1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <drm/drmP.h> 46 #include <drm/drm_mm.h> 47 #include <linux/slab.h> 48 #include <linux/seq_file.h> 49 #include <linux/export.h> 50 #include <linux/interval_tree_generic.h> 51 52 /** 53 * DOC: Overview 54 * 55 * drm_mm provides a simple range allocator. The drivers are free to use the 56 * resource allocator from the linux core if it suits them, the upside of drm_mm 57 * is that it's in the DRM core. Which means that it's easier to extend for 58 * some of the crazier special purpose needs of gpus. 59 * 60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 61 * Drivers are free to embed either of them into their own suitable 62 * datastructures. drm_mm itself will not do any allocations of its own, so if 63 * drivers choose not to embed nodes they need to still allocate them 64 * themselves. 65 * 66 * The range allocator also supports reservation of preallocated blocks. This is 67 * useful for taking over initial mode setting configurations from the firmware, 68 * where an object needs to be created which exactly matches the firmware's 69 * scanout target. As long as the range is still free it can be inserted anytime 70 * after the allocator is initialized, which helps with avoiding looped 71 * dependencies in the driver load sequence. 72 * 73 * drm_mm maintains a stack of most recently freed holes, which of all 74 * simplistic datastructures seems to be a fairly decent approach to clustering 75 * allocations and avoiding too much fragmentation. This means free space 76 * searches are O(num_holes). Given that all the fancy features drm_mm supports 77 * something better would be fairly complex and since gfx thrashing is a fairly 78 * steep cliff not a real concern. Removing a node again is O(1). 79 * 80 * drm_mm supports a few features: Alignment and range restrictions can be 81 * supplied. Further more every &drm_mm_node has a color value (which is just an 82 * opaque unsigned long) which in conjunction with a driver callback can be used 83 * to implement sophisticated placement restrictions. The i915 DRM driver uses 84 * this to implement guard pages between incompatible caching domains in the 85 * graphics TT. 86 * 87 * Two behaviors are supported for searching and allocating: bottom-up and 88 * top-down. The default is bottom-up. Top-down allocation can be used if the 89 * memory area has different restrictions, or just to reduce fragmentation. 90 * 91 * Finally iteration helpers to walk all nodes and all holes are provided as are 92 * some basic allocator dumpers for debugging. 93 * 94 * Note that this range allocator is not thread-safe, drivers need to protect 95 * modifications with their on locking. The idea behind this is that for a full 96 * memory manager additional data needs to be protected anyway, hence internal 97 * locking would be fully redundant. 98 */ 99 100 static struct drm_mm_node *drm_mm_search_free_in_range_generic(const struct drm_mm *mm, 101 u64 size, 102 u64 alignment, 103 unsigned long color, 104 u64 start, 105 u64 end, 106 enum drm_mm_search_flags flags); 107 108 #ifdef CONFIG_DRM_DEBUG_MM 109 #include <linux/stackdepot.h> 110 111 #define STACKDEPTH 32 112 #define BUFSZ 4096 113 114 static noinline void save_stack(struct drm_mm_node *node) 115 { 116 unsigned long entries[STACKDEPTH]; 117 struct stack_trace trace = { 118 .entries = entries, 119 .max_entries = STACKDEPTH, 120 .skip = 1 121 }; 122 123 save_stack_trace(&trace); 124 if (trace.nr_entries != 0 && 125 trace.entries[trace.nr_entries-1] == ULONG_MAX) 126 trace.nr_entries--; 127 128 /* May be called under spinlock, so avoid sleeping */ 129 node->stack = depot_save_stack(&trace, GFP_NOWAIT); 130 } 131 132 static void show_leaks(struct drm_mm *mm) 133 { 134 struct drm_mm_node *node; 135 unsigned long entries[STACKDEPTH]; 136 char *buf; 137 138 buf = kmalloc(BUFSZ, GFP_KERNEL); 139 if (!buf) 140 return; 141 142 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 