xref: /linux/drivers/gpu/drm/drm_modes.c (revision dd220a00e8bd5ad7f98ecdc3eed699a7cfabdc27)
1 /*
2  * Copyright © 1997-2003 by The XFree86 Project, Inc.
3  * Copyright © 2007 Dave Airlie
4  * Copyright © 2007-2008 Intel Corporation
5  *   Jesse Barnes <jesse.barnes@intel.com>
6  * Copyright 2005-2006 Luc Verhaegen
7  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25  * OTHER DEALINGS IN THE SOFTWARE.
26  *
27  * Except as contained in this notice, the name of the copyright holder(s)
28  * and author(s) shall not be used in advertising or otherwise to promote
29  * the sale, use or other dealings in this Software without prior written
30  * authorization from the copyright holder(s) and author(s).
31  */
32 
33 #include <linux/list.h>
34 #include <linux/list_sort.h>
35 #include <linux/export.h>
36 #include "drmP.h"
37 #include "drm.h"
38 #include "drm_crtc.h"
39 
40 /**
41  * drm_mode_debug_printmodeline - debug print a mode
42  * @dev: DRM device
43  * @mode: mode to print
44  *
45  * LOCKING:
46  * None.
47  *
48  * Describe @mode using DRM_DEBUG.
49  */
50 void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
51 {
52 	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
53 			"0x%x 0x%x\n",
54 		mode->base.id, mode->name, mode->vrefresh, mode->clock,
55 		mode->hdisplay, mode->hsync_start,
56 		mode->hsync_end, mode->htotal,
57 		mode->vdisplay, mode->vsync_start,
58 		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
59 }
60 EXPORT_SYMBOL(drm_mode_debug_printmodeline);
61 
62 /**
63  * drm_cvt_mode -create a modeline based on CVT algorithm
64  * @dev: DRM device
65  * @hdisplay: hdisplay size
66  * @vdisplay: vdisplay size
67  * @vrefresh  : vrefresh rate
68  * @reduced : Whether the GTF calculation is simplified
69  * @interlaced:Whether the interlace is supported
70  *
71  * LOCKING:
72  * none.
73  *
74  * return the modeline based on CVT algorithm
75  *
76  * This function is called to generate the modeline based on CVT algorithm
77  * according to the hdisplay, vdisplay, vrefresh.
78  * It is based from the VESA(TM) Coordinated Video Timing Generator by
79  * Graham Loveridge April 9, 2003 available at
80  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
81  *
82  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
83  * What I have done is to translate it by using integer calculation.
84  */
85 #define HV_FACTOR			1000
86 struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
87 				      int vdisplay, int vrefresh,
88 				      bool reduced, bool interlaced, bool margins)
89 {
90 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
91 #define	CVT_MARGIN_PERCENTAGE		18
92 	/* 2) character cell horizontal granularity (pixels) - default 8 */
93 #define	CVT_H_GRANULARITY		8
94 	/* 3) Minimum vertical porch (lines) - default 3 */
95 #define	CVT_MIN_V_PORCH			3
96 	/* 4) Minimum number of vertical back porch lines - default 6 */
97 #define	CVT_MIN_V_BPORCH		6
98 	/* Pixel Clock step (kHz) */
99 #define CVT_CLOCK_STEP			250
100 	struct drm_display_mode *drm_mode;
101 	unsigned int vfieldrate, hperiod;
102 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
103 	int interlace;
104 
105 	/* allocate the drm_display_mode structure. If failure, we will
106 	 * return directly
107 	 */
108 	drm_mode = drm_mode_create(dev);
109 	if (!drm_mode)
110 		return NULL;
111 
112 	/* the CVT default refresh rate is 60Hz */
113 	if (!vrefresh)
114 		vrefresh = 60;
115 
116 	/* the required field fresh rate */
117 	if (interlaced)
118 		vfieldrate = vrefresh * 2;
119 	else
120 		vfieldrate = vrefresh;
121 
122 	/* horizontal pixels */
123 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
124 
125 	/* determine the left&right borders */
126 	hmargin = 0;
127 	if (margins) {
128 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
129 		hmargin -= hmargin % CVT_H_GRANULARITY;
130 	}
131 	/* find the total active pixels */
132 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
133 
134 	/* find the number of lines per field */
135 	if (interlaced)
136 		vdisplay_rnd = vdisplay / 2;
137 	else
138 		vdisplay_rnd = vdisplay;
139 
140 	/* find the top & bottom borders */
141 	vmargin = 0;
142 	if (margins)
143 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
144 
145 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
146 
147 	/* Interlaced */
148 	if (interlaced)
149 		interlace = 1;
150 	else
151 		interlace = 0;
152 
153 	/* Determine VSync Width from aspect ratio */
154 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
155 		vsync = 4;
156 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
157 		vsync = 5;
158 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
159 		vsync = 6;
160 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
161 		vsync = 7;
162 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
163 		vsync = 7;
164 	else /* custom */
165 		vsync = 10;
166 
167 	if (!reduced) {
168 		/* simplify the GTF calculation */
169 		/* 4) Minimum time of vertical sync + back porch interval (µs)
170 		 * default 550.0
171 		 */
172 		int tmp1, tmp2;
