1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <linux/export.h> 46 #include <linux/interval_tree_generic.h> 47 #include <linux/seq_file.h> 48 #include <linux/slab.h> 49 #include <linux/stacktrace.h> 50 51 #include <drm/drm_mm.h> 52 #include <drm/drm_print.h> 53 54 /** 55 * DOC: Overview 56 * 57 * drm_mm provides a simple range allocator. The drivers are free to use the 58 * resource allocator from the linux core if it suits them, the upside of drm_mm 59 * is that it's in the DRM core. Which means that it's easier to extend for 60 * some of the crazier special purpose needs of gpus. 61 * 62 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 63 * Drivers are free to embed either of them into their own suitable 64 * datastructures. drm_mm itself will not do any memory allocations of its own, 65 * so if drivers choose not to embed nodes they need to still allocate them 66 * themselves. 67 * 68 * The range allocator also supports reservation of preallocated blocks. This is 69 * useful for taking over initial mode setting configurations from the firmware, 70 * where an object needs to be created which exactly matches the firmware's 71 * scanout target. As long as the range is still free it can be inserted anytime 72 * after the allocator is initialized, which helps with avoiding looped 73 * dependencies in the driver load sequence. 74 * 75 * drm_mm maintains a stack of most recently freed holes, which of all 76 * simplistic datastructures seems to be a fairly decent approach to clustering 77 * allocations and avoiding too much fragmentation. This means free space 78 * searches are O(num_holes). Given that all the fancy features drm_mm supports 79 * something better would be fairly complex and since gfx thrashing is a fairly 80 * steep cliff not a real concern. Removing a node again is O(1). 81 * 82 * drm_mm supports a few features: Alignment and range restrictions can be 83 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 84 * opaque unsigned long) which in conjunction with a driver callback can be used 85 * to implement sophisticated placement restrictions. The i915 DRM driver uses 86 * this to implement guard pages between incompatible caching domains in the 87 * graphics TT. 88 * 89 * Two behaviors are supported for searching and allocating: bottom-up and 90 * top-down. The default is bottom-up. Top-down allocation can be used if the 91 * memory area has different restrictions, or just to reduce fragmentation. 92 * 93 * Finally iteration helpers to walk all nodes and all holes are provided as are 94 * some basic allocator dumpers for debugging. 95 * 96 * Note that this range allocator is not thread-safe, drivers need to protect 97 * modifications with their own locking. The idea behind this is that for a full 98 * memory manager additional data needs to be protected anyway, hence internal 99 * locking would be fully redundant. 100 */ 101 102 #ifdef CONFIG_DRM_DEBUG_MM 103 #include <linux/stackdepot.h> 104 105 #define STACKDEPTH 32 106 #define BUFSZ 4096 107 108 static noinline void save_stack(struct drm_mm_node *node) 109 { 110 unsigned long entries[STACKDEPTH]; 111 unsigned int n; 112 113 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 114 115 /* May be called under spinlock, so avoid sleeping */ 116 node->stack = stack_depot_save(entries, n, GFP_NOWAIT); 117 } 118 119 static void show_leaks(struct drm_mm *mm) 120 { 121 struct drm_mm_node *node; 122 char *buf; 123 124 buf = kmalloc(BUFSZ, GFP_KERNEL); 125 if (!buf) 126 return; 127 128 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 129 if (!node->stack) { 130 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 131 node->start, node->size); 132 continue; 133 } 134 135 stack_depot_snprint(node->stack, buf, BUFSZ, 0); 136 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 137 node->start, node->size, buf); 138 } 139 140 kfree(buf); 141 } 142 143 #undef STACKDEPTH 144 #undef BUFSZ 145 #else 146 static void save_stack(struct drm_mm_node *node) { } 147 static void show_leaks(struct drm_mm *mm) { } 148 #endif 149 150 #define START(node) ((node)->start) 151 #define LAST(node) ((node)->start + (node)->size - 1) 152 153 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 154 u64, __subtree_last, 155 START, LAST, static inline __maybe_unused, drm_mm_interval_tree) 