143 struct stack_trace trace = { 144 .entries = entries, 145 .max_entries = STACKDEPTH 146 }; 147 148 if (!node->stack) { 149 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 150 node->start, node->size); 151 continue; 152 } 153 154 depot_fetch_stack(node->stack, &trace); 155 snprint_stack_trace(buf, BUFSZ, &trace, 0); 156 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 157 node->start, node->size, buf); 158 } 159 160 kfree(buf); 161 } 162 163 #undef STACKDEPTH 164 #undef BUFSZ 165 #else 166 static void save_stack(struct drm_mm_node *node) { } 167 static void show_leaks(struct drm_mm *mm) { } 168 #endif 169 170 #define START(node) ((node)->start) 171 #define LAST(node) ((node)->start + (node)->size - 1) 172 173 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 174 u64, __subtree_last, 175 START, LAST, static inline, drm_mm_interval_tree) 176 177 struct drm_mm_node * 178 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 179 { 180 return drm_mm_interval_tree_iter_first((struct rb_root *)&mm->interval_tree, 181 start, last); 182 } 183 EXPORT_SYMBOL(__drm_mm_interval_first); 184 185 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 186 struct drm_mm_node *node) 187 { 188 struct drm_mm *mm = hole_node->mm; 189 struct rb_node **link, *rb; 190 struct drm_mm_node *parent; 191 192 node->__subtree_last = LAST(node); 193 194 if (hole_node->allocated) { 195 rb = &hole_node->rb; 196 while (rb) { 197 parent = rb_entry(rb, struct drm_mm_node, rb); 198 if (parent->__subtree_last >= node->__subtree_last) 199 break; 200 201 parent->__subtree_last = node->__subtree_last; 202 rb = rb_parent(rb); 203 } 204 205 rb = &hole_node->rb; 206 link = &hole_node->rb.rb_right; 207 } else { 208 rb = NULL; 209 link = &mm->interval_tree.rb_node; 210 } 211 212 while (*link) { 213 rb = *link; 214 parent = rb_entry(rb, struct drm_mm_node, rb); 215 if (parent->__subtree_last < node->__subtree_last) 216 parent->__subtree_last = node->__subtree_last; 217 if (node->start < parent->start) 218 link = &parent->rb.rb_left; 219 else 220 link = &parent->rb.rb_right; 221 } 222 223 rb_link_node(&node->rb, rb, link); 224 rb_insert_augmented(&node->rb, 225 &mm->interval_tree, 226 &drm_mm_interval_tree_augment); 227 } 228 229 static void drm_mm_insert_helper(struct drm_mm_node *hole_node, 230 struct drm_mm_node *node, 231 u64 size, u64 alignment, 232 unsigned long color, 233 u64 range_start, u64 range_end, 234 enum drm_mm_allocator_flags flags) 235 { 236 struct drm_mm *mm = hole_node->mm; 237 u64 hole_start = drm_mm_hole_node_start(hole_node); 238 u64 hole_end = drm_mm_hole_node_end(hole_node); 239 u64 adj_start = hole_start; 240 u64 adj_end = hole_end; 241 242 DRM_MM_BUG_ON(!drm_mm_hole_follows(hole_node) || node->allocated); 243 244 if (mm->color_adjust) 245 mm->color_adjust(hole_node, color, &adj_start, &adj_end); 246 247 adj_start = max(adj_start, range_start); 248 adj_end = min(adj_end, range_end); 249 250 if (flags & DRM_MM_CREATE_TOP) 251 adj_start = adj_end - size; 252 253 if (alignment) { 254 u64 rem; 255 256 div64_u64_rem(adj_start, alignment, &rem); 257 if (rem) { 258 if (flags & DRM_MM_CREATE_TOP) 259 adj_start -= rem; 260 else 261 adj_start += alignment - rem; 262 } 263 } 264 265 if (adj_start == hole_start) { 266 hole_node->hole_follows = 0; 267 list_del(&hole_node->hole_stack); 268 } 269 270 node->start = adj_start; 271 node->size = size; 272 node->mm = mm; 273 node->color = color; 274 node->allocated = 1; 275 276 list_add(&node->node_list, &hole_node->node_list); 277 278 drm_mm_interval_tree_add_node(hole_node, node); 279 280 DRM_MM_BUG_ON(node->start < range_start); 281 DRM_MM_BUG_ON(node->start < adj_start); 282 DRM_MM_BUG_ON(node->start + node->size > adj_end); 283 DRM_MM_BUG_ON(node->start + node->size > range_end); 284 285 node->hole_follows = 0; 286 if (__drm_mm_hole_node_start(node) < hole_end) { 287 list_add(&node->hole_stack, &mm->hole_stack); 288 node->hole_follows = 1; 289 } 290 291 save_stack(node); 292 } 293 294 /** 295 * drm_mm_reserve_node - insert an pre-initialized node 296 * @mm: drm_mm allocator to insert @node into 297 * @node: drm_mm_node to insert 298 * 299 * This functions inserts an already set-up drm_mm_node into the allocator, 300 * meaning that start, size and color must be set by the caller. This is useful 301 * to initialize the allocator with preallocated objects which must be set-up 302 * before the range allocator can be set-up, e.g. when taking over a firmware 303 * framebuffer. 