173 #define CVT_MIN_VSYNC_BP	550
174 		/* 3) Nominal HSync width (% of line period) - default 8 */
175 #define CVT_HSYNC_PERCENTAGE	8
176 		unsigned int hblank_percentage;
177 		int vsyncandback_porch, vback_porch, hblank;
178 
179 		/* estimated the horizontal period */
180 		tmp1 = HV_FACTOR * 1000000  -
181 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
182 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
183 				interlace;
184 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
185 
186 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
187 		/* 9. Find number of lines in sync + backporch */
188 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
189 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
190 		else
191 			vsyncandback_porch = tmp1;
192 		/* 10. Find number of lines in back porch */
193 		vback_porch = vsyncandback_porch - vsync;
194 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
195 				vsyncandback_porch + CVT_MIN_V_PORCH;
196 		/* 5) Definition of Horizontal blanking time limitation */
197 		/* Gradient (%/kHz) - default 600 */
198 #define CVT_M_FACTOR	600
199 		/* Offset (%) - default 40 */
200 #define CVT_C_FACTOR	40
201 		/* Blanking time scaling factor - default 128 */
202 #define CVT_K_FACTOR	128
203 		/* Scaling factor weighting - default 20 */
204 #define CVT_J_FACTOR	20
205 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
206 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
207 			 CVT_J_FACTOR)
208 		/* 12. Find ideal blanking duty cycle from formula */
209 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
210 					hperiod / 1000;
211 		/* 13. Blanking time */
212 		if (hblank_percentage < 20 * HV_FACTOR)
213 			hblank_percentage = 20 * HV_FACTOR;
214 		hblank = drm_mode->hdisplay * hblank_percentage /
215 			 (100 * HV_FACTOR - hblank_percentage);
216 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
217 		/* 14. find the total pixes per line */
218 		drm_mode->htotal = drm_mode->hdisplay + hblank;
219 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
220 		drm_mode->hsync_start = drm_mode->hsync_end -
221 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
222 		drm_mode->hsync_start += CVT_H_GRANULARITY -
223 			drm_mode->hsync_start % CVT_H_GRANULARITY;
224 		/* fill the Vsync values */
225 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
226 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
227 	} else {
228 		/* Reduced blanking */
229 		/* Minimum vertical blanking interval time (µs)- default 460 */
230 #define CVT_RB_MIN_VBLANK	460
231 		/* Fixed number of clocks for horizontal sync */
232 #define CVT_RB_H_SYNC		32
233 		/* Fixed number of clocks for horizontal blanking */
234 #define CVT_RB_H_BLANK		160
235 		/* Fixed number of lines for vertical front porch - default 3*/
236 #define CVT_RB_VFPORCH		3
237 		int vbilines;
238 		int tmp1, tmp2;
239 		/* 8. Estimate Horizontal period. */
240 		tmp1 = HV_FACTOR * 1000000 -
241 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
242 		tmp2 = vdisplay_rnd + 2 * vmargin;
243 		hperiod = tmp1 / (tmp2 * vfieldrate);
244 		/* 9. Find number of lines in vertical blanking */
245 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
246 		/* 10. Check if vertical blanking is sufficient */
247 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
248 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
249 		/* 11. Find total number of lines in vertical field */
250 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
251 		/* 12. Find total number of pixels in a line */
252 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
253 		/* Fill in HSync values */
254 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
255 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
256 		/* Fill in VSync values */
257 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
258 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
259 	}
260 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
261 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
262 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
263 	/* 18/16. Find actual vertical frame frequency */
264 	/* ignore - just set the mode flag for interlaced */
265 	if (interlaced) {
266 		drm_mode->vtotal *= 2;
267 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
268 	}
269 	/* Fill the mode line name */
270 	drm_mode_set_name(drm_mode);
271 	if (reduced)
272 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
273 					DRM_MODE_FLAG_NVSYNC);
274 	else
275 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
276 					DRM_MODE_FLAG_NHSYNC);
277 
278 	return drm_mode;
279 }
280 EXPORT_SYMBOL(drm_cvt_mode);
281 
282 /**
283  * drm_gtf_mode_complex - create the modeline based on full GTF algorithm
284  *
285  * @dev		:drm device
286  * @hdisplay	:hdisplay size
287  * @vdisplay	:vdisplay size
288  * @vrefresh	:vrefresh rate.
289  * @interlaced	:whether the interlace is supported
290  * @margins	:desired margin size
291  * @GTF_[MCKJ]  :extended GTF formula parameters
292  *
293  * LOCKING.
294  * none.