156 157 struct drm_mm_node * 158 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 159 { 160 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 161 start, last) ?: (struct drm_mm_node *)&mm->head_node; 162 } 163 EXPORT_SYMBOL(__drm_mm_interval_first); 164 165 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 166 struct drm_mm_node *node) 167 { 168 struct drm_mm *mm = hole_node->mm; 169 struct rb_node **link, *rb; 170 struct drm_mm_node *parent; 171 bool leftmost; 172 173 node->__subtree_last = LAST(node); 174 175 if (drm_mm_node_allocated(hole_node)) { 176 rb = &hole_node->rb; 177 while (rb) { 178 parent = rb_entry(rb, struct drm_mm_node, rb); 179 if (parent->__subtree_last >= node->__subtree_last) 180 break; 181 182 parent->__subtree_last = node->__subtree_last; 183 rb = rb_parent(rb); 184 } 185 186 rb = &hole_node->rb; 187 link = &hole_node->rb.rb_right; 188 leftmost = false; 189 } else { 190 rb = NULL; 191 link = &mm->interval_tree.rb_root.rb_node; 192 leftmost = true; 193 } 194 195 while (*link) { 196 rb = *link; 197 parent = rb_entry(rb, struct drm_mm_node, rb); 198 if (parent->__subtree_last < node->__subtree_last) 199 parent->__subtree_last = node->__subtree_last; 200 if (node->start < parent->start) { 201 link = &parent->rb.rb_left; 202 } else { 203 link = &parent->rb.rb_right; 204 leftmost = false; 205 } 206 } 207 208 rb_link_node(&node->rb, rb, link); 209 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 210 &drm_mm_interval_tree_augment); 211 } 212 213 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 214 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 215 216 static u64 rb_to_hole_size(struct rb_node *rb) 217 { 218 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 219 } 220 221 static void insert_hole_size(struct rb_root_cached *root, 222 struct drm_mm_node *node) 223 { 224 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 225 u64 x = node->hole_size; 226 bool first = true; 227 228 while (*link) { 229 rb = *link; 230 if (x > rb_to_hole_size(rb)) { 231 link = &rb->rb_left; 232 } else { 233 link = &rb->rb_right; 234 first = false; 235 } 236 } 237 238 rb_link_node(&node->rb_hole_size, rb, link); 239 rb_insert_color_cached(&node->rb_hole_size, root, first); 240 } 241 242 RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks, 243 struct drm_mm_node, rb_hole_addr, 244 u64, subtree_max_hole, HOLE_SIZE) 245 246 static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node) 247 { 248 struct rb_node **link = &root->rb_node, *rb_parent = NULL; 249 u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole; 250 struct drm_mm_node *parent; 251 252 while (*link) { 253 rb_parent = *link; 254 parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr); 255 if (parent->subtree_max_hole < subtree_max_hole) 256 parent->subtree_max_hole = subtree_max_hole; 257 if (start < HOLE_ADDR(parent)) 258 link = &parent->rb_hole_addr.rb_left; 259 else 260 link = &parent->rb_hole_addr.rb_right; 261 } 262 263 rb_link_node(&node->rb_hole_addr, rb_parent, link); 264 rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks); 265 } 266 267 static void add_hole(struct drm_mm_node *node) 268 { 269 struct drm_mm *mm = node->mm; 270 271 node->hole_size = 272 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 273 node->subtree_max_hole = node->hole_size; 274 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 275 276 insert_hole_size(&mm->holes_size, node); 277 insert_hole_addr(&mm->holes_addr, node); 278 279 list_add(&node->hole_stack, &mm->hole_stack); 280 } 281 282 static void rm_hole(struct drm_mm_node *node) 283 { 284 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 285 286 list_del(&node->hole_stack); 287 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 288 rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr, 289 &augment_callbacks); 290 node->hole_size = 0; 291 node->subtree_max_hole = 0; 292 293 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 294 } 295 296 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 297 { 298 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 299 } 300 301 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 302 { 303 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 304 } 305 306 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 307 { 308 