1 // SPDX-License-Identifier: GPL-2.0-only OR MIT 2 /* 3 * Copyright (c) 2022 Red Hat. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Danilo Krummrich <dakr@redhat.com> 25 * 26 */ 27 28 #include <drm/drm_gpuvm.h> 29 30 #include <linux/interval_tree_generic.h> 31 #include <linux/mm.h> 32 33 /** 34 * DOC: Overview 35 * 36 * The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a 37 * GPU's virtual address (VA) space and manages the corresponding virtual 38 * mappings represented by &drm_gpuva objects. It also keeps track of the 39 * mapping's backing &drm_gem_object buffers. 40 * 41 * &drm_gem_object buffers maintain a list of &drm_gpuva objects representing 42 * all existent GPU VA mappings using this &drm_gem_object as backing buffer. 43 * 44 * GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also 45 * keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'. 46 * 47 * The GPU VA manager internally uses a rb-tree to manage the 48 * &drm_gpuva mappings within a GPU's virtual address space. 49 * 50 * The &drm_gpuvm structure contains a special &drm_gpuva representing the 51 * portion of VA space reserved by the kernel. This node is initialized together 52 * with the GPU VA manager instance and removed when the GPU VA manager is 53 * destroyed. 54 * 55 * In a typical application drivers would embed struct drm_gpuvm and 56 * struct drm_gpuva within their own driver specific structures, there won't be 57 * any memory allocations of its own nor memory allocations of &drm_gpuva 58 * entries. 59 * 60 * The data structures needed to store &drm_gpuvas within the &drm_gpuvm are 61 * contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva 62 * entries from within dma-fence signalling critical sections it is enough to 63 * pre-allocate the &drm_gpuva structures. 64 * 65 * &drm_gem_objects which are private to a single VM can share a common 66 * &dma_resv in order to improve locking efficiency (e.g. with &drm_exec). 67 * For this purpose drivers must pass a &drm_gem_object to drm_gpuvm_init(), in 68 * the following called 'resv object', which serves as the container of the 69 * GPUVM's shared &dma_resv. This resv object can be a driver specific 70 * &drm_gem_object, such as the &drm_gem_object containing the root page table, 71 * but it can also be a 'dummy' object, which can be allocated with 72 * drm_gpuvm_resv_object_alloc(). 73 * 74 * In order to connect a struct drm_gpuva its backing &drm_gem_object each 75 * &drm_gem_object maintains a list of &drm_gpuvm_bo structures, and each 76 * &drm_gpuvm_bo contains a list of &drm_gpuva structures. 77 * 78 * A &drm_gpuvm_bo is an abstraction that represents a combination of a 79 * &drm_gpuvm and a &drm_gem_object. Every such combination should be unique. 80 * This is ensured by the API through drm_gpuvm_bo_obtain() and 81 * drm_gpuvm_bo_obtain_prealloc() which first look into the corresponding 82 * &drm_gem_object list of &drm_gpuvm_bos for an existing instance of this 83 * particular combination. If not existent a new instance is created and linked 84 * to the &drm_gem_object. 85 * 86 * &drm_gpuvm_bo structures, since unique for a given &drm_gpuvm, are also used 87 * as entry for the &drm_gpuvm's lists of external and evicted objects. Those 88 * lists are maintained in order to accelerate locking of dma-resv locks and 89 * validation of evicted objects bound in a &drm_gpuvm. For instance, all 90 * &drm_gem_object's &dma_resv of a given &drm_gpuvm can be locked by calling 91 * drm_gpuvm_exec_lock(). Once locked drivers can call drm_gpuvm_validate() in 92 * order to validate all evicted &drm_gem_objects. It is also possible to lock 93 * additional &drm_gem_objects by providing the corresponding parameters to 94 * drm_gpuvm_exec_lock() as well as open code the &drm_exec loop while making 95 * use of helper functions such as drm_gpuvm_prepare_range() or 96 * drm_gpuvm_prepare_objects(). 97 * 98 * Every bound &drm_gem_object is treated as external object when its &dma_resv 99 * structure is different than the &drm_gpuvm's common &dma_resv structure. 100 */ 101 102 /** 103 * DOC: Split and Merge 104 * 105 * Besides its capability to manage and represent a GPU VA space, the 106 * GPU VA manager also provides functions to let the &drm_gpuvm calculate a 107 * sequence of operations to satisfy a given map or unmap request. 108 * 109 * Therefore the DRM GPU VA manager provides an algorithm implementing splitting 110 * and merging of existent GPU VA mappings with the ones that are requested to 111 * be mapped or unmapped. This feature is required by the Vulkan API to 112 * implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this 113 * as VM BIND. 114 * 115 * Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks 116 * containing map, unmap and remap operations for a given newly requested 117 * mapping. The sequence of callbacks represents the set of operations to 118 * execute in order to integrate the new mapping cleanly into the current state 119 * of the GPU VA space. 120 * 121 * Depending on how the new GPU VA mapping intersects with the existent mappings 122 * of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount 123 * of unmap operations, a maximum of two remap operations and a single map 124 * operation. The caller might receive no callback at all if no operation is 125 * required, e.g. if the requested mapping already exists in the exact same way. 126 * 127 * The single map operation represents the original map operation requested by 128 * the caller. 