xref: /linux/drivers/gpu/drm/drm_vblank.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/moduleparam.h>
29 
30 #include <drm/drm_crtc.h>
31 #include <drm/drm_drv.h>
32 #include <drm/drm_framebuffer.h>
33 #include <drm/drm_modeset_helper_vtables.h>
34 #include <drm/drm_print.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "drm_internal.h"
38 #include "drm_trace.h"
39 
40 /**
41  * DOC: vblank handling
42  *
43  * Vertical blanking plays a major role in graphics rendering. To achieve
44  * tear-free display, users must synchronize page flips and/or rendering to
45  * vertical blanking. The DRM API offers ioctls to perform page flips
46  * synchronized to vertical blanking and wait for vertical blanking.
47  *
48  * The DRM core handles most of the vertical blanking management logic, which
49  * involves filtering out spurious interrupts, keeping race-free blanking
50  * counters, coping with counter wrap-around and resets and keeping use counts.
51  * It relies on the driver to generate vertical blanking interrupts and
52  * optionally provide a hardware vertical blanking counter.
53  *
54  * Drivers must initialize the vertical blanking handling core with a call to
55  * drm_vblank_init(). Minimally, a driver needs to implement
56  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
57  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
58  * support.
59  *
60  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
61  * themselves (for instance to handle page flipping operations).  The DRM core
62  * maintains a vertical blanking use count to ensure that the interrupts are not
63  * disabled while a user still needs them. To increment the use count, drivers
64  * call drm_crtc_vblank_get() and release the vblank reference again with
65  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
66  * guaranteed to be enabled.
67  *
68  * On many hardware disabling the vblank interrupt cannot be done in a race-free
69  * manner, see &drm_driver.vblank_disable_immediate and
70  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
71  * vblanks after a timer has expired, which can be configured through the
72  * ``vblankoffdelay`` module parameter.
73  *
74  * Drivers for hardware without support for vertical-blanking interrupts
75  * must not call drm_vblank_init(). For such drivers, atomic helpers will
76  * automatically generate fake vblank events as part of the display update.
77  * This functionality also can be controlled by the driver by enabling and
78  * disabling struct drm_crtc_state.no_vblank.
79  */
80 
81 /* Retry timestamp calculation up to 3 times to satisfy
82  * drm_timestamp_precision before giving up.
83  */
84 #define DRM_TIMESTAMP_MAXRETRIES 3
85 
86 /* Threshold in nanoseconds for detection of redundant
87  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
88  */
89 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
90 
91 static bool
92 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
93 			  ktime_t *tvblank, bool in_vblank_irq);
94 
95 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
96 
97 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
98 
99 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
100 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
101 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
102 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
103 
104 static void store_vblank(struct drm_device *dev, unsigned int pipe,
105 			 u32 vblank_count_inc,
106 			 ktime_t t_vblank, u32 last)
107 {
108 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
109 
110 	assert_spin_locked(&dev->vblank_time_lock);
111 
112 	vblank->last = last;
113 
114 	write_seqlock(&vblank->seqlock);
115 	vblank->time = t_vblank;
116 	atomic64_add(vblank_count_inc, &vblank->count);
117 	write_sequnlock(&vblank->seqlock);
118 }
119 
120 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
121 {
122 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
123 
124 	return vblank->max_vblank_count ?: dev->max_vblank_count;
125 }
126 
127 /*
128  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
129  * if there is no useable hardware frame counter available.
130  */
131 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
132 {
133 	WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
134 	return 0;
135 }
136 
137 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
138 {
139 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
140 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
141 
142 		if (WARN_ON(!crtc))
143 			return 0;
144 
145 		if (crtc->funcs->get_vblank_counter)
146 			return crtc->funcs->get_vblank_counter(crtc);
147 	} else if (dev->driver->get_vblank_counter) {
148 		return dev->driver->get_vblank_counter(dev, pipe);
149 	}
150 
151 	return drm_vblank_no_hw_counter(dev, pipe);
152 }
153 
154 /*
155  * Reset the stored timestamp for the current vblank count to correspond
156  * to the last vblank occurred.
157  *
158  * Only to be called from drm_crtc_vblank_on().
159  *
160  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
161  * device vblank fields.
162  */
163 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
164 {
165 	u32 cur_vblank;
166 	bool rc;
167 	ktime_t t_vblank;
168 	int count = DRM_TIMESTAMP_MAXRETRIES;
169 
170 	spin_lock(&dev->vblank_time_lock);
171 
172 	/*
173 	 * sample the current counter to avoid random jumps
174 	 * when drm_vblank_enable() applies the diff
175 	 */
176 	do {
177 		cur_vblank = __get_vblank_counter(dev, pipe);
178 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
179 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
180 
181 	/*
182 	 * Only reinitialize corresponding vblank timestamp if high-precision query
183 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
184 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
185 	 */
186 	if (!rc)
187 		t_vblank = 0;
188 
189 	/*
190 	 * +1 to make sure user will never see the same
191 	 * vblank counter value before and after a modeset
192 	 */
193 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
194 
195 	spin_unlock(&dev->vblank_time_lock);
196 }
197 
198 /*
199  * Call back into the driver to update the appropriate vblank counter
200  * (specified by @pipe).  Deal with wraparound, if it occurred, and
201  * update the last read value so we can deal with wraparound on the next
202  * call if necessary.
203  *
204  * Only necessary when going from off->on, to account for frames we
205  * didn't get an interrupt for.
206  *
207  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
208  * device vblank fields.
209  */
210 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
211 				    bool in_vblank_irq)
212 {
213 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
214 	u32 cur_vblank, diff;
215 	bool rc;
216 	ktime_t t_vblank;
217 	int count = DRM_TIMESTAMP_MAXRETRIES;
218 	int framedur_ns = vblank->framedur_ns;
219 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
220 
221 	/*
222 	 * Interrupts were disabled prior to this call, so deal with counter
223 	 * wrap if needed.
224 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
225 	 * here if the register is small or we had vblank interrupts off for
226 	 * a long time.
227 	 *
228 	 * We repeat the hardware vblank counter & timestamp query until
229 	 * we get consistent results. This to prevent races between gpu
230 	 * updating its hardware counter while we are retrieving the
231 	 * corresponding vblank timestamp.
232 	 */
233 	do {
234 		cur_vblank = __get_vblank_counter(dev, pipe);
235 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
236 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
237 
238 	if (max_vblank_count) {
239 		/* trust the hw counter when it's around */
240 		diff = (cur_vblank - vblank->last) & max_vblank_count;
241 	} else if (rc && framedur_ns) {
242 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
243 
244 		/*
245 		 * Figure out how many vblanks we've missed based
246 		 * on the difference in the timestamps and the
247 		 * frame/field duration.
248 		 */
249 
250 		DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
251 			      " diff_ns = %lld, framedur_ns = %d)\n",
252 			      pipe, (long long) diff_ns, framedur_ns);
253 
254 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
255 
256 		if (diff == 0 && in_vblank_irq)
257 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
258 				      pipe);
259 	} else {
260 		/* some kind of default for drivers w/o accurate vbl timestamping */
261 		diff = in_vblank_irq ? 1 : 0;
262 	}
263 
264 	/*
265 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
266 	 * interval? If so then vblank irqs keep running and it will likely
267 	 * happen that the hardware vblank counter is not trustworthy as it
268 	 * might reset at some point in that interval and vblank timestamps
269 	 * are not trustworthy either in that interval. Iow. this can result
270 	 * in a bogus diff >> 1 which must be avoided as it would cause
271 	 * random large forward jumps of the software vblank counter.
