xref: /linux/drivers/gpu/drm/drm_pagemap.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /*
3  * Copyright © 2024-2025 Intel Corporation
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include <linux/migrate.h>
8 #include <linux/pagemap.h>
9 #include <drm/drm_drv.h>
10 #include <drm/drm_pagemap.h>
11 
12 /**
13  * DOC: Overview
14  *
15  * The DRM pagemap layer is intended to augment the dev_pagemap functionality by
16  * providing a way to populate a struct mm_struct virtual range with device
17  * private pages and to provide helpers to abstract device memory allocations,
18  * to migrate memory back and forth between device memory and system RAM and
19  * to handle access (and in the future migration) between devices implementing
20  * a fast interconnect that is not necessarily visible to the rest of the
21  * system.
22  *
23  * Typically the DRM pagemap receives requests from one or more DRM GPU SVM
24  * instances to populate struct mm_struct virtual ranges with memory, and the
25  * migration is best effort only and may thus fail. The implementation should
26  * also handle device unbinding by blocking (return an -ENODEV) error for new
27  * population requests and after that migrate all device pages to system ram.
28  */
29 
30 /**
31  * DOC: Migration
32  *
33  * Migration granularity typically follows the GPU SVM range requests, but
34  * if there are clashes, due to races or due to the fact that multiple GPU
35  * SVM instances have different views of the ranges used, and because of that
36  * parts of a requested range is already present in the requested device memory,
37  * the implementation has a variety of options. It can fail and it can choose
38  * to populate only the part of the range that isn't already in device memory,
39  * and it can evict the range to system before trying to migrate. Ideally an
40  * implementation would just try to migrate the missing part of the range and
41  * allocate just enough memory to do so.
42  *
43  * When migrating to system memory as a response to a cpu fault or a device
44  * memory eviction request, currently a full device memory allocation is
45  * migrated back to system. Moving forward this might need improvement for
46  * situations where a single page needs bouncing between system memory and
47  * device memory due to, for example, atomic operations.
48  *
49  * Key DRM pagemap components:
50  *
51  * - Device Memory Allocations:
52  *      Embedded structure containing enough information for the drm_pagemap to
53  *      migrate to / from device memory.
54  *
55  * - Device Memory Operations:
56  *      Define the interface for driver-specific device memory operations
57  *      release memory, populate pfns, and copy to / from device memory.
58  */
59 
60 /**
61  * struct drm_pagemap_zdd - GPU SVM zone device data
62  *
63  * @refcount: Reference count for the zdd
64  * @devmem_allocation: device memory allocation
65  * @device_private_page_owner: Device private pages owner
66  *
67  * This structure serves as a generic wrapper installed in
68  * page->zone_device_data. It provides infrastructure for looking up a device
69  * memory allocation upon CPU page fault and asynchronously releasing device
70  * memory once the CPU has no page references. Asynchronous release is useful
71  * because CPU page references can be dropped in IRQ contexts, while releasing
72  * device memory likely requires sleeping locks.
73  */
74 struct drm_pagemap_zdd {
75 	struct kref refcount;
76 	struct drm_pagemap_devmem *devmem_allocation;
77 	void *device_private_page_owner;
78 };
79 
80 /**
81  * drm_pagemap_zdd_alloc() - Allocate a zdd structure.
82  * @device_private_page_owner: Device private pages owner
83  *
84  * This function allocates and initializes a new zdd structure. It sets up the
85  * reference count and initializes the destroy work.
86  *
87  * Return: Pointer to the allocated zdd on success, ERR_PTR() on failure.
88  */
89 static struct drm_pagemap_zdd *
90 drm_pagemap_zdd_alloc(void *device_private_page_owner)
91 {
92 	struct drm_pagemap_zdd *zdd;
93 
94 	zdd = kmalloc(sizeof(*zdd), GFP_KERNEL);
95 	if (!zdd)
96 		return NULL;
97 
98 	kref_init(&zdd->refcount);
99 	zdd->devmem_allocation = NULL;
100 	zdd->device_private_page_owner = device_private_page_owner;
101 
102 	return zdd;
103 }
104 
105 /**
106  * drm_pagemap_zdd_get() - Get a reference to a zdd structure.