295  *
296  * return the modeline based on full GTF algorithm.
297  *
298  * GTF feature blocks specify C and J in multiples of 0.5, so we pass them
299  * in here multiplied by two.  For a C of 40, pass in 80.
300  */
301 struct drm_display_mode *
302 drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
303 		     int vrefresh, bool interlaced, int margins,
304 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
305 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
306 #define	GTF_MARGIN_PERCENTAGE		18
307 	/* 2) character cell horizontal granularity (pixels) - default 8 */
308 #define	GTF_CELL_GRAN			8
309 	/* 3) Minimum vertical porch (lines) - default 3 */
310 #define	GTF_MIN_V_PORCH			1
311 	/* width of vsync in lines */
312 #define V_SYNC_RQD			3
313 	/* width of hsync as % of total line */
314 #define H_SYNC_PERCENT			8
315 	/* min time of vsync + back porch (microsec) */
316 #define MIN_VSYNC_PLUS_BP		550
317 	/* C' and M' are part of the Blanking Duty Cycle computation */
318 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
319 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
320 	struct drm_display_mode *drm_mode;
321 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
322 	int top_margin, bottom_margin;
323 	int interlace;
324 	unsigned int hfreq_est;
325 	int vsync_plus_bp, vback_porch;
326 	unsigned int vtotal_lines, vfieldrate_est, hperiod;
327 	unsigned int vfield_rate, vframe_rate;
328 	int left_margin, right_margin;
329 	unsigned int total_active_pixels, ideal_duty_cycle;
330 	unsigned int hblank, total_pixels, pixel_freq;
331 	int hsync, hfront_porch, vodd_front_porch_lines;
332 	unsigned int tmp1, tmp2;
333 
334 	drm_mode = drm_mode_create(dev);
335 	if (!drm_mode)
336 		return NULL;
337 
338 	/* 1. In order to give correct results, the number of horizontal
339 	 * pixels requested is first processed to ensure that it is divisible
340 	 * by the character size, by rounding it to the nearest character
341 	 * cell boundary:
342 	 */
343 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
344 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
345 
346 	/* 2. If interlace is requested, the number of vertical lines assumed
347 	 * by the calculation must be halved, as the computation calculates
348 	 * the number of vertical lines per field.
349 	 */
350 	if (interlaced)
351 		vdisplay_rnd = vdisplay / 2;
352 	else
353 		vdisplay_rnd = vdisplay;
354 
355 	/* 3. Find the frame rate required: */
356 	if (interlaced)
357 		vfieldrate_rqd = vrefresh * 2;
358 	else
359 		vfieldrate_rqd = vrefresh;
360 
361 	/* 4. Find number of lines in Top margin: */
362 	top_margin = 0;
363 	if (margins)
364 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
365 				1000;
366 	/* 5. Find number of lines in bottom margin: */
367 	bottom_margin = top_margin;
368 
369 	/* 6. If interlace is required, then set variable interlace: */
370 	if (interlaced)
371 		interlace = 1;
372 	else
373 		interlace = 0;
374 
375 	/* 7. Estimate the Horizontal frequency */
376 	{
377 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
378 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
379 				2 + interlace;
380 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
381 	}
382 
383 	/* 8. Find the number of lines in V sync + back porch */
384 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
385 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
386 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
387 	/*  9. Find the number of lines in V back porch alone: */
388 	vback_porch = vsync_plus_bp - V_SYNC_RQD;
389 	/*  10. Find the total number of lines in Vertical field period: */
390 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
391 			vsync_plus_bp + GTF_MIN_V_PORCH;
392 	/*  11. Estimate the Vertical field frequency: */
393 	vfieldrate_est = hfreq_est / vtotal_lines;
394 	/*  12. Find the actual horizontal period: */
395 	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
396 
397 	/*  13. Find the actual Vertical field frequency: */
398 	vfield_rate = hfreq_est / vtotal_lines;
399 	/*  14. Find the Vertical frame frequency: */
400 	if (interlaced)
401 		vframe_rate = vfield_rate / 2;
402 	else
403 		vframe_rate = vfield_rate;
404 	/*  15. Find number of pixels in left margin: */
405 	if (margins)
406 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
407 				1000;
408 	else
409 		left_margin = 0;
410 
411 	/* 16.Find number of pixels in right margin: */
412 	right_margin = left_margin;
413 	/* 17.Find total number of active pixels in image and left and right */
414 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
415 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
416 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
417 				(GTF_M_PRIME * 1000000 / hfreq_est);
418 	/* 19.Find the number of pixels in the blanking time to the nearest
419 	 * double character cell: */
420 	hblank = total_active_pixels * ideal_duty_cycle /
421 			(100000 - ideal_duty_cycle);
422 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