272 	 */
273 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
274 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
275 			      " due to pre-modeset.\n", pipe, diff);
276 		diff = 1;
277 	}
278 
279 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
280 		      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
281 		      pipe, atomic64_read(&vblank->count), diff,
282 		      cur_vblank, vblank->last);
283 
284 	if (diff == 0) {
285 		WARN_ON_ONCE(cur_vblank != vblank->last);
286 		return;
287 	}
288 
289 	/*
290 	 * Only reinitialize corresponding vblank timestamp if high-precision query
291 	 * available and didn't fail, or we were called from the vblank interrupt.
292 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
293 	 * for now, to mark the vblanktimestamp as invalid.
294 	 */
295 	if (!rc && !in_vblank_irq)
296 		t_vblank = 0;
297 
298 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
299 }
300 
301 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
302 {
303 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
304 	u64 count;
305 
306 	if (WARN_ON(pipe >= dev->num_crtcs))
307 		return 0;
308 
309 	count = atomic64_read(&vblank->count);
310 
311 	/*
312 	 * This read barrier corresponds to the implicit write barrier of the
313 	 * write seqlock in store_vblank(). Note that this is the only place
314 	 * where we need an explicit barrier, since all other access goes
315 	 * through drm_vblank_count_and_time(), which already has the required
316 	 * read barrier curtesy of the read seqlock.
317 	 */
318 	smp_rmb();
319 
320 	return count;
321 }
322 
323 /**
324  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
325  * @crtc: which counter to retrieve
326  *
327  * This function is similar to drm_crtc_vblank_count() but this function
328  * interpolates to handle a race with vblank interrupts using the high precision
329  * timestamping support.
330  *
331  * This is mostly useful for hardware that can obtain the scanout position, but
332  * doesn't have a hardware frame counter.
333  */
334 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
335 {
336 	struct drm_device *dev = crtc->dev;
337 	unsigned int pipe = drm_crtc_index(crtc);
338 	u64 vblank;
339 	unsigned long flags;
340 
341 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) &&
342 		  !crtc->funcs->get_vblank_timestamp,
343 		  "This function requires support for accurate vblank timestamps.");
344 
345 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
346 
347 	drm_update_vblank_count(dev, pipe, false);
348 	vblank = drm_vblank_count(dev, pipe);
349 
350 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
351 
352 	return vblank;
353 }
354 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
355 
356 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
357 {
358 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
359 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
360 
361 		if (WARN_ON(!crtc))
362 			return;
363 
364 		if (crtc->funcs->disable_vblank)
365 			crtc->funcs->disable_vblank(crtc);
366 	} else {
367 		dev->driver->disable_vblank(dev, pipe);
368 	}
369 }
370 
371 /*
372  * Disable vblank irq's on crtc, make sure that last vblank count
373  * of hardware and corresponding consistent software vblank counter
374  * are preserved, even if there are any spurious vblank irq's after
375  * disable.
376  */
377 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
378 {
379 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
380 	unsigned long irqflags;
381 
382 	assert_spin_locked(&dev->vbl_lock);
383 
384 	/* Prevent vblank irq processing while disabling vblank irqs,
385 	 * so no updates of timestamps or count can happen after we've
386 	 * disabled. Needed to prevent races in case of delayed irq's.
387 	 */
388 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
389 
390 	/*
391 	 * Update vblank count and disable vblank interrupts only if the
392 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
393 	 * operation in atomic context with the hardware potentially runtime
394 	 * suspended.
395 	 */
396 	if (!vblank->enabled)
397 		goto out;
398 
399 	/*
400 	 * Update the count and timestamp to maintain the
401 	 * appearance that the counter has been ticking all along until
402 	 * this time. This makes the count account for the entire time
403 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
404 	 */
405 	drm_update_vblank_count(dev, pipe, false);
406 	__disable_vblank(dev, pipe);
407 	vblank->enabled = false;
408 
409 out:
410 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
411 }
412 
413 static void vblank_disable_fn(struct timer_list *t)
414 {
415 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
416 	struct drm_device *dev = vblank->dev;
417 	unsigned int pipe = vblank->pipe;
418 	unsigned long irqflags;
419 
420 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
421 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
422 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
423 		drm_vblank_disable_and_save(dev, pipe);
424 	}
425 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
426 }
427 
428 void drm_vblank_cleanup(struct drm_device *dev)
429 {
430 	unsigned int pipe;
431 
432 	/* Bail if the driver didn't call drm_vblank_init() */
433 	if (dev->num_crtcs == 0)
434 		return;
435 
436 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
437 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
438 
439 		WARN_ON(READ_ONCE(vblank->enabled) &&
440 			drm_core_check_feature(dev, DRIVER_MODESET));
441 
442 		del_timer_sync(&vblank->disable_timer);
443 	}
444 
445 	kfree(dev->vblank);
446 
447 	dev->num_crtcs = 0;
448 }
449 
450 /**
451  * drm_vblank_init - initialize vblank support
452  * @dev: DRM device
453  * @num_crtcs: number of CRTCs supported by @dev
454  *
455  * This function initializes vblank support for @num_crtcs display pipelines.
456  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
457  * drivers with a &drm_driver.release callback.
458  *
459  * Returns:
460  * Zero on success or a negative error code on failure.
461  */
462 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
463 {
464 	int ret = -ENOMEM;
465 	unsigned int i;
466 
467 	spin_lock_init(&dev->vbl_lock);
468 	spin_lock_init(&dev->vblank_time_lock);
469 
470 	dev->num_crtcs = num_crtcs;
471 
472 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
473 	if (!dev->vblank)
474 		goto err;
475 
476 	for (i = 0; i < num_crtcs; i++) {
477 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
478 
479 		vblank->dev = dev;
480 		vblank->pipe = i;
481 		init_waitqueue_head(&vblank->queue);
482 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
483 		seqlock_init(&vblank->seqlock);
484 	}
485 
486 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
487 
488 	return 0;
489 
490 err:
491 	dev->num_crtcs = 0;
492 	return ret;
493 }
494 EXPORT_SYMBOL(drm_vblank_init);
495 
496 /**
497  * drm_dev_has_vblank - test if vblanking has been initialized for
498  *                      a device
499  * @dev: the device
500  *
501  * Drivers may call this function to test if vblank support is
502  * initialized for a device. For most hardware this means that vblanking
503  * can also be enabled.
504  *
505  * Atomic helpers use this function to initialize
506  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
507  *
508  * Returns:
509  * True if vblanking has been initialized for the given device, false
510  * otherwise.
511  */
512 bool drm_dev_has_vblank(const struct drm_device *dev)
513 {
514 	return dev->num_crtcs != 0;
515 }
516 EXPORT_SYMBOL(drm_dev_has_vblank);
517 
518 /**
519  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
520  * @crtc: which CRTC's vblank waitqueue to retrieve
521  *
522  * This function returns a pointer to the vblank waitqueue for the CRTC.
523  * Drivers can use this to implement vblank waits using wait_event() and related
524  * functions.
525  */
526 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
527 {
528 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
529 }
530 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
531 
532 
533 /**
534  * drm_calc_timestamping_constants - calculate vblank timestamp constants
535  * @crtc: drm_crtc whose timestamp constants should be updated.
536  * @mode: display mode containing the scanout timings
537  *
538  * Calculate and store various constants which are later needed by vblank and
539  * swap-completion timestamping, e.g, by
540  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
541  * CRTC's true scanout timing, so they take things like panel scaling or
542  * other adjustments into account.
543  */
544 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
545 				     const struct drm_display_mode *mode)
546 {
547 	struct drm_device *dev = crtc->dev;
548 	unsigned int pipe = drm_crtc_index(crtc);
549 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
550 	int linedur_ns = 0, framedur_ns = 0;
551 	int dotclock = mode->crtc_clock;
552 
553 	if (!dev->num_crtcs)
554 		return;
555 
556 	if (WARN_ON(pipe >= dev->num_crtcs))
557 		return;
558 
559 	/* Valid dotclock? */
560 	if (dotclock > 0) {
561 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
562 
563 		/*
564 		 * Convert scanline length in pixels and video
565 		 * dot clock to line duration and frame duration
566 		 * in nanoseconds:
567 		 */
568 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
569 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
570 
571 		/*
572 		 * Fields of interlaced scanout modes are only half a frame duration.
