xref: /linux/drivers/gpu/drm/drm_pagemap.c (revision f86ad0ed620cb3c91ec7d5468e93ac68d727539d)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /*
3  * Copyright © 2024-2025 Intel Corporation
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include <linux/migrate.h>
8 #include <linux/pagemap.h>
9 #include <drm/drm_pagemap.h>
10 
11 /**
12  * DOC: Overview
13  *
14  * The DRM pagemap layer is intended to augment the dev_pagemap functionality by
15  * providing a way to populate a struct mm_struct virtual range with device
16  * private pages and to provide helpers to abstract device memory allocations,
17  * to migrate memory back and forth between device memory and system RAM and
18  * to handle access (and in the future migration) between devices implementing
19  * a fast interconnect that is not necessarily visible to the rest of the
20  * system.
21  *
22  * Typically the DRM pagemap receives requests from one or more DRM GPU SVM
23  * instances to populate struct mm_struct virtual ranges with memory.
24  */
25 
26 /**
27  * DOC: Migration
28  *
29  * The migration support is quite simple, allowing migration between RAM and
30  * device memory at the range granularity. For example, GPU SVM currently does
31  * not support mixing RAM and device memory pages within a range. This means
32  * that upon GPU fault, the entire range can be migrated to device memory, and
33  * upon CPU fault, the entire range is migrated to RAM. Mixed RAM and device
34  * memory storage within a range could be added in the future if required.
35  *
36  * The reasoning for only supporting range granularity is as follows: it
37  * simplifies the implementation, and range sizes are driver-defined and should
38  * be relatively small.
39  *
40  *
41  * Key DRM pagemap components:
42  *
43  * - Device Memory Allocations:
44  *      Embedded structure containing enough information for the drm_pagemap to
45  *      migrate to / from device memory.
46  *
47  * - Device Memory Operations:
48  *      Define the interface for driver-specific device memory operations
49  *      release memory, populate pfns, and copy to / from device memory.
50  */
51 
52 /**
53  * struct drm_pagemap_zdd - GPU SVM zone device data
54  *
55  * @refcount: Reference count for the zdd
56  * @devmem_allocation: device memory allocation
57  * @device_private_page_owner: Device private pages owner
58  *
59  * This structure serves as a generic wrapper installed in
60  * page->zone_device_data. It provides infrastructure for looking up a device
61  * memory allocation upon CPU page fault and asynchronously releasing device
62  * memory once the CPU has no page references. Asynchronous release is useful
63  * because CPU page references can be dropped in IRQ contexts, while releasing
64  * device memory likely requires sleeping locks.
65  */
66 struct drm_pagemap_zdd {
67 	struct kref refcount;
68 	struct drm_pagemap_devmem *devmem_allocation;
69 	void *device_private_page_owner;
70 };
71 
72 /**
73  * drm_pagemap_zdd_alloc() - Allocate a zdd structure.
74  * @device_private_page_owner: Device private pages owner
75  *
76  * This function allocates and initializes a new zdd structure. It sets up the
77  * reference count and initializes the destroy work.
78  *
79  * Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
80  */
81 static struct drm_pagemap_zdd *
82 drm_pagemap_zdd_alloc(void *device_private_page_owner)
83 {
84 	struct drm_pagemap_zdd *zdd;
85 
86 	zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
87 	if (!zdd)
88 		return NULL;
89 
90 	kref_init(&zdd->refcount);
91 	zdd->devmem_allocation = NULL;
92 	zdd->device_private_page_owner = device_private_page_owner;
93 
94 	return zdd;
95 }
96 
97 /**
98  * drm_pagemap_zdd_get() - Get a reference to a zdd structure.
99  * @zdd: Pointer to the zdd structure.
100  *
101  * This function increments the reference count of the provided zdd structure.
102  *
103  * Return: Pointer to the zdd structure.
104  */
105 static struct drm_pagemap_zdd *drm_pagemap_zdd_get(struct drm_pagemap_zdd *zdd)
106 {
107 	kref_get(&zdd->refcount);
108 	return zdd;
109 }
110 
111 /**
112  * drm_pagemap_zdd_destroy() - Destroy a zdd structure.