304 * 305 * Returns: 306 * 0 on success, -ENOSPC if there's no hole where @node is. 307 */ 308 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 309 { 310 u64 end = node->start + node->size; 311 struct drm_mm_node *hole; 312 u64 hole_start, hole_end; 313 u64 adj_start, adj_end; 314 315 end = node->start + node->size; 316 if (unlikely(end <= node->start)) 317 return -ENOSPC; 318 319 /* Find the relevant hole to add our node to */ 320 hole = drm_mm_interval_tree_iter_first(&mm->interval_tree, 321 node->start, ~(u64)0); 322 if (hole) { 323 if (hole->start < end) 324 return -ENOSPC; 325 } else { 326 hole = list_entry(drm_mm_nodes(mm), typeof(*hole), node_list); 327 } 328 329 hole = list_last_entry(&hole->node_list, typeof(*hole), node_list); 330 if (!drm_mm_hole_follows(hole)) 331 return -ENOSPC; 332 333 adj_start = hole_start = __drm_mm_hole_node_start(hole); 334 adj_end = hole_end = __drm_mm_hole_node_end(hole); 335 336 if (mm->color_adjust) 337 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 338 339 if (adj_start > node->start || adj_end < end) 340 return -ENOSPC; 341 342 node->mm = mm; 343 node->allocated = 1; 344 345 list_add(&node->node_list, &hole->node_list); 346 347 drm_mm_interval_tree_add_node(hole, node); 348 349 if (node->start == hole_start) { 350 hole->hole_follows = 0; 351 list_del(&hole->hole_stack); 352 } 353 354 node->hole_follows = 0; 355 if (end != hole_end) { 356 list_add(&node->hole_stack, &mm->hole_stack); 357 node->hole_follows = 1; 358 } 359 360 save_stack(node); 361 362 return 0; 363 } 364 EXPORT_SYMBOL(drm_mm_reserve_node); 365 366 /** 367 * drm_mm_insert_node_in_range_generic - ranged search for space and insert @node 368 * @mm: drm_mm to allocate from 369 * @node: preallocate node to insert 370 * @size: size of the allocation 371 * @alignment: alignment of the allocation 372 * @color: opaque tag value to use for this node 373 * @start: start of the allowed range for this node 374 * @end: end of the allowed range for this node 375 * @sflags: flags to fine-tune the allocation search 376 * @aflags: flags to fine-tune the allocation behavior 377 * 378 * The preallocated node must be cleared to 0. 379 * 380 * Returns: 381 * 0 on success, -ENOSPC if there's no suitable hole. 382 */ 383 int drm_mm_insert_node_in_range_generic(struct drm_mm *mm, struct drm_mm_node *node, 384 u64 size, u64 alignment, 385 unsigned long color, 386 u64 start, u64 end, 387 enum drm_mm_search_flags sflags, 388 enum drm_mm_allocator_flags aflags) 389 { 390 struct drm_mm_node *hole_node; 391 392 if (WARN_ON(size == 0)) 393 return -EINVAL; 394 395 hole_node = drm_mm_search_free_in_range_generic(mm, 396 size, alignment, color, 397 start, end, sflags); 398 if (!hole_node) 399 return -ENOSPC; 400 401 drm_mm_insert_helper(hole_node, node, 402 size, alignment, color, 403 start, end, aflags); 404 return 0; 405 } 406 EXPORT_SYMBOL(drm_mm_insert_node_in_range_generic); 407 408 /** 409 * drm_mm_remove_node - Remove a memory node from the allocator. 