573 		 */
574 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
575 			framedur_ns /= 2;
576 	} else
577 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
578 			  crtc->base.id);
579 
580 	vblank->linedur_ns  = linedur_ns;
581 	vblank->framedur_ns = framedur_ns;
582 	vblank->hwmode = *mode;
583 
584 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
585 		  crtc->base.id, mode->crtc_htotal,
586 		  mode->crtc_vtotal, mode->crtc_vdisplay);
587 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
588 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
589 }
590 EXPORT_SYMBOL(drm_calc_timestamping_constants);
591 
592 /**
593  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
594  *                                                        timestamp helper
595  * @dev: DRM device
596  * @pipe: index of CRTC whose vblank timestamp to retrieve
597  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
598  *             On return contains true maximum error of timestamp
599  * @vblank_time: Pointer to time which should receive the timestamp
600  * @in_vblank_irq:
601  *     True when called from drm_crtc_handle_vblank().  Some drivers
602  *     need to apply some workarounds for gpu-specific vblank irq quirks
603  *     if flag is set.
604  * @get_scanout_position:
605  *     Callback function to retrieve the scanout position. See
606  *     @struct drm_crtc_helper_funcs.get_scanout_position.
607  *
608  * Implements calculation of exact vblank timestamps from given drm_display_mode
609  * timings and current video scanout position of a CRTC.
610  *
611  * The current implementation only handles standard video modes. For double scan
612  * and interlaced modes the driver is supposed to adjust the hardware mode
613  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
614  * match the scanout position reported.
615  *
616  * Note that atomic drivers must call drm_calc_timestamping_constants() before
617  * enabling a CRTC. The atomic helpers already take care of that in
618  * drm_atomic_helper_update_legacy_modeset_state().
619  *
620  * Returns:
621  *
622  * Returns true on success, and false on failure, i.e. when no accurate
623  * timestamp could be acquired.
624  */
625 bool
626 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
627 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
628 	bool in_vblank_irq,
629 	drm_vblank_get_scanout_position_func get_scanout_position)
630 {
631 	struct drm_device *dev = crtc->dev;
632 	unsigned int pipe = crtc->index;
633 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
634 	struct timespec64 ts_etime, ts_vblank_time;
635 	ktime_t stime, etime;
636 	bool vbl_status;
637 	const struct drm_display_mode *mode;
638 	int vpos, hpos, i;
639 	int delta_ns, duration_ns;
640 
641 	if (pipe >= dev->num_crtcs) {
642 		DRM_ERROR("Invalid crtc %u\n", pipe);
643 		return false;
644 	}
645 
646 	/* Scanout position query not supported? Should not happen. */
647 	if (!get_scanout_position) {
648 		DRM_ERROR("Called from CRTC w/o get_scanout_position()!?\n");
649 		return false;
650 	}
651 
652 	if (drm_drv_uses_atomic_modeset(dev))
653 		mode = &vblank->hwmode;
654 	else
655 		mode = &crtc->hwmode;
656 
657 	/* If mode timing undefined, just return as no-op:
658 	 * Happens during initial modesetting of a crtc.
659 	 */
660 	if (mode->crtc_clock == 0) {
661 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
662 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
663 		return false;
664 	}
665 
666 	/* Get current scanout position with system timestamp.
667 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
668 	 * if single query takes longer than max_error nanoseconds.
669 	 *
670 	 * This guarantees a tight bound on maximum error if
671 	 * code gets preempted or delayed for some reason.
672 	 */
673 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
674 		/*
675 		 * Get vertical and horizontal scanout position vpos, hpos,
676 		 * and bounding timestamps stime, etime, pre/post query.
677 		 */
678 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
679 						  &vpos, &hpos,
680 						  &stime, &etime,
681 						  mode);
682 
683 		/* Return as no-op if scanout query unsupported or failed. */
684 		if (!vbl_status) {
685 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
686 				  pipe);
687 			return false;
688 		}
689 
690 		/* Compute uncertainty in timestamp of scanout position query. */
691 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
692 
693 		/* Accept result with <  max_error nsecs timing uncertainty. */
694 		if (duration_ns <= *max_error)
695 			break;
696 	}
697 
698 	/* Noisy system timing? */
699 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
700 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
701 			  pipe, duration_ns/1000, *max_error/1000, i);
702 	}
703 
704 	/* Return upper bound of timestamp precision error. */
705 	*max_error = duration_ns;
706 
707 	/* Convert scanout position into elapsed time at raw_time query
708 	 * since start of scanout at first display scanline. delta_ns
709 	 * can be negative if start of scanout hasn't happened yet.
710 	 */
711 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
712 			   mode->crtc_clock);
713 
714 	/* Subtract time delta from raw timestamp to get final
715 	 * vblank_time timestamp for end of vblank.
716 	 */
717 	*vblank_time = ktime_sub_ns(etime, delta_ns);
718 
719 	if (!drm_debug_enabled(DRM_UT_VBL))
720 		return true;
721 
722 	ts_etime = ktime_to_timespec64(etime);
723 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
724 
725 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
726 		      pipe, hpos, vpos,
727 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
728 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
729 		      duration_ns / 1000, i);
730 
731 	return true;
732 }
733 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
734 
735 /**
736  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
737  *                                               helper
738  * @crtc: CRTC whose vblank timestamp to retrieve
739  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
740  *             On return contains true maximum error of timestamp
741  * @vblank_time: Pointer to time which should receive the timestamp
742  * @in_vblank_irq:
743  *     True when called from drm_crtc_handle_vblank().  Some drivers
744  *     need to apply some workarounds for gpu-specific vblank irq quirks
745  *     if flag is set.
746  *
747  * Implements calculation of exact vblank timestamps from given drm_display_mode
748  * timings and current video scanout position of a CRTC. This can be directly
749  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
750  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
751  *
752  * The current implementation only handles standard video modes. For double scan
753  * and interlaced modes the driver is supposed to adjust the hardware mode
754  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
755  * match the scanout position reported.
756  *
757  * Note that atomic drivers must call drm_calc_timestamping_constants() before
758  * enabling a CRTC. The atomic helpers already take care of that in
759  * drm_atomic_helper_update_legacy_modeset_state().
760  *
761  * Returns:
762  *
763  * Returns true on success, and false on failure, i.e. when no accurate
764  * timestamp could be acquired.
765  */
766 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
767 						 int *max_error,
768 						 ktime_t *vblank_time,
769 						 bool in_vblank_irq)
770 {
771 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
772 		crtc, max_error, vblank_time, in_vblank_irq,
773 		crtc->helper_private->get_scanout_position);
774 }
775 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
776 
777 /**
778  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
779  *                             vblank interval
780  * @dev: DRM device
781  * @pipe: index of CRTC whose vblank timestamp to retrieve
782  * @tvblank: Pointer to target time which should receive the timestamp
783  * @in_vblank_irq:
784  *     True when called from drm_crtc_handle_vblank().  Some drivers
785  *     need to apply some workarounds for gpu-specific vblank irq quirks
786  *     if flag is set.
787  *
788  * Fetches the system timestamp corresponding to the time of the most recent
789  * vblank interval on specified CRTC. May call into kms-driver to
790  * compute the timestamp with a high-precision GPU specific method.
791  *
792  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
793  * call, i.e., it isn't very precisely locked to the true vblank.
794  *
795  * Returns:
796  * True if timestamp is considered to be very precise, false otherwise.