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 309 struct drm_mm_node *best = NULL; 310 311 do { 312 struct drm_mm_node *node = 313 rb_entry(rb, struct drm_mm_node, rb_hole_size); 314 315 if (size <= node->hole_size) { 316 best = node; 317 rb = rb->rb_right; 318 } else { 319 rb = rb->rb_left; 320 } 321 } while (rb); 322 323 return best; 324 } 325 326 static bool usable_hole_addr(struct rb_node *rb, u64 size) 327 { 328 return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size; 329 } 330 331 static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size) 332 { 333 struct rb_node *rb = mm->holes_addr.rb_node; 334 struct drm_mm_node *node = NULL; 335 336 while (rb) { 337 u64 hole_start; 338 339 if (!usable_hole_addr(rb, size)) 340 break; 341 342 node = rb_hole_addr_to_node(rb); 343 hole_start = __drm_mm_hole_node_start(node); 344 345 if (addr < hole_start) 346 rb = node->rb_hole_addr.rb_left; 347 else if (addr > hole_start + node->hole_size) 348 rb = node->rb_hole_addr.rb_right; 349 else 350 break; 351 } 352 353 return node; 354 } 355 356 static struct drm_mm_node * 357 first_hole(struct drm_mm *mm, 358 u64 start, u64 end, u64 size, 359 enum drm_mm_insert_mode mode) 360 { 361 switch (mode) { 362 default: 363 case DRM_MM_INSERT_BEST: 364 return best_hole(mm, size); 365 366 case DRM_MM_INSERT_LOW: 367 return find_hole_addr(mm, start, size); 368 369 case DRM_MM_INSERT_HIGH: 370 return find_hole_addr(mm, end, size); 371 372 case DRM_MM_INSERT_EVICT: 373 return list_first_entry_or_null(&mm->hole_stack, 374 struct drm_mm_node, 375 hole_stack); 376 } 377 } 378 379 /** 380 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions 381 * @name: name of function to declare 382 * @first: first rb member to traverse (either rb_left or rb_right). 383 * @last: last rb member to traverse (either rb_right or rb_left). 384 * 385 * This macro declares a function to return the next hole of the addr rb tree. 386 * While traversing the tree we take the searched size into account and only 387 * visit branches with potential big enough holes. 388 */ 389 390 #define DECLARE_NEXT_HOLE_ADDR(name, first, last) \ 391 static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size) \ 392 { \ 393 struct rb_node *parent, *node = &entry->rb_hole_addr; \ 394 \ 395 if (!entry || RB_EMPTY_NODE(node)) \ 396 return NULL; \ 397 \ 398 if (usable_hole_addr(node->first, size)) { \ 399 node = node->first; \ 400 while (usable_hole_addr(node->last, size)) \ 401 node = node->last; \ 402 return rb_hole_addr_to_node(node); \ 403 } \ 404 \ 405 while ((parent = rb_parent(node)) && node == parent->first) \ 406 node = parent; \ 407 \ 408 return rb_hole_addr_to_node(parent); \ 409 } 410 411 DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right) 412 DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left) 413 414 static struct drm_mm_node * 415 next_hole(struct drm_mm *mm, 416 struct drm_mm_node *node, 417 u64 size, 418 enum drm_mm_insert_mode mode) 419 { 420 switch (mode) { 421 default: 422 case DRM_MM_INSERT_BEST: 423 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 424 425 case DRM_MM_INSERT_LOW: 426 return next_hole_low_addr(node, size); 427 428 case DRM_MM_INSERT_HIGH: 429 return next_hole_high_addr(node, size); 430 431 case DRM_MM_INSERT_EVICT: 432 node = list_next_entry(node, hole_stack); 433 return &node->hole_stack == &mm->hole_stack ? NULL : node; 434 } 435 } 436 437 /** 438 * drm_mm_reserve_node - insert an pre-initialized node 439 * @mm: drm_mm allocator to insert @node into 440 * @node: drm_mm_node to insert 441 * 442 * This functions inserts an already set-up &drm_mm_node into the allocator, 443 * meaning that start, size and color must be set by the caller. All other 444 * fields must be cleared to 0. This is useful to initialize the allocator with 445 * preallocated objects which must be set-up before the range allocator can be 446 * set-up, e.g. when taking over a firmware framebuffer. 