xref: /linux/drivers/gpu/drm/drm_vblank.c (revision 5b0e2cb020085efe202123162502e0b551e49a0e)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <drm/drm_vblank.h>
28 #include <drm/drmP.h>
29 #include <linux/export.h>
30 
31 #include "drm_trace.h"
32 #include "drm_internal.h"
33 
34 /**
35  * DOC: vblank handling
36  *
37  * Vertical blanking plays a major role in graphics rendering. To achieve
38  * tear-free display, users must synchronize page flips and/or rendering to
39  * vertical blanking. The DRM API offers ioctls to perform page flips
40  * synchronized to vertical blanking and wait for vertical blanking.
41  *
42  * The DRM core handles most of the vertical blanking management logic, which
43  * involves filtering out spurious interrupts, keeping race-free blanking
44  * counters, coping with counter wrap-around and resets and keeping use counts.
45  * It relies on the driver to generate vertical blanking interrupts and
46  * optionally provide a hardware vertical blanking counter.
47  *
48  * Drivers must initialize the vertical blanking handling core with a call to
49  * drm_vblank_init(). Minimally, a driver needs to implement
50  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
51  * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank
52  * support.
53  *
54  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
55  * themselves (for instance to handle page flipping operations).  The DRM core
56  * maintains a vertical blanking use count to ensure that the interrupts are not
57  * disabled while a user still needs them. To increment the use count, drivers
58  * call drm_crtc_vblank_get() and release the vblank reference again with
59  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
60  * guaranteed to be enabled.
61  *
62  * On many hardware disabling the vblank interrupt cannot be done in a race-free
63  * manner, see &drm_driver.vblank_disable_immediate and
64  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
65  * vblanks after a timer has expired, which can be configured through the
66  * ``vblankoffdelay`` module parameter.
67  */
68 
69 /* Retry timestamp calculation up to 3 times to satisfy
70  * drm_timestamp_precision before giving up.
71  */
72 #define DRM_TIMESTAMP_MAXRETRIES 3
73 
74 /* Threshold in nanoseconds for detection of redundant
75  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
76  */
77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
78 
79 static bool
80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
81 			  ktime_t *tvblank, bool in_vblank_irq);
82 
83 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
84 
85 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
86 
87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
91 
92 static void store_vblank(struct drm_device *dev, unsigned int pipe,
93 			 u32 vblank_count_inc,
94 			 ktime_t t_vblank, u32 last)
95 {
96 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
97 
98 	assert_spin_locked(&dev->vblank_time_lock);
99 
100 	vblank->last = last;
101 
102 	write_seqlock(&vblank->seqlock);
103 	vblank->time = t_vblank;
104 	vblank->count += vblank_count_inc;
105 	write_sequnlock(&vblank->seqlock);
106 }
107 
108 /*
109  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
110  * if there is no useable hardware frame counter available.
111  */
112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
113 {
114 	WARN_ON_ONCE(dev->max_vblank_count != 0);
115 	return 0;
116 }
117 
118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
119 {
120 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
121 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
122 
123 		if (crtc->funcs->get_vblank_counter)
124 			return crtc->funcs->get_vblank_counter(crtc);
125 	}
126 
127 	if (dev->driver->get_vblank_counter)
128 		return dev->driver->get_vblank_counter(dev, pipe);
129 
130 	return drm_vblank_no_hw_counter(dev, pipe);
131 }
132 
133 /*
134  * Reset the stored timestamp for the current vblank count to correspond
135  * to the last vblank occurred.
136  *
137  * Only to be called from drm_crtc_vblank_on().
138  *
139  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
140  * device vblank fields.
141  */
142 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
143 {
144 	u32 cur_vblank;
145 	bool rc;
146 	ktime_t t_vblank;
147 	int count = DRM_TIMESTAMP_MAXRETRIES;
148 
149 	spin_lock(&dev->vblank_time_lock);
150 
151 	/*
152 	 * sample the current counter to avoid random jumps
153 	 * when drm_vblank_enable() applies the diff
154 	 */
155 	do {
156 		cur_vblank = __get_vblank_counter(dev, pipe);
157 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
158 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
159 
160 	/*
161 	 * Only reinitialize corresponding vblank timestamp if high-precision query
162 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
163 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
164 	 */
165 	if (!rc)
166 		t_vblank = 0;
167 
168 	/*
169 	 * +1 to make sure user will never see the same
170 	 * vblank counter value before and after a modeset
171 	 */
172 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
173 
174 	spin_unlock(&dev->vblank_time_lock);
175 }
176 
177 /*
178  * Call back into the driver to update the appropriate vblank counter
179  * (specified by @pipe).  Deal with wraparound, if it occurred, and
180  * update the last read value so we can deal with wraparound on the next
181  * call if necessary.
182  *
183  * Only necessary when going from off->on, to account for frames we
184  * didn't get an interrupt for.
185  *
186  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
187  * device vblank fields.
188  */
189 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
190 				    bool in_vblank_irq)
191 {
192 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
193 	u32 cur_vblank, diff;
194 	bool rc;
195 	ktime_t t_vblank;
196 	int count = DRM_TIMESTAMP_MAXRETRIES;
197 	int framedur_ns = vblank->framedur_ns;
198 
199 	/*
200 	 * Interrupts were disabled prior to this call, so deal with counter
201 	 * wrap if needed.
202 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
203 	 * here if the register is small or we had vblank interrupts off for
204 	 * a long time.
205 	 *
206 	 * We repeat the hardware vblank counter & timestamp query until
207 	 * we get consistent results. This to prevent races between gpu
208 	 * updating its hardware counter while we are retrieving the
209 	 * corresponding vblank timestamp.
210 	 */
211 	do {
212 		cur_vblank = __get_vblank_counter(dev, pipe);
213 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
214 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
215 
216 	if (dev->max_vblank_count != 0) {
217 		/* trust the hw counter when it's around */
218 		diff = (cur_vblank - vblank->last) & dev->max_vblank_count;
219 	} else if (rc && framedur_ns) {
220 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
221 
222 		/*
223 		 * Figure out how many vblanks we've missed based
224 		 * on the difference in the timestamps and the
225 		 * frame/field duration.
226 		 */
227 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
228 
229 		if (diff == 0 && in_vblank_irq)
230 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored."
231 				      " diff_ns = %lld, framedur_ns = %d)\n",
232 				      pipe, (long long) diff_ns, framedur_ns);
233 	} else {
234 		/* some kind of default for drivers w/o accurate vbl timestamping */
235 		diff = in_vblank_irq ? 1 : 0;
236 	}
237 
238 	/*
239 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
240 	 * interval? If so then vblank irqs keep running and it will likely
241 	 * happen that the hardware vblank counter is not trustworthy as it
242 	 * might reset at some point in that interval and vblank timestamps
243 	 * are not trustworthy either in that interval. Iow. this can result
244 	 * in a bogus diff >> 1 which must be avoided as it would cause
245 	 * random large forward jumps of the software vblank counter.
