xref: /linux/drivers/gpu/drm/drm_rect.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 /*
2  * Copyright (C) 2011-2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 
28 #include <drm/drm_mode.h>
29 #include <drm/drm_print.h>
30 #include <drm/drm_rect.h>
31 
32 /**
33  * drm_rect_intersect - intersect two rectangles
34  * @r1: first rectangle
35  * @r2: second rectangle
36  *
37  * Calculate the intersection of rectangles @r1 and @r2.
38  * @r1 will be overwritten with the intersection.
39  *
40  * RETURNS:
41  * %true if rectangle @r1 is still visible after the operation,
42  * %false otherwise.
43  */
44 bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
45 {
46 	r1->x1 = max(r1->x1, r2->x1);
47 	r1->y1 = max(r1->y1, r2->y1);
48 	r1->x2 = min(r1->x2, r2->x2);
49 	r1->y2 = min(r1->y2, r2->y2);
50 
51 	return drm_rect_visible(r1);
52 }
53 EXPORT_SYMBOL(drm_rect_intersect);
54 
55 static u32 clip_scaled(int src, int dst, int *clip)
56 {
57 	u64 tmp;
58 
59 	if (dst == 0)
60 		return 0;
61 
62 	/* Only clip what we have. Keeps the result bounded. */
63 	*clip = min(*clip, dst);
64 
65 	tmp = mul_u32_u32(src, dst - *clip);
66 
67 	/*
68 	 * Round toward 1.0 when clipping so that we don't accidentally
69 	 * change upscaling to downscaling or vice versa.
70 	 */
71 	if (src < (dst << 16))
72 		return DIV_ROUND_UP_ULL(tmp, dst);
73 	else
74 		return DIV_ROUND_DOWN_ULL(tmp, dst);
75 }
76 
77 /**
78  * drm_rect_clip_scaled - perform a scaled clip operation
79  * @src: source window rectangle
80  * @dst: destination window rectangle
81  * @clip: clip rectangle
82  *
83  * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by
84  * the corresponding amounts, retaining the vertical and horizontal scaling
85  * factors from @src to @dst.
86  *
87  * RETURNS:
88  * %true if rectangle @dst is still visible after being clipped,
89  * %false otherwise.
90  */
91 bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
92 			  const struct drm_rect *clip)
93 {
94 	int diff;
95 
96 	diff = clip->x1 - dst->x1;
97 	if (diff > 0) {
98 		u32 new_src_w = clip_scaled(drm_rect_width(src),
99 					    drm_rect_width(dst), &diff);
100 
101 		src->x1 = src->x2 - new_src_w;
102 		dst->x1 += diff;
103 	}
104 	diff = clip->y1 - dst->y1;
105 	if (diff > 0) {
106 		u32 new_src_h = clip_scaled(drm_rect_height(src),
107 					    drm_rect_height(dst), &diff);
108 
109 		src->y1 = src->y2 - new_src_h;
110 		dst->y1 += diff;
111 	}
112 	diff = dst->x2 - clip->x2;
113 	if (diff > 0) {
114 		u32 new_src_w = clip_scaled(drm_rect_width(src),
115 					    drm_rect_width(dst), &diff);
116 
117 		src->x2 = src->x1 + new_src_w;
118 		dst->x2 -= diff;
119 	}
120 	diff = dst->y2 - clip->y2;
121 	if (diff > 0) {
122 		u32 new_src_h = clip_scaled(drm_rect_height(src),
123 					    drm_rect_height(dst), &diff);
124 
125 		src->y2 = src->y1 + new_src_h;
126 		dst->y2 -= diff;
127 	}
128 
129 	return drm_rect_visible(dst);
130 }
131 EXPORT_SYMBOL(drm_rect_clip_scaled);
132 
133 static int drm_calc_scale(int src, int dst)
134 {
135 	int scale = 0;
136 
137 	if (WARN_ON(src < 0 || dst < 0))
138 		return -EINVAL;
139 
140 	if (dst == 0)
141 		return 0;
142 
143 	if (src > (dst << 16))
144 		return DIV_ROUND_UP(src, dst);
145 	else
146 		scale = src / dst;
147 
148 	return scale;
149 }
150 
151 /**
152  * drm_rect_calc_hscale - calculate the horizontal scaling factor
153  * @src: source window rectangle
154  * @dst: destination window rectangle
155  * @min_hscale: minimum allowed horizontal scaling factor
156  * @max_hscale: maximum allowed horizontal scaling factor
157  *
158  * Calculate the horizontal scaling factor as
159  * (@src width) / (@dst width).