447 * 448 * Returns: 449 * 0 on success, -ENOSPC if there's no hole where @node is. 450 */ 451 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 452 { 453 struct drm_mm_node *hole; 454 u64 hole_start, hole_end; 455 u64 adj_start, adj_end; 456 u64 end; 457 458 end = node->start + node->size; 459 if (unlikely(end <= node->start)) 460 return -ENOSPC; 461 462 /* Find the relevant hole to add our node to */ 463 hole = find_hole_addr(mm, node->start, 0); 464 if (!hole) 465 return -ENOSPC; 466 467 adj_start = hole_start = __drm_mm_hole_node_start(hole); 468 adj_end = hole_end = hole_start + hole->hole_size; 469 470 if (mm->color_adjust) 471 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 472 473 if (adj_start > node->start || adj_end < end) 474 return -ENOSPC; 475 476 node->mm = mm; 477 478 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 479 list_add(&node->node_list, &hole->node_list); 480 drm_mm_interval_tree_add_node(hole, node); 481 node->hole_size = 0; 482 483 rm_hole(hole); 484 if (node->start > hole_start) 485 add_hole(hole); 486 if (end < hole_end) 487 add_hole(node); 488 489 save_stack(node); 490 return 0; 491 } 492 EXPORT_SYMBOL(drm_mm_reserve_node); 493 494 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 495 { 496 return rb ? rb_to_hole_size(rb) : 0; 497 } 498 499 /** 500 * drm_mm_insert_node_in_range - ranged search for space and insert @node 501 * @mm: drm_mm to allocate from 502 * @node: preallocate node to insert 503 * @size: size of the allocation 504 * @alignment: alignment of the allocation 505 * @color: opaque tag value to use for this node 506 * @range_start: start of the allowed range for this node 507 * @range_end: end of the allowed range for this node 508 * @mode: fine-tune the allocation search and placement 509 * 510 * The preallocated @node must be cleared to 0. 511 * 512 * Returns: 513 * 0 on success, -ENOSPC if there's no suitable hole. 514 */ 515 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 516 struct drm_mm_node * const node, 517 u64 size, u64 alignment, 518 unsigned long color, 519 u64 range_start, u64 range_end, 520 enum drm_mm_insert_mode mode) 521 { 522 struct drm_mm_node *hole; 523 u64 remainder_mask; 524 bool once; 525 526 DRM_MM_BUG_ON(range_start > range_end); 527 528 if (unlikely(size == 0 || range_end - range_start < size)) 529 return -ENOSPC; 530 531 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 532 return -ENOSPC; 533 534 if (alignment <= 1) 535 alignment = 0; 536 537 once = mode & DRM_MM_INSERT_ONCE; 538 mode &= ~DRM_MM_INSERT_ONCE; 539 540 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 541 for (hole = first_hole(mm, range_start, range_end, size, mode); 542 hole; 543 hole = once ? NULL : next_hole(mm, hole, size, mode)) { 544 u64 hole_start = __drm_mm_hole_node_start(hole); 545 u64 hole_end = hole_start + hole->hole_size; 546 u64 adj_start, adj_end; 547 u64 col_start, col_end; 548 549 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 550 break; 551 552 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 553 break; 554 555 col_start = hole_start; 556 col_end = hole_end; 557 if (mm->color_adjust) 558 mm->color_adjust(hole, color, &col_start, &col_end); 559 560 adj_start = max(col_start, range_start); 561 adj_end = min(col_end, range_end); 562 563 if (adj_end <= adj_start || adj_end - adj_start < size) 564 continue; 565 566 if (mode == DRM_MM_INSERT_HIGH) 567 adj_start = adj_end - size; 568 569 if (alignment) { 570 u64 rem; 571 572 if (likely(remainder_mask)) 573 rem = adj_start & remainder_mask; 574 else 575 div64_u64_rem(adj_start, alignment, &rem); 576 if (rem) { 577 adj_start -= rem; 578 if (mode != DRM_MM_INSERT_HIGH) 579 adj_start += alignment; 580 581 if (adj_start < max(col_start, range_start) || 582 min(col_end, range_end) - adj_start < size) 583 continue; 584 585 if (adj_end <= adj_start || 586 adj_end - adj_start < size) 587 continue; 588 } 589 } 590 591 node->mm = mm; 592 node->size = size; 593 node->start = adj_start; 594 node->color = color; 595 node->hole_size = 0; 596 597 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 598 list_add(&node->node_list, &hole->node_list); 599 drm_mm_interval_tree_add_node(hole, node); 600 601 rm_hole(hole); 602 if (adj_start > hole_start) 603 add_hole(hole); 604 if (adj_start + size < hole_end) 605 add_hole(node); 606 607 save_stack(node); 608 return 0; 609 } 610 611 return -ENOSPC; 612 } 613 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 614 615 static inline __maybe_unused bool drm_mm_node_scanned_block(const struct drm_mm_node *node) 616 { 617 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 618 } 619 620 /** 621 * drm_mm_remove_node - Remove a memory node from the allocator. 