1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_driver.vblank_disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static struct drm_vblank_crtc * 170 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe) 171 { 172 return &dev->vblank[pipe]; 173 } 174 175 struct drm_vblank_crtc * 176 drm_crtc_vblank_crtc(struct drm_crtc *crtc) 177 { 178 return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc)); 179 } 180 EXPORT_SYMBOL(drm_crtc_vblank_crtc); 181 182 static void store_vblank(struct drm_device *dev, unsigned int pipe, 183 u32 vblank_count_inc, 184 ktime_t t_vblank, u32 last) 185 { 186 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 187 188 assert_spin_locked(&dev->vblank_time_lock); 189 190 vblank->last = last; 191 192 write_seqlock(&vblank->seqlock); 193 vblank->time = t_vblank; 194 atomic64_add(vblank_count_inc, &vblank->count); 195 write_sequnlock(&vblank->seqlock); 196 } 197 198 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 199 { 200 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 201 202 return vblank->max_vblank_count ?: dev->max_vblank_count; 203 } 204 205 /* 206 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 207 * if there is no usable hardware frame counter available. 208 */ 209 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 210 { 211 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 212 return 0; 213 } 214 215 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 216 { 217 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 218 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 219 220 if (drm_WARN_ON(dev, !crtc)) 221 return 0; 222 223 if (crtc->funcs->get_vblank_counter) 224 return crtc->funcs->get_vblank_counter(crtc); 225 } 226 227 return drm_vblank_no_hw_counter(dev, pipe); 228 } 229 230 /* 231 * Reset the stored timestamp for the current vblank count to correspond 232 * to the last vblank occurred. 233 * 234 * Only to be called from drm_crtc_vblank_on(). 235 * 236 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 237 * device vblank fields. 238 */ 239 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 240 { 241 u32 cur_vblank; 242 bool rc; 243 ktime_t t_vblank; 244 int count = DRM_TIMESTAMP_MAXRETRIES; 245 246 spin_lock(&dev->vblank_time_lock); 247 248 /* 249 * sample the current counter to avoid random jumps 250 * when drm_vblank_enable() applies the diff 251 */ 252 do { 253 cur_vblank = __get_vblank_counter(dev, pipe); 254 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 255 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 256 257 /* 258 * Only reinitialize corresponding vblank timestamp if high-precision query 259 * available and didn't fail. Otherwise reinitialize delayed at next vblank 260 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 261 */ 262 if (!rc) 263 t_vblank = 0; 264 265 /* 266 * +1 to make sure user will never see the same 267 * vblank counter value before and after a modeset 268 */ 269 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 270 271 spin_unlock(&dev->vblank_time_lock); 272 } 273 274 /* 275 * Call back into the driver to update the appropriate vblank counter 276 * (specified by @pipe). Deal with wraparound, if it occurred, and 277 * update the last read value so we can deal with wraparound on the next 278 * call if necessary. 279 * 280 * Only necessary when going from off->on, to account for frames we 281 * didn't get an interrupt for. 282 * 283 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 284 * device vblank fields. 285 */ 286 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 287 bool in_vblank_irq) 288 { 289 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 290 u32 cur_vblank, diff; 291 bool rc; 292 ktime_t t_vblank; 293 int count = DRM_TIMESTAMP_MAXRETRIES; 294 int framedur_ns = vblank->framedur_ns; 295 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 296 297 /* 298 * Interrupts were disabled prior to this call, so deal with counter 299 * wrap if needed. 300 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 301 * here if the register is small or we had vblank interrupts off for 302 * a long time. 303 * 304 * We repeat the hardware vblank counter & timestamp query until 305 * we get consistent results. This to prevent races between gpu 306 * updating its hardware counter while we are retrieving the 307 * corresponding vblank timestamp. 308 */ 309 do { 310 cur_vblank = __get_vblank_counter(dev, pipe); 311 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 312 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 313 314 if (max_vblank_count) { 315 /* trust the hw counter when it's around */ 316 diff = (cur_vblank - vblank->last) & max_vblank_count; 317 } else if (rc && framedur_ns) { 318 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 319 320 /* 321 * Figure out how many vblanks we've missed based 322 * on the difference in the timestamps and the 323 * frame/field duration. 324 */ 325 326 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 327 " diff_ns = %lld, framedur_ns = %d)\n", 328 pipe, (long long)diff_ns, framedur_ns); 329 330 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 331 332 if (diff == 0 && in_vblank_irq) 333 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 334 pipe); 335 } else { 336 /* some kind of default for drivers w/o accurate vbl timestamping */ 337 diff = in_vblank_irq ? 1 : 0; 338 } 339 340 /* 341 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 342 * interval? If so then vblank irqs keep running and it will likely 343 * happen that the hardware vblank counter is not trustworthy as it 344 * might reset at some point in that interval and vblank timestamps 345 * are not trustworthy either in that interval. Iow. this can result 346 * in a bogus diff >> 1 which must be avoided as it would cause 347 * random large forward jumps of the software vblank counter. 348 */ 349 if (diff > 1 && (vblank->inmodeset & 0x2)) { 350 drm_dbg_vbl(dev, 351 "clamping vblank bump to 1 on crtc %u: diffr=%u" 352 " due to pre-modeset.\n", pipe, diff); 353 diff = 1; 354 } 355 356 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 357 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 358 pipe, (unsigned long long)atomic64_read(&vblank->count), 359 diff, cur_vblank, vblank->last); 360 361 if (diff == 0) { 362 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 363 return; 364 } 365 366 /* 367 * Only reinitialize corresponding vblank timestamp if high-precision query 368 * available and didn't fail, or we were called from the vblank interrupt. 369 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 370 * for now, to mark the vblanktimestamp as invalid. 371 */ 372 if (!rc && !in_vblank_irq) 373 t_vblank = 0; 374 375 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 376 } 377 378 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 379 { 380 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 381 u64 count; 382 383 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 384 return 0; 385 386 count = atomic64_read(&vblank->count); 387 388 /* 389 * This read barrier corresponds to the implicit write barrier of the 390 * write seqlock in store_vblank(). Note that this is the only place 391 * where we need an explicit barrier, since all other access goes 392 * through drm_vblank_count_and_time(), which already has the required 393 * read barrier curtesy of the read seqlock. 394 */ 395 smp_rmb(); 396 397 return count; 398 } 399 400 /** 401 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 402 * @crtc: which counter to retrieve 403 * 404 * This function is similar to drm_crtc_vblank_count() but this function 405 * interpolates to handle a race with vblank interrupts using the high precision 406 * timestamping support. 407 * 408 * This is mostly useful for hardware that can obtain the scanout position, but 409 * doesn't have a hardware frame counter. 