410 * @node: drm_mm_node to remove 411 * 412 * This just removes a node from its drm_mm allocator. The node does not need to 413 * be cleared again before it can be re-inserted into this or any other drm_mm 414 * allocator. It is a bug to call this function on a unallocated node. 415 */ 416 void drm_mm_remove_node(struct drm_mm_node *node) 417 { 418 struct drm_mm *mm = node->mm; 419 struct drm_mm_node *prev_node; 420 421 DRM_MM_BUG_ON(!node->allocated); 422 DRM_MM_BUG_ON(node->scanned_block); 423 424 prev_node = 425 list_entry(node->node_list.prev, struct drm_mm_node, node_list); 426 427 if (drm_mm_hole_follows(node)) { 428 DRM_MM_BUG_ON(__drm_mm_hole_node_start(node) == 429 __drm_mm_hole_node_end(node)); 430 list_del(&node->hole_stack); 431 } else { 432 DRM_MM_BUG_ON(__drm_mm_hole_node_start(node) != 433 __drm_mm_hole_node_end(node)); 434 } 435 436 if (!drm_mm_hole_follows(prev_node)) { 437 prev_node->hole_follows = 1; 438 list_add(&prev_node->hole_stack, &mm->hole_stack); 439 } else 440 list_move(&prev_node->hole_stack, &mm->hole_stack); 441 442 drm_mm_interval_tree_remove(node, &mm->interval_tree); 443 list_del(&node->node_list); 444 node->allocated = 0; 445 } 446 EXPORT_SYMBOL(drm_mm_remove_node); 447 448 static int check_free_hole(u64 start, u64 end, u64 size, u64 alignment) 449 { 450 if (end - start < size) 451 return 0; 452 453 if (alignment) { 454 u64 rem; 455 456 div64_u64_rem(start, alignment, &rem); 457 if (rem) 458 start += alignment - rem; 459 } 460 461 return end >= start + size; 462 } 463 464 static struct drm_mm_node *drm_mm_search_free_in_range_generic(const struct drm_mm *mm, 465 u64 size, 466 u64 alignment, 467 unsigned long color, 468 u64 start, 469 u64 end, 470 enum drm_mm_search_flags flags) 471 { 472 struct drm_mm_node *entry; 473 struct drm_mm_node *best; 474 u64 adj_start; 475 u64 adj_end; 476 u64 best_size; 477 478 DRM_MM_BUG_ON(mm->scan_active); 479 480 best = NULL; 481 best_size = ~0UL; 482 483 __drm_mm_for_each_hole(entry, mm, adj_start, adj_end, 484 flags & DRM_MM_SEARCH_BELOW) { 485 u64 hole_size = adj_end - adj_start; 486 487 if (mm->color_adjust) { 488 mm->color_adjust(entry, color, &adj_start, &adj_end); 489 if (adj_end <= adj_start) 490 continue; 491 } 492 493 adj_start = max(adj_start, start); 494 adj_end = min(adj_end, end); 495 496 if (!check_free_hole(adj_start, adj_end, size, alignment)) 497 continue; 498 499 if (!(flags & DRM_MM_SEARCH_BEST)) 500 return entry; 501 502 if (hole_size < best_size) { 503 best = entry; 504 best_size = hole_size; 505 } 506 } 507 508 return best; 509 } 510 511 /** 512 * drm_mm_replace_node - move an allocation from @old to @new 513 * @old: drm_mm_node to remove from the allocator 514 * @new: drm_mm_node which should inherit @old's allocation 515 * 516 * This is useful for when drivers embed the drm_mm_node structure and hence 517 * can't move allocations by reassigning pointers. It's a combination of remove 518 * and insert with the guarantee that the allocation start will match. 519 */ 520 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 521 { 522 DRM_MM_BUG_ON(!old->allocated); 523 524 list_replace(&old->node_list, &new->node_list); 525 list_replace(&old->hole_stack, &new->hole_stack); 526 rb_replace_node(&old->rb, &new->rb, &old->mm->interval_tree); 527 new->hole_follows = old->hole_follows; 528 new->mm = old->mm; 529 new->start = old->start; 530 new->size = old->size; 531 new->color = old->color; 532 new->__subtree_last = old->__subtree_last; 533 534 old->allocated = 0; 535 new->allocated = 1; 536 } 537 EXPORT_SYMBOL(drm_mm_replace_node); 538 539 /** 540 * DOC: lru scan roaster 541 * 542 * Very often GPUs need to have continuous allocations for a given object. When 543 * evicting objects to make space for a new one it is therefore not most 544 * efficient when we simply start to select all objects from the tail of an LRU 545 * until there's a suitable hole: Especially for big objects or nodes that 546 * otherwise have special allocation constraints there's a good chance we evict 547 * lots of (smaller) objects unnecessarily. 548 * 549 * The DRM range allocator supports this use-case through the scanning 550 * interfaces. First a scan operation needs to be initialized with 551 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 552 * objects to the roster (probably by walking an LRU list, but this can be 553 * freely implemented) (using drm_mm_scan_add_block()) until a suitable hole 554 * is found or there are no further evictable objects. 