622 * @node: drm_mm_node to remove 623 * 624 * This just removes a node from its drm_mm allocator. The node does not need to 625 * be cleared again before it can be re-inserted into this or any other drm_mm 626 * allocator. It is a bug to call this function on a unallocated node. 627 */ 628 void drm_mm_remove_node(struct drm_mm_node *node) 629 { 630 struct drm_mm *mm = node->mm; 631 struct drm_mm_node *prev_node; 632 633 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 634 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 635 636 prev_node = list_prev_entry(node, node_list); 637 638 if (drm_mm_hole_follows(node)) 639 rm_hole(node); 640 641 drm_mm_interval_tree_remove(node, &mm->interval_tree); 642 list_del(&node->node_list); 643 644 if (drm_mm_hole_follows(prev_node)) 645 rm_hole(prev_node); 646 add_hole(prev_node); 647 648 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 649 } 650 EXPORT_SYMBOL(drm_mm_remove_node); 651 652 /** 653 * DOC: lru scan roster 654 * 655 * Very often GPUs need to have continuous allocations for a given object. When 656 * evicting objects to make space for a new one it is therefore not most 657 * efficient when we simply start to select all objects from the tail of an LRU 658 * until there's a suitable hole: Especially for big objects or nodes that 659 * otherwise have special allocation constraints there's a good chance we evict 660 * lots of (smaller) objects unnecessarily. 661 * 662 * The DRM range allocator supports this use-case through the scanning 663 * interfaces. First a scan operation needs to be initialized with 664 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 665 * objects to the roster, probably by walking an LRU list, but this can be 666 * freely implemented. Eviction candidates are added using 667 * drm_mm_scan_add_block() until a suitable hole is found or there are no 668 * further evictable objects. Eviction roster metadata is tracked in &struct 669 * drm_mm_scan. 670 * 671 * The driver must walk through all objects again in exactly the reverse 672 * order to restore the allocator state. Note that while the allocator is used 673 * in the scan mode no other operation is allowed. 674 * 675 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 676 * reported true) in the scan, and any overlapping nodes after color adjustment 677 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 678 * since freeing a node is also O(1) the overall complexity is 679 * O(scanned_objects). So like the free stack which needs to be walked before a 680 * scan operation even begins this is linear in the number of objects. It 681 * doesn't seem to hurt too badly. 682 */ 683 684 /** 685 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 686 * @scan: scan state 687 * @mm: drm_mm to scan 688 * @size: size of the allocation 689 * @alignment: alignment of the allocation 690 * @color: opaque tag value to use for the allocation 691 * @start: start of the allowed range for the allocation 692 * @end: end of the allowed range for the allocation 693 * @mode: fine-tune the allocation search and placement 694 * 695 * This simply sets up the scanning routines with the parameters for the desired 696 * hole. 697 * 698 * Warning: 699 * As long as the scan list is non-empty, no other operations than 700 * adding/removing nodes to/from the scan list are allowed. 701 */ 702 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 703 struct drm_mm *mm, 704 u64 size, 705 u64 alignment, 706 unsigned long color, 707 u64 start, 708 u64 end, 709 enum drm_mm_insert_mode mode) 710 { 711 DRM_MM_BUG_ON(start >= end); 712 DRM_MM_BUG_ON(!size || size > end - start); 713 DRM_MM_BUG_ON(mm->scan_active); 714 715 scan->mm = mm; 716 717 if (alignment <= 1) 718 alignment = 0; 719 720 scan->color = color; 721 scan->alignment = alignment; 722 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 723 scan->size = size; 724 scan->mode = mode; 725 726 DRM_MM_BUG_ON(end <= start); 727 scan->range_start = start; 728 scan->range_end = end; 729 730 scan->hit_start = U64_MAX; 731 scan->hit_end = 0; 732 } 733 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 734 735 /** 736 * drm_mm_scan_add_block - add a node to the scan list 737 * @scan: the active drm_mm scanner 738 * @node: drm_mm_node to add 739 * 740 * Add a node to the scan list that might be freed to make space for the desired 741 * hole. 742 * 743 * Returns: 744 * True if a hole has been found, false otherwise. 