xref: /linux/drivers/gpu/drm/drm_prime.c (revision 707d561f77b5e2a6f90c9786bee44ee7a8dedc7e)
1 /*
2  * Copyright © 2012 Red Hat
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Dave Airlie <airlied@redhat.com>
25  *      Rob Clark <rob.clark@linaro.org>
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/dma-buf.h>
31 #include <linux/rbtree.h>
32 
33 #include <drm/drm.h>
34 #include <drm/drm_drv.h>
35 #include <drm/drm_file.h>
36 #include <drm/drm_framebuffer.h>
37 #include <drm/drm_gem.h>
38 #include <drm/drm_prime.h>
39 
40 #include "drm_internal.h"
41 
42 /**
43  * DOC: overview and lifetime rules
44  *
45  * Similar to GEM global names, PRIME file descriptors are also used to share
46  * buffer objects across processes. They offer additional security: as file
47  * descriptors must be explicitly sent over UNIX domain sockets to be shared
48  * between applications, they can't be guessed like the globally unique GEM
49  * names.
50  *
51  * Drivers that support the PRIME API implement the
52  * &drm_driver.prime_handle_to_fd and &drm_driver.prime_fd_to_handle operations.
53  * GEM based drivers must use drm_gem_prime_handle_to_fd() and
54  * drm_gem_prime_fd_to_handle() to implement these. For GEM based drivers the
55  * actual driver interfaces is provided through the &drm_gem_object_funcs.export
56  * and &drm_driver.gem_prime_import hooks.
57  *
58  * &dma_buf_ops implementations for GEM drivers are all individually exported
59  * for drivers which need to overwrite or reimplement some of them.
60  *
61  * Reference Counting for GEM Drivers
62  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
63  *
64  * On the export the &dma_buf holds a reference to the exported buffer object,
65  * usually a &drm_gem_object. It takes this reference in the PRIME_HANDLE_TO_FD
66  * IOCTL, when it first calls &drm_gem_object_funcs.export
67  * and stores the exporting GEM object in the &dma_buf.priv field. This
68  * reference needs to be released when the final reference to the &dma_buf
69  * itself is dropped and its &dma_buf_ops.release function is called.  For
70  * GEM-based drivers, the &dma_buf should be exported using
71  * drm_gem_dmabuf_export() and then released by drm_gem_dmabuf_release().
72  *
73  * Thus the chain of references always flows in one direction, avoiding loops:
74  * importing GEM object -> dma-buf -> exported GEM bo. A further complication
75  * are the lookup caches for import and export. These are required to guarantee
76  * that any given object will always have only one uniqe userspace handle. This
77  * is required to allow userspace to detect duplicated imports, since some GEM
78  * drivers do fail command submissions if a given buffer object is listed more
79  * than once. These import and export caches in &drm_prime_file_private only
80  * retain a weak reference, which is cleaned up when the corresponding object is
81  * released.
82  *
83  * Self-importing: If userspace is using PRIME as a replacement for flink then
84  * it will get a fd->handle request for a GEM object that it created.  Drivers
85  * should detect this situation and return back the underlying object from the
86  * dma-buf private. For GEM based drivers this is handled in
87  * drm_gem_prime_import() already.
88  */
89 
90 struct drm_prime_member {
91 	struct dma_buf *dma_buf;
92 	uint32_t handle;
93 
94 	struct rb_node dmabuf_rb;
95 	struct rb_node handle_rb;
96 };
97 
98 static int drm_prime_add_buf_handle(struct drm_prime_file_private *prime_fpriv,
99 				    struct dma_buf *dma_buf, uint32_t handle)
100 {
101 	struct drm_prime_member *member;
102 	struct rb_node **p, *rb;
103 
104 	member = kmalloc(sizeof(*member), GFP_KERNEL);
105 	if (!member)
106 		return -ENOMEM;
107 
108 	get_dma_buf(dma_buf);
109 	member->dma_buf = dma_buf;
110 	member->handle = handle;
111 
112 	rb = NULL;
113 	p = &prime_fpriv->dmabufs.rb_node;
114 	while (*p) {
115 		struct drm_prime_member *pos;
116 
117 		rb = *p;
118 		pos = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
119 		if (dma_buf > pos->dma_buf)
120 			p = &rb->rb_right;
121 		else
122 			p = &rb->rb_left;
123 	}
124 	rb_link_node(&member->dmabuf_rb, rb, p);
125 	rb_insert_color(&member->dmabuf_rb, &prime_fpriv->dmabufs);
