xref: /linux/drivers/gpu/drm/drm_vblank.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30 
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38 
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41 
42 /**
43  * DOC: vblank handling
44  *
45  * From the computer's perspective, every time the monitor displays
46  * a new frame the scanout engine has "scanned out" the display image
47  * from top to bottom, one row of pixels at a time. The current row
48  * of pixels is referred to as the current scanline.
49  *
50  * In addition to the display's visible area, there's usually a couple of
51  * extra scanlines which aren't actually displayed on the screen.
52  * These extra scanlines don't contain image data and are occasionally used
53  * for features like audio and infoframes. The region made up of these
54  * scanlines is referred to as the vertical blanking region, or vblank for
55  * short.
56  *
57  * For historical reference, the vertical blanking period was designed to
58  * give the electron gun (on CRTs) enough time to move back to the top of
59  * the screen to start scanning out the next frame. Similar for horizontal
60  * blanking periods. They were designed to give the electron gun enough
61  * time to move back to the other side of the screen to start scanning the
62  * next scanline.
63  *
64  * ::
65  *
66  *
67  *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68  *    top of      |                                        |
69  *    display     |                                        |
70  *                |               New frame                |
71  *                |                                        |
72  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73  *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75  *                |                                        |   frame as it
76  *                |                                        |   travels down
77  *                |                                        |   ("scan out")
78  *                |               Old frame                |
79  *                |                                        |
80  *                |                                        |
81  *                |                                        |
82  *                |                                        |   physical
83  *                |                                        |   bottom of
84  *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85  *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86  *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87  *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88  *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89  *    new frame
90  *
91  * "Physical top of display" is the reference point for the high-precision/
92  * corrected timestamp.
93  *
94  * On a lot of display hardware, programming needs to take effect during the
95  * vertical blanking period so that settings like gamma, the image buffer
96  * buffer to be scanned out, etc. can safely be changed without showing
97  * any visual artifacts on the screen. In some unforgiving hardware, some of
98  * this programming has to both start and end in the same vblank. To help
99  * with the timing of the hardware programming, an interrupt is usually
100  * available to notify the driver when it can start the updating of registers.
101  * The interrupt is in this context named the vblank interrupt.
102  *
103  * The vblank interrupt may be fired at different points depending on the
104  * hardware. Some hardware implementations will fire the interrupt when the
105  * new frame start, other implementations will fire the interrupt at different
106  * points in time.
107  *
108  * Vertical blanking plays a major role in graphics rendering. To achieve
109  * tear-free display, users must synchronize page flips and/or rendering to
110  * vertical blanking. The DRM API offers ioctls to perform page flips
111  * synchronized to vertical blanking and wait for vertical blanking.
112  *
113  * The DRM core handles most of the vertical blanking management logic, which
114  * involves filtering out spurious interrupts, keeping race-free blanking
115  * counters, coping with counter wrap-around and resets and keeping use counts.
116  * It relies on the driver to generate vertical blanking interrupts and
117  * optionally provide a hardware vertical blanking counter.
118  *
119  * Drivers must initialize the vertical blanking handling core with a call to
120  * drm_vblank_init(). Minimally, a driver needs to implement
121  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123  * support.
124  *
125  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126  * themselves (for instance to handle page flipping operations).  The DRM core
127  * maintains a vertical blanking use count to ensure that the interrupts are not
128  * disabled while a user still needs them. To increment the use count, drivers
129  * call drm_crtc_vblank_get() and release the vblank reference again with
130  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131  * guaranteed to be enabled.
132  *
133  * On many hardware disabling the vblank interrupt cannot be done in a race-free
134  * manner, see &drm_vblank_crtc_config.disable_immediate and
135  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136  * vblanks after a timer has expired, which can be configured through the
137  * ``vblankoffdelay`` module parameter.
138  *
139  * Drivers for hardware without support for vertical-blanking interrupts can
140  * use DRM vblank timers to send vblank events at the rate of the current
141  * display mode's refresh. While not synchronized to the hardware's
142  * vertical-blanking regions, the timer helps DRM clients and compositors to
143  * adapt their update cycle to the display output. Drivers should set up
144  * vblanking as usual, but call drm_crtc_vblank_start_timer() and
145  * drm_crtc_vblank_cancel_timer() as part of their atomic mode setting.
146  * See also DRM vblank helpers for more information.
147  *
148  * Drivers without support for vertical-blanking interrupts nor timers must
149  * not call drm_vblank_init(). For these drivers, atomic helpers will
150  * automatically generate fake vblank events as part of the display update.
151  * This functionality also can be controlled by the driver by enabling and
152  * disabling struct drm_crtc_state.no_vblank.
153  */
154 
155 /* Retry timestamp calculation up to 3 times to satisfy
156  * drm_timestamp_precision before giving up.
157  */
158 #define DRM_TIMESTAMP_MAXRETRIES 3
159 
160 /* Threshold in nanoseconds for detection of redundant
161  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
162  */
163 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
164 
165 static bool
166 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
167 			  ktime_t *tvblank, bool in_vblank_irq);
168 
169 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
170 
171 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
172 
173 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
174 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
175 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
176 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
177 
178 static struct drm_vblank_crtc *
179 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe)
180 {
181 	return &dev->vblank[pipe];
182 }
183 
184 struct drm_vblank_crtc *
185 drm_crtc_vblank_crtc(struct drm_crtc *crtc)
186 {
187 	return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc));
188 }
189 EXPORT_SYMBOL(drm_crtc_vblank_crtc);
190 
191 static void store_vblank(struct drm_device *dev, unsigned int pipe,
192 			 u32 vblank_count_inc,
193 			 ktime_t t_vblank, u32 last)
194 {
195 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
196 
197 	assert_spin_locked(&dev->vblank_time_lock);
198 
199 	vblank->last = last;
200 
201 	write_seqlock(&vblank->seqlock);
202 	vblank->time = t_vblank;
203 	atomic64_add(vblank_count_inc, &vblank->count);
204 	write_sequnlock(&vblank->seqlock);
205 }
206 
207 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
208 {
209 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
210 
211 	return vblank->max_vblank_count ?: dev->max_vblank_count;
212 }
213 
214 /*
215  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
216  * if there is no usable hardware frame counter available.
217  */
218 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
219 {
220 	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
221 	return 0;
222 }
223 
224 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
225 {
226 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
227 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
228 
229 		if (drm_WARN_ON(dev, !crtc))
230 			return 0;
231 
232 		if (crtc->funcs->get_vblank_counter)
233 			return crtc->funcs->get_vblank_counter(crtc);
234 	}
235 
236 	return drm_vblank_no_hw_counter(dev, pipe);
237 }
238 
239 /*
240  * Reset the stored timestamp for the current vblank count to correspond
241  * to the last vblank occurred.
242  *
243  * Only to be called from drm_crtc_vblank_on().
244  *
245  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
246  * device vblank fields.
247  */
248 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
249 {
250 	u32 cur_vblank;
251 	bool rc;
252 	ktime_t t_vblank;
253 	int count = DRM_TIMESTAMP_MAXRETRIES;
254 
255 	spin_lock(&dev->vblank_time_lock);
256 
257 	/*
258 	 * sample the current counter to avoid random jumps
259 	 * when drm_vblank_enable() applies the diff
260 	 */
261 	do {
262 		cur_vblank = __get_vblank_counter(dev, pipe);
263 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
264 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
265 
266 	/*
267 	 * Only reinitialize corresponding vblank timestamp if high-precision query
268 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
269 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
270 	 */
271 	if (!rc)
272 		t_vblank = 0;
273 
274 	/*
275 	 * +1 to make sure user will never see the same
276 	 * vblank counter value before and after a modeset
277 	 */
278 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
279 
280 	spin_unlock(&dev->vblank_time_lock);
281 }
282 
283 /*
284  * Call back into the driver to update the appropriate vblank counter
285  * (specified by @pipe).  Deal with wraparound, if it occurred, and
286  * update the last read value so we can deal with wraparound on the next
287  * call if necessary.
288  *
289  * Only necessary when going from off->on, to account for frames we
290  * didn't get an interrupt for.
291  *
292  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
293  * device vblank fields.
294  */
295 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
296 				    bool in_vblank_irq)
297 {
298 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
299 	u32 cur_vblank, diff;
300 	bool rc;
301 	ktime_t t_vblank;
302 	int count = DRM_TIMESTAMP_MAXRETRIES;
303 	int framedur_ns = vblank->framedur_ns;
304 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
305 
306 	/*
307 	 * Interrupts were disabled prior to this call, so deal with counter
308 	 * wrap if needed.
309 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
310 	 * here if the register is small or we had vblank interrupts off for
311 	 * a long time.
312 	 *
313 	 * We repeat the hardware vblank counter & timestamp query until
314 	 * we get consistent results. This to prevent races between gpu
315 	 * updating its hardware counter while we are retrieving the
316 	 * corresponding vblank timestamp.
317 	 */
318 	do {
319 		cur_vblank = __get_vblank_counter(dev, pipe);
320 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
321 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
322 
323 	if (max_vblank_count) {
324 		/* trust the hw counter when it's around */
325 		diff = (cur_vblank - vblank->last) & max_vblank_count;
326 	} else if (rc && framedur_ns) {
327 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
328 
329 		/*
330 		 * Figure out how many vblanks we've missed based
331 		 * on the difference in the timestamps and the
332 		 * frame/field duration.
