1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_vblank_crtc_config.disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static struct drm_vblank_crtc * 170 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe) 171 { 172 return &dev->vblank[pipe]; 173 } 174 175 struct drm_vblank_crtc * 176 drm_crtc_vblank_crtc(struct drm_crtc *crtc) 177 { 178 return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc)); 179 } 180 EXPORT_SYMBOL(drm_crtc_vblank_crtc); 181 182 static void store_vblank(struct drm_device *dev, unsigned int pipe, 183 u32 vblank_count_inc, 184 ktime_t t_vblank, u32 last) 185 { 186 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 187 188 assert_spin_locked(&dev->vblank_time_lock); 189 190 vblank->last = last; 191 192 write_seqlock(&vblank->seqlock); 193 vblank->time = t_vblank; 194 atomic64_add(vblank_count_inc, &vblank->count); 195 write_sequnlock(&vblank->seqlock); 196 } 197 198 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 199 { 200 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 201 202 return vblank->max_vblank_count ?: dev->max_vblank_count; 203 } 204 205 /* 206 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 207 * if there is no usable hardware frame counter available. 208 */ 209 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 210 { 211 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 212 return 0; 213 } 214 215 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 216 { 217 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 218 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 219 220 if (drm_WARN_ON(dev, !crtc)) 221 return 0; 222 223 if (crtc->funcs->get_vblank_counter) 224 return crtc->funcs->get_vblank_counter(crtc); 225 } 226 227 return drm_vblank_no_hw_counter(dev, pipe); 228 } 229 230 /* 231 * Reset the stored timestamp for the current vblank count to correspond 232 * to the last vblank occurred. 233 * 234 * Only to be called from drm_crtc_vblank_on(). 235 * 236 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 237 * device vblank fields. 238 */ 239 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 240 { 241 u32 cur_vblank; 242 bool rc; 243 ktime_t t_vblank; 244 int count = DRM_TIMESTAMP_MAXRETRIES; 245 246 spin_lock(&dev->vblank_time_lock); 247 248 /* 249 * sample the current counter to avoid random jumps 250 * when drm_vblank_enable() applies the diff 251 */ 252 do { 253 cur_vblank = __get_vblank_counter(dev, pipe); 254 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 255 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 256 257 /* 258 * Only reinitialize corresponding vblank timestamp if high-precision query 259 * available and didn't fail. Otherwise reinitialize delayed at next vblank 260 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 261 */ 262 if (!rc) 263 t_vblank = 0; 264 265 /* 266 * +1 to make sure user will never see the same 267 * vblank counter value before and after a modeset 268 */ 269 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 270 271 spin_unlock(&dev->vblank_time_lock); 272 } 273 274 /* 275 * Call back into the driver to update the appropriate vblank counter 276 * (specified by @pipe). Deal with wraparound, if it occurred, and 277 * update the last read value so we can deal with wraparound on the next 278 * call if necessary. 279 * 280 * Only necessary when going from off->on, to account for frames we 281 * didn't get an interrupt for. 282 * 283 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 284 * device vblank fields. 285 */ 286 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 287 bool in_vblank_irq) 288 { 289 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 290 u32 cur_vblank, diff; 291 bool rc; 292 ktime_t t_vblank; 293 int count = DRM_TIMESTAMP_MAXRETRIES; 294 int framedur_ns = vblank->framedur_ns; 295 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 296 297 /* 298 * Interrupts were disabled prior to this call, so deal with counter 299 * wrap if needed. 300 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 301 * here if the register is small or we had vblank interrupts off for 302 * a long time. 303 * 304 * We repeat the hardware vblank counter & timestamp query until 305 * we get consistent results. This to prevent races between gpu 306 * updating its hardware counter while we are retrieving the 307 * corresponding vblank timestamp. 308 */ 309 do { 310 cur_vblank = __get_vblank_counter(dev, pipe); 311 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 312 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 313 314 if (max_vblank_count) { 315 /* trust the hw counter when it's around */ 316 diff = (cur_vblank - vblank->last) & max_vblank_count; 317 } else if (rc && framedur_ns) { 318 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 319 320 /* 321 * Figure out how many vblanks we've missed based 322 * on the difference in the timestamps and the 323 * frame/field duration. 324 */ 325 326 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 327 " diff_ns = %lld, framedur_ns = %d)\n", 328 pipe, (long long)diff_ns, framedur_ns); 329 330 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 331 332 if (diff == 0 && in_vblank_irq) 333 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 334 pipe); 335 } else { 336 /* some kind of default for drivers w/o accurate vbl timestamping */ 337 diff = in_vblank_irq ? 1 : 0; 338 } 339 340 /* 341 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 342 * interval? If so then vblank irqs keep running and it will likely 343 * happen that the hardware vblank counter is not trustworthy as it 344 * might reset at some point in that interval and vblank timestamps 345 * are not trustworthy either in that interval. Iow. this can result 346 * in a bogus diff >> 1 which must be avoided as it would cause 347 * random large forward jumps of the software vblank counter. 348 */ 349 if (diff > 1 && (vblank->inmodeset & 0x2)) { 350 drm_dbg_vbl(dev, 351 "clamping vblank bump to 1 on crtc %u: diffr=%u" 352 " due to pre-modeset.\n", pipe, diff); 353 diff = 1; 354 } 355 356 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 357 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 358 pipe, (unsigned long long)atomic64_read(&vblank->count), 359 diff, cur_vblank, vblank->last); 360 361 if (diff == 0) { 362 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 363 return; 364 } 365 366 /* 367 * Only reinitialize corresponding vblank timestamp if high-precision query 368 * available and didn't fail, or we were called from the vblank interrupt. 369 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 370 * for now, to mark the vblanktimestamp as invalid. 371 */ 372 if (!rc && !in_vblank_irq) 373 t_vblank = 0; 374 375 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 376 } 377 378 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 379 { 380 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 381 u64 count; 382 383 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 384 return 0; 385 386 count = atomic64_read(&vblank->count); 387 388 /* 389 * This read barrier corresponds to the implicit write barrier of the 390 * write seqlock in store_vblank(). Note that this is the only place 391 * where we need an explicit barrier, since all other access goes 392 * through drm_vblank_count_and_time(), which already has the required 393 * read barrier curtesy of the read seqlock. 394 */ 395 smp_rmb(); 396 397 return count; 398 } 399 400 /** 401 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 402 * @crtc: which counter to retrieve 403 * 404 * This function is similar to drm_crtc_vblank_count() but this function 405 * interpolates to handle a race with vblank interrupts using the high precision 406 * timestamping support. 407 * 408 * This is mostly useful for hardware that can obtain the scanout position, but 409 * doesn't have a hardware frame counter. 