129 * 130 * &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the 131 * &drm_gpuva to unmap is physically contiguous with the original mapping 132 * request. Optionally, if 'keep' is set, drivers may keep the actual page table 133 * entries for this &drm_gpuva, adding the missing page table entries only and 134 * update the &drm_gpuvm's view of things accordingly. 135 * 136 * Drivers may do the same optimization, namely delta page table updates, also 137 * for remap operations. This is possible since &drm_gpuva_op_remap consists of 138 * one unmap operation and one or two map operations, such that drivers can 139 * derive the page table update delta accordingly. 140 * 141 * Note that there can't be more than two existent mappings to split up, one at 142 * the beginning and one at the end of the new mapping, hence there is a 143 * maximum of two remap operations. 144 * 145 * Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to 146 * call back into the driver in order to unmap a range of GPU VA space. The 147 * logic behind this function is way simpler though: For all existent mappings 148 * enclosed by the given range unmap operations are created. For mappings which 149 * are only partically located within the given range, remap operations are 150 * created such that those mappings are split up and re-mapped partically. 151 * 152 * As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(), 153 * drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used 154 * to directly obtain an instance of struct drm_gpuva_ops containing a list of 155 * &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list 156 * contains the &drm_gpuva_ops analogous to the callbacks one would receive when 157 * calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires 158 * more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to 159 * iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory 160 * allocations are possible (e.g. to allocate GPU page tables) and once in the 161 * dma-fence signalling critical path. 162 * 163 * To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and 164 * drm_gpuva_remove() may be used. These functions can safely be used from 165 * &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or 166 * drm_gpuvm_sm_unmap(). However, it might be more convenient to use the 167 * provided helper functions drm_gpuva_map(), drm_gpuva_remap() and 168 * drm_gpuva_unmap() instead. 169 * 170 * The following diagram depicts the basic relationships of existent GPU VA 171 * mappings, a newly requested mapping and the resulting mappings as implemented 172 * by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these. 173 * 174 * 1) Requested mapping is identical. Replace it, but indicate the backing PTEs 175 * could be kept. 176 * 177 * :: 178 * 179 * 0 a 1 180 * old: |-----------| (bo_offset=n) 181 * 182 * 0 a 1 183 * req: |-----------| (bo_offset=n) 184 * 185 * 0 a 1 186 * new: |-----------| (bo_offset=n) 187 * 188 * 189 * 2) Requested mapping is identical, except for the BO offset, hence replace 190 * the mapping. 191 * 192 * :: 193 * 194 * 0 a 1 195 * old: |-----------| (bo_offset=n) 196 * 197 * 0 a 1 198 * req: |-----------| (bo_offset=m) 199 * 200 * 0 a 1 201 * new: |-----------| (bo_offset=m) 202 * 203 * 204 * 3) Requested mapping is identical, except for the backing BO, hence replace 205 * the mapping. 206 * 207 * :: 208 * 209 * 0 a 1 210 * old: |-----------| (bo_offset=n) 211 * 212 * 0 b 1 213 * req: |-----------| (bo_offset=n) 214 * 215 * 0 b 1 216 * new: |-----------| (bo_offset=n) 217 * 218 * 219 * 4) Existent mapping is a left aligned subset of the requested one, hence 220 * replace the existent one. 221 * 222 * :: 223 * 224 * 0 a 1 225 * old: |-----| (bo_offset=n) 226 * 227 * 0 a 2 228 * req: |-----------| (bo_offset=n) 229 * 230 * 0 a 2 231 * new: |-----------| (bo_offset=n) 232 * 233 * .. note:: 234 * We expect to see the same result for a request with a different BO 235 * and/or non-contiguous BO offset. 236 * 237 * 238 * 5) Requested mapping's range is a left aligned subset of the existent one, 239 * but backed by a different BO. Hence, map the requested mapping and split 240 * the existent one adjusting its BO offset. 241 * 242 * :: 243 * 244 * 0 a 2 245 * old: |-----------| (bo_offset=n) 246 * 247 * 0 b 1 248 * req: |-----| (bo_offset=n) 249 * 250 * 0 b 1 a' 2 251 * new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1) 252 * 253 * .. note:: 254 * We expect to see the same result for a request with a different BO 255 * and/or non-contiguous BO offset. 256 * 257 * 258 * 6) Existent mapping is a superset of the requested mapping. Split it up, but 259 * indicate that the backing PTEs could be kept. 260 * 261 * :: 262 * 263 * 0 a 2 264 * old: |-----------| (bo_offset=n) 265 * 266 * 0 a 1 267 * req: |-----| (bo_offset=n) 268 * 269 * 0 a 1 a' 2 270 * new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1) 271 * 272 * 273 * 7) Requested mapping's range is a right aligned subset of the existent one, 274 * but backed by a different BO. Hence, map the requested mapping and split 275 * the existent one, without adjusting the BO offset. 276 * 277 * :: 278 * 279 * 0 a 2 280 * old: |-----------| (bo_offset=n) 281 * 282 * 1 b 2 283 * req: |-----| (bo_offset=m) 284 * 285 * 0 a 1 b 2 286 * new: |-----|-----| (a.bo_offset=n,b.bo_offset=m) 287 * 288 * 289 * 8) Existent mapping is a superset of the requested mapping. Split it up, but 290 * indicate that the backing PTEs could be kept. 291 * 292 * :: 293 * 294 * 0 a 2 295 * old: |-----------| (bo_offset=n) 296 * 297 * 1 a 2 298 * req: |-----| (bo_offset=n+1) 299 * 300 * 0 a' 1 a 2 301 * new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1) 302 * 303 * 304 * 9) Existent mapping is overlapped at the end by the requested mapping backed 305 * by a different BO. Hence, map the requested mapping and split up the 306 * existent one, without adjusting the BO offset. 