1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/moduleparam.h> 29 30 #include <drm/drm_crtc.h> 31 #include <drm/drm_drv.h> 32 #include <drm/drm_framebuffer.h> 33 #include <drm/drm_modeset_helper_vtables.h> 34 #include <drm/drm_print.h> 35 #include <drm/drm_vblank.h> 36 37 #include "drm_internal.h" 38 #include "drm_trace.h" 39 40 /** 41 * DOC: vblank handling 42 * 43 * Vertical blanking plays a major role in graphics rendering. To achieve 44 * tear-free display, users must synchronize page flips and/or rendering to 45 * vertical blanking. The DRM API offers ioctls to perform page flips 46 * synchronized to vertical blanking and wait for vertical blanking. 47 * 48 * The DRM core handles most of the vertical blanking management logic, which 49 * involves filtering out spurious interrupts, keeping race-free blanking 50 * counters, coping with counter wrap-around and resets and keeping use counts. 51 * It relies on the driver to generate vertical blanking interrupts and 52 * optionally provide a hardware vertical blanking counter. 53 * 54 * Drivers must initialize the vertical blanking handling core with a call to 55 * drm_vblank_init(). Minimally, a driver needs to implement 56 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 57 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 58 * support. 59 * 60 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 61 * themselves (for instance to handle page flipping operations). The DRM core 62 * maintains a vertical blanking use count to ensure that the interrupts are not 63 * disabled while a user still needs them. To increment the use count, drivers 64 * call drm_crtc_vblank_get() and release the vblank reference again with 65 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 66 * guaranteed to be enabled. 67 * 68 * On many hardware disabling the vblank interrupt cannot be done in a race-free 69 * manner, see &drm_driver.vblank_disable_immediate and 70 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 71 * vblanks after a timer has expired, which can be configured through the 72 * ``vblankoffdelay`` module parameter. 73 * 74 * Drivers for hardware without support for vertical-blanking interrupts 75 * must not call drm_vblank_init(). For such drivers, atomic helpers will 76 * automatically generate fake vblank events as part of the display update. 77 * This functionality also can be controlled by the driver by enabling and 78 * disabling struct drm_crtc_state.no_vblank. 79 */ 80 81 /* Retry timestamp calculation up to 3 times to satisfy 82 * drm_timestamp_precision before giving up. 83 */ 84 #define DRM_TIMESTAMP_MAXRETRIES 3 85 86 /* Threshold in nanoseconds for detection of redundant 87 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 88 */ 89 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 90 91 static bool 92 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 93 ktime_t *tvblank, bool in_vblank_irq); 94 95 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 96 97 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 98 99 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 100 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 101 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 102 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 103 104 static void store_vblank(struct drm_device *dev, unsigned int pipe, 105 u32 vblank_count_inc, 106 ktime_t t_vblank, u32 last) 107 { 108 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 109 110 assert_spin_locked(&dev->vblank_time_lock); 111 112 vblank->last = last; 113 114 write_seqlock(&vblank->seqlock); 115 vblank->time = t_vblank; 116 atomic64_add(vblank_count_inc, &vblank->count); 117 write_sequnlock(&vblank->seqlock); 118 } 119 120 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 121 { 122 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 123 124 return vblank->max_vblank_count ?: dev->max_vblank_count; 125 } 126 127 /* 128 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 129 * if there is no useable hardware frame counter available. 130 */ 131 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 132 { 133 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0); 134 return 0; 135 } 136 137 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 138 { 139 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 140 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 141 142 if (WARN_ON(!crtc)) 143 return 0; 144 145 if (crtc->funcs->get_vblank_counter) 146 return crtc->funcs->get_vblank_counter(crtc); 147 } else if (dev->driver->get_vblank_counter) { 148 return dev->driver->get_vblank_counter(dev, pipe); 149 } 150 151 return drm_vblank_no_hw_counter(dev, pipe); 152 } 153 154 /* 155 * Reset the stored timestamp for the current vblank count to correspond 156 * to the last vblank occurred. 157 * 158 * Only to be called from drm_crtc_vblank_on(). 159 * 160 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 161 * device vblank fields. 162 */ 163 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 164 { 165 u32 cur_vblank; 166 bool rc; 167 ktime_t t_vblank; 168 int count = DRM_TIMESTAMP_MAXRETRIES; 169 170 spin_lock(&dev->vblank_time_lock); 171 172 /* 173 * sample the current counter to avoid random jumps 174 * when drm_vblank_enable() applies the diff 175 */ 176 do { 177 cur_vblank = __get_vblank_counter(dev, pipe); 178 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 179 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 180 181 /* 182 * Only reinitialize corresponding vblank timestamp if high-precision query 183 * available and didn't fail. Otherwise reinitialize delayed at next vblank 184 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 185 */ 186 if (!rc) 187 t_vblank = 0; 188 189 /* 190 * +1 to make sure user will never see the same 191 * vblank counter value before and after a modeset 192 */ 193 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 194 195 spin_unlock(&dev->vblank_time_lock); 196 } 197 198 /* 199 * Call back into the driver to update the appropriate vblank counter 200 * (specified by @pipe). Deal with wraparound, if it occurred, and 201 * update the last read value so we can deal with wraparound on the next 202 * call if necessary. 203 * 204 * Only necessary when going from off->on, to account for frames we 205 * didn't get an interrupt for. 206 * 207 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 208 * device vblank fields. 209 */ 210 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 211 bool in_vblank_irq) 212 { 213 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 214 u32 cur_vblank, diff; 215 bool rc; 216 ktime_t t_vblank; 217 int count = DRM_TIMESTAMP_MAXRETRIES; 218 int framedur_ns = vblank->framedur_ns; 219 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 220 221 /* 222 * Interrupts were disabled prior to this call, so deal with counter 223 * wrap if needed. 224 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 225 * here if the register is small or we had vblank interrupts off for 226 * a long time. 227 * 228 * We repeat the hardware vblank counter & timestamp query until 229 * we get consistent results. This to prevent races between gpu 230 * updating its hardware counter while we are retrieving the 231 * corresponding vblank timestamp. 232 */ 233 do { 234 cur_vblank = __get_vblank_counter(dev, pipe); 235 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 236 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 237 238 if (max_vblank_count) { 239 /* trust the hw counter when it's around */ 240 diff = (cur_vblank - vblank->last) & max_vblank_count; 241 } else if (rc && framedur_ns) { 242 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 243 244 /* 245 * Figure out how many vblanks we've missed based 246 * on the difference in the timestamps and the 247 * frame/field duration. 248 */ 249 250 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks." 251 " diff_ns = %lld, framedur_ns = %d)\n", 252 pipe, (long long) diff_ns, framedur_ns); 253 254 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 255 256 if (diff == 0 && in_vblank_irq) 257 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n", 258 pipe); 259 } else { 260 /* some kind of default for drivers w/o accurate vbl timestamping */ 261 diff = in_vblank_irq ? 