410 */ 411 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 412 { 413 struct drm_device *dev = crtc->dev; 414 unsigned int pipe = drm_crtc_index(crtc); 415 u64 vblank; 416 unsigned long flags; 417 418 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 419 !crtc->funcs->get_vblank_timestamp, 420 "This function requires support for accurate vblank timestamps."); 421 422 spin_lock_irqsave(&dev->vblank_time_lock, flags); 423 424 drm_update_vblank_count(dev, pipe, false); 425 vblank = drm_vblank_count(dev, pipe); 426 427 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 428 429 return vblank; 430 } 431 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 432 433 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 434 { 435 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 436 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 437 438 if (drm_WARN_ON(dev, !crtc)) 439 return; 440 441 if (crtc->funcs->disable_vblank) 442 crtc->funcs->disable_vblank(crtc); 443 } 444 } 445 446 /* 447 * Disable vblank irq's on crtc, make sure that last vblank count 448 * of hardware and corresponding consistent software vblank counter 449 * are preserved, even if there are any spurious vblank irq's after 450 * disable. 451 */ 452 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 453 { 454 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 455 unsigned long irqflags; 456 457 assert_spin_locked(&dev->vbl_lock); 458 459 /* Prevent vblank irq processing while disabling vblank irqs, 460 * so no updates of timestamps or count can happen after we've 461 * disabled. Needed to prevent races in case of delayed irq's. 462 */ 463 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 464 465 /* 466 * Update vblank count and disable vblank interrupts only if the 467 * interrupts were enabled. This avoids calling the ->disable_vblank() 468 * operation in atomic context with the hardware potentially runtime 469 * suspended. 470 */ 471 if (!vblank->enabled) 472 goto out; 473 474 /* 475 * Update the count and timestamp to maintain the 476 * appearance that the counter has been ticking all along until 477 * this time. This makes the count account for the entire time 478 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 479 */ 480 drm_update_vblank_count(dev, pipe, false); 481 __disable_vblank(dev, pipe); 482 vblank->enabled = false; 483 484 out: 485 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 486 } 487 488 static void vblank_disable_fn(struct timer_list *t) 489 { 490 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 491 struct drm_device *dev = vblank->dev; 492 unsigned int pipe = vblank->pipe; 493 unsigned long irqflags; 494 495 spin_lock_irqsave(&dev->vbl_lock, irqflags); 496 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 497 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 498 drm_vblank_disable_and_save(dev, pipe); 499 } 500 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 501 } 502 503 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 504 { 505 struct drm_vblank_crtc *vblank = ptr; 506 507 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 508 drm_core_check_feature(dev, DRIVER_MODESET)); 509 510 drm_vblank_destroy_worker(vblank); 511 del_timer_sync(&vblank->disable_timer); 512 } 513 514 /** 515 * drm_vblank_init - initialize vblank support 516 * @dev: DRM device 517 * @num_crtcs: number of CRTCs supported by @dev 518 * 519 * This function initializes vblank support for @num_crtcs display pipelines. 520 * Cleanup is handled automatically through a cleanup function added with 521 * drmm_add_action_or_reset(). 522 * 523 * Returns: 524 * Zero on success or a negative error code on failure. 525 */ 526 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 527 { 528 int ret; 529 unsigned int i; 530 531 spin_lock_init(&dev->vbl_lock); 532 spin_lock_init(&dev->vblank_time_lock); 533 534 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 535 if (!dev->vblank) 536 return -ENOMEM; 537 538 dev->num_crtcs = num_crtcs; 539 540 for (i = 0; i < num_crtcs; i++) { 541 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 542 543 vblank->dev = dev; 544 vblank->pipe = i; 545 init_waitqueue_head(&vblank->queue); 546 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 547 seqlock_init(&vblank->seqlock); 548 549 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 550 vblank); 551 if (ret) 552 return ret; 553 554 ret = drm_vblank_worker_init(vblank); 555 if (ret) 556 return ret; 557 } 558 559 return 0; 560 } 561 EXPORT_SYMBOL(drm_vblank_init); 562 563 /** 564 * drm_dev_has_vblank - test if vblanking has been initialized for 565 * a device 566 * @dev: the device 567 * 568 * Drivers may call this function to test if vblank support is 569 * initialized for a device. For most hardware this means that vblanking 570 * can also be enabled. 571 * 572 * Atomic helpers use this function to initialize 573 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 574 * 575 * Returns: 576 * True if vblanking has been initialized for the given device, false 577 * otherwise. 578 */ 579 bool drm_dev_has_vblank(const struct drm_device *dev) 580 { 581 return dev->num_crtcs != 0; 582 } 583 EXPORT_SYMBOL(drm_dev_has_vblank); 584 585 /** 586 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 587 * @crtc: which CRTC's vblank waitqueue to retrieve 588 * 589 * This function returns a pointer to the vblank waitqueue for the CRTC. 590 * Drivers can use this to implement vblank waits using wait_event() and related 591 * functions. 592 */ 593 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 594 { 595 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 596 } 597 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 598 599 600 /** 601 * drm_calc_timestamping_constants - calculate vblank timestamp constants 602 * @crtc: drm_crtc whose timestamp constants should be updated. 603 * @mode: display mode containing the scanout timings 604 * 605 * Calculate and store various constants which are later needed by vblank and 606 * swap-completion timestamping, e.g, by 607 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 608 * CRTC's true scanout timing, so they take things like panel scaling or 609 * other adjustments into account. 610 */ 611 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 612 const struct drm_display_mode *mode) 613 { 614 struct drm_device *dev = crtc->dev; 615 unsigned int pipe = drm_crtc_index(crtc); 616 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 617 int linedur_ns = 0, framedur_ns = 0; 618 int dotclock = mode->crtc_clock; 619 620 if (!drm_dev_has_vblank(dev)) 621 return; 622 623 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 624 return; 625 626 /* Valid dotclock? */ 627 if (dotclock > 0) { 628 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 629 630 /* 631 * Convert scanline length in pixels and video 632 * dot clock to line duration and frame duration 633 * in nanoseconds: 634 */ 635 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 636 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 637 638 /* 639 * Fields of interlaced scanout modes are only half a frame duration. 640 */ 641 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 642 framedur_ns /= 2; 643 } else { 644 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 645 crtc->base.id); 646 } 647 648 vblank->linedur_ns = linedur_ns; 649 vblank->framedur_ns = framedur_ns; 650 drm_mode_copy(&vblank->hwmode, mode); 651 652 drm_dbg_core(dev, 653 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 654 crtc->base.id, mode->crtc_htotal, 655 mode->crtc_vtotal, mode->crtc_vdisplay); 656 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 657 crtc->base.id, dotclock, framedur_ns, linedur_ns); 658 } 659 EXPORT_SYMBOL(drm_calc_timestamping_constants); 660 661 /** 662 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 663 * timestamp helper 664 * @crtc: CRTC whose vblank timestamp to retrieve 665 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 666 * On return contains true maximum error of timestamp 667 * @vblank_time: Pointer to time which should receive the timestamp 668 * @in_vblank_irq: 669 * True when called from drm_crtc_handle_vblank(). Some drivers 670 * need to apply some workarounds for gpu-specific vblank irq quirks 671 * if flag is set. 672 * @get_scanout_position: 673 * Callback function to retrieve the scanout position. See 674 * @struct drm_crtc_helper_funcs.get_scanout_position. 