797  */
798 static bool
799 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
800 			  ktime_t *tvblank, bool in_vblank_irq)
801 {
802 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
803 	bool ret = false;
804 
805 	/* Define requested maximum error on timestamps (nanoseconds). */
806 	int max_error = (int) drm_timestamp_precision * 1000;
807 
808 	/* Query driver if possible and precision timestamping enabled. */
809 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
810 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
811 
812 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
813 							tvblank, in_vblank_irq);
814 	}
815 
816 	/* GPU high precision timestamp query unsupported or failed.
817 	 * Return current monotonic/gettimeofday timestamp as best estimate.
818 	 */
819 	if (!ret)
820 		*tvblank = ktime_get();
821 
822 	return ret;
823 }
824 
825 /**
826  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
827  * @crtc: which counter to retrieve
828  *
829  * Fetches the "cooked" vblank count value that represents the number of
830  * vblank events since the system was booted, including lost events due to
831  * modesetting activity. Note that this timer isn't correct against a racing
832  * vblank interrupt (since it only reports the software vblank counter), see
833  * drm_crtc_accurate_vblank_count() for such use-cases.
834  *
835  * Note that for a given vblank counter value drm_crtc_handle_vblank()
836  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
837  * provide a barrier: Any writes done before calling
838  * drm_crtc_handle_vblank() will be visible to callers of the later
839  * functions, iff the vblank count is the same or a later one.
840  *
841  * See also &drm_vblank_crtc.count.
842  *
843  * Returns:
844  * The software vblank counter.
845  */
846 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
847 {
848 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
849 }
850 EXPORT_SYMBOL(drm_crtc_vblank_count);
851 
852 /**
853  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
854  *     system timestamp corresponding to that vblank counter value.
855  * @dev: DRM device
856  * @pipe: index of CRTC whose counter to retrieve
857  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
858  *
859  * Fetches the "cooked" vblank count value that represents the number of
860  * vblank events since the system was booted, including lost events due to
861  * modesetting activity. Returns corresponding system timestamp of the time
862  * of the vblank interval that corresponds to the current vblank counter value.
863  *
864  * This is the legacy version of drm_crtc_vblank_count_and_time().
865  */
866 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
867 				     ktime_t *vblanktime)
868 {
869 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
870 	u64 vblank_count;
871 	unsigned int seq;
872 
873 	if (WARN_ON(pipe >= dev->num_crtcs)) {
874 		*vblanktime = 0;
875 		return 0;
876 	}
877 
878 	do {
879 		seq = read_seqbegin(&vblank->seqlock);
880 		vblank_count = atomic64_read(&vblank->count);
881 		*vblanktime = vblank->time;
882 	} while (read_seqretry(&vblank->seqlock, seq));
883 
884 	return vblank_count;
885 }
886 
887 /**
888  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
889  *     and the system timestamp corresponding to that vblank counter value
890  * @crtc: which counter to retrieve
891  * @vblanktime: Pointer to time to receive the vblank timestamp.
892  *
893  * Fetches the "cooked" vblank count value that represents the number of
894  * vblank events since the system was booted, including lost events due to
895  * modesetting activity. Returns corresponding system timestamp of the time
896  * of the vblank interval that corresponds to the current vblank counter value.
897  *
898  * Note that for a given vblank counter value drm_crtc_handle_vblank()
899  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
900  * provide a barrier: Any writes done before calling
901  * drm_crtc_handle_vblank() will be visible to callers of the later
902  * functions, iff the vblank count is the same or a later one.
903  *
904  * See also &drm_vblank_crtc.count.
905  */
906 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
907 				   ktime_t *vblanktime)
908 {
909 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
910 					 vblanktime);
911 }
912 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
913 
914 static void send_vblank_event(struct drm_device *dev,
915 		struct drm_pending_vblank_event *e,
916 		u64 seq, ktime_t now)
917 {
918 	struct timespec64 tv;
919 
920 	switch (e->event.base.type) {
921 	case DRM_EVENT_VBLANK:
922 	case DRM_EVENT_FLIP_COMPLETE:
923 		tv = ktime_to_timespec64(now);
924 		e->event.vbl.sequence = seq;
925 		/*
926 		 * e->event is a user space structure, with hardcoded unsigned
927 		 * 32-bit seconds/microseconds. This is safe as we always use
928 		 * monotonic timestamps since linux-4.15
929 		 */
930 		e->event.vbl.tv_sec = tv.tv_sec;
931 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
932 		break;
933 	case DRM_EVENT_CRTC_SEQUENCE:
934 		if (seq)
935 			e->event.seq.sequence = seq;
936 		e->event.seq.time_ns = ktime_to_ns(now);
937 		break;
938 	}
939 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
940 	drm_send_event_locked(dev, &e->base);
941 }
942 
943 /**
944  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
945  * @crtc: the source CRTC of the vblank event
946  * @e: the event to send
947  *
948  * A lot of drivers need to generate vblank events for the very next vblank
949  * interrupt. For example when the page flip interrupt happens when the page
950  * flip gets armed, but not when it actually executes within the next vblank
951  * period. This helper function implements exactly the required vblank arming
952  * behaviour.
953  *
954  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
955  * atomic commit must ensure that the next vblank happens at exactly the same
956  * time as the atomic commit is committed to the hardware. This function itself
957  * does **not** protect against the next vblank interrupt racing with either this
958  * function call or the atomic commit operation. A possible sequence could be:
959  *
960  * 1. Driver commits new hardware state into vblank-synchronized registers.
961  * 2. A vblank happens, committing the hardware state. Also the corresponding
962  *    vblank interrupt is fired off and fully processed by the interrupt
963  *    handler.
964  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
965  * 4. The event is only send out for the next vblank, which is wrong.
966  *
967  * An equivalent race can happen when the driver calls
968  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
969  *
970  * The only way to make this work safely is to prevent the vblank from firing
971  * (and the hardware from committing anything else) until the entire atomic
972  * commit sequence has run to completion. If the hardware does not have such a
973  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
974  * Instead drivers need to manually send out the event from their interrupt
975  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
976  * possible race with the hardware committing the atomic update.
977  *
978  * Caller must hold a vblank reference for the event @e acquired by a
979  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
980  */
981 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
982 			       struct drm_pending_vblank_event *e)
983 {
984 	struct drm_device *dev = crtc->dev;
985 	unsigned int pipe = drm_crtc_index(crtc);
986 
987 	assert_spin_locked(&dev->event_lock);
988 
989 	e->pipe = pipe;
990 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
991 	list_add_tail(&e->base.link, &dev->vblank_event_list);
992 }
993 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
994 
995 /**
996  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
997  * @crtc: the source CRTC of the vblank event
998  * @e: the event to send
999  *
1000  * Updates sequence # and timestamp on event for the most recently processed
1001  * vblank, and sends it to userspace.  Caller must hold event lock.
1002  *
1003  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1004  * situation, especially to send out events for atomic commit operations.
1005  */
1006 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1007 				struct drm_pending_vblank_event *e)
1008 {
1009 	struct drm_device *dev = crtc->dev;
1010 	u64 seq;
1011 	unsigned int pipe = drm_crtc_index(crtc);
1012 	ktime_t now;
1013 
1014 	if (dev->num_crtcs > 0) {
1015 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1016 	} else {
1017 		seq = 0;
1018 
1019 		now = ktime_get();
1020 	}
1021 	e->pipe = pipe;
1022 	send_vblank_event(dev, e, seq, now);
1023 }
1024 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1025 
1026 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1027 {
1028 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1029 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1030 
1031 		if (WARN_ON(!crtc))
1032 			return 0;
1033 
1034 		if (crtc->funcs->enable_vblank)
1035 			return crtc->funcs->enable_vblank(crtc);
1036 	} else if (dev->driver->enable_vblank) {
1037 		return dev->driver->enable_vblank(dev, pipe);
1038 	}
1039 
1040 	return -EINVAL;
1041 }
1042 
1043 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1044 {
1045 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1046 	int ret = 0;
1047 
1048 	assert_spin_locked(&dev->vbl_lock);
1049 
1050 	spin_lock(&dev->vblank_time_lock);
1051 
1052 	if (!vblank->enabled) {
1053 		/*
1054 		 * Enable vblank irqs under vblank_time_lock protection.