423 	hblank = hblank * 2 * GTF_CELL_GRAN;
424 	/* 20.Find total number of pixels: */
425 	total_pixels = total_active_pixels + hblank;
426 	/* 21.Find pixel clock frequency: */
427 	pixel_freq = total_pixels * hfreq_est / 1000;
428 	/* Stage 1 computations are now complete; I should really pass
429 	 * the results to another function and do the Stage 2 computations,
430 	 * but I only need a few more values so I'll just append the
431 	 * computations here for now */
432 	/* 17. Find the number of pixels in the horizontal sync period: */
433 	hsync = H_SYNC_PERCENT * total_pixels / 100;
434 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
435 	hsync = hsync * GTF_CELL_GRAN;
436 	/* 18. Find the number of pixels in horizontal front porch period */
437 	hfront_porch = hblank / 2 - hsync;
438 	/*  36. Find the number of lines in the odd front porch period: */
439 	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
440 
441 	/* finally, pack the results in the mode struct */
442 	drm_mode->hdisplay = hdisplay_rnd;
443 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
444 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
445 	drm_mode->htotal = total_pixels;
446 	drm_mode->vdisplay = vdisplay_rnd;
447 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
448 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
449 	drm_mode->vtotal = vtotal_lines;
450 
451 	drm_mode->clock = pixel_freq;
452 
453 	if (interlaced) {
454 		drm_mode->vtotal *= 2;
455 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
456 	}
457 
458 	drm_mode_set_name(drm_mode);
459 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
460 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
461 	else
462 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
463 
464 	return drm_mode;
465 }
466 EXPORT_SYMBOL(drm_gtf_mode_complex);
467 
468 /**
469  * drm_gtf_mode - create the modeline based on GTF algorithm
470  *
471  * @dev		:drm device
472  * @hdisplay	:hdisplay size
473  * @vdisplay	:vdisplay size
474  * @vrefresh	:vrefresh rate.
475  * @interlaced	:whether the interlace is supported
476  * @margins	:whether the margin is supported
477  *
478  * LOCKING.
479  * none.
480  *
481  * return the modeline based on GTF algorithm
482  *
483  * This function is to create the modeline based on the GTF algorithm.
484  * Generalized Timing Formula is derived from:
485  *	GTF Spreadsheet by Andy Morrish (1/5/97)
486  *	available at http://www.vesa.org
487  *
488  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
489  * What I have done is to translate it by using integer calculation.
490  * I also refer to the function of fb_get_mode in the file of
491  * drivers/video/fbmon.c
492  *
493  * Standard GTF parameters:
494  * M = 600
495  * C = 40
496  * K = 128
497  * J = 20
498  */
499 struct drm_display_mode *
500 drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
501 	     bool lace, int margins)
502 {
503 	return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace,
504 				    margins, 600, 40 * 2, 128, 20 * 2);
505 }
506 EXPORT_SYMBOL(drm_gtf_mode);
507 
508 /**
509  * drm_mode_set_name - set the name on a mode
510  * @mode: name will be set in this mode
511  *
512  * LOCKING:
513  * None.
514  *
515  * Set the name of @mode to a standard format.
516  */
517 void drm_mode_set_name(struct drm_display_mode *mode)
518 {
519 	bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
520 
521 	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
522 		 mode->hdisplay, mode->vdisplay,
523 		 interlaced ? "i" : "");
524 }
525 EXPORT_SYMBOL(drm_mode_set_name);
526 
527 /**
528  * drm_mode_list_concat - move modes from one list to another
529  * @head: source list
530  * @new: dst list
531  *
532  * LOCKING:
533  * Caller must ensure both lists are locked.
534  *
535  * Move all the modes from @head to @new.
536  */
537 void drm_mode_list_concat(struct list_head *head, struct list_head *new)
538 {
539 
540 	struct list_head *entry, *tmp;
541 
542 	list_for_each_safe(entry, tmp, head) {
543 		list_move_tail(entry, new);
544 	}
545 }
546 EXPORT_SYMBOL(drm_mode_list_concat);
547 
548 /**
549  * drm_mode_width - get the width of a mode
550  * @mode: mode
551  *
552  * LOCKING:
553  * None.
554  *
555  * Return @mode's width (hdisplay) value.
556  *
557  * FIXME: is this needed?
558  *
559  * RETURNS:
560  * @mode->hdisplay
561  */
562 int drm_mode_width(struct drm_display_mode *mode)
563 {
564 	return mode->hdisplay;
565 
566 }
567 EXPORT_SYMBOL(drm_mode_width);
568 
569 /**
570  * drm_mode_height - get the height of a mode
571  * @mode: mode
572  *
573  * LOCKING:
574  * None.
575  *
576  * Return @mode's height (vdisplay) value.
577  *
578  * FIXME: is this needed?
579  *
580  * RETURNS:
581  * @mode->vdisplay
582  */
583 int drm_mode_height(struct drm_display_mode *mode)
584 {
585 	return mode->vdisplay;
586 }
587 EXPORT_SYMBOL(drm_mode_height);
588 
589 /** drm_mode_hsync - get the hsync of a mode
590  * @mode: mode
591  *
592  * LOCKING:
593  * None.