675 * 676 * Implements calculation of exact vblank timestamps from given drm_display_mode 677 * timings and current video scanout position of a CRTC. 678 * 679 * The current implementation only handles standard video modes. For double scan 680 * and interlaced modes the driver is supposed to adjust the hardware mode 681 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 682 * match the scanout position reported. 683 * 684 * Note that atomic drivers must call drm_calc_timestamping_constants() before 685 * enabling a CRTC. The atomic helpers already take care of that in 686 * drm_atomic_helper_calc_timestamping_constants(). 687 * 688 * Returns: 689 * Returns true on success, and false on failure, i.e. when no accurate 690 * timestamp could be acquired. 691 */ 692 bool 693 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 694 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 695 bool in_vblank_irq, 696 drm_vblank_get_scanout_position_func get_scanout_position) 697 { 698 struct drm_device *dev = crtc->dev; 699 unsigned int pipe = crtc->index; 700 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 701 struct timespec64 ts_etime, ts_vblank_time; 702 ktime_t stime, etime; 703 bool vbl_status; 704 const struct drm_display_mode *mode; 705 int vpos, hpos, i; 706 int delta_ns, duration_ns; 707 708 if (pipe >= dev->num_crtcs) { 709 drm_err(dev, "Invalid crtc %u\n", pipe); 710 return false; 711 } 712 713 /* Scanout position query not supported? Should not happen. */ 714 if (!get_scanout_position) { 715 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 716 return false; 717 } 718 719 if (drm_drv_uses_atomic_modeset(dev)) 720 mode = &vblank->hwmode; 721 else 722 mode = &crtc->hwmode; 723 724 /* If mode timing undefined, just return as no-op: 725 * Happens during initial modesetting of a crtc. 726 */ 727 if (mode->crtc_clock == 0) { 728 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 729 pipe); 730 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 731 return false; 732 } 733 734 /* Get current scanout position with system timestamp. 735 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 736 * if single query takes longer than max_error nanoseconds. 737 * 738 * This guarantees a tight bound on maximum error if 739 * code gets preempted or delayed for some reason. 740 */ 741 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 742 /* 743 * Get vertical and horizontal scanout position vpos, hpos, 744 * and bounding timestamps stime, etime, pre/post query. 745 */ 746 vbl_status = get_scanout_position(crtc, in_vblank_irq, 747 &vpos, &hpos, 748 &stime, &etime, 749 mode); 750 751 /* Return as no-op if scanout query unsupported or failed. */ 752 if (!vbl_status) { 753 drm_dbg_core(dev, 754 "crtc %u : scanoutpos query failed.\n", 755 pipe); 756 return false; 757 } 758 759 /* Compute uncertainty in timestamp of scanout position query. */ 760 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 761 762 /* Accept result with < max_error nsecs timing uncertainty. */ 763 if (duration_ns <= *max_error) 764 break; 765 } 766 767 /* Noisy system timing? */ 768 if (i == DRM_TIMESTAMP_MAXRETRIES) { 769 drm_dbg_core(dev, 770 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 771 pipe, duration_ns / 1000, *max_error / 1000, i); 772 } 773 774 /* Return upper bound of timestamp precision error. */ 775 *max_error = duration_ns; 776 777 /* Convert scanout position into elapsed time at raw_time query 778 * since start of scanout at first display scanline. delta_ns 779 * can be negative if start of scanout hasn't happened yet. 780 */ 781 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 782 mode->crtc_clock); 783 784 /* Subtract time delta from raw timestamp to get final 785 * vblank_time timestamp for end of vblank. 786 */ 787 *vblank_time = ktime_sub_ns(etime, delta_ns); 788 789 if (!drm_debug_enabled(DRM_UT_VBL)) 790 return true; 791 792 ts_etime = ktime_to_timespec64(etime); 793 ts_vblank_time = ktime_to_timespec64(*vblank_time); 794 795 drm_dbg_vbl(dev, 796 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 797 pipe, hpos, vpos, 798 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 799 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 800 duration_ns / 1000, i); 801 802 return true; 803 } 804 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 805 806 /** 807 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 808 * helper 809 * @crtc: CRTC whose vblank timestamp to retrieve 810 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 811 * On return contains true maximum error of timestamp 812 * @vblank_time: Pointer to time which should receive the timestamp 813 * @in_vblank_irq: 814 * True when called from drm_crtc_handle_vblank(). Some drivers 815 * need to apply some workarounds for gpu-specific vblank irq quirks 816 * if flag is set. 817 * 818 * Implements calculation of exact vblank timestamps from given drm_display_mode 819 * timings and current video scanout position of a CRTC. This can be directly 820 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 821 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 822 * 823 * The current implementation only handles standard video modes. For double scan 824 * and interlaced modes the driver is supposed to adjust the hardware mode 825 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 826 * match the scanout position reported. 827 * 828 * Note that atomic drivers must call drm_calc_timestamping_constants() before 829 * enabling a CRTC. The atomic helpers already take care of that in 830 * drm_atomic_helper_calc_timestamping_constants(). 831 * 832 * Returns: 833 * Returns true on success, and false on failure, i.e. when no accurate 834 * timestamp could be acquired. 835 */ 836 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 837 int *max_error, 838 ktime_t *vblank_time, 839 bool in_vblank_irq) 840 { 841 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 842 crtc, max_error, vblank_time, in_vblank_irq, 843 crtc->helper_private->get_scanout_position); 844 } 845 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 846 847 /** 848 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most 849 * recent vblank interval 850 * @crtc: CRTC whose vblank timestamp to retrieve 851 * @tvblank: Pointer to target time which should receive the timestamp 852 * @in_vblank_irq: 853 * True when called from drm_crtc_handle_vblank(). Some drivers 854 * need to apply some workarounds for gpu-specific vblank irq quirks 855 * if flag is set. 856 * 857 * Fetches the system timestamp corresponding to the time of the most recent 858 * vblank interval on specified CRTC. May call into kms-driver to 859 * compute the timestamp with a high-precision GPU specific method. 860 * 861 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 862 * call, i.e., it isn't very precisely locked to the true vblank. 863 * 864 * Returns: 865 * True if timestamp is considered to be very precise, false otherwise. 866 */ 867 static bool 868 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank, 869 bool in_vblank_irq) 870 { 871 bool ret = false; 872 873 /* Define requested maximum error on timestamps (nanoseconds). */ 874 int max_error = (int) drm_timestamp_precision * 1000; 875 876 /* Query driver if possible and precision timestamping enabled. */ 877 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 878 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 879 tvblank, in_vblank_irq); 880 } 881 882 /* GPU high precision timestamp query unsupported or failed. 883 * Return current monotonic/gettimeofday timestamp as best estimate. 884 */ 885 if (!ret) 886 *tvblank = ktime_get(); 887 888 return ret; 889 } 890 891 static bool 892 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 893 ktime_t *tvblank, bool in_vblank_irq) 894 { 895 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 896 897 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq); 898 } 899 900 /** 901 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 902 * @crtc: which counter to retrieve 903 * 904 * Fetches the "cooked" vblank count value that represents the number of 905 * vblank events since the system was booted, including lost events due to 906 * modesetting activity. Note that this timer isn't correct against a racing 907 * vblank interrupt (since it only reports the software vblank counter), see 908 * drm_crtc_accurate_vblank_count() for such use-cases. 