107  * @zdd: Pointer to the zdd structure.
108  *
109  * This function increments the reference count of the provided zdd structure.
110  *
111  * Return: Pointer to the zdd structure.
112  */
113 static struct drm_pagemap_zdd *drm_pagemap_zdd_get(struct drm_pagemap_zdd *zdd)
114 {
115 	kref_get(&zdd->refcount);
116 	return zdd;
117 }
118 
119 /**
120  * drm_pagemap_zdd_destroy() - Destroy a zdd structure.
121  * @ref: Pointer to the reference count structure.
122  *
123  * This function queues the destroy_work of the zdd for asynchronous destruction.
124  */
125 static void drm_pagemap_zdd_destroy(struct kref *ref)
126 {
127 	struct drm_pagemap_zdd *zdd =
128 		container_of(ref, struct drm_pagemap_zdd, refcount);
129 	struct drm_pagemap_devmem *devmem = zdd->devmem_allocation;
130 
131 	if (devmem) {
132 		complete_all(&devmem->detached);
133 		if (devmem->ops->devmem_release)
134 			devmem->ops->devmem_release(devmem);
135 	}
136 	kfree(zdd);
137 }
138 
139 /**
140  * drm_pagemap_zdd_put() - Put a zdd reference.
141  * @zdd: Pointer to the zdd structure.
142  *
143  * This function decrements the reference count of the provided zdd structure
144  * and schedules its destruction if the count drops to zero.
145  */
146 static void drm_pagemap_zdd_put(struct drm_pagemap_zdd *zdd)
147 {
148 	kref_put(&zdd->refcount, drm_pagemap_zdd_destroy);
149 }
150 
151 /**
152  * drm_pagemap_migration_unlock_put_page() - Put a migration page
153  * @page: Pointer to the page to put
154  *
155  * This function unlocks and puts a page.
156  */
157 static void drm_pagemap_migration_unlock_put_page(struct page *page)
158 {
159 	unlock_page(page);
160 	put_page(page);
161 }
162 
163 /**
164  * drm_pagemap_migration_unlock_put_pages() - Put migration pages
165  * @npages: Number of pages
166  * @migrate_pfn: Array of migrate page frame numbers
167  *
168  * This function unlocks and puts an array of pages.
169  */
170 static void drm_pagemap_migration_unlock_put_pages(unsigned long npages,
171 						   unsigned long *migrate_pfn)
172 {
173 	unsigned long i;
174 
175 	for (i = 0; i < npages; ++i) {
176 		struct page *page;
177 
178 		if (!migrate_pfn[i])
179 			continue;
180 
181 		page = migrate_pfn_to_page(migrate_pfn[i]);
182 		drm_pagemap_migration_unlock_put_page(page);
183 		migrate_pfn[i] = 0;
184 	}
185 }
186 
187 /**
188  * drm_pagemap_get_devmem_page() - Get a reference to a device memory page
189  * @page: Pointer to the page
190  * @zdd: Pointer to the GPU SVM zone device data
191  *
192  * This function associates the given page with the specified GPU SVM zone
193  * device data and initializes it for zone device usage.
194  */
195 static void drm_pagemap_get_devmem_page(struct page *page,
196 					struct drm_pagemap_zdd *zdd)
197 {
198 	page->zone_device_data = drm_pagemap_zdd_get(zdd);
199 	zone_device_page_init(page);
200 }
201 
202 /**
203  * drm_pagemap_migrate_map_pages() - Map migration pages for GPU SVM migration
204  * @dev: The device for which the pages are being mapped
205  * @pagemap_addr: Array to store DMA information corresponding to mapped pages
206  * @migrate_pfn: Array of migrate page frame numbers to map
207  * @npages: Number of pages to map
208  * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
209  *
210  * This function maps pages of memory for migration usage in GPU SVM. It
211  * iterates over each page frame number provided in @migrate_pfn, maps the
212  * corresponding page, and stores the DMA address in the provided @dma_addr
213  * array.
214  *
215  * Returns: 0 on success, -EFAULT if an error occurs during mapping.