333 		 */
334 
335 		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
336 			    " diff_ns = %lld, framedur_ns = %d)\n",
337 			    pipe, (long long)diff_ns, framedur_ns);
338 
339 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
340 
341 		if (diff == 0 && in_vblank_irq)
342 			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
343 				    pipe);
344 	} else {
345 		/* some kind of default for drivers w/o accurate vbl timestamping */
346 		diff = in_vblank_irq ? 1 : 0;
347 	}
348 
349 	/*
350 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
351 	 * interval? If so then vblank irqs keep running and it will likely
352 	 * happen that the hardware vblank counter is not trustworthy as it
353 	 * might reset at some point in that interval and vblank timestamps
354 	 * are not trustworthy either in that interval. Iow. this can result
355 	 * in a bogus diff >> 1 which must be avoided as it would cause
356 	 * random large forward jumps of the software vblank counter.
357 	 */
358 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
359 		drm_dbg_vbl(dev,
360 			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
361 			    " due to pre-modeset.\n", pipe, diff);
362 		diff = 1;
363 	}
364 
365 	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
366 		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
367 		    pipe, (unsigned long long)atomic64_read(&vblank->count),
368 		    diff, cur_vblank, vblank->last);
369 
370 	if (diff == 0) {
371 		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
372 		return;
373 	}
374 
375 	/*
376 	 * Only reinitialize corresponding vblank timestamp if high-precision query
377 	 * available and didn't fail, or we were called from the vblank interrupt.
378 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
379 	 * for now, to mark the vblanktimestamp as invalid.
380 	 */
381 	if (!rc && !in_vblank_irq)
382 		t_vblank = 0;
383 
384 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
385 }
386 
387 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
388 {
389 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
390 	u64 count;
391 
392 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
393 		return 0;
394 
395 	count = atomic64_read(&vblank->count);
396 
397 	/*
398 	 * This read barrier corresponds to the implicit write barrier of the
399 	 * write seqlock in store_vblank(). Note that this is the only place
400 	 * where we need an explicit barrier, since all other access goes
401 	 * through drm_vblank_count_and_time(), which already has the required
402 	 * read barrier curtesy of the read seqlock.
403 	 */
404 	smp_rmb();
405 
406 	return count;
407 }
408 
409 /**
410  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
411  * @crtc: which counter to retrieve
412  *
413  * This function is similar to drm_crtc_vblank_count() but this function
414  * interpolates to handle a race with vblank interrupts using the high precision
415  * timestamping support.
416  *
417  * This is mostly useful for hardware that can obtain the scanout position, but
418  * doesn't have a hardware frame counter.
419  */
420 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
421 {
422 	struct drm_device *dev = crtc->dev;
423 	unsigned int pipe = drm_crtc_index(crtc);
424 	u64 vblank;
425 	unsigned long flags;
426 
427 	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
428 		      !crtc->funcs->get_vblank_timestamp,
429 		      "This function requires support for accurate vblank timestamps.");
430 
431 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
432 
433 	drm_update_vblank_count(dev, pipe, false);
434 	vblank = drm_vblank_count(dev, pipe);
435 
436 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
437 
438 	return vblank;
439 }
440 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
441 
442 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
443 {
444 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
445 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
446 
447 		if (drm_WARN_ON(dev, !crtc))
448 			return;
449 
450 		if (crtc->funcs->disable_vblank)
451 			crtc->funcs->disable_vblank(crtc);
452 	}
453 }
454 
455 /*
456  * Disable vblank irq's on crtc, make sure that last vblank count
457  * of hardware and corresponding consistent software vblank counter
458  * are preserved, even if there are any spurious vblank irq's after
459  * disable.
460  */
461 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
462 {
463 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
464 	unsigned long irqflags;
465 
466 	assert_spin_locked(&dev->vbl_lock);
467 
468 	/* Prevent vblank irq processing while disabling vblank irqs,
469 	 * so no updates of timestamps or count can happen after we've
470 	 * disabled. Needed to prevent races in case of delayed irq's.
471 	 */
472 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
473 
474 	/*
475 	 * Update vblank count and disable vblank interrupts only if the
476 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
477 	 * operation in atomic context with the hardware potentially runtime
478 	 * suspended.
479 	 */
480 	if (!vblank->enabled)
481 		goto out;
482 
483 	/*
484 	 * Update the count and timestamp to maintain the
485 	 * appearance that the counter has been ticking all along until
486 	 * this time. This makes the count account for the entire time
487 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
488 	 */
489 	drm_update_vblank_count(dev, pipe, false);
490 	__disable_vblank(dev, pipe);
491 	vblank->enabled = false;
492 
493 out:
494 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
495 }
496 
497 static void vblank_disable_fn(struct timer_list *t)
498 {
499 	struct drm_vblank_crtc *vblank = timer_container_of(vblank, t,
500 							    disable_timer);
501 	struct drm_device *dev = vblank->dev;
502 	unsigned int pipe = vblank->pipe;
503 	unsigned long irqflags;
504 
505 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
506 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
507 		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
508 		drm_vblank_disable_and_save(dev, pipe);
509 	}
510 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
511 }
512 
513 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
514 {
515 	struct drm_vblank_crtc *vblank = ptr;
516 
517 	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
518 		    drm_core_check_feature(dev, DRIVER_MODESET));
519 
520 	if (vblank->vblank_timer.crtc)
521 		hrtimer_cancel(&vblank->vblank_timer.timer);
522 
523 	drm_vblank_destroy_worker(vblank);
524 	timer_delete_sync(&vblank->disable_timer);
525 }
526 
527 /**
528  * drm_vblank_init - initialize vblank support
529  * @dev: DRM device
530  * @num_crtcs: number of CRTCs supported by @dev
531  *
532  * This function initializes vblank support for @num_crtcs display pipelines.
533  * Cleanup is handled automatically through a cleanup function added with
534  * drmm_add_action_or_reset().
535  *
536  * Returns:
537  * Zero on success or a negative error code on failure.
538  */
539 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
540 {
541 	int ret;
542 	unsigned int i;
543 
544 	spin_lock_init(&dev->vbl_lock);
545 	spin_lock_init(&dev->vblank_time_lock);
546 
547 	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
548 	if (!dev->vblank)
549 		return -ENOMEM;
550 
551 	dev->num_crtcs = num_crtcs;
552 
553 	for (i = 0; i < num_crtcs; i++) {
554 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
555 
556 		vblank->dev = dev;
557 		vblank->pipe = i;
558 		init_waitqueue_head(&vblank->queue);
559 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
560 		seqlock_init(&vblank->seqlock);
561 
562 		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
563 					       vblank);
564 		if (ret)
565 			return ret;
566 
567 		ret = drm_vblank_worker_init(vblank);
568 		if (ret)
569 			return ret;
570 	}
571 
572 	return 0;
573 }
574 EXPORT_SYMBOL(drm_vblank_init);
575 
576 /**
577  * drm_dev_has_vblank - test if vblanking has been initialized for
578  *                      a device
579  * @dev: the device
580  *
581  * Drivers may call this function to test if vblank support is
582  * initialized for a device. For most hardware this means that vblanking
583  * can also be enabled.
584  *
585  * Atomic helpers use this function to initialize
586  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
587  *
588  * Returns:
589  * True if vblanking has been initialized for the given device, false
590  * otherwise.
591  */
592 bool drm_dev_has_vblank(const struct drm_device *dev)
593 {
594 	return dev->num_crtcs != 0;
595 }
596 EXPORT_SYMBOL(drm_dev_has_vblank);
597 
598 /**
599  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
600  * @crtc: which CRTC's vblank waitqueue to retrieve
601  *
602  * This function returns a pointer to the vblank waitqueue for the CRTC.
603  * Drivers can use this to implement vblank waits using wait_event() and related
604  * functions.
605  */
606 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
607 {
608 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
609 }
610 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
611 
612 
613 /**
614  * drm_calc_timestamping_constants - calculate vblank timestamp constants
615  * @crtc: drm_crtc whose timestamp constants should be updated.
616  * @mode: display mode containing the scanout timings
617  *
618  * Calculate and store various constants which are later needed by vblank and
619  * swap-completion timestamping, e.g, by
620  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
621  * CRTC's true scanout timing, so they take things like panel scaling or
622  * other adjustments into account.
623  */
624 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
625 				     const struct drm_display_mode *mode)
626 {
627 	struct drm_device *dev = crtc->dev;
628 	unsigned int pipe = drm_crtc_index(crtc);
629 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
630 	int linedur_ns = 0, framedur_ns = 0;
631 	int dotclock = mode->crtc_clock;
632 
633 	if (!drm_dev_has_vblank(dev))
634 		return;
635 
636 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
637 		return;
638 
639 	/* Valid dotclock? */
640 	if (dotclock > 0) {
641 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
642 
643 		/*
644 		 * Convert scanline length in pixels and video
645 		 * dot clock to line duration and frame duration
646 		 * in nanoseconds:
647 		 */
648 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
649 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
650 
651 		/*
652 		 * Fields of interlaced scanout modes are only half a frame duration.