113  * @ref: Pointer to the reference count structure.
114  *
115  * This function queues the destroy_work of the zdd for asynchronous destruction.
116  */
117 static void drm_pagemap_zdd_destroy(struct kref *ref)
118 {
119 	struct drm_pagemap_zdd *zdd =
120 		container_of(ref, struct drm_pagemap_zdd, refcount);
121 	struct drm_pagemap_devmem *devmem = zdd->devmem_allocation;
122 
123 	if (devmem) {
124 		complete_all(&devmem->detached);
125 		if (devmem->ops->devmem_release)
126 			devmem->ops->devmem_release(devmem);
127 	}
128 	kfree(zdd);
129 }
130 
131 /**
132  * drm_pagemap_zdd_put() - Put a zdd reference.
133  * @zdd: Pointer to the zdd structure.
134  *
135  * This function decrements the reference count of the provided zdd structure
136  * and schedules its destruction if the count drops to zero.
137  */
138 static void drm_pagemap_zdd_put(struct drm_pagemap_zdd *zdd)
139 {
140 	kref_put(&zdd->refcount, drm_pagemap_zdd_destroy);
141 }
142 
143 /**
144  * drm_pagemap_migration_unlock_put_page() - Put a migration page
145  * @page: Pointer to the page to put
146  *
147  * This function unlocks and puts a page.
148  */
149 static void drm_pagemap_migration_unlock_put_page(struct page *page)
150 {
151 	unlock_page(page);
152 	put_page(page);
153 }
154 
155 /**
156  * drm_pagemap_migration_unlock_put_pages() - Put migration pages
157  * @npages: Number of pages
158  * @migrate_pfn: Array of migrate page frame numbers
159  *
160  * This function unlocks and puts an array of pages.
161  */
162 static void drm_pagemap_migration_unlock_put_pages(unsigned long npages,
163 						   unsigned long *migrate_pfn)
164 {
165 	unsigned long i;
166 
167 	for (i = 0; i < npages; ++i) {
168 		struct page *page;
169 
170 		if (!migrate_pfn[i])
171 			continue;
172 
173 		page = migrate_pfn_to_page(migrate_pfn[i]);
174 		drm_pagemap_migration_unlock_put_page(page);
175 		migrate_pfn[i] = 0;
176 	}
177 }
178 
179 /**
180  * drm_pagemap_get_devmem_page() - Get a reference to a device memory page
181  * @page: Pointer to the page
182  * @zdd: Pointer to the GPU SVM zone device data
183  *
184  * This function associates the given page with the specified GPU SVM zone
185  * device data and initializes it for zone device usage.
186  */
187 static void drm_pagemap_get_devmem_page(struct page *page,
188 					struct drm_pagemap_zdd *zdd)
189 {
190 	page->zone_device_data = drm_pagemap_zdd_get(zdd);
191 	zone_device_page_init(page);
192 }
193 
194 /**
195  * drm_pagemap_migrate_map_pages() - Map migration pages for GPU SVM migration
196  * @dev: The device for which the pages are being mapped
197  * @dma_addr: Array to store DMA addresses corresponding to mapped pages
198  * @migrate_pfn: Array of migrate page frame numbers to map
199  * @npages: Number of pages to map
200  * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
201  *
202  * This function maps pages of memory for migration usage in GPU SVM. It
203  * iterates over each page frame number provided in @migrate_pfn, maps the
204  * corresponding page, and stores the DMA address in the provided @dma_addr
205  * array.
206  *
207  * Returns: 0 on success, -EFAULT if an error occurs during mapping.