216  */
217 static int drm_pagemap_migrate_map_pages(struct device *dev,
218 					 struct drm_pagemap_addr *pagemap_addr,
219 					 unsigned long *migrate_pfn,
220 					 unsigned long npages,
221 					 enum dma_data_direction dir)
222 {
223 	unsigned long i;
224 
225 	for (i = 0; i < npages;) {
226 		struct page *page = migrate_pfn_to_page(migrate_pfn[i]);
227 		dma_addr_t dma_addr;
228 		struct folio *folio;
229 		unsigned int order = 0;
230 
231 		if (!page)
232 			goto next;
233 
234 		if (WARN_ON_ONCE(is_zone_device_page(page)))
235 			return -EFAULT;
236 
237 		folio = page_folio(page);
238 		order = folio_order(folio);
239 
240 		dma_addr = dma_map_page(dev, page, 0, page_size(page), dir);
241 		if (dma_mapping_error(dev, dma_addr))
242 			return -EFAULT;
243 
244 		pagemap_addr[i] =
245 			drm_pagemap_addr_encode(dma_addr,
246 						DRM_INTERCONNECT_SYSTEM,
247 						order, dir);
248 
249 next:
250 		i += NR_PAGES(order);
251 	}
252 
253 	return 0;
254 }
255 
256 /**
257  * drm_pagemap_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration
258  * @dev: The device for which the pages were mapped
259  * @pagemap_addr: Array of DMA information corresponding to mapped pages
260  * @npages: Number of pages to unmap
261  * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL)
262  *
263  * This function unmaps previously mapped pages of memory for GPU Shared Virtual
264  * Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks
265  * if it's valid and not already unmapped, and unmaps the corresponding page.
266  */
267 static void drm_pagemap_migrate_unmap_pages(struct device *dev,
268 					    struct drm_pagemap_addr *pagemap_addr,
269 					    unsigned long npages,
270 					    enum dma_data_direction dir)
271 {
272 	unsigned long i;
273 
274 	for (i = 0; i < npages;) {
275 		if (!pagemap_addr[i].addr || dma_mapping_error(dev, pagemap_addr[i].addr))
276 			goto next;
277 
278 		dma_unmap_page(dev, pagemap_addr[i].addr, PAGE_SIZE << pagemap_addr[i].order, dir);
279 
280 next:
281 		i += NR_PAGES(pagemap_addr[i].order);
282 	}
283 }
284 
285 static unsigned long
286 npages_in_range(unsigned long start, unsigned long end)
287 {
288 	return (end - start) >> PAGE_SHIFT;
289 }
290 
291 /**
292  * drm_pagemap_migrate_to_devmem() - Migrate a struct mm_struct range to device memory
293  * @devmem_allocation: The device memory allocation to migrate to.
294  * The caller should hold a reference to the device memory allocation,
295  * and the reference is consumed by this function unless it returns with
296  * an error.
297  * @mm: Pointer to the struct mm_struct.
298  * @start: Start of the virtual address range to migrate.
299  * @end: End of the virtual address range to migrate.
300  * @timeslice_ms: The time requested for the migrated pagemap pages to
301  * be present in @mm before being allowed to be migrated back.
302  * @pgmap_owner: Not used currently, since only system memory is considered.
303  *
304  * This function migrates the specified virtual address range to device memory.
305  * It performs the necessary setup and invokes the driver-specific operations for
306  * migration to device memory. Expected to be called while holding the mmap lock in
307  * at least read mode.
308  *
309  * Note: The @timeslice_ms parameter can typically be used to force data to
310  * remain in pagemap pages long enough for a GPU to perform a task and to prevent
311  * a migration livelock. One alternative would be for the GPU driver to block
312  * in a mmu_notifier for the specified amount of time, but adding the
313  * functionality to the pagemap is likely nicer to the system as a whole.
314  *
315  * Return: %0 on success, negative error code on failure.