307 * 308 * :: 309 * 310 * 0 a 2 311 * old: |-----------| (bo_offset=n) 312 * 313 * 1 b 3 314 * req: |-----------| (bo_offset=m) 315 * 316 * 0 a 1 b 3 317 * new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m) 318 * 319 * 320 * 10) Existent mapping is overlapped by the requested mapping, both having the 321 * same backing BO with a contiguous offset. Indicate the backing PTEs of 322 * the old mapping could be kept. 323 * 324 * :: 325 * 326 * 0 a 2 327 * old: |-----------| (bo_offset=n) 328 * 329 * 1 a 3 330 * req: |-----------| (bo_offset=n+1) 331 * 332 * 0 a' 1 a 3 333 * new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1) 334 * 335 * 336 * 11) Requested mapping's range is a centered subset of the existent one 337 * having a different backing BO. Hence, map the requested mapping and split 338 * up the existent one in two mappings, adjusting the BO offset of the right 339 * one accordingly. 340 * 341 * :: 342 * 343 * 0 a 3 344 * old: |-----------------| (bo_offset=n) 345 * 346 * 1 b 2 347 * req: |-----| (bo_offset=m) 348 * 349 * 0 a 1 b 2 a' 3 350 * new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2) 351 * 352 * 353 * 12) Requested mapping is a contiguous subset of the existent one. Split it 354 * up, but indicate that the backing PTEs could be kept. 355 * 356 * :: 357 * 358 * 0 a 3 359 * old: |-----------------| (bo_offset=n) 360 * 361 * 1 a 2 362 * req: |-----| (bo_offset=n+1) 363 * 364 * 0 a' 1 a 2 a'' 3 365 * old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2) 366 * 367 * 368 * 13) Existent mapping is a right aligned subset of the requested one, hence 369 * replace the existent one. 370 * 371 * :: 372 * 373 * 1 a 2 374 * old: |-----| (bo_offset=n+1) 375 * 376 * 0 a 2 377 * req: |-----------| (bo_offset=n) 378 * 379 * 0 a 2 380 * new: |-----------| (bo_offset=n) 381 * 382 * .. note:: 383 * We expect to see the same result for a request with a different bo 384 * and/or non-contiguous bo_offset. 385 * 386 * 387 * 14) Existent mapping is a centered subset of the requested one, hence 388 * replace the existent one. 389 * 390 * :: 391 * 392 * 1 a 2 393 * old: |-----| (bo_offset=n+1) 394 * 395 * 0 a 3 396 * req: |----------------| (bo_offset=n) 397 * 398 * 0 a 3 399 * new: |----------------| (bo_offset=n) 400 * 401 * .. note:: 402 * We expect to see the same result for a request with a different bo 403 * and/or non-contiguous bo_offset. 404 * 405 * 406 * 15) Existent mappings is overlapped at the beginning by the requested mapping 407 * backed by a different BO. Hence, map the requested mapping and split up 408 * the existent one, adjusting its BO offset accordingly. 409 * 410 * :: 411 * 412 * 1 a 3 413 * old: |-----------| (bo_offset=n) 414 * 415 * 0 b 2 416 * req: |-----------| (bo_offset=m) 417 * 418 * 0 b 2 a' 3 419 * new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2) 420 */ 421 422 /** 423 * DOC: Locking 424 * 425 * In terms of managing &drm_gpuva entries DRM GPUVM does not take care of 426 * locking itself, it is the drivers responsibility to take care about locking. 427 * Drivers might want to protect the following operations: inserting, removing 428 * and iterating &drm_gpuva objects as well as generating all kinds of 429 * operations, such as split / merge or prefetch. 430 * 431 * DRM GPUVM also does not take care of the locking of the backing 432 * &drm_gem_object buffers GPU VA lists and &drm_gpuvm_bo abstractions by 433 * itself; drivers are responsible to enforce mutual exclusion using either the 434 * GEMs dma_resv lock or alternatively a driver specific external lock. For the 435 * latter see also drm_gem_gpuva_set_lock(). 436 * 437 * However, DRM GPUVM contains lockdep checks to ensure callers of its API hold 438 * the corresponding lock whenever the &drm_gem_objects GPU VA list is accessed 439 * by functions such as drm_gpuva_link() or drm_gpuva_unlink(), but also 440 * drm_gpuvm_bo_obtain() and drm_gpuvm_bo_put(). 441 * 442 * The latter is required since on creation and destruction of a &drm_gpuvm_bo 443 * the &drm_gpuvm_bo is attached / removed from the &drm_gem_objects gpuva list. 444 * Subsequent calls to drm_gpuvm_bo_obtain() for the same &drm_gpuvm and 445 * &drm_gem_object must be able to observe previous creations and destructions 446 * of &drm_gpuvm_bos in order to keep instances unique. 447 * 448 * The &drm_gpuvm's lists for keeping track of external and evicted objects are 449 * protected against concurrent insertion / removal and iteration internally. 450 * 451 * However, drivers still need ensure to protect concurrent calls to functions 452 * iterating those lists, namely drm_gpuvm_prepare_objects() and 453 * drm_gpuvm_validate(). 454 * 455 * Alternatively, drivers can set the &DRM_GPUVM_RESV_PROTECTED flag to indicate 456 * that the corresponding &dma_resv locks are held in order to protect the 457 * lists. If &DRM_GPUVM_RESV_PROTECTED is set, internal locking is disabled and 458 * the corresponding lockdep checks are enabled. This is an optimization for 459 * drivers which are capable of taking the corresponding &dma_resv locks and 460 * hence do not require internal locking. 461 */ 462 463 /** 464 * DOC: Examples 465 * 466 * This section gives two examples on how to let the DRM GPUVA Manager generate 467 * &drm_gpuva_op in order to satisfy a given map or unmap request and how to 468 * make use of them. 469 * 470 * The below code is strictly limited to illustrate the generic usage pattern. 471 * To maintain simplicitly, it doesn't make use of any abstractions for common 472 * code, different (asyncronous) stages with fence signalling critical paths, 473 * any other helpers or error handling in terms of freeing memory and dropping 474 * previously taken locks. 