653 		 */
654 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
655 			framedur_ns /= 2;
656 	} else {
657 		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
658 			crtc->base.id);
659 	}
660 
661 	vblank->linedur_ns  = linedur_ns;
662 	vblank->framedur_ns = framedur_ns;
663 	drm_mode_copy(&vblank->hwmode, mode);
664 
665 	drm_dbg_core(dev,
666 		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
667 		     crtc->base.id, mode->crtc_htotal,
668 		     mode->crtc_vtotal, mode->crtc_vdisplay);
669 	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
670 		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
671 }
672 EXPORT_SYMBOL(drm_calc_timestamping_constants);
673 
674 /**
675  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
676  *                                                        timestamp helper
677  * @crtc: CRTC whose vblank timestamp to retrieve
678  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
679  *             On return contains true maximum error of timestamp
680  * @vblank_time: Pointer to time which should receive the timestamp
681  * @in_vblank_irq:
682  *     True when called from drm_crtc_handle_vblank().  Some drivers
683  *     need to apply some workarounds for gpu-specific vblank irq quirks
684  *     if flag is set.
685  * @get_scanout_position:
686  *     Callback function to retrieve the scanout position. See
687  *     @struct drm_crtc_helper_funcs.get_scanout_position.
688  *
689  * Implements calculation of exact vblank timestamps from given drm_display_mode
690  * timings and current video scanout position of a CRTC.
691  *
692  * The current implementation only handles standard video modes. For double scan
693  * and interlaced modes the driver is supposed to adjust the hardware mode
694  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
695  * match the scanout position reported.
696  *
697  * Note that atomic drivers must call drm_calc_timestamping_constants() before
698  * enabling a CRTC. The atomic helpers already take care of that in
699  * drm_atomic_helper_calc_timestamping_constants().
700  *
701  * Returns:
702  * Returns true on success, and false on failure, i.e. when no accurate
703  * timestamp could be acquired.
704  */
705 bool
706 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
707 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
708 	bool in_vblank_irq,
709 	drm_vblank_get_scanout_position_func get_scanout_position)
710 {
711 	struct drm_device *dev = crtc->dev;
712 	unsigned int pipe = crtc->index;
713 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
714 	struct timespec64 ts_etime, ts_vblank_time;
715 	ktime_t stime, etime;
716 	bool vbl_status;
717 	const struct drm_display_mode *mode;
718 	int vpos, hpos, i;
719 	int delta_ns, duration_ns;
720 
721 	if (pipe >= dev->num_crtcs) {
722 		drm_err(dev, "Invalid crtc %u\n", pipe);
723 		return false;
724 	}
725 
726 	/* Scanout position query not supported? Should not happen. */
727 	if (!get_scanout_position) {
728 		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
729 		return false;
730 	}
731 
732 	if (drm_drv_uses_atomic_modeset(dev))
733 		mode = &vblank->hwmode;
734 	else
735 		mode = &crtc->hwmode;
736 
737 	/* If mode timing undefined, just return as no-op:
738 	 * Happens during initial modesetting of a crtc.
739 	 */
740 	if (mode->crtc_clock == 0) {
741 		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
742 			     pipe);
743 		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
744 		return false;
745 	}
746 
747 	/* Get current scanout position with system timestamp.
748 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
749 	 * if single query takes longer than max_error nanoseconds.
750 	 *
751 	 * This guarantees a tight bound on maximum error if
752 	 * code gets preempted or delayed for some reason.
753 	 */
754 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
755 		/*
756 		 * Get vertical and horizontal scanout position vpos, hpos,
757 		 * and bounding timestamps stime, etime, pre/post query.
758 		 */
759 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
760 						  &vpos, &hpos,
761 						  &stime, &etime,
762 						  mode);
763 
764 		/* Return as no-op if scanout query unsupported or failed. */
765 		if (!vbl_status) {
766 			drm_dbg_core(dev,
767 				     "crtc %u : scanoutpos query failed.\n",
768 				     pipe);
769 			return false;
770 		}
771 
772 		/* Compute uncertainty in timestamp of scanout position query. */
773 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
774 
775 		/* Accept result with <  max_error nsecs timing uncertainty. */
776 		if (duration_ns <= *max_error)
777 			break;
778 	}
779 
780 	/* Noisy system timing? */
781 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
782 		drm_dbg_core(dev,
783 			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
784 			     pipe, duration_ns / 1000, *max_error / 1000, i);
785 	}
786 
787 	/* Return upper bound of timestamp precision error. */
788 	*max_error = duration_ns;
789 
790 	/* Convert scanout position into elapsed time at raw_time query
791 	 * since start of scanout at first display scanline. delta_ns
792 	 * can be negative if start of scanout hasn't happened yet.
793 	 */
794 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
795 			   mode->crtc_clock);
796 
797 	/* Subtract time delta from raw timestamp to get final
798 	 * vblank_time timestamp for end of vblank.
799 	 */
800 	*vblank_time = ktime_sub_ns(etime, delta_ns);
801 
802 	if (!drm_debug_enabled(DRM_UT_VBL))
803 		return true;
804 
805 	ts_etime = ktime_to_timespec64(etime);
806 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
807 
808 	drm_dbg_vbl(dev,
809 		    "crtc %u : v p(%d,%d)@ %ptSp -> %ptSp [e %d us, %d rep]\n",
810 		    pipe, hpos, vpos, &ts_etime, &ts_vblank_time,
811 		    duration_ns / 1000, i);
812 
813 	return true;
814 }
815 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
816 
817 /**
818  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
819  *                                               helper
820  * @crtc: CRTC whose vblank timestamp to retrieve
821  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
822  *             On return contains true maximum error of timestamp
823  * @vblank_time: Pointer to time which should receive the timestamp
824  * @in_vblank_irq:
825  *     True when called from drm_crtc_handle_vblank().  Some drivers
826  *     need to apply some workarounds for gpu-specific vblank irq quirks
827  *     if flag is set.
828  *
829  * Implements calculation of exact vblank timestamps from given drm_display_mode
830  * timings and current video scanout position of a CRTC. This can be directly
831  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
832  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
833  *
834  * The current implementation only handles standard video modes. For double scan
835  * and interlaced modes the driver is supposed to adjust the hardware mode
836  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
837  * match the scanout position reported.
838  *
839  * Note that atomic drivers must call drm_calc_timestamping_constants() before
840  * enabling a CRTC. The atomic helpers already take care of that in
841  * drm_atomic_helper_calc_timestamping_constants().
842  *
843  * Returns:
844  * Returns true on success, and false on failure, i.e. when no accurate
845  * timestamp could be acquired.
846  */
847 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
848 						 int *max_error,
849 						 ktime_t *vblank_time,
850 						 bool in_vblank_irq)
851 {
852 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
853 		crtc, max_error, vblank_time, in_vblank_irq,
854 		crtc->helper_private->get_scanout_position);
855 }
856 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
857 
858 /**
859  * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
860  *                                  recent vblank interval
861  * @crtc: CRTC whose vblank timestamp to retrieve
862  * @tvblank: Pointer to target time which should receive the timestamp
863  * @in_vblank_irq:
864  *     True when called from drm_crtc_handle_vblank().  Some drivers
865  *     need to apply some workarounds for gpu-specific vblank irq quirks
866  *     if flag is set.
867  *
868  * Fetches the system timestamp corresponding to the time of the most recent
869  * vblank interval on specified CRTC. May call into kms-driver to
870  * compute the timestamp with a high-precision GPU specific method.
871  *
872  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
873  * call, i.e., it isn't very precisely locked to the true vblank.
874  *
875  * Returns:
876  * True if timestamp is considered to be very precise, false otherwise.
877  */
878 static bool
879 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
880 			       bool in_vblank_irq)
881 {
882 	bool ret = false;
883 
884 	/* Define requested maximum error on timestamps (nanoseconds). */
885 	int max_error = (int) drm_timestamp_precision * 1000;
886 
887 	/* Query driver if possible and precision timestamping enabled. */
888 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
889 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
890 							tvblank, in_vblank_irq);
891 	}
892 
893 	/* GPU high precision timestamp query unsupported or failed.
894 	 * Return current monotonic/gettimeofday timestamp as best estimate.
895 	 */
896 	if (!ret)
897 		*tvblank = ktime_get();
898 
899 	return ret;
900 }
901 
902 static bool
903 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
904 			  ktime_t *tvblank, bool in_vblank_irq)
905 {
906 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
907 
908 	return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
909 }
910 
911 /**
912  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
913  * @crtc: which counter to retrieve
914  *
915  * Fetches the "cooked" vblank count value that represents the number of
916  * vblank events since the system was booted, including lost events due to
917  * modesetting activity. Note that this timer isn't correct against a racing
918  * vblank interrupt (since it only reports the software vblank counter), see
919  * drm_crtc_accurate_vblank_count() for such use-cases.
920  *
921  * Note that for a given vblank counter value drm_crtc_handle_vblank()
922  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
923  * provide a barrier: Any writes done before calling
924  * drm_crtc_handle_vblank() will be visible to callers of the later
925  * functions, if the vblank count is the same or a later one.