126 
127 	rb = NULL;
128 	p = &prime_fpriv->handles.rb_node;
129 	while (*p) {
130 		struct drm_prime_member *pos;
131 
132 		rb = *p;
133 		pos = rb_entry(rb, struct drm_prime_member, handle_rb);
134 		if (handle > pos->handle)
135 			p = &rb->rb_right;
136 		else
137 			p = &rb->rb_left;
138 	}
139 	rb_link_node(&member->handle_rb, rb, p);
140 	rb_insert_color(&member->handle_rb, &prime_fpriv->handles);
141 
142 	return 0;
143 }
144 
145 static struct dma_buf *drm_prime_lookup_buf_by_handle(struct drm_prime_file_private *prime_fpriv,
146 						      uint32_t handle)
147 {
148 	struct rb_node *rb;
149 
150 	rb = prime_fpriv->handles.rb_node;
151 	while (rb) {
152 		struct drm_prime_member *member;
153 
154 		member = rb_entry(rb, struct drm_prime_member, handle_rb);
155 		if (member->handle == handle)
156 			return member->dma_buf;
157 		else if (member->handle < handle)
158 			rb = rb->rb_right;
159 		else
160 			rb = rb->rb_left;
161 	}
162 
163 	return NULL;
164 }
165 
166 static int drm_prime_lookup_buf_handle(struct drm_prime_file_private *prime_fpriv,
167 				       struct dma_buf *dma_buf,
168 				       uint32_t *handle)
169 {
170 	struct rb_node *rb;
171 
172 	rb = prime_fpriv->dmabufs.rb_node;
173 	while (rb) {
174 		struct drm_prime_member *member;
175 
176 		member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
177 		if (member->dma_buf == dma_buf) {
178 			*handle = member->handle;
179 			return 0;
180 		} else if (member->dma_buf < dma_buf) {
181 			rb = rb->rb_right;
182 		} else {
183 			rb = rb->rb_left;
184 		}
185 	}
186 
187 	return -ENOENT;
188 }
189 
190 void drm_prime_remove_buf_handle_locked(struct drm_prime_file_private *prime_fpriv,
191 					struct dma_buf *dma_buf)
192 {
193 	struct rb_node *rb;
194 
195 	rb = prime_fpriv->dmabufs.rb_node;
196 	while (rb) {
197 		struct drm_prime_member *member;
198 
199 		member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
200 		if (member->dma_buf == dma_buf) {
201 			rb_erase(&member->handle_rb, &prime_fpriv->handles);
202 			rb_erase(&member->dmabuf_rb, &prime_fpriv->dmabufs);
203 
204 			dma_buf_put(dma_buf);
205 			kfree(member);
206 			return;
207 		} else if (member->dma_buf < dma_buf) {
208 			rb = rb->rb_right;
209 		} else {
210 			rb = rb->rb_left;
211 		}
212 	}
213 }
214 
215 void drm_prime_init_file_private(struct drm_prime_file_private *prime_fpriv)
216 {
217 	mutex_init(&prime_fpriv->lock);
218 	prime_fpriv->dmabufs = RB_ROOT;
219 	prime_fpriv->handles = RB_ROOT;
220 }
221 
222 void drm_prime_destroy_file_private(struct drm_prime_file_private *prime_fpriv)
223 {
224 	/* by now drm_gem_release should've made sure the list is empty */
225 	WARN_ON(!RB_EMPTY_ROOT(&prime_fpriv->dmabufs));
226 }
227 
228 /**
229  * drm_gem_dmabuf_export - &dma_buf export implementation for GEM
230  * @dev: parent device for the exported dmabuf
231  * @exp_info: the export information used by dma_buf_export()
232  *
233  * This wraps dma_buf_export() for use by generic GEM drivers that are using
234  * drm_gem_dmabuf_release(). In addition to calling dma_buf_export(), we take
235  * a reference to the &drm_device and the exported &drm_gem_object (stored in
236  * &dma_buf_export_info.priv) which is released by drm_gem_dmabuf_release().
237  *
238  * Returns the new dmabuf.
239  */
240 struct dma_buf *drm_gem_dmabuf_export(struct drm_device *dev,
241 				      struct dma_buf_export_info *exp_info)
242 {
243 	struct drm_gem_object *obj = exp_info->priv;
244 	struct dma_buf *dma_buf;
245 
246 	dma_buf = dma_buf_export(exp_info);
247 	if (IS_ERR(dma_buf))
248 		return dma_buf;
249 
250 	drm_dev_get(dev);
251 	drm_gem_object_get(obj);
252 	dma_buf->file->f_mapping = obj->dev->anon_inode->i_mapping;
253 
254 	return dma_buf;
255 }
256 EXPORT_SYMBOL(drm_gem_dmabuf_export);
257 
258 /**
259  * drm_gem_dmabuf_release - &dma_buf release implementation for GEM
260  * @dma_buf: buffer to be released
261  *
262  * Generic release function for dma_bufs exported as PRIME buffers. GEM drivers
263  * must use this in their &dma_buf_ops structure as the release callback.
264  * drm_gem_dmabuf_release() should be used in conjunction with
265  * drm_gem_dmabuf_export().