475 * 476 * 1) Obtain a list of &drm_gpuva_op to create a new mapping:: 477 * 478 * // Allocates a new &drm_gpuva. 479 * struct drm_gpuva * driver_gpuva_alloc(void); 480 * 481 * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva 482 * // structure in individual driver structures and lock the dma-resv with 483 * // drm_exec or similar helpers. 484 * int driver_mapping_create(struct drm_gpuvm *gpuvm, 485 * u64 addr, u64 range, 486 * struct drm_gem_object *obj, u64 offset) 487 * { 488 * struct drm_gpuva_ops *ops; 489 * struct drm_gpuva_op *op 490 * struct drm_gpuvm_bo *vm_bo; 491 * 492 * driver_lock_va_space(); 493 * ops = drm_gpuvm_sm_map_ops_create(gpuvm, addr, range, 494 * obj, offset); 495 * if (IS_ERR(ops)) 496 * return PTR_ERR(ops); 497 * 498 * vm_bo = drm_gpuvm_bo_obtain(gpuvm, obj); 499 * if (IS_ERR(vm_bo)) 500 * return PTR_ERR(vm_bo); 501 * 502 * drm_gpuva_for_each_op(op, ops) { 503 * struct drm_gpuva *va; 504 * 505 * switch (op->op) { 506 * case DRM_GPUVA_OP_MAP: 507 * va = driver_gpuva_alloc(); 508 * if (!va) 509 * ; // unwind previous VA space updates, 510 * // free memory and unlock 511 * 512 * driver_vm_map(); 513 * drm_gpuva_map(gpuvm, va, &op->map); 514 * drm_gpuva_link(va, vm_bo); 515 * 516 * break; 517 * case DRM_GPUVA_OP_REMAP: { 518 * struct drm_gpuva *prev = NULL, *next = NULL; 519 * 520 * va = op->remap.unmap->va; 521 * 522 * if (op->remap.prev) { 523 * prev = driver_gpuva_alloc(); 524 * if (!prev) 525 * ; // unwind previous VA space 526 * // updates, free memory and 527 * // unlock 528 * } 529 * 530 * if (op->remap.next) { 531 * next = driver_gpuva_alloc(); 532 * if (!next) 533 * ; // unwind previous VA space 534 * // updates, free memory and 535 * // unlock 536 * } 537 * 538 * driver_vm_remap(); 539 * drm_gpuva_remap(prev, next, &op->remap); 540 * 541 * if (prev) 542 * drm_gpuva_link(prev, va->vm_bo); 543 * if (next) 544 * drm_gpuva_link(next, va->vm_bo); 545 * drm_gpuva_unlink(va); 546 * 547 * break; 548 * } 549 * case DRM_GPUVA_OP_UNMAP: 550 * va = op->unmap->va; 551 * 552 * driver_vm_unmap(); 553 * drm_gpuva_unlink(va); 554 * drm_gpuva_unmap(&op->unmap); 555 * 556 * break; 557 * default: 558 * break; 559 * } 560 * } 561 * drm_gpuvm_bo_put(vm_bo); 562 * driver_unlock_va_space(); 563 * 564 * return 0; 565 * } 566 * 567 * 2) Receive a callback for each &drm_gpuva_op to create a new mapping:: 568 * 569 * struct driver_context { 570 * struct drm_gpuvm *gpuvm; 571 * struct drm_gpuvm_bo *vm_bo; 572 * struct drm_gpuva *new_va; 573 * struct drm_gpuva *prev_va; 574 * struct drm_gpuva *next_va; 575 * }; 576 * 577 * // ops to pass to drm_gpuvm_init() 578 * static const struct drm_gpuvm_ops driver_gpuvm_ops = { 579 * .sm_step_map = driver_gpuva_map, 580 * .sm_step_remap = driver_gpuva_remap, 581 * .sm_step_unmap = driver_gpuva_unmap, 582 * }; 583 * 584 * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva 585 * // structure in individual driver structures and lock the dma-resv with 586 * // drm_exec or similar helpers. 587 * int driver_mapping_create(struct drm_gpuvm *gpuvm, 588 * u64 addr, u64 range, 589 * struct drm_gem_object *obj, u64 offset) 590 * { 591 * struct driver_context ctx; 592 * struct drm_gpuvm_bo *vm_bo; 593 * struct drm_gpuva_ops *ops; 594 * struct drm_gpuva_op *op; 595 * int ret = 0; 596 * 597 * ctx.gpuvm = gpuvm; 598 * 599 * ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL); 600 * ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL); 601 * ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL); 602 * ctx.vm_bo = drm_gpuvm_bo_create(gpuvm, obj); 603 * if (!ctx.new_va || !ctx.prev_va || !ctx.next_va || !vm_bo) { 604 * ret = -ENOMEM; 605 * goto out; 606 * } 607 * 608 * // Typically protected with a driver specific GEM gpuva lock 609 * // used in the fence signaling path for drm_gpuva_link() and 610 * // drm_gpuva_unlink(), hence pre-allocate. 611 * ctx.vm_bo = drm_gpuvm_bo_obtain_prealloc(ctx.vm_bo); 612 * 613 * driver_lock_va_space(); 614 * ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset); 615 * driver_unlock_va_space(); 616 * 617 * out: 618 * drm_gpuvm_bo_put(ctx.vm_bo); 619 * kfree(ctx.new_va); 620 * kfree(ctx.prev_va); 621 * kfree(ctx.next_va); 622 * return ret; 623 * } 624 * 625 * int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx) 626 * { 627 * struct driver_context *ctx = __ctx; 628 * 629 * drm_gpuva_map(ctx->vm, ctx->new_va, &op->map); 630 * 631 * drm_gpuva_link(ctx->new_va, ctx->vm_bo); 632 * 633 * // prevent the new GPUVA from being freed in 634 * // driver_mapping_create() 635 * ctx->new_va = NULL; 636 * 637 * return 0; 638 * } 639 * 640 * int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx) 641 * { 642 * struct driver_context *ctx = __ctx; 643 * struct drm_gpuva *va = op->remap.unmap->va; 644 * 645 * drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap); 646 * 647 * if (op->remap.prev) { 648 * drm_gpuva_link(ctx->prev_va, va->vm_bo); 649 * ctx->prev_va = NULL; 650 * } 651 * 652 * if (op->remap.next) { 653 * drm_gpuva_link(ctx->next_va, va->vm_bo); 654 * ctx->next_va = NULL; 655 * } 656 * 657 * drm_gpuva_unlink(va); 658 * kfree(va); 659 * 660 * return 0; 661 * } 662 * 663 * int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx) 664 * { 665 * drm_gpuva_unlink(op->unmap.va); 666 * drm_gpuva_unmap(&op->unmap); 667 * kfree(op->unmap.va); 668 * 669 * return 0; 670 * } 671 */ 672 673 /** 674 * get_next_vm_bo_from_list() - get the next vm_bo element 675 * @__gpuvm: the &drm_gpuvm 676 * @__list_name: the name of the list we're iterating on 677 * @__local_list: a pointer to the local list used to store already iterated items 678 * @__prev_vm_bo: the previous element we got from get_next_vm_bo_from_list() 679 * 680 * This helper is here to provide lockless list iteration. Lockless as in, the 681 * iterator releases the lock immediately after picking the first element from 682 * the list, so list insertion deletion can happen concurrently. 