926  *
927  * See also &drm_vblank_crtc.count.
928  *
929  * Returns:
930  * The software vblank counter.
931  */
932 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
933 {
934 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
935 }
936 EXPORT_SYMBOL(drm_crtc_vblank_count);
937 
938 /**
939  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
940  *     system timestamp corresponding to that vblank counter value.
941  * @dev: DRM device
942  * @pipe: index of CRTC whose counter to retrieve
943  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
944  *
945  * Fetches the "cooked" vblank count value that represents the number of
946  * vblank events since the system was booted, including lost events due to
947  * modesetting activity. Returns corresponding system timestamp of the time
948  * of the vblank interval that corresponds to the current vblank counter value.
949  *
950  * This is the legacy version of drm_crtc_vblank_count_and_time().
951  */
952 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
953 				     ktime_t *vblanktime)
954 {
955 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
956 	u64 vblank_count;
957 	unsigned int seq;
958 
959 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
960 		*vblanktime = 0;
961 		return 0;
962 	}
963 
964 	do {
965 		seq = read_seqbegin(&vblank->seqlock);
966 		vblank_count = atomic64_read(&vblank->count);
967 		*vblanktime = vblank->time;
968 	} while (read_seqretry(&vblank->seqlock, seq));
969 
970 	return vblank_count;
971 }
972 
973 /**
974  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
975  *     and the system timestamp corresponding to that vblank counter value
976  * @crtc: which counter to retrieve
977  * @vblanktime: Pointer to time to receive the vblank timestamp.
978  *
979  * Fetches the "cooked" vblank count value that represents the number of
980  * vblank events since the system was booted, including lost events due to
981  * modesetting activity. Returns corresponding system timestamp of the time
982  * of the vblank interval that corresponds to the current vblank counter value.
983  *
984  * Note that for a given vblank counter value drm_crtc_handle_vblank()
985  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
986  * provide a barrier: Any writes done before calling
987  * drm_crtc_handle_vblank() will be visible to callers of the later
988  * functions, if the vblank count is the same or a later one.
989  *
990  * See also &drm_vblank_crtc.count.
991  */
992 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
993 				   ktime_t *vblanktime)
994 {
995 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
996 					 vblanktime);
997 }
998 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
999 
1000 /**
1001  * drm_crtc_next_vblank_start - calculate the time of the next vblank
1002  * @crtc: the crtc for which to calculate next vblank time
1003  * @vblanktime: pointer to time to receive the next vblank timestamp.
1004  *
1005  * Calculate the expected time of the start of the next vblank period,
1006  * based on time of previous vblank and frame duration
1007  */
1008 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
1009 {
1010 	struct drm_vblank_crtc *vblank;
1011 	struct drm_display_mode *mode;
1012 	u64 vblank_start;
1013 
1014 	if (!drm_dev_has_vblank(crtc->dev))
1015 		return -EINVAL;
1016 
1017 	vblank = drm_crtc_vblank_crtc(crtc);
1018 	mode = &vblank->hwmode;
1019 
1020 	if (!vblank->framedur_ns || !vblank->linedur_ns)
1021 		return -EINVAL;
1022 
1023 	if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1024 		return -EINVAL;
1025 
1026 	vblank_start = DIV_ROUND_DOWN_ULL(
1027 			(u64)vblank->framedur_ns * mode->crtc_vblank_start,
1028 			mode->crtc_vtotal);
1029 	*vblanktime  = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1030 
1031 	return 0;
1032 }
1033 EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1034 
1035 static void send_vblank_event(struct drm_device *dev,
1036 		struct drm_pending_vblank_event *e,
1037 		u64 seq, ktime_t now)
1038 {
1039 	struct timespec64 tv;
1040 
1041 	switch (e->event.base.type) {
1042 	case DRM_EVENT_VBLANK:
1043 	case DRM_EVENT_FLIP_COMPLETE:
1044 		tv = ktime_to_timespec64(now);
1045 		e->event.vbl.sequence = seq;
1046 		/*
1047 		 * e->event is a user space structure, with hardcoded unsigned
1048 		 * 32-bit seconds/microseconds. This is safe as we always use
1049 		 * monotonic timestamps since linux-4.15
1050 		 */
1051 		e->event.vbl.tv_sec = tv.tv_sec;
1052 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1053 		break;
1054 	case DRM_EVENT_CRTC_SEQUENCE:
1055 		if (seq)
1056 			e->event.seq.sequence = seq;
1057 		e->event.seq.time_ns = ktime_to_ns(now);
1058 		break;
1059 	}
1060 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1061 	/*
1062 	 * Use the same timestamp for any associated fence signal to avoid
1063 	 * mismatch in timestamps for vsync & fence events triggered by the
1064 	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1065 	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1066 	 * for its software vsync modeling.
1067 	 */
1068 	drm_send_event_timestamp_locked(dev, &e->base, now);
1069 }
1070 
1071 /**
1072  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1073  * @crtc: the source CRTC of the vblank event
1074  * @e: the event to send
1075  *
1076  * A lot of drivers need to generate vblank events for the very next vblank
1077  * interrupt. For example when the page flip interrupt happens when the page
1078  * flip gets armed, but not when it actually executes within the next vblank
1079  * period. This helper function implements exactly the required vblank arming
1080  * behaviour.
1081  *
1082  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1083  * atomic commit must ensure that the next vblank happens at exactly the same
1084  * time as the atomic commit is committed to the hardware. This function itself
1085  * does **not** protect against the next vblank interrupt racing with either this
1086  * function call or the atomic commit operation. A possible sequence could be:
1087  *
1088  * 1. Driver commits new hardware state into vblank-synchronized registers.
1089  * 2. A vblank happens, committing the hardware state. Also the corresponding
1090  *    vblank interrupt is fired off and fully processed by the interrupt
1091  *    handler.
1092  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1093  * 4. The event is only send out for the next vblank, which is wrong.
1094  *
1095  * An equivalent race can happen when the driver calls
1096  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1097  *
1098  * The only way to make this work safely is to prevent the vblank from firing
1099  * (and the hardware from committing anything else) until the entire atomic
1100  * commit sequence has run to completion. If the hardware does not have such a
1101  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1102  * Instead drivers need to manually send out the event from their interrupt
1103  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1104  * possible race with the hardware committing the atomic update.
1105  *
1106  * Caller must hold a vblank reference for the event @e acquired by a
1107  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1108  */
1109 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1110 			       struct drm_pending_vblank_event *e)
1111 {
1112 	struct drm_device *dev = crtc->dev;
1113 	unsigned int pipe = drm_crtc_index(crtc);
1114 
1115 	assert_spin_locked(&dev->event_lock);
1116 
1117 	e->pipe = pipe;
1118 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1119 	list_add_tail(&e->base.link, &dev->vblank_event_list);
1120 }
1121 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1122 
1123 /**
1124  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1125  * @crtc: the source CRTC of the vblank event
1126  * @e: the event to send
1127  *
1128  * Updates sequence # and timestamp on event for the most recently processed
1129  * vblank, and sends it to userspace.  Caller must hold event lock.
1130  *
1131  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1132  * situation, especially to send out events for atomic commit operations.
1133  */
1134 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1135 				struct drm_pending_vblank_event *e)
1136 {
1137 	struct drm_device *dev = crtc->dev;
1138 	u64 seq;
1139 	unsigned int pipe = drm_crtc_index(crtc);
1140 	ktime_t now;
1141 
1142 	if (drm_dev_has_vblank(dev)) {
1143 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1144 	} else {
1145 		seq = 0;
1146 
1147 		now = ktime_get();
1148 	}
1149 	e->pipe = pipe;
1150 	send_vblank_event(dev, e, seq, now);
1151 }
1152 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1153 
1154 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1155 {
1156 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1157 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1158 
1159 		if (drm_WARN_ON(dev, !crtc))
1160 			return 0;
1161 
1162 		if (crtc->funcs->enable_vblank)
1163 			return crtc->funcs->enable_vblank(crtc);
1164 	}
1165 
1166 	return -EINVAL;
1167 }
1168 
1169 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1170 {
1171 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1172 	int ret = 0;
1173 
1174 	assert_spin_locked(&dev->vbl_lock);
1175 
1176 	spin_lock(&dev->vblank_time_lock);
1177 
1178 	if (!vblank->enabled) {
1179 		/*
1180 		 * Enable vblank irqs under vblank_time_lock protection.
1181 		 * All vblank count & timestamp updates are held off
1182 		 * until we are done reinitializing master counter and
1183 		 * timestamps. Filtercode in drm_handle_vblank() will
1184 		 * prevent double-accounting of same vblank interval.
1185 		 */
1186 		ret = __enable_vblank(dev, pipe);
1187 		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1188 			     pipe, ret);
1189 		if (ret) {
1190 			atomic_dec(&vblank->refcount);
1191 		} else {
1192 			drm_update_vblank_count(dev, pipe, 0);
1193 			/* drm_update_vblank_count() includes a wmb so we just
1194 			 * need to ensure that the compiler emits the write
1195 			 * to mark the vblank as enabled after the call
1196 			 * to drm_update_vblank_count().