266  */
267 void drm_gem_dmabuf_release(struct dma_buf *dma_buf)
268 {
269 	struct drm_gem_object *obj = dma_buf->priv;
270 	struct drm_device *dev = obj->dev;
271 
272 	/* drop the reference on the export fd holds */
273 	drm_gem_object_put(obj);
274 
275 	drm_dev_put(dev);
276 }
277 EXPORT_SYMBOL(drm_gem_dmabuf_release);
278 
279 /**
280  * drm_gem_prime_fd_to_handle - PRIME import function for GEM drivers
281  * @dev: dev to export the buffer from
282  * @file_priv: drm file-private structure
283  * @prime_fd: fd id of the dma-buf which should be imported
284  * @handle: pointer to storage for the handle of the imported buffer object
285  *
286  * This is the PRIME import function which must be used mandatorily by GEM
287  * drivers to ensure correct lifetime management of the underlying GEM object.
288  * The actual importing of GEM object from the dma-buf is done through the
289  * &drm_driver.gem_prime_import driver callback.
290  *
291  * Returns 0 on success or a negative error code on failure.
292  */
293 int drm_gem_prime_fd_to_handle(struct drm_device *dev,
294 			       struct drm_file *file_priv, int prime_fd,
295 			       uint32_t *handle)
296 {
297 	struct dma_buf *dma_buf;
298 	struct drm_gem_object *obj;
299 	int ret;
300 
301 	dma_buf = dma_buf_get(prime_fd);
302 	if (IS_ERR(dma_buf))
303 		return PTR_ERR(dma_buf);
304 
305 	mutex_lock(&file_priv->prime.lock);
306 
307 	ret = drm_prime_lookup_buf_handle(&file_priv->prime,
308 			dma_buf, handle);
309 	if (ret == 0)
310 		goto out_put;
311 
312 	/* never seen this one, need to import */
313 	mutex_lock(&dev->object_name_lock);
314 	if (dev->driver->gem_prime_import)
315 		obj = dev->driver->gem_prime_import(dev, dma_buf);
316 	else
317 		obj = drm_gem_prime_import(dev, dma_buf);
318 	if (IS_ERR(obj)) {
319 		ret = PTR_ERR(obj);
320 		goto out_unlock;
321 	}
322 
323 	if (obj->dma_buf) {
324 		WARN_ON(obj->dma_buf != dma_buf);
325 	} else {
326 		obj->dma_buf = dma_buf;
327 		get_dma_buf(dma_buf);
328 	}
329 
330 	/* _handle_create_tail unconditionally unlocks dev->object_name_lock. */
331 	ret = drm_gem_handle_create_tail(file_priv, obj, handle);
332 	drm_gem_object_put(obj);
333 	if (ret)
334 		goto out_put;
335 
336 	ret = drm_prime_add_buf_handle(&file_priv->prime,
337 			dma_buf, *handle);
338 	mutex_unlock(&file_priv->prime.lock);
339 	if (ret)
340 		goto fail;
341 
342 	dma_buf_put(dma_buf);
343 
344 	return 0;
345 
346 fail:
347 	/* hmm, if driver attached, we are relying on the free-object path
348 	 * to detach.. which seems ok..
349 	 */
350 	drm_gem_handle_delete(file_priv, *handle);
351 	dma_buf_put(dma_buf);
352 	return ret;
353 
354 out_unlock:
355 	mutex_unlock(&dev->object_name_lock);
356 out_put:
357 	mutex_unlock(&file_priv->prime.lock);
358 	dma_buf_put(dma_buf);
359 	return ret;
360 }
361 EXPORT_SYMBOL(drm_gem_prime_fd_to_handle);
362 
363 int drm_prime_fd_to_handle_ioctl(struct drm_device *dev, void *data,
364 				 struct drm_file *file_priv)
365 {
366 	struct drm_prime_handle *args = data;
367 
368 	if (!dev->driver->prime_fd_to_handle)
369 		return -ENOSYS;
370 
371 	return dev->driver->prime_fd_to_handle(dev, file_priv,
372 			args->fd, &args->handle);
373 }
374 
375 static struct dma_buf *export_and_register_object(struct drm_device *dev,
376 						  struct drm_gem_object *obj,
377 						  uint32_t flags)
378 {
379 	struct dma_buf *dmabuf;
380 
381 	/* prevent races with concurrent gem_close. */
382 	if (obj->handle_count == 0) {
383 		dmabuf = ERR_PTR(-ENOENT);
384 		return dmabuf;
385 	}
386 
387 	if (obj->funcs && obj->funcs->export)
388 		dmabuf = obj->funcs->export(obj, flags);
389 	else if (dev->driver->gem_prime_export)
390 		dmabuf = dev->driver->gem_prime_export(obj, flags);
391 	else
392 		dmabuf = drm_gem_prime_export(obj, flags);
393 	if (IS_ERR(dmabuf)) {
394 		/* normally the created dma-buf takes ownership of the ref,
395 		 * but if that fails then drop the ref
396 		 */
397 		return dmabuf;
398 	}
399 
400 	/*
401 	 * Note that callers do not need to clean up the export cache
402 	 * since the check for obj->handle_count guarantees that someone
403 	 * will clean it up.