410 */ 411 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 412 { 413 struct drm_device *dev = crtc->dev; 414 unsigned int pipe = drm_crtc_index(crtc); 415 u64 vblank; 416 unsigned long flags; 417 418 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 419 !crtc->funcs->get_vblank_timestamp, 420 "This function requires support for accurate vblank timestamps."); 421 422 spin_lock_irqsave(&dev->vblank_time_lock, flags); 423 424 drm_update_vblank_count(dev, pipe, false); 425 vblank = drm_vblank_count(dev, pipe); 426 427 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 428 429 return vblank; 430 } 431 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 432 433 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 434 { 435 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 436 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 437 438 if (drm_WARN_ON(dev, !crtc)) 439 return; 440 441 if (crtc->funcs->disable_vblank) 442 crtc->funcs->disable_vblank(crtc); 443 } 444 } 445 446 /* 447 * Disable vblank irq's on crtc, make sure that last vblank count 448 * of hardware and corresponding consistent software vblank counter 449 * are preserved, even if there are any spurious vblank irq's after 450 * disable. 451 */ 452 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 453 { 454 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 455 unsigned long irqflags; 456 457 assert_spin_locked(&dev->vbl_lock); 458 459 /* Prevent vblank irq processing while disabling vblank irqs, 460 * so no updates of timestamps or count can happen after we've 461 * disabled. Needed to prevent races in case of delayed irq's. 462 */ 463 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 464 465 /* 466 * Update vblank count and disable vblank interrupts only if the 467 * interrupts were enabled. This avoids calling the ->disable_vblank() 468 * operation in atomic context with the hardware potentially runtime 469 * suspended. 470 */ 471 if (!vblank->enabled) 472 goto out; 473 474 /* 475 * Update the count and timestamp to maintain the 476 * appearance that the counter has been ticking all along until 477 * this time. This makes the count account for the entire time 478 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 479 */ 480 drm_update_vblank_count(dev, pipe, false); 481 __disable_vblank(dev, pipe); 482 vblank->enabled = false; 483 484 out: 485 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 486 } 487 488 static void vblank_disable_fn(struct timer_list *t) 489 { 490 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 491 struct drm_device *dev = vblank->dev; 492 unsigned int pipe = vblank->pipe; 493 unsigned long irqflags; 494 495 spin_lock_irqsave(&dev->vbl_lock, irqflags); 496 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 497 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 498 drm_vblank_disable_and_save(dev, pipe); 499 } 500 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 501 } 502 503 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 504 { 505 struct drm_vblank_crtc *vblank = ptr; 506 507 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 508 drm_core_check_feature(dev, DRIVER_MODESET)); 509 510 drm_vblank_destroy_worker(vblank); 511 del_timer_sync(&vblank->disable_timer); 512 } 513 514 /** 515 * drm_vblank_init - initialize vblank support 516 * @dev: DRM device 517 * @num_crtcs: number of CRTCs supported by @dev 518 * 519 * This function initializes vblank support for @num_crtcs display pipelines. 520 * Cleanup is handled automatically through a cleanup function added with 521 * drmm_add_action_or_reset(). 522 * 523 * Returns: 524 * Zero on success or a negative error code on failure. 525 */ 526 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 527 { 528 int ret; 529 unsigned int i; 530 531 spin_lock_init(&dev->vbl_lock); 532 spin_lock_init(&dev->vblank_time_lock); 533 534 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 535 if (!dev->vblank) 536 return -ENOMEM; 537 538 dev->num_crtcs = num_crtcs; 539 540 for (i = 0; i < num_crtcs; i++) { 541 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 542 543 vblank->dev = dev; 544 vblank->pipe = i; 545 init_waitqueue_head(&vblank->queue); 546 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 547 seqlock_init(&vblank->seqlock); 548 549 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 550 vblank); 551 if (ret) 552 return ret; 553 554 ret = drm_vblank_worker_init(vblank); 555 if (ret) 556 return ret; 557 } 558 559 return 0; 560 } 561 EXPORT_SYMBOL(drm_vblank_init); 562 563 /** 564 * drm_dev_has_vblank - test if vblanking has been initialized for 565 * a device 566 * @dev: the device 567 * 568 * Drivers may call this function to test if vblank support is 569 * initialized for a device. For most hardware this means that vblanking 570 * can also be enabled. 571 * 572 * Atomic helpers use this function to initialize 573 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 574 * 575 * Returns: 576 * True if vblanking has been initialized for the given device, false 577 * otherwise. 578 */ 579 bool drm_dev_has_vblank(const struct drm_device *dev) 580 { 581 return dev->num_crtcs != 0; 582 } 583 EXPORT_SYMBOL(drm_dev_has_vblank); 584 585 /** 586 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 587 * @crtc: which CRTC's vblank waitqueue to retrieve 588 * 589 * This function returns a pointer to the vblank waitqueue for the CRTC. 590 * Drivers can use this to implement vblank waits using wait_event() and related 591 * functions. 592 */ 593 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 594 { 595 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 596 } 597 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 598 599 600 /** 601 * drm_calc_timestamping_constants - calculate vblank timestamp constants 602 * @crtc: drm_crtc whose timestamp constants should be updated. 603 * @mode: display mode containing the scanout timings 604 * 605 * Calculate and store various constants which are later needed by vblank and 606 * swap-completion timestamping, e.g, by 607 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 608 * CRTC's true scanout timing, so they take things like panel scaling or 609 * other adjustments into account. 610 */ 611 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 612 const struct drm_display_mode *mode) 613 { 614 struct drm_device *dev = crtc->dev; 615 unsigned int pipe = drm_crtc_index(crtc); 616 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 617 int linedur_ns = 0, framedur_ns = 0; 618 int dotclock = mode->crtc_clock; 619 620 if (!drm_dev_has_vblank(dev)) 621 return; 622 623 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 624 return; 625 626 /* Valid dotclock? */ 627 if (dotclock > 0) { 628 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 629 630 /* 631 * Convert scanline length in pixels and video 632 * dot clock to line duration and frame duration 633 * in nanoseconds: 634 */ 635 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 636 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 637 638 /* 639 * Fields of interlaced scanout modes are only half a frame duration. 640 */ 641 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 642 framedur_ns /= 2; 643 } else { 644 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 645 crtc->base.id); 646 } 647 648 vblank->linedur_ns = linedur_ns; 649 vblank->framedur_ns = framedur_ns; 650 drm_mode_copy(&vblank->hwmode, mode); 651 652 drm_dbg_core(dev, 653 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 654 crtc->base.id, mode->crtc_htotal, 655 mode->crtc_vtotal, mode->crtc_vdisplay); 656 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 657 crtc->base.id, dotclock, framedur_ns, linedur_ns); 658 } 659 EXPORT_SYMBOL(drm_calc_timestamping_constants); 660 661 /** 662 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 663 * timestamp helper 664 * @crtc: CRTC whose vblank timestamp to retrieve 665 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 666 * On return contains true maximum error of timestamp 667 * @vblank_time: Pointer to time which should receive the timestamp 668 * @in_vblank_irq: 669 * True when called from drm_crtc_handle_vblank(). Some drivers 670 * need to apply some workarounds for gpu-specific vblank irq quirks 671 * if flag is set. 672 * @get_scanout_position: 673 * Callback function to retrieve the scanout position. See 674 * @struct drm_crtc_helper_funcs.get_scanout_position. 