909 * 910 * Note that for a given vblank counter value drm_crtc_handle_vblank() 911 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 912 * provide a barrier: Any writes done before calling 913 * drm_crtc_handle_vblank() will be visible to callers of the later 914 * functions, if the vblank count is the same or a later one. 915 * 916 * See also &drm_vblank_crtc.count. 917 * 918 * Returns: 919 * The software vblank counter. 920 */ 921 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 922 { 923 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 924 } 925 EXPORT_SYMBOL(drm_crtc_vblank_count); 926 927 /** 928 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 929 * system timestamp corresponding to that vblank counter value. 930 * @dev: DRM device 931 * @pipe: index of CRTC whose counter to retrieve 932 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 933 * 934 * Fetches the "cooked" vblank count value that represents the number of 935 * vblank events since the system was booted, including lost events due to 936 * modesetting activity. Returns corresponding system timestamp of the time 937 * of the vblank interval that corresponds to the current vblank counter value. 938 * 939 * This is the legacy version of drm_crtc_vblank_count_and_time(). 940 */ 941 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 942 ktime_t *vblanktime) 943 { 944 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 945 u64 vblank_count; 946 unsigned int seq; 947 948 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 949 *vblanktime = 0; 950 return 0; 951 } 952 953 do { 954 seq = read_seqbegin(&vblank->seqlock); 955 vblank_count = atomic64_read(&vblank->count); 956 *vblanktime = vblank->time; 957 } while (read_seqretry(&vblank->seqlock, seq)); 958 959 return vblank_count; 960 } 961 962 /** 963 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 964 * and the system timestamp corresponding to that vblank counter value 965 * @crtc: which counter to retrieve 966 * @vblanktime: Pointer to time to receive the vblank timestamp. 967 * 968 * Fetches the "cooked" vblank count value that represents the number of 969 * vblank events since the system was booted, including lost events due to 970 * modesetting activity. Returns corresponding system timestamp of the time 971 * of the vblank interval that corresponds to the current vblank counter value. 972 * 973 * Note that for a given vblank counter value drm_crtc_handle_vblank() 974 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 975 * provide a barrier: Any writes done before calling 976 * drm_crtc_handle_vblank() will be visible to callers of the later 977 * functions, if the vblank count is the same or a later one. 978 * 979 * See also &drm_vblank_crtc.count. 980 */ 981 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 982 ktime_t *vblanktime) 983 { 984 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 985 vblanktime); 986 } 987 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 988 989 /** 990 * drm_crtc_next_vblank_start - calculate the time of the next vblank 991 * @crtc: the crtc for which to calculate next vblank time 992 * @vblanktime: pointer to time to receive the next vblank timestamp. 993 * 994 * Calculate the expected time of the start of the next vblank period, 995 * based on time of previous vblank and frame duration 996 */ 997 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime) 998 { 999 struct drm_vblank_crtc *vblank; 1000 struct drm_display_mode *mode; 1001 u64 vblank_start; 1002 1003 if (!drm_dev_has_vblank(crtc->dev)) 1004 return -EINVAL; 1005 1006 vblank = drm_crtc_vblank_crtc(crtc); 1007 mode = &vblank->hwmode; 1008 1009 if (!vblank->framedur_ns || !vblank->linedur_ns) 1010 return -EINVAL; 1011 1012 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false)) 1013 return -EINVAL; 1014 1015 vblank_start = DIV_ROUND_DOWN_ULL( 1016 (u64)vblank->framedur_ns * mode->crtc_vblank_start, 1017 mode->crtc_vtotal); 1018 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start)); 1019 1020 return 0; 1021 } 1022 EXPORT_SYMBOL(drm_crtc_next_vblank_start); 1023 1024 static void send_vblank_event(struct drm_device *dev, 1025 struct drm_pending_vblank_event *e, 1026 u64 seq, ktime_t now) 1027 { 1028 struct timespec64 tv; 1029 1030 switch (e->event.base.type) { 1031 case DRM_EVENT_VBLANK: 1032 case DRM_EVENT_FLIP_COMPLETE: 1033 tv = ktime_to_timespec64(now); 1034 e->event.vbl.sequence = seq; 1035 /* 1036 * e->event is a user space structure, with hardcoded unsigned 1037 * 32-bit seconds/microseconds. This is safe as we always use 1038 * monotonic timestamps since linux-4.15 1039 */ 1040 e->event.vbl.tv_sec = tv.tv_sec; 1041 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1042 break; 1043 case DRM_EVENT_CRTC_SEQUENCE: 1044 if (seq) 1045 e->event.seq.sequence = seq; 1046 e->event.seq.time_ns = ktime_to_ns(now); 1047 break; 1048 } 1049 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1050 /* 1051 * Use the same timestamp for any associated fence signal to avoid 1052 * mismatch in timestamps for vsync & fence events triggered by the 1053 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1054 * retire-fence timestamp to match exactly with HW vsync as it uses it 1055 * for its software vsync modeling. 1056 */ 1057 drm_send_event_timestamp_locked(dev, &e->base, now); 1058 } 1059 1060 /** 1061 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1062 * @crtc: the source CRTC of the vblank event 1063 * @e: the event to send 1064 * 1065 * A lot of drivers need to generate vblank events for the very next vblank 1066 * interrupt. For example when the page flip interrupt happens when the page 1067 * flip gets armed, but not when it actually executes within the next vblank 1068 * period. This helper function implements exactly the required vblank arming 1069 * behaviour. 1070 * 1071 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1072 * atomic commit must ensure that the next vblank happens at exactly the same 1073 * time as the atomic commit is committed to the hardware. This function itself 1074 * does **not** protect against the next vblank interrupt racing with either this 1075 * function call or the atomic commit operation. A possible sequence could be: 1076 * 1077 * 1. Driver commits new hardware state into vblank-synchronized registers. 1078 * 2. A vblank happens, committing the hardware state. Also the corresponding 1079 * vblank interrupt is fired off and fully processed by the interrupt 1080 * handler. 1081 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1082 * 4. The event is only send out for the next vblank, which is wrong. 1083 * 1084 * An equivalent race can happen when the driver calls 1085 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1086 * 1087 * The only way to make this work safely is to prevent the vblank from firing 1088 * (and the hardware from committing anything else) until the entire atomic 1089 * commit sequence has run to completion. If the hardware does not have such a 1090 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1091 * Instead drivers need to manually send out the event from their interrupt 1092 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1093 * possible race with the hardware committing the atomic update. 