683 * 684 * Elements popped from the original list are kept in a local list, so removal 685 * and is_empty checks can still happen while we're iterating the list. 686 */ 687 #define get_next_vm_bo_from_list(__gpuvm, __list_name, __local_list, __prev_vm_bo) \ 688 ({ \ 689 struct drm_gpuvm_bo *__vm_bo = NULL; \ 690 \ 691 drm_gpuvm_bo_put(__prev_vm_bo); \ 692 \ 693 spin_lock(&(__gpuvm)->__list_name.lock); \ 694 if (!(__gpuvm)->__list_name.local_list) \ 695 (__gpuvm)->__list_name.local_list = __local_list; \ 696 else \ 697 drm_WARN_ON((__gpuvm)->drm, \ 698 (__gpuvm)->__list_name.local_list != __local_list); \ 699 \ 700 while (!list_empty(&(__gpuvm)->__list_name.list)) { \ 701 __vm_bo = list_first_entry(&(__gpuvm)->__list_name.list, \ 702 struct drm_gpuvm_bo, \ 703 list.entry.__list_name); \ 704 if (kref_get_unless_zero(&__vm_bo->kref)) { \ 705 list_move_tail(&(__vm_bo)->list.entry.__list_name, \ 706 __local_list); \ 707 break; \ 708 } else { \ 709 list_del_init(&(__vm_bo)->list.entry.__list_name); \ 710 __vm_bo = NULL; \ 711 } \ 712 } \ 713 spin_unlock(&(__gpuvm)->__list_name.lock); \ 714 \ 715 __vm_bo; \ 716 }) 717 718 /** 719 * for_each_vm_bo_in_list() - internal vm_bo list iterator 720 * @__gpuvm: the &drm_gpuvm 721 * @__list_name: the name of the list we're iterating on 722 * @__local_list: a pointer to the local list used to store already iterated items 723 * @__vm_bo: the struct drm_gpuvm_bo to assign in each iteration step 724 * 725 * This helper is here to provide lockless list iteration. Lockless as in, the 726 * iterator releases the lock immediately after picking the first element from the 727 * list, hence list insertion and deletion can happen concurrently. 728 * 729 * It is not allowed to re-assign the vm_bo pointer from inside this loop. 730 * 731 * Typical use: 732 * 733 * struct drm_gpuvm_bo *vm_bo; 734 * LIST_HEAD(my_local_list); 735 * 736 * ret = 0; 737 * for_each_vm_bo_in_list(gpuvm, <list_name>, &my_local_list, vm_bo) { 738 * ret = do_something_with_vm_bo(..., vm_bo); 739 * if (ret) 740 * break; 741 * } 742 * // Drop ref in case we break out of the loop. 743 * drm_gpuvm_bo_put(vm_bo); 744 * restore_vm_bo_list(gpuvm, <list_name>, &my_local_list); 745 * 746 * 747 * Only used for internal list iterations, not meant to be exposed to the outside 748 * world. 749 */ 750 #define for_each_vm_bo_in_list(__gpuvm, __list_name, __local_list, __vm_bo) \ 751 for (__vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name, \ 752 __local_list, NULL); \ 753 __vm_bo; \ 754 __vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name, \ 755 __local_list, __vm_bo)) 756 757 static void 758 __restore_vm_bo_list(struct drm_gpuvm *gpuvm, spinlock_t *lock, 759 struct list_head *list, struct list_head **local_list) 760 { 761 /* Merge back the two lists, moving local list elements to the 762 * head to preserve previous ordering, in case it matters. 763 */ 764 spin_lock(lock); 765 if (*local_list) { 766 list_splice(*local_list, list); 767 *local_list = NULL; 768 } 769 spin_unlock(lock); 770 } 771 772 /** 773 * restore_vm_bo_list() - move vm_bo elements back to their original list 774 * @__gpuvm: the &drm_gpuvm 775 * @__list_name: the name of the list we're iterating on 776 * 777 * When we're done iterating a vm_bo list, we should call restore_vm_bo_list() 778 * to restore the original state and let new iterations take place. 779 */ 780 #define restore_vm_bo_list(__gpuvm, __list_name) \ 781 __restore_vm_bo_list((__gpuvm), &(__gpuvm)->__list_name.lock, \ 782 &(__gpuvm)->__list_name.list, \ 783 &(__gpuvm)->__list_name.local_list) 784 785 static void 786 cond_spin_lock(spinlock_t *lock, bool cond) 787 { 788 if (cond) 789 spin_lock(lock); 790 } 791 792 static void 793 cond_spin_unlock(spinlock_t *lock, bool cond) 794 { 795 if (cond) 796 spin_unlock(lock); 797 } 798 799 static void 800 __drm_gpuvm_bo_list_add(struct drm_gpuvm *gpuvm, spinlock_t *lock, 801 struct list_head *entry, struct list_head *list) 802 { 803 cond_spin_lock(lock, !!lock); 804 if (list_empty(entry)) 805 list_add_tail(entry, list); 806 cond_spin_unlock(lock, !!lock); 807 } 808 809 /** 810 * drm_gpuvm_bo_list_add() - insert a vm_bo into the given list 811 * @__vm_bo: the &drm_gpuvm_bo 812 * @__list_name: the name of the list to insert into 813 * @__lock: whether to lock with the internal spinlock 814 * 815 * Inserts the given @__vm_bo into the list specified by @__list_name. 816 */ 817 #define drm_gpuvm_bo_list_add(__vm_bo, __list_name, __lock) \ 818 __drm_gpuvm_bo_list_add((__vm_bo)->vm, \ 819 __lock ? &(__vm_bo)->vm->__list_name.lock : \ 820 NULL, \ 821 &(__vm_bo)->list.entry.__list_name, \ 822 &(__vm_bo)->vm->__list_name.list) 823 824 static void 825 __drm_gpuvm_bo_list_del(struct drm_gpuvm *gpuvm, spinlock_t *lock, 826 struct list_head *entry, bool init) 827 { 828 cond_spin_lock(lock, !!lock); 829 if (init) { 830 if (!list_empty(entry)) 831 list_del_init(entry); 832 } else { 833 list_del(entry); 834 } 835 cond_spin_unlock(lock, !!lock); 836 } 837 838 /** 839 * drm_gpuvm_bo_list_del_init() - remove a vm_bo from the given list 840 * @__vm_bo: the &drm_gpuvm_bo 841 * @__list_name: the name of the list to insert into 842 * @__lock: whether to lock with the internal spinlock 843 * 844 * Removes the given @__vm_bo from the list specified by @__list_name. 845 */ 846 #define drm_gpuvm_bo_list_del_init(__vm_bo, __list_name, __lock) \ 847 __drm_gpuvm_bo_list_del((__vm_bo)->vm, \ 848 __lock ? &(__vm_bo)->vm->__list_name.lock : \ 849 NULL, \ 850 &(__vm_bo)->list.entry.