404 	 */
405 	obj->dma_buf = dmabuf;
406 	get_dma_buf(obj->dma_buf);
407 
408 	return dmabuf;
409 }
410 
411 /**
412  * drm_gem_prime_handle_to_fd - PRIME export function for GEM drivers
413  * @dev: dev to export the buffer from
414  * @file_priv: drm file-private structure
415  * @handle: buffer handle to export
416  * @flags: flags like DRM_CLOEXEC
417  * @prime_fd: pointer to storage for the fd id of the create dma-buf
418  *
419  * This is the PRIME export function which must be used mandatorily by GEM
420  * drivers to ensure correct lifetime management of the underlying GEM object.
421  * The actual exporting from GEM object to a dma-buf is done through the
422  * &drm_driver.gem_prime_export driver callback.
423  */
424 int drm_gem_prime_handle_to_fd(struct drm_device *dev,
425 			       struct drm_file *file_priv, uint32_t handle,
426 			       uint32_t flags,
427 			       int *prime_fd)
428 {
429 	struct drm_gem_object *obj;
430 	int ret = 0;
431 	struct dma_buf *dmabuf;
432 
433 	mutex_lock(&file_priv->prime.lock);
434 	obj = drm_gem_object_lookup(file_priv, handle);
435 	if (!obj)  {
436 		ret = -ENOENT;
437 		goto out_unlock;
438 	}
439 
440 	dmabuf = drm_prime_lookup_buf_by_handle(&file_priv->prime, handle);
441 	if (dmabuf) {
442 		get_dma_buf(dmabuf);
443 		goto out_have_handle;
444 	}
445 
446 	mutex_lock(&dev->object_name_lock);
447 	/* re-export the original imported object */
448 	if (obj->import_attach) {
449 		dmabuf = obj->import_attach->dmabuf;
450 		get_dma_buf(dmabuf);
451 		goto out_have_obj;
452 	}
453 
454 	if (obj->dma_buf) {
455 		get_dma_buf(obj->dma_buf);
456 		dmabuf = obj->dma_buf;
457 		goto out_have_obj;
458 	}
459 
460 	dmabuf = export_and_register_object(dev, obj, flags);
461 	if (IS_ERR(dmabuf)) {
462 		/* normally the created dma-buf takes ownership of the ref,
463 		 * but if that fails then drop the ref
464 		 */
465 		ret = PTR_ERR(dmabuf);
466 		mutex_unlock(&dev->object_name_lock);
467 		goto out;
468 	}
469 
470 out_have_obj:
471 	/*
472 	 * If we've exported this buffer then cheat and add it to the import list
473 	 * so we get the correct handle back. We must do this under the
474 	 * protection of dev->object_name_lock to ensure that a racing gem close
475 	 * ioctl doesn't miss to remove this buffer handle from the cache.
476 	 */
477 	ret = drm_prime_add_buf_handle(&file_priv->prime,
478 				       dmabuf, handle);
479 	mutex_unlock(&dev->object_name_lock);
480 	if (ret)
481 		goto fail_put_dmabuf;
482 
483 out_have_handle:
484 	ret = dma_buf_fd(dmabuf, flags);
485 	/*
486 	 * We must _not_ remove the buffer from the handle cache since the newly
487 	 * created dma buf is already linked in the global obj->dma_buf pointer,
488 	 * and that is invariant as long as a userspace gem handle exists.
489 	 * Closing the handle will clean out the cache anyway, so we don't leak.
490 	 */
491 	if (ret < 0) {
492 		goto fail_put_dmabuf;
493 	} else {
494 		*prime_fd = ret;
495 		ret = 0;
496 	}
497 
498 	goto out;
499 
500 fail_put_dmabuf:
501 	dma_buf_put(dmabuf);
502 out:
503 	drm_gem_object_put(obj);
504 out_unlock:
505 	mutex_unlock(&file_priv->prime.lock);
506 
507 	return ret;
508 }
509 EXPORT_SYMBOL(drm_gem_prime_handle_to_fd);
510 
511 int drm_prime_handle_to_fd_ioctl(struct drm_device *dev, void *data,
512 				 struct drm_file *file_priv)
513 {
514 	struct drm_prime_handle *args = data;
515 
516 	if (!dev->driver->prime_handle_to_fd)
517 		return -ENOSYS;
518 
519 	/* check flags are valid */
520 	if (args->flags & ~(DRM_CLOEXEC | DRM_RDWR))
521 		return -EINVAL;
522 
523 	return dev->driver->prime_handle_to_fd(dev, file_priv,
524 			args->handle, args->flags, &args->fd);
525 }
526 
527 /**
528  * DOC: PRIME Helpers
529  *
530  * Drivers can implement &drm_gem_object_funcs.export and
531  * &drm_driver.gem_prime_import in terms of simpler APIs by using the helper
532  * functions drm_gem_prime_export() and drm_gem_prime_import(). These functions
533  * implement dma-buf support in terms of some lower-level helpers, which are
534  * again exported for drivers to use individually:
535  *
536  * Exporting buffers
537  * ~~~~~~~~~~~~~~~~~
538  *
539  * Optional pinning of buffers is handled at dma-buf attach and detach time in
540  * drm_gem_map_attach() and drm_gem_map_detach(). Backing storage itself is
541  * handled by drm_gem_map_dma_buf() and drm_gem_unmap_dma_buf(), which relies on
542  * &drm_gem_object_funcs.get_sg_table.