1 : 0; 262 } 263 264 /* 265 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 266 * interval? If so then vblank irqs keep running and it will likely 267 * happen that the hardware vblank counter is not trustworthy as it 268 * might reset at some point in that interval and vblank timestamps 269 * are not trustworthy either in that interval. Iow. this can result 270 * in a bogus diff >> 1 which must be avoided as it would cause 271 * random large forward jumps of the software vblank counter. 272 */ 273 if (diff > 1 && (vblank->inmodeset & 0x2)) { 274 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 275 " due to pre-modeset.\n", pipe, diff); 276 diff = 1; 277 } 278 279 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 280 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 281 pipe, atomic64_read(&vblank->count), diff, 282 cur_vblank, vblank->last); 283 284 if (diff == 0) { 285 WARN_ON_ONCE(cur_vblank != vblank->last); 286 return; 287 } 288 289 /* 290 * Only reinitialize corresponding vblank timestamp if high-precision query 291 * available and didn't fail, or we were called from the vblank interrupt. 292 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 293 * for now, to mark the vblanktimestamp as invalid. 294 */ 295 if (!rc && !in_vblank_irq) 296 t_vblank = 0; 297 298 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 299 } 300 301 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 302 { 303 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 304 u64 count; 305 306 if (WARN_ON(pipe >= dev->num_crtcs)) 307 return 0; 308 309 count = atomic64_read(&vblank->count); 310 311 /* 312 * This read barrier corresponds to the implicit write barrier of the 313 * write seqlock in store_vblank(). Note that this is the only place 314 * where we need an explicit barrier, since all other access goes 315 * through drm_vblank_count_and_time(), which already has the required 316 * read barrier curtesy of the read seqlock. 317 */ 318 smp_rmb(); 319 320 return count; 321 } 322 323 /** 324 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 325 * @crtc: which counter to retrieve 326 * 327 * This function is similar to drm_crtc_vblank_count() but this function 328 * interpolates to handle a race with vblank interrupts using the high precision 329 * timestamping support. 330 * 331 * This is mostly useful for hardware that can obtain the scanout position, but 332 * doesn't have a hardware frame counter. 333 */ 334 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 335 { 336 struct drm_device *dev = crtc->dev; 337 unsigned int pipe = drm_crtc_index(crtc); 338 u64 vblank; 339 unsigned long flags; 340 341 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && 342 !crtc->funcs->get_vblank_timestamp, 343 "This function requires support for accurate vblank timestamps."); 344 345 spin_lock_irqsave(&dev->vblank_time_lock, flags); 346 347 drm_update_vblank_count(dev, pipe, false); 348 vblank = drm_vblank_count(dev, pipe); 349 350 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 351 352 return vblank; 353 } 354 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 355 356 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 357 { 358 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 359 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 360 361 if (WARN_ON(!crtc)) 362 return; 363 364 if (crtc->funcs->disable_vblank) 365 crtc->funcs->disable_vblank(crtc); 366 } else { 367 dev->driver->disable_vblank(dev, pipe); 368 } 369 } 370 371 /* 372 * Disable vblank irq's on crtc, make sure that last vblank count 373 * of hardware and corresponding consistent software vblank counter 374 * are preserved, even if there are any spurious vblank irq's after 375 * disable. 376 */ 377 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 378 { 379 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 380 unsigned long irqflags; 381 382 assert_spin_locked(&dev->vbl_lock); 383 384 /* Prevent vblank irq processing while disabling vblank irqs, 385 * so no updates of timestamps or count can happen after we've 386 * disabled. Needed to prevent races in case of delayed irq's. 387 */ 388 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 389 390 /* 391 * Update vblank count and disable vblank interrupts only if the 392 * interrupts were enabled. This avoids calling the ->disable_vblank() 393 * operation in atomic context with the hardware potentially runtime 394 * suspended. 395 */ 396 if (!vblank->enabled) 397 goto out; 398 399 /* 400 * Update the count and timestamp to maintain the 401 * appearance that the counter has been ticking all along until 402 * this time. This makes the count account for the entire time 403 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 404 */ 405 drm_update_vblank_count(dev, pipe, false); 406 __disable_vblank(dev, pipe); 407 vblank->enabled = false; 408 409 out: 410 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 411 } 412 413 static void vblank_disable_fn(struct timer_list *t) 414 { 415 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 416 struct drm_device *dev = vblank->dev; 417 unsigned int pipe = vblank->pipe; 418 unsigned long irqflags; 419 420 spin_lock_irqsave(&dev->vbl_lock, irqflags); 421 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 422 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 423 drm_vblank_disable_and_save(dev, pipe); 424 } 425 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 426 } 427 428 void drm_vblank_cleanup(struct drm_device *dev) 429 { 430 unsigned int pipe; 431 432 /* Bail if the driver didn't call drm_vblank_init() */ 433 if (dev->num_crtcs == 0) 434 return; 435 436 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 437 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 438 439 WARN_ON(READ_ONCE(vblank->enabled) && 440 drm_core_check_feature(dev, DRIVER_MODESET)); 441 442 del_timer_sync(&vblank->disable_timer); 443 } 444 445 kfree(dev->vblank); 446 447 dev->num_crtcs = 0; 448 } 449 450 /** 451 * drm_vblank_init - initialize vblank support 452 * @dev: DRM device 453 * @num_crtcs: number of CRTCs supported by @dev 454 * 455 * This function initializes vblank support for @num_crtcs display pipelines. 456 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 457 * drivers with a &drm_driver.release callback. 458 * 459 * Returns: 460 * Zero on success or a negative error code on failure. 461 */ 462 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 463 { 464 int ret = -ENOMEM; 465 unsigned int i; 466 467 spin_lock_init(&dev->vbl_lock); 468 spin_lock_init(&dev->vblank_time_lock); 469 470 dev->num_crtcs = num_crtcs; 471 472 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 473 if (!dev->vblank) 474 goto err; 475 476 for (i = 0; i < num_crtcs; i++) { 477 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 478 479 vblank->dev = dev; 480 vblank->pipe = i; 481 init_waitqueue_head(&vblank->queue); 482 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 483 seqlock_init(&vblank->seqlock); 484 } 485 486 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 487 488 return 0; 489 490 err: 491 dev->num_crtcs = 0; 492 return ret; 493 } 494 EXPORT_SYMBOL(drm_vblank_init); 495 496 /** 497 * drm_dev_has_vblank - test if vblanking has been initialized for 498 * a device 499 * @dev: the device 500 * 501 * Drivers may call this function to test if vblank support is 502 * initialized for a device. For most hardware this means that vblanking 503 * can also be enabled. 504 * 505 * Atomic helpers use this function to initialize 506 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 507 * 508 * Returns: 509 * True if vblanking has been initialized for the given device, false 510 * otherwise. 511 */ 512 bool drm_dev_has_vblank(const struct drm_device *dev) 513 { 514 return dev->num_crtcs != 0; 515 } 516 EXPORT_SYMBOL(drm_dev_has_vblank); 517 518 /** 519 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 520 * @crtc: which CRTC's vblank waitqueue to retrieve 521 * 522 * This function returns a pointer to the vblank waitqueue for the CRTC. 523 * Drivers can use this to implement vblank waits using wait_event() and related 524 * functions. 525 */ 526 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 527 { 528 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 529 } 530 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 531 532 533 /** 534 * drm_calc_timestamping_constants - calculate vblank timestamp constants 535 * @crtc: drm_crtc whose timestamp constants should be updated. 