__list_name, \ 851 true) 852 853 /** 854 * drm_gpuvm_bo_list_del() - remove a vm_bo from the given list 855 * @__vm_bo: the &drm_gpuvm_bo 856 * @__list_name: the name of the list to insert into 857 * @__lock: whether to lock with the internal spinlock 858 * 859 * Removes the given @__vm_bo from the list specified by @__list_name. 860 */ 861 #define drm_gpuvm_bo_list_del(__vm_bo, __list_name, __lock) \ 862 __drm_gpuvm_bo_list_del((__vm_bo)->vm, \ 863 __lock ? &(__vm_bo)->vm->__list_name.lock : \ 864 NULL, \ 865 &(__vm_bo)->list.entry.__list_name, \ 866 false) 867 868 #define to_drm_gpuva(__node) container_of((__node), struct drm_gpuva, rb.node) 869 870 #define GPUVA_START(node) ((node)->va.addr) 871 #define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1) 872 873 /* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain 874 * about this. 875 */ 876 INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last, 877 GPUVA_START, GPUVA_LAST, static __maybe_unused, 878 drm_gpuva_it) 879 880 static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm, 881 struct drm_gpuva *va); 882 static void __drm_gpuva_remove(struct drm_gpuva *va); 883 884 static bool 885 drm_gpuvm_check_overflow(u64 addr, u64 range) 886 { 887 u64 end; 888 889 return check_add_overflow(addr, range, &end); 890 } 891 892 static bool 893 drm_gpuvm_warn_check_overflow(struct drm_gpuvm *gpuvm, u64 addr, u64 range) 894 { 895 return drm_WARN(gpuvm->drm, drm_gpuvm_check_overflow(addr, range), 896 "GPUVA address limited to %zu bytes.\n", sizeof(addr)); 897 } 898 899 static bool 900 drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range) 901 { 902 u64 end = addr + range; 903 u64 mm_start = gpuvm->mm_start; 904 u64 mm_end = mm_start + gpuvm->mm_range; 905 906 return addr >= mm_start && end <= mm_end; 907 } 908 909 static bool 910 drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range) 911 { 912 u64 end = addr + range; 913 u64 kstart = gpuvm->kernel_alloc_node.va.addr; 914 u64 krange = gpuvm->kernel_alloc_node.va.range; 915 u64 kend = kstart + krange; 916 917 return krange && addr < kend && kstart < end; 918 } 919 920 /** 921 * drm_gpuvm_range_valid() - checks whether the given range is valid for the 922 * given &drm_gpuvm 923 * @gpuvm: the GPUVM to check the range for 924 * @addr: the base address 925 * @range: the range starting from the base address 926 * 927 * Checks whether the range is within the GPUVM's managed boundaries. 928 * 929 * Returns: true for a valid range, false otherwise 930 */ 931 bool 932 drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm, 933 u64 addr, u64 range) 934 { 935 return !drm_gpuvm_check_overflow(addr, range) && 936 drm_gpuvm_in_mm_range(gpuvm, addr, range) && 937 !drm_gpuvm_in_kernel_node(gpuvm, addr, range); 938 } 939 EXPORT_SYMBOL_GPL(drm_gpuvm_range_valid); 940 941 static void 942 drm_gpuvm_gem_object_free(struct drm_gem_object *obj) 943 { 944 drm_gem_object_release(obj); 945 kfree(obj); 946 } 947 948 static const struct drm_gem_object_funcs drm_gpuvm_object_funcs = { 949 .free = drm_gpuvm_gem_object_free, 950 }; 951 952 /** 953 * drm_gpuvm_resv_object_alloc() - allocate a dummy &drm_gem_object 954 * @drm: the drivers &drm_device 955 * 956 * Allocates a dummy &drm_gem_object which can be passed to drm_gpuvm_init() in 957 * order to serve as root GEM object providing the &drm_resv shared across 958 * &drm_gem_objects local to a single GPUVM. 959 * 960 * Returns: the &drm_gem_object on success, NULL on failure 961 */ 962 struct drm_gem_object * 963 drm_gpuvm_resv_object_alloc(struct drm_device *drm) 964 { 965 struct drm_gem_object *obj; 966 967 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 968 if (!obj) 969 return NULL; 970 971 obj->funcs = &drm_gpuvm_object_funcs; 972 drm_gem_private_object_init(drm, obj, 0); 973 974 return obj; 975 } 976 EXPORT_SYMBOL_GPL(drm_gpuvm_resv_object_alloc); 977 978 /** 979 * drm_gpuvm_init() - initialize a &drm_gpuvm 980 * @gpuvm: pointer to the &drm_gpuvm to initialize 981 * @name: the name of the GPU VA space 982 * @flags: the &drm_gpuvm_flags for this GPUVM 983 * @drm: the &drm_device this VM resides in 984 * @r_obj: the resv &drm_gem_object providing the GPUVM's common &dma_resv 985 * @start_offset: the start offset of the GPU VA space 986 * @range: the size of the GPU VA space 987 * @reserve_offset: the start of the kernel reserved GPU VA area 988 * @reserve_range: the size of the kernel reserved GPU VA area 989 * @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap 990 * 991 * The &drm_gpuvm must be initialized with this function before use. 992 * 993 * Note that @gpuvm must be cleared to 0 before calling this function. The given 994 * &name is expected to be managed by the surrounding driver structures. 