543  *
544  * For kernel-internal access there's drm_gem_dmabuf_vmap() and
545  * drm_gem_dmabuf_vunmap(). Userspace mmap support is provided by
546  * drm_gem_dmabuf_mmap().
547  *
548  * Note that these export helpers can only be used if the underlying backing
549  * storage is fully coherent and either permanently pinned, or it is safe to pin
550  * it indefinitely.
551  *
552  * FIXME: The underlying helper functions are named rather inconsistently.
553  *
554  * Exporting buffers
555  * ~~~~~~~~~~~~~~~~~
556  *
557  * Importing dma-bufs using drm_gem_prime_import() relies on
558  * &drm_driver.gem_prime_import_sg_table.
559  *
560  * Note that similarly to the export helpers this permanently pins the
561  * underlying backing storage. Which is ok for scanout, but is not the best
562  * option for sharing lots of buffers for rendering.
563  */
564 
565 /**
566  * drm_gem_map_attach - dma_buf attach implementation for GEM
567  * @dma_buf: buffer to attach device to
568  * @attach: buffer attachment data
569  *
570  * Calls &drm_gem_object_funcs.pin for device specific handling. This can be
571  * used as the &dma_buf_ops.attach callback. Must be used together with
572  * drm_gem_map_detach().
573  *
574  * Returns 0 on success, negative error code on failure.
575  */
576 int drm_gem_map_attach(struct dma_buf *dma_buf,
577 		       struct dma_buf_attachment *attach)
578 {
579 	struct drm_gem_object *obj = dma_buf->priv;
580 
581 	return drm_gem_pin(obj);
582 }
583 EXPORT_SYMBOL(drm_gem_map_attach);
584 
585 /**
586  * drm_gem_map_detach - dma_buf detach implementation for GEM
587  * @dma_buf: buffer to detach from
588  * @attach: attachment to be detached
589  *
590  * Calls &drm_gem_object_funcs.pin for device specific handling.  Cleans up
591  * &dma_buf_attachment from drm_gem_map_attach(). This can be used as the
592  * &dma_buf_ops.detach callback.
593  */
594 void drm_gem_map_detach(struct dma_buf *dma_buf,
595 			struct dma_buf_attachment *attach)
596 {
597 	struct drm_gem_object *obj = dma_buf->priv;
598 
599 	drm_gem_unpin(obj);
600 }
601 EXPORT_SYMBOL(drm_gem_map_detach);
602 
603 /**
604  * drm_gem_map_dma_buf - map_dma_buf implementation for GEM
605  * @attach: attachment whose scatterlist is to be returned
606  * @dir: direction of DMA transfer
607  *
608  * Calls &drm_gem_object_funcs.get_sg_table and then maps the scatterlist. This
609  * can be used as the &dma_buf_ops.map_dma_buf callback. Should be used together
610  * with drm_gem_unmap_dma_buf().
611  *
612  * Returns:sg_table containing the scatterlist to be returned; returns ERR_PTR
613  * on error. May return -EINTR if it is interrupted by a signal.
614  */
615 struct sg_table *drm_gem_map_dma_buf(struct dma_buf_attachment *attach,
616 				     enum dma_data_direction dir)
617 {
618 	struct drm_gem_object *obj = attach->dmabuf->priv;
619 	struct sg_table *sgt;
620 
621 	if (WARN_ON(dir == DMA_NONE))
622 		return ERR_PTR(-EINVAL);
623 
624 	if (obj->funcs)
625 		sgt = obj->funcs->get_sg_table(obj);
626 	else
627 		sgt = obj->dev->driver->gem_prime_get_sg_table(obj);
628 
629 	if (!dma_map_sg_attrs(attach->dev, sgt->sgl, sgt->nents, dir,
630 			      DMA_ATTR_SKIP_CPU_SYNC)) {
631 		sg_free_table(sgt);
632 		kfree(sgt);
633 		sgt = ERR_PTR(-ENOMEM);
634 	}
635 
636 	return sgt;
637 }
638 EXPORT_SYMBOL(drm_gem_map_dma_buf);
639 
640 /**
641  * drm_gem_unmap_dma_buf - unmap_dma_buf implementation for GEM
642  * @attach: attachment to unmap buffer from
643  * @sgt: scatterlist info of the buffer to unmap
644  * @dir: direction of DMA transfer
645  *
646  * This can be used as the &dma_buf_ops.unmap_dma_buf callback.