555 * 556 * The driver must walk through all objects again in exactly the reverse 557 * order to restore the allocator state. Note that while the allocator is used 558 * in the scan mode no other operation is allowed. 559 * 560 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 561 * reported true) in the scan, and any overlapping nodes after color adjustment 562 * (drm_mm_scan_evict_color()). Adding and removing an object is O(1), and 563 * since freeing a node is also O(1) the overall complexity is 564 * O(scanned_objects). So like the free stack which needs to be walked before a 565 * scan operation even begins this is linear in the number of objects. It 566 * doesn't seem to hurt too badly. 567 */ 568 569 /** 570 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 571 * @scan: scan state 572 * @mm: drm_mm to scan 573 * @size: size of the allocation 574 * @alignment: alignment of the allocation 575 * @color: opaque tag value to use for the allocation 576 * @start: start of the allowed range for the allocation 577 * @end: end of the allowed range for the allocation 578 * @flags: flags to specify how the allocation will be performed afterwards 579 * 580 * This simply sets up the scanning routines with the parameters for the desired 581 * hole. 582 * 583 * Warning: 584 * As long as the scan list is non-empty, no other operations than 585 * adding/removing nodes to/from the scan list are allowed. 586 */ 587 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 588 struct drm_mm *mm, 589 u64 size, 590 u64 alignment, 591 unsigned long color, 592 u64 start, 593 u64 end, 594 unsigned int flags) 595 { 596 DRM_MM_BUG_ON(start >= end); 597 DRM_MM_BUG_ON(!size || size > end - start); 598 DRM_MM_BUG_ON(mm->scan_active); 599 600 scan->mm = mm; 601 602 if (alignment <= 1) 603 alignment = 0; 604 605 scan->color = color; 606 scan->alignment = alignment; 607 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 608 scan->size = size; 609 scan->flags = flags; 610 611 DRM_MM_BUG_ON(end <= start); 612 scan->range_start = start; 613 scan->range_end = end; 614 615 scan->hit_start = U64_MAX; 616 scan->hit_end = 0; 617 } 618 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 619 620 /** 621 * drm_mm_scan_add_block - add a node to the scan list 622 * @scan: the active drm_mm scanner 623 * @node: drm_mm_node to add 624 * 625 * Add a node to the scan list that might be freed to make space for the desired 626 * hole. 627 * 628 * Returns: 629 * True if a hole has been found, false otherwise. 630 */ 631 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 632 struct drm_mm_node *node) 633 { 634 struct drm_mm *mm = scan->mm; 635 struct drm_mm_node *hole; 636 u64 hole_start, hole_end; 637 u64 col_start, col_end; 638 u64 adj_start, adj_end; 639 640 DRM_MM_BUG_ON(node->mm != mm); 641 DRM_MM_BUG_ON(!node->allocated); 642 DRM_MM_BUG_ON(node->scanned_block); 643 node->scanned_block = true; 644 mm->scan_active++; 645 646 /* Remove this block from the node_list so that we enlarge the hole 647 * (distance between the end of our previous node and the start of 648 * or next), without poisoning the link so that we can restore it 649 * later in drm_mm_scan_remove_block(). 650 */ 651 hole = list_prev_entry(node, node_list); 652 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 653 __list_del_entry(&node->node_list); 654 655 hole_start = __drm_mm_hole_node_start(hole); 656 hole_end = __drm_mm_hole_node_end(hole); 657 658 col_start = hole_start; 659 col_end = hole_end; 660 if (mm->color_adjust) 661 mm->color_adjust(hole, scan->color, &col_start, &col_end); 662 663 adj_start = max(col_start, scan->range_start); 664 adj_end = min(col_end, scan->range_end); 665 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 666 return false; 667 668 if (scan->flags == DRM_MM_CREATE_TOP) 669 adj_start = adj_end - scan->size; 670 671 if (scan->alignment) { 672 u64 rem; 673 674 if (likely(scan->remainder_mask)) 675 rem = adj_start & scan->remainder_mask; 676 else 677 div64_u64_rem(adj_start, scan->alignment, &rem); 678 if (rem) { 679 adj_start -= rem; 680 if (scan->flags != DRM_MM_CREATE_TOP) 681 adj_start += scan->alignment; 682 if (adj_start < max(col_start, scan->range_start) || 683 min(col_end, scan->range_end) - adj_start < scan->size) 684 return false; 685 686 if (adj_end <= adj_start || 687 adj_end - adj_start < scan->size) 688 return false; 689 } 690 } 691 692 scan->hit_start = adj_start; 693 scan->hit_end = adj_start + scan->size; 694 695 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 696 DRM_MM_BUG_ON(scan->hit_start < hole_start); 697 DRM_MM_BUG_ON(scan->hit_end > hole_end); 698 699 return true; 700 } 701 EXPORT_SYMBOL(drm_mm_scan_add_block); 702 703 /** 704 * drm_mm_scan_remove_block - remove a node from the scan list 705 * @scan: the active drm_mm scanner 706 * @node: drm_mm_node to remove 707 * 708 * Nodes _must_ be removed in exactly the reverse order from the scan list as 709 * they have been added (e.g. using list_add as they are added and then 710 * list_for_each over that eviction list to remove), otherwise the internal 711 * state of the memory manager will be corrupted. 712 * 713 * When the scan list is empty, the selected memory nodes can be freed. An 714 * immediately following drm_mm_search_free with !DRM_MM_SEARCH_BEST will then 715 * return the just freed block (because its at the top of the free_stack list). 716 * 717 * Returns: 718 * True if this block should be evicted, false otherwise. Will always 719 * return false when no hole has been found. 720 */ 721 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 722 struct drm_mm_node *node) 723 { 724 struct drm_mm_node *prev_node; 725 726 DRM_MM_BUG_ON(node->mm != scan->mm); 727 DRM_MM_BUG_ON(!node->scanned_block); 728 node->scanned_block = false; 729 730 DRM_MM_BUG_ON(!node->mm->scan_active); 731 node->mm->scan_active--; 732 733 /* During drm_mm_scan_add_block() we decoupled this node leaving 734 * its pointers intact. Now that the caller is walking back along 735 * the eviction list we can restore this block into its rightful 736 * place on the full node_list. To confirm that the caller is walking 737 * backwards correctly we check that prev_node->next == node->next, 738 * i.e. both believe the same node should be on the other side of the 739 * hole. 740 */ 741 prev_node = list_prev_entry(node, node_list); 742 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 743 list_next_entry(node, node_list)); 744 list_add(&node->node_list, &prev_node->node_list); 745 746 return (node->start + node->size > scan->hit_start && 747 node->start < scan->hit_end); 748 } 749 EXPORT_SYMBOL(drm_mm_scan_remove_block); 750 751 /** 752 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 753 * @scan: drm_mm scan with target hole 754 * 755 * After completing an eviction scan and removing the selected nodes, we may 756 * need to remove a few more nodes from either side of the target hole if 757 * mm.color_adjust is being used. 758 * 759 * Returns: 760 * A node to evict, or NULL if there are no overlapping nodes. 761 */ 762 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 763 { 764 struct drm_mm *mm = scan->mm; 765 struct drm_mm_node *hole; 766 u64 hole_start, hole_end; 767 768 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 769 770 if (!mm->color_adjust) 771 return NULL; 772 773 hole = list_first_entry(&mm->hole_stack, typeof(*hole), hole_stack); 774 hole_start = __drm_mm_hole_node_start(hole); 775 hole_end = __drm_mm_hole_node_end(hole); 776 777 DRM_MM_BUG_ON(hole_start > scan->hit_start); 778 DRM_MM_BUG_ON(hole_end < scan->hit_end); 779 780 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 781 if (hole_start > scan->hit_start) 782 return hole; 783 if (hole_end < scan->hit_end) 784 return list_next_entry(hole, node_list); 785 786 return NULL; 787 } 788 EXPORT_SYMBOL(drm_mm_scan_color_evict); 789 790 /** 791 * drm_mm_init - initialize a drm-mm allocator 792 * @mm: the drm_mm structure to initialize 793 * @start: start of the range managed by @mm 794 * @size: end of the range managed by @mm 795 * 796 * Note that @mm must be cleared to 0 before calling this function. 