995 */ 996 void 997 drm_gpuvm_init(struct drm_gpuvm *gpuvm, const char *name, 998 enum drm_gpuvm_flags flags, 999 struct drm_device *drm, 1000 struct drm_gem_object *r_obj, 1001 u64 start_offset, u64 range, 1002 u64 reserve_offset, u64 reserve_range, 1003 const struct drm_gpuvm_ops *ops) 1004 { 1005 gpuvm->rb.tree = RB_ROOT_CACHED; 1006 INIT_LIST_HEAD(&gpuvm->rb.list); 1007 1008 INIT_LIST_HEAD(&gpuvm->extobj.list); 1009 spin_lock_init(&gpuvm->extobj.lock); 1010 1011 INIT_LIST_HEAD(&gpuvm->evict.list); 1012 spin_lock_init(&gpuvm->evict.lock); 1013 1014 kref_init(&gpuvm->kref); 1015 1016 gpuvm->name = name ? name : "unknown"; 1017 gpuvm->flags = flags; 1018 gpuvm->ops = ops; 1019 gpuvm->drm = drm; 1020 gpuvm->r_obj = r_obj; 1021 1022 drm_gem_object_get(r_obj); 1023 1024 drm_gpuvm_warn_check_overflow(gpuvm, start_offset, range); 1025 gpuvm->mm_start = start_offset; 1026 gpuvm->mm_range = range; 1027 1028 memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva)); 1029 if (reserve_range) { 1030 gpuvm->kernel_alloc_node.va.addr = reserve_offset; 1031 gpuvm->kernel_alloc_node.va.range = reserve_range; 1032 1033 if (likely(!drm_gpuvm_warn_check_overflow(gpuvm, reserve_offset, 1034 reserve_range))) 1035 __drm_gpuva_insert(gpuvm, &gpuvm->kernel_alloc_node); 1036 } 1037 } 1038 EXPORT_SYMBOL_GPL(drm_gpuvm_init); 1039 1040 static void 1041 drm_gpuvm_fini(struct drm_gpuvm *gpuvm) 1042 { 1043 gpuvm->name = NULL; 1044 1045 if (gpuvm->kernel_alloc_node.va.range) 1046 __drm_gpuva_remove(&gpuvm->kernel_alloc_node); 1047 1048 drm_WARN(gpuvm->drm, !RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root), 1049 "GPUVA tree is not empty, potentially leaking memory.\n"); 1050 1051 drm_WARN(gpuvm->drm, !list_empty(&gpuvm->extobj.list), 1052 "Extobj list should be empty.\n"); 1053 drm_WARN(gpuvm->drm, !list_empty(&gpuvm->evict.list), 1054 "Evict list should be empty.\n"); 1055 1056 drm_gem_object_put(gpuvm->r_obj); 1057 } 1058 1059 static void 1060 drm_gpuvm_free(struct kref *kref) 1061 { 1062 struct drm_gpuvm *gpuvm = container_of(kref, struct drm_gpuvm, kref); 1063 1064 drm_gpuvm_fini(gpuvm); 1065 1066 if (drm_WARN_ON(gpuvm->drm, !gpuvm->ops->vm_free)) 1067 return; 1068 1069 gpuvm->ops->vm_free(gpuvm); 1070 } 1071 1072 /** 1073 * drm_gpuvm_put() - drop a struct drm_gpuvm reference 1074 * @gpuvm: the &drm_gpuvm to release the reference of 1075 * 1076 * This releases a reference to @gpuvm. 1077 * 1078 * This function may be called from atomic context. 1079 */ 1080 void 1081 drm_gpuvm_put(struct drm_gpuvm *gpuvm) 1082 { 1083 if (gpuvm) 1084 kref_put(&gpuvm->kref, drm_gpuvm_free); 1085 } 1086 EXPORT_SYMBOL_GPL(drm_gpuvm_put); 1087 1088 static int 1089 exec_prepare_obj(struct drm_exec *exec, struct drm_gem_object *obj, 1090 unsigned int num_fences) 1091 { 1092 return num_fences ? drm_exec_prepare_obj(exec, obj, num_fences) : 1093 drm_exec_lock_obj(exec, obj); 1094 } 1095 1096 /** 1097 * drm_gpuvm_prepare_vm() - prepare the GPUVMs common dma-resv 1098 * @gpuvm: the &drm_gpuvm 1099 * @exec: the &drm_exec context 1100 * @num_fences: the amount of &dma_fences to reserve 1101 * 1102 * Calls drm_exec_prepare_obj() for the GPUVMs dummy &drm_gem_object; if 1103 * @num_fences is zero drm_exec_lock_obj() is called instead. 1104 * 1105 * Using this function directly, it is the drivers responsibility to call 1106 * drm_exec_init() and drm_exec_fini() accordingly. 1107 * 1108 * Returns: 0 on success, negative error code on failure. 1109 */ 1110 int 1111 drm_gpuvm_prepare_vm(struct drm_gpuvm *gpuvm, 1112 struct drm_exec *exec, 1113 unsigned int num_fences) 1114 { 1115 return exec_prepare_obj(exec, gpuvm->r_obj, num_fences); 1116 } 1117 EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_vm); 1118 1119 static int 1120 __drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm, 1121 struct drm_exec *exec, 1122 unsigned int num_fences) 1123 { 1124 struct drm_gpuvm_bo *vm_bo; 1125 LIST_HEAD(extobjs); 1126 int ret = 0; 1127 1128 for_each_vm_bo_in_list(gpuvm, extobj, &extobjs, vm_bo) { 1129 ret = exec_prepare_obj(exec, vm_bo->obj, num_fences); 1130 if (ret) 1131 break; 1132 } 1133 /* Drop ref in case we break out of the loop. */ 1134 drm_gpuvm_bo_put(vm_bo); 1135 restore_vm_bo_list(gpuvm, extobj); 1136 1137 return ret; 1138 } 1139 1140 static int 1141 drm_gpuvm_prepare_objects_locked(struct drm_gpuvm *gpuvm, 1142 struct drm_exec *exec, 1143 unsigned int num_fences) 1144 { 1145 struct drm_gpuvm_bo *vm_bo; 1146 int ret = 0; 1147 1148 drm_gpuvm_resv_assert_held(gpuvm); 1149 list_for_each_entry(vm_bo, &gpuvm->extobj.list, list.entry.extobj) { 1150 ret = exec_prepare_obj(exec, vm_bo->obj, num_fences); 1151 if (ret) 1152 break; 1153 1154 if (vm_bo->evicted) 1155 drm_gpuvm_bo_list_add(vm_bo, evict, false); 1156 } 1157 1158 return ret; 1159 } 1160 1161 /** 1162 * drm_gpuvm_prepare_objects() - prepare all assoiciated BOs 1163 * @gpuvm: the &drm_gpuvm 1164 * @exec: the &drm_exec locking context 1165 * @num_fences: the amount of &dma_fences to reserve 1166 * 1167 * Calls drm_exec_prepare_obj() for all &drm_gem_objects the given 1168 * &drm_gpuvm contains mappings of; if @num_fences is zero drm_exec_lock_obj() 1169 * is called instead. 1170 * 1171 * Using this function directly, it is the drivers responsibility to call 1172 * drm_exec_init() and drm_exec_fini() accordingly. 1173 * 1174 * Note: This function is safe against concurrent insertion and removal of 1175 * external objects, however it is not safe against concurrent usage itself. 1176 * 1177 * Drivers need to make sure to protect this case with either an outer VM lock 1178 * or by calling drm_gpuvm_prepare_vm() before this function within the 1179 * drm_exec_until_all_locked() loop, such that the GPUVM's dma-resv lock ensures 1180 * mutual exclusion. 1181 * 1182 * Returns: 0 on success, negative error code on failure. 1183 */ 1184 int 1185 drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm, 1186 struct drm_exec *exec, 1187 unsigned int num_fences) 1188 { 1189 if (drm_gpuvm_resv_protected(gpuvm)) 1190 return drm_gpuvm_prepare_objects_locked(gpuvm, exec, 1191 num_fences); 1192 else 1193 return __drm_gpuvm_prepare_objects(gpuvm, exec, num_fences); 1194 } 1195 EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_objects); 1196 1197 /** 1198 * drm_gpuvm_prepare_range() - prepare all BOs mapped within a given range 1199 * @gpuvm: the &drm_gpuvm 1200 * @exec: the &drm_exec locking context 1201 * @addr: the start address within the VA space 1202 * @range: the range to iterate within the VA space 1203 * @num_fences: the amount of &dma_fences to reserve 1204 * 1205 * Calls drm_exec_prepare_obj() for all &drm_gem_objects mapped between @addr 1206 * and @addr + @range; if @num_fences is zero drm_exec_lock_obj() is called 1207 * instead. 