246 	 */
247 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
248 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
249 			      " due to pre-modeset.\n", pipe, diff);
250 		diff = 1;
251 	}
252 
253 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
254 		      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
255 		      pipe, vblank->count, diff, cur_vblank, vblank->last);
256 
257 	if (diff == 0) {
258 		WARN_ON_ONCE(cur_vblank != vblank->last);
259 		return;
260 	}
261 
262 	/*
263 	 * Only reinitialize corresponding vblank timestamp if high-precision query
264 	 * available and didn't fail, or we were called from the vblank interrupt.
265 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
266 	 * for now, to mark the vblanktimestamp as invalid.
267 	 */
268 	if (!rc && !in_vblank_irq)
269 		t_vblank = 0;
270 
271 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
272 }
273 
274 static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
275 {
276 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
277 
278 	if (WARN_ON(pipe >= dev->num_crtcs))
279 		return 0;
280 
281 	return vblank->count;
282 }
283 
284 /**
285  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
286  * @crtc: which counter to retrieve
287  *
288  * This function is similar to drm_crtc_vblank_count() but this function
289  * interpolates to handle a race with vblank interrupts using the high precision
290  * timestamping support.
291  *
292  * This is mostly useful for hardware that can obtain the scanout position, but
293  * doesn't have a hardware frame counter.
294  */
295 u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
296 {
297 	struct drm_device *dev = crtc->dev;
298 	unsigned int pipe = drm_crtc_index(crtc);
299 	u32 vblank;
300 	unsigned long flags;
301 
302 	WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp,
303 		  "This function requires support for accurate vblank timestamps.");
304 
305 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
306 
307 	drm_update_vblank_count(dev, pipe, false);
308 	vblank = drm_vblank_count(dev, pipe);
309 
310 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
311 
312 	return vblank;
313 }
314 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
315 
316 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
317 {
318 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
319 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
320 
321 		if (crtc->funcs->disable_vblank) {
322 			crtc->funcs->disable_vblank(crtc);
323 			return;
324 		}
325 	}
326 
327 	dev->driver->disable_vblank(dev, pipe);
328 }
329 
330 /*
331  * Disable vblank irq's on crtc, make sure that last vblank count
332  * of hardware and corresponding consistent software vblank counter
333  * are preserved, even if there are any spurious vblank irq's after
334  * disable.
335  */
336 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
337 {
338 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
339 	unsigned long irqflags;
340 
341 	assert_spin_locked(&dev->vbl_lock);
342 
343 	/* Prevent vblank irq processing while disabling vblank irqs,
344 	 * so no updates of timestamps or count can happen after we've
345 	 * disabled. Needed to prevent races in case of delayed irq's.
346 	 */
347 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
348 
349 	/*
350 	 * Only disable vblank interrupts if they're enabled. This avoids
351 	 * calling the ->disable_vblank() operation in atomic context with the
352 	 * hardware potentially runtime suspended.
353 	 */
354 	if (vblank->enabled) {
355 		__disable_vblank(dev, pipe);
356 		vblank->enabled = false;
357 	}
358 
359 	/*
360 	 * Always update the count and timestamp to maintain the
361 	 * appearance that the counter has been ticking all along until
362 	 * this time. This makes the count account for the entire time
363 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
364 	 */
365 	drm_update_vblank_count(dev, pipe, false);
366 
367 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
368 }
369 
370 static void vblank_disable_fn(unsigned long arg)
371 {
372 	struct drm_vblank_crtc *vblank = (void *)arg;
373 	struct drm_device *dev = vblank->dev;
374 	unsigned int pipe = vblank->pipe;
375 	unsigned long irqflags;
376 
377 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
378 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
379 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
380 		drm_vblank_disable_and_save(dev, pipe);
381 	}
382 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
383 }
384 
385 void drm_vblank_cleanup(struct drm_device *dev)
386 {
387 	unsigned int pipe;
388 
389 	/* Bail if the driver didn't call drm_vblank_init() */
390 	if (dev->num_crtcs == 0)
391 		return;
392 
393 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
394 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
395 
396 		WARN_ON(READ_ONCE(vblank->enabled) &&
397 			drm_core_check_feature(dev, DRIVER_MODESET));
398 
399 		del_timer_sync(&vblank->disable_timer);
400 	}
401 
402 	kfree(dev->vblank);
403 
404 	dev->num_crtcs = 0;
405 }
406 
407 /**
408  * drm_vblank_init - initialize vblank support
409  * @dev: DRM device
410  * @num_crtcs: number of CRTCs supported by @dev
411  *
412  * This function initializes vblank support for @num_crtcs display pipelines.
413  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
414  * drivers with a &drm_driver.release callback.
415  *
416  * Returns:
417  * Zero on success or a negative error code on failure.
418  */
419 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
420 {
421 	int ret = -ENOMEM;
422 	unsigned int i;
423 
424 	spin_lock_init(&dev->vbl_lock);
425 	spin_lock_init(&dev->vblank_time_lock);
426 
427 	dev->num_crtcs = num_crtcs;
428 
429 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
430 	if (!dev->vblank)
431 		goto err;
432 
433 	for (i = 0; i < num_crtcs; i++) {
434 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
435 
436 		vblank->dev = dev;
437 		vblank->pipe = i;
438 		init_waitqueue_head(&vblank->queue);
439 		setup_timer(&vblank->disable_timer, vblank_disable_fn,
440 			    (unsigned long)vblank);
441 		seqlock_init(&vblank->seqlock);
442 	}
443 
444 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
445 
446 	/* Driver specific high-precision vblank timestamping supported? */
447 	if (dev->driver->get_vblank_timestamp)
448 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
449 	else
450 		DRM_INFO("No driver support for vblank timestamp query.\n");
451 
452 	/* Must have precise timestamping for reliable vblank instant disable */
453 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
454 		dev->vblank_disable_immediate = false;
455 		DRM_INFO("Setting vblank_disable_immediate to false because "
456 			 "get_vblank_timestamp == NULL\n");
457 	}
458 
459 	return 0;
460 
461 err:
462 	dev->num_crtcs = 0;
463 	return ret;
464 }
465 EXPORT_SYMBOL(drm_vblank_init);
466 
467 /**
468  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
469  * @crtc: which CRTC's vblank waitqueue to retrieve
470  *
471  * This function returns a pointer to the vblank waitqueue for the CRTC.
472  * Drivers can use this to implement vblank waits using wait_event() and related
473  * functions.
474  */
475 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
476 {
477 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
478 }
479 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
480 
481 
482 /**
483  * drm_calc_timestamping_constants - calculate vblank timestamp constants
484  * @crtc: drm_crtc whose timestamp constants should be updated.
485  * @mode: display mode containing the scanout timings
486  *
487  * Calculate and store various constants which are later needed by vblank and
488  * swap-completion timestamping, e.g, by
489  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
490  * scanout timing, so they take things like panel scaling or other adjustments
491  * into account.