1055 		 * All vblank count & timestamp updates are held off
1056 		 * until we are done reinitializing master counter and
1057 		 * timestamps. Filtercode in drm_handle_vblank() will
1058 		 * prevent double-accounting of same vblank interval.
1059 		 */
1060 		ret = __enable_vblank(dev, pipe);
1061 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1062 		if (ret) {
1063 			atomic_dec(&vblank->refcount);
1064 		} else {
1065 			drm_update_vblank_count(dev, pipe, 0);
1066 			/* drm_update_vblank_count() includes a wmb so we just
1067 			 * need to ensure that the compiler emits the write
1068 			 * to mark the vblank as enabled after the call
1069 			 * to drm_update_vblank_count().
1070 			 */
1071 			WRITE_ONCE(vblank->enabled, true);
1072 		}
1073 	}
1074 
1075 	spin_unlock(&dev->vblank_time_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1081 {
1082 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1083 	unsigned long irqflags;
1084 	int ret = 0;
1085 
1086 	if (!dev->num_crtcs)
1087 		return -EINVAL;
1088 
1089 	if (WARN_ON(pipe >= dev->num_crtcs))
1090 		return -EINVAL;
1091 
1092 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1093 	/* Going from 0->1 means we have to enable interrupts again */
1094 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1095 		ret = drm_vblank_enable(dev, pipe);
1096 	} else {
1097 		if (!vblank->enabled) {
1098 			atomic_dec(&vblank->refcount);
1099 			ret = -EINVAL;
1100 		}
1101 	}
1102 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1103 
1104 	return ret;
1105 }
1106 
1107 /**
1108  * drm_crtc_vblank_get - get a reference count on vblank events
1109  * @crtc: which CRTC to own
1110  *
1111  * Acquire a reference count on vblank events to avoid having them disabled
1112  * while in use.
1113  *
1114  * Returns:
1115  * Zero on success or a negative error code on failure.
1116  */
1117 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1118 {
1119 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1120 }
1121 EXPORT_SYMBOL(drm_crtc_vblank_get);
1122 
1123 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1124 {
1125 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1126 
1127 	if (WARN_ON(pipe >= dev->num_crtcs))
1128 		return;
1129 
1130 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1131 		return;
1132 
1133 	/* Last user schedules interrupt disable */
1134 	if (atomic_dec_and_test(&vblank->refcount)) {
1135 		if (drm_vblank_offdelay == 0)
1136 			return;
1137 		else if (drm_vblank_offdelay < 0)
1138 			vblank_disable_fn(&vblank->disable_timer);
1139 		else if (!dev->vblank_disable_immediate)
1140 			mod_timer(&vblank->disable_timer,
1141 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1142 	}
1143 }
1144 
1145 /**
1146  * drm_crtc_vblank_put - give up ownership of vblank events
1147  * @crtc: which counter to give up
1148  *
1149  * Release ownership of a given vblank counter, turning off interrupts
1150  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1151  */
1152 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1153 {
1154 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1155 }
1156 EXPORT_SYMBOL(drm_crtc_vblank_put);
1157 
1158 /**
1159  * drm_wait_one_vblank - wait for one vblank
1160  * @dev: DRM device
1161  * @pipe: CRTC index
1162  *
1163  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1164  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1165  * due to lack of driver support or because the crtc is off.
1166  *
1167  * This is the legacy version of drm_crtc_wait_one_vblank().
1168  */
1169 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1170 {
1171 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1172 	int ret;
1173 	u64 last;
1174 
1175 	if (WARN_ON(pipe >= dev->num_crtcs))
1176 		return;
1177 
1178 	ret = drm_vblank_get(dev, pipe);
1179 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1180 		return;
1181 
1182 	last = drm_vblank_count(dev, pipe);
1183 
1184 	ret = wait_event_timeout(vblank->queue,
1185 				 last != drm_vblank_count(dev, pipe),
1186 				 msecs_to_jiffies(100));
1187 
1188 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1189 
1190 	drm_vblank_put(dev, pipe);
1191 }
1192 EXPORT_SYMBOL(drm_wait_one_vblank);
1193 
1194 /**
1195  * drm_crtc_wait_one_vblank - wait for one vblank
1196  * @crtc: DRM crtc
1197  *
1198  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1199  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1200  * due to lack of driver support or because the crtc is off.
1201  */
1202 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1203 {
1204 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1205 }
1206 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1207 
1208 /**
1209  * drm_crtc_vblank_off - disable vblank events on a CRTC
1210  * @crtc: CRTC in question
1211  *
1212  * Drivers can use this function to shut down the vblank interrupt handling when
1213  * disabling a crtc. This function ensures that the latest vblank frame count is
1214  * stored so that drm_vblank_on can restore it again.
1215  *
1216  * Drivers must use this function when the hardware vblank counter can get
1217  * reset, e.g. when suspending or disabling the @crtc in general.
1218  */
1219 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1220 {
1221 	struct drm_device *dev = crtc->dev;
1222 	unsigned int pipe = drm_crtc_index(crtc);
1223 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1224 	struct drm_pending_vblank_event *e, *t;
1225 
1226 	ktime_t now;
1227 	unsigned long irqflags;
1228 	u64 seq;
1229 
1230 	if (WARN_ON(pipe >= dev->num_crtcs))
1231 		return;
1232 
1233 	spin_lock_irqsave(&dev->event_lock, irqflags);
1234 
1235 	spin_lock(&dev->vbl_lock);
1236 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1237 		      pipe, vblank->enabled, vblank->inmodeset);
1238 
1239 	/* Avoid redundant vblank disables without previous
1240 	 * drm_crtc_vblank_on(). */
1241 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1242 		drm_vblank_disable_and_save(dev, pipe);
1243 
1244 	wake_up(&vblank->queue);
1245 
1246 	/*
1247 	 * Prevent subsequent drm_vblank_get() from re-enabling
1248 	 * the vblank interrupt by bumping the refcount.
1249 	 */
1250 	if (!vblank->inmodeset) {
1251 		atomic_inc(&vblank->refcount);
1252 		vblank->inmodeset = 1;
1253 	}
1254 	spin_unlock(&dev->vbl_lock);
1255 
1256 	/* Send any queued vblank events, lest the natives grow disquiet */
1257 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1258 
1259 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1260 		if (e->pipe != pipe)
1261 			continue;
1262 		DRM_DEBUG("Sending premature vblank event on disable: "
1263 			  "wanted %llu, current %llu\n",
1264 			  e->sequence, seq);
1265 		list_del(&e->base.link);
1266 		drm_vblank_put(dev, pipe);
1267 		send_vblank_event(dev, e, seq, now);
1268 	}
1269 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1270 
1271 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1272 	 * calling drm_calc_timestamping_constants(). */
1273 	vblank->hwmode.crtc_clock = 0;
1274 }
1275 EXPORT_SYMBOL(drm_crtc_vblank_off);
1276 
1277 /**
1278  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1279  * @crtc: CRTC in question
1280  *
1281  * Drivers can use this function to reset the vblank state to off at load time.
1282  * Drivers should use this together with the drm_crtc_vblank_off() and
1283  * drm_crtc_vblank_on() functions. The difference compared to
1284  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1285  * and hence doesn't need to call any driver hooks.
1286  *
1287  * This is useful for recovering driver state e.g. on driver load, or on resume.
1288  */
1289 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1290 {
1291 	struct drm_device *dev = crtc->dev;
1292 	unsigned long irqflags;
1293 	unsigned int pipe = drm_crtc_index(crtc);
1294 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1295 
1296 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1297 	/*
1298 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1299 	 * interrupt by bumping the refcount.