675 * 676 * Implements calculation of exact vblank timestamps from given drm_display_mode 677 * timings and current video scanout position of a CRTC. 678 * 679 * The current implementation only handles standard video modes. For double scan 680 * and interlaced modes the driver is supposed to adjust the hardware mode 681 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 682 * match the scanout position reported. 683 * 684 * Note that atomic drivers must call drm_calc_timestamping_constants() before 685 * enabling a CRTC. The atomic helpers already take care of that in 686 * drm_atomic_helper_calc_timestamping_constants(). 687 * 688 * Returns: 689 * 690 * Returns true on success, and false on failure, i.e. when no accurate 691 * timestamp could be acquired. 692 */ 693 bool 694 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 695 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 696 bool in_vblank_irq, 697 drm_vblank_get_scanout_position_func get_scanout_position) 698 { 699 struct drm_device *dev = crtc->dev; 700 unsigned int pipe = crtc->index; 701 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 702 struct timespec64 ts_etime, ts_vblank_time; 703 ktime_t stime, etime; 704 bool vbl_status; 705 const struct drm_display_mode *mode; 706 int vpos, hpos, i; 707 int delta_ns, duration_ns; 708 709 if (pipe >= dev->num_crtcs) { 710 drm_err(dev, "Invalid crtc %u\n", pipe); 711 return false; 712 } 713 714 /* Scanout position query not supported? Should not happen. */ 715 if (!get_scanout_position) { 716 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 717 return false; 718 } 719 720 if (drm_drv_uses_atomic_modeset(dev)) 721 mode = &vblank->hwmode; 722 else 723 mode = &crtc->hwmode; 724 725 /* If mode timing undefined, just return as no-op: 726 * Happens during initial modesetting of a crtc. 727 */ 728 if (mode->crtc_clock == 0) { 729 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 730 pipe); 731 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 732 return false; 733 } 734 735 /* Get current scanout position with system timestamp. 736 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 737 * if single query takes longer than max_error nanoseconds. 738 * 739 * This guarantees a tight bound on maximum error if 740 * code gets preempted or delayed for some reason. 741 */ 742 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 743 /* 744 * Get vertical and horizontal scanout position vpos, hpos, 745 * and bounding timestamps stime, etime, pre/post query. 746 */ 747 vbl_status = get_scanout_position(crtc, in_vblank_irq, 748 &vpos, &hpos, 749 &stime, &etime, 750 mode); 751 752 /* Return as no-op if scanout query unsupported or failed. */ 753 if (!vbl_status) { 754 drm_dbg_core(dev, 755 "crtc %u : scanoutpos query failed.\n", 756 pipe); 757 return false; 758 } 759 760 /* Compute uncertainty in timestamp of scanout position query. */ 761 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 762 763 /* Accept result with < max_error nsecs timing uncertainty. */ 764 if (duration_ns <= *max_error) 765 break; 766 } 767 768 /* Noisy system timing? */ 769 if (i == DRM_TIMESTAMP_MAXRETRIES) { 770 drm_dbg_core(dev, 771 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 772 pipe, duration_ns / 1000, *max_error / 1000, i); 773 } 774 775 /* Return upper bound of timestamp precision error. */ 776 *max_error = duration_ns; 777 778 /* Convert scanout position into elapsed time at raw_time query 779 * since start of scanout at first display scanline. delta_ns 780 * can be negative if start of scanout hasn't happened yet. 781 */ 782 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 783 mode->crtc_clock); 784 785 /* Subtract time delta from raw timestamp to get final 786 * vblank_time timestamp for end of vblank. 787 */ 788 *vblank_time = ktime_sub_ns(etime, delta_ns); 789 790 if (!drm_debug_enabled(DRM_UT_VBL)) 791 return true; 792 793 ts_etime = ktime_to_timespec64(etime); 794 ts_vblank_time = ktime_to_timespec64(*vblank_time); 795 796 drm_dbg_vbl(dev, 797 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 798 pipe, hpos, vpos, 799 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 800 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 801 duration_ns / 1000, i); 802 803 return true; 804 } 805 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 806 807 /** 808 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 809 * helper 810 * @crtc: CRTC whose vblank timestamp to retrieve 811 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 812 * On return contains true maximum error of timestamp 813 * @vblank_time: Pointer to time which should receive the timestamp 814 * @in_vblank_irq: 815 * True when called from drm_crtc_handle_vblank(). Some drivers 816 * need to apply some workarounds for gpu-specific vblank irq quirks 817 * if flag is set. 818 * 819 * Implements calculation of exact vblank timestamps from given drm_display_mode 820 * timings and current video scanout position of a CRTC. This can be directly 821 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 822 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 823 * 824 * The current implementation only handles standard video modes. For double scan 825 * and interlaced modes the driver is supposed to adjust the hardware mode 826 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 827 * match the scanout position reported. 828 * 829 * Note that atomic drivers must call drm_calc_timestamping_constants() before 830 * enabling a CRTC. The atomic helpers already take care of that in 831 * drm_atomic_helper_calc_timestamping_constants(). 832 * 833 * Returns: 834 * 835 * Returns true on success, and false on failure, i.e. when no accurate 836 * timestamp could be acquired. 837 */ 838 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 839 int *max_error, 840 ktime_t *vblank_time, 841 bool in_vblank_irq) 842 { 843 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 844 crtc, max_error, vblank_time, in_vblank_irq, 845 crtc->helper_private->get_scanout_position); 846 } 847 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 848 849 /** 850 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most 851 * recent vblank interval 852 * @crtc: CRTC whose vblank timestamp to retrieve 853 * @tvblank: Pointer to target time which should receive the timestamp 854 * @in_vblank_irq: 855 * True when called from drm_crtc_handle_vblank(). Some drivers 856 * need to apply some workarounds for gpu-specific vblank irq quirks 857 * if flag is set. 858 * 859 * Fetches the system timestamp corresponding to the time of the most recent 860 * vblank interval on specified CRTC. May call into kms-driver to 861 * compute the timestamp with a high-precision GPU specific method. 862 * 863 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 864 * call, i.e., it isn't very precisely locked to the true vblank. 865 * 866 * Returns: 867 * True if timestamp is considered to be very precise, false otherwise. 868 */ 869 static bool 870 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank, 871 bool in_vblank_irq) 872 { 873 bool ret = false; 874 875 /* Define requested maximum error on timestamps (nanoseconds). */ 876 int max_error = (int) drm_timestamp_precision * 1000; 877 878 /* Query driver if possible and precision timestamping enabled. */ 879 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 880 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 881 tvblank, in_vblank_irq); 882 } 883 884 /* GPU high precision timestamp query unsupported or failed. 