492  */
493 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
494 				     const struct drm_display_mode *mode)
495 {
496 	struct drm_device *dev = crtc->dev;
497 	unsigned int pipe = drm_crtc_index(crtc);
498 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
499 	int linedur_ns = 0, framedur_ns = 0;
500 	int dotclock = mode->crtc_clock;
501 
502 	if (!dev->num_crtcs)
503 		return;
504 
505 	if (WARN_ON(pipe >= dev->num_crtcs))
506 		return;
507 
508 	/* Valid dotclock? */
509 	if (dotclock > 0) {
510 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
511 
512 		/*
513 		 * Convert scanline length in pixels and video
514 		 * dot clock to line duration and frame duration
515 		 * in nanoseconds:
516 		 */
517 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
518 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
519 
520 		/*
521 		 * Fields of interlaced scanout modes are only half a frame duration.
522 		 */
523 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
524 			framedur_ns /= 2;
525 	} else
526 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
527 			  crtc->base.id);
528 
529 	vblank->linedur_ns  = linedur_ns;
530 	vblank->framedur_ns = framedur_ns;
531 	vblank->hwmode = *mode;
532 
533 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
534 		  crtc->base.id, mode->crtc_htotal,
535 		  mode->crtc_vtotal, mode->crtc_vdisplay);
536 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
537 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
538 }
539 EXPORT_SYMBOL(drm_calc_timestamping_constants);
540 
541 /**
542  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
543  * @dev: DRM device
544  * @pipe: index of CRTC whose vblank timestamp to retrieve
545  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
546  *             On return contains true maximum error of timestamp
547  * @vblank_time: Pointer to time which should receive the timestamp
548  * @in_vblank_irq:
549  *     True when called from drm_crtc_handle_vblank().  Some drivers
550  *     need to apply some workarounds for gpu-specific vblank irq quirks
551  *     if flag is set.
552  *
553  * Implements calculation of exact vblank timestamps from given drm_display_mode
554  * timings and current video scanout position of a CRTC. This can be directly
555  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
556  * if &drm_driver.get_scanout_position is implemented.
557  *
558  * The current implementation only handles standard video modes. For double scan
559  * and interlaced modes the driver is supposed to adjust the hardware mode
560  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
561  * match the scanout position reported.
562  *
563  * Note that atomic drivers must call drm_calc_timestamping_constants() before
564  * enabling a CRTC. The atomic helpers already take care of that in
565  * drm_atomic_helper_update_legacy_modeset_state().
566  *
567  * Returns:
568  *
569  * Returns true on success, and false on failure, i.e. when no accurate
570  * timestamp could be acquired.
571  */
572 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
573 					   unsigned int pipe,
574 					   int *max_error,
575 					   ktime_t *vblank_time,
576 					   bool in_vblank_irq)
577 {
578 	struct timespec64 ts_etime, ts_vblank_time;
579 	ktime_t stime, etime;
580 	bool vbl_status;
581 	struct drm_crtc *crtc;
582 	const struct drm_display_mode *mode;
583 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
584 	int vpos, hpos, i;
585 	int delta_ns, duration_ns;
586 
587 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
588 		return false;
589 
590 	crtc = drm_crtc_from_index(dev, pipe);
591 
592 	if (pipe >= dev->num_crtcs || !crtc) {
593 		DRM_ERROR("Invalid crtc %u\n", pipe);
594 		return false;
595 	}
596 
597 	/* Scanout position query not supported? Should not happen. */
598 	if (!dev->driver->get_scanout_position) {
599 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
600 		return false;
601 	}
602 
603 	if (drm_drv_uses_atomic_modeset(dev))
604 		mode = &vblank->hwmode;
605 	else
606 		mode = &crtc->hwmode;
607 
608 	/* If mode timing undefined, just return as no-op:
609 	 * Happens during initial modesetting of a crtc.
610 	 */
611 	if (mode->crtc_clock == 0) {
612 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
613 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
614 
615 		return false;
616 	}
617 
618 	/* Get current scanout position with system timestamp.
619 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
620 	 * if single query takes longer than max_error nanoseconds.
621 	 *
622 	 * This guarantees a tight bound on maximum error if
623 	 * code gets preempted or delayed for some reason.
624 	 */
625 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
626 		/*
627 		 * Get vertical and horizontal scanout position vpos, hpos,
628 		 * and bounding timestamps stime, etime, pre/post query.
629 		 */
630 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
631 							       in_vblank_irq,
632 							       &vpos, &hpos,
633 							       &stime, &etime,
634 							       mode);
635 
636 		/* Return as no-op if scanout query unsupported or failed. */
637 		if (!vbl_status) {
638 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
639 				  pipe);
640 			return false;
641 		}
642 
643 		/* Compute uncertainty in timestamp of scanout position query. */
644 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
645 
646 		/* Accept result with <  max_error nsecs timing uncertainty. */
647 		if (duration_ns <= *max_error)
648 			break;
649 	}
650 
651 	/* Noisy system timing? */
652 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
653 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
654 			  pipe, duration_ns/1000, *max_error/1000, i);
655 	}
656 
657 	/* Return upper bound of timestamp precision error. */
658 	*max_error = duration_ns;
659 
660 	/* Convert scanout position into elapsed time at raw_time query
661 	 * since start of scanout at first display scanline. delta_ns
662 	 * can be negative if start of scanout hasn't happened yet.
663 	 */
664 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
665 			   mode->crtc_clock);
666 
667 	/* save this only for debugging purposes */
668 	ts_etime = ktime_to_timespec64(etime);
669 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
670 	/* Subtract time delta from raw timestamp to get final
671 	 * vblank_time timestamp for end of vblank.
672 	 */
673 	etime = ktime_sub_ns(etime, delta_ns);
674 	*vblank_time = etime;
675 
676 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
677 		      pipe, hpos, vpos,
678 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
679 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
680 		      duration_ns / 1000, i);
681 
682 	return true;
683 }
684 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
685 
686 /**
687  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
688  *                             vblank interval
689  * @dev: DRM device
690  * @pipe: index of CRTC whose vblank timestamp to retrieve
691  * @tvblank: Pointer to target time which should receive the timestamp
692  * @in_vblank_irq:
693  *     True when called from drm_crtc_handle_vblank().  Some drivers
694  *     need to apply some workarounds for gpu-specific vblank irq quirks
695  *     if flag is set.
696  *
697  * Fetches the system timestamp corresponding to the time of the most recent
698  * vblank interval on specified CRTC. May call into kms-driver to
699  * compute the timestamp with a high-precision GPU specific method.
700  *
701  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
702  * call, i.e., it isn't very precisely locked to the true vblank.
703  *
704  * Returns:
705  * True if timestamp is considered to be very precise, false otherwise.