745 */ 746 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 747 struct drm_mm_node *node) 748 { 749 struct drm_mm *mm = scan->mm; 750 struct drm_mm_node *hole; 751 u64 hole_start, hole_end; 752 u64 col_start, col_end; 753 u64 adj_start, adj_end; 754 755 DRM_MM_BUG_ON(node->mm != mm); 756 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 757 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 758 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 759 mm->scan_active++; 760 761 /* Remove this block from the node_list so that we enlarge the hole 762 * (distance between the end of our previous node and the start of 763 * or next), without poisoning the link so that we can restore it 764 * later in drm_mm_scan_remove_block(). 765 */ 766 hole = list_prev_entry(node, node_list); 767 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 768 __list_del_entry(&node->node_list); 769 770 hole_start = __drm_mm_hole_node_start(hole); 771 hole_end = __drm_mm_hole_node_end(hole); 772 773 col_start = hole_start; 774 col_end = hole_end; 775 if (mm->color_adjust) 776 mm->color_adjust(hole, scan->color, &col_start, &col_end); 777 778 adj_start = max(col_start, scan->range_start); 779 adj_end = min(col_end, scan->range_end); 780 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 781 return false; 782 783 if (scan->mode == DRM_MM_INSERT_HIGH) 784 adj_start = adj_end - scan->size; 785 786 if (scan->alignment) { 787 u64 rem; 788 789 if (likely(scan->remainder_mask)) 790 rem = adj_start & scan->remainder_mask; 791 else 792 div64_u64_rem(adj_start, scan->alignment, &rem); 793 if (rem) { 794 adj_start -= rem; 795 if (scan->mode != DRM_MM_INSERT_HIGH) 796 adj_start += scan->alignment; 797 if (adj_start < max(col_start, scan->range_start) || 798 min(col_end, scan->range_end) - adj_start < scan->size) 799 return false; 800 801 if (adj_end <= adj_start || 802 adj_end - adj_start < scan->size) 803 return false; 804 } 805 } 806 807 scan->hit_start = adj_start; 808 scan->hit_end = adj_start + scan->size; 809 810 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 811 DRM_MM_BUG_ON(scan->hit_start < hole_start); 812 DRM_MM_BUG_ON(scan->hit_end > hole_end); 813 814 return true; 815 } 816 EXPORT_SYMBOL(drm_mm_scan_add_block); 817 818 /** 819 * drm_mm_scan_remove_block - remove a node from the scan list 820 * @scan: the active drm_mm scanner 821 * @node: drm_mm_node to remove 822 * 823 * Nodes **must** be removed in exactly the reverse order from the scan list as 824 * they have been added (e.g. using list_add() as they are added and then 825 * list_for_each() over that eviction list to remove), otherwise the internal 826 * state of the memory manager will be corrupted. 827 * 828 * When the scan list is empty, the selected memory nodes can be freed. An 829 * immediately following drm_mm_insert_node_in_range_generic() or one of the 830 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 831 * the just freed block (because it's at the top of the free_stack list). 832 * 833 * Returns: 834 * True if this block should be evicted, false otherwise. Will always 835 * return false when no hole has been found. 836 */ 837 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 838 struct drm_mm_node *node) 839 { 840 struct drm_mm_node *prev_node; 841 842 DRM_MM_BUG_ON(node->mm != scan->mm); 843 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); 844 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 845 846 DRM_MM_BUG_ON(!node->mm->scan_active); 847 node->mm->scan_active--; 848 849 /* During drm_mm_scan_add_block() we decoupled this node leaving 850 * its pointers intact. Now that the caller is walking back along 851 * the eviction list we can restore this block into its rightful 852 * place on the full node_list. To confirm that the caller is walking 853 * backwards correctly we check that prev_node->next == node->next, 854 * i.e. both believe the same node should be on the other side of the 855 * hole. 856 */ 857 prev_node = list_prev_entry(node, node_list); 858 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 859 list_next_entry(node, node_list)); 860 list_add(&node->node_list, &prev_node->node_list); 861 862 return (node->start + node->size > scan->hit_start && 863 node->start < scan->hit_end); 864 } 865 EXPORT_SYMBOL(drm_mm_scan_remove_block); 866 867 /** 868 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 869 * @scan: drm_mm scan with target hole 870 * 871 * After completing an eviction scan and removing the selected nodes, we may 872 * need to remove a few more nodes from either side of the target hole if 873 * mm.color_adjust is being used. 874 * 875 * Returns: 876 * A node to evict, or NULL if there are no overlapping nodes. 