316  */
317 int drm_pagemap_migrate_to_devmem(struct drm_pagemap_devmem *devmem_allocation,
318 				  struct mm_struct *mm,
319 				  unsigned long start, unsigned long end,
320 				  unsigned long timeslice_ms,
321 				  void *pgmap_owner)
322 {
323 	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
324 	struct migrate_vma migrate = {
325 		.start		= start,
326 		.end		= end,
327 		.pgmap_owner	= pgmap_owner,
328 		.flags		= MIGRATE_VMA_SELECT_SYSTEM,
329 	};
330 	unsigned long i, npages = npages_in_range(start, end);
331 	struct vm_area_struct *vas;
332 	struct drm_pagemap_zdd *zdd = NULL;
333 	struct page **pages;
334 	struct drm_pagemap_addr *pagemap_addr;
335 	void *buf;
336 	int err;
337 
338 	mmap_assert_locked(mm);
339 
340 	if (!ops->populate_devmem_pfn || !ops->copy_to_devmem ||
341 	    !ops->copy_to_ram)
342 		return -EOPNOTSUPP;
343 
344 	vas = vma_lookup(mm, start);
345 	if (!vas) {
346 		err = -ENOENT;
347 		goto err_out;
348 	}
349 
350 	if (end > vas->vm_end || start < vas->vm_start) {
351 		err = -EINVAL;
352 		goto err_out;
353 	}
354 
355 	if (!vma_is_anonymous(vas)) {
356 		err = -EBUSY;
357 		goto err_out;
358 	}
359 
360 	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
361 		       sizeof(*pages), GFP_KERNEL);
362 	if (!buf) {
363 		err = -ENOMEM;
364 		goto err_out;
365 	}
366 	pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
367 	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
368 
369 	zdd = drm_pagemap_zdd_alloc(pgmap_owner);
370 	if (!zdd) {
371 		err = -ENOMEM;
372 		goto err_free;
373 	}
374 
375 	migrate.vma = vas;
376 	migrate.src = buf;
377 	migrate.dst = migrate.src + npages;
378 
379 	err = migrate_vma_setup(&migrate);
380 	if (err)
381 		goto err_free;
382 
383 	if (!migrate.cpages) {
384 		err = -EFAULT;
385 		goto err_free;
386 	}
387 
388 	if (migrate.cpages != npages) {
389 		err = -EBUSY;
390 		goto err_finalize;
391 	}
392 
393 	err = ops->populate_devmem_pfn(devmem_allocation, npages, migrate.dst);
394 	if (err)
395 		goto err_finalize;
396 
397 	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
398 					    migrate.src, npages, DMA_TO_DEVICE);
399 
400 	if (err)
401 		goto err_finalize;
402 
403 	for (i = 0; i < npages; ++i) {
404 		struct page *page = pfn_to_page(migrate.dst[i]);
405 
406 		pages[i] = page;
407 		migrate.dst[i] = migrate_pfn(migrate.dst[i]);
408 		drm_pagemap_get_devmem_page(page, zdd);
409 	}
410 
411 	err = ops->copy_to_devmem(pages, pagemap_addr, npages);
412 	if (err)
413 		goto err_finalize;
414 
415 	/* Upon success bind devmem allocation to range and zdd */
416 	devmem_allocation->timeslice_expiration = get_jiffies_64() +
417 		msecs_to_jiffies(timeslice_ms);
418 	zdd->devmem_allocation = devmem_allocation;	/* Owns ref */
419 
420 err_finalize:
421 	if (err)
422 		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
423 	migrate_vma_pages(&migrate);
424 	migrate_vma_finalize(&migrate);
425 	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
426 					DMA_TO_DEVICE);
427 err_free:
428 	if (zdd)
429 		drm_pagemap_zdd_put(zdd);
430 	kvfree(buf);
431 err_out:
432 	return err;
433 }
434 EXPORT_SYMBOL_GPL(drm_pagemap_migrate_to_devmem);
435 
436 /**
437  * drm_pagemap_migrate_populate_ram_pfn() - Populate RAM PFNs for a VM area
438  * @vas: Pointer to the VM area structure, can be NULL
439  * @fault_page: Fault page
440  * @npages: Number of pages to populate
441  * @mpages: Number of pages to migrate
442  * @src_mpfn: Source array of migrate PFNs
443  * @mpfn: Array of migrate PFNs to populate
444  * @addr: Start address for PFN allocation
445  *
446  * This function populates the RAM migrate page frame numbers (PFNs) for the
447  * specified VM area structure. It allocates and locks pages in the VM area for
448  * RAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use
449  * alloc_page for allocation.
