 * Note that drivers must have race-free high-precision timestamping support, 1589 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1590 * &drm_vblank_crtc_config.disable_immediate must be set to indicate the 1591 * time-stamping functions are race-free against vblank hardware counter 1592 * increments. 1593 */ 1594 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1595 { 1596 struct drm_device *dev = crtc->dev; 1597 unsigned int pipe = drm_crtc_index(crtc); 1598 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1599 1600 drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp); 1601 drm_WARN_ON_ONCE(dev, vblank->inmodeset); 1602 drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate); 1603 1604 drm_vblank_restore(dev, pipe); 1605 } 1606 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1607 1608 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1609 u64 req_seq, 1610 union drm_wait_vblank *vblwait, 1611 struct drm_file *file_priv) 1612 { 1613 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1614 struct drm_pending_vblank_event *e; 1615 ktime_t now; 1616 u64 seq; 1617 int ret; 1618 1619 e = kzalloc(sizeof(*e), GFP_KERNEL); 1620 if (e == NULL) { 1621 ret = -ENOMEM; 1622 goto err_put; 1623 } 1624 1625 e->pipe = pipe; 1626 e->event.base.type = DRM_EVENT_VBLANK; 1627 e->event.base.length = sizeof(e->event.vbl); 1628 e->event.vbl.user_data = vblwait->request.signal; 1629 e->event.vbl.crtc_id = 0; 1630 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1631 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1632 1633 if (crtc) 1634 e->event.vbl.crtc_id = crtc->base.id; 1635 } 1636 1637 spin_lock_irq(&dev->event_lock); 1638 1639 /* 1640 * drm_crtc_vblank_off() might have been called after we called 1641 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1642 * vblank disable, so no need for further locking. The reference from 1643 * drm_vblank_get() protects against vblank disable from another source. 1644 */ 1645 if (!READ_ONCE(vblank->enabled)) { 1646 ret = -EINVAL; 1647 goto err_unlock; 1648 } 1649 1650 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1651 &e->event.base); 1652 1653 if (ret) 1654 goto err_unlock; 1655 1656 seq = drm_vblank_count_and_time(dev, pipe, &now); 1657 1658 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1659 req_seq, seq, pipe); 1660 1661 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1662 1663 e->sequence = req_seq; 1664 if (drm_vblank_passed(seq, req_seq)) { 1665 drm_vblank_put(dev, pipe); 1666 send_vblank_event(dev, e, seq, now); 1667 vblwait->reply.sequence = seq; 1668 } else { 1669 /* drm_handle_vblank_events will call drm_vblank_put */ 1670 list_add_tail(&e->base.link, &dev->vblank_event_list); 1671 vblwait->reply.sequence = req_seq; 1672 } 1673 1674 spin_unlock_irq(&dev->event_lock); 1675 1676 return 0; 1677 1678 err_unlock: 1679 spin_unlock_irq(&dev->event_lock); 1680 kfree(e); 1681 err_put: 1682 drm_vblank_put(dev, pipe); 1683 return ret; 1684 } 1685 1686 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1687 { 1688 if (vblwait->request.sequence) 1689 return false; 1690 1691 return _DRM_VBLANK_RELATIVE == 1692 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1693 _DRM_VBLANK_EVENT | 1694 _DRM_VBLANK_NEXTONMISS)); 1695 } 1696 1697 /* 1698 * Widen a 32-bit param to 64-bits. 1699 * 1700 * \param narrow 32-bit value (missing upper 32 bits) 1701 * \param near 64-bit value that should be 'close' to near 1702 * 1703 * This function returns a 64-bit value using the lower 32-bits from 1704 * 'narrow' and constructing the upper 32-bits so that the result is 1705 * as close as possible to 'near'. 1706 */ 1707 1708 static u64 widen_32_to_64(u32 narrow, u64 near) 1709 { 1710 return near + (s32) (narrow - near); 1711 } 1712 1713 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1714 struct drm_wait_vblank_reply *reply) 1715 { 1716 ktime_t now; 1717 struct timespec64 ts; 1718 1719 /* 1720 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1721 * to store the seconds. This is safe as we always use monotonic 1722 * timestamps since linux-4.15. 