536 * @mode: display mode containing the scanout timings 537 * 538 * Calculate and store various constants which are later needed by vblank and 539 * swap-completion timestamping, e.g, by 540 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 541 * CRTC's true scanout timing, so they take things like panel scaling or 542 * other adjustments into account. 543 */ 544 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 545 const struct drm_display_mode *mode) 546 { 547 struct drm_device *dev = crtc->dev; 548 unsigned int pipe = drm_crtc_index(crtc); 549 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 550 int linedur_ns = 0, framedur_ns = 0; 551 int dotclock = mode->crtc_clock; 552 553 if (!dev->num_crtcs) 554 return; 555 556 if (WARN_ON(pipe >= dev->num_crtcs)) 557 return; 558 559 /* Valid dotclock? */ 560 if (dotclock > 0) { 561 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 562 563 /* 564 * Convert scanline length in pixels and video 565 * dot clock to line duration and frame duration 566 * in nanoseconds: 567 */ 568 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 569 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 570 571 /* 572 * Fields of interlaced scanout modes are only half a frame duration. 573 */ 574 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 575 framedur_ns /= 2; 576 } else 577 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 578 crtc->base.id); 579 580 vblank->linedur_ns = linedur_ns; 581 vblank->framedur_ns = framedur_ns; 582 vblank->hwmode = *mode; 583 584 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 585 crtc->base.id, mode->crtc_htotal, 586 mode->crtc_vtotal, mode->crtc_vdisplay); 587 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 588 crtc->base.id, dotclock, framedur_ns, linedur_ns); 589 } 590 EXPORT_SYMBOL(drm_calc_timestamping_constants); 591 592 /** 593 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 594 * timestamp helper 595 * @crtc: CRTC whose vblank timestamp to retrieve 596 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 597 * On return contains true maximum error of timestamp 598 * @vblank_time: Pointer to time which should receive the timestamp 599 * @in_vblank_irq: 600 * True when called from drm_crtc_handle_vblank(). Some drivers 601 * need to apply some workarounds for gpu-specific vblank irq quirks 602 * if flag is set. 603 * @get_scanout_position: 604 * Callback function to retrieve the scanout position. See 605 * @struct drm_crtc_helper_funcs.get_scanout_position. 606 * 607 * Implements calculation of exact vblank timestamps from given drm_display_mode 608 * timings and current video scanout position of a CRTC. 609 * 610 * The current implementation only handles standard video modes. For double scan 611 * and interlaced modes the driver is supposed to adjust the hardware mode 612 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 613 * match the scanout position reported. 614 * 615 * Note that atomic drivers must call drm_calc_timestamping_constants() before 616 * enabling a CRTC. The atomic helpers already take care of that in 617 * drm_atomic_helper_update_legacy_modeset_state(). 618 * 619 * Returns: 620 * 621 * Returns true on success, and false on failure, i.e. when no accurate 622 * timestamp could be acquired. 623 */ 624 bool 625 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 626 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 627 bool in_vblank_irq, 628 drm_vblank_get_scanout_position_func get_scanout_position) 629 { 630 struct drm_device *dev = crtc->dev; 631 unsigned int pipe = crtc->index; 632 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 633 struct timespec64 ts_etime, ts_vblank_time; 634 ktime_t stime, etime; 635 bool vbl_status; 636 const struct drm_display_mode *mode; 637 int vpos, hpos, i; 638 int delta_ns, duration_ns; 639 640 if (pipe >= dev->num_crtcs) { 641 DRM_ERROR("Invalid crtc %u\n", pipe); 642 return false; 643 } 644 645 /* Scanout position query not supported? Should not happen. */ 646 if (!get_scanout_position) { 647 DRM_ERROR("Called from CRTC w/o get_scanout_position()!?\n"); 648 return false; 649 } 650 651 if (drm_drv_uses_atomic_modeset(dev)) 652 mode = &vblank->hwmode; 653 else 654 mode = &crtc->hwmode; 655 656 /* If mode timing undefined, just return as no-op: 657 * Happens during initial modesetting of a crtc. 658 */ 659 if (mode->crtc_clock == 0) { 660 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 661 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 662 return false; 663 } 664 665 /* Get current scanout position with system timestamp. 666 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 667 * if single query takes longer than max_error nanoseconds. 668 * 669 * This guarantees a tight bound on maximum error if 670 * code gets preempted or delayed for some reason. 671 */ 672 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 673 /* 674 * Get vertical and horizontal scanout position vpos, hpos, 675 * and bounding timestamps stime, etime, pre/post query. 676 */ 677 vbl_status = get_scanout_position(crtc, in_vblank_irq, 678 &vpos, &hpos, 679 &stime, &etime, 680 mode); 681 682 /* Return as no-op if scanout query unsupported or failed. */ 683 if (!vbl_status) { 684 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 685 pipe); 686 return false; 687 } 688 689 /* Compute uncertainty in timestamp of scanout position query. */ 690 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 691 692 /* Accept result with < max_error nsecs timing uncertainty. */ 693 if (duration_ns <= *max_error) 694 break; 695 } 696 697 /* Noisy system timing? */ 698 if (i == DRM_TIMESTAMP_MAXRETRIES) { 699 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 700 pipe, duration_ns/1000, *max_error/1000, i); 701 } 702 703 /* Return upper bound of timestamp precision error. */ 704 *max_error = duration_ns; 705 706 /* Convert scanout position into elapsed time at raw_time query 707 * since start of scanout at first display scanline. delta_ns 708 * can be negative if start of scanout hasn't happened yet. 709 */ 710 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 711 mode->crtc_clock); 712 713 /* Subtract time delta from raw timestamp to get final 714 * vblank_time timestamp for end of vblank. 715 */ 716 *vblank_time = ktime_sub_ns(etime, delta_ns); 717 718 if (!drm_debug_enabled(DRM_UT_VBL)) 719 return true; 720 721 ts_etime = ktime_to_timespec64(etime); 722 ts_vblank_time = ktime_to_timespec64(*vblank_time); 723 724 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 725 pipe, hpos, vpos, 726 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 727 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 728 duration_ns / 1000, i); 729 730 return true; 731 } 732 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 733 734 /** 735 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 736 * helper 737 * @crtc: CRTC whose vblank timestamp to retrieve 738 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 739 * On return contains true maximum error of timestamp 740 * @vblank_time: Pointer to time which should receive the timestamp 741 * @in_vblank_irq: 742 * True when called from drm_crtc_handle_vblank(). Some drivers 743 * need to apply some workarounds for gpu-specific vblank irq quirks 744 * if flag is set. 745 * 746 * Implements calculation of exact vblank timestamps from given drm_display_mode 747 * timings and current video scanout position of a CRTC. This can be directly 748 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 749 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 750 * 751 * The current implementation only handles standard video modes. For double scan 752 * and interlaced modes the driver is supposed to adjust the hardware mode 753 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 754 * match the scanout position reported. 755 * 756 * Note that atomic drivers must call drm_calc_timestamping_constants() before 757 * enabling a CRTC. The atomic helpers already take care of that in 758 * drm_atomic_helper_update_legacy_modeset_state(). 759 * 760 * Returns: 761 * 762 * Returns true on success, and false on failure, i.e. when no accurate 763 * timestamp could be acquired. 