885 * Return current monotonic/gettimeofday timestamp as best estimate. 886 */ 887 if (!ret) 888 *tvblank = ktime_get(); 889 890 return ret; 891 } 892 893 static bool 894 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 895 ktime_t *tvblank, bool in_vblank_irq) 896 { 897 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 898 899 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq); 900 } 901 902 /** 903 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 904 * @crtc: which counter to retrieve 905 * 906 * Fetches the "cooked" vblank count value that represents the number of 907 * vblank events since the system was booted, including lost events due to 908 * modesetting activity. Note that this timer isn't correct against a racing 909 * vblank interrupt (since it only reports the software vblank counter), see 910 * drm_crtc_accurate_vblank_count() for such use-cases. 911 * 912 * Note that for a given vblank counter value drm_crtc_handle_vblank() 913 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 914 * provide a barrier: Any writes done before calling 915 * drm_crtc_handle_vblank() will be visible to callers of the later 916 * functions, if the vblank count is the same or a later one. 917 * 918 * See also &drm_vblank_crtc.count. 919 * 920 * Returns: 921 * The software vblank counter. 922 */ 923 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 924 { 925 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 926 } 927 EXPORT_SYMBOL(drm_crtc_vblank_count); 928 929 /** 930 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 931 * system timestamp corresponding to that vblank counter value. 932 * @dev: DRM device 933 * @pipe: index of CRTC whose counter to retrieve 934 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 935 * 936 * Fetches the "cooked" vblank count value that represents the number of 937 * vblank events since the system was booted, including lost events due to 938 * modesetting activity. Returns corresponding system timestamp of the time 939 * of the vblank interval that corresponds to the current vblank counter value. 940 * 941 * This is the legacy version of drm_crtc_vblank_count_and_time(). 942 */ 943 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 944 ktime_t *vblanktime) 945 { 946 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 947 u64 vblank_count; 948 unsigned int seq; 949 950 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 951 *vblanktime = 0; 952 return 0; 953 } 954 955 do { 956 seq = read_seqbegin(&vblank->seqlock); 957 vblank_count = atomic64_read(&vblank->count); 958 *vblanktime = vblank->time; 959 } while (read_seqretry(&vblank->seqlock, seq)); 960 961 return vblank_count; 962 } 963 964 /** 965 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 966 * and the system timestamp corresponding to that vblank counter value 967 * @crtc: which counter to retrieve 968 * @vblanktime: Pointer to time to receive the vblank timestamp. 969 * 970 * Fetches the "cooked" vblank count value that represents the number of 971 * vblank events since the system was booted, including lost events due to 972 * modesetting activity. Returns corresponding system timestamp of the time 973 * of the vblank interval that corresponds to the current vblank counter value. 974 * 975 * Note that for a given vblank counter value drm_crtc_handle_vblank() 976 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 977 * provide a barrier: Any writes done before calling 978 * drm_crtc_handle_vblank() will be visible to callers of the later 979 * functions, if the vblank count is the same or a later one. 980 * 981 * See also &drm_vblank_crtc.count. 982 */ 983 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 984 ktime_t *vblanktime) 985 { 986 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 987 vblanktime); 988 } 989 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 990 991 /** 992 * drm_crtc_next_vblank_start - calculate the time of the next vblank 993 * @crtc: the crtc for which to calculate next vblank time 994 * @vblanktime: pointer to time to receive the next vblank timestamp. 995 * 996 * Calculate the expected time of the start of the next vblank period, 997 * based on time of previous vblank and frame duration 998 */ 999 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime) 1000 { 1001 struct drm_vblank_crtc *vblank; 1002 struct drm_display_mode *mode; 1003 u64 vblank_start; 1004 1005 if (!drm_dev_has_vblank(crtc->dev)) 1006 return -EINVAL; 1007 1008 vblank = drm_crtc_vblank_crtc(crtc); 1009 mode = &vblank->hwmode; 1010 1011 if (!vblank->framedur_ns || !vblank->linedur_ns) 1012 return -EINVAL; 1013 1014 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false)) 1015 return -EINVAL; 1016 1017 vblank_start = DIV_ROUND_DOWN_ULL( 1018 (u64)vblank->framedur_ns * mode->crtc_vblank_start, 1019 mode->crtc_vtotal); 1020 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start)); 1021 1022 return 0; 1023 } 1024 EXPORT_SYMBOL(drm_crtc_next_vblank_start); 1025 1026 static void send_vblank_event(struct drm_device *dev, 1027 struct drm_pending_vblank_event *e, 1028 u64 seq, ktime_t now) 1029 { 1030 struct timespec64 tv; 1031 1032 switch (e->event.base.type) { 1033 case DRM_EVENT_VBLANK: 1034 case DRM_EVENT_FLIP_COMPLETE: 1035 tv = ktime_to_timespec64(now); 1036 e->event.vbl.sequence = seq; 1037 /* 1038 * e->event is a user space structure, with hardcoded unsigned 1039 * 32-bit seconds/microseconds. This is safe as we always use 1040 * monotonic timestamps since linux-4.15 1041 */ 1042 e->event.vbl.tv_sec = tv.tv_sec; 1043 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1044 break; 1045 case DRM_EVENT_CRTC_SEQUENCE: 1046 if (seq) 1047 e->event.seq.sequence = seq; 1048 e->event.seq.time_ns = ktime_to_ns(now); 1049 break; 1050 } 1051 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1052 /* 1053 * Use the same timestamp for any associated fence signal to avoid 1054 * mismatch in timestamps for vsync & fence events triggered by the 1055 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1056 * retire-fence timestamp to match exactly with HW vsync as it uses it 1057 * for its software vsync modeling. 1058 */ 1059 drm_send_event_timestamp_locked(dev, &e->base, now); 1060 } 1061 1062 /** 1063 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1064 * @crtc: the source CRTC of the vblank event 1065 * @e: the event to send 1066 * 1067 * A lot of drivers need to generate vblank events for the very next vblank 1068 * interrupt. For example when the page flip interrupt happens when the page 1069 * flip gets armed, but not when it actually executes within the next vblank 1070 * period. This helper function implements exactly the required vblank arming 1071 * behaviour. 1072 * 1073 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1074 * atomic commit must ensure that the next vblank happens at exactly the same 1075 * time as the atomic commit is committed to the hardware. This function itself 1076 * does **not** protect against the next vblank interrupt racing with either this 1077 * function call or the atomic commit operation. A possible sequence could be: 1078 * 1079 * 1. Driver commits new hardware state into vblank-synchronized registers. 1080 * 2. A vblank happens, committing the hardware state. Also the corresponding 1081 * vblank interrupt is fired off and fully processed by the interrupt 1082 * handler. 1083 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1084 * 4. The event is only send out for the next vblank, which is wrong. 1085 * 1086 * An equivalent race can happen when the driver calls 1087 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1088 * 1089 * The only way to make this work safely is to prevent the vblank from firing 1090 * (and the hardware from committing anything else) until the entire atomic 1091 * commit sequence has run to completion. If the hardware does not have such a 1092 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1093 * Instead drivers need to manually send out the event from their interrupt 1094 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1095 * possible race with the hardware committing the atomic update. 