1197 			 */
1198 			WRITE_ONCE(vblank->enabled, true);
1199 		}
1200 	}
1201 
1202 	spin_unlock(&dev->vblank_time_lock);
1203 
1204 	return ret;
1205 }
1206 
1207 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1208 {
1209 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1210 	unsigned long irqflags;
1211 	int ret = 0;
1212 
1213 	if (!drm_dev_has_vblank(dev))
1214 		return -EINVAL;
1215 
1216 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1217 		return -EINVAL;
1218 
1219 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1220 	/* Going from 0->1 means we have to enable interrupts again */
1221 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1222 		ret = drm_vblank_enable(dev, pipe);
1223 	} else {
1224 		if (!vblank->enabled) {
1225 			atomic_dec(&vblank->refcount);
1226 			ret = -EINVAL;
1227 		}
1228 	}
1229 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1230 
1231 	return ret;
1232 }
1233 
1234 /**
1235  * drm_crtc_vblank_get - get a reference count on vblank events
1236  * @crtc: which CRTC to own
1237  *
1238  * Acquire a reference count on vblank events to avoid having them disabled
1239  * while in use.
1240  *
1241  * Returns:
1242  * Zero on success or a negative error code on failure.
1243  */
1244 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1245 {
1246 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1247 }
1248 EXPORT_SYMBOL(drm_crtc_vblank_get);
1249 
1250 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1251 {
1252 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1253 	int vblank_offdelay = vblank->config.offdelay_ms;
1254 
1255 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1256 		return;
1257 
1258 	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1259 		return;
1260 
1261 	/* Last user schedules interrupt disable */
1262 	if (atomic_dec_and_test(&vblank->refcount)) {
1263 		if (!vblank_offdelay)
1264 			return;
1265 		else if (vblank_offdelay < 0)
1266 			vblank_disable_fn(&vblank->disable_timer);
1267 		else if (!vblank->config.disable_immediate)
1268 			mod_timer(&vblank->disable_timer,
1269 				  jiffies + ((vblank_offdelay * HZ) / 1000));
1270 	}
1271 }
1272 
1273 /**
1274  * drm_crtc_vblank_put - give up ownership of vblank events
1275  * @crtc: which counter to give up
1276  *
1277  * Release ownership of a given vblank counter, turning off interrupts
1278  * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms
1279  * milliseconds.
1280  */
1281 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1282 {
1283 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1284 }
1285 EXPORT_SYMBOL(drm_crtc_vblank_put);
1286 
1287 /**
1288  * drm_wait_one_vblank - wait for one vblank
1289  * @dev: DRM device
1290  * @pipe: CRTC index
1291  *
1292  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1293  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1294  * due to lack of driver support or because the crtc is off.
1295  *
1296  * This is the legacy version of drm_crtc_wait_one_vblank().
1297  */
1298 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1299 {
1300 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1301 	int ret;
1302 	u64 last;
1303 
1304 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1305 		return;
1306 
1307 	ret = drm_vblank_get(dev, pipe);
1308 	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1309 		     pipe, ret))
1310 		return;
1311 
1312 	last = drm_vblank_count(dev, pipe);
1313 
1314 	ret = wait_event_timeout(vblank->queue,
1315 				 last != drm_vblank_count(dev, pipe),
1316 				 msecs_to_jiffies(1000));
1317 
1318 	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1319 
1320 	drm_vblank_put(dev, pipe);
1321 }
1322 EXPORT_SYMBOL(drm_wait_one_vblank);
1323 
1324 /**
1325  * drm_crtc_wait_one_vblank - wait for one vblank
1326  * @crtc: DRM crtc
1327  *
1328  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1329  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1330  * due to lack of driver support or because the crtc is off.
1331  */
1332 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1333 {
1334 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1335 }
1336 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1337 
1338 /**
1339  * drm_crtc_vblank_off - disable vblank events on a CRTC
1340  * @crtc: CRTC in question
1341  *
1342  * Drivers can use this function to shut down the vblank interrupt handling when
1343  * disabling a crtc. This function ensures that the latest vblank frame count is
1344  * stored so that drm_vblank_on can restore it again.
1345  *
1346  * Drivers must use this function when the hardware vblank counter can get
1347  * reset, e.g. when suspending or disabling the @crtc in general.
1348  */
1349 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1350 {
1351 	struct drm_device *dev = crtc->dev;
1352 	unsigned int pipe = drm_crtc_index(crtc);
1353 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1354 	struct drm_pending_vblank_event *e, *t;
1355 	ktime_t now;
1356 	u64 seq;
1357 
1358 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1359 		return;
1360 
1361 	/*
1362 	 * Grab event_lock early to prevent vblank work from being scheduled
1363 	 * while we're in the middle of shutting down vblank interrupts
1364 	 */
1365 	spin_lock_irq(&dev->event_lock);
1366 
1367 	spin_lock(&dev->vbl_lock);
1368 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1369 		    pipe, vblank->enabled, vblank->inmodeset);
1370 
1371 	/* Avoid redundant vblank disables without previous
1372 	 * drm_crtc_vblank_on(). */
1373 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1374 		drm_vblank_disable_and_save(dev, pipe);
1375 
1376 	wake_up(&vblank->queue);
1377 
1378 	/*
1379 	 * Prevent subsequent drm_vblank_get() from re-enabling
1380 	 * the vblank interrupt by bumping the refcount.
1381 	 */
1382 	if (!vblank->inmodeset) {
1383 		atomic_inc(&vblank->refcount);
1384 		vblank->inmodeset = 1;
1385 	}
1386 	spin_unlock(&dev->vbl_lock);
1387 
1388 	/* Send any queued vblank events, lest the natives grow disquiet */
1389 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1390 
1391 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1392 		if (e->pipe != pipe)
1393 			continue;
1394 		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1395 			     "wanted %llu, current %llu\n",
1396 			     e->sequence, seq);
1397 		list_del(&e->base.link);
1398 		drm_vblank_put(dev, pipe);
1399 		send_vblank_event(dev, e, seq, now);
1400 	}
1401 
1402 	/* Cancel any leftover pending vblank work */
1403 	drm_vblank_cancel_pending_works(vblank);
1404 
1405 	spin_unlock_irq(&dev->event_lock);
1406 
1407 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1408 	 * calling drm_calc_timestamping_constants(). */
1409 	vblank->hwmode.crtc_clock = 0;
1410 
1411 	/* Wait for any vblank work that's still executing to finish */
1412 	drm_vblank_flush_worker(vblank);
1413 }
1414 EXPORT_SYMBOL(drm_crtc_vblank_off);
1415 
1416 /**
1417  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1418  * @crtc: CRTC in question
1419  *
1420  * Drivers can use this function to reset the vblank state to off at load time.
1421  * Drivers should use this together with the drm_crtc_vblank_off() and
1422  * drm_crtc_vblank_on() functions. The difference compared to
1423  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1424  * and hence doesn't need to call any driver hooks.
1425  *
1426  * This is useful for recovering driver state e.g. on driver load, or on resume.
1427  */
1428 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1429 {
1430 	struct drm_device *dev = crtc->dev;
1431 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1432 
1433 	spin_lock_irq(&dev->vbl_lock);
1434 	/*
1435 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1436 	 * interrupt by bumping the refcount.
1437 	 */
1438 	if (!vblank->inmodeset) {
1439 		atomic_inc(&vblank->refcount);
1440 		vblank->inmodeset = 1;
1441 	}
1442 	spin_unlock_irq(&dev->vbl_lock);
1443 
1444 	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1445 	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1446 }
1447 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1448 
1449 /**
1450  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1451  * @crtc: CRTC in question
1452  * @max_vblank_count: max hardware vblank counter value
1453  *
1454  * Update the maximum hardware vblank counter value for @crtc
1455  * at runtime. Useful for hardware where the operation of the
1456  * hardware vblank counter depends on the currently active
1457  * display configuration.
1458  *
1459  * For example, if the hardware vblank counter does not work
1460  * when a specific connector is active the maximum can be set
1461  * to zero. And when that specific connector isn't active the
1462  * maximum can again be set to the appropriate non-zero value.
1463  *
1464  * If used, must be called before drm_vblank_on().
1465  */
1466 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1467 				   u32 max_vblank_count)
1468 {
1469 	struct drm_device *dev = crtc->dev;
1470 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1471 
1472 	drm_WARN_ON(dev, dev->max_vblank_count);
1473 	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1474 
1475 	vblank->max_vblank_count = max_vblank_count;
1476 }
1477 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1478 
1479 /**
1480  * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom
1481  *     configuration options
1482  * @crtc: CRTC in question
1483  * @config: Vblank configuration value
1484  *
1485  * See drm_crtc_vblank_on(). In addition, this function allows you to provide a
1486  * custom vblank configuration for a given CRTC.
1487  *
1488  * Note that @config is copied, the pointer does not need to stay valid beyond
1489  * this function call. For details of the parameters see
1490  * struct drm_vblank_crtc_config.