208  */
209 static int drm_pagemap_migrate_map_pages(struct device *dev,
210 					 dma_addr_t *dma_addr,
211 					 unsigned long *migrate_pfn,
212 					 unsigned long npages,
213 					 enum dma_data_direction dir)
214 {
215 	unsigned long i;
216 
217 	for (i = 0; i < npages; ++i) {
218 		struct page *page = migrate_pfn_to_page(migrate_pfn[i]);
219 
220 		if (!page)
221 			continue;
222 
223 		if (WARN_ON_ONCE(is_zone_device_page(page)))
224 			return -EFAULT;
225 
226 		dma_addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
227 		if (dma_mapping_error(dev, dma_addr[i]))
228 			return -EFAULT;
229 	}
230 
231 	return 0;
232 }
233 
234 /**
235  * drm_pagemap_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
236  * @dev: The device for which the pages were mapped
237  * @dma_addr: Array of DMA addresses corresponding to mapped pages
238  * @npages: Number of pages to unmap
239  * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
240  *
241  * This function unmaps previously mapped pages of memory for GPU Shared Virtual
242  * Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
243  * if it's valid and not already unmapped, and unmaps the corresponding page.
244  */
245 static void drm_pagemap_migrate_unmap_pages(struct device *dev,
246 					    dma_addr_t *dma_addr,
247 					    unsigned long npages,
248 					    enum dma_data_direction dir)
249 {
250 	unsigned long i;
251 
252 	for (i = 0; i < npages; ++i) {
253 		if (!dma_addr[i] || dma_mapping_error(dev, dma_addr[i]))
254 			continue;
255 
256 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
257 	}
258 }
259 
260 static unsigned long
261 npages_in_range(unsigned long start, unsigned long end)
262 {
263 	return (end - start) >> PAGE_SHIFT;
264 }
265 
266 /**
267  * drm_pagemap_migrate_to_devmem() - Migrate a struct mm_struct range to device memory
268  * @devmem_allocation: The device memory allocation to migrate to.
269  * The caller should hold a reference to the device memory allocation,
270  * and the reference is consumed by this function unless it returns with
271  * an error.
272  * @mm: Pointer to the struct mm_struct.
273  * @start: Start of the virtual address range to migrate.
274  * @end: End of the virtual address range to migrate.
275  * @timeslice_ms: The time requested for the migrated pagemap pages to
276  * be present in @mm before being allowed to be migrated back.
277  * @pgmap_owner: Not used currently, since only system memory is considered.
278  *
279  * This function migrates the specified virtual address range to device memory.
280  * It performs the necessary setup and invokes the driver-specific operations for
281  * migration to device memory. Expected to be called while holding the mmap lock in
282  * at least read mode.
283  *
284  * Note: The @timeslice_ms parameter can typically be used to force data to
285  * remain in pagemap pages long enough for a GPU to perform a task and to prevent
286  * a migration livelock. One alternative would be for the GPU driver to block
287  * in a mmu_notifier for the specified amount of time, but adding the
288  * functionality to the pagemap is likely nicer to the system as a whole.
289  *
290  * Return: %0 on success, negative error code on failure.
291  */
292 int drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem *devmem_allocation,
293 				  struct mm_struct *mm,
294 				  unsigned long start, unsigned long end,
295 				  unsigned long timeslice_ms,
296 				  void *pgmap_owner)
297 {
298 	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
299 	struct migrate_vma migrate = {