450  *
451  * Return: 0 on success, negative error code on failure.
452  */
453 static int drm_pagemap_migrate_populate_ram_pfn(struct vm_area_struct *vas,
454 						struct page *fault_page,
455 						unsigned long npages,
456 						unsigned long *mpages,
457 						unsigned long *src_mpfn,
458 						unsigned long *mpfn,
459 						unsigned long addr)
460 {
461 	unsigned long i;
462 
463 	for (i = 0; i < npages;) {
464 		struct page *page = NULL, *src_page;
465 		struct folio *folio;
466 		unsigned int order = 0;
467 
468 		if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE))
469 			goto next;
470 
471 		src_page = migrate_pfn_to_page(src_mpfn[i]);
472 		if (!src_page)
473 			goto next;
474 
475 		if (fault_page) {
476 			if (src_page->zone_device_data !=
477 			    fault_page->zone_device_data)
478 				goto next;
479 		}
480 
481 		order = folio_order(page_folio(src_page));
482 
483 		/* TODO: Support fallback to single pages if THP allocation fails */
484 		if (vas)
485 			folio = vma_alloc_folio(GFP_HIGHUSER, order, vas, addr);
486 		else
487 			folio = folio_alloc(GFP_HIGHUSER, order);
488 
489 		if (!folio)
490 			goto free_pages;
491 
492 		page = folio_page(folio, 0);
493 		mpfn[i] = migrate_pfn(page_to_pfn(page));
494 
495 next:
496 		if (page)
497 			addr += page_size(page);
498 		else
499 			addr += PAGE_SIZE;
500 
501 		i += NR_PAGES(order);
502 	}
503 
504 	for (i = 0; i < npages;) {
505 		struct page *page = migrate_pfn_to_page(mpfn[i]);
506 		unsigned int order = 0;
507 
508 		if (!page)
509 			goto next_lock;
510 
511 		WARN_ON_ONCE(!folio_trylock(page_folio(page)));
512 
513 		order = folio_order(page_folio(page));
514 		*mpages += NR_PAGES(order);
515 
516 next_lock:
517 		i += NR_PAGES(order);
518 	}
519 
520 	return 0;
521 
522 free_pages:
523 	for (i = 0; i < npages;) {
524 		struct page *page = migrate_pfn_to_page(mpfn[i]);
525 		unsigned int order = 0;
526 
527 		if (!page)
528 			goto next_put;
529 
530 		put_page(page);
531 		mpfn[i] = 0;
532 
533 		order = folio_order(page_folio(page));
534 
535 next_put:
536 		i += NR_PAGES(order);
537 	}
538 	return -ENOMEM;
539 }
540 
541 /**
542  * drm_pagemap_evict_to_ram() - Evict GPU SVM range to RAM
543  * @devmem_allocation: Pointer to the device memory allocation
544  *
545  * Similar to __drm_pagemap_migrate_to_ram but does not require mmap lock and
546  * migration done via migrate_device_* functions.
547  *
548  * Return: 0 on success, negative error code on failure.