706  */
707 static bool
708 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
709 			  ktime_t *tvblank, bool in_vblank_irq)
710 {
711 	bool ret = false;
712 
713 	/* Define requested maximum error on timestamps (nanoseconds). */
714 	int max_error = (int) drm_timestamp_precision * 1000;
715 
716 	/* Query driver if possible and precision timestamping enabled. */
717 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
718 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
719 							tvblank, in_vblank_irq);
720 
721 	/* GPU high precision timestamp query unsupported or failed.
722 	 * Return current monotonic/gettimeofday timestamp as best estimate.
723 	 */
724 	if (!ret)
725 		*tvblank = ktime_get();
726 
727 	return ret;
728 }
729 
730 /**
731  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
732  * @crtc: which counter to retrieve
733  *
734  * Fetches the "cooked" vblank count value that represents the number of
735  * vblank events since the system was booted, including lost events due to
736  * modesetting activity. Note that this timer isn't correct against a racing
737  * vblank interrupt (since it only reports the software vblank counter), see
738  * drm_crtc_accurate_vblank_count() for such use-cases.
739  *
740  * Returns:
741  * The software vblank counter.
742  */
743 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
744 {
745 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
746 }
747 EXPORT_SYMBOL(drm_crtc_vblank_count);
748 
749 /**
750  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
751  *     system timestamp corresponding to that vblank counter value.
752  * @dev: DRM device
753  * @pipe: index of CRTC whose counter to retrieve
754  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
755  *
756  * Fetches the "cooked" vblank count value that represents the number of
757  * vblank events since the system was booted, including lost events due to
758  * modesetting activity. Returns corresponding system timestamp of the time
759  * of the vblank interval that corresponds to the current vblank counter value.
760  *
761  * This is the legacy version of drm_crtc_vblank_count_and_time().
762  */
763 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
764 				     ktime_t *vblanktime)
765 {
766 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
767 	u64 vblank_count;
768 	unsigned int seq;
769 
770 	if (WARN_ON(pipe >= dev->num_crtcs)) {
771 		*vblanktime = 0;
772 		return 0;
773 	}
774 
775 	do {
776 		seq = read_seqbegin(&vblank->seqlock);
777 		vblank_count = vblank->count;
778 		*vblanktime = vblank->time;
779 	} while (read_seqretry(&vblank->seqlock, seq));
780 
781 	return vblank_count;
782 }
783 
784 /**
785  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
786  *     and the system timestamp corresponding to that vblank counter value
787  * @crtc: which counter to retrieve
788  * @vblanktime: Pointer to time to receive the vblank timestamp.
789  *
790  * Fetches the "cooked" vblank count value that represents the number of
791  * vblank events since the system was booted, including lost events due to
792  * modesetting activity. Returns corresponding system timestamp of the time
793  * of the vblank interval that corresponds to the current vblank counter value.
794  */
795 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
796 				   ktime_t *vblanktime)
797 {
798 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
799 					 vblanktime);
800 }
801 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
802 
803 static void send_vblank_event(struct drm_device *dev,
804 		struct drm_pending_vblank_event *e,
805 		u64 seq, ktime_t now)
806 {
807 	struct timespec64 tv;
808 
809 	switch (e->event.base.type) {
810 	case DRM_EVENT_VBLANK:
811 	case DRM_EVENT_FLIP_COMPLETE:
812 		tv = ktime_to_timespec64(now);
813 		e->event.vbl.sequence = seq;
814 		/*
815 		 * e->event is a user space structure, with hardcoded unsigned
816 		 * 32-bit seconds/microseconds. This is safe as we always use
817 		 * monotonic timestamps since linux-4.15
818 		 */
819 		e->event.vbl.tv_sec = tv.tv_sec;
820 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
821 		break;
822 	case DRM_EVENT_CRTC_SEQUENCE:
823 		if (seq)
824 			e->event.seq.sequence = seq;
825 		e->event.seq.time_ns = ktime_to_ns(now);
826 		break;
827 	}
828 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
829 	drm_send_event_locked(dev, &e->base);
830 }
831 
832 /**
833  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
834  * @crtc: the source CRTC of the vblank event
835  * @e: the event to send
836  *
837  * A lot of drivers need to generate vblank events for the very next vblank
838  * interrupt. For example when the page flip interrupt happens when the page
839  * flip gets armed, but not when it actually executes within the next vblank
840  * period. This helper function implements exactly the required vblank arming
841  * behaviour.
842  *
843  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
844  * atomic commit must ensure that the next vblank happens at exactly the same
845  * time as the atomic commit is committed to the hardware. This function itself
846  * does **not** protect against the next vblank interrupt racing with either this
847  * function call or the atomic commit operation. A possible sequence could be:
848  *
849  * 1. Driver commits new hardware state into vblank-synchronized registers.
850  * 2. A vblank happens, committing the hardware state. Also the corresponding
851  *    vblank interrupt is fired off and fully processed by the interrupt
852  *    handler.
853  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
854  * 4. The event is only send out for the next vblank, which is wrong.
855  *
856  * An equivalent race can happen when the driver calls
857  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
858  *
859  * The only way to make this work safely is to prevent the vblank from firing
860  * (and the hardware from committing anything else) until the entire atomic
861  * commit sequence has run to completion. If the hardware does not have such a
862  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
863  * Instead drivers need to manually send out the event from their interrupt
864  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
865  * possible race with the hardware committing the atomic update.
866  *
867  * Caller must hold a vblank reference for the event @e, which will be dropped
868  * when the next vblank arrives.
869  */
870 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
871 			       struct drm_pending_vblank_event *e)
872 {
873 	struct drm_device *dev = crtc->dev;
874 	unsigned int pipe = drm_crtc_index(crtc);
875 
876 	assert_spin_locked(&dev->event_lock);
877 
878 	e->pipe = pipe;
879 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
880 	list_add_tail(&e->base.link, &dev->vblank_event_list);
881 }
882 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
883 
884 /**
885  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
886  * @crtc: the source CRTC of the vblank event
887  * @e: the event to send
888  *
889  * Updates sequence # and timestamp on event for the most recently processed
890  * vblank, and sends it to userspace.  Caller must hold event lock.
891  *
892  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
893  * situation, especially to send out events for atomic commit operations.
894  */
895 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
896 				struct drm_pending_vblank_event *e)
897 {
898 	struct drm_device *dev = crtc->dev;
899 	u64 seq;
900 	unsigned int pipe = drm_crtc_index(crtc);
901 	ktime_t now;
902 
903 	if (dev->num_crtcs > 0) {
904 		seq = drm_vblank_count_and_time(dev, pipe, &now);
905 	} else {
906 		seq = 0;
907 
908 		now = ktime_get();
909 	}
910 	e->pipe = pipe;
911 	send_vblank_event(dev, e, seq, now);
912 }
913 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
914 
915 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
916 {
917 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
918 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
919 
920 		if (crtc->funcs->enable_vblank)
921 			return crtc->funcs->enable_vblank(crtc);
922 	}
923 
924 	return dev->driver->enable_vblank(dev, pipe);
925 }
926 
927 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
928 {
929 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
930 	int ret = 0;
931 
932 	assert_spin_locked(&dev->vbl_lock);
933 
934 	spin_lock(&dev->vblank_time_lock);
935 
936 	if (!vblank->enabled) {
937 		/*
938 		 * Enable vblank irqs under vblank_time_lock protection.