1300 	 */
1301 	if (!vblank->inmodeset) {
1302 		atomic_inc(&vblank->refcount);
1303 		vblank->inmodeset = 1;
1304 	}
1305 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1306 
1307 	WARN_ON(!list_empty(&dev->vblank_event_list));
1308 }
1309 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1310 
1311 /**
1312  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1313  * @crtc: CRTC in question
1314  * @max_vblank_count: max hardware vblank counter value
1315  *
1316  * Update the maximum hardware vblank counter value for @crtc
1317  * at runtime. Useful for hardware where the operation of the
1318  * hardware vblank counter depends on the currently active
1319  * display configuration.
1320  *
1321  * For example, if the hardware vblank counter does not work
1322  * when a specific connector is active the maximum can be set
1323  * to zero. And when that specific connector isn't active the
1324  * maximum can again be set to the appropriate non-zero value.
1325  *
1326  * If used, must be called before drm_vblank_on().
1327  */
1328 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1329 				   u32 max_vblank_count)
1330 {
1331 	struct drm_device *dev = crtc->dev;
1332 	unsigned int pipe = drm_crtc_index(crtc);
1333 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1334 
1335 	WARN_ON(dev->max_vblank_count);
1336 	WARN_ON(!READ_ONCE(vblank->inmodeset));
1337 
1338 	vblank->max_vblank_count = max_vblank_count;
1339 }
1340 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1341 
1342 /**
1343  * drm_crtc_vblank_on - enable vblank events on a CRTC
1344  * @crtc: CRTC in question
1345  *
1346  * This functions restores the vblank interrupt state captured with
1347  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1348  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1349  * unbalanced and so can also be unconditionally called in driver load code to
1350  * reflect the current hardware state of the crtc.
1351  */
1352 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1353 {
1354 	struct drm_device *dev = crtc->dev;
1355 	unsigned int pipe = drm_crtc_index(crtc);
1356 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1357 	unsigned long irqflags;
1358 
1359 	if (WARN_ON(pipe >= dev->num_crtcs))
1360 		return;
1361 
1362 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1363 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1364 		      pipe, vblank->enabled, vblank->inmodeset);
1365 
1366 	/* Drop our private "prevent drm_vblank_get" refcount */
1367 	if (vblank->inmodeset) {
1368 		atomic_dec(&vblank->refcount);
1369 		vblank->inmodeset = 0;
1370 	}
1371 
1372 	drm_reset_vblank_timestamp(dev, pipe);
1373 
1374 	/*
1375 	 * re-enable interrupts if there are users left, or the
1376 	 * user wishes vblank interrupts to be enabled all the time.
1377 	 */
1378 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1379 		WARN_ON(drm_vblank_enable(dev, pipe));
1380 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1381 }
1382 EXPORT_SYMBOL(drm_crtc_vblank_on);
1383 
1384 /**
1385  * drm_vblank_restore - estimate missed vblanks and update vblank count.
1386  * @dev: DRM device
1387  * @pipe: CRTC index
1388  *
1389  * Power manamement features can cause frame counter resets between vblank
1390  * disable and enable. Drivers can use this function in their
1391  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1392  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1393  * vblank counter.
1394  *
1395  * This function is the legacy version of drm_crtc_vblank_restore().
1396  */
1397 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1398 {
1399 	ktime_t t_vblank;
1400 	struct drm_vblank_crtc *vblank;
1401 	int framedur_ns;
1402 	u64 diff_ns;
1403 	u32 cur_vblank, diff = 1;
1404 	int count = DRM_TIMESTAMP_MAXRETRIES;
1405 
1406 	if (WARN_ON(pipe >= dev->num_crtcs))
1407 		return;
1408 
1409 	assert_spin_locked(&dev->vbl_lock);
1410 	assert_spin_locked(&dev->vblank_time_lock);
1411 
1412 	vblank = &dev->vblank[pipe];
1413 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1414 		  "Cannot compute missed vblanks without frame duration\n");
1415 	framedur_ns = vblank->framedur_ns;
1416 
1417 	do {
1418 		cur_vblank = __get_vblank_counter(dev, pipe);
1419 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1420 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1421 
1422 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1423 	if (framedur_ns)
1424 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1425 
1426 
1427 	DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1428 		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1429 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1430 }
1431 EXPORT_SYMBOL(drm_vblank_restore);
1432 
1433 /**
1434  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1435  * @crtc: CRTC in question
1436  *
1437  * Power manamement features can cause frame counter resets between vblank
1438  * disable and enable. Drivers can use this function in their
1439  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1440  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1441  * vblank counter.
1442  */
1443 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1444 {
1445 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1446 }
1447 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1448 
1449 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1450 					  unsigned int pipe)
1451 {
1452 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1453 
1454 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1455 	if (!dev->num_crtcs)
1456 		return;
1457 
1458 	if (WARN_ON(pipe >= dev->num_crtcs))
1459 		return;
1460 
1461 	/*
1462 	 * To avoid all the problems that might happen if interrupts
1463 	 * were enabled/disabled around or between these calls, we just
1464 	 * have the kernel take a reference on the CRTC (just once though
1465 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1466 	 * so that interrupts remain enabled in the interim.
1467 	 */
1468 	if (!vblank->inmodeset) {
1469 		vblank->inmodeset = 0x1;
1470 		if (drm_vblank_get(dev, pipe) == 0)
1471 			vblank->inmodeset |= 0x2;
1472 	}
1473 }
1474 
1475 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1476 					   unsigned int pipe)
1477 {
1478 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1479 	unsigned long irqflags;
1480 
1481 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1482 	if (!dev->num_crtcs)
1483 		return;
1484 
1485 	if (WARN_ON(pipe >= dev->num_crtcs))
1486 		return;
1487 
1488 	if (vblank->inmodeset) {
1489 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1490 		drm_reset_vblank_timestamp(dev, pipe);
1491 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1492 
1493 		if (vblank->inmodeset & 0x2)
1494 			drm_vblank_put(dev, pipe);
1495 
1496 		vblank->inmodeset = 0;
1497 	}
1498 }
1499 
1500 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1501 				 struct drm_file *file_priv)
1502 {
1503 	struct drm_modeset_ctl *modeset = data;
1504 	unsigned int pipe;
1505 
1506 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1507 	if (!dev->num_crtcs)
1508 		return 0;
1509 
1510 	/* KMS drivers handle this internally */
1511 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1512 		return 0;
1513 
1514 	pipe = modeset->crtc;
1515 	if (pipe >= dev->num_crtcs)
1516 		return -EINVAL;
1517 
1518 	switch (modeset->cmd) {
1519 	case _DRM_PRE_MODESET:
1520 		drm_legacy_vblank_pre_modeset(dev, pipe);
1521 		break;
1522 	case _DRM_POST_MODESET:
1523 		drm_legacy_vblank_post_modeset(dev, pipe);
1524 		break;
1525 	default:
1526 		return -EINVAL;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 static inline bool vblank_passed(u64 seq, u64 ref)
1533 {
1534 	return (seq - ref) <= (1 << 23);
1535 }
1536 
1537 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1538 				  u64 req_seq,
1539 				  union drm_wait_vblank *vblwait,
1540 				  struct drm_file *file_priv)
1541 {
1542 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1543 	struct drm_pending_vblank_event *e;
1544 	ktime_t now;
1545 	unsigned long flags;
1546 	u64 seq;
1547 	int ret;
1548 
1549 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1550 	if (e == NULL) {
1551 		ret = -ENOMEM;
1552 		goto err_put;
1553 	}
1554 
1555 	e->pipe = pipe;
1556 	e->event.base.type = DRM_EVENT_VBLANK;
1557 	e->event.base.length = sizeof(e->event.vbl);
1558 	e->event.vbl.user_data = vblwait->request.signal;
1559 	e->event.vbl.crtc_id = 0;
1560 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1561 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1562 		if (crtc)
1563 			e->event.vbl.crtc_id = crtc->base.id;
1564 	}
1565 
1566 	spin_lock_irqsave(&dev->event_lock, flags);
1567 
1568 	/*
1569 	 * drm_crtc_vblank_off() might have been called after we called
1570 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1571 	 * vblank disable, so no need for further locking.  The reference from
1572 	 * drm_vblank_get() protects against vblank disable from another source.