1094 * 1095 * Caller must hold a vblank reference for the event @e acquired by a 1096 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1097 */ 1098 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1099 struct drm_pending_vblank_event *e) 1100 { 1101 struct drm_device *dev = crtc->dev; 1102 unsigned int pipe = drm_crtc_index(crtc); 1103 1104 assert_spin_locked(&dev->event_lock); 1105 1106 e->pipe = pipe; 1107 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1108 list_add_tail(&e->base.link, &dev->vblank_event_list); 1109 } 1110 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1111 1112 /** 1113 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1114 * @crtc: the source CRTC of the vblank event 1115 * @e: the event to send 1116 * 1117 * Updates sequence # and timestamp on event for the most recently processed 1118 * vblank, and sends it to userspace. Caller must hold event lock. 1119 * 1120 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1121 * situation, especially to send out events for atomic commit operations. 1122 */ 1123 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1124 struct drm_pending_vblank_event *e) 1125 { 1126 struct drm_device *dev = crtc->dev; 1127 u64 seq; 1128 unsigned int pipe = drm_crtc_index(crtc); 1129 ktime_t now; 1130 1131 if (drm_dev_has_vblank(dev)) { 1132 seq = drm_vblank_count_and_time(dev, pipe, &now); 1133 } else { 1134 seq = 0; 1135 1136 now = ktime_get(); 1137 } 1138 e->pipe = pipe; 1139 send_vblank_event(dev, e, seq, now); 1140 } 1141 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1142 1143 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1144 { 1145 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1146 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1147 1148 if (drm_WARN_ON(dev, !crtc)) 1149 return 0; 1150 1151 if (crtc->funcs->enable_vblank) 1152 return crtc->funcs->enable_vblank(crtc); 1153 } 1154 1155 return -EINVAL; 1156 } 1157 1158 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1159 { 1160 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1161 int ret = 0; 1162 1163 assert_spin_locked(&dev->vbl_lock); 1164 1165 spin_lock(&dev->vblank_time_lock); 1166 1167 if (!vblank->enabled) { 1168 /* 1169 * Enable vblank irqs under vblank_time_lock protection. 1170 * All vblank count & timestamp updates are held off 1171 * until we are done reinitializing master counter and 1172 * timestamps. Filtercode in drm_handle_vblank() will 1173 * prevent double-accounting of same vblank interval. 1174 */ 1175 ret = __enable_vblank(dev, pipe); 1176 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1177 pipe, ret); 1178 if (ret) { 1179 atomic_dec(&vblank->refcount); 1180 } else { 1181 drm_update_vblank_count(dev, pipe, 0); 1182 /* drm_update_vblank_count() includes a wmb so we just 1183 * need to ensure that the compiler emits the write 1184 * to mark the vblank as enabled after the call 1185 * to drm_update_vblank_count(). 1186 */ 1187 WRITE_ONCE(vblank->enabled, true); 1188 } 1189 } 1190 1191 spin_unlock(&dev->vblank_time_lock); 1192 1193 return ret; 1194 } 1195 1196 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1197 { 1198 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1199 unsigned long irqflags; 1200 int ret = 0; 1201 1202 if (!drm_dev_has_vblank(dev)) 1203 return -EINVAL; 1204 1205 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1206 return -EINVAL; 1207 1208 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1209 /* Going from 0->1 means we have to enable interrupts again */ 1210 if (atomic_add_return(1, &vblank->refcount) == 1) { 1211 ret = drm_vblank_enable(dev, pipe); 1212 } else { 1213 if (!vblank->enabled) { 1214 atomic_dec(&vblank->refcount); 1215 ret = -EINVAL; 1216 } 1217 } 1218 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1219 1220 return ret; 1221 } 1222 1223 /** 1224 * drm_crtc_vblank_get - get a reference count on vblank events 1225 * @crtc: which CRTC to own 1226 * 1227 * Acquire a reference count on vblank events to avoid having them disabled 1228 * while in use. 1229 * 1230 * Returns: 1231 * Zero on success or a negative error code on failure. 1232 */ 1233 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1234 { 1235 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1236 } 1237 EXPORT_SYMBOL(drm_crtc_vblank_get); 1238 1239 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1240 { 1241 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1242 int vblank_offdelay = vblank->config.offdelay_ms; 1243 1244 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1245 return; 1246 1247 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1248 return; 1249 1250 /* Last user schedules interrupt disable */ 1251 if (atomic_dec_and_test(&vblank->refcount)) { 1252 if (!vblank_offdelay) 1253 return; 1254 else if (vblank_offdelay < 0) 1255 vblank_disable_fn(&vblank->disable_timer); 1256 else if (!vblank->config.disable_immediate) 1257 mod_timer(&vblank->disable_timer, 1258 jiffies + ((vblank_offdelay * HZ) / 1000)); 1259 } 1260 } 1261 1262 /** 1263 * drm_crtc_vblank_put - give up ownership of vblank events 1264 * @crtc: which counter to give up 1265 * 1266 * Release ownership of a given vblank counter, turning off interrupts 1267 * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms 1268 * milliseconds. 1269 */ 1270 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1271 { 1272 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1273 } 1274 EXPORT_SYMBOL(drm_crtc_vblank_put); 1275 1276 /** 1277 * drm_wait_one_vblank - wait for one vblank 1278 * @dev: DRM device 1279 * @pipe: CRTC index 1280 * 1281 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1282 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1283 * due to lack of driver support or because the crtc is off. 1284 * 1285 * This is the legacy version of drm_crtc_wait_one_vblank(). 1286 */ 1287 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1288 { 1289 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1290 int ret; 1291 u64 last; 1292 1293 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1294 return; 1295 1296 ret = drm_vblank_get(dev, pipe); 1297 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1298 pipe, ret)) 1299 return; 1300 1301 last = drm_vblank_count(dev, pipe); 1302 1303 ret = wait_event_timeout(vblank->queue, 1304 last != drm_vblank_count(dev, pipe), 1305 msecs_to_jiffies(100)); 1306 1307 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1308 1309 drm_vblank_put(dev, pipe); 1310 } 1311 EXPORT_SYMBOL(drm_wait_one_vblank); 1312 1313 /** 1314 * drm_crtc_wait_one_vblank - wait for one vblank 1315 * @crtc: DRM crtc 1316 * 1317 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1318 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1319 * due to lack of driver support or because the crtc is off. 1320 */ 1321 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1322 { 1323 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1324 } 1325 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1326 1327 /** 1328 * drm_crtc_vblank_off - disable vblank events on a CRTC 1329 * @crtc: CRTC in question 1330 * 1331 * Drivers can use this function to shut down the vblank interrupt handling when 1332 * disabling a crtc. This function ensures that the latest vblank frame count is 1333 * stored so that drm_vblank_on can restore it again. 1334 * 1335 * Drivers must use this function when the hardware vblank counter can get 1336 * reset, e.g. when suspending or disabling the @crtc in general. 1337 */ 1338 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1339 { 1340 struct drm_device *dev = crtc->dev; 1341 unsigned int pipe = drm_crtc_index(crtc); 1342 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1343 struct drm_pending_vblank_event *e, *t; 1344 ktime_t now; 1345 u64 seq; 1346 1347 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1348 return; 1349 1350 /* 1351 * Grab event_lock early to prevent vblank work from being scheduled 1352 * while we're in the middle of shutting down vblank interrupts 1353 */ 1354 spin_lock_irq(&dev->event_lock); 1355 1356 spin_lock(&dev->vbl_lock); 1357 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1358 pipe, vblank->enabled, vblank->inmodeset); 1359 1360 /* Avoid redundant vblank disables without previous 1361 * drm_crtc_vblank_on(). */ 1362 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1363 drm_vblank_disable_and_save(dev, pipe); 1364 1365 wake_up(&vblank->queue); 1366 1367 /* 1368 * Prevent subsequent drm_vblank_get() from re-enabling 1369 * the vblank interrupt by bumping the refcount. 