939 		 * All vblank count & timestamp updates are held off
940 		 * until we are done reinitializing master counter and
941 		 * timestamps. Filtercode in drm_handle_vblank() will
942 		 * prevent double-accounting of same vblank interval.
943 		 */
944 		ret = __enable_vblank(dev, pipe);
945 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
946 		if (ret) {
947 			atomic_dec(&vblank->refcount);
948 		} else {
949 			drm_update_vblank_count(dev, pipe, 0);
950 			/* drm_update_vblank_count() includes a wmb so we just
951 			 * need to ensure that the compiler emits the write
952 			 * to mark the vblank as enabled after the call
953 			 * to drm_update_vblank_count().
954 			 */
955 			WRITE_ONCE(vblank->enabled, true);
956 		}
957 	}
958 
959 	spin_unlock(&dev->vblank_time_lock);
960 
961 	return ret;
962 }
963 
964 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
965 {
966 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
967 	unsigned long irqflags;
968 	int ret = 0;
969 
970 	if (!dev->num_crtcs)
971 		return -EINVAL;
972 
973 	if (WARN_ON(pipe >= dev->num_crtcs))
974 		return -EINVAL;
975 
976 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
977 	/* Going from 0->1 means we have to enable interrupts again */
978 	if (atomic_add_return(1, &vblank->refcount) == 1) {
979 		ret = drm_vblank_enable(dev, pipe);
980 	} else {
981 		if (!vblank->enabled) {
982 			atomic_dec(&vblank->refcount);
983 			ret = -EINVAL;
984 		}
985 	}
986 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
987 
988 	return ret;
989 }
990 
991 /**
992  * drm_crtc_vblank_get - get a reference count on vblank events
993  * @crtc: which CRTC to own
994  *
995  * Acquire a reference count on vblank events to avoid having them disabled
996  * while in use.
997  *
998  * Returns:
999  * Zero on success or a negative error code on failure.
1000  */
1001 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1002 {
1003 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1004 }
1005 EXPORT_SYMBOL(drm_crtc_vblank_get);
1006 
1007 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1008 {
1009 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1010 
1011 	if (WARN_ON(pipe >= dev->num_crtcs))
1012 		return;
1013 
1014 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1015 		return;
1016 
1017 	/* Last user schedules interrupt disable */
1018 	if (atomic_dec_and_test(&vblank->refcount)) {
1019 		if (drm_vblank_offdelay == 0)
1020 			return;
1021 		else if (drm_vblank_offdelay < 0)
1022 			vblank_disable_fn((unsigned long)vblank);
1023 		else if (!dev->vblank_disable_immediate)
1024 			mod_timer(&vblank->disable_timer,
1025 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1026 	}
1027 }
1028 
1029 /**
1030  * drm_crtc_vblank_put - give up ownership of vblank events
1031  * @crtc: which counter to give up
1032  *
1033  * Release ownership of a given vblank counter, turning off interrupts
1034  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1035  */
1036 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1037 {
1038 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1039 }
1040 EXPORT_SYMBOL(drm_crtc_vblank_put);
1041 
1042 /**
1043  * drm_wait_one_vblank - wait for one vblank
1044  * @dev: DRM device
1045  * @pipe: CRTC index
1046  *
1047  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1048  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1049  * due to lack of driver support or because the crtc is off.
1050  *
1051  * This is the legacy version of drm_crtc_wait_one_vblank().
1052  */
1053 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1054 {
1055 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1056 	int ret;
1057 	u32 last;
1058 
1059 	if (WARN_ON(pipe >= dev->num_crtcs))
1060 		return;
1061 
1062 	ret = drm_vblank_get(dev, pipe);
1063 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1064 		return;
1065 
1066 	last = drm_vblank_count(dev, pipe);
1067 
1068 	ret = wait_event_timeout(vblank->queue,
1069 				 last != drm_vblank_count(dev, pipe),
1070 				 msecs_to_jiffies(100));
1071 
1072 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1073 
1074 	drm_vblank_put(dev, pipe);
1075 }
1076 EXPORT_SYMBOL(drm_wait_one_vblank);
1077 
1078 /**
1079  * drm_crtc_wait_one_vblank - wait for one vblank
1080  * @crtc: DRM crtc
1081  *
1082  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1083  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1084  * due to lack of driver support or because the crtc is off.
1085  */
1086 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1087 {
1088 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1089 }
1090 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1091 
1092 /**
1093  * drm_crtc_vblank_off - disable vblank events on a CRTC
1094  * @crtc: CRTC in question
1095  *
1096  * Drivers can use this function to shut down the vblank interrupt handling when
1097  * disabling a crtc. This function ensures that the latest vblank frame count is
1098  * stored so that drm_vblank_on can restore it again.
1099  *
1100  * Drivers must use this function when the hardware vblank counter can get
1101  * reset, e.g. when suspending or disabling the @crtc in general.
1102  */
1103 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1104 {
1105 	struct drm_device *dev = crtc->dev;
1106 	unsigned int pipe = drm_crtc_index(crtc);
1107 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1108 	struct drm_pending_vblank_event *e, *t;
1109 
1110 	ktime_t now;
1111 	unsigned long irqflags;
1112 	u64 seq;
1113 
1114 	if (WARN_ON(pipe >= dev->num_crtcs))
1115 		return;
1116 
1117 	spin_lock_irqsave(&dev->event_lock, irqflags);
1118 
1119 	spin_lock(&dev->vbl_lock);
1120 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1121 		      pipe, vblank->enabled, vblank->inmodeset);
1122 
1123 	/* Avoid redundant vblank disables without previous
1124 	 * drm_crtc_vblank_on(). */
1125 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1126 		drm_vblank_disable_and_save(dev, pipe);
1127 
1128 	wake_up(&vblank->queue);
1129 
1130 	/*
1131 	 * Prevent subsequent drm_vblank_get() from re-enabling
1132 	 * the vblank interrupt by bumping the refcount.
1133 	 */
1134 	if (!vblank->inmodeset) {
1135 		atomic_inc(&vblank->refcount);
1136 		vblank->inmodeset = 1;
1137 	}
1138 	spin_unlock(&dev->vbl_lock);
1139 
1140 	/* Send any queued vblank events, lest the natives grow disquiet */
1141 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1142 
1143 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1144 		if (e->pipe != pipe)
1145 			continue;
1146 		DRM_DEBUG("Sending premature vblank event on disable: "
1147 			  "wanted %llu, current %llu\n",
1148 			  e->sequence, seq);
1149 		list_del(&e->base.link);
1150 		drm_vblank_put(dev, pipe);
1151 		send_vblank_event(dev, e, seq, now);
1152 	}
1153 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1154 
1155 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1156 	 * calling drm_calc_timestamping_constants(). */
1157 	vblank->hwmode.crtc_clock = 0;
1158 }
1159 EXPORT_SYMBOL(drm_crtc_vblank_off);
1160 
1161 /**
1162  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1163  * @crtc: CRTC in question
1164  *
1165  * Drivers can use this function to reset the vblank state to off at load time.