647  */
648 void drm_gem_unmap_dma_buf(struct dma_buf_attachment *attach,
649 			   struct sg_table *sgt,
650 			   enum dma_data_direction dir)
651 {
652 	if (!sgt)
653 		return;
654 
655 	dma_unmap_sg_attrs(attach->dev, sgt->sgl, sgt->nents, dir,
656 			   DMA_ATTR_SKIP_CPU_SYNC);
657 	sg_free_table(sgt);
658 	kfree(sgt);
659 }
660 EXPORT_SYMBOL(drm_gem_unmap_dma_buf);
661 
662 /**
663  * drm_gem_dmabuf_vmap - dma_buf vmap implementation for GEM
664  * @dma_buf: buffer to be mapped
665  *
666  * Sets up a kernel virtual mapping. This can be used as the &dma_buf_ops.vmap
667  * callback. Calls into &drm_gem_object_funcs.vmap for device specific handling.
668  *
669  * Returns the kernel virtual address or NULL on failure.
670  */
671 void *drm_gem_dmabuf_vmap(struct dma_buf *dma_buf)
672 {
673 	struct drm_gem_object *obj = dma_buf->priv;
674 	void *vaddr;
675 
676 	vaddr = drm_gem_vmap(obj);
677 	if (IS_ERR(vaddr))
678 		vaddr = NULL;
679 
680 	return vaddr;
681 }
682 EXPORT_SYMBOL(drm_gem_dmabuf_vmap);
683 
684 /**
685  * drm_gem_dmabuf_vunmap - dma_buf vunmap implementation for GEM
686  * @dma_buf: buffer to be unmapped
687  * @vaddr: the virtual address of the buffer
688  *
689  * Releases a kernel virtual mapping. This can be used as the
690  * &dma_buf_ops.vunmap callback. Calls into &drm_gem_object_funcs.vunmap for device specific handling.
691  */
692 void drm_gem_dmabuf_vunmap(struct dma_buf *dma_buf, void *vaddr)
693 {
694 	struct drm_gem_object *obj = dma_buf->priv;
695 
696 	drm_gem_vunmap(obj, vaddr);
697 }
698 EXPORT_SYMBOL(drm_gem_dmabuf_vunmap);
699 
700 /**
701  * drm_gem_prime_mmap - PRIME mmap function for GEM drivers
702  * @obj: GEM object
703  * @vma: Virtual address range
704  *
705  * This function sets up a userspace mapping for PRIME exported buffers using
706  * the same codepath that is used for regular GEM buffer mapping on the DRM fd.
707  * The fake GEM offset is added to vma->vm_pgoff and &drm_driver->fops->mmap is
708  * called to set up the mapping.
709  *
710  * Drivers can use this as their &drm_driver.gem_prime_mmap callback.
711  */
712 int drm_gem_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
713 {
714 	struct drm_file *priv;
715 	struct file *fil;
716 	int ret;
717 
718 	/* Add the fake offset */
719 	vma->vm_pgoff += drm_vma_node_start(&obj->vma_node);
720 
721 	if (obj->funcs && obj->funcs->mmap) {
722 		ret = obj->funcs->mmap(obj, vma);
723 		if (ret)
724 			return ret;
725 		vma->vm_private_data = obj;
726 		drm_gem_object_get(obj);
727 		return 0;
728 	}
729 
730 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
731 	fil = kzalloc(sizeof(*fil), GFP_KERNEL);
732 	if (!priv || !fil) {
733 		ret = -ENOMEM;
734 		goto out;
735 	}
736 
737 	/* Used by drm_gem_mmap() to lookup the GEM object */
738 	priv->minor = obj->dev->primary;
739 	fil->private_data = priv;
740 
741 	ret = drm_vma_node_allow(&obj->vma_node, priv);
742 	if (ret)
743 		goto out;
744 
745 	ret = obj->dev->driver->fops->mmap(fil, vma);
746 
747 	drm_vma_node_revoke(&obj->vma_node, priv);
748 out:
749 	kfree(priv);
750 	kfree(fil);
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL(drm_gem_prime_mmap);
755 
756 /**
757  * drm_gem_dmabuf_mmap - dma_buf mmap implementation for GEM
758  * @dma_buf: buffer to be mapped
759  * @vma: virtual address range
760  *
761  * Provides memory mapping for the buffer. This can be used as the
762  * &dma_buf_ops.mmap callback. It just forwards to &drm_driver.gem_prime_mmap,
763  * which should be set to drm_gem_prime_mmap().
764  *
765  * FIXME: There's really no point to this wrapper, drivers which need anything
766  * else but drm_gem_prime_mmap can roll their own &dma_buf_ops.mmap callback.
767  *
768  * Returns 0 on success or a negative error code on failure.