300 		.start		= start,
301 		.end		= end,
302 		.pgmap_owner	= pgmap_owner,
303 		.flags		= MIGRATE_VMA_SELECT_SYSTEM,
304 	};
305 	unsigned long i, npages = npages_in_range(start, end);
306 	struct vm_area_struct *vas;
307 	struct drm_pagemap_zdd *zdd = NULL;
308 	struct page **pages;
309 	dma_addr_t *dma_addr;
310 	void *buf;
311 	int err;
312 
313 	mmap_assert_locked(mm);
314 
315 	if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
316 	    !ops->copy_to_ram)
317 		return -EOPNOTSUPP;
318 
319 	vas = vma_lookup(mm, start);
320 	if (!vas) {
321 		err = -ENOENT;
322 		goto err_out;
323 	}
324 
325 	if (end > vas->vm_end || start < vas->vm_start) {
326 		err = -EINVAL;
327 		goto err_out;
328 	}
329 
330 	if (!vma_is_anonymous(vas)) {
331 		err = -EBUSY;
332 		goto err_out;
333 	}
334 
335 	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
336 		       sizeof(*pages), GFP_KERNEL);
337 	if (!buf) {
338 		err = -ENOMEM;
339 		goto err_out;
340 	}
341 	dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
342 	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;
343 
344 	zdd = drm_pagemap_zdd_alloc(pgmap_owner);
345 	if (!zdd) {
346 		err = -ENOMEM;
347 		goto err_free;
348 	}
349 
350 	migrate.vma = vas;
351 	migrate.src = buf;
352 	migrate.dst = migrate.src + npages;
353 
354 	err = migrate_vma_setup(&migrate);
355 	if (err)
356 		goto err_free;
357 
358 	if (!migrate.cpages) {
359 		err = -EFAULT;
360 		goto err_free;
361 	}
362 
363 	if (migrate.cpages != npages) {
364 		err = -EBUSY;
365 		goto err_finalize;
366 	}
367 
368 	err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
369 	if (err)
370 		goto err_finalize;
371 
372 	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, dma_addr,
373 					    migrate.src, npages, DMA_TO_DEVICE);
374 	if (err)
375 		goto err_finalize;
376 
377 	for (i = 0; i < npages; ++i) {
378 		struct page *page = pfn_to_page(migrate.dst[i]);
379 
380 		pages[i] = page;
381 		migrate.dst[i] = migrate_pfn(migrate.dst[i]);
382 		drm_pagemap_get_devmem_page(page, zdd);
383 	}
384 
385 	err = ops->copy_to_devmem(pages, dma_addr, npages);
386 	if (err)
387 		goto err_finalize;
388 
389 	/* Upon success bind devmem allocation to range and zdd */
390 	devmem_allocation->timeslice_expiration = get_jiffies_64() +
391 		msecs_to_jiffies(timeslice_ms);
392 	zdd->devmem_allocation = devmem_allocation;	/* Owns ref */
393 
394 err_finalize:
395 	if (err)
396 		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
397 	migrate_vma_pages(&migrate);
398 	migrate_vma_finalize(&migrate);
399 	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
400 					DMA_TO_DEVICE);
401 err_free:
402 	if (zdd)
403 		drm_pagemap_zdd_put(zdd);
404 	kvfree(buf);
405 err_out:
406 	return err;
407 }
408 EXPORT_SYMBOL_GPL(drm_pagemap_migrate_to_devmem);
409 
410 /**
411  * drm_pagemap_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
412  * @vas: Pointer to the VM area structure, can be NULL
413  * @fault_page: Fault page
414  * @npages: Number of pages to populate
415  * @mpages: Number of pages to migrate
416  * @src_mpfn: Source array of migrate PFNs
417  * @mpfn: Array of migrate PFNs to populate
418  * @addr: Start address for PFN allocation
419  *
420  * This function populates the RAM migrate page frame numbers (PFNs) for the
421  * specified VM area structure. It allocates and locks pages in the VM area for
422  * RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
423  * alloc_page for allocation.
424  *
425  * Return: 0 on success, negative error code on failure.