764 */ 765 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 766 int *max_error, 767 ktime_t *vblank_time, 768 bool in_vblank_irq) 769 { 770 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 771 crtc, max_error, vblank_time, in_vblank_irq, 772 crtc->helper_private->get_scanout_position); 773 } 774 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 775 776 /** 777 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 778 * vblank interval 779 * @dev: DRM device 780 * @pipe: index of CRTC whose vblank timestamp to retrieve 781 * @tvblank: Pointer to target time which should receive the timestamp 782 * @in_vblank_irq: 783 * True when called from drm_crtc_handle_vblank(). Some drivers 784 * need to apply some workarounds for gpu-specific vblank irq quirks 785 * if flag is set. 786 * 787 * Fetches the system timestamp corresponding to the time of the most recent 788 * vblank interval on specified CRTC. May call into kms-driver to 789 * compute the timestamp with a high-precision GPU specific method. 790 * 791 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 792 * call, i.e., it isn't very precisely locked to the true vblank. 793 * 794 * Returns: 795 * True if timestamp is considered to be very precise, false otherwise. 796 */ 797 static bool 798 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 799 ktime_t *tvblank, bool in_vblank_irq) 800 { 801 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 802 bool ret = false; 803 804 /* Define requested maximum error on timestamps (nanoseconds). */ 805 int max_error = (int) drm_timestamp_precision * 1000; 806 807 /* Query driver if possible and precision timestamping enabled. */ 808 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 809 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 810 811 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 812 tvblank, in_vblank_irq); 813 } 814 815 /* GPU high precision timestamp query unsupported or failed. 816 * Return current monotonic/gettimeofday timestamp as best estimate. 817 */ 818 if (!ret) 819 *tvblank = ktime_get(); 820 821 return ret; 822 } 823 824 /** 825 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 826 * @crtc: which counter to retrieve 827 * 828 * Fetches the "cooked" vblank count value that represents the number of 829 * vblank events since the system was booted, including lost events due to 830 * modesetting activity. Note that this timer isn't correct against a racing 831 * vblank interrupt (since it only reports the software vblank counter), see 832 * drm_crtc_accurate_vblank_count() for such use-cases. 833 * 834 * Note that for a given vblank counter value drm_crtc_handle_vblank() 835 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 836 * provide a barrier: Any writes done before calling 837 * drm_crtc_handle_vblank() will be visible to callers of the later 838 * functions, iff the vblank count is the same or a later one. 839 * 840 * See also &drm_vblank_crtc.count. 841 * 842 * Returns: 843 * The software vblank counter. 844 */ 845 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 846 { 847 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 848 } 849 EXPORT_SYMBOL(drm_crtc_vblank_count); 850 851 /** 852 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 853 * system timestamp corresponding to that vblank counter value. 854 * @dev: DRM device 855 * @pipe: index of CRTC whose counter to retrieve 856 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 857 * 858 * Fetches the "cooked" vblank count value that represents the number of 859 * vblank events since the system was booted, including lost events due to 860 * modesetting activity. Returns corresponding system timestamp of the time 861 * of the vblank interval that corresponds to the current vblank counter value. 862 * 863 * This is the legacy version of drm_crtc_vblank_count_and_time(). 864 */ 865 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 866 ktime_t *vblanktime) 867 { 868 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 869 u64 vblank_count; 870 unsigned int seq; 871 872 if (WARN_ON(pipe >= dev->num_crtcs)) { 873 *vblanktime = 0; 874 return 0; 875 } 876 877 do { 878 seq = read_seqbegin(&vblank->seqlock); 879 vblank_count = atomic64_read(&vblank->count); 880 *vblanktime = vblank->time; 881 } while (read_seqretry(&vblank->seqlock, seq)); 882 883 return vblank_count; 884 } 885 886 /** 887 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 888 * and the system timestamp corresponding to that vblank counter value 889 * @crtc: which counter to retrieve 890 * @vblanktime: Pointer to time to receive the vblank timestamp. 891 * 892 * Fetches the "cooked" vblank count value that represents the number of 893 * vblank events since the system was booted, including lost events due to 894 * modesetting activity. Returns corresponding system timestamp of the time 895 * of the vblank interval that corresponds to the current vblank counter value. 896 * 897 * Note that for a given vblank counter value drm_crtc_handle_vblank() 898 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 899 * provide a barrier: Any writes done before calling 900 * drm_crtc_handle_vblank() will be visible to callers of the later 901 * functions, iff the vblank count is the same or a later one. 902 * 903 * See also &drm_vblank_crtc.count. 904 */ 905 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 906 ktime_t *vblanktime) 907 { 908 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 909 vblanktime); 910 } 911 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 912 913 static void send_vblank_event(struct drm_device *dev, 914 struct drm_pending_vblank_event *e, 915 u64 seq, ktime_t now) 916 { 917 struct timespec64 tv; 918 919 switch (e->event.base.type) { 920 case DRM_EVENT_VBLANK: 921 case DRM_EVENT_FLIP_COMPLETE: 922 tv = ktime_to_timespec64(now); 923 e->event.vbl.sequence = seq; 924 /* 925 * e->event is a user space structure, with hardcoded unsigned 926 * 32-bit seconds/microseconds. This is safe as we always use 927 * monotonic timestamps since linux-4.15 928 */ 929 e->event.vbl.tv_sec = tv.tv_sec; 930 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 931 break; 932 case DRM_EVENT_CRTC_SEQUENCE: 933 if (seq) 934 e->event.seq.sequence = seq; 935 e->event.seq.time_ns = ktime_to_ns(now); 936 break; 937 } 938 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 939 drm_send_event_locked(dev, &e->base); 940 } 941 942 /** 943 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 944 * @crtc: the source CRTC of the vblank event 945 * @e: the event to send 946 * 947 * A lot of drivers need to generate vblank events for the very next vblank 948 * interrupt. For example when the page flip interrupt happens when the page 949 * flip gets armed, but not when it actually executes within the next vblank 950 * period. This helper function implements exactly the required vblank arming 951 * behaviour. 952 * 953 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 954 * atomic commit must ensure that the next vblank happens at exactly the same 955 * time as the atomic commit is committed to the hardware. This function itself 956 * does **not** protect against the next vblank interrupt racing with either this 957 * function call or the atomic commit operation. A possible sequence could be: 958 * 959 * 1. Driver commits new hardware state into vblank-synchronized registers. 960 * 2. A vblank happens, committing the hardware state. Also the corresponding 961 * vblank interrupt is fired off and fully processed by the interrupt 962 * handler. 963 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 964 * 4. The event is only send out for the next vblank, which is wrong. 965 * 966 * An equivalent race can happen when the driver calls 967 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 968 * 969 * The only way to make this work safely is to prevent the vblank from firing 970 * (and the hardware from committing anything else) until the entire atomic 971 * commit sequence has run to completion. If the hardware does not have such a 972 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 973 * Instead drivers need to manually send out the event from their interrupt 974 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 975 * possible race with the hardware committing the atomic update. 