1096 * 1097 * Caller must hold a vblank reference for the event @e acquired by a 1098 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1099 */ 1100 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1101 struct drm_pending_vblank_event *e) 1102 { 1103 struct drm_device *dev = crtc->dev; 1104 unsigned int pipe = drm_crtc_index(crtc); 1105 1106 assert_spin_locked(&dev->event_lock); 1107 1108 e->pipe = pipe; 1109 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1110 list_add_tail(&e->base.link, &dev->vblank_event_list); 1111 } 1112 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1113 1114 /** 1115 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1116 * @crtc: the source CRTC of the vblank event 1117 * @e: the event to send 1118 * 1119 * Updates sequence # and timestamp on event for the most recently processed 1120 * vblank, and sends it to userspace. Caller must hold event lock. 1121 * 1122 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1123 * situation, especially to send out events for atomic commit operations. 1124 */ 1125 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1126 struct drm_pending_vblank_event *e) 1127 { 1128 struct drm_device *dev = crtc->dev; 1129 u64 seq; 1130 unsigned int pipe = drm_crtc_index(crtc); 1131 ktime_t now; 1132 1133 if (drm_dev_has_vblank(dev)) { 1134 seq = drm_vblank_count_and_time(dev, pipe, &now); 1135 } else { 1136 seq = 0; 1137 1138 now = ktime_get(); 1139 } 1140 e->pipe = pipe; 1141 send_vblank_event(dev, e, seq, now); 1142 } 1143 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1144 1145 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1146 { 1147 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1148 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1149 1150 if (drm_WARN_ON(dev, !crtc)) 1151 return 0; 1152 1153 if (crtc->funcs->enable_vblank) 1154 return crtc->funcs->enable_vblank(crtc); 1155 } 1156 1157 return -EINVAL; 1158 } 1159 1160 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1161 { 1162 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1163 int ret = 0; 1164 1165 assert_spin_locked(&dev->vbl_lock); 1166 1167 spin_lock(&dev->vblank_time_lock); 1168 1169 if (!vblank->enabled) { 1170 /* 1171 * Enable vblank irqs under vblank_time_lock protection. 1172 * All vblank count & timestamp updates are held off 1173 * until we are done reinitializing master counter and 1174 * timestamps. Filtercode in drm_handle_vblank() will 1175 * prevent double-accounting of same vblank interval. 1176 */ 1177 ret = __enable_vblank(dev, pipe); 1178 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1179 pipe, ret); 1180 if (ret) { 1181 atomic_dec(&vblank->refcount); 1182 } else { 1183 drm_update_vblank_count(dev, pipe, 0); 1184 /* drm_update_vblank_count() includes a wmb so we just 1185 * need to ensure that the compiler emits the write 1186 * to mark the vblank as enabled after the call 1187 * to drm_update_vblank_count(). 1188 */ 1189 WRITE_ONCE(vblank->enabled, true); 1190 } 1191 } 1192 1193 spin_unlock(&dev->vblank_time_lock); 1194 1195 return ret; 1196 } 1197 1198 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1199 { 1200 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1201 unsigned long irqflags; 1202 int ret = 0; 1203 1204 if (!drm_dev_has_vblank(dev)) 1205 return -EINVAL; 1206 1207 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1208 return -EINVAL; 1209 1210 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1211 /* Going from 0->1 means we have to enable interrupts again */ 1212 if (atomic_add_return(1, &vblank->refcount) == 1) { 1213 ret = drm_vblank_enable(dev, pipe); 1214 } else { 1215 if (!vblank->enabled) { 1216 atomic_dec(&vblank->refcount); 1217 ret = -EINVAL; 1218 } 1219 } 1220 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1221 1222 return ret; 1223 } 1224 1225 /** 1226 * drm_crtc_vblank_get - get a reference count on vblank events 1227 * @crtc: which CRTC to own 1228 * 1229 * Acquire a reference count on vblank events to avoid having them disabled 1230 * while in use. 1231 * 1232 * Returns: 1233 * Zero on success or a negative error code on failure. 1234 */ 1235 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1236 { 1237 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1238 } 1239 EXPORT_SYMBOL(drm_crtc_vblank_get); 1240 1241 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1242 { 1243 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1244 1245 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1246 return; 1247 1248 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1249 return; 1250 1251 /* Last user schedules interrupt disable */ 1252 if (atomic_dec_and_test(&vblank->refcount)) { 1253 if (drm_vblank_offdelay == 0) 1254 return; 1255 else if (drm_vblank_offdelay < 0) 1256 vblank_disable_fn(&vblank->disable_timer); 1257 else if (!dev->vblank_disable_immediate) 1258 mod_timer(&vblank->disable_timer, 1259 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1260 } 1261 } 1262 1263 /** 1264 * drm_crtc_vblank_put - give up ownership of vblank events 1265 * @crtc: which counter to give up 1266 * 1267 * Release ownership of a given vblank counter, turning off interrupts 1268 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1269 */ 1270 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1271 { 1272 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1273 } 1274 EXPORT_SYMBOL(drm_crtc_vblank_put); 1275 1276 /** 1277 * drm_wait_one_vblank - wait for one vblank 1278 * @dev: DRM device 1279 * @pipe: CRTC index 1280 * 1281 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1282 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1283 * due to lack of driver support or because the crtc is off. 1284 * 1285 * This is the legacy version of drm_crtc_wait_one_vblank(). 1286 */ 1287 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1288 { 1289 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1290 int ret; 1291 u64 last; 1292 1293 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1294 return; 1295 1296 ret = drm_vblank_get(dev, pipe); 1297 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1298 pipe, ret)) 1299 return; 1300 1301 last = drm_vblank_count(dev, pipe); 1302 1303 ret = wait_event_timeout(vblank->queue, 1304 last != drm_vblank_count(dev, pipe), 1305 msecs_to_jiffies(100)); 1306 1307 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1308 1309 drm_vblank_put(dev, pipe); 1310 } 1311 EXPORT_SYMBOL(drm_wait_one_vblank); 1312 1313 /** 1314 * drm_crtc_wait_one_vblank - wait for one vblank 1315 * @crtc: DRM crtc 1316 * 1317 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1318 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1319 * due to lack of driver support or because the crtc is off. 1320 */ 1321 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1322 { 1323 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1324 } 1325 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1326 1327 /** 1328 * drm_crtc_vblank_off - disable vblank events on a CRTC 1329 * @crtc: CRTC in question 1330 * 1331 * Drivers can use this function to shut down the vblank interrupt handling when 1332 * disabling a crtc. This function ensures that the latest vblank frame count is 1333 * stored so that drm_vblank_on can restore it again. 1334 * 1335 * Drivers must use this function when the hardware vblank counter can get 1336 * reset, e.g. when suspending or disabling the @crtc in general. 