769  */
770 int drm_gem_dmabuf_mmap(struct dma_buf *dma_buf, struct vm_area_struct *vma)
771 {
772 	struct drm_gem_object *obj = dma_buf->priv;
773 	struct drm_device *dev = obj->dev;
774 
775 	if (!dev->driver->gem_prime_mmap)
776 		return -ENOSYS;
777 
778 	return dev->driver->gem_prime_mmap(obj, vma);
779 }
780 EXPORT_SYMBOL(drm_gem_dmabuf_mmap);
781 
782 static const struct dma_buf_ops drm_gem_prime_dmabuf_ops =  {
783 	.cache_sgt_mapping = true,
784 	.attach = drm_gem_map_attach,
785 	.detach = drm_gem_map_detach,
786 	.map_dma_buf = drm_gem_map_dma_buf,
787 	.unmap_dma_buf = drm_gem_unmap_dma_buf,
788 	.release = drm_gem_dmabuf_release,
789 	.mmap = drm_gem_dmabuf_mmap,
790 	.vmap = drm_gem_dmabuf_vmap,
791 	.vunmap = drm_gem_dmabuf_vunmap,
792 };
793 
794 /**
795  * drm_prime_pages_to_sg - converts a page array into an sg list
796  * @pages: pointer to the array of page pointers to convert
797  * @nr_pages: length of the page vector
798  *
799  * This helper creates an sg table object from a set of pages
800  * the driver is responsible for mapping the pages into the
801  * importers address space for use with dma_buf itself.
802  *
803  * This is useful for implementing &drm_gem_object_funcs.get_sg_table.
804  */
805 struct sg_table *drm_prime_pages_to_sg(struct drm_device *dev,
806 				       struct page **pages, unsigned int nr_pages)
807 {
808 	struct sg_table *sg = NULL;
809 	size_t max_segment = 0;
810 	int ret;
811 
812 	sg = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
813 	if (!sg) {
814 		ret = -ENOMEM;
815 		goto out;
816 	}
817 
818 	if (dev)
819 		max_segment = dma_max_mapping_size(dev->dev);
820 	if (max_segment == 0 || max_segment > SCATTERLIST_MAX_SEGMENT)
821 		max_segment = SCATTERLIST_MAX_SEGMENT;
822 	ret = __sg_alloc_table_from_pages(sg, pages, nr_pages, 0,
823 					  nr_pages << PAGE_SHIFT,
824 					  max_segment, GFP_KERNEL);
825 	if (ret)
826 		goto out;
827 
828 	return sg;
829 out:
830 	kfree(sg);
831 	return ERR_PTR(ret);
832 }
833 EXPORT_SYMBOL(drm_prime_pages_to_sg);
834 
835 /**
836  * drm_gem_prime_export - helper library implementation of the export callback
837  * @obj: GEM object to export
838  * @flags: flags like DRM_CLOEXEC and DRM_RDWR
839  *
840  * This is the implementation of the &drm_gem_object_funcs.export functions for GEM drivers
841  * using the PRIME helpers. It is used as the default in
842  * drm_gem_prime_handle_to_fd().
843  */
844 struct dma_buf *drm_gem_prime_export(struct drm_gem_object *obj,
845 				     int flags)
846 {
847 	struct drm_device *dev = obj->dev;
848 	struct dma_buf_export_info exp_info = {
849 		.exp_name = KBUILD_MODNAME, /* white lie for debug */
850 		.owner = dev->driver->fops->owner,
851 		.ops = &drm_gem_prime_dmabuf_ops,
852 		.size = obj->size,
853 		.flags = flags,
854 		.priv = obj,
855 		.resv = obj->resv,
856 	};
857 
858 	return drm_gem_dmabuf_export(dev, &exp_info);
859 }
860 EXPORT_SYMBOL(drm_gem_prime_export);
861 
862 /**
863  * drm_gem_prime_import_dev - core implementation of the import callback
864  * @dev: drm_device to import into
865  * @dma_buf: dma-buf object to import
866  * @attach_dev: struct device to dma_buf attach
867  *
868  * This is the core of drm_gem_prime_import(). It's designed to be called by
869  * drivers who want to use a different device structure than &drm_device.dev for
870  * attaching via dma_buf. This function calls
871  * &drm_driver.gem_prime_import_sg_table internally.
872  *
873  * Drivers must arrange to call drm_prime_gem_destroy() from their
874  * &drm_gem_object_funcs.free hook when using this function.
875  */
876 struct drm_gem_object *drm_gem_prime_import_dev(struct drm_device *dev,
877 					    struct dma_buf *dma_buf,
878 					    struct device *attach_dev)
879 {
880 	struct dma_buf_attachment *attach;
881 	struct sg_table *sgt;
882 	struct drm_gem_object *obj;
883 	int ret;
884 
885 	if (dma_buf->ops == &drm_gem_prime_dmabuf_ops) {
886 		obj = dma_buf->priv;
887 		if (obj->dev == dev) {
888 			/*
889 			 * Importing dmabuf exported from out own gem increases
890 			 * refcount on gem itself instead of f_count of dmabuf.