1491  */
1492 void drm_crtc_vblank_on_config(struct drm_crtc *crtc,
1493 			       const struct drm_vblank_crtc_config *config)
1494 {
1495 	struct drm_device *dev = crtc->dev;
1496 	unsigned int pipe = drm_crtc_index(crtc);
1497 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1498 
1499 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1500 		return;
1501 
1502 	spin_lock_irq(&dev->vbl_lock);
1503 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1504 		    pipe, vblank->enabled, vblank->inmodeset);
1505 
1506 	vblank->config = *config;
1507 
1508 	/* Drop our private "prevent drm_vblank_get" refcount */
1509 	if (vblank->inmodeset) {
1510 		atomic_dec(&vblank->refcount);
1511 		vblank->inmodeset = 0;
1512 	}
1513 
1514 	drm_reset_vblank_timestamp(dev, pipe);
1515 
1516 	/*
1517 	 * re-enable interrupts if there are users left, or the
1518 	 * user wishes vblank interrupts to be enabled all the time.
1519 	 */
1520 	if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms)
1521 		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1522 	spin_unlock_irq(&dev->vbl_lock);
1523 }
1524 EXPORT_SYMBOL(drm_crtc_vblank_on_config);
1525 
1526 /**
1527  * drm_crtc_vblank_on - enable vblank events on a CRTC
1528  * @crtc: CRTC in question
1529  *
1530  * This functions restores the vblank interrupt state captured with
1531  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1532  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1533  * unbalanced and so can also be unconditionally called in driver load code to
1534  * reflect the current hardware state of the crtc.
1535  *
1536  * Note that unlike in drm_crtc_vblank_on_config(), default values are used.
1537  */
1538 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1539 {
1540 	const struct drm_vblank_crtc_config config = {
1541 		.offdelay_ms = drm_vblank_offdelay,
1542 		.disable_immediate = crtc->dev->vblank_disable_immediate
1543 	};
1544 
1545 	drm_crtc_vblank_on_config(crtc, &config);
1546 }
1547 EXPORT_SYMBOL(drm_crtc_vblank_on);
1548 
1549 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1550 {
1551 	ktime_t t_vblank;
1552 	struct drm_vblank_crtc *vblank;
1553 	int framedur_ns;
1554 	u64 diff_ns;
1555 	u32 cur_vblank, diff = 1;
1556 	int count = DRM_TIMESTAMP_MAXRETRIES;
1557 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1558 
1559 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1560 		return;
1561 
1562 	assert_spin_locked(&dev->vbl_lock);
1563 	assert_spin_locked(&dev->vblank_time_lock);
1564 
1565 	vblank = drm_vblank_crtc(dev, pipe);
1566 	drm_WARN_ONCE(dev,
1567 		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1568 		      "Cannot compute missed vblanks without frame duration\n");
1569 	framedur_ns = vblank->framedur_ns;
1570 
1571 	do {
1572 		cur_vblank = __get_vblank_counter(dev, pipe);
1573 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1574 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1575 
1576 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1577 	if (framedur_ns)
1578 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1579 
1580 
1581 	drm_dbg_vbl(dev,
1582 		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1583 		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1584 	vblank->last = (cur_vblank - diff) & max_vblank_count;
1585 }
1586 
1587 /**
1588  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1589  * @crtc: CRTC in question
1590  *
1591  * Power manamement features can cause frame counter resets between vblank
1592  * disable and enable. Drivers can use this function in their
1593  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1594  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1595  * vblank counter.
1596  *
1597  * Note that drivers must have race-free high-precision timestamping support,
1598  * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1599  * &drm_vblank_crtc_config.disable_immediate must be set to indicate the
1600  * time-stamping functions are race-free against vblank hardware counter
1601  * increments.
1602  */
1603 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1604 {
1605 	struct drm_device *dev = crtc->dev;
1606 	unsigned int pipe = drm_crtc_index(crtc);
1607 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1608 
1609 	drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp);
1610 	drm_WARN_ON_ONCE(dev, vblank->inmodeset);
1611 	drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate);
1612 
1613 	drm_vblank_restore(dev, pipe);
1614 }
1615 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1616 
1617 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1618 				  u64 req_seq,
1619 				  union drm_wait_vblank *vblwait,
1620 				  struct drm_file *file_priv)
1621 {
1622 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1623 	struct drm_pending_vblank_event *e;
1624 	ktime_t now;
1625 	u64 seq;
1626 	int ret;
1627 
1628 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1629 	if (e == NULL) {
1630 		ret = -ENOMEM;
1631 		goto err_put;
1632 	}
1633 
1634 	e->pipe = pipe;
1635 	e->event.base.type = DRM_EVENT_VBLANK;
1636 	e->event.base.length = sizeof(e->event.vbl);
1637 	e->event.vbl.user_data = vblwait->request.signal;
1638 	e->event.vbl.crtc_id = 0;
1639 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1640 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1641 
1642 		if (crtc)
1643 			e->event.vbl.crtc_id = crtc->base.id;
1644 	}
1645 
1646 	spin_lock_irq(&dev->event_lock);
1647 
1648 	/*
1649 	 * drm_crtc_vblank_off() might have been called after we called
1650 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1651 	 * vblank disable, so no need for further locking.  The reference from
1652 	 * drm_vblank_get() protects against vblank disable from another source.
1653 	 */
1654 	if (!READ_ONCE(vblank->enabled)) {
1655 		ret = -EINVAL;
1656 		goto err_unlock;
1657 	}
1658 
1659 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1660 					    &e->event.base);
1661 
1662 	if (ret)
1663 		goto err_unlock;
1664 
1665 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1666 
1667 	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1668 		     req_seq, seq, pipe);
1669 
1670 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1671 
1672 	e->sequence = req_seq;
1673 	if (drm_vblank_passed(seq, req_seq)) {
1674 		drm_vblank_put(dev, pipe);
1675 		send_vblank_event(dev, e, seq, now);
1676 		vblwait->reply.sequence = seq;
1677 	} else {
1678 		/* drm_handle_vblank_events will call drm_vblank_put */
1679 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1680 		vblwait->reply.sequence = req_seq;
1681 	}
1682 
1683 	spin_unlock_irq(&dev->event_lock);
1684 
1685 	return 0;
1686 
1687 err_unlock:
1688 	spin_unlock_irq(&dev->event_lock);
1689 	kfree(e);
1690 err_put:
1691 	drm_vblank_put(dev, pipe);
1692 	return ret;
1693 }
1694 
1695 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1696 {
1697 	if (vblwait->request.sequence)
1698 		return false;
1699 
1700 	return _DRM_VBLANK_RELATIVE ==
1701 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1702 					  _DRM_VBLANK_EVENT |
1703 					  _DRM_VBLANK_NEXTONMISS));
1704 }
1705 
1706 /*
1707  * Widen a 32-bit param to 64-bits.
1708  *
1709  * \param narrow 32-bit value (missing upper 32 bits)
1710  * \param near 64-bit value that should be 'close' to near
1711  *
1712  * This function returns a 64-bit value using the lower 32-bits from
1713  * 'narrow' and constructing the upper 32-bits so that the result is
1714  * as close as possible to 'near'.
1715  */
1716 
1717 static u64 widen_32_to_64(u32 narrow, u64 near)
1718 {
1719 	return near + (s32) (narrow - near);
1720 }
1721 
1722 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1723 				  struct drm_wait_vblank_reply *reply)
1724 {
1725 	ktime_t now;
1726 	struct timespec64 ts;
1727 
1728 	/*
1729 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1730 	 * to store the seconds. This is safe as we always use monotonic
1731 	 * timestamps since linux-4.15.
1732 	 */
1733 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1734 	ts = ktime_to_timespec64(now);
1735 	reply->tval_sec = (u32)ts.tv_sec;
1736 	reply->tval_usec = ts.tv_nsec / 1000;
1737 }
1738 
1739 static bool drm_wait_vblank_supported(struct drm_device *dev)
1740 {
1741 	return drm_dev_has_vblank(dev);
1742 }
1743 
1744 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1745 			  struct drm_file *file_priv)
1746 {
1747 	struct drm_crtc *crtc;
1748 	struct drm_vblank_crtc *vblank;
1749 	union drm_wait_vblank *vblwait = data;
1750 	int ret;
1751 	u64 req_seq, seq;
1752 	unsigned int pipe_index;
1753 	unsigned int flags, pipe, high_pipe;
1754 
1755 	if (!drm_wait_vblank_supported(dev))
1756 		return -EOPNOTSUPP;
1757 
1758 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1759 		return -EINVAL;
1760 
1761 	if (vblwait->request.type &
1762 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1763 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1764 		drm_dbg_core(dev,
1765 			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1766 			     vblwait->request.type,
1767 			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1768 			      _DRM_VBLANK_HIGH_CRTC_MASK));
1769 		return -EINVAL;
1770 	}
1771 
1772 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1773 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1774 	if (high_pipe)
1775 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1776 	else
1777 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1778 
1779 	/* Convert lease-relative crtc index into global crtc index */
1780 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1781 		pipe = 0;
1782 		drm_for_each_crtc(crtc, dev) {
1783 			if (drm_lease_held(file_priv, crtc->base.id)) {
1784 				if (pipe_index == 0)
1785 					break;
1786 				pipe_index--;
1787 			}
1788 			pipe++;
1789 		}
1790 	} else {
1791 		pipe = pipe_index;
1792 	}
1793 
1794 	if (pipe >= dev->num_crtcs)
1795 		return -EINVAL;
1796 
1797 	vblank = &dev->vblank[pipe];
1798 
1799 	/* If the counter is currently enabled and accurate, short-circuit
1800 	 * queries to return the cached timestamp of the last vblank.