1337 */ 1338 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1339 { 1340 struct drm_device *dev = crtc->dev; 1341 unsigned int pipe = drm_crtc_index(crtc); 1342 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1343 struct drm_pending_vblank_event *e, *t; 1344 ktime_t now; 1345 u64 seq; 1346 1347 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1348 return; 1349 1350 /* 1351 * Grab event_lock early to prevent vblank work from being scheduled 1352 * while we're in the middle of shutting down vblank interrupts 1353 */ 1354 spin_lock_irq(&dev->event_lock); 1355 1356 spin_lock(&dev->vbl_lock); 1357 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1358 pipe, vblank->enabled, vblank->inmodeset); 1359 1360 /* Avoid redundant vblank disables without previous 1361 * drm_crtc_vblank_on(). */ 1362 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1363 drm_vblank_disable_and_save(dev, pipe); 1364 1365 wake_up(&vblank->queue); 1366 1367 /* 1368 * Prevent subsequent drm_vblank_get() from re-enabling 1369 * the vblank interrupt by bumping the refcount. 1370 */ 1371 if (!vblank->inmodeset) { 1372 atomic_inc(&vblank->refcount); 1373 vblank->inmodeset = 1; 1374 } 1375 spin_unlock(&dev->vbl_lock); 1376 1377 /* Send any queued vblank events, lest the natives grow disquiet */ 1378 seq = drm_vblank_count_and_time(dev, pipe, &now); 1379 1380 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1381 if (e->pipe != pipe) 1382 continue; 1383 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1384 "wanted %llu, current %llu\n", 1385 e->sequence, seq); 1386 list_del(&e->base.link); 1387 drm_vblank_put(dev, pipe); 1388 send_vblank_event(dev, e, seq, now); 1389 } 1390 1391 /* Cancel any leftover pending vblank work */ 1392 drm_vblank_cancel_pending_works(vblank); 1393 1394 spin_unlock_irq(&dev->event_lock); 1395 1396 /* Will be reset by the modeset helpers when re-enabling the crtc by 1397 * calling drm_calc_timestamping_constants(). */ 1398 vblank->hwmode.crtc_clock = 0; 1399 1400 /* Wait for any vblank work that's still executing to finish */ 1401 drm_vblank_flush_worker(vblank); 1402 } 1403 EXPORT_SYMBOL(drm_crtc_vblank_off); 1404 1405 /** 1406 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1407 * @crtc: CRTC in question 1408 * 1409 * Drivers can use this function to reset the vblank state to off at load time. 1410 * Drivers should use this together with the drm_crtc_vblank_off() and 1411 * drm_crtc_vblank_on() functions. The difference compared to 1412 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1413 * and hence doesn't need to call any driver hooks. 1414 * 1415 * This is useful for recovering driver state e.g. on driver load, or on resume. 1416 */ 1417 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1418 { 1419 struct drm_device *dev = crtc->dev; 1420 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1421 1422 spin_lock_irq(&dev->vbl_lock); 1423 /* 1424 * Prevent subsequent drm_vblank_get() from enabling the vblank 1425 * interrupt by bumping the refcount. 1426 */ 1427 if (!vblank->inmodeset) { 1428 atomic_inc(&vblank->refcount); 1429 vblank->inmodeset = 1; 1430 } 1431 spin_unlock_irq(&dev->vbl_lock); 1432 1433 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1434 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1435 } 1436 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1437 1438 /** 1439 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1440 * @crtc: CRTC in question 1441 * @max_vblank_count: max hardware vblank counter value 1442 * 1443 * Update the maximum hardware vblank counter value for @crtc 1444 * at runtime. Useful for hardware where the operation of the 1445 * hardware vblank counter depends on the currently active 1446 * display configuration. 1447 * 1448 * For example, if the hardware vblank counter does not work 1449 * when a specific connector is active the maximum can be set 1450 * to zero. And when that specific connector isn't active the 1451 * maximum can again be set to the appropriate non-zero value. 1452 * 1453 * If used, must be called before drm_vblank_on(). 1454 */ 1455 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1456 u32 max_vblank_count) 1457 { 1458 struct drm_device *dev = crtc->dev; 1459 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1460 1461 drm_WARN_ON(dev, dev->max_vblank_count); 1462 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1463 1464 vblank->max_vblank_count = max_vblank_count; 1465 } 1466 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1467 1468 /** 1469 * drm_crtc_vblank_on - enable vblank events on a CRTC 1470 * @crtc: CRTC in question 1471 * 1472 * This functions restores the vblank interrupt state captured with 1473 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1474 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1475 * unbalanced and so can also be unconditionally called in driver load code to 1476 * reflect the current hardware state of the crtc. 1477 */ 1478 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1479 { 1480 struct drm_device *dev = crtc->dev; 1481 unsigned int pipe = drm_crtc_index(crtc); 1482 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 1483 1484 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1485 return; 1486 1487 spin_lock_irq(&dev->vbl_lock); 1488 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1489 pipe, vblank->enabled, vblank->inmodeset); 1490 1491 /* Drop our private "prevent drm_vblank_get" refcount */ 1492 if (vblank->inmodeset) { 1493 atomic_dec(&vblank->refcount); 1494 vblank->inmodeset = 0; 1495 } 1496 1497 drm_reset_vblank_timestamp(dev, pipe); 1498 1499 /* 1500 * re-enable interrupts if there are users left, or the 1501 * user wishes vblank interrupts to be enabled all the time. 1502 */ 1503 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1504 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1505 spin_unlock_irq(&dev->vbl_lock); 1506 } 1507 EXPORT_SYMBOL(drm_crtc_vblank_on); 1508 1509 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1510 { 1511 ktime_t t_vblank; 1512 struct drm_vblank_crtc *vblank; 1513 int framedur_ns; 1514 u64 diff_ns; 1515 u32 cur_vblank, diff = 1; 1516 int count = DRM_TIMESTAMP_MAXRETRIES; 1517 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1518 1519 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1520 return; 1521 1522 assert_spin_locked(&dev->vbl_lock); 1523 assert_spin_locked(&dev->vblank_time_lock); 1524 1525 vblank = drm_vblank_crtc(dev, pipe); 1526 drm_WARN_ONCE(dev, 1527 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1528 "Cannot compute missed vblanks without frame duration\n"); 1529 framedur_ns = vblank->framedur_ns; 1530 1531 do { 1532 cur_vblank = __get_vblank_counter(dev, pipe); 1533 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1534 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1535 1536 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1537 if (framedur_ns) 1538 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1539 1540 1541 drm_dbg_vbl(dev, 1542 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1543 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1544 vblank->last = (cur_vblank - diff) & max_vblank_count; 1545 } 1546 1547 /** 1548 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1549 * @crtc: CRTC in question 1550 * 1551 * Power manamement features can cause frame counter resets between vblank 1552 * disable and enable. Drivers can use this function in their 1553 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1554 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1555 * vblank counter. 1556 * 1557 * Note that drivers must have race-free high-precision timestamping support, 1558 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1559 * &drm_driver.vblank_disable_immediate must be set to indicate the 1560 * time-stamping functions are race-free against vblank hardware counter 1561 * increments. 