1723 */ 1724 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1725 ts = ktime_to_timespec64(now); 1726 reply->tval_sec = (u32)ts.tv_sec; 1727 reply->tval_usec = ts.tv_nsec / 1000; 1728 } 1729 1730 static bool drm_wait_vblank_supported(struct drm_device *dev) 1731 { 1732 return drm_dev_has_vblank(dev); 1733 } 1734 1735 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1736 struct drm_file *file_priv) 1737 { 1738 struct drm_crtc *crtc; 1739 struct drm_vblank_crtc *vblank; 1740 union drm_wait_vblank *vblwait = data; 1741 int ret; 1742 u64 req_seq, seq; 1743 unsigned int pipe_index; 1744 unsigned int flags, pipe, high_pipe; 1745 1746 if (!drm_wait_vblank_supported(dev)) 1747 return -EOPNOTSUPP; 1748 1749 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1750 return -EINVAL; 1751 1752 if (vblwait->request.type & 1753 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1754 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1755 drm_dbg_core(dev, 1756 "Unsupported type value 0x%x, supported mask 0x%x\n", 1757 vblwait->request.type, 1758 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1759 _DRM_VBLANK_HIGH_CRTC_MASK)); 1760 return -EINVAL; 1761 } 1762 1763 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1764 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1765 if (high_pipe) 1766 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1767 else 1768 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1769 1770 /* Convert lease-relative crtc index into global crtc index */ 1771 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1772 pipe = 0; 1773 drm_for_each_crtc(crtc, dev) { 1774 if (drm_lease_held(file_priv, crtc->base.id)) { 1775 if (pipe_index == 0) 1776 break; 1777 pipe_index--; 1778 } 1779 pipe++; 1780 } 1781 } else { 1782 pipe = pipe_index; 1783 } 1784 1785 if (pipe >= dev->num_crtcs) 1786 return -EINVAL; 1787 1788 vblank = &dev->vblank[pipe]; 1789 1790 /* If the counter is currently enabled and accurate, short-circuit 1791 * queries to return the cached timestamp of the last vblank. 1792 */ 1793 if (vblank->config.disable_immediate && 1794 drm_wait_vblank_is_query(vblwait) && 1795 READ_ONCE(vblank->enabled)) { 1796 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1797 return 0; 1798 } 1799 1800 ret = drm_vblank_get(dev, pipe); 1801 if (ret) { 1802 drm_dbg_core(dev, 1803 "crtc %d failed to acquire vblank counter, %d\n", 1804 pipe, ret); 1805 return ret; 1806 } 1807 seq = drm_vblank_count(dev, pipe); 1808 1809 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1810 case _DRM_VBLANK_RELATIVE: 1811 req_seq = seq + vblwait->request.sequence; 1812 vblwait->request.sequence = req_seq; 1813 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1814 break; 1815 case _DRM_VBLANK_ABSOLUTE: 1816 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1817 break; 1818 default: 1819 ret = -EINVAL; 1820 goto done; 1821 } 1822 1823 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1824 drm_vblank_passed(seq, req_seq)) { 1825 req_seq = seq + 1; 1826 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1827 vblwait->request.sequence = req_seq; 1828 } 1829 1830 if (flags & _DRM_VBLANK_EVENT) { 1831 /* must hold on to the vblank ref until the event fires 1832 * drm_vblank_put will be called asynchronously 1833 */ 1834 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1835 } 1836 1837 if (req_seq != seq) { 1838 int wait; 1839 1840 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1841 req_seq, pipe); 1842 wait = wait_event_interruptible_timeout(vblank->queue, 1843 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1844 !READ_ONCE(vblank->enabled), 1845 msecs_to_jiffies(3000)); 1846 1847 switch (wait) { 1848 case 0: 1849 /* timeout */ 1850 ret = -EBUSY; 1851 break; 1852 case -ERESTARTSYS: 1853 /* interrupted by signal */ 1854 ret = -EINTR; 1855 break; 1856 default: 1857 ret = 0; 1858 break; 1859 } 1860 } 1861 1862 if (ret != -EINTR) { 1863 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1864 1865 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1866 pipe, vblwait->reply.sequence); 1867 } else { 1868 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1869 pipe); 1870 } 1871 1872 done: 1873 drm_vblank_put(dev, pipe); 1874 return ret; 1875 } 1876 1877 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1878 { 1879 