160  *
161  * If the scale is below 1 << 16, round down. If the scale is above
162  * 1 << 16, round up. This will calculate the scale with the most
163  * pessimistic limit calculation.
164  *
165  * RETURNS:
166  * The horizontal scaling factor, or errno of out of limits.
167  */
168 int drm_rect_calc_hscale(const struct drm_rect *src,
169 			 const struct drm_rect *dst,
170 			 int min_hscale, int max_hscale)
171 {
172 	int src_w = drm_rect_width(src);
173 	int dst_w = drm_rect_width(dst);
174 	int hscale = drm_calc_scale(src_w, dst_w);
175 
176 	if (hscale < 0 || dst_w == 0)
177 		return hscale;
178 
179 	if (hscale < min_hscale || hscale > max_hscale)
180 		return -ERANGE;
181 
182 	return hscale;
183 }
184 EXPORT_SYMBOL(drm_rect_calc_hscale);
185 
186 /**
187  * drm_rect_calc_vscale - calculate the vertical scaling factor
188  * @src: source window rectangle
189  * @dst: destination window rectangle
190  * @min_vscale: minimum allowed vertical scaling factor
191  * @max_vscale: maximum allowed vertical scaling factor
192  *
193  * Calculate the vertical scaling factor as
194  * (@src height) / (@dst height).
195  *
196  * If the scale is below 1 << 16, round down. If the scale is above
197  * 1 << 16, round up. This will calculate the scale with the most
198  * pessimistic limit calculation.
199  *
200  * RETURNS:
201  * The vertical scaling factor, or errno of out of limits.
202  */
203 int drm_rect_calc_vscale(const struct drm_rect *src,
204 			 const struct drm_rect *dst,
205 			 int min_vscale, int max_vscale)
206 {
207 	int src_h = drm_rect_height(src);
208 	int dst_h = drm_rect_height(dst);
209 	int vscale = drm_calc_scale(src_h, dst_h);
210 
211 	if (vscale < 0 || dst_h == 0)
212 		return vscale;
213 
214 	if (vscale < min_vscale || vscale > max_vscale)
215 		return -ERANGE;
216 
217 	return vscale;
218 }
219 EXPORT_SYMBOL(drm_rect_calc_vscale);
220 
221 /**
222  * drm_rect_debug_print - print the rectangle information
223  * @prefix: prefix string
224  * @r: rectangle to print
225  * @fixed_point: rectangle is in 16.16 fixed point format
226  */
227 void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point)
228 {
229 	if (fixed_point)
230 		DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT "\n", prefix, DRM_RECT_FP_ARG(r));
231 	else
232 		DRM_DEBUG_KMS("%s" DRM_RECT_FMT "\n", prefix, DRM_RECT_ARG(r));
233 }
234 EXPORT_SYMBOL(drm_rect_debug_print);
235 
236 /**
237  * drm_rect_rotate - Rotate the rectangle
238  * @r: rectangle to be rotated
239  * @width: Width of the coordinate space
240  * @height: Height of the coordinate space
241  * @rotation: Transformation to be applied
242  *
243  * Apply @rotation to the coordinates of rectangle @r.
244  *
245  * @width and @height combined with @rotation define
246  * the location of the new origin.
247  *
248  * @width correcsponds to the horizontal and @height
249  * to the vertical axis of the untransformed coordinate
250  * space.