1166  * Drivers should use this together with the drm_crtc_vblank_off() and
1167  * drm_crtc_vblank_on() functions. The difference compared to
1168  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1169  * and hence doesn't need to call any driver hooks.
1170  *
1171  * This is useful for recovering driver state e.g. on driver load, or on resume.
1172  */
1173 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1174 {
1175 	struct drm_device *dev = crtc->dev;
1176 	unsigned long irqflags;
1177 	unsigned int pipe = drm_crtc_index(crtc);
1178 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1179 
1180 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1181 	/*
1182 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1183 	 * interrupt by bumping the refcount.
1184 	 */
1185 	if (!vblank->inmodeset) {
1186 		atomic_inc(&vblank->refcount);
1187 		vblank->inmodeset = 1;
1188 	}
1189 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1190 
1191 	WARN_ON(!list_empty(&dev->vblank_event_list));
1192 }
1193 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1194 
1195 /**
1196  * drm_crtc_vblank_on - enable vblank events on a CRTC
1197  * @crtc: CRTC in question
1198  *
1199  * This functions restores the vblank interrupt state captured with
1200  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1201  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1202  * unbalanced and so can also be unconditionally called in driver load code to
1203  * reflect the current hardware state of the crtc.
1204  */
1205 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1206 {
1207 	struct drm_device *dev = crtc->dev;
1208 	unsigned int pipe = drm_crtc_index(crtc);
1209 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1210 	unsigned long irqflags;
1211 
1212 	if (WARN_ON(pipe >= dev->num_crtcs))
1213 		return;
1214 
1215 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1216 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1217 		      pipe, vblank->enabled, vblank->inmodeset);
1218 
1219 	/* Drop our private "prevent drm_vblank_get" refcount */
1220 	if (vblank->inmodeset) {
1221 		atomic_dec(&vblank->refcount);
1222 		vblank->inmodeset = 0;
1223 	}
1224 
1225 	drm_reset_vblank_timestamp(dev, pipe);
1226 
1227 	/*
1228 	 * re-enable interrupts if there are users left, or the
1229 	 * user wishes vblank interrupts to be enabled all the time.
1230 	 */
1231 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1232 		WARN_ON(drm_vblank_enable(dev, pipe));
1233 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1234 }
1235 EXPORT_SYMBOL(drm_crtc_vblank_on);
1236 
1237 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1238 					  unsigned int pipe)
1239 {
1240 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1241 
1242 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1243 	if (!dev->num_crtcs)
1244 		return;
1245 
1246 	if (WARN_ON(pipe >= dev->num_crtcs))
1247 		return;
1248 
1249 	/*
1250 	 * To avoid all the problems that might happen if interrupts
1251 	 * were enabled/disabled around or between these calls, we just
1252 	 * have the kernel take a reference on the CRTC (just once though
1253 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1254 	 * so that interrupts remain enabled in the interim.
1255 	 */
1256 	if (!vblank->inmodeset) {
1257 		vblank->inmodeset = 0x1;
1258 		if (drm_vblank_get(dev, pipe) == 0)
1259 			vblank->inmodeset |= 0x2;
1260 	}
1261 }
1262 
1263 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1264 					   unsigned int pipe)
1265 {
1266 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1267 	unsigned long irqflags;
1268 
1269 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1270 	if (!dev->num_crtcs)
1271 		return;
1272 
1273 	if (WARN_ON(pipe >= dev->num_crtcs))
1274 		return;
1275 
1276 	if (vblank->inmodeset) {
1277 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1278 		drm_reset_vblank_timestamp(dev, pipe);
1279 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1280 
1281 		if (vblank->inmodeset & 0x2)
1282 			drm_vblank_put(dev, pipe);
1283 
1284 		vblank->inmodeset = 0;
1285 	}
1286 }
1287 
1288 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1289 				 struct drm_file *file_priv)
1290 {
1291 	struct drm_modeset_ctl *modeset = data;
1292 	unsigned int pipe;
1293 
1294 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1295 	if (!dev->num_crtcs)
1296 		return 0;
1297 
1298 	/* KMS drivers handle this internally */
1299 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1300 		return 0;
1301 
1302 	pipe = modeset->crtc;
1303 	if (pipe >= dev->num_crtcs)
1304 		return -EINVAL;
1305 
1306 	switch (modeset->cmd) {
1307 	case _DRM_PRE_MODESET:
1308 		drm_legacy_vblank_pre_modeset(dev, pipe);
1309 		break;
1310 	case _DRM_POST_MODESET:
1311 		drm_legacy_vblank_post_modeset(dev, pipe);
1312 		break;
1313 	default:
1314 		return -EINVAL;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static inline bool vblank_passed(u64 seq, u64 ref)
1321 {
1322 	return (seq - ref) <= (1 << 23);
1323 }
1324 
1325 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1326 				  u64 req_seq,
1327 				  union drm_wait_vblank *vblwait,
1328 				  struct drm_file *file_priv)
1329 {
1330 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1331 	struct drm_pending_vblank_event *e;
1332 	ktime_t now;
1333 	unsigned long flags;
1334 	u64 seq;
1335 	int ret;
1336 
1337 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1338 	if (e == NULL) {
1339 		ret = -ENOMEM;
1340 		goto err_put;
1341 	}
1342 
1343 	e->pipe = pipe;
1344 	e->event.base.type = DRM_EVENT_VBLANK;
1345 	e->event.base.length = sizeof(e->event.vbl);
1346 	e->event.vbl.user_data = vblwait->request.signal;
1347 	e->event.vbl.crtc_id = 0;
1348 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1349 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1350 		if (crtc)
1351 			e->event.vbl.crtc_id = crtc->base.id;
1352 	}
1353 
1354 	spin_lock_irqsave(&dev->event_lock, flags);
1355 
1356 	/*
1357 	 * drm_crtc_vblank_off() might have been called after we called
1358 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1359 	 * vblank disable, so no need for further locking.  The reference from
1360 	 * drm_vblank_get() protects against vblank disable from another source.