1573 	 */
1574 	if (!READ_ONCE(vblank->enabled)) {
1575 		ret = -EINVAL;
1576 		goto err_unlock;
1577 	}
1578 
1579 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1580 					    &e->event.base);
1581 
1582 	if (ret)
1583 		goto err_unlock;
1584 
1585 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1586 
1587 	DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1588 		  req_seq, seq, pipe);
1589 
1590 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1591 
1592 	e->sequence = req_seq;
1593 	if (vblank_passed(seq, req_seq)) {
1594 		drm_vblank_put(dev, pipe);
1595 		send_vblank_event(dev, e, seq, now);
1596 		vblwait->reply.sequence = seq;
1597 	} else {
1598 		/* drm_handle_vblank_events will call drm_vblank_put */
1599 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1600 		vblwait->reply.sequence = req_seq;
1601 	}
1602 
1603 	spin_unlock_irqrestore(&dev->event_lock, flags);
1604 
1605 	return 0;
1606 
1607 err_unlock:
1608 	spin_unlock_irqrestore(&dev->event_lock, flags);
1609 	kfree(e);
1610 err_put:
1611 	drm_vblank_put(dev, pipe);
1612 	return ret;
1613 }
1614 
1615 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1616 {
1617 	if (vblwait->request.sequence)
1618 		return false;
1619 
1620 	return _DRM_VBLANK_RELATIVE ==
1621 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1622 					  _DRM_VBLANK_EVENT |
1623 					  _DRM_VBLANK_NEXTONMISS));
1624 }
1625 
1626 /*
1627  * Widen a 32-bit param to 64-bits.
1628  *
1629  * \param narrow 32-bit value (missing upper 32 bits)
1630  * \param near 64-bit value that should be 'close' to near
1631  *
1632  * This function returns a 64-bit value using the lower 32-bits from
1633  * 'narrow' and constructing the upper 32-bits so that the result is
1634  * as close as possible to 'near'.
1635  */
1636 
1637 static u64 widen_32_to_64(u32 narrow, u64 near)
1638 {
1639 	return near + (s32) (narrow - near);
1640 }
1641 
1642 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1643 				  struct drm_wait_vblank_reply *reply)
1644 {
1645 	ktime_t now;
1646 	struct timespec64 ts;
1647 
1648 	/*
1649 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1650 	 * to store the seconds. This is safe as we always use monotonic
1651 	 * timestamps since linux-4.15.
1652 	 */
1653 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1654 	ts = ktime_to_timespec64(now);
1655 	reply->tval_sec = (u32)ts.tv_sec;
1656 	reply->tval_usec = ts.tv_nsec / 1000;
1657 }
1658 
1659 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1660 			  struct drm_file *file_priv)
1661 {
1662 	struct drm_crtc *crtc;
1663 	struct drm_vblank_crtc *vblank;
1664 	union drm_wait_vblank *vblwait = data;
1665 	int ret;
1666 	u64 req_seq, seq;
1667 	unsigned int pipe_index;
1668 	unsigned int flags, pipe, high_pipe;
1669 
1670 	if (!dev->irq_enabled)
1671 		return -EOPNOTSUPP;
1672 
1673 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1674 		return -EINVAL;
1675 
1676 	if (vblwait->request.type &
1677 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1678 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1679 		DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1680 			  vblwait->request.type,
1681 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1682 			   _DRM_VBLANK_HIGH_CRTC_MASK));
1683 		return -EINVAL;
1684 	}
1685 
1686 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1687 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1688 	if (high_pipe)
1689 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1690 	else
1691 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1692 
1693 	/* Convert lease-relative crtc index into global crtc index */
1694 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1695 		pipe = 0;
1696 		drm_for_each_crtc(crtc, dev) {
1697 			if (drm_lease_held(file_priv, crtc->base.id)) {
1698 				if (pipe_index == 0)
1699 					break;
1700 				pipe_index--;
1701 			}
1702 			pipe++;
1703 		}
1704 	} else {
1705 		pipe = pipe_index;
1706 	}
1707 
1708 	if (pipe >= dev->num_crtcs)
1709 		return -EINVAL;
1710 
1711 	vblank = &dev->vblank[pipe];
1712 
1713 	/* If the counter is currently enabled and accurate, short-circuit
1714 	 * queries to return the cached timestamp of the last vblank.
1715 	 */
1716 	if (dev->vblank_disable_immediate &&
1717 	    drm_wait_vblank_is_query(vblwait) &&
1718 	    READ_ONCE(vblank->enabled)) {
1719 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1720 		return 0;
1721 	}
1722 
1723 	ret = drm_vblank_get(dev, pipe);
1724 	if (ret) {
1725 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1726 		return ret;
1727 	}
1728 	seq = drm_vblank_count(dev, pipe);
1729 
1730 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1731 	case _DRM_VBLANK_RELATIVE:
1732 		req_seq = seq + vblwait->request.sequence;
1733 		vblwait->request.sequence = req_seq;
1734 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1735 		break;
1736 	case _DRM_VBLANK_ABSOLUTE:
1737 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1738 		break;
1739 	default:
1740 		ret = -EINVAL;
1741 		goto done;
1742 	}
1743 
1744 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1745 	    vblank_passed(seq, req_seq)) {
1746 		req_seq = seq + 1;
1747 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1748 		vblwait->request.sequence = req_seq;
1749 	}
1750 
1751 	if (flags & _DRM_VBLANK_EVENT) {
1752 		/* must hold on to the vblank ref until the event fires
1753 		 * drm_vblank_put will be called asynchronously
1754 		 */
1755 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1756 	}
1757 
1758 	if (req_seq != seq) {
1759 		int wait;
1760 
1761 		DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1762 			  req_seq, pipe);
1763 		wait = wait_event_interruptible_timeout(vblank->queue,
1764 			vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1765 				      !READ_ONCE(vblank->enabled),
1766 			msecs_to_jiffies(3000));
1767 
1768 		switch (wait) {
1769 		case 0:
1770 			/* timeout */
1771 			ret = -EBUSY;
1772 			break;
1773 		case -ERESTARTSYS:
1774 			/* interrupted by signal */
1775 			ret = -EINTR;
1776 			break;
1777 		default:
1778 			ret = 0;
1779 			break;
1780 		}
1781 	}
1782 
1783 	if (ret != -EINTR) {
1784 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1785 
1786 		DRM_DEBUG("crtc %d returning %u to client\n",
1787 			  pipe, vblwait->reply.sequence);
1788 	} else {
1789 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1790 	}
1791 
1792 done:
1793 	drm_vblank_put(dev, pipe);
1794 	return ret;
1795 }
1796 
1797 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1798 {
1799 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1800 	bool high_prec = false;
1801 	struct drm_pending_vblank_event *e, *t;
1802 	ktime_t now;
1803 	u64 seq;
1804 
1805 	assert_spin_locked(&dev->event_lock);
1806 
1807 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1808 
1809 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1810 		if (e->pipe != pipe)
1811 			continue;
1812 		if (!vblank_passed(seq, e->sequence))
1813 			continue;
1814 
1815 		DRM_DEBUG("vblank event on %llu, current %llu\n",
1816 			  e->sequence, seq);
1817 
1818 		list_del(&e->base.link);
1819 		drm_vblank_put(dev, pipe);
1820 		send_vblank_event(dev, e, seq, now);
1821 	}
1822 
1823 	if (crtc && crtc->funcs->get_vblank_timestamp)
1824 		high_prec = true;
1825 
1826 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1827 }
1828 
1829 /**
1830  * drm_handle_vblank - handle a vblank event
1831  * @dev: DRM device
1832  * @pipe: index of CRTC where this event occurred
1833  *
1834  * Drivers should call this routine in their vblank interrupt handlers to
1835  * update the vblank counter and send any signals that may be pending.