549  */
550 int drm_pagemap_evict_to_ram(struct drm_pagemap_devmem *devmem_allocation)
551 {
552 	const struct drm_pagemap_devmem_ops *ops = devmem_allocation->ops;
553 	unsigned long npages, mpages = 0;
554 	struct page **pages;
555 	unsigned long *src, *dst;
556 	struct drm_pagemap_addr *pagemap_addr;
557 	void *buf;
558 	int i, err = 0;
559 	unsigned int retry_count = 2;
560 
561 	npages = devmem_allocation->size >> PAGE_SHIFT;
562 
563 retry:
564 	if (!mmget_not_zero(devmem_allocation->mm))
565 		return -EFAULT;
566 
567 	buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*pagemap_addr) +
568 		       sizeof(*pages), GFP_KERNEL);
569 	if (!buf) {
570 		err = -ENOMEM;
571 		goto err_out;
572 	}
573 	src = buf;
574 	dst = buf + (sizeof(*src) * npages);
575 	pagemap_addr = buf + (2 * sizeof(*src) * npages);
576 	pages = buf + (2 * sizeof(*src) + sizeof(*pagemap_addr)) * npages;
577 
578 	err = ops->populate_devmem_pfn(devmem_allocation, npages, src);
579 	if (err)
580 		goto err_free;
581 
582 	err = migrate_device_pfns(src, npages);
583 	if (err)
584 		goto err_free;
585 
586 	err = drm_pagemap_migrate_populate_ram_pfn(NULL, NULL, npages, &mpages,
587 						   src, dst, 0);
588 	if (err || !mpages)
589 		goto err_finalize;
590 
591 	err = drm_pagemap_migrate_map_pages(devmem_allocation->dev, pagemap_addr,
592 					    dst, npages, DMA_FROM_DEVICE);
593 	if (err)
594 		goto err_finalize;
595 
596 	for (i = 0; i < npages; ++i)
597 		pages[i] = migrate_pfn_to_page(src[i]);
598 
599 	err = ops->copy_to_ram(pages, pagemap_addr, npages);
600 	if (err)
601 		goto err_finalize;
602 
603 err_finalize:
604 	if (err)
605 		drm_pagemap_migration_unlock_put_pages(npages, dst);
606 	migrate_device_pages(src, dst, npages);
607 	migrate_device_finalize(src, dst, npages);
608 	drm_pagemap_migrate_unmap_pages(devmem_allocation->dev, pagemap_addr, npages,
609 					DMA_FROM_DEVICE);
610 err_free:
611 	kvfree(buf);
612 err_out:
613 	mmput_async(devmem_allocation->mm);
614 
615 	if (completion_done(&devmem_allocation->detached))
616 		return 0;
617 
618 	if (retry_count--) {
619 		cond_resched();
620 		goto retry;
621 	}
622 
623 	return err ?: -EBUSY;
624 }
625 EXPORT_SYMBOL_GPL(drm_pagemap_evict_to_ram);
626 
627 /**
628  * __drm_pagemap_migrate_to_ram() - Migrate GPU SVM range to RAM (internal)
629  * @vas: Pointer to the VM area structure
630  * @device_private_page_owner: Device private pages owner
631  * @page: Pointer to the page for fault handling (can be NULL)
632  * @fault_addr: Fault address
633  * @size: Size of migration
634  *
635  * This internal function performs the migration of the specified GPU SVM range
636  * to RAM. It sets up the migration, populates + dma maps RAM PFNs, and
637  * invokes the driver-specific operations for migration to RAM.
638  *
639  * Return: 0 on success, negative error code on failure.
640  */
641 static int __drm_pagemap_migrate_to_ram(struct vm_area_struct *vas,
642 					void *device_private_page_owner,
643 					struct page *page,
644 					unsigned long fault_addr,
645 					unsigned long size)
646 {
647 	struct migrate_vma migrate = {
648 		.vma		= vas,
649 		.pgmap_owner	= device_private_page_owner,
650 		.flags		= MIGRATE_VMA_SELECT_DEVICE_PRIVATE |
651 		MIGRATE_VMA_SELECT_DEVICE_COHERENT,
652 		.fault_page	= page,
653 	};
654 	struct drm_pagemap_zdd *zdd;
655 	const struct drm_pagemap_devmem_ops *ops;
656 	struct device *dev = NULL;
657 	unsigned long npages, mpages = 0;
658 	struct page **pages;
659 	struct drm_pagemap_addr *pagemap_addr;
660 	unsigned long start, end;
661 	void *buf;
662 	int i, err = 0;
663 
664 	if (page) {
665 		zdd = page->zone_device_data;
666 		if (time_before64(get_jiffies_64(),
667 				  zdd->devmem_allocation->timeslice_expiration))
668 			return 0;
669 	}
670 