1361 	 */
1362 	if (!READ_ONCE(vblank->enabled)) {
1363 		ret = -EINVAL;
1364 		goto err_unlock;
1365 	}
1366 
1367 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1368 					    &e->event.base);
1369 
1370 	if (ret)
1371 		goto err_unlock;
1372 
1373 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1374 
1375 	DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1376 		  req_seq, seq, pipe);
1377 
1378 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1379 
1380 	e->sequence = req_seq;
1381 	if (vblank_passed(seq, req_seq)) {
1382 		drm_vblank_put(dev, pipe);
1383 		send_vblank_event(dev, e, seq, now);
1384 		vblwait->reply.sequence = seq;
1385 	} else {
1386 		/* drm_handle_vblank_events will call drm_vblank_put */
1387 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1388 		vblwait->reply.sequence = req_seq;
1389 	}
1390 
1391 	spin_unlock_irqrestore(&dev->event_lock, flags);
1392 
1393 	return 0;
1394 
1395 err_unlock:
1396 	spin_unlock_irqrestore(&dev->event_lock, flags);
1397 	kfree(e);
1398 err_put:
1399 	drm_vblank_put(dev, pipe);
1400 	return ret;
1401 }
1402 
1403 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1404 {
1405 	if (vblwait->request.sequence)
1406 		return false;
1407 
1408 	return _DRM_VBLANK_RELATIVE ==
1409 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1410 					  _DRM_VBLANK_EVENT |
1411 					  _DRM_VBLANK_NEXTONMISS));
1412 }
1413 
1414 /*
1415  * Widen a 32-bit param to 64-bits.
1416  *
1417  * \param narrow 32-bit value (missing upper 32 bits)
1418  * \param near 64-bit value that should be 'close' to near
1419  *
1420  * This function returns a 64-bit value using the lower 32-bits from
1421  * 'narrow' and constructing the upper 32-bits so that the result is
1422  * as close as possible to 'near'.
1423  */
1424 
1425 static u64 widen_32_to_64(u32 narrow, u64 near)
1426 {
1427 	return near + (s32) (narrow - near);
1428 }
1429 
1430 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1431 				  struct drm_wait_vblank_reply *reply)
1432 {
1433 	ktime_t now;
1434 	struct timespec64 ts;
1435 
1436 	/*
1437 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1438 	 * to store the seconds. This is safe as we always use monotonic
1439 	 * timestamps since linux-4.15.
1440 	 */
1441 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1442 	ts = ktime_to_timespec64(now);
1443 	reply->tval_sec = (u32)ts.tv_sec;
1444 	reply->tval_usec = ts.tv_nsec / 1000;
1445 }
1446 
1447 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1448 			  struct drm_file *file_priv)
1449 {
1450 	struct drm_crtc *crtc;
1451 	struct drm_vblank_crtc *vblank;
1452 	union drm_wait_vblank *vblwait = data;
1453 	int ret;
1454 	u64 req_seq, seq;
1455 	unsigned int pipe_index;
1456 	unsigned int flags, pipe, high_pipe;
1457 
1458 	if (!dev->irq_enabled)
1459 		return -EINVAL;
1460 
1461 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1462 		return -EINVAL;
1463 
1464 	if (vblwait->request.type &
1465 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1466 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1467 		DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
1468 			  vblwait->request.type,
1469 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1470 			   _DRM_VBLANK_HIGH_CRTC_MASK));
1471 		return -EINVAL;
1472 	}
1473 
1474 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1475 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1476 	if (high_pipe)
1477 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1478 	else
1479 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1480 
1481 	/* Convert lease-relative crtc index into global crtc index */
1482 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1483 		pipe = 0;
1484 		drm_for_each_crtc(crtc, dev) {
1485 			if (drm_lease_held(file_priv, crtc->base.id)) {
1486 				if (pipe_index == 0)
1487 					break;
1488 				pipe_index--;
1489 			}
1490 			pipe++;
1491 		}
1492 	} else {
1493 		pipe = pipe_index;
1494 	}
1495 
1496 	if (pipe >= dev->num_crtcs)
1497 		return -EINVAL;
1498 
1499 	vblank = &dev->vblank[pipe];
1500 
1501 	/* If the counter is currently enabled and accurate, short-circuit
1502 	 * queries to return the cached timestamp of the last vblank.
1503 	 */
1504 	if (dev->vblank_disable_immediate &&
1505 	    drm_wait_vblank_is_query(vblwait) &&
1506 	    READ_ONCE(vblank->enabled)) {
1507 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1508 		return 0;
1509 	}
1510 
1511 	ret = drm_vblank_get(dev, pipe);
1512 	if (ret) {
1513 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1514 		return ret;
1515 	}
1516 	seq = drm_vblank_count(dev, pipe);
1517 
1518 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1519 	case _DRM_VBLANK_RELATIVE:
1520 		req_seq = seq + vblwait->request.sequence;
1521 		vblwait->request.sequence = req_seq;
1522 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1523 		break;
1524 	case _DRM_VBLANK_ABSOLUTE:
1525 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1526 		break;
1527 	default:
1528 		ret = -EINVAL;
1529 		goto done;
1530 	}
1531 
1532 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1533 	    vblank_passed(seq, req_seq)) {
1534 		req_seq = seq + 1;
1535 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1536 		vblwait->request.sequence = req_seq;
1537 	}
1538 
1539 	if (flags & _DRM_VBLANK_EVENT) {
1540 		/* must hold on to the vblank ref until the event fires
1541 		 * drm_vblank_put will be called asynchronously
1542 		 */
1543 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1544 	}
1545 
1546 	if (req_seq != seq) {
1547 		DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1548 			  req_seq, pipe);
1549 		DRM_WAIT_ON(ret, vblank->queue, 3 * HZ,
1550 			    vblank_passed(drm_vblank_count(dev, pipe),
1551 					  req_seq) ||
1552 			    !READ_ONCE(vblank->enabled));
1553 	}
1554 
1555 	if (ret != -EINTR) {
1556 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1557 
1558 		DRM_DEBUG("crtc %d returning %u to client\n",
1559 			  pipe, vblwait->reply.sequence);
1560 	} else {
1561 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1562 	}
1563 
1564 done:
1565 	drm_vblank_put(dev, pipe);
1566 	return ret;
1567 }
1568 
1569 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1570 {
1571 	struct drm_pending_vblank_event *e, *t;
1572 	ktime_t now;
1573 	u64 seq;
1574 
1575 	assert_spin_locked(&dev->event_lock);
1576 
1577 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1578 
1579 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1580 		if (e->pipe != pipe)
1581 			continue;
1582 		if (!vblank_passed(seq, e->sequence))
1583 			continue;
1584 
1585 		DRM_DEBUG("vblank event on %llu, current %llu\n",
1586 			  e->sequence, seq);
1587 
1588 		list_del(&e->base.link);
1589 		drm_vblank_put(dev, pipe);
1590 		send_vblank_event(dev, e, seq, now);
1591 	}
1592 
1593 	trace_drm_vblank_event(pipe, seq);
1594 }
1595 
1596 /**
1597  * drm_handle_vblank - handle a vblank event
1598  * @dev: DRM device
1599  * @pipe: index of CRTC where this event occurred
1600  *
1601  * Drivers should call this routine in their vblank interrupt handlers to
1602  * update the vblank counter and send any signals that may be pending.
1603  *
1604  * This is the legacy version of drm_crtc_handle_vblank().