594  *
595  * Return @modes's hsync rate in kHz, rounded to the nearest int.
596  */
597 int drm_mode_hsync(const struct drm_display_mode *mode)
598 {
599 	unsigned int calc_val;
600 
601 	if (mode->hsync)
602 		return mode->hsync;
603 
604 	if (mode->htotal < 0)
605 		return 0;
606 
607 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
608 	calc_val += 500;				/* round to 1000Hz */
609 	calc_val /= 1000;				/* truncate to kHz */
610 
611 	return calc_val;
612 }
613 EXPORT_SYMBOL(drm_mode_hsync);
614 
615 /**
616  * drm_mode_vrefresh - get the vrefresh of a mode
617  * @mode: mode
618  *
619  * LOCKING:
620  * None.
621  *
622  * Return @mode's vrefresh rate in Hz or calculate it if necessary.
623  *
624  * FIXME: why is this needed?  shouldn't vrefresh be set already?
625  *
626  * RETURNS:
627  * Vertical refresh rate. It will be the result of actual value plus 0.5.
628  * If it is 70.288, it will return 70Hz.
629  * If it is 59.6, it will return 60Hz.
630  */
631 int drm_mode_vrefresh(const struct drm_display_mode *mode)
632 {
633 	int refresh = 0;
634 	unsigned int calc_val;
635 
636 	if (mode->vrefresh > 0)
637 		refresh = mode->vrefresh;
638 	else if (mode->htotal > 0 && mode->vtotal > 0) {
639 		int vtotal;
640 		vtotal = mode->vtotal;
641 		/* work out vrefresh the value will be x1000 */
642 		calc_val = (mode->clock * 1000);
643 		calc_val /= mode->htotal;
644 		refresh = (calc_val + vtotal / 2) / vtotal;
645 
646 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
647 			refresh *= 2;
648 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
649 			refresh /= 2;
650 		if (mode->vscan > 1)
651 			refresh /= mode->vscan;
652 	}
653 	return refresh;
654 }
655 EXPORT_SYMBOL(drm_mode_vrefresh);
656 
657 /**
658  * drm_mode_set_crtcinfo - set CRTC modesetting parameters
659  * @p: mode
660  * @adjust_flags: unused? (FIXME)
661  *
662  * LOCKING:
663  * None.
664  *
665  * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
666  */
667 void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
668 {
669 	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
670 		return;
671 
672 	p->crtc_hdisplay = p->hdisplay;
673 	p->crtc_hsync_start = p->hsync_start;
674 	p->crtc_hsync_end = p->hsync_end;
675 	p->crtc_htotal = p->htotal;
676 	p->crtc_hskew = p->hskew;
677 	p->crtc_vdisplay = p->vdisplay;
678 	p->crtc_vsync_start = p->vsync_start;
679 	p->crtc_vsync_end = p->vsync_end;
680 	p->crtc_vtotal = p->vtotal;
681 
682 	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
683 		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
684 			p->crtc_vdisplay /= 2;
685 			p->crtc_vsync_start /= 2;
686 			p->crtc_vsync_end /= 2;
687 			p->crtc_vtotal /= 2;
688 		}
689 	}
690 
691 	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
692 		p->crtc_vdisplay *= 2;
693 		p->crtc_vsync_start *= 2;
694 		p->crtc_vsync_end *= 2;
695 		p->crtc_vtotal *= 2;
696 	}
697 
698 	if (p->vscan > 1) {
699 		p->crtc_vdisplay *= p->vscan;
700 		p->crtc_vsync_start *= p->vscan;
701 		p->crtc_vsync_end *= p->vscan;
702 		p->crtc_vtotal *= p->vscan;
703 	}
704 
705 	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
706 	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
707 	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
708 	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
709 
710 	p->crtc_hadjusted = false;
711 	p->crtc_vadjusted = false;
712 }
713 EXPORT_SYMBOL(drm_mode_set_crtcinfo);
714 
715 
716 /**
717  * drm_mode_duplicate - allocate and duplicate an existing mode
718  * @m: mode to duplicate
719  *
720  * LOCKING:
721  * None.
722  *
723  * Just allocate a new mode, copy the existing mode into it, and return
724  * a pointer to it.  Used to create new instances of established modes.
725  */
726 struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
727 					    const struct drm_display_mode *mode)
728 {
729 	struct drm_display_mode *nmode;
730 	int new_id;
731 
732 	nmode = drm_mode_create(dev);
733 	if (!nmode)
734 		return NULL;
735 
736 	new_id = nmode->base.id;
737 	*nmode = *mode;
738 	nmode->base.id = new_id;
739 	INIT_LIST_HEAD(&nmode->head);
740 	return nmode;
741 }
742 EXPORT_SYMBOL(drm_mode_duplicate);
743 
744 /**
745  * drm_mode_equal - test modes for equality
746  * @mode1: first mode
747  * @mode2: second mode
748  *
749  * LOCKING:
750  * None.