1562 */ 1563 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1564 { 1565 WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp); 1566 WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate); 1567 1568 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1569 } 1570 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1571 1572 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1573 u64 req_seq, 1574 union drm_wait_vblank *vblwait, 1575 struct drm_file *file_priv) 1576 { 1577 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1578 struct drm_pending_vblank_event *e; 1579 ktime_t now; 1580 u64 seq; 1581 int ret; 1582 1583 e = kzalloc(sizeof(*e), GFP_KERNEL); 1584 if (e == NULL) { 1585 ret = -ENOMEM; 1586 goto err_put; 1587 } 1588 1589 e->pipe = pipe; 1590 e->event.base.type = DRM_EVENT_VBLANK; 1591 e->event.base.length = sizeof(e->event.vbl); 1592 e->event.vbl.user_data = vblwait->request.signal; 1593 e->event.vbl.crtc_id = 0; 1594 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1595 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1596 1597 if (crtc) 1598 e->event.vbl.crtc_id = crtc->base.id; 1599 } 1600 1601 spin_lock_irq(&dev->event_lock); 1602 1603 /* 1604 * drm_crtc_vblank_off() might have been called after we called 1605 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1606 * vblank disable, so no need for further locking. The reference from 1607 * drm_vblank_get() protects against vblank disable from another source. 1608 */ 1609 if (!READ_ONCE(vblank->enabled)) { 1610 ret = -EINVAL; 1611 goto err_unlock; 1612 } 1613 1614 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1615 &e->event.base); 1616 1617 if (ret) 1618 goto err_unlock; 1619 1620 seq = drm_vblank_count_and_time(dev, pipe, &now); 1621 1622 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1623 req_seq, seq, pipe); 1624 1625 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1626 1627 e->sequence = req_seq; 1628 if (drm_vblank_passed(seq, req_seq)) { 1629 drm_vblank_put(dev, pipe); 1630 send_vblank_event(dev, e, seq, now); 1631 vblwait->reply.sequence = seq; 1632 } else { 1633 /* drm_handle_vblank_events will call drm_vblank_put */ 1634 list_add_tail(&e->base.link, &dev->vblank_event_list); 1635 vblwait->reply.sequence = req_seq; 1636 } 1637 1638 spin_unlock_irq(&dev->event_lock); 1639 1640 return 0; 1641 1642 err_unlock: 1643 spin_unlock_irq(&dev->event_lock); 1644 kfree(e); 1645 err_put: 1646 drm_vblank_put(dev, pipe); 1647 return ret; 1648 } 1649 1650 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1651 { 1652 if (vblwait->request.sequence) 1653 return false; 1654 1655 return _DRM_VBLANK_RELATIVE == 1656 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1657 _DRM_VBLANK_EVENT | 1658 _DRM_VBLANK_NEXTONMISS)); 1659 } 1660 1661 /* 1662 * Widen a 32-bit param to 64-bits. 1663 * 1664 * \param narrow 32-bit value (missing upper 32 bits) 1665 * \param near 64-bit value that should be 'close' to near 1666 * 1667 * This function returns a 64-bit value using the lower 32-bits from 1668 * 'narrow' and constructing the upper 32-bits so that the result is 1669 * as close as possible to 'near'. 1670 */ 1671 1672 static u64 widen_32_to_64(u32 narrow, u64 near) 1673 { 1674 return near + (s32) (narrow - near); 1675 } 1676 1677 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1678 struct drm_wait_vblank_reply *reply) 1679 { 1680 ktime_t now; 1681 struct timespec64 ts; 1682 1683 /* 1684 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1685 * to store the seconds. This is safe as we always use monotonic 1686 * timestamps since linux-4.15. 1687 */ 1688 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1689 ts = ktime_to_timespec64(now); 1690 reply->tval_sec = (u32)ts.tv_sec; 1691 reply->tval_usec = ts.tv_nsec / 1000; 1692 } 1693 1694 static bool drm_wait_vblank_supported(struct drm_device *dev) 1695 { 1696 return drm_dev_has_vblank(dev); 1697 } 1698 1699 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1700 struct drm_file *file_priv) 1701 { 1702 struct drm_crtc *crtc; 1703 struct drm_vblank_crtc *vblank; 1704 union drm_wait_vblank *vblwait = data; 1705 int ret; 1706 u64 req_seq, seq; 1707 unsigned int pipe_index; 1708 unsigned int flags, pipe, high_pipe; 1709 1710 if (!drm_wait_vblank_supported(dev)) 1711 return -EOPNOTSUPP; 1712 1713 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1714 return -EINVAL; 1715 1716 if (vblwait->request.type & 1717 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1718 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1719 drm_dbg_core(dev, 1720 "Unsupported type value 0x%x, supported mask 0x%x\n", 1721 vblwait->request.type, 1722 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1723 _DRM_VBLANK_HIGH_CRTC_MASK)); 1724 return -EINVAL; 1725 } 1726 1727 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1728 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1729 if (high_pipe) 1730 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1731 else 1732 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1733 1734 /* Convert lease-relative crtc index into global crtc index */ 1735 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1736 pipe = 0; 1737 drm_for_each_crtc(crtc, dev) { 1738 if (drm_lease_held(file_priv, crtc->base.id)) { 1739 if (pipe_index == 0) 1740 break; 1741 pipe_index--; 1742 } 1743 pipe++; 1744 } 1745 } else { 1746 pipe = pipe_index; 1747 } 1748 1749 if (pipe >= dev->num_crtcs) 1750 return -EINVAL; 1751 1752 vblank = &dev->vblank[pipe]; 1753 1754 /* If the counter is currently enabled and accurate, short-circuit 1755 * queries to return the cached timestamp of the last vblank. 1756 */ 1757 if (dev->vblank_disable_immediate && 1758 drm_wait_vblank_is_query(vblwait) && 1759 READ_ONCE(vblank->enabled)) { 1760 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1761 return 0; 1762 } 1763 1764 ret = drm_vblank_get(dev, pipe); 1765 if (ret) { 1766 drm_dbg_core(dev, 1767 "crtc %d failed to acquire vblank counter, %d\n", 1768 pipe, ret); 1769 return ret; 1770 } 1771 seq = drm_vblank_count(dev, pipe); 1772 1773 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1774 case _DRM_VBLANK_RELATIVE: 1775 req_seq = seq + vblwait->request.sequence; 1776 vblwait->request.sequence = req_seq; 1777 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1778 break; 1779 case _DRM_VBLANK_ABSOLUTE: 1780 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1781 break; 1782 default: 1783 ret = -EINVAL; 1784 goto done; 1785 } 1786 1787 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1788 drm_vblank_passed(seq, req_seq)) { 1789 req_seq = seq + 1; 1790 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1791 vblwait->request.sequence = req_seq; 1792 } 1793 1794 if (flags & _DRM_VBLANK_EVENT) { 1795 /* must hold on to the vblank ref until the event fires 1796 * drm_vblank_put will be called asynchronously 1797 */ 1798 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1799 } 1800 1801 if (req_seq != seq) { 1802 int wait; 1803 1804 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1805 req_seq, pipe); 1806 wait = wait_event_interruptible_timeout(vblank->queue, 1807 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1808 !READ_ONCE(vblank->enabled), 1809 msecs_to_jiffies(3000)); 1810 1811 switch (wait) { 1812 case 0: 1813 /* timeout */ 1814 ret = -EBUSY; 1815 break; 1816 case -ERESTARTSYS: 1817 /* interrupted by signal */ 1818 ret = -EINTR; 1819 break; 1820 default: 1821 ret = 0; 1822 break; 1823 } 1824 } 1825 1826 if (ret != -EINTR) { 1827 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1828 1829 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1830 pipe, vblwait->reply.sequence); 1831 } else { 1832 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1833 pipe); 1834 } 1835 1836 done: 1837 drm_vblank_put(dev, pipe); 1838 return ret; 1839 } 1840 1841 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1842 { 1843 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1844 bool high_prec = false; 1845 struct drm_pending_vblank_event *e, *t; 1846 ktime_t now; 1847 u64 seq; 1848 1849 assert_spin_locked(&dev->event_lock); 1850 1851 seq = drm_vblank_count_and_time(dev, pipe, &now); 1852 1853 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1854 if (e->pipe != pipe) 1855 continue; 1856 if (!drm_vblank_passed(seq, e->sequence)) 1857 continue; 1858 1859 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1860 e->sequence, seq); 1861 1862 list_del(&e->base.link); 1863 drm_vblank_put(dev, pipe); 1864 send_vblank_event(dev, e, seq, now); 1865 } 1866 1867 if (crtc && crtc->funcs->get_vblank_timestamp) 1868 high_prec = true; 1869 1870 trace_drm_vblank_event(pipe, seq, now, high_prec); 1871 } 1872 1873 /** 1874 * drm_handle_vblank - handle a vblank event 1875 * @dev: DRM device 1876 * @pipe: index of CRTC where this event occurred 1877 * 1878 * Drivers should call this routine in their vblank interrupt handlers to 1879 * update the vblank counter and send any signals that may be pending. 