426  */
427 static int drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct *vas,
428 						struct page *fault_page,
429 						unsigned long npages,
430 						unsigned long *mpages,
431 						unsigned long *src_mpfn,
432 						unsigned long *mpfn,
433 						unsigned long addr)
434 {
435 	unsigned long i;
436 
437 	for (i = 0; i < npages; ++i, addr += PAGE_SIZE) {
438 		struct page *page, *src_page;
439 
440 		if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
441 			continue;
442 
443 		src_page = migrate_pfn_to_page(src_mpfn[i]);
444 		if (!src_page)
445 			continue;
446 
447 		if (fault_page) {
448 			if (src_page->zone_device_data !=
449 			    fault_page->zone_device_data)
450 				continue;
451 		}
452 
453 		if (vas)
454 			page = alloc_page_vma(GFP_HIGHUSER, vas, addr);
455 		else
456 			page = alloc_page(GFP_HIGHUSER);
457 
458 		if (!page)
459 			goto free_pages;
460 
461 		mpfn[i] = migrate_pfn(page_to_pfn(page));
462 	}
463 
464 	for (i = 0; i < npages; ++i) {
465 		struct page *page = migrate_pfn_to_page(mpfn[i]);
466 
467 		if (!page)
468 			continue;
469 
470 		WARN_ON_ONCE(!trylock_page(page));
471 		++*mpages;
472 	}
473 
474 	return 0;
475 
476 free_pages:
477 	for (i = 0; i < npages; ++i) {
478 		struct page *page = migrate_pfn_to_page(mpfn[i]);
479 
480 		if (!page)
481 			continue;
482 
483 		put_page(page);
484 		mpfn[i] = 0;
485 	}
486 	return -ENOMEM;
487 }
488 
489 /**
490  * drm_pagemap_evict_to_ram() - Evict GPU SVM range to RAM
491  * @devmem_allocation: Pointer to the device memory allocation
492  *
493  * Similar to __drm_pagemap_migrate_to_ram but does not require mmap lock and
494  * migration done via migrate_device_* functions.
495  *
496  * Return: 0 on success, negative error code on failure.
497  */
498 int drm_pagemap_evict_to_ram(struct drm_pagemap_devmem *devmem_allocation)
499 {
500 	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
501 	unsigned long npages, mpages = 0;
502 	struct page **pages;
503 	unsigned long *src, *dst;
504 	dma_addr_t *dma_addr;
505 	void *buf;
506 	int i, err = 0;
507 	unsigned int retry_count = 2;
508 
509 	npages = devmem_allocation->size >> PAGE_SHIFT;
510 
511 retry:
512 	if (!mmget_not_zero(devmem_allocation->mm))
513 		return -EFAULT;
514 
515 	buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*dma_addr) +
516 		       sizeof(*pages), GFP_KERNEL);
517 	if (!buf) {
518 		err = -ENOMEM;
519 		goto err_out;
520 	}
521 	src = buf;
522 	dst = buf + (sizeof(*src) * npages);
523 	dma_addr = buf + (2 * sizeof(*src) * npages);
524 	pages = buf + (2 * sizeof(*src) + sizeof(*dma_addr)) * npages;
525 
526 	err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
527 	if (err)
528 		goto err_free;
529 
530 	err = migrate_device_pfns(src, npages);
531 	if (err)
532 		goto err_free;
533 
534 	err = drm_pagemap_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
535 						   src, dst, 0);
536 	if (err || !mpages)
537 		goto err_finalize;
538 
539 	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, dma_addr,
540 					    dst, npages, DMA_FROM_DEVICE);
541 	if (err)
542 		goto err_finalize;
543 
544 	for (i = 0; i < npages; ++i)
545 		pages[i] = migrate_pfn_to_page(src[i]);
546 
547 	err = ops->copy_to_ram(pages, dma_addr, npages);
548 	if (err)
549 		goto err_finalize;
550 
551 err_finalize:
552 	if (err)
553 		drm_pagemap_migration_unlock_put_pages(npages, dst);
554 	migrate_device_pages(src, dst, npages);
555 	migrate_device_finalize(src, dst, npages);
556 	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, dma_addr, npages,
557 					DMA_FROM_DEVICE);
558 err_free:
559 	kvfree(buf);
560 err_out:
561 	mmput_async(devmem_allocation->mm);
562 
563 	if (completion_done(&devmem_allocation->detached))
564 		return 0;
565 
566 	if (retry_count--) {
567 		cond_resched();
568 		goto retry;
569 	}
570 
571 	return err ?: -EBUSY;
572 }
573 EXPORT_SYMBOL_GPL(drm_pagemap_evict_to_ram);
574 
575 /**
576  * __drm_pagemap_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
577  * @vas: Pointer to the VM area structure
578  * @device_private_page_owner: Device private pages owner
579  * @page: Pointer to the page for fault handling (can be NULL)
580  * @fault_addr: Fault address
581  * @size: Size of migration
582  *
583  * This internal function performs the migration of the specified GPU SVM range
584  * to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
585  * invokes the driver-specific operations for migration to RAM.