751  *
752  * Check to see if @mode1 and @mode2 are equivalent.
753  *
754  * RETURNS:
755  * True if the modes are equal, false otherwise.
756  */
757 bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
758 {
759 	/* do clock check convert to PICOS so fb modes get matched
760 	 * the same */
761 	if (mode1->clock && mode2->clock) {
762 		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
763 			return false;
764 	} else if (mode1->clock != mode2->clock)
765 		return false;
766 
767 	if (mode1->hdisplay == mode2->hdisplay &&
768 	    mode1->hsync_start == mode2->hsync_start &&
769 	    mode1->hsync_end == mode2->hsync_end &&
770 	    mode1->htotal == mode2->htotal &&
771 	    mode1->hskew == mode2->hskew &&
772 	    mode1->vdisplay == mode2->vdisplay &&
773 	    mode1->vsync_start == mode2->vsync_start &&
774 	    mode1->vsync_end == mode2->vsync_end &&
775 	    mode1->vtotal == mode2->vtotal &&
776 	    mode1->vscan == mode2->vscan &&
777 	    mode1->flags == mode2->flags)
778 		return true;
779 
780 	return false;
781 }
782 EXPORT_SYMBOL(drm_mode_equal);
783 
784 /**
785  * drm_mode_validate_size - make sure modes adhere to size constraints
786  * @dev: DRM device
787  * @mode_list: list of modes to check
788  * @maxX: maximum width
789  * @maxY: maximum height
790  * @maxPitch: max pitch
791  *
792  * LOCKING:
793  * Caller must hold a lock protecting @mode_list.
794  *
795  * The DRM device (@dev) has size and pitch limits.  Here we validate the
796  * modes we probed for @dev against those limits and set their status as
797  * necessary.
798  */
799 void drm_mode_validate_size(struct drm_device *dev,
800 			    struct list_head *mode_list,
801 			    int maxX, int maxY, int maxPitch)
802 {
803 	struct drm_display_mode *mode;
804 
805 	list_for_each_entry(mode, mode_list, head) {
806 		if (maxPitch > 0 && mode->hdisplay > maxPitch)
807 			mode->status = MODE_BAD_WIDTH;
808 
809 		if (maxX > 0 && mode->hdisplay > maxX)
810 			mode->status = MODE_VIRTUAL_X;
811 
812 		if (maxY > 0 && mode->vdisplay > maxY)
813 			mode->status = MODE_VIRTUAL_Y;
814 	}
815 }
816 EXPORT_SYMBOL(drm_mode_validate_size);
817 
818 /**
819  * drm_mode_validate_clocks - validate modes against clock limits
820  * @dev: DRM device
821  * @mode_list: list of modes to check
822  * @min: minimum clock rate array
823  * @max: maximum clock rate array
824  * @n_ranges: number of clock ranges (size of arrays)
825  *
826  * LOCKING:
827  * Caller must hold a lock protecting @mode_list.
828  *
829  * Some code may need to check a mode list against the clock limits of the
830  * device in question.  This function walks the mode list, testing to make
831  * sure each mode falls within a given range (defined by @min and @max
832  * arrays) and sets @mode->status as needed.
833  */
834 void drm_mode_validate_clocks(struct drm_device *dev,
835 			      struct list_head *mode_list,
836 			      int *min, int *max, int n_ranges)
837 {
838 	struct drm_display_mode *mode;
839 	int i;
840 
841 	list_for_each_entry(mode, mode_list, head) {
842 		bool good = false;
843 		for (i = 0; i < n_ranges; i++) {
844 			if (mode->clock >= min[i] && mode->clock <= max[i]) {
845 				good = true;
846 				break;
847 			}
848 		}
849 		if (!good)
850 			mode->status = MODE_CLOCK_RANGE;
851 	}
852 }
853 EXPORT_SYMBOL(drm_mode_validate_clocks);
854 
855 /**
856  * drm_mode_prune_invalid - remove invalid modes from mode list
857  * @dev: DRM device
858  * @mode_list: list of modes to check
859  * @verbose: be verbose about it
860  *
861  * LOCKING:
862  * Caller must hold a lock protecting @mode_list.
863  *
864  * Once mode list generation is complete, a caller can use this routine to
865  * remove invalid modes from a mode list.  If any of the modes have a
866  * status other than %MODE_OK, they are removed from @mode_list and freed.