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1880 bool high_prec = false; 1881 struct drm_pending_vblank_event *e, *t; 1882 ktime_t now; 1883 u64 seq; 1884 1885 assert_spin_locked(&dev->event_lock); 1886 1887 seq = drm_vblank_count_and_time(dev, pipe, &now); 1888 1889 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1890 if (e->pipe != pipe) 1891 continue; 1892 if (!drm_vblank_passed(seq, e->sequence)) 1893 continue; 1894 1895 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1896 e->sequence, seq); 1897 1898 list_del(&e->base.link); 1899 drm_vblank_put(dev, pipe); 1900 send_vblank_event(dev, e, seq, now); 1901 } 1902 1903 if (crtc && crtc->funcs->get_vblank_timestamp) 1904 high_prec = true; 1905 1906 trace_drm_vblank_event(pipe, seq, now, high_prec); 1907 } 1908 1909 /** 1910 * drm_handle_vblank - handle a vblank event 1911 * @dev: DRM device 1912 * @pipe: index of CRTC where this event occurred 1913 * 1914 * Drivers should call this routine in their vblank interrupt handlers to 1915 * update the vblank counter and send any signals that may be pending. 1916 * 1917 * This is the legacy version of drm_crtc_handle_vblank(). 1918 */ 1919 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1920 { 1921 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1922 unsigned long irqflags; 1923 bool disable_irq; 1924 1925 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1926 return false; 1927 1928 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1929 return false; 1930 1931 spin_lock_irqsave(&dev->event_lock, irqflags); 1932 1933 /* Need timestamp lock to prevent concurrent execution with 1934 * vblank enable/disable, as this would cause inconsistent 1935 * or corrupted timestamps and vblank counts. 1936 */ 1937 spin_lock(&dev->vblank_time_lock); 1938 1939 /* Vblank irq handling disabled. Nothing to do. */ 1940 if (!vblank->enabled) { 1941 spin_unlock(&dev->vblank_time_lock); 1942 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1943 return false; 1944 } 1945 1946 drm_update_vblank_count(dev, pipe, true); 1947 1948 spin_unlock(&dev->vblank_time_lock); 1949 1950 wake_up(&vblank->queue); 1951 1952 /* With instant-off, we defer disabling the interrupt until after 1953 * we finish processing the following vblank after all events have 1954 * been signaled. The disable has to be last (after 1955 * drm_handle_vblank_events) so that the timestamp is always accurate. 1956 */ 1957 disable_irq = (vblank->config.disable_immediate && 1958 vblank->config.offdelay_ms > 0 && 1959 !atomic_read(&vblank->refcount)); 1960 1961 drm_handle_vblank_events(dev, pipe); 1962 drm_handle_vblank_works(vblank); 1963 1964 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1965 1966 if (disable_irq) 1967 vblank_disable_fn(&vblank->disable_timer); 1968 1969 return true; 1970 } 1971 EXPORT_SYMBOL(drm_handle_vblank); 1972 1973 /** 1974 * drm_crtc_handle_vblank - handle a vblank event 1975 * @crtc: where this event occurred 1976 * 1977 * Drivers should call this routine in their vblank interrupt handlers to 1978 * update the vblank counter and send any signals that may be pending. 1979 * 1980 * This is the native KMS version of drm_handle_vblank(). 1981 * 1982 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1983 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1984 * provide a barrier: Any writes done before calling 1985 * drm_crtc_handle_vblank() will be visible to callers of the later 1986 * functions, if the vblank count is the same or a later one. 1987 * 1988 * See also &drm_vblank_crtc.count. 1989 * 1990 * Returns: 1991 * True if the event was successfully handled, false on failure. 1992 */ 1993 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1994 { 1995 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1996 } 1997 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1998 1999 /* 2000 * Get crtc VBLANK count. 2001 * 2002 * \param dev DRM device 2003 * \param data user argument, pointing to a drm_crtc_get_sequence structure. 