586  *
587  * Return: 0 on success, negative error code on failure.
588  */
589 static int __drm_pagemap_migrate_to_ram(struct vm_area_struct *vas,
590 					void *device_private_page_owner,
591 					struct page *page,
592 					unsigned long fault_addr,
593 					unsigned long size)
594 {
595 	struct migrate_vma migrate = {
596 		.vma		= vas,
597 		.pgmap_owner	= device_private_page_owner,
598 		.flags		= MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
599 		MIGRATE_VMA_SELECT_DEVICE_COHERENT,
600 		.fault_page	= page,
601 	};
602 	struct drm_pagemap_zdd *zdd;
603 	const struct drm_pagemap_devmem_ops *ops;
604 	struct device *dev = NULL;
605 	unsigned long npages, mpages = 0;
606 	struct page **pages;
607 	dma_addr_t *dma_addr;
608 	unsigned long start, end;
609 	void *buf;
610 	int i, err = 0;
611 
612 	if (page) {
613 		zdd = page->zone_device_data;
614 		if (time_before64(get_jiffies_64(),
615 				  zdd->devmem_allocation->timeslice_expiration))
616 			return 0;
617 	}
618 
619 	start = ALIGN_DOWN(fault_addr, size);
620 	end = ALIGN(fault_addr + 1, size);
621 
622 	/* Corner where VMA area struct has been partially unmapped */
623 	if (start < vas->vm_start)
624 		start = vas->vm_start;
625 	if (end > vas->vm_end)
626 		end = vas->vm_end;
627 
628 	migrate.start = start;
629 	migrate.end = end;
630 	npages = npages_in_range(start, end);
631 
632 	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) +
633 		       sizeof(*pages), GFP_KERNEL);
634 	if (!buf) {
635 		err = -ENOMEM;
636 		goto err_out;
637 	}
638 	dma_addr = buf + (2 * sizeof(*migrate.src) * npages);
639 	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages;
640 
641 	migrate.vma = vas;
642 	migrate.src = buf;
643 	migrate.dst = migrate.src + npages;
644 
645 	err = migrate_vma_setup(&migrate);
646 	if (err)
647 		goto err_free;
648 
649 	/* Raced with another CPU fault, nothing to do */
650 	if (!migrate.cpages)
651 		goto err_free;
652 
653 	if (!page) {
654 		for (i = 0; i < npages; ++i) {
655 			if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
656 				continue;
657 
658 			page = migrate_pfn_to_page(migrate.src[i]);
659 			break;
660 		}
661 
662 		if (!page)
663 			goto err_finalize;
664 	}
665 	zdd = page->zone_device_data;
666 	ops = zdd->devmem_allocation->ops;
667 	dev = zdd->devmem_allocation->dev;
668 
669 	err = drm_pagemap_migrate_populate_ram_pfn(vas, page, npages, &mpages,
670 						   migrate.src, migrate.dst,
671 						   start);
672 	if (err)
673 		goto err_finalize;
674 
675 	err = drm_pagemap_migrate_map_pages(dev, dma_addr, migrate.dst, npages,
676 					    DMA_FROM_DEVICE);
677 	if (err)
678 		goto err_finalize;
679 
680 	for (i = 0; i < npages; ++i)
681 		pages[i] = migrate_pfn_to_page(migrate.src[i]);
682 
683 	err = ops->copy_to_ram(pages, dma_addr, npages);
684 	if (err)
685 		goto err_finalize;
686 
687 err_finalize:
688 	if (err)
689 		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
690 	migrate_vma_pages(&migrate);
691 	migrate_vma_finalize(&migrate);
692 	if (dev)
693 		drm_pagemap_migrate_unmap_pages(dev, dma_addr, npages,
694 						DMA_FROM_DEVICE);
695 err_free:
696 	kvfree(buf);
697 err_out:
698 
699 	return err;
700 }
701 
702 /**
703  * drm_pagemap_page_free() - Put GPU SVM zone device data associated with a page
704  * @page: Pointer to the page
705  *
706  * This function is a callback used to put the GPU SVM zone device data
707  * associated with a page when it is being released.