1370 */ 1371 if (!vblank->inmodeset) { 1372 atomic_inc(&vblank->refcount); 1373 vblank->inmodeset = 1; 1374 } 1375 spin_unlock(&dev->vbl_lock); 1376 1377 /* Send any queued vblank events, lest the natives grow disquiet */ 1378 seq = drm_vblank_count_and_time(dev, pipe, &now); 1379 1380 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1381 if (e->pipe != pipe) 1382 continue; 1383 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1384 "wanted %llu, current %llu\n", 1385 e->sequence, seq); 1386 list_del(&e->base.link); 1387 drm_vblank_put(dev, pipe); 1388 send_vblank_event(dev, e, seq, now); 1389 } 1390 1391 /* Cancel any leftover pending vblank work */ 1392 drm_vblank_cancel_pending_works(vblank); 1393 1394 spin_unlock_irq(&dev->event_lock); 1395 1396 /* Will be reset by the modeset helpers when re-enabling the crtc by 1397 * calling drm_calc_timestamping_constants(). */ 1398 vblank->hwmode.crtc_clock = 0; 1399 1400 /* Wait for any vblank work that's still executing to finish */ 1401 drm_vblank_flush_worker(vblank); 1402 } 1403 EXPORT_SYMBOL(drm_crtc_vblank_off); 1404 1405 /** 1406 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1407 * @crtc: CRTC in question 1408 * 1409 * Drivers can use this function to reset the vblank state to off at load time. 1410 * Drivers should use this together with the drm_crtc_vblank_off() and 1411 * drm_crtc_vblank_on() functions. The difference compared to 1412 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1413 * and hence doesn't need to call any driver hooks. 1414 * 1415 * This is useful for recovering driver state e.g. on driver load, or on resume. 1416 */ 1417 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1418 { 1419 struct drm_device *dev = crtc->dev; 1420 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1421 1422 spin_lock_irq(&dev->vbl_lock); 1423 /* 1424 * Prevent subsequent drm_vblank_get() from enabling the vblank 1425 * interrupt by bumping the refcount. 1426 */ 1427 if (!vblank->inmodeset) { 1428 atomic_inc(&vblank->refcount); 1429 vblank->inmodeset = 1; 1430 } 1431 spin_unlock_irq(&dev->vbl_lock); 1432 1433 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1434 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1435 } 1436 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1437 1438 /** 1439 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1440 * @crtc: CRTC in question 1441 * @max_vblank_count: max hardware vblank counter value 1442 * 1443 * Update the maximum hardware vblank counter value for @crtc 1444 * at runtime. Useful for hardware where the operation of the 1445 * hardware vblank counter depends on the currently active 1446 * display configuration. 1447 * 1448 * For example, if the hardware vblank counter does not work 1449 * when a specific connector is active the maximum can be set 1450 * to zero. And when that specific connector isn't active the 1451 * maximum can again be set to the appropriate non-zero value. 1452 * 1453 * If used, must be called before drm_vblank_on(). 1454 */ 1455 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1456 u32 max_vblank_count) 1457 { 1458 struct drm_device *dev = crtc->dev; 1459 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1460 1461 drm_WARN_ON(dev, dev->max_vblank_count); 1462 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1463 1464 vblank->max_vblank_count = max_vblank_count; 1465 } 1466 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1467 1468 /** 1469 * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom 1470 * configuration options 1471 * @crtc: CRTC in question 1472 * @config: Vblank configuration value 1473 * 1474 * See drm_crtc_vblank_on(). In addition, this function allows you to provide a 1475 * custom vblank configuration for a given CRTC. 1476 * 1477 * Note that @config is copied, the pointer does not need to stay valid beyond 1478 * this function call. For details of the parameters see 1479 * struct drm_vblank_crtc_config. 1480 */ 1481 void drm_crtc_vblank_on_config(struct drm_crtc *crtc, 1482 const struct drm_vblank_crtc_config *config) 1483 { 1484 struct drm_device *dev = crtc->dev; 1485 unsigned int pipe = drm_crtc_index(crtc); 1486 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1487 1488 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1489 return; 1490 1491 spin_lock_irq(&dev->vbl_lock); 1492 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1493 pipe, vblank->enabled, vblank->inmodeset); 1494 1495 vblank->config = *config; 1496 1497 /* Drop our private "prevent drm_vblank_get" refcount */ 1498 if (vblank->inmodeset) { 1499 atomic_dec(&vblank->refcount); 1500 vblank->inmodeset = 0; 1501 } 1502 1503 drm_reset_vblank_timestamp(dev, pipe); 1504 1505 /* 1506 * re-enable interrupts if there are users left, or the 1507 * user wishes vblank interrupts to be enabled all the time. 1508 */ 1509 if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms) 1510 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1511 spin_unlock_irq(&dev->vbl_lock); 1512 } 1513 EXPORT_SYMBOL(drm_crtc_vblank_on_config); 1514 1515 /** 1516 * drm_crtc_vblank_on - enable vblank events on a CRTC 1517 * @crtc: CRTC in question 1518 * 1519 * This functions restores the vblank interrupt state captured with 1520 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1521 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1522 * unbalanced and so can also be unconditionally called in driver load code to 1523 * reflect the current hardware state of the crtc. 1524 * 1525 * Note that unlike in drm_crtc_vblank_on_config(), default values are used. 1526 */ 1527 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1528 { 1529 const struct drm_vblank_crtc_config config = { 1530 .offdelay_ms = drm_vblank_offdelay, 1531 .disable_immediate = crtc->dev->vblank_disable_immediate 1532 }; 1533 1534 drm_crtc_vblank_on_config(crtc, &config); 1535 } 1536 EXPORT_SYMBOL(drm_crtc_vblank_on); 1537 1538 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1539 { 1540 ktime_t t_vblank; 1541 struct drm_vblank_crtc *vblank; 1542 int framedur_ns; 1543 u64 diff_ns; 1544 u32 cur_vblank, diff = 1; 1545 int count = DRM_TIMESTAMP_MAXRETRIES; 1546 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1547 1548 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1549 return; 1550 1551 assert_spin_locked(&dev->vbl_lock); 1552 assert_spin_locked(&dev->vblank_time_lock); 1553 1554 vblank = drm_vblank_crtc(dev, pipe); 1555 drm_WARN_ONCE(dev, 1556 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1557 "Cannot compute missed vblanks without frame duration\n"); 1558 framedur_ns = vblank->framedur_ns; 1559 1560 do { 1561 cur_vblank = __get_vblank_counter(dev, pipe); 1562 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1563 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1564 1565 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1566 if (framedur_ns) 1567 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1568 1569 1570 drm_dbg_vbl(dev, 1571 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1572 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1573 vblank->last = (cur_vblank - diff) & max_vblank_count; 1574 } 1575 1576 /** 1577 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1578 * @crtc: CRTC in question 1579 * 1580 * Power manamement features can cause frame counter resets between vblank 1581 * disable and enable. Drivers can use this function in their 1582 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1583 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1584 * vblank counter. 1585 * 1586 * Note that drivers must have race-free high-precision timestamping support, 1587 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1588 * &drm_vblank_crtc_config.disable_immediate must be set to indicate the 1589 * time-stamping functions are race-free against vblank hardware counter 1590 * increments. 