976 * 977 * Caller must hold a vblank reference for the event @e acquired by a 978 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 979 */ 980 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 981 struct drm_pending_vblank_event *e) 982 { 983 struct drm_device *dev = crtc->dev; 984 unsigned int pipe = drm_crtc_index(crtc); 985 986 assert_spin_locked(&dev->event_lock); 987 988 e->pipe = pipe; 989 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 990 list_add_tail(&e->base.link, &dev->vblank_event_list); 991 } 992 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 993 994 /** 995 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 996 * @crtc: the source CRTC of the vblank event 997 * @e: the event to send 998 * 999 * Updates sequence # and timestamp on event for the most recently processed 1000 * vblank, and sends it to userspace. Caller must hold event lock. 1001 * 1002 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1003 * situation, especially to send out events for atomic commit operations. 1004 */ 1005 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1006 struct drm_pending_vblank_event *e) 1007 { 1008 struct drm_device *dev = crtc->dev; 1009 u64 seq; 1010 unsigned int pipe = drm_crtc_index(crtc); 1011 ktime_t now; 1012 1013 if (dev->num_crtcs > 0) { 1014 seq = drm_vblank_count_and_time(dev, pipe, &now); 1015 } else { 1016 seq = 0; 1017 1018 now = ktime_get(); 1019 } 1020 e->pipe = pipe; 1021 send_vblank_event(dev, e, seq, now); 1022 } 1023 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1024 1025 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1026 { 1027 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1028 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1029 1030 if (WARN_ON(!crtc)) 1031 return 0; 1032 1033 if (crtc->funcs->enable_vblank) 1034 return crtc->funcs->enable_vblank(crtc); 1035 } else if (dev->driver->enable_vblank) { 1036 return dev->driver->enable_vblank(dev, pipe); 1037 } 1038 1039 return -EINVAL; 1040 } 1041 1042 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1043 { 1044 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1045 int ret = 0; 1046 1047 assert_spin_locked(&dev->vbl_lock); 1048 1049 spin_lock(&dev->vblank_time_lock); 1050 1051 if (!vblank->enabled) { 1052 /* 1053 * Enable vblank irqs under vblank_time_lock protection. 1054 * All vblank count & timestamp updates are held off 1055 * until we are done reinitializing master counter and 1056 * timestamps. Filtercode in drm_handle_vblank() will 1057 * prevent double-accounting of same vblank interval. 1058 */ 1059 ret = __enable_vblank(dev, pipe); 1060 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 1061 if (ret) { 1062 atomic_dec(&vblank->refcount); 1063 } else { 1064 drm_update_vblank_count(dev, pipe, 0); 1065 /* drm_update_vblank_count() includes a wmb so we just 1066 * need to ensure that the compiler emits the write 1067 * to mark the vblank as enabled after the call 1068 * to drm_update_vblank_count(). 1069 */ 1070 WRITE_ONCE(vblank->enabled, true); 1071 } 1072 } 1073 1074 spin_unlock(&dev->vblank_time_lock); 1075 1076 return ret; 1077 } 1078 1079 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1080 { 1081 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1082 unsigned long irqflags; 1083 int ret = 0; 1084 1085 if (!dev->num_crtcs) 1086 return -EINVAL; 1087 1088 if (WARN_ON(pipe >= dev->num_crtcs)) 1089 return -EINVAL; 1090 1091 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1092 /* Going from 0->1 means we have to enable interrupts again */ 1093 if (atomic_add_return(1, &vblank->refcount) == 1) { 1094 ret = drm_vblank_enable(dev, pipe); 1095 } else { 1096 if (!vblank->enabled) { 1097 atomic_dec(&vblank->refcount); 1098 ret = -EINVAL; 1099 } 1100 } 1101 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1102 1103 return ret; 1104 } 1105 1106 /** 1107 * drm_crtc_vblank_get - get a reference count on vblank events 1108 * @crtc: which CRTC to own 1109 * 1110 * Acquire a reference count on vblank events to avoid having them disabled 1111 * while in use. 1112 * 1113 * Returns: 1114 * Zero on success or a negative error code on failure. 1115 */ 1116 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1117 { 1118 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1119 } 1120 EXPORT_SYMBOL(drm_crtc_vblank_get); 1121 1122 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1123 { 1124 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1125 1126 if (WARN_ON(pipe >= dev->num_crtcs)) 1127 return; 1128 1129 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1130 return; 1131 1132 /* Last user schedules interrupt disable */ 1133 if (atomic_dec_and_test(&vblank->refcount)) { 1134 if (drm_vblank_offdelay == 0) 1135 return; 1136 else if (drm_vblank_offdelay < 0) 1137 vblank_disable_fn(&vblank->disable_timer); 1138 else if (!dev->vblank_disable_immediate) 1139 mod_timer(&vblank->disable_timer, 1140 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1141 } 1142 } 1143 1144 /** 1145 * drm_crtc_vblank_put - give up ownership of vblank events 1146 * @crtc: which counter to give up 1147 * 1148 * Release ownership of a given vblank counter, turning off interrupts 1149 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1150 */ 1151 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1152 { 1153 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1154 } 1155 EXPORT_SYMBOL(drm_crtc_vblank_put); 1156 1157 /** 1158 * drm_wait_one_vblank - wait for one vblank 1159 * @dev: DRM device 1160 * @pipe: CRTC index 1161 * 1162 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1163 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1164 * due to lack of driver support or because the crtc is off. 1165 * 1166 * This is the legacy version of drm_crtc_wait_one_vblank(). 1167 */ 1168 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1169 { 1170 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1171 int ret; 1172 u64 last; 1173 1174 if (WARN_ON(pipe >= dev->num_crtcs)) 1175 return; 1176 1177 ret = drm_vblank_get(dev, pipe); 1178 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1179 return; 1180 1181 last = drm_vblank_count(dev, pipe); 1182 1183 ret = wait_event_timeout(vblank->queue, 1184 last != drm_vblank_count(dev, pipe), 1185 msecs_to_jiffies(100)); 1186 1187 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1188 1189 drm_vblank_put(dev, pipe); 1190 } 1191 EXPORT_SYMBOL(drm_wait_one_vblank); 1192 1193 /** 1194 * drm_crtc_wait_one_vblank - wait for one vblank 1195 * @crtc: DRM crtc 1196 * 1197 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1198 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1199 * due to lack of driver support or because the crtc is off. 1200 */ 1201 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1202 { 1203 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1204 } 1205 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1206 1207 /** 1208 * drm_crtc_vblank_off - disable vblank events on a CRTC 1209 * @crtc: CRTC in question 1210 * 1211 * Drivers can use this function to shut down the vblank interrupt handling when 1212 * disabling a crtc. This function ensures that the latest vblank frame count is 1213 * stored so that drm_vblank_on can restore it again. 1214 * 1215 * Drivers must use this function when the hardware vblank counter can get 1216 * reset, e.g. when suspending or disabling the @crtc in general. 1217 */ 1218 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1219 { 1220 struct drm_device *dev = crtc->dev; 1221 unsigned int pipe = drm_crtc_index(crtc); 1222 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1223 struct drm_pending_vblank_event *e, *t; 1224 1225 ktime_t now; 1226 unsigned long irqflags; 1227 u64 seq; 1228 1229 if (WARN_ON(pipe >= dev->num_crtcs)) 1230 return; 1231 1232 spin_lock_irqsave(&dev->event_lock, irqflags); 1233 1234 spin_lock(&dev->vbl_lock); 1235 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1236 pipe, vblank->enabled, vblank->inmodeset); 1237 1238 /* Avoid redundant vblank disables without previous 1239 * drm_crtc_vblank_on(). */ 1240 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1241 drm_vblank_disable_and_save(dev, pipe); 1242 1243 wake_up(&vblank->queue); 1244 1245 /* 1246 * Prevent subsequent drm_vblank_get() from re-enabling 1247 * the vblank interrupt by bumping the refcount. 