797 */ 798 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 799 { 800 DRM_MM_BUG_ON(start + size <= start); 801 802 INIT_LIST_HEAD(&mm->hole_stack); 803 mm->scan_active = 0; 804 805 /* Clever trick to avoid a special case in the free hole tracking. */ 806 INIT_LIST_HEAD(&mm->head_node.node_list); 807 mm->head_node.allocated = 0; 808 mm->head_node.hole_follows = 1; 809 mm->head_node.mm = mm; 810 mm->head_node.start = start + size; 811 mm->head_node.size = start - mm->head_node.start; 812 list_add_tail(&mm->head_node.hole_stack, &mm->hole_stack); 813 814 mm->interval_tree = RB_ROOT; 815 816 mm->color_adjust = NULL; 817 } 818 EXPORT_SYMBOL(drm_mm_init); 819 820 /** 821 * drm_mm_takedown - clean up a drm_mm allocator 822 * @mm: drm_mm allocator to clean up 823 * 824 * Note that it is a bug to call this function on an allocator which is not 825 * clean. 826 */ 827 void drm_mm_takedown(struct drm_mm *mm) 828 { 829 if (WARN(!drm_mm_clean(mm), 830 "Memory manager not clean during takedown.\n")) 831 show_leaks(mm); 832 } 833 EXPORT_SYMBOL(drm_mm_takedown); 834 835 static u64 drm_mm_debug_hole(const struct drm_mm_node *entry, 836 const char *prefix) 837 { 838 u64 hole_start, hole_end, hole_size; 839 840 if (entry->hole_follows) { 841 hole_start = drm_mm_hole_node_start(entry); 842 hole_end = drm_mm_hole_node_end(entry); 843 hole_size = hole_end - hole_start; 844 pr_debug("%s %#llx-%#llx: %llu: free\n", prefix, hole_start, 845 hole_end, hole_size); 846 return hole_size; 847 } 848 849 return 0; 850 } 851 852 /** 853 * drm_mm_debug_table - dump allocator state to dmesg 854 * @mm: drm_mm allocator to dump 855 * @prefix: prefix to use for dumping to dmesg 856 */ 857 void drm_mm_debug_table(const struct drm_mm *mm, const char *prefix) 858 { 859 const struct drm_mm_node *entry; 860 u64 total_used = 0, total_free = 0, total = 0; 861 862 total_free += drm_mm_debug_hole(&mm->head_node, prefix); 863 864 drm_mm_for_each_node(entry, mm) { 865 pr_debug("%s %#llx-%#llx: %llu: used\n", prefix, entry->start, 866 entry->start + entry->size, entry->size); 867 total_used += entry->size; 868 total_free += drm_mm_debug_hole(entry, prefix); 869 } 870 total = total_free + total_used; 871 872 pr_debug("%s total: %llu, used %llu free %llu\n", prefix, total, 873 total_used, total_free); 874 } 875 EXPORT_SYMBOL(drm_mm_debug_table); 876 877 #if defined(CONFIG_DEBUG_FS) 878 static u64 drm_mm_dump_hole(struct seq_file *m, const struct drm_mm_node *entry) 879 { 880 u64 hole_start, hole_end, hole_size; 881 882 if (entry->hole_follows) { 883 hole_start = drm_mm_hole_node_start(entry); 884 hole_end = drm_mm_hole_node_end(entry); 885 hole_size = hole_end - hole_start; 886 seq_printf(m, "%#018llx-%#018llx: %llu: free\n", hole_start, 887 hole_end, hole_size); 888 return hole_size; 889 } 890 891 return 0; 892 } 893 894 /** 895 * drm_mm_dump_table - dump allocator state to a seq_file 896 * @m: seq_file to dump to 897 * @mm: drm_mm allocator to dump 898 */ 899 int drm_mm_dump_table(struct seq_file *m, const struct drm_mm *mm) 900 { 901 const struct drm_mm_node *entry; 902 u64 total_used = 0, total_free = 0, total = 0; 903 904 total_free += drm_mm_dump_hole(m, &mm->head_node); 905 906 drm_mm_for_each_node(entry, mm) { 907 seq_printf(m, "%#018llx-%#018llx: %llu: used\n", entry->start, 908 entry->start + entry->size, entry->size); 909 total_used += entry->size; 910 total_free += drm_mm_dump_hole(m, entry); 911 } 912 total = total_free + total_used; 913 914 seq_printf(m, "total: %llu, used %llu free %llu\n", total, 915 total_used, total_free); 916 return 0; 917 } 918 EXPORT_SYMBOL(drm_mm_dump_table); 919 #endif 920