1591 */ 1592 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1593 { 1594 struct drm_device *dev = crtc->dev; 1595 unsigned int pipe = drm_crtc_index(crtc); 1596 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1597 1598 drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp); 1599 drm_WARN_ON_ONCE(dev, vblank->inmodeset); 1600 drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate); 1601 1602 drm_vblank_restore(dev, pipe); 1603 } 1604 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1605 1606 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1607 u64 req_seq, 1608 union drm_wait_vblank *vblwait, 1609 struct drm_file *file_priv) 1610 { 1611 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1612 struct drm_pending_vblank_event *e; 1613 ktime_t now; 1614 u64 seq; 1615 int ret; 1616 1617 e = kzalloc(sizeof(*e), GFP_KERNEL); 1618 if (e == NULL) { 1619 ret = -ENOMEM; 1620 goto err_put; 1621 } 1622 1623 e->pipe = pipe; 1624 e->event.base.type = DRM_EVENT_VBLANK; 1625 e->event.base.length = sizeof(e->event.vbl); 1626 e->event.vbl.user_data = vblwait->request.signal; 1627 e->event.vbl.crtc_id = 0; 1628 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1629 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1630 1631 if (crtc) 1632 e->event.vbl.crtc_id = crtc->base.id; 1633 } 1634 1635 spin_lock_irq(&dev->event_lock); 1636 1637 /* 1638 * drm_crtc_vblank_off() might have been called after we called 1639 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1640 * vblank disable, so no need for further locking. The reference from 1641 * drm_vblank_get() protects against vblank disable from another source. 1642 */ 1643 if (!READ_ONCE(vblank->enabled)) { 1644 ret = -EINVAL; 1645 goto err_unlock; 1646 } 1647 1648 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1649 &e->event.base); 1650 1651 if (ret) 1652 goto err_unlock; 1653 1654 seq = drm_vblank_count_and_time(dev, pipe, &now); 1655 1656 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1657 req_seq, seq, pipe); 1658 1659 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1660 1661 e->sequence = req_seq; 1662 if (drm_vblank_passed(seq, req_seq)) { 1663 drm_vblank_put(dev, pipe); 1664 send_vblank_event(dev, e, seq, now); 1665 vblwait->reply.sequence = seq; 1666 } else { 1667 /* drm_handle_vblank_events will call drm_vblank_put */ 1668 list_add_tail(&e->base.link, &dev->vblank_event_list); 1669 vblwait->reply.sequence = req_seq; 1670 } 1671 1672 spin_unlock_irq(&dev->event_lock); 1673 1674 return 0; 1675 1676 err_unlock: 1677 spin_unlock_irq(&dev->event_lock); 1678 kfree(e); 1679 err_put: 1680 drm_vblank_put(dev, pipe); 1681 return ret; 1682 } 1683 1684 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1685 { 1686 if (vblwait->request.sequence) 1687 return false; 1688 1689 return _DRM_VBLANK_RELATIVE == 1690 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1691 _DRM_VBLANK_EVENT | 1692 _DRM_VBLANK_NEXTONMISS)); 1693 } 1694 1695 /* 1696 * Widen a 32-bit param to 64-bits. 1697 * 1698 * \param narrow 32-bit value (missing upper 32 bits) 1699 * \param near 64-bit value that should be 'close' to near 1700 * 1701 * This function returns a 64-bit value using the lower 32-bits from 1702 * 'narrow' and constructing the upper 32-bits so that the result is 1703 * as close as possible to 'near'. 1704 */ 1705 1706 static u64 widen_32_to_64(u32 narrow, u64 near) 1707 { 1708 return near + (s32) (narrow - near); 1709 } 1710 1711 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1712 struct drm_wait_vblank_reply *reply) 1713 { 1714 ktime_t now; 1715 struct timespec64 ts; 1716 1717 /* 1718 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1719 * to store the seconds. This is safe as we always use monotonic 1720 * timestamps since linux-4.15. 1721 */ 1722 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1723 ts = ktime_to_timespec64(now); 1724 reply->tval_sec = (u32)ts.tv_sec; 1725 reply->tval_usec = ts.tv_nsec / 1000; 1726 } 1727 1728 static bool drm_wait_vblank_supported(struct drm_device *dev) 1729 { 1730 return drm_dev_has_vblank(dev); 1731 } 1732 1733 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1734 struct drm_file *file_priv) 1735 { 1736 struct drm_crtc *crtc; 1737 struct drm_vblank_crtc *vblank; 1738 union drm_wait_vblank *vblwait = data; 1739 int ret; 1740 u64 req_seq, seq; 1741 unsigned int pipe_index; 1742 unsigned int flags, pipe, high_pipe; 1743 1744 if (!drm_wait_vblank_supported(dev)) 1745 return -EOPNOTSUPP; 1746 1747 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1748 return -EINVAL; 1749 1750 if (vblwait->request.type & 1751 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1752 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1753 drm_dbg_core(dev, 1754 "Unsupported type value 0x%x, supported mask 0x%x\n", 1755 vblwait->request.type, 1756 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1757 _DRM_VBLANK_HIGH_CRTC_MASK)); 1758 return -EINVAL; 1759 } 1760 1761 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1762 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1763 if (high_pipe) 1764 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1765 else 1766 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1767 1768 /* Convert lease-relative crtc index into global crtc index */ 1769 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1770 pipe = 0; 1771 drm_for_each_crtc(crtc, dev) { 1772 if (drm_lease_held(file_priv, crtc->base.id)) { 1773 if (pipe_index == 0) 1774 break; 1775 pipe_index--; 1776 } 1777 pipe++; 1778 } 1779 } else { 1780 pipe = pipe_index; 1781 } 1782 1783 if (pipe >= dev->num_crtcs) 1784 return -EINVAL; 1785 1786 vblank = &dev->vblank[pipe]; 1787 1788 /* If the counter is currently enabled and accurate, short-circuit 1789 * queries to return the cached timestamp of the last vblank. 1790 */ 1791 if (vblank->config.disable_immediate && 1792 drm_wait_vblank_is_query(vblwait) && 1793 READ_ONCE(vblank->enabled)) { 1794 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1795 return 0; 1796 } 1797 1798 ret = drm_vblank_get(dev, pipe); 1799 if (ret) { 1800 drm_dbg_core(dev, 1801 "crtc %d failed to acquire vblank counter, %d\n", 1802 pipe, ret); 1803 return ret; 1804 } 1805 seq = drm_vblank_count(dev, pipe); 1806 1807 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1808 case _DRM_VBLANK_RELATIVE: 1809 req_seq = seq + vblwait->request.sequence; 1810 vblwait->request.sequence = req_seq; 1811 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1812 break; 1813 case _DRM_VBLANK_ABSOLUTE: 1814 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1815 break; 1816 default: 1817 ret = -EINVAL; 1818 goto done; 1819 } 1820 1821 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1822 drm_vblank_passed(seq, req_seq)) { 1823 req_seq = seq + 1; 1824 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1825 vblwait->request.sequence = req_seq; 1826 } 1827 1828 if (flags & _DRM_VBLANK_EVENT) { 1829 /* must hold on to the vblank ref until the event fires 1830 * drm_vblank_put will be called asynchronously 1831 */ 1832 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1833 } 1834 1835 if (req_seq != seq) { 1836 int wait; 1837 1838 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1839 req_seq, pipe); 1840 wait = wait_event_interruptible_timeout(vblank->queue, 1841 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1842 !READ_ONCE(vblank->enabled), 1843 msecs_to_jiffies(3000)); 1844 1845 switch (wait) { 1846 case 0: 1847 /* timeout */ 1848 ret = -EBUSY; 1849 break; 1850 case -ERESTARTSYS: 1851 /* interrupted by signal */ 1852 ret = -EINTR; 1853 break; 1854 default: 1855 ret = 0; 1856 break; 1857 } 1858 } 1859 1860 if (ret != -EINTR) { 1861 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1862 1863 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1864 pipe, vblwait->reply.sequence); 1865 } else { 1866 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1867 pipe); 1868 } 1869 1870 done: 1871 drm_vblank_put(dev, pipe); 1872 return ret; 1873 } 1874 1875 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1876 { 1877 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1878 bool high_prec = false; 1879 struct drm_pending_vblank_event *e, *t; 1880 ktime_t now; 1881 u64 seq; 1882 1883 assert_spin_locked(&dev->event_lock); 1884 1885 seq = drm_vblank_count_and_time(dev, pipe, &now); 1886 1887 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1888 if (e->pipe != pipe) 1889 continue; 1890 if (!drm_vblank_passed(seq, e->sequence)) 1891 continue; 1892 1893 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1894 e->sequence, seq); 1895 1896 list_del(&e->base.link); 1897 drm_vblank_put(dev, pipe); 1898 send_vblank_event(dev, e, seq, now); 1899 } 1900 1901 if (crtc && crtc->funcs->get_vblank_timestamp) 1902 high_prec = true; 1903 1904 trace_drm_vblank_event(pipe, seq, now, high_prec); 1905 } 1906 1907 /** 1908 * drm_handle_vblank - handle a vblank event 1909 * @dev: DRM device 1910 * @pipe: index of CRTC where this event occurred 1911 * 1912 * Drivers should call this routine in their vblank interrupt handlers to 1913 * update the vblank counter and send any signals that may be pending. 