1248 */ 1249 if (!vblank->inmodeset) { 1250 atomic_inc(&vblank->refcount); 1251 vblank->inmodeset = 1; 1252 } 1253 spin_unlock(&dev->vbl_lock); 1254 1255 /* Send any queued vblank events, lest the natives grow disquiet */ 1256 seq = drm_vblank_count_and_time(dev, pipe, &now); 1257 1258 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1259 if (e->pipe != pipe) 1260 continue; 1261 DRM_DEBUG("Sending premature vblank event on disable: " 1262 "wanted %llu, current %llu\n", 1263 e->sequence, seq); 1264 list_del(&e->base.link); 1265 drm_vblank_put(dev, pipe); 1266 send_vblank_event(dev, e, seq, now); 1267 } 1268 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1269 1270 /* Will be reset by the modeset helpers when re-enabling the crtc by 1271 * calling drm_calc_timestamping_constants(). */ 1272 vblank->hwmode.crtc_clock = 0; 1273 } 1274 EXPORT_SYMBOL(drm_crtc_vblank_off); 1275 1276 /** 1277 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1278 * @crtc: CRTC in question 1279 * 1280 * Drivers can use this function to reset the vblank state to off at load time. 1281 * Drivers should use this together with the drm_crtc_vblank_off() and 1282 * drm_crtc_vblank_on() functions. The difference compared to 1283 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1284 * and hence doesn't need to call any driver hooks. 1285 * 1286 * This is useful for recovering driver state e.g. on driver load, or on resume. 1287 */ 1288 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1289 { 1290 struct drm_device *dev = crtc->dev; 1291 unsigned long irqflags; 1292 unsigned int pipe = drm_crtc_index(crtc); 1293 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1294 1295 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1296 /* 1297 * Prevent subsequent drm_vblank_get() from enabling the vblank 1298 * interrupt by bumping the refcount. 1299 */ 1300 if (!vblank->inmodeset) { 1301 atomic_inc(&vblank->refcount); 1302 vblank->inmodeset = 1; 1303 } 1304 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1305 1306 WARN_ON(!list_empty(&dev->vblank_event_list)); 1307 } 1308 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1309 1310 /** 1311 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1312 * @crtc: CRTC in question 1313 * @max_vblank_count: max hardware vblank counter value 1314 * 1315 * Update the maximum hardware vblank counter value for @crtc 1316 * at runtime. Useful for hardware where the operation of the 1317 * hardware vblank counter depends on the currently active 1318 * display configuration. 1319 * 1320 * For example, if the hardware vblank counter does not work 1321 * when a specific connector is active the maximum can be set 1322 * to zero. And when that specific connector isn't active the 1323 * maximum can again be set to the appropriate non-zero value. 1324 * 1325 * If used, must be called before drm_vblank_on(). 1326 */ 1327 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1328 u32 max_vblank_count) 1329 { 1330 struct drm_device *dev = crtc->dev; 1331 unsigned int pipe = drm_crtc_index(crtc); 1332 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1333 1334 WARN_ON(dev->max_vblank_count); 1335 WARN_ON(!READ_ONCE(vblank->inmodeset)); 1336 1337 vblank->max_vblank_count = max_vblank_count; 1338 } 1339 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1340 1341 /** 1342 * drm_crtc_vblank_on - enable vblank events on a CRTC 1343 * @crtc: CRTC in question 1344 * 1345 * This functions restores the vblank interrupt state captured with 1346 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1347 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1348 * unbalanced and so can also be unconditionally called in driver load code to 1349 * reflect the current hardware state of the crtc. 1350 */ 1351 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1352 { 1353 struct drm_device *dev = crtc->dev; 1354 unsigned int pipe = drm_crtc_index(crtc); 1355 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1356 unsigned long irqflags; 1357 1358 if (WARN_ON(pipe >= dev->num_crtcs)) 1359 return; 1360 1361 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1362 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1363 pipe, vblank->enabled, vblank->inmodeset); 1364 1365 /* Drop our private "prevent drm_vblank_get" refcount */ 1366 if (vblank->inmodeset) { 1367 atomic_dec(&vblank->refcount); 1368 vblank->inmodeset = 0; 1369 } 1370 1371 drm_reset_vblank_timestamp(dev, pipe); 1372 1373 /* 1374 * re-enable interrupts if there are users left, or the 1375 * user wishes vblank interrupts to be enabled all the time. 1376 */ 1377 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1378 WARN_ON(drm_vblank_enable(dev, pipe)); 1379 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1380 } 1381 EXPORT_SYMBOL(drm_crtc_vblank_on); 1382 1383 /** 1384 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1385 * @dev: DRM device 1386 * @pipe: CRTC index 1387 * 1388 * Power manamement features can cause frame counter resets between vblank 1389 * disable and enable. Drivers can use this function in their 1390 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1391 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1392 * vblank counter. 1393 * 1394 * This function is the legacy version of drm_crtc_vblank_restore(). 1395 */ 1396 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1397 { 1398 ktime_t t_vblank; 1399 struct drm_vblank_crtc *vblank; 1400 int framedur_ns; 1401 u64 diff_ns; 1402 u32 cur_vblank, diff = 1; 1403 int count = DRM_TIMESTAMP_MAXRETRIES; 1404 1405 if (WARN_ON(pipe >= dev->num_crtcs)) 1406 return; 1407 1408 assert_spin_locked(&dev->vbl_lock); 1409 assert_spin_locked(&dev->vblank_time_lock); 1410 1411 vblank = &dev->vblank[pipe]; 1412 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1413 "Cannot compute missed vblanks without frame duration\n"); 1414 framedur_ns = vblank->framedur_ns; 1415 1416 do { 1417 cur_vblank = __get_vblank_counter(dev, pipe); 1418 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1419 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1420 1421 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1422 if (framedur_ns) 1423 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1424 1425 1426 DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1427 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1428 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1429 } 1430 EXPORT_SYMBOL(drm_vblank_restore); 1431 1432 /** 1433 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1434 * @crtc: CRTC in question 1435 * 1436 * Power manamement features can cause frame counter resets between vblank 1437 * disable and enable. Drivers can use this function in their 1438 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1439 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1440 * vblank counter. 1441 */ 1442 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1443 { 1444 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1445 } 1446 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1447 1448 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1449 unsigned int pipe) 1450 { 1451 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1452 1453 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1454 if (!dev->num_crtcs) 1455 return; 1456 1457 if (WARN_ON(pipe >= dev->num_crtcs)) 1458 return; 1459 1460 /* 1461 * To avoid all the problems that might happen if interrupts 1462 * were enabled/disabled around or between these calls, we just 1463 * have the kernel take a reference on the CRTC (just once though 1464 * to avoid corrupting the count if multiple, mismatch calls occur), 1465 * so that interrupts remain enabled in the interim. 