1801 	 */
1802 	if (vblank->config.disable_immediate &&
1803 	    drm_wait_vblank_is_query(vblwait) &&
1804 	    READ_ONCE(vblank->enabled)) {
1805 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1806 		return 0;
1807 	}
1808 
1809 	ret = drm_vblank_get(dev, pipe);
1810 	if (ret) {
1811 		drm_dbg_core(dev,
1812 			     "crtc %d failed to acquire vblank counter, %d\n",
1813 			     pipe, ret);
1814 		return ret;
1815 	}
1816 	seq = drm_vblank_count(dev, pipe);
1817 
1818 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1819 	case _DRM_VBLANK_RELATIVE:
1820 		req_seq = seq + vblwait->request.sequence;
1821 		vblwait->request.sequence = req_seq;
1822 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1823 		break;
1824 	case _DRM_VBLANK_ABSOLUTE:
1825 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1826 		break;
1827 	default:
1828 		ret = -EINVAL;
1829 		goto done;
1830 	}
1831 
1832 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1833 	    drm_vblank_passed(seq, req_seq)) {
1834 		req_seq = seq + 1;
1835 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1836 		vblwait->request.sequence = req_seq;
1837 	}
1838 
1839 	if (flags & _DRM_VBLANK_EVENT) {
1840 		/* must hold on to the vblank ref until the event fires
1841 		 * drm_vblank_put will be called asynchronously
1842 		 */
1843 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1844 	}
1845 
1846 	if (req_seq != seq) {
1847 		int wait;
1848 
1849 		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1850 			     req_seq, pipe);
1851 		wait = wait_event_interruptible_timeout(vblank->queue,
1852 			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1853 				      !READ_ONCE(vblank->enabled),
1854 			msecs_to_jiffies(3000));
1855 
1856 		switch (wait) {
1857 		case 0:
1858 			/* timeout */
1859 			ret = -EBUSY;
1860 			break;
1861 		case -ERESTARTSYS:
1862 			/* interrupted by signal */
1863 			ret = -EINTR;
1864 			break;
1865 		default:
1866 			ret = 0;
1867 			break;
1868 		}
1869 	}
1870 
1871 	if (ret != -EINTR) {
1872 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1873 
1874 		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1875 			     pipe, vblwait->reply.sequence);
1876 	} else {
1877 		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1878 			     pipe);
1879 	}
1880 
1881 done:
1882 	drm_vblank_put(dev, pipe);
1883 	return ret;
1884 }
1885 
1886 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1887 {
1888 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1889 	bool high_prec = false;
1890 	struct drm_pending_vblank_event *e, *t;
1891 	ktime_t now;
1892 	u64 seq;
1893 
1894 	assert_spin_locked(&dev->event_lock);
1895 
1896 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1897 
1898 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1899 		if (e->pipe != pipe)
1900 			continue;
1901 		if (!drm_vblank_passed(seq, e->sequence))
1902 			continue;
1903 
1904 		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1905 			     e->sequence, seq);
1906 
1907 		list_del(&e->base.link);
1908 		drm_vblank_put(dev, pipe);
1909 		send_vblank_event(dev, e, seq, now);
1910 	}
1911 
1912 	if (crtc && crtc->funcs->get_vblank_timestamp)
1913 		high_prec = true;
1914 
1915 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1916 }
1917 
1918 /**
1919  * drm_handle_vblank - handle a vblank event
1920  * @dev: DRM device
1921  * @pipe: index of CRTC where this event occurred
1922  *
1923  * Drivers should call this routine in their vblank interrupt handlers to
1924  * update the vblank counter and send any signals that may be pending.
1925  *
1926  * This is the legacy version of drm_crtc_handle_vblank().
1927  */
1928 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1929 {
1930 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1931 	unsigned long irqflags;
1932 	bool disable_irq;
1933 
1934 	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1935 		return false;
1936 
1937 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1938 		return false;
1939 
1940 	spin_lock_irqsave(&dev->event_lock, irqflags);
1941 
1942 	/* Need timestamp lock to prevent concurrent execution with
1943 	 * vblank enable/disable, as this would cause inconsistent
1944 	 * or corrupted timestamps and vblank counts.
1945 	 */
1946 	spin_lock(&dev->vblank_time_lock);
1947 
1948 	/* Vblank irq handling disabled. Nothing to do. */
1949 	if (!vblank->enabled) {
1950 		spin_unlock(&dev->vblank_time_lock);
1951 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1952 		return false;
1953 	}
1954 
1955 	drm_update_vblank_count(dev, pipe, true);
1956 
1957 	spin_unlock(&dev->vblank_time_lock);
1958 
1959 	wake_up(&vblank->queue);
1960 
1961 	/* With instant-off, we defer disabling the interrupt until after
1962 	 * we finish processing the following vblank after all events have
1963 	 * been signaled. The disable has to be last (after
1964 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1965 	 */
1966 	disable_irq = (vblank->config.disable_immediate &&
1967 		       vblank->config.offdelay_ms > 0 &&
1968 		       !atomic_read(&vblank->refcount));
1969 
1970 	drm_handle_vblank_events(dev, pipe);
1971 	drm_handle_vblank_works(vblank);
1972 
1973 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1974 
1975 	if (disable_irq)
1976 		vblank_disable_fn(&vblank->disable_timer);
1977 
1978 	return true;
1979 }
1980 EXPORT_SYMBOL(drm_handle_vblank);
1981 
1982 /**
1983  * drm_crtc_handle_vblank - handle a vblank event
1984  * @crtc: where this event occurred
1985  *
1986  * Drivers should call this routine in their vblank interrupt handlers to
1987  * update the vblank counter and send any signals that may be pending.
1988  *
1989  * This is the native KMS version of drm_handle_vblank().
1990  *
1991  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1992  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1993  * provide a barrier: Any writes done before calling
1994  * drm_crtc_handle_vblank() will be visible to callers of the later
1995  * functions, if the vblank count is the same or a later one.
1996  *
1997  * See also &drm_vblank_crtc.count.
1998  *
1999  * Returns:
2000  * True if the event was successfully handled, false on failure.
2001  */
2002 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
2003 {
2004 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
2005 }
2006 EXPORT_SYMBOL(drm_crtc_handle_vblank);
2007 
2008 /*
2009  * Get crtc VBLANK count.