2004 * \param file_priv drm file private for the user's open file descriptor 2005 */ 2006 2007 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2008 struct drm_file *file_priv) 2009 { 2010 struct drm_crtc *crtc; 2011 struct drm_vblank_crtc *vblank; 2012 int pipe; 2013 struct drm_crtc_get_sequence *get_seq = data; 2014 ktime_t now; 2015 bool vblank_enabled; 2016 int ret; 2017 2018 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2019 return -EOPNOTSUPP; 2020 2021 if (!drm_dev_has_vblank(dev)) 2022 return -EOPNOTSUPP; 2023 2024 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2025 if (!crtc) 2026 return -ENOENT; 2027 2028 pipe = drm_crtc_index(crtc); 2029 2030 vblank = drm_crtc_vblank_crtc(crtc); 2031 vblank_enabled = READ_ONCE(vblank->config.disable_immediate) && 2032 READ_ONCE(vblank->enabled); 2033 2034 if (!vblank_enabled) { 2035 ret = drm_crtc_vblank_get(crtc); 2036 if (ret) { 2037 drm_dbg_core(dev, 2038 "crtc %d failed to acquire vblank counter, %d\n", 2039 pipe, ret); 2040 return ret; 2041 } 2042 } 2043 drm_modeset_lock(&crtc->mutex, NULL); 2044 if (crtc->state) 2045 get_seq->active = crtc->state->enable; 2046 else 2047 get_seq->active = crtc->enabled; 2048 drm_modeset_unlock(&crtc->mutex); 2049 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2050 get_seq->sequence_ns = ktime_to_ns(now); 2051 if (!vblank_enabled) 2052 drm_crtc_vblank_put(crtc); 2053 return 0; 2054 } 2055 2056 /* 2057 * Queue a event for VBLANK sequence 2058 * 2059 * \param dev DRM device 2060 * \param data user argument, pointing to a drm_crtc_queue_sequence structure. 2061 * \param file_priv drm file private for the user's open file descriptor 2062 */ 2063 2064 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2065 struct drm_file *file_priv) 2066 { 2067 struct drm_crtc *crtc; 2068 struct drm_vblank_crtc *vblank; 2069 int pipe; 2070 struct drm_crtc_queue_sequence *queue_seq = data; 2071 ktime_t now; 2072 struct drm_pending_vblank_event *e; 2073 u32 flags; 2074 u64 seq; 2075 u64 req_seq; 2076 int ret; 2077 2078 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2079 return -EOPNOTSUPP; 2080 2081 if (!drm_dev_has_vblank(dev)) 2082 return -EOPNOTSUPP; 2083 2084 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2085 if (!crtc) 2086 return -ENOENT; 2087 2088 flags = queue_seq->flags; 2089 /* Check valid flag bits */ 2090 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2091 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2092 return -EINVAL; 2093 2094 pipe = drm_crtc_index(crtc); 2095 2096 vblank = drm_crtc_vblank_crtc(crtc); 2097 2098 e = kzalloc(sizeof(*e), GFP_KERNEL); 2099 if (e == NULL) 2100 return -ENOMEM; 2101 2102 ret = drm_crtc_vblank_get(crtc); 2103 if (ret) { 2104 drm_dbg_core(dev, 2105 "crtc %d failed to acquire vblank counter, %d\n", 2106 pipe, ret); 2107 goto err_free; 2108 } 2109 2110 seq = drm_vblank_count_and_time(dev, pipe, &now); 2111 req_seq = queue_seq->sequence; 2112 2113 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2114 req_seq += seq; 2115 2116 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2117 req_seq = seq + 1; 2118 2119 e->pipe = pipe; 2120 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2121 e->event.base.length = sizeof(e->event.seq); 2122 e->event.seq.user_data = queue_seq->user_data; 2123 2124 spin_lock_irq(&dev->event_lock); 2125 2126 /* 2127 * drm_crtc_vblank_off() might have been called after we called 2128 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2129 * vblank disable, so no need for further locking. The reference from 2130 * drm_crtc_vblank_get() protects against vblank disable from another source. 2131 */ 2132 if (!READ_ONCE(vblank->enabled)) { 2133 ret = -EINVAL; 2134 goto err_unlock; 2135 } 2136 2137 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2138 &e->event.base); 2139 2140 if (ret) 2141 goto err_unlock; 2142 2143 e->sequence = req_seq; 2144 2145 if (drm_vblank_passed(seq, req_seq)) { 2146 drm_crtc_vblank_put(crtc); 2147 send_vblank_event(dev, e, seq, now); 2148 queue_seq->sequence = seq; 2149 } else { 2150 /* drm_handle_vblank_events will call drm_vblank_put */ 2151 list_add_tail(&e->base.link, &dev->vblank_event_list); 2152 queue_seq->sequence = req_seq; 2153 } 2154 2155 spin_unlock_irq(&dev->event_lock); 2156 return 0; 2157 2158 err_unlock: 2159 spin_unlock_irq(&dev->event_lock); 2160 drm_crtc_vblank_put(crtc); 2161 err_free: 2162 kfree(e); 2163 return ret; 2164 } 2165 2166