1880 * 1881 * This is the legacy version of drm_crtc_handle_vblank(). 1882 */ 1883 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1884 { 1885 struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe); 1886 unsigned long irqflags; 1887 bool disable_irq; 1888 1889 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1890 return false; 1891 1892 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1893 return false; 1894 1895 spin_lock_irqsave(&dev->event_lock, irqflags); 1896 1897 /* Need timestamp lock to prevent concurrent execution with 1898 * vblank enable/disable, as this would cause inconsistent 1899 * or corrupted timestamps and vblank counts. 1900 */ 1901 spin_lock(&dev->vblank_time_lock); 1902 1903 /* Vblank irq handling disabled. Nothing to do. */ 1904 if (!vblank->enabled) { 1905 spin_unlock(&dev->vblank_time_lock); 1906 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1907 return false; 1908 } 1909 1910 drm_update_vblank_count(dev, pipe, true); 1911 1912 spin_unlock(&dev->vblank_time_lock); 1913 1914 wake_up(&vblank->queue); 1915 1916 /* With instant-off, we defer disabling the interrupt until after 1917 * we finish processing the following vblank after all events have 1918 * been signaled. The disable has to be last (after 1919 * drm_handle_vblank_events) so that the timestamp is always accurate. 1920 */ 1921 disable_irq = (dev->vblank_disable_immediate && 1922 drm_vblank_offdelay > 0 && 1923 !atomic_read(&vblank->refcount)); 1924 1925 drm_handle_vblank_events(dev, pipe); 1926 drm_handle_vblank_works(vblank); 1927 1928 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1929 1930 if (disable_irq) 1931 vblank_disable_fn(&vblank->disable_timer); 1932 1933 return true; 1934 } 1935 EXPORT_SYMBOL(drm_handle_vblank); 1936 1937 /** 1938 * drm_crtc_handle_vblank - handle a vblank event 1939 * @crtc: where this event occurred 1940 * 1941 * Drivers should call this routine in their vblank interrupt handlers to 1942 * update the vblank counter and send any signals that may be pending. 1943 * 1944 * This is the native KMS version of drm_handle_vblank(). 1945 * 1946 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1947 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1948 * provide a barrier: Any writes done before calling 1949 * drm_crtc_handle_vblank() will be visible to callers of the later 1950 * functions, if the vblank count is the same or a later one. 1951 * 1952 * See also &drm_vblank_crtc.count. 1953 * 1954 * Returns: 1955 * True if the event was successfully handled, false on failure. 1956 */ 1957 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1958 { 1959 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1960 } 1961 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1962 1963 /* 1964 * Get crtc VBLANK count. 1965 * 1966 * \param dev DRM device 1967 * \param data user argument, pointing to a drm_crtc_get_sequence structure. 1968 * \param file_priv drm file private for the user's open file descriptor 1969 */ 1970 1971 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1972 struct drm_file *file_priv) 1973 { 1974 struct drm_crtc *crtc; 1975 struct drm_vblank_crtc *vblank; 1976 int pipe; 1977 struct drm_crtc_get_sequence *get_seq = data; 1978 ktime_t now; 1979 bool vblank_enabled; 1980 int ret; 1981 1982 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1983 return -EOPNOTSUPP; 1984 1985 if (!drm_dev_has_vblank(dev)) 1986 return -EOPNOTSUPP; 1987 1988 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1989 if (!crtc) 1990 return -ENOENT; 1991 1992 pipe = drm_crtc_index(crtc); 1993 1994 vblank = drm_crtc_vblank_crtc(crtc); 1995 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1996 1997 if (!vblank_enabled) { 1998 ret = drm_crtc_vblank_get(crtc); 1999 if (ret) { 2000 drm_dbg_core(dev, 2001 "crtc %d failed to acquire vblank counter, %d\n", 2002 pipe, ret); 2003 return ret; 2004 } 2005 } 2006 drm_modeset_lock(&crtc->mutex, NULL); 2007 if (crtc->state) 2008 get_seq->active = crtc->state->enable; 2009 else 2010 get_seq->active = crtc->enabled; 2011 drm_modeset_unlock(&crtc->mutex); 2012 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2013 get_seq->sequence_ns = ktime_to_ns(now); 2014 if (!vblank_enabled) 2015 drm_crtc_vblank_put(crtc); 2016 return 0; 2017 } 2018 2019 /* 2020 * Queue a event for VBLANK sequence 2021 * 2022 * \param dev DRM device 2023 * \param data user argument, pointing to a drm_crtc_queue_sequence structure. 2024 * \param file_priv drm file private for the user's open file descriptor 2025 */ 2026 2027 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2028 struct drm_file *file_priv) 2029 { 2030 struct drm_crtc *crtc; 2031 struct drm_vblank_crtc *vblank; 2032 int pipe; 2033 struct drm_crtc_queue_sequence *queue_seq = data; 2034 ktime_t now; 2035 struct drm_pending_vblank_event *e; 2036 u32 flags; 2037 u64 seq; 2038 u64 req_seq; 2039 int ret; 2040 2041 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2042 return -EOPNOTSUPP; 2043 2044 if (!drm_dev_has_vblank(dev)) 2045 return -EOPNOTSUPP; 2046 2047 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2048 if (!crtc) 2049 return -ENOENT; 2050 2051 flags = queue_seq->flags; 2052 /* Check valid flag bits */ 2053 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2054 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2055 return -EINVAL; 2056 2057 pipe = drm_crtc_index(crtc); 2058 2059 vblank = drm_crtc_vblank_crtc(crtc); 2060 2061 e = kzalloc(sizeof(*e), GFP_KERNEL); 2062 if (e == NULL) 2063 return -ENOMEM; 2064 2065 ret = drm_crtc_vblank_get(crtc); 2066 if (ret) { 2067 drm_dbg_core(dev, 2068 "crtc %d failed to acquire vblank counter, %d\n", 2069 pipe, ret); 2070 goto err_free; 2071 } 2072 2073 seq = drm_vblank_count_and_time(dev, pipe, &now); 2074 req_seq = queue_seq->sequence; 2075 2076 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2077 req_seq += seq; 2078 2079 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2080 req_seq = seq + 1; 2081 2082 e->pipe = pipe; 2083 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2084 e->event.base.length = sizeof(e->event.seq); 2085 e->event.seq.user_data = queue_seq->user_data; 2086 2087 spin_lock_irq(&dev->event_lock); 2088 2089 /* 2090 * drm_crtc_vblank_off() might have been called after we called 2091 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2092 * vblank disable, so no need for further locking. The reference from 2093 * drm_crtc_vblank_get() protects against vblank disable from another source. 2094 */ 2095 if (!READ_ONCE(vblank->enabled)) { 2096 ret = -EINVAL; 2097 goto err_unlock; 2098 } 2099 2100 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2101 &e->event.base); 2102 2103 if (ret) 2104 goto err_unlock; 2105 2106 e->sequence = req_seq; 2107 2108 if (drm_vblank_passed(seq, req_seq)) { 2109 drm_crtc_vblank_put(crtc); 2110 send_vblank_event(dev, e, seq, now); 2111 queue_seq->sequence = seq; 2112 } else { 2113 /* drm_handle_vblank_events will call drm_vblank_put */ 2114 list_add_tail(&e->base.link, &dev->vblank_event_list); 2115 queue_seq->sequence = req_seq; 2116 } 2117 2118 spin_unlock_irq(&dev->event_lock); 2119 return 0; 2120 2121 err_unlock: 2122 spin_unlock_irq(&dev->event_lock); 2123 drm_crtc_vblank_put(crtc); 2124 err_free: 2125 kfree(e); 2126 return ret; 2127 } 2128 2129