2010  *
2011  * \param dev DRM device
2012  * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2013  * \param file_priv drm file private for the user's open file descriptor
2014  */
2015 
2016 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2017 				struct drm_file *file_priv)
2018 {
2019 	struct drm_crtc *crtc;
2020 	struct drm_vblank_crtc *vblank;
2021 	int pipe;
2022 	struct drm_crtc_get_sequence *get_seq = data;
2023 	ktime_t now;
2024 	bool vblank_enabled;
2025 	int ret;
2026 
2027 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2028 		return -EOPNOTSUPP;
2029 
2030 	if (!drm_dev_has_vblank(dev))
2031 		return -EOPNOTSUPP;
2032 
2033 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2034 	if (!crtc)
2035 		return -ENOENT;
2036 
2037 	pipe = drm_crtc_index(crtc);
2038 
2039 	vblank = drm_crtc_vblank_crtc(crtc);
2040 	vblank_enabled = READ_ONCE(vblank->config.disable_immediate) &&
2041 		READ_ONCE(vblank->enabled);
2042 
2043 	if (!vblank_enabled) {
2044 		ret = drm_crtc_vblank_get(crtc);
2045 		if (ret) {
2046 			drm_dbg_core(dev,
2047 				     "crtc %d failed to acquire vblank counter, %d\n",
2048 				     pipe, ret);
2049 			return ret;
2050 		}
2051 	}
2052 	drm_modeset_lock(&crtc->mutex, NULL);
2053 	if (crtc->state)
2054 		get_seq->active = crtc->state->enable;
2055 	else
2056 		get_seq->active = crtc->enabled;
2057 	drm_modeset_unlock(&crtc->mutex);
2058 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2059 	get_seq->sequence_ns = ktime_to_ns(now);
2060 	if (!vblank_enabled)
2061 		drm_crtc_vblank_put(crtc);
2062 	return 0;
2063 }
2064 
2065 /*
2066  * Queue a event for VBLANK sequence
2067  *
2068  * \param dev DRM device
2069  * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2070  * \param file_priv drm file private for the user's open file descriptor
2071  */
2072 
2073 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2074 				  struct drm_file *file_priv)
2075 {
2076 	struct drm_crtc *crtc;
2077 	struct drm_vblank_crtc *vblank;
2078 	int pipe;
2079 	struct drm_crtc_queue_sequence *queue_seq = data;
2080 	ktime_t now;
2081 	struct drm_pending_vblank_event *e;
2082 	u32 flags;
2083 	u64 seq;
2084 	u64 req_seq;
2085 	int ret;
2086 
2087 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2088 		return -EOPNOTSUPP;
2089 
2090 	if (!drm_dev_has_vblank(dev))
2091 		return -EOPNOTSUPP;
2092 
2093 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2094 	if (!crtc)
2095 		return -ENOENT;
2096 
2097 	flags = queue_seq->flags;
2098 	/* Check valid flag bits */
2099 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2100 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2101 		return -EINVAL;
2102 
2103 	pipe = drm_crtc_index(crtc);
2104 
2105 	vblank = drm_crtc_vblank_crtc(crtc);
2106 
2107 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2108 	if (e == NULL)
2109 		return -ENOMEM;
2110 
2111 	ret = drm_crtc_vblank_get(crtc);
2112 	if (ret) {
2113 		drm_dbg_core(dev,
2114 			     "crtc %d failed to acquire vblank counter, %d\n",
2115 			     pipe, ret);
2116 		goto err_free;
2117 	}
2118 
2119 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2120 	req_seq = queue_seq->sequence;
2121 
2122 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2123 		req_seq += seq;
2124 
2125 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2126 		req_seq = seq + 1;
2127 
2128 	e->pipe = pipe;
2129 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2130 	e->event.base.length = sizeof(e->event.seq);
2131 	e->event.seq.user_data = queue_seq->user_data;
2132 
2133 	spin_lock_irq(&dev->event_lock);
2134 
2135 	/*
2136 	 * drm_crtc_vblank_off() might have been called after we called
2137 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2138 	 * vblank disable, so no need for further locking.  The reference from
2139 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2140 	 */
2141 	if (!READ_ONCE(vblank->enabled)) {
2142 		ret = -EINVAL;
2143 		goto err_unlock;
2144 	}
2145 
2146 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2147 					    &e->event.base);
2148 
2149 	if (ret)
2150 		goto err_unlock;
2151 
2152 	e->sequence = req_seq;
2153 
2154 	if (drm_vblank_passed(seq, req_seq)) {
2155 		drm_crtc_vblank_put(crtc);
2156 		send_vblank_event(dev, e, seq, now);
2157 		queue_seq->sequence = seq;
2158 	} else {
2159 		/* drm_handle_vblank_events will call drm_vblank_put */
2160 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2161 		queue_seq->sequence = req_seq;
2162 	}
2163 
2164 	spin_unlock_irq(&dev->event_lock);
2165 	return 0;
2166 
2167 err_unlock:
2168 	spin_unlock_irq(&dev->event_lock);
2169 	drm_crtc_vblank_put(crtc);
2170 err_free:
2171 	kfree(e);
2172 	return ret;
2173 }
2174 
2175 /*
2176  * VBLANK timer
2177  */
2178 
2179 static enum hrtimer_restart drm_vblank_timer_function(struct hrtimer *timer)
2180 {
2181 	struct drm_vblank_crtc_timer *vtimer =
2182 		container_of(timer, struct drm_vblank_crtc_timer, timer);
2183 	struct drm_crtc *crtc = vtimer->crtc;
2184 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2185 	struct drm_device *dev = crtc->dev;
2186 	unsigned long flags;
2187 	ktime_t interval;
2188 	u64 ret_overrun;
2189 	bool succ;
2190 
2191 	spin_lock_irqsave(&vtimer->interval_lock, flags);
2192 	interval = vtimer->interval;
2193 	spin_unlock_irqrestore(&vtimer->interval_lock, flags);
2194 
2195 	if (!interval)
2196 		return HRTIMER_NORESTART;
2197 
2198 	ret_overrun = hrtimer_forward_now(&vtimer->timer, interval);
2199 	if (ret_overrun != 1)
2200 		drm_dbg_vbl(dev, "vblank timer overrun\n");
2201 
2202 	if (crtc_funcs->handle_vblank_timeout)
2203 		succ = crtc_funcs->handle_vblank_timeout(crtc);
2204 	else
2205 		succ = drm_crtc_handle_vblank(crtc);
2206 	if (!succ)
2207 		return HRTIMER_NORESTART;
2208 
2209 	return HRTIMER_RESTART;
2210 }
2211 
2212 /**
2213  * drm_crtc_vblank_start_timer - Starts the vblank timer on the given CRTC
2214  * @crtc: the CRTC
2215  *
2216  * Drivers should call this function from their CRTC's enable_vblank
2217  * function to start a vblank timer. The timer will fire after the duration
2218  * of a full frame. drm_crtc_vblank_cancel_timer() disables a running timer.
2219  *
2220  * Returns:
2221  * 0 on success, or a negative errno code otherwise.
2222  */
2223 int drm_crtc_vblank_start_timer(struct drm_crtc *crtc)
2224 {
2225 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
2226 	struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer;
2227 	unsigned long flags;
2228 
2229 	if (!vtimer->crtc) {
2230 		/*
2231 		 * Set up the data structures on the first invocation.
2232 		 */
2233 		vtimer->crtc = crtc;
2234 		spin_lock_init(&vtimer->interval_lock);
2235 		hrtimer_setup(&vtimer->timer, drm_vblank_timer_function,
2236 			      CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2237 	} else {
2238 		/*
2239 		 * Timer should not be active. If it is, wait for the
2240 		 * previous cancel operations to finish.
2241 		 */
2242 		while (hrtimer_active(&vtimer->timer))
2243 			hrtimer_try_to_cancel(&vtimer->timer);
2244 	}
2245 
2246 	drm_calc_timestamping_constants(crtc, &crtc->mode);
2247 
2248 	spin_lock_irqsave(&vtimer->interval_lock, flags);
2249 	vtimer->interval = ns_to_ktime(vblank->framedur_ns);
2250 	spin_unlock_irqrestore(&vtimer->interval_lock, flags);
2251 
2252 	hrtimer_start(&vtimer->timer, vtimer->interval, HRTIMER_MODE_REL);
2253 
2254 	return 0;
2255 }
2256 EXPORT_SYMBOL(drm_crtc_vblank_start_timer);
2257 
2258 /**
2259  * drm_crtc_vblank_cancel_timer - Cancels the given CRTC's vblank timer
2260  * @crtc: the CRTC
2261  *
2262  * Drivers should call this function from their CRTC's disable_vblank
2263  * function to stop a vblank timer.
2264  */
2265 void drm_crtc_vblank_cancel_timer(struct drm_crtc *crtc)
2266 {
2267 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
2268 	struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer;
2269 	unsigned long flags;
2270 
2271 	/*
2272 	 * Calling hrtimer_cancel() can result in a deadlock with DRM's
2273 	 * vblank_time_lime_lock and hrtimers' softirq_expiry_lock. So
2274 	 * clear interval and indicate cancellation. The timer function
2275 	 * will cancel itself on the next invocation.
2276 	 */
2277 
2278 	spin_lock_irqsave(&vtimer->interval_lock, flags);
2279 	vtimer->interval = 0;
2280 	spin_unlock_irqrestore(&vtimer->interval_lock, flags);
2281 
2282 	hrtimer_try_to_cancel(&vtimer->timer);
2283 }
2284 EXPORT_SYMBOL(drm_crtc_vblank_cancel_timer);
2285 
2286 /**
2287  * drm_crtc_vblank_get_vblank_timeout - Returns the vblank timeout
2288  * @crtc: The CRTC
2289  * @vblank_time: Returns the next vblank timestamp
2290  *
2291  * The helper drm_crtc_vblank_get_vblank_timeout() returns the next vblank
2292  * timestamp of the CRTC's vblank timer according to the timer's expiry
2293  * time.
2294  */
2295 void drm_crtc_vblank_get_vblank_timeout(struct drm_crtc *crtc, ktime_t *vblank_time)
2296 {
2297 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
2298 	struct drm_vblank_crtc_timer *vtimer = &vblank->vblank_timer;
2299 	u64 cur_count;
2300 	ktime_t cur_time;
2301 
2302 	if (!READ_ONCE(vblank->enabled)) {
2303 		*vblank_time = ktime_get();
2304 		return;
2305 	}
2306 
2307 	/*
2308 	 * A concurrent vblank timeout could update the expires field before
2309 	 * we compare it with the vblank time. Hence we'd compare the old
2310 	 * expiry time to the new vblank time; deducing the timer had already
2311 	 * expired. Reread until we get consistent values from both fields.
2312 	 */
2313 	do {
2314 		cur_count = drm_crtc_vblank_count_and_time(crtc, &cur_time);
2315 		*vblank_time = READ_ONCE(vtimer->timer.node.expires);
2316 	} while (cur_count != drm_crtc_vblank_count_and_time(crtc, &cur_time));
2317 
2318 	if (drm_WARN_ON(crtc->dev, !ktime_compare(*vblank_time, cur_time)))
2319 		return; /* Already expired */
2320 
2321 	/*
2322 	 * To prevent races we roll the hrtimer forward before we do any
2323 	 * interrupt processing - this is how real hw works (the interrupt
2324 	 * is only generated after all the vblank registers are updated)
2325 	 * and what the vblank core expects. Therefore we need to always
2326 	 * correct the timestamp by one frame.
2327 	 */
2328 	*vblank_time = ktime_sub(*vblank_time, vtimer->interval);
2329 }
2330 EXPORT_SYMBOL(drm_crtc_vblank_get_vblank_timeout);
2331