1914 * 1915 * This is the legacy version of drm_crtc_handle_vblank(). 1916 */ 1917 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1918 { 1919 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1920 unsigned long irqflags; 1921 bool disable_irq; 1922 1923 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1924 return false; 1925 1926 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1927 return false; 1928 1929 spin_lock_irqsave(&dev->event_lock, irqflags); 1930 1931 /* Need timestamp lock to prevent concurrent execution with 1932 * vblank enable/disable, as this would cause inconsistent 1933 * or corrupted timestamps and vblank counts. 1934 */ 1935 spin_lock(&dev->vblank_time_lock); 1936 1937 /* Vblank irq handling disabled. Nothing to do. */ 1938 if (!vblank->enabled) { 1939 spin_unlock(&dev->vblank_time_lock); 1940 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1941 return false; 1942 } 1943 1944 drm_update_vblank_count(dev, pipe, true); 1945 1946 spin_unlock(&dev->vblank_time_lock); 1947 1948 wake_up(&vblank->queue); 1949 1950 /* With instant-off, we defer disabling the interrupt until after 1951 * we finish processing the following vblank after all events have 1952 * been signaled. The disable has to be last (after 1953 * drm_handle_vblank_events) so that the timestamp is always accurate. 1954 */ 1955 disable_irq = (vblank->config.disable_immediate && 1956 vblank->config.offdelay_ms > 0 && 1957 !atomic_read(&vblank->refcount)); 1958 1959 drm_handle_vblank_events(dev, pipe); 1960 drm_handle_vblank_works(vblank); 1961 1962 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1963 1964 if (disable_irq) 1965 vblank_disable_fn(&vblank->disable_timer); 1966 1967 return true; 1968 } 1969 EXPORT_SYMBOL(drm_handle_vblank); 1970 1971 /** 1972 * drm_crtc_handle_vblank - handle a vblank event 1973 * @crtc: where this event occurred 1974 * 1975 * Drivers should call this routine in their vblank interrupt handlers to 1976 * update the vblank counter and send any signals that may be pending. 1977 * 1978 * This is the native KMS version of drm_handle_vblank(). 1979 * 1980 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1981 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1982 * provide a barrier: Any writes done before calling 1983 * drm_crtc_handle_vblank() will be visible to callers of the later 1984 * functions, if the vblank count is the same or a later one. 1985 * 1986 * See also &drm_vblank_crtc.count. 1987 * 1988 * Returns: 1989 * True if the event was successfully handled, false on failure. 1990 */ 1991 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1992 { 1993 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1994 } 1995 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1996 1997 /* 1998 * Get crtc VBLANK count. 1999 * 2000 * \param dev DRM device 2001 * \param data user argument, pointing to a drm_crtc_get_sequence structure. 2002 * \param file_priv drm file private for the user's open file descriptor 2003 */ 2004 2005 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2006 struct drm_file *file_priv) 2007 { 2008 struct drm_crtc *crtc; 2009 struct drm_vblank_crtc *vblank; 2010 int pipe; 2011 struct drm_crtc_get_sequence *get_seq = data; 2012 ktime_t now; 2013 bool vblank_enabled; 2014 int ret; 2015 2016 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2017 return -EOPNOTSUPP; 2018 2019 if (!drm_dev_has_vblank(dev)) 2020 return -EOPNOTSUPP; 2021 2022 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2023 if (!crtc) 2024 return -ENOENT; 2025 2026 pipe = drm_crtc_index(crtc); 2027 2028 vblank = drm_crtc_vblank_crtc(crtc); 2029 vblank_enabled = READ_ONCE(vblank->config.disable_immediate) && 2030 READ_ONCE(vblank->enabled); 2031 2032 if (!vblank_enabled) { 2033 ret = drm_crtc_vblank_get(crtc); 2034 if (ret) { 2035 drm_dbg_core(dev, 2036 "crtc %d failed to acquire vblank counter, %d\n", 2037 pipe, ret); 2038 return ret; 2039 } 2040 } 2041 drm_modeset_lock(&crtc->mutex, NULL); 2042 if (crtc->state) 2043 get_seq->active = crtc->state->enable; 2044 else 2045 get_seq->active = crtc->enabled; 2046 drm_modeset_unlock(&crtc->mutex); 2047 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2048 get_seq->sequence_ns = ktime_to_ns(now); 2049 if (!vblank_enabled) 2050 drm_crtc_vblank_put(crtc); 2051 return 0; 2052 } 2053 2054 /* 2055 * Queue a event for VBLANK sequence 2056 * 2057 * \param dev DRM device 2058 * \param data user argument, pointing to a drm_crtc_queue_sequence structure. 2059 * \param file_priv drm file private for the user's open file descriptor 2060 */ 2061 2062 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2063 struct drm_file *file_priv) 2064 { 2065 struct drm_crtc *crtc; 2066 struct drm_vblank_crtc *vblank; 2067 int pipe; 2068 struct drm_crtc_queue_sequence *queue_seq = data; 2069 ktime_t now; 2070 struct drm_pending_vblank_event *e; 2071 u32 flags; 2072 u64 seq; 2073 u64 req_seq; 2074 int ret; 2075 2076 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2077 return -EOPNOTSUPP; 2078 2079 if (!drm_dev_has_vblank(dev)) 2080 return -EOPNOTSUPP; 2081 2082 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2083 if (!crtc) 2084 return -ENOENT; 2085 2086 flags = queue_seq->flags; 2087 /* Check valid flag bits */ 2088 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2089 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2090 return -EINVAL; 2091 2092 pipe = drm_crtc_index(crtc); 2093 2094 vblank = drm_crtc_vblank_crtc(crtc); 2095 2096 e = kzalloc(sizeof(*e), GFP_KERNEL); 2097 if (e == NULL) 2098 return -ENOMEM; 2099 2100 ret = drm_crtc_vblank_get(crtc); 2101 if (ret) { 2102 drm_dbg_core(dev, 2103 "crtc %d failed to acquire vblank counter, %d\n", 2104 pipe, ret); 2105 goto err_free; 2106 } 2107 2108 seq = drm_vblank_count_and_time(dev, pipe, &now); 2109 req_seq = queue_seq->sequence; 2110 2111 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2112 req_seq += seq; 2113 2114 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2115 req_seq = seq + 1; 2116 2117 e->pipe = pipe; 2118 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2119 e->event.base.length = sizeof(e->event.seq); 2120 e->event.seq.user_data = queue_seq->user_data; 2121 2122 spin_lock_irq(&dev->event_lock); 2123 2124 /* 2125 * drm_crtc_vblank_off() might have been called after we called 2126 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2127 * vblank disable, so no need for further locking. The reference from 2128 * drm_crtc_vblank_get() protects against vblank disable from another source. 2129 */ 2130 if (!READ_ONCE(vblank->enabled)) { 2131 ret = -EINVAL; 2132 goto err_unlock; 2133 } 2134 2135 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2136 &e->event.base); 2137 2138 if (ret) 2139 goto err_unlock; 2140 2141 e->sequence = req_seq; 2142 2143 if (drm_vblank_passed(seq, req_seq)) { 2144 drm_crtc_vblank_put(crtc); 2145 send_vblank_event(dev, e, seq, now); 2146 queue_seq->sequence = seq; 2147 } else { 2148 /* drm_handle_vblank_events will call drm_vblank_put */ 2149 list_add_tail(&e->base.link, &dev->vblank_event_list); 2150 queue_seq->sequence = req_seq; 2151 } 2152 2153 spin_unlock_irq(&dev->event_lock); 2154 return 0; 2155 2156 err_unlock: 2157 spin_unlock_irq(&dev->event_lock); 2158 drm_crtc_vblank_put(crtc); 2159 err_free: 2160 kfree(e); 2161 return ret; 2162 } 2163 2164