1466 */ 1467 if (!vblank->inmodeset) { 1468 vblank->inmodeset = 0x1; 1469 if (drm_vblank_get(dev, pipe) == 0) 1470 vblank->inmodeset |= 0x2; 1471 } 1472 } 1473 1474 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1475 unsigned int pipe) 1476 { 1477 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1478 unsigned long irqflags; 1479 1480 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1481 if (!dev->num_crtcs) 1482 return; 1483 1484 if (WARN_ON(pipe >= dev->num_crtcs)) 1485 return; 1486 1487 if (vblank->inmodeset) { 1488 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1489 drm_reset_vblank_timestamp(dev, pipe); 1490 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1491 1492 if (vblank->inmodeset & 0x2) 1493 drm_vblank_put(dev, pipe); 1494 1495 vblank->inmodeset = 0; 1496 } 1497 } 1498 1499 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1500 struct drm_file *file_priv) 1501 { 1502 struct drm_modeset_ctl *modeset = data; 1503 unsigned int pipe; 1504 1505 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1506 if (!dev->num_crtcs) 1507 return 0; 1508 1509 /* KMS drivers handle this internally */ 1510 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1511 return 0; 1512 1513 pipe = modeset->crtc; 1514 if (pipe >= dev->num_crtcs) 1515 return -EINVAL; 1516 1517 switch (modeset->cmd) { 1518 case _DRM_PRE_MODESET: 1519 drm_legacy_vblank_pre_modeset(dev, pipe); 1520 break; 1521 case _DRM_POST_MODESET: 1522 drm_legacy_vblank_post_modeset(dev, pipe); 1523 break; 1524 default: 1525 return -EINVAL; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static inline bool vblank_passed(u64 seq, u64 ref) 1532 { 1533 return (seq - ref) <= (1 << 23); 1534 } 1535 1536 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1537 u64 req_seq, 1538 union drm_wait_vblank *vblwait, 1539 struct drm_file *file_priv) 1540 { 1541 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1542 struct drm_pending_vblank_event *e; 1543 ktime_t now; 1544 unsigned long flags; 1545 u64 seq; 1546 int ret; 1547 1548 e = kzalloc(sizeof(*e), GFP_KERNEL); 1549 if (e == NULL) { 1550 ret = -ENOMEM; 1551 goto err_put; 1552 } 1553 1554 e->pipe = pipe; 1555 e->event.base.type = DRM_EVENT_VBLANK; 1556 e->event.base.length = sizeof(e->event.vbl); 1557 e->event.vbl.user_data = vblwait->request.signal; 1558 e->event.vbl.crtc_id = 0; 1559 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1560 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1561 if (crtc) 1562 e->event.vbl.crtc_id = crtc->base.id; 1563 } 1564 1565 spin_lock_irqsave(&dev->event_lock, flags); 1566 1567 /* 1568 * drm_crtc_vblank_off() might have been called after we called 1569 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1570 * vblank disable, so no need for further locking. The reference from 1571 * drm_vblank_get() protects against vblank disable from another source. 1572 */ 1573 if (!READ_ONCE(vblank->enabled)) { 1574 ret = -EINVAL; 1575 goto err_unlock; 1576 } 1577 1578 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1579 &e->event.base); 1580 1581 if (ret) 1582 goto err_unlock; 1583 1584 seq = drm_vblank_count_and_time(dev, pipe, &now); 1585 1586 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1587 req_seq, seq, pipe); 1588 1589 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1590 1591 e->sequence = req_seq; 1592 if (vblank_passed(seq, req_seq)) { 1593 drm_vblank_put(dev, pipe); 1594 send_vblank_event(dev, e, seq, now); 1595 vblwait->reply.sequence = seq; 1596 } else { 1597 /* drm_handle_vblank_events will call drm_vblank_put */ 1598 list_add_tail(&e->base.link, &dev->vblank_event_list); 1599 vblwait->reply.sequence = req_seq; 1600 } 1601 1602 spin_unlock_irqrestore(&dev->event_lock, flags); 1603 1604 return 0; 1605 1606 err_unlock: 1607 spin_unlock_irqrestore(&dev->event_lock, flags); 1608 kfree(e); 1609 err_put: 1610 drm_vblank_put(dev, pipe); 1611 return ret; 1612 } 1613 1614 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1615 { 1616 if (vblwait->request.sequence) 1617 return false; 1618 1619 return _DRM_VBLANK_RELATIVE == 1620 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1621 _DRM_VBLANK_EVENT | 1622 _DRM_VBLANK_NEXTONMISS)); 1623 } 1624 1625 /* 1626 * Widen a 32-bit param to 64-bits. 1627 * 1628 * \param narrow 32-bit value (missing upper 32 bits) 1629 * \param near 64-bit value that should be 'close' to near 1630 * 1631 * This function returns a 64-bit value using the lower 32-bits from 1632 * 'narrow' and constructing the upper 32-bits so that the result is 1633 * as close as possible to 'near'. 1634 */ 1635 1636 static u64 widen_32_to_64(u32 narrow, u64 near) 1637 { 1638 return near + (s32) (narrow - near); 1639 } 1640 1641 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1642 struct drm_wait_vblank_reply *reply) 1643 { 1644 ktime_t now; 1645 struct timespec64 ts; 1646 1647 /* 1648 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1649 * to store the seconds. This is safe as we always use monotonic 1650 * timestamps since linux-4.15. 1651 */ 1652 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1653 ts = ktime_to_timespec64(now); 1654 reply->tval_sec = (u32)ts.tv_sec; 1655 reply->tval_usec = ts.tv_nsec / 1000; 1656 } 1657 1658 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1659 struct drm_file *file_priv) 1660 { 1661 struct drm_crtc *crtc; 1662 struct drm_vblank_crtc *vblank; 1663 union drm_wait_vblank *vblwait = data; 1664 int ret; 1665 u64 req_seq, seq; 1666 unsigned int pipe_index; 1667 unsigned int flags, pipe, high_pipe; 1668 1669 if (!dev->irq_enabled) 1670 return -EOPNOTSUPP; 1671 1672 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1673 return -EINVAL; 1674 1675 if (vblwait->request.type & 1676 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1677 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1678 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n", 1679 vblwait->request.type, 1680 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1681 _DRM_VBLANK_HIGH_CRTC_MASK)); 1682 return -EINVAL; 1683 } 1684 1685 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1686 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1687 if (high_pipe) 1688 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1689 else 1690 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1691 1692 /* Convert lease-relative crtc index into global crtc index */ 1693 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1694 pipe = 0; 1695 drm_for_each_crtc(crtc, dev) { 1696 if (drm_lease_held(file_priv, crtc->base.id)) { 1697 if (pipe_index == 0) 1698 break; 1699 pipe_index--; 1700 } 1701 pipe++; 1702 } 1703 } else { 1704 pipe = pipe_index; 1705 } 1706 1707 if (pipe >= dev->num_crtcs) 1708 return -EINVAL; 1709 1710 vblank = &dev->vblank[pipe]; 1711 1712 /* If the counter is currently enabled and accurate, short-circuit 1713 * queries to return the cached timestamp of the last vblank. 1714 */ 1715 if (dev->vblank_disable_immediate && 1716 drm_wait_vblank_is_query(vblwait) && 1717 READ_ONCE(vblank->enabled)) { 1718 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1719 return 0; 1720 } 1721 1722 ret = drm_vblank_get(dev, pipe); 1723 if (ret) { 1724 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1725 return ret; 1726 } 1727 seq = drm_vblank_count(dev, pipe); 1728 1729 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1730 case _DRM_VBLANK_RELATIVE: 1731 req_seq = seq + vblwait->request.sequence; 1732 vblwait->request.sequence = req_seq; 1733 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1734 break; 1735 case _DRM_VBLANK_ABSOLUTE: 1736 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1737 break; 1738 default: 1739 ret = -EINVAL; 1740 goto done; 1741 } 1742 1743 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1744 vblank_passed(seq, req_seq)) { 1745 req_seq = seq + 1; 1746 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1747 vblwait->request.sequence = req_seq; 1748 } 1749 1750 if (flags & _DRM_VBLANK_EVENT) { 1751 /* must hold on to the vblank ref until the event fires 1752 * drm_vblank_put will be called asynchronously 1753 */ 1754 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1755 } 1756 1757 if (req_seq != seq) { 1758 int wait; 1759 1760 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1761 req_seq, pipe); 1762 wait = wait_event_interruptible_timeout(vblank->queue, 1763 vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1764 !READ_ONCE(vblank->enabled), 1765 msecs_to_jiffies(3000)); 1766 1767 switch (wait) { 1768 case 0: 1769 /* timeout */ 1770 ret = -EBUSY; 1771 break; 1772 case -ERESTARTSYS: 1773 /* interrupted by signal */ 1774 ret = -EINTR; 1775 break; 1776 default: 1777 ret = 0; 1778 break; 1779 } 1780 } 1781 1782 if (ret != -EINTR) { 1783 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1784 1785 DRM_DEBUG("crtc %d returning %u to client\n", 1786 pipe, vblwait->reply.sequence); 1787 } else { 1788 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1789 } 1790 1791 done: 1792 drm_vblank_put(dev, pipe); 1793 return ret; 1794 } 1795 1796 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1797 { 1798 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1799 bool high_prec = false; 1800 struct drm_pending_vblank_event *e, *t; 1801 ktime_t now; 1802 u64 seq; 1803 1804 assert_spin_locked(&dev->event_lock); 1805 1806 seq = drm_vblank_count_and_time(dev, pipe, &now); 1807 1808 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1809 if (e->pipe != pipe) 1810 continue; 1811 if (!vblank_passed(seq, e->sequence)) 1812 continue; 1813 1814 DRM_DEBUG("vblank event on %llu, current %llu\n", 1815 e->sequence, seq); 1816 1817 list_del(&e->base.link); 1818 drm_vblank_put(dev, pipe); 1819 send_vblank_event(dev, e, seq, now); 1820 } 1821 1822 if (crtc && crtc->funcs->get_vblank_timestamp) 1823 high_prec = true; 1824 1825 trace_drm_vblank_event(pipe, seq, now, high_prec); 1826 } 1827 1828 /** 1829 * drm_handle_vblank - handle a vblank event 1830 * @dev: DRM device 1831 * @pipe: index of CRTC where this event occurred 1832 * 1833 * Drivers should call this routine in their vblank interrupt handlers to 1834 * update the vblank counter and send any signals that may be pending. 