1836  *
1837  * This is the legacy version of drm_crtc_handle_vblank().
1838  */
1839 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1840 {
1841 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1842 	unsigned long irqflags;
1843 	bool disable_irq;
1844 
1845 	if (WARN_ON_ONCE(!dev->num_crtcs))
1846 		return false;
1847 
1848 	if (WARN_ON(pipe >= dev->num_crtcs))
1849 		return false;
1850 
1851 	spin_lock_irqsave(&dev->event_lock, irqflags);
1852 
1853 	/* Need timestamp lock to prevent concurrent execution with
1854 	 * vblank enable/disable, as this would cause inconsistent
1855 	 * or corrupted timestamps and vblank counts.
1856 	 */
1857 	spin_lock(&dev->vblank_time_lock);
1858 
1859 	/* Vblank irq handling disabled. Nothing to do. */
1860 	if (!vblank->enabled) {
1861 		spin_unlock(&dev->vblank_time_lock);
1862 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1863 		return false;
1864 	}
1865 
1866 	drm_update_vblank_count(dev, pipe, true);
1867 
1868 	spin_unlock(&dev->vblank_time_lock);
1869 
1870 	wake_up(&vblank->queue);
1871 
1872 	/* With instant-off, we defer disabling the interrupt until after
1873 	 * we finish processing the following vblank after all events have
1874 	 * been signaled. The disable has to be last (after
1875 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1876 	 */
1877 	disable_irq = (dev->vblank_disable_immediate &&
1878 		       drm_vblank_offdelay > 0 &&
1879 		       !atomic_read(&vblank->refcount));
1880 
1881 	drm_handle_vblank_events(dev, pipe);
1882 
1883 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1884 
1885 	if (disable_irq)
1886 		vblank_disable_fn(&vblank->disable_timer);
1887 
1888 	return true;
1889 }
1890 EXPORT_SYMBOL(drm_handle_vblank);
1891 
1892 /**
1893  * drm_crtc_handle_vblank - handle a vblank event
1894  * @crtc: where this event occurred
1895  *
1896  * Drivers should call this routine in their vblank interrupt handlers to
1897  * update the vblank counter and send any signals that may be pending.
1898  *
1899  * This is the native KMS version of drm_handle_vblank().
1900  *
1901  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1902  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1903  * provide a barrier: Any writes done before calling
1904  * drm_crtc_handle_vblank() will be visible to callers of the later
1905  * functions, iff the vblank count is the same or a later one.
1906  *
1907  * See also &drm_vblank_crtc.count.
1908  *
1909  * Returns:
1910  * True if the event was successfully handled, false on failure.
1911  */
1912 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1913 {
1914 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1915 }
1916 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1917 
1918 /*
1919  * Get crtc VBLANK count.
1920  *
1921  * \param dev DRM device
1922  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1923  * \param file_priv drm file private for the user's open file descriptor
1924  */
1925 
1926 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1927 				struct drm_file *file_priv)
1928 {
1929 	struct drm_crtc *crtc;
1930 	struct drm_vblank_crtc *vblank;
1931 	int pipe;
1932 	struct drm_crtc_get_sequence *get_seq = data;
1933 	ktime_t now;
1934 	bool vblank_enabled;
1935 	int ret;
1936 
1937 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1938 		return -EOPNOTSUPP;
1939 
1940 	if (!dev->irq_enabled)
1941 		return -EOPNOTSUPP;
1942 
1943 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1944 	if (!crtc)
1945 		return -ENOENT;
1946 
1947 	pipe = drm_crtc_index(crtc);
1948 
1949 	vblank = &dev->vblank[pipe];
1950 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1951 
1952 	if (!vblank_enabled) {
1953 		ret = drm_crtc_vblank_get(crtc);
1954 		if (ret) {
1955 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1956 			return ret;
1957 		}
1958 	}
1959 	drm_modeset_lock(&crtc->mutex, NULL);
1960 	if (crtc->state)
1961 		get_seq->active = crtc->state->enable;
1962 	else
1963 		get_seq->active = crtc->enabled;
1964 	drm_modeset_unlock(&crtc->mutex);
1965 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1966 	get_seq->sequence_ns = ktime_to_ns(now);
1967 	if (!vblank_enabled)
1968 		drm_crtc_vblank_put(crtc);
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Queue a event for VBLANK sequence
1974  *
1975  * \param dev DRM device
1976  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1977  * \param file_priv drm file private for the user's open file descriptor
1978  */
1979 
1980 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1981 				  struct drm_file *file_priv)
1982 {
1983 	struct drm_crtc *crtc;
1984 	struct drm_vblank_crtc *vblank;
1985 	int pipe;
1986 	struct drm_crtc_queue_sequence *queue_seq = data;
1987 	ktime_t now;
1988 	struct drm_pending_vblank_event *e;
1989 	u32 flags;
1990 	u64 seq;
1991 	u64 req_seq;
1992 	int ret;
1993 	unsigned long spin_flags;
1994 
1995 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1996 		return -EOPNOTSUPP;
1997 
1998 	if (!dev->irq_enabled)
1999 		return -EOPNOTSUPP;
2000 
2001 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2002 	if (!crtc)
2003 		return -ENOENT;
2004 
2005 	flags = queue_seq->flags;
2006 	/* Check valid flag bits */
2007 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2008 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2009 		return -EINVAL;
2010 
2011 	pipe = drm_crtc_index(crtc);
2012 
2013 	vblank = &dev->vblank[pipe];
2014 
2015 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2016 	if (e == NULL)
2017 		return -ENOMEM;
2018 
2019 	ret = drm_crtc_vblank_get(crtc);
2020 	if (ret) {
2021 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
2022 		goto err_free;
2023 	}
2024 
2025 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2026 	req_seq = queue_seq->sequence;
2027 
2028 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2029 		req_seq += seq;
2030 
2031 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2032 		req_seq = seq + 1;
2033 
2034 	e->pipe = pipe;
2035 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2036 	e->event.base.length = sizeof(e->event.seq);
2037 	e->event.seq.user_data = queue_seq->user_data;
2038 
2039 	spin_lock_irqsave(&dev->event_lock, spin_flags);
2040 
2041 	/*
2042 	 * drm_crtc_vblank_off() might have been called after we called
2043 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2044 	 * vblank disable, so no need for further locking.  The reference from
2045 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2046 	 */
2047 	if (!READ_ONCE(vblank->enabled)) {
2048 		ret = -EINVAL;
2049 		goto err_unlock;
2050 	}
2051 
2052 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2053 					    &e->event.base);
2054 
2055 	if (ret)
2056 		goto err_unlock;
2057 
2058 	e->sequence = req_seq;
2059 
2060 	if (vblank_passed(seq, req_seq)) {
2061 		drm_crtc_vblank_put(crtc);
2062 		send_vblank_event(dev, e, seq, now);
2063 		queue_seq->sequence = seq;
2064 	} else {
2065 		/* drm_handle_vblank_events will call drm_vblank_put */
2066 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2067 		queue_seq->sequence = req_seq;
2068 	}
2069 
2070 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2071 	return 0;
2072 
2073 err_unlock:
2074 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2075 	drm_crtc_vblank_put(crtc);
2076 err_free:
2077 	kfree(e);
2078 	return ret;
2079 }
2080