877 */ 878 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 879 { 880 struct drm_mm *mm = scan->mm; 881 struct drm_mm_node *hole; 882 u64 hole_start, hole_end; 883 884 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 885 886 if (!mm->color_adjust) 887 return NULL; 888 889 /* 890 * The hole found during scanning should ideally be the first element 891 * in the hole_stack list, but due to side-effects in the driver it 892 * may not be. 893 */ 894 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 895 hole_start = __drm_mm_hole_node_start(hole); 896 hole_end = hole_start + hole->hole_size; 897 898 if (hole_start <= scan->hit_start && 899 hole_end >= scan->hit_end) 900 break; 901 } 902 903 /* We should only be called after we found the hole previously */ 904 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 905 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 906 return NULL; 907 908 DRM_MM_BUG_ON(hole_start > scan->hit_start); 909 DRM_MM_BUG_ON(hole_end < scan->hit_end); 910 911 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 912 if (hole_start > scan->hit_start) 913 return hole; 914 if (hole_end < scan->hit_end) 915 return list_next_entry(hole, node_list); 916 917 return NULL; 918 } 919 EXPORT_SYMBOL(drm_mm_scan_color_evict); 920 921 /** 922 * drm_mm_init - initialize a drm-mm allocator 923 * @mm: the drm_mm structure to initialize 924 * @start: start of the range managed by @mm 925 * @size: end of the range managed by @mm 926 * 927 * Note that @mm must be cleared to 0 before calling this function. 928 */ 929 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 930 { 931 DRM_MM_BUG_ON(start + size <= start); 932 933 mm->color_adjust = NULL; 934 935 INIT_LIST_HEAD(&mm->hole_stack); 936 mm->interval_tree = RB_ROOT_CACHED; 937 mm->holes_size = RB_ROOT_CACHED; 938 mm->holes_addr = RB_ROOT; 939 940 /* Clever trick to avoid a special case in the free hole tracking. */ 941 INIT_LIST_HEAD(&mm->head_node.node_list); 942 mm->head_node.flags = 0; 943 mm->head_node.mm = mm; 944 mm->head_node.start = start + size; 945 mm->head_node.size = -size; 946 add_hole(&mm->head_node); 947 948 mm->scan_active = 0; 949 950 #ifdef CONFIG_DRM_DEBUG_MM 951 stack_depot_init(); 952 #endif 953 } 954 EXPORT_SYMBOL(drm_mm_init); 955 956 /** 957 * drm_mm_takedown - clean up a drm_mm allocator 958 * @mm: drm_mm allocator to clean up 959 * 960 * Note that it is a bug to call this function on an allocator which is not 961 * clean. 962 */ 963 void drm_mm_takedown(struct drm_mm *mm) 964 { 965 if (WARN(!drm_mm_clean(mm), 966 "Memory manager not clean during takedown.\n")) 967 show_leaks(mm); 968 } 969 EXPORT_SYMBOL(drm_mm_takedown); 970 971 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 972 { 973 u64 start, size; 974 975 size = entry->hole_size; 976 if (size) { 977 start = drm_mm_hole_node_start(entry); 978 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 979 start, start + size, size); 980 } 981 982 return size; 983 } 984 /** 985 * drm_mm_print - print allocator state 986 * @mm: drm_mm allocator to print 987 * @p: DRM printer to use 988 */ 989 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 990 { 991 const struct drm_mm_node *entry; 992 u64 total_used = 0, total_free = 0, total = 0; 993 994 total_free += drm_mm_dump_hole(p, &mm->head_node); 995 996 drm_mm_for_each_node(entry, mm) { 997 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 998 entry->start + entry->size, entry->size); 999 total_used += entry->size; 1000 total_free += drm_mm_dump_hole(p, entry); 1001 } 1002 total = total_free + total_used; 1003 1004 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 1005 total_used, total_free); 1006 } 1007 EXPORT_SYMBOL(drm_mm_print); 1008