867  */
868 void drm_mode_prune_invalid(struct drm_device *dev,
869 			    struct list_head *mode_list, bool verbose)
870 {
871 	struct drm_display_mode *mode, *t;
872 
873 	list_for_each_entry_safe(mode, t, mode_list, head) {
874 		if (mode->status != MODE_OK) {
875 			list_del(&mode->head);
876 			if (verbose) {
877 				drm_mode_debug_printmodeline(mode);
878 				DRM_DEBUG_KMS("Not using %s mode %d\n",
879 					mode->name, mode->status);
880 			}
881 			drm_mode_destroy(dev, mode);
882 		}
883 	}
884 }
885 EXPORT_SYMBOL(drm_mode_prune_invalid);
886 
887 /**
888  * drm_mode_compare - compare modes for favorability
889  * @priv: unused
890  * @lh_a: list_head for first mode
891  * @lh_b: list_head for second mode
892  *
893  * LOCKING:
894  * None.
895  *
896  * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
897  * which is better.
898  *
899  * RETURNS:
900  * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
901  * positive if @lh_b is better than @lh_a.
902  */
903 static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
904 {
905 	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
906 	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
907 	int diff;
908 
909 	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
910 		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
911 	if (diff)
912 		return diff;
913 	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
914 	if (diff)
915 		return diff;
916 	diff = b->clock - a->clock;
917 	return diff;
918 }
919 
920 /**
921  * drm_mode_sort - sort mode list
922  * @mode_list: list to sort
923  *
924  * LOCKING:
925  * Caller must hold a lock protecting @mode_list.
926  *
927  * Sort @mode_list by favorability, putting good modes first.
928  */
929 void drm_mode_sort(struct list_head *mode_list)
930 {
931 	list_sort(NULL, mode_list, drm_mode_compare);
932 }
933 EXPORT_SYMBOL(drm_mode_sort);
934 
935 /**
936  * drm_mode_connector_list_update - update the mode list for the connector
937  * @connector: the connector to update
938  *
939  * LOCKING:
940  * Caller must hold a lock protecting @mode_list.
941  *
942  * This moves the modes from the @connector probed_modes list
943  * to the actual mode list. It compares the probed mode against the current
944  * list and only adds different modes. All modes unverified after this point
945  * will be removed by the prune invalid modes.
946  */
947 void drm_mode_connector_list_update(struct drm_connector *connector)
948 {
949 	struct drm_display_mode *mode;
950 	struct drm_display_mode *pmode, *pt;
951 	int found_it;
952 
953 	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
954 				 head) {
955 		found_it = 0;
956 		/* go through current modes checking for the new probed mode */
957 		list_for_each_entry(mode, &connector->modes, head) {
958 			if (drm_mode_equal(pmode, mode)) {
959 				found_it = 1;
960 				/* if equal delete the probed mode */
961 				mode->status = pmode->status;
962 				/* Merge type bits together */
963 				mode->type |= pmode->type;
964 				list_del(&pmode->head);
965 				drm_mode_destroy(connector->dev, pmode);
966 				break;
967 			}
968 		}
969 
970 		if (!found_it) {
971 			list_move_tail(&pmode->head, &connector->modes);
972 		}
973 	}
974 }
975 EXPORT_SYMBOL(drm_mode_connector_list_update);
976 
977 /**
978  * drm_mode_parse_command_line_for_connector - parse command line for connector
979  * @mode_option - per connector mode option
980  * @connector - connector to parse line for
981  *
982  * This parses the connector specific then generic command lines for
983  * modes and options to configure the connector.
984  *
985  * This uses the same parameters as the fb modedb.c, except for extra
986  *	<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
987  *
988  * enable/enable Digital/disable bit at the end
989  */
990 bool drm_mode_parse_command_line_for_connector(const char *mode_option,
991 					       struct drm_connector *connector,
992 					       struct drm_cmdline_mode *mode)
993 {
994 	const char *name;
995 	unsigned int namelen;
996 	bool res_specified = false, bpp_specified = false, refresh_specified = false;
997 	unsigned int xres = 0, yres = 0, bpp = 32, refresh = 0;
998 	bool yres_specified = false, cvt = false, rb = false;
999 	bool interlace = false, margins = false, was_digit = false;
1000 	int i;
1001 	enum drm_connector_force force = DRM_FORCE_UNSPECIFIED;
1002 
1003 #ifdef CONFIG_FB