1835 * 1836 * This is the legacy version of drm_crtc_handle_vblank(). 1837 */ 1838 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1839 { 1840 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1841 unsigned long irqflags; 1842 bool disable_irq; 1843 1844 if (WARN_ON_ONCE(!dev->num_crtcs)) 1845 return false; 1846 1847 if (WARN_ON(pipe >= dev->num_crtcs)) 1848 return false; 1849 1850 spin_lock_irqsave(&dev->event_lock, irqflags); 1851 1852 /* Need timestamp lock to prevent concurrent execution with 1853 * vblank enable/disable, as this would cause inconsistent 1854 * or corrupted timestamps and vblank counts. 1855 */ 1856 spin_lock(&dev->vblank_time_lock); 1857 1858 /* Vblank irq handling disabled. Nothing to do. */ 1859 if (!vblank->enabled) { 1860 spin_unlock(&dev->vblank_time_lock); 1861 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1862 return false; 1863 } 1864 1865 drm_update_vblank_count(dev, pipe, true); 1866 1867 spin_unlock(&dev->vblank_time_lock); 1868 1869 wake_up(&vblank->queue); 1870 1871 /* With instant-off, we defer disabling the interrupt until after 1872 * we finish processing the following vblank after all events have 1873 * been signaled. The disable has to be last (after 1874 * drm_handle_vblank_events) so that the timestamp is always accurate. 1875 */ 1876 disable_irq = (dev->vblank_disable_immediate && 1877 drm_vblank_offdelay > 0 && 1878 !atomic_read(&vblank->refcount)); 1879 1880 drm_handle_vblank_events(dev, pipe); 1881 1882 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1883 1884 if (disable_irq) 1885 vblank_disable_fn(&vblank->disable_timer); 1886 1887 return true; 1888 } 1889 EXPORT_SYMBOL(drm_handle_vblank); 1890 1891 /** 1892 * drm_crtc_handle_vblank - handle a vblank event 1893 * @crtc: where this event occurred 1894 * 1895 * Drivers should call this routine in their vblank interrupt handlers to 1896 * update the vblank counter and send any signals that may be pending. 1897 * 1898 * This is the native KMS version of drm_handle_vblank(). 1899 * 1900 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1901 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1902 * provide a barrier: Any writes done before calling 1903 * drm_crtc_handle_vblank() will be visible to callers of the later 1904 * functions, iff the vblank count is the same or a later one. 1905 * 1906 * See also &drm_vblank_crtc.count. 1907 * 1908 * Returns: 1909 * True if the event was successfully handled, false on failure. 1910 */ 1911 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1912 { 1913 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1914 } 1915 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1916 1917 /* 1918 * Get crtc VBLANK count. 1919 * 1920 * \param dev DRM device 1921 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1922 * \param file_priv drm file private for the user's open file descriptor 1923 */ 1924 1925 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1926 struct drm_file *file_priv) 1927 { 1928 struct drm_crtc *crtc; 1929 struct drm_vblank_crtc *vblank; 1930 int pipe; 1931 struct drm_crtc_get_sequence *get_seq = data; 1932 ktime_t now; 1933 bool vblank_enabled; 1934 int ret; 1935 1936 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1937 return -EOPNOTSUPP; 1938 1939 if (!dev->irq_enabled) 1940 return -EOPNOTSUPP; 1941 1942 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1943 if (!crtc) 1944 return -ENOENT; 1945 1946 pipe = drm_crtc_index(crtc); 1947 1948 vblank = &dev->vblank[pipe]; 1949 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1950 1951 if (!vblank_enabled) { 1952 ret = drm_crtc_vblank_get(crtc); 1953 if (ret) { 1954 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1955 return ret; 1956 } 1957 } 1958 drm_modeset_lock(&crtc->mutex, NULL); 1959 if (crtc->state) 1960 get_seq->active = crtc->state->enable; 1961 else 1962 get_seq->active = crtc->enabled; 1963 drm_modeset_unlock(&crtc->mutex); 1964 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1965 get_seq->sequence_ns = ktime_to_ns(now); 1966 if (!vblank_enabled) 1967 drm_crtc_vblank_put(crtc); 1968 return 0; 1969 } 1970 1971 /* 1972 * Queue a event for VBLANK sequence 1973 * 1974 * \param dev DRM device 1975 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 1976 * \param file_priv drm file private for the user's open file descriptor 1977 */ 1978 1979 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 1980 struct drm_file *file_priv) 1981 { 1982 struct drm_crtc *crtc; 1983 struct drm_vblank_crtc *vblank; 1984 int pipe; 1985 struct drm_crtc_queue_sequence *queue_seq = data; 1986 ktime_t now; 1987 struct drm_pending_vblank_event *e; 1988 u32 flags; 1989 u64 seq; 1990 u64 req_seq; 1991 int ret; 1992 unsigned long spin_flags; 1993 1994 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1995 return -EOPNOTSUPP; 1996 1997 if (!dev->irq_enabled) 1998 return -EOPNOTSUPP; 1999 2000 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2001 if (!crtc) 2002 return -ENOENT; 2003 2004 flags = queue_seq->flags; 2005 /* Check valid flag bits */ 2006 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2007 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2008 return -EINVAL; 2009 2010 pipe = drm_crtc_index(crtc); 2011 2012 vblank = &dev->vblank[pipe]; 2013 2014 e = kzalloc(sizeof(*e), GFP_KERNEL); 2015 if (e == NULL) 2016 return -ENOMEM; 2017 2018 ret = drm_crtc_vblank_get(crtc); 2019 if (ret) { 2020 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 2021 goto err_free; 2022 } 2023 2024 seq = drm_vblank_count_and_time(dev, pipe, &now); 2025 req_seq = queue_seq->sequence; 2026 2027 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2028 req_seq += seq; 2029 2030 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 2031 req_seq = seq + 1; 2032 2033 e->pipe = pipe; 2034 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2035 e->event.base.length = sizeof(e->event.seq); 2036 e->event.seq.user_data = queue_seq->user_data; 2037 2038 spin_lock_irqsave(&dev->event_lock, spin_flags); 2039 2040 /* 2041 * drm_crtc_vblank_off() might have been called after we called 2042 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2043 * vblank disable, so no need for further locking. The reference from 2044 * drm_crtc_vblank_get() protects against vblank disable from another source. 2045 */ 2046 if (!READ_ONCE(vblank->enabled)) { 2047 ret = -EINVAL; 2048 goto err_unlock; 2049 } 2050 2051 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2052 &e->event.base); 2053 2054 if (ret) 2055 goto err_unlock; 2056 2057 e->sequence = req_seq; 2058 2059 if (vblank_passed(seq, req_seq)) { 2060 drm_crtc_vblank_put(crtc); 2061 send_vblank_event(dev, e, seq, now); 2062 queue_seq->sequence = seq; 2063 } else { 2064 /* drm_handle_vblank_events will call drm_vblank_put */ 2065 list_add_tail(&e->base.link, &dev->vblank_event_list); 2066 queue_seq->sequence = req_seq; 2067 } 2068 2069 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2070 return 0; 2071 2072 err_unlock: 2073 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2074 drm_crtc_vblank_put(crtc); 2075 err_free: 2076 kfree(e); 2077 return ret; 2078 } 2079