671 	start = ALIGN_DOWN(fault_addr, size);
672 	end = ALIGN(fault_addr + 1, size);
673 
674 	/* Corner where VMA area struct has been partially unmapped */
675 	if (start < vas->vm_start)
676 		start = vas->vm_start;
677 	if (end > vas->vm_end)
678 		end = vas->vm_end;
679 
680 	migrate.start = start;
681 	migrate.end = end;
682 	npages = npages_in_range(start, end);
683 
684 	buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*pagemap_addr) +
685 		       sizeof(*pages), GFP_KERNEL);
686 	if (!buf) {
687 		err = -ENOMEM;
688 		goto err_out;
689 	}
690 	pagemap_addr = buf + (2 * sizeof(*migrate.src) * npages);
691 	pages = buf + (2 * sizeof(*migrate.src) + sizeof(*pagemap_addr)) * npages;
692 
693 	migrate.vma = vas;
694 	migrate.src = buf;
695 	migrate.dst = migrate.src + npages;
696 
697 	err = migrate_vma_setup(&migrate);
698 	if (err)
699 		goto err_free;
700 
701 	/* Raced with another CPU fault, nothing to do */
702 	if (!migrate.cpages)
703 		goto err_free;
704 
705 	if (!page) {
706 		for (i = 0; i < npages; ++i) {
707 			if (!(migrate.src[i] & MIGRATE_PFN_MIGRATE))
708 				continue;
709 
710 			page = migrate_pfn_to_page(migrate.src[i]);
711 			break;
712 		}
713 
714 		if (!page)
715 			goto err_finalize;
716 	}
717 	zdd = page->zone_device_data;
718 	ops = zdd->devmem_allocation->ops;
719 	dev = zdd->devmem_allocation->dev;
720 
721 	err = drm_pagemap_migrate_populate_ram_pfn(vas, page, npages, &mpages,
722 						   migrate.src, migrate.dst,
723 						   start);
724 	if (err)
725 		goto err_finalize;
726 
727 	err = drm_pagemap_migrate_map_pages(dev, pagemap_addr, migrate.dst, npages,
728 					    DMA_FROM_DEVICE);
729 	if (err)
730 		goto err_finalize;
731 
732 	for (i = 0; i < npages; ++i)
733 		pages[i] = migrate_pfn_to_page(migrate.src[i]);
734 
735 	err = ops->copy_to_ram(pages, pagemap_addr, npages);
736 	if (err)
737 		goto err_finalize;
738 
739 err_finalize:
740 	if (err)
741 		drm_pagemap_migration_unlock_put_pages(npages, migrate.dst);
742 	migrate_vma_pages(&migrate);
743 	migrate_vma_finalize(&migrate);
744 	if (dev)
745 		drm_pagemap_migrate_unmap_pages(dev, pagemap_addr, npages,
746 						DMA_FROM_DEVICE);
747 err_free:
748 	kvfree(buf);
749 err_out:
750 
751 	return err;
752 }
753 
754 /**
755  * drm_pagemap_page_free() - Put GPU SVM zone device data associated with a page
756  * @page: Pointer to the page
757  *
758  * This function is a callback used to put the GPU SVM zone device data
759  * associated with a page when it is being released.
760  */
761 static void drm_pagemap_page_free(struct page *page)
762 {
763 	drm_pagemap_zdd_put(page->zone_device_data);
764 }
765 
766 /**
767  * drm_pagemap_migrate_to_ram() - Migrate a virtual range to RAM (page fault handler)
768  * @vmf: Pointer to the fault information structure
769  *
770  * This function is a page fault handler used to migrate a virtual range
771  * to ram. The device memory allocation in which the device page is found is
772  * migrated in its entirety.
773  *
774  * Returns:
775  * VM_FAULT_SIGBUS on failure, 0 on success.
776  */
777 static vm_fault_t drm_pagemap_migrate_to_ram(struct vm_fault *vmf)
778 {
779 	struct drm_pagemap_zdd *zdd = vmf->page->zone_device_data;
780 	int err;
781 
782 	err = __drm_pagemap_migrate_to_ram(vmf->vma,
783 					   zdd->device_private_page_owner,
784 					   vmf->page, vmf->address,
785 					   zdd->devmem_allocation->size);
786 
787 	return err ? VM_FAULT_SIGBUS : 0;
788 }
789 
790 static const struct dev_pagemap_ops drm_pagemap_pagemap_ops = {
791 	.page_free = drm_pagemap_page_free,
792 	.migrate_to_ram = drm_pagemap_migrate_to_ram,
793 };
794 
795 /**
796  * drm_pagemap_pagemap_ops_get() - Retrieve GPU SVM device page map operations
797  *
798  * Returns:
799  * Pointer to the GPU SVM device page map operations structure.