1004 	if (!mode_option)
1005 		mode_option = fb_mode_option;
1006 #endif
1007 
1008 	if (!mode_option) {
1009 		mode->specified = false;
1010 		return false;
1011 	}
1012 
1013 	name = mode_option;
1014 	namelen = strlen(name);
1015 	for (i = namelen-1; i >= 0; i--) {
1016 		switch (name[i]) {
1017 		case '@':
1018 			if (!refresh_specified && !bpp_specified &&
1019 			    !yres_specified && !cvt && !rb && was_digit) {
1020 				refresh = simple_strtol(&name[i+1], NULL, 10);
1021 				refresh_specified = true;
1022 				was_digit = false;
1023 			} else
1024 				goto done;
1025 			break;
1026 		case '-':
1027 			if (!bpp_specified && !yres_specified && !cvt &&
1028 			    !rb && was_digit) {
1029 				bpp = simple_strtol(&name[i+1], NULL, 10);
1030 				bpp_specified = true;
1031 				was_digit = false;
1032 			} else
1033 				goto done;
1034 			break;
1035 		case 'x':
1036 			if (!yres_specified && was_digit) {
1037 				yres = simple_strtol(&name[i+1], NULL, 10);
1038 				yres_specified = true;
1039 				was_digit = false;
1040 			} else
1041 				goto done;
1042 		case '0' ... '9':
1043 			was_digit = true;
1044 			break;
1045 		case 'M':
1046 			if (yres_specified || cvt || was_digit)
1047 				goto done;
1048 			cvt = true;
1049 			break;
1050 		case 'R':
1051 			if (yres_specified || cvt || rb || was_digit)
1052 				goto done;
1053 			rb = true;
1054 			break;
1055 		case 'm':
1056 			if (cvt || yres_specified || was_digit)
1057 				goto done;
1058 			margins = true;
1059 			break;
1060 		case 'i':
1061 			if (cvt || yres_specified || was_digit)
1062 				goto done;
1063 			interlace = true;
1064 			break;
1065 		case 'e':
1066 			if (yres_specified || bpp_specified || refresh_specified ||
1067 			    was_digit || (force != DRM_FORCE_UNSPECIFIED))
1068 				goto done;
1069 
1070 			force = DRM_FORCE_ON;
1071 			break;
1072 		case 'D':
1073 			if (yres_specified || bpp_specified || refresh_specified ||
1074 			    was_digit || (force != DRM_FORCE_UNSPECIFIED))
1075 				goto done;
1076 
1077 			if ((connector->connector_type != DRM_MODE_CONNECTOR_DVII) &&
1078 			    (connector->connector_type != DRM_MODE_CONNECTOR_HDMIB))
1079 				force = DRM_FORCE_ON;
1080 			else
1081 				force = DRM_FORCE_ON_DIGITAL;
1082 			break;
1083 		case 'd':
1084 			if (yres_specified || bpp_specified || refresh_specified ||
1085 			    was_digit || (force != DRM_FORCE_UNSPECIFIED))
1086 				goto done;
1087 
1088 			force = DRM_FORCE_OFF;
1089 			break;
1090 		default:
1091 			goto done;
1092 		}
1093 	}
1094 
1095 	if (i < 0 && yres_specified) {
1096 		char *ch;
1097 		xres = simple_strtol(name, &ch, 10);
1098 		if ((ch != NULL) && (*ch == 'x'))
1099 			res_specified = true;
1100 		else
1101 			i = ch - name;
1102 	} else if (!yres_specified && was_digit) {
1103 		/* catch mode that begins with digits but has no 'x' */
1104 		i = 0;
1105 	}
1106 done:
1107 	if (i >= 0) {
1108 		printk(KERN_WARNING
1109 			"parse error at position %i in video mode '%s'\n",
1110 			i, name);
1111 		mode->specified = false;
1112 		return false;
1113 	}
1114 
1115 	if (res_specified) {
1116 		mode->specified = true;
1117 		mode->xres = xres;
1118 		mode->yres = yres;
1119 	}
1120 
1121 	if (refresh_specified) {
1122 		mode->refresh_specified = true;
1123 		mode->refresh = refresh;
1124 	}
1125 
1126 	if (bpp_specified) {
1127 		mode->bpp_specified = true;
1128 		mode->bpp = bpp;
1129 	}
1130 	mode->rb = rb;
1131 	mode->cvt = cvt;
1132 	mode->interlace = interlace;
1133 	mode->margins = margins;
1134 	mode->force = force;
1135 
1136 	return true;
1137 }
1138 EXPORT_SYMBOL(drm_mode_parse_command_line_for_connector);
1139 
1140 struct drm_display_mode *
1141 drm_mode_create_from_cmdline_mode(struct drm_device *dev,
1142 				  struct drm_cmdline_mode *cmd)
1143 {
1144 	struct drm_display_mode *mode;
1145 
1146 	if (cmd->cvt)
1147 		mode = drm_cvt_mode(dev,
1148 				    cmd->xres, cmd->yres,
1149 				    cmd->refresh_specified ? cmd->refresh : 60,
1150 				    cmd->rb, cmd->interlace,
1151 				    cmd->margins);
1152 	else
1153 		mode = drm_gtf_mode(dev,
1154 				    cmd->xres, cmd->yres,
1155 				    cmd->refresh_specified ? cmd->refresh : 60,
1156 				    cmd->interlace,
1157 				    cmd->margins);
1158 	if (!mode)
1159 		return NULL;
1160 
1161 	drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V);
1162 	return mode;
1163 }
1164 EXPORT_SYMBOL(drm_mode_create_from_cmdline_mode);
1165