251  */
252 void drm_rect_rotate(struct drm_rect *r,
253 		     int width, int height,
254 		     unsigned int rotation)
255 {
256 	struct drm_rect tmp;
257 
258 	if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
259 		tmp = *r;
260 
261 		if (rotation & DRM_MODE_REFLECT_X) {
262 			r->x1 = width - tmp.x2;
263 			r->x2 = width - tmp.x1;
264 		}
265 
266 		if (rotation & DRM_MODE_REFLECT_Y) {
267 			r->y1 = height - tmp.y2;
268 			r->y2 = height - tmp.y1;
269 		}
270 	}
271 
272 	switch (rotation & DRM_MODE_ROTATE_MASK) {
273 	case DRM_MODE_ROTATE_0:
274 		break;
275 	case DRM_MODE_ROTATE_90:
276 		tmp = *r;
277 		r->x1 = tmp.y1;
278 		r->x2 = tmp.y2;
279 		r->y1 = width - tmp.x2;
280 		r->y2 = width - tmp.x1;
281 		break;
282 	case DRM_MODE_ROTATE_180:
283 		tmp = *r;
284 		r->x1 = width - tmp.x2;
285 		r->x2 = width - tmp.x1;
286 		r->y1 = height - tmp.y2;
287 		r->y2 = height - tmp.y1;
288 		break;
289 	case DRM_MODE_ROTATE_270:
290 		tmp = *r;
291 		r->x1 = height - tmp.y2;
292 		r->x2 = height - tmp.y1;
293 		r->y1 = tmp.x1;
294 		r->y2 = tmp.x2;
295 		break;
296 	default:
297 		break;
298 	}
299 }
300 EXPORT_SYMBOL(drm_rect_rotate);
301 
302 /**
303  * drm_rect_rotate_inv - Inverse rotate the rectangle
304  * @r: rectangle to be rotated
305  * @width: Width of the coordinate space
306  * @height: Height of the coordinate space
307  * @rotation: Transformation whose inverse is to be applied
308  *
309  * Apply the inverse of @rotation to the coordinates
310  * of rectangle @r.
311  *
312  * @width and @height combined with @rotation define
313  * the location of the new origin.
314  *
315  * @width correcsponds to the horizontal and @height
316  * to the vertical axis of the original untransformed
317  * coordinate space, so that you never have to flip
318  * them when doing a rotatation and its inverse.
319  * That is, if you do ::
320  *
321  *     drm_rect_rotate(&r, width, height, rotation);
322  *     drm_rect_rotate_inv(&r, width, height, rotation);
323  *
324  * you will always get back the original rectangle.
325  */
326 void drm_rect_rotate_inv(struct drm_rect *r,
327 			 int width, int height,
328 			 unsigned int rotation)
329 {
330 	struct drm_rect tmp;
331 
332 	switch (rotation & DRM_MODE_ROTATE_MASK) {
333 	case DRM_MODE_ROTATE_0:
334 		break;
335 	case DRM_MODE_ROTATE_90:
336 		tmp = *r;
337 		r->x1 = width - tmp.y2;
338 		r->x2 = width - tmp.y1;
339 		r->y1 = tmp.x1;
340 		r->y2 = tmp.x2;
341 		break;
342 	case DRM_MODE_ROTATE_180:
343 		tmp = *r;
344 		r->x1 = width - tmp.x2;
345 		r->x2 = width - tmp.x1;
346 		r->y1 = height - tmp.y2;
347 		r->y2 = height - tmp.y1;
348 		break;
349 	case DRM_MODE_ROTATE_270:
350 		tmp = *r;
351 		r->x1 = tmp.y1;
352 		r->x2 = tmp.y2;
353 		r->y1 = height - tmp.x2;
354 		r->y2 = height - tmp.x1;
355 		break;
356 	default:
357 		break;
358 	}
359 
360 	if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
361 		tmp = *r;
362 
363 		if (rotation & DRM_MODE_REFLECT_X) {
364 			r->x1 = width - tmp.x2;
365 			r->x2 = width - tmp.x1;
366 		}
367 
368 		if (rotation & DRM_MODE_REFLECT_Y) {
369 			r->y1 = height - tmp.y2;
370 			r->y2 = height - tmp.y1;
371 		}
372 	}
373 }
374 EXPORT_SYMBOL(drm_rect_rotate_inv);
375