1605  */
1606 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1607 {
1608 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1609 	unsigned long irqflags;
1610 	bool disable_irq;
1611 
1612 	if (WARN_ON_ONCE(!dev->num_crtcs))
1613 		return false;
1614 
1615 	if (WARN_ON(pipe >= dev->num_crtcs))
1616 		return false;
1617 
1618 	spin_lock_irqsave(&dev->event_lock, irqflags);
1619 
1620 	/* Need timestamp lock to prevent concurrent execution with
1621 	 * vblank enable/disable, as this would cause inconsistent
1622 	 * or corrupted timestamps and vblank counts.
1623 	 */
1624 	spin_lock(&dev->vblank_time_lock);
1625 
1626 	/* Vblank irq handling disabled. Nothing to do. */
1627 	if (!vblank->enabled) {
1628 		spin_unlock(&dev->vblank_time_lock);
1629 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1630 		return false;
1631 	}
1632 
1633 	drm_update_vblank_count(dev, pipe, true);
1634 
1635 	spin_unlock(&dev->vblank_time_lock);
1636 
1637 	wake_up(&vblank->queue);
1638 
1639 	/* With instant-off, we defer disabling the interrupt until after
1640 	 * we finish processing the following vblank after all events have
1641 	 * been signaled. The disable has to be last (after
1642 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1643 	 */
1644 	disable_irq = (dev->vblank_disable_immediate &&
1645 		       drm_vblank_offdelay > 0 &&
1646 		       !atomic_read(&vblank->refcount));
1647 
1648 	drm_handle_vblank_events(dev, pipe);
1649 
1650 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1651 
1652 	if (disable_irq)
1653 		vblank_disable_fn((unsigned long)vblank);
1654 
1655 	return true;
1656 }
1657 EXPORT_SYMBOL(drm_handle_vblank);
1658 
1659 /**
1660  * drm_crtc_handle_vblank - handle a vblank event
1661  * @crtc: where this event occurred
1662  *
1663  * Drivers should call this routine in their vblank interrupt handlers to
1664  * update the vblank counter and send any signals that may be pending.
1665  *
1666  * This is the native KMS version of drm_handle_vblank().
1667  *
1668  * Returns:
1669  * True if the event was successfully handled, false on failure.
1670  */
1671 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1672 {
1673 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1674 }
1675 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1676 
1677 /*
1678  * Get crtc VBLANK count.
1679  *
1680  * \param dev DRM device
1681  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1682  * \param file_priv drm file private for the user's open file descriptor
1683  */
1684 
1685 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1686 				struct drm_file *file_priv)
1687 {
1688 	struct drm_crtc *crtc;
1689 	struct drm_vblank_crtc *vblank;
1690 	int pipe;
1691 	struct drm_crtc_get_sequence *get_seq = data;
1692 	ktime_t now;
1693 	bool vblank_enabled;
1694 	int ret;
1695 
1696 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1697 		return -EINVAL;
1698 
1699 	if (!dev->irq_enabled)
1700 		return -EINVAL;
1701 
1702 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1703 	if (!crtc)
1704 		return -ENOENT;
1705 
1706 	pipe = drm_crtc_index(crtc);
1707 
1708 	vblank = &dev->vblank[pipe];
1709 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1710 
1711 	if (!vblank_enabled) {
1712 		ret = drm_crtc_vblank_get(crtc);
1713 		if (ret) {
1714 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1715 			return ret;
1716 		}
1717 	}
1718 	drm_modeset_lock(&crtc->mutex, NULL);
1719 	if (crtc->state)
1720 		get_seq->active = crtc->state->enable;
1721 	else
1722 		get_seq->active = crtc->enabled;
1723 	drm_modeset_unlock(&crtc->mutex);
1724 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1725 	get_seq->sequence_ns = ktime_to_ns(now);
1726 	if (!vblank_enabled)
1727 		drm_crtc_vblank_put(crtc);
1728 	return 0;
1729 }
1730 
1731 /*
1732  * Queue a event for VBLANK sequence
1733  *
1734  * \param dev DRM device
1735  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1736  * \param file_priv drm file private for the user's open file descriptor
1737  */
1738 
1739 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1740 				  struct drm_file *file_priv)
1741 {
1742 	struct drm_crtc *crtc;
1743 	struct drm_vblank_crtc *vblank;
1744 	int pipe;
1745 	struct drm_crtc_queue_sequence *queue_seq = data;
1746 	ktime_t now;
1747 	struct drm_pending_vblank_event *e;
1748 	u32 flags;
1749 	u64 seq;
1750 	u64 req_seq;
1751 	int ret;
1752 	unsigned long spin_flags;
1753 
1754 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1755 		return -EINVAL;
1756 
1757 	if (!dev->irq_enabled)
1758 		return -EINVAL;
1759 
1760 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1761 	if (!crtc)
1762 		return -ENOENT;
1763 
1764 	flags = queue_seq->flags;
1765 	/* Check valid flag bits */
1766 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1767 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1768 		return -EINVAL;
1769 
1770 	pipe = drm_crtc_index(crtc);
1771 
1772 	vblank = &dev->vblank[pipe];
1773 
1774 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1775 	if (e == NULL)
1776 		return -ENOMEM;
1777 
1778 	ret = drm_crtc_vblank_get(crtc);
1779 	if (ret) {
1780 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1781 		goto err_free;
1782 	}
1783 
1784 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1785 	req_seq = queue_seq->sequence;
1786 
1787 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1788 		req_seq += seq;
1789 
1790 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1791 		req_seq = seq + 1;
1792 
1793 	e->pipe = pipe;
1794 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1795 	e->event.base.length = sizeof(e->event.seq);
1796 	e->event.seq.user_data = queue_seq->user_data;
1797 
1798 	spin_lock_irqsave(&dev->event_lock, spin_flags);
1799 
1800 	/*
1801 	 * drm_crtc_vblank_off() might have been called after we called
1802 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1803 	 * vblank disable, so no need for further locking.  The reference from
1804 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
1805 	 */
1806 	if (!READ_ONCE(vblank->enabled)) {
1807 		ret = -EINVAL;
1808 		goto err_unlock;
1809 	}
1810 
1811 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1812 					    &e->event.base);
1813 
1814 	if (ret)
1815 		goto err_unlock;
1816 
1817 	e->sequence = req_seq;
1818 
1819 	if (vblank_passed(seq, req_seq)) {
1820 		drm_crtc_vblank_put(crtc);
1821 		send_vblank_event(dev, e, seq, now);
1822 		queue_seq->sequence = seq;
1823 	} else {
1824 		/* drm_handle_vblank_events will call drm_vblank_put */
1825 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1826 		queue_seq->sequence = req_seq;
1827 	}
1828 
1829 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1830 	return 0;
1831 
1832 err_unlock:
1833 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1834 	drm_crtc_vblank_put(crtc);
1835 err_free:
1836 	kfree(e);
1837 	return ret;
1838 }
1839