708  */
709 static void drm_pagemap_page_free(struct page *page)
710 {
711 	drm_pagemap_zdd_put(page->zone_device_data);
712 }
713 
714 /**
715  * drm_pagemap_migrate_to_ram() - Migrate a virtual range to RAM (page fault handler)
716  * @vmf: Pointer to the fault information structure
717  *
718  * This function is a page fault handler used to migrate a virtual range
719  * to ram. The device memory allocation in which the device page is found is
720  * migrated in its entirety.
721  *
722  * Returns:
723  * VM_FAULT_SIGBUS on failure, 0 on success.
724  */
725 static vm_fault_t drm_pagemap_migrate_to_ram(struct vm_fault *vmf)
726 {
727 	struct drm_pagemap_zdd *zdd = vmf->page->zone_device_data;
728 	int err;
729 
730 	err = __drm_pagemap_migrate_to_ram(vmf->vma,
731 					   zdd->device_private_page_owner,
732 					   vmf->page, vmf->address,
733 					   zdd->devmem_allocation->size);
734 
735 	return err ? VM_FAULT_SIGBUS : 0;
736 }
737 
738 static const struct dev_pagemap_ops drm_pagemap_pagemap_ops = {
739 	.page_free = drm_pagemap_page_free,
740 	.migrate_to_ram = drm_pagemap_migrate_to_ram,
741 };
742 
743 /**
744  * drm_pagemap_pagemap_ops_get() - Retrieve GPU SVM device page map operations
745  *
746  * Returns:
747  * Pointer to the GPU SVM device page map operations structure.
748  */
749 const struct dev_pagemap_ops *drm_pagemap_pagemap_ops_get(void)
750 {
751 	return &drm_pagemap_pagemap_ops;
752 }
753 EXPORT_SYMBOL_GPL(drm_pagemap_pagemap_ops_get);
754 
755 /**
756  * drm_pagemap_devmem_init() - Initialize a drm_pagemap device memory allocation
757  *
758  * @devmem_allocation: The struct drm_pagemap_devmem to initialize.
759  * @dev: Pointer to the device structure which device memory allocation belongs to
760  * @mm: Pointer to the mm_struct for the address space
761  * @ops: Pointer to the operations structure for GPU SVM device memory
762  * @dpagemap: The struct drm_pagemap we're allocating from.
763  * @size: Size of device memory allocation
764  */
765 void drm_pagemap_devmem_init(struct drm_pagemap_devmem *devmem_allocation,
766 			     struct device *dev, struct mm_struct *mm,
767 			     const struct drm_pagemap_devmem_ops *ops,
768 			     struct drm_pagemap *dpagemap, size_t size)
769 {
770 	init_completion(&devmem_allocation->detached);
771 	devmem_allocation->dev = dev;
772 	devmem_allocation->mm = mm;
773 	devmem_allocation->ops = ops;
774 	devmem_allocation->dpagemap = dpagemap;
775 	devmem_allocation->size = size;
776 }
777 EXPORT_SYMBOL_GPL(drm_pagemap_devmem_init);
778 
779 /**
780  * drm_pagemap_page_to_dpagemap() - Return a pointer the drm_pagemap of a page
781  * @page: The struct page.
782  *
783  * Return: A pointer to the struct drm_pagemap of a device private page that
784  * was populated from the struct drm_pagemap. If the page was *not* populated
785  * from a struct drm_pagemap, the result is undefined and the function call
786  * may result in dereferencing and invalid address.
787  */
788 struct drm_pagemap *drm_pagemap_page_to_dpagemap(struct page *page)
789 {
790 	struct drm_pagemap_zdd *zdd = page->zone_device_data;
791 
792 	return zdd->devmem_allocation->dpagemap;
793 }
794 EXPORT_SYMBOL_GPL(drm_pagemap_page_to_dpagemap);
795