800  */
801 const struct dev_pagemap_ops *drm_pagemap_pagemap_ops_get(void)
802 {
803 	return &drm_pagemap_pagemap_ops;
804 }
805 EXPORT_SYMBOL_GPL(drm_pagemap_pagemap_ops_get);
806 
807 /**
808  * drm_pagemap_devmem_init() - Initialize a drm_pagemap device memory allocation
809  *
810  * @devmem_allocation: The struct drm_pagemap_devmem to initialize.
811  * @dev: Pointer to the device structure which device memory allocation belongs to
812  * @mm: Pointer to the mm_struct for the address space
813  * @ops: Pointer to the operations structure for GPU SVM device memory
814  * @dpagemap: The struct drm_pagemap we're allocating from.
815  * @size: Size of device memory allocation
816  */
817 void drm_pagemap_devmem_init(struct drm_pagemap_devmem *devmem_allocation,
818 			     struct device *dev, struct mm_struct *mm,
819 			     const struct drm_pagemap_devmem_ops *ops,
820 			     struct drm_pagemap *dpagemap, size_t size)
821 {
822 	init_completion(&devmem_allocation->detached);
823 	devmem_allocation->dev = dev;
824 	devmem_allocation->mm = mm;
825 	devmem_allocation->ops = ops;
826 	devmem_allocation->dpagemap = dpagemap;
827 	devmem_allocation->size = size;
828 }
829 EXPORT_SYMBOL_GPL(drm_pagemap_devmem_init);
830 
831 /**
832  * drm_pagemap_page_to_dpagemap() - Return a pointer the drm_pagemap of a page
833  * @page: The struct page.
834  *
835  * Return: A pointer to the struct drm_pagemap of a device private page that
836  * was populated from the struct drm_pagemap. If the page was *not* populated
837  * from a struct drm_pagemap, the result is undefined and the function call
838  * may result in dereferencing and invalid address.
839  */
840 struct drm_pagemap *drm_pagemap_page_to_dpagemap(struct page *page)
841 {
842 	struct drm_pagemap_zdd *zdd = page->zone_device_data;
843 
844 	return zdd->devmem_allocation->dpagemap;
845 }
846 EXPORT_SYMBOL_GPL(drm_pagemap_page_to_dpagemap);
847 
848 /**
849  * drm_pagemap_populate_mm() - Populate a virtual range with device memory pages
850  * @dpagemap: Pointer to the drm_pagemap managing the device memory
851  * @start: Start of the virtual range to populate.
852  * @end: End of the virtual range to populate.
853  * @mm: Pointer to the virtual address space.
854  * @timeslice_ms: The time requested for the migrated pagemap pages to
855  * be present in @mm before being allowed to be migrated back.
856  *
857  * Attempt to populate a virtual range with device memory pages,
858  * clearing them or migrating data from the existing pages if necessary.
859  * The function is best effort only, and implementations may vary
860  * in how hard they try to satisfy the request.
861  *
862  * Return: %0 on success, negative error code on error. If the hardware
863  * device was removed / unbound the function will return %-ENODEV.
864  */
865 int drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
866 			    unsigned long start, unsigned long end,
867 			    struct mm_struct *mm,
868 			    unsigned long timeslice_ms)
869 {
870 	int err;
871 
872 	if (!mmget_not_zero(mm))
873 		return -EFAULT;
874 	mmap_read_lock(mm);
875 	err = dpagemap->ops->populate_mm(dpagemap, start, end, mm,
876 					 timeslice_ms);
877 	mmap_read_unlock(mm);
878 	mmput(mm);
879 
880 	return err;
881 }
882 EXPORT_SYMBOL(drm_pagemap_populate_mm);
883