891 			 */
892 			drm_gem_object_get(obj);
893 			return obj;
894 		}
895 	}
896 
897 	if (!dev->driver->gem_prime_import_sg_table)
898 		return ERR_PTR(-EINVAL);
899 
900 	attach = dma_buf_attach(dma_buf, attach_dev);
901 	if (IS_ERR(attach))
902 		return ERR_CAST(attach);
903 
904 	get_dma_buf(dma_buf);
905 
906 	sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
907 	if (IS_ERR(sgt)) {
908 		ret = PTR_ERR(sgt);
909 		goto fail_detach;
910 	}
911 
912 	obj = dev->driver->gem_prime_import_sg_table(dev, attach, sgt);
913 	if (IS_ERR(obj)) {
914 		ret = PTR_ERR(obj);
915 		goto fail_unmap;
916 	}
917 
918 	obj->import_attach = attach;
919 	obj->resv = dma_buf->resv;
920 
921 	return obj;
922 
923 fail_unmap:
924 	dma_buf_unmap_attachment(attach, sgt, DMA_BIDIRECTIONAL);
925 fail_detach:
926 	dma_buf_detach(dma_buf, attach);
927 	dma_buf_put(dma_buf);
928 
929 	return ERR_PTR(ret);
930 }
931 EXPORT_SYMBOL(drm_gem_prime_import_dev);
932 
933 /**
934  * drm_gem_prime_import - helper library implementation of the import callback
935  * @dev: drm_device to import into
936  * @dma_buf: dma-buf object to import
937  *
938  * This is the implementation of the gem_prime_import functions for GEM drivers
939  * using the PRIME helpers. Drivers can use this as their
940  * &drm_driver.gem_prime_import implementation. It is used as the default
941  * implementation in drm_gem_prime_fd_to_handle().
942  *
943  * Drivers must arrange to call drm_prime_gem_destroy() from their
944  * &drm_gem_object_funcs.free hook when using this function.
945  */
946 struct drm_gem_object *drm_gem_prime_import(struct drm_device *dev,
947 					    struct dma_buf *dma_buf)
948 {
949 	return drm_gem_prime_import_dev(dev, dma_buf, dev->dev);
950 }
951 EXPORT_SYMBOL(drm_gem_prime_import);
952 
953 /**
954  * drm_prime_sg_to_page_addr_arrays - convert an sg table into a page array
955  * @sgt: scatter-gather table to convert
956  * @pages: optional array of page pointers to store the page array in
957  * @addrs: optional array to store the dma bus address of each page
958  * @max_entries: size of both the passed-in arrays
959  *
960  * Exports an sg table into an array of pages and addresses. This is currently
961  * required by the TTM driver in order to do correct fault handling.
962  *
963  * Drivers can use this in their &drm_driver.gem_prime_import_sg_table
964  * implementation.
965  */
966 int drm_prime_sg_to_page_addr_arrays(struct sg_table *sgt, struct page **pages,
967 				     dma_addr_t *addrs, int max_entries)
968 {
969 	unsigned count;
970 	struct scatterlist *sg;
971 	struct page *page;
972 	u32 page_len, page_index;
973 	dma_addr_t addr;
974 	u32 dma_len, dma_index;
975 
976 	/*
977 	 * Scatterlist elements contains both pages and DMA addresses, but
978 	 * one shoud not assume 1:1 relation between them. The sg->length is
979 	 * the size of the physical memory chunk described by the sg->page,
980 	 * while sg_dma_len(sg) is the size of the DMA (IO virtual) chunk
981 	 * described by the sg_dma_address(sg).
982 	 */
983 	page_index = 0;
984 	dma_index = 0;
985 	for_each_sg(sgt->sgl, sg, sgt->nents, count) {
986 		page_len = sg->length;
987 		page = sg_page(sg);
988 		dma_len = sg_dma_len(sg);
989 		addr = sg_dma_address(sg);
990 
991 		while (pages && page_len > 0) {
992 			if (WARN_ON(page_index >= max_entries))
993 				return -1;
994 			pages[page_index] = page;
995 			page++;
996 			page_len -= PAGE_SIZE;
997 			page_index++;
998 		}
999 		while (addrs && dma_len > 0) {
1000 			if (WARN_ON(dma_index >= max_entries))
1001 				return -1;
1002 			addrs[dma_index] = addr;
1003 			addr += PAGE_SIZE;
1004 			dma_len -= PAGE_SIZE;
1005 			dma_index++;
1006 		}
1007 	}
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL(drm_prime_sg_to_page_addr_arrays);
1011 
1012 /**
1013  * drm_prime_gem_destroy - helper to clean up a PRIME-imported GEM object
1014  * @obj: GEM object which was created from a dma-buf
1015  * @sg: the sg-table which was pinned at import time
1016  *
1017  * This is the cleanup functions which GEM drivers need to call when they use
1018  * drm_gem_prime_import() or drm_gem_prime_import_dev() to import dma-bufs.
1019  */
1020 void drm_prime_gem_destroy(struct drm_gem_object *obj, struct sg_table *sg)
1021 {
1022 	struct dma_buf_attachment *attach;
1023 	struct dma_buf *dma_buf;
1024 
1025 	attach = obj->import_attach;
1026 	if (sg)
1027 		dma_buf_unmap_attachment(attach, sg, DMA_BIDIRECTIONAL);
1028 	dma_buf = attach->dmabuf;
1029 	dma_buf_detach(attach->dmabuf, attach);
1030 	/* remove the reference */
1031 	dma_buf_put(dma_buf);
1032 }
1033 EXPORT_SYMBOL(drm_prime_gem_destroy);
1034