1208 * 1209 * Returns: 0 on success, negative error code on failure. 1210 */ 1211 int 1212 drm_gpuvm_prepare_range(struct drm_gpuvm *gpuvm, struct drm_exec *exec, 1213 u64 addr, u64 range, unsigned int num_fences) 1214 { 1215 struct drm_gpuva *va; 1216 u64 end = addr + range; 1217 int ret; 1218 1219 drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) { 1220 struct drm_gem_object *obj = va->gem.obj; 1221 1222 ret = exec_prepare_obj(exec, obj, num_fences); 1223 if (ret) 1224 return ret; 1225 } 1226 1227 return 0; 1228 } 1229 EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_range); 1230 1231 /** 1232 * drm_gpuvm_exec_lock() - lock all dma-resv of all assoiciated BOs 1233 * @vm_exec: the &drm_gpuvm_exec wrapper 1234 * 1235 * Acquires all dma-resv locks of all &drm_gem_objects the given 1236 * &drm_gpuvm contains mappings of. 1237 * 1238 * Addionally, when calling this function with struct drm_gpuvm_exec::extra 1239 * being set the driver receives the given @fn callback to lock additional 1240 * dma-resv in the context of the &drm_gpuvm_exec instance. Typically, drivers 1241 * would call drm_exec_prepare_obj() from within this callback. 1242 * 1243 * Returns: 0 on success, negative error code on failure. 1244 */ 1245 int 1246 drm_gpuvm_exec_lock(struct drm_gpuvm_exec *vm_exec) 1247 { 1248 struct drm_gpuvm *gpuvm = vm_exec->vm; 1249 struct drm_exec *exec = &vm_exec->exec; 1250 unsigned int num_fences = vm_exec->num_fences; 1251 int ret; 1252 1253 drm_exec_init(exec, vm_exec->flags); 1254 1255 drm_exec_until_all_locked(exec) { 1256 ret = drm_gpuvm_prepare_vm(gpuvm, exec, num_fences); 1257 drm_exec_retry_on_contention(exec); 1258 if (ret) 1259 goto err; 1260 1261 ret = drm_gpuvm_prepare_objects(gpuvm, exec, num_fences); 1262 drm_exec_retry_on_contention(exec); 1263 if (ret) 1264 goto err; 1265 1266 if (vm_exec->extra.fn) { 1267 ret = vm_exec->extra.fn(vm_exec); 1268 drm_exec_retry_on_contention(exec); 1269 if (ret) 1270 goto err; 1271 } 1272 } 1273 1274 return 0; 1275 1276 err: 1277 drm_exec_fini(exec); 1278 return ret; 1279 } 1280 EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock); 1281 1282 static int 1283 fn_lock_array(struct drm_gpuvm_exec *vm_exec) 1284 { 1285 struct { 1286 struct drm_gem_object **objs; 1287 unsigned int num_objs; 1288 } *args = vm_exec->extra.priv; 1289 1290 return drm_exec_prepare_array(&vm_exec->exec, args->objs, 1291 args->num_objs, vm_exec->num_fences); 1292 } 1293 1294 /** 1295 * drm_gpuvm_exec_lock_array() - lock all dma-resv of all assoiciated BOs 1296 * @vm_exec: the &drm_gpuvm_exec wrapper 1297 * @objs: additional &drm_gem_objects to lock 1298 * @num_objs: the number of additional &drm_gem_objects to lock 1299 * 1300 * Acquires all dma-resv locks of all &drm_gem_objects the given &drm_gpuvm 1301 * contains mappings of, plus the ones given through @objs. 1302 * 1303 * Returns: 0 on success, negative error code on failure. 1304 */ 1305 int 1306 drm_gpuvm_exec_lock_array(struct drm_gpuvm_exec *vm_exec, 1307 struct drm_gem_object **objs, 1308 unsigned int num_objs) 1309 { 1310 struct { 1311 struct drm_gem_object **objs; 1312 unsigned int num_objs; 1313 } args; 1314 1315 args.objs = objs; 1316 args.num_objs = num_objs; 1317 1318 vm_exec->extra.fn = fn_lock_array; 1319 vm_exec->extra.priv = &args; 1320 1321 return drm_gpuvm_exec_lock(vm_exec); 1322 } 1323 EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_array); 1324 1325 /** 1326 * drm_gpuvm_exec_lock_range() - prepare all BOs mapped within a given range 1327 * @vm_exec: the &drm_gpuvm_exec wrapper 1328 * @addr: the start address within the VA space 1329 * @range: the range to iterate within the VA space 1330 * 1331 * Acquires all dma-resv locks of all &drm_gem_objects mapped between @addr and 1332 * @addr + @range. 1333 * 1334 * Returns: 0 on success, negative error code on failure. 1335 */ 1336 int 1337 drm_gpuvm_exec_lock_range(struct drm_gpuvm_exec *vm_exec, 1338 u64 addr, u64 range) 1339 { 1340 struct drm_gpuvm *gpuvm = vm_exec->vm; 1341 struct drm_exec *exec = &vm_exec->exec; 1342 int ret; 1343 1344 drm_exec_init(exec, vm_exec->flags); 1345 1346 drm_exec_until_all_locked(exec) { 1347 ret = drm_gpuvm_prepare_range(gpuvm, exec, addr, range, 1348 vm_exec->num_fences); 1349 drm_exec_retry_on_contention(exec); 1350 if (ret) 1351 goto err; 1352 } 1353 1354 return ret; 1355 1356 err: 1357 drm_exec_fini(exec); 1358 return ret; 1359 } 1360 EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_range); 1361 1362 static int 1363 __drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec) 1364 { 1365 const struct drm_gpuvm_ops *ops = gpuvm->ops; 1366 struct drm_gpuvm_bo *vm_bo; 1367 LIST_HEAD(evict); 1368 int ret = 0; 1369 1370 for_each_vm_bo_in_list(gpuvm, evict, &evict, vm_bo) { 1371 ret = ops->vm_bo_validate(vm_bo, exec); 1372 if (ret) 1373 break; 1374 } 1375 /* Drop ref in case we break out of the loop. */ 1376 drm_gpuvm_bo_put(vm_bo); 1377 restore_vm_bo_list(gpuvm, evict); 1378 1379 return ret; 1380 } 1381 1382 static int 1383 drm_gpuvm_validate_locked(struct drm_gpuvm *gpuvm, struct drm_exec *exec) 1384 { 1385 const struct drm_gpuvm_ops *ops = gpuvm->ops; 1386 struct drm_gpuvm_bo *vm_bo, *next; 1387 int ret = 0; 1388 1389 drm_gpuvm_resv_assert_held(gpuvm); 1390 1391 list_for_each_entry_safe(vm_bo, next, &gpuvm->evict.list, 1392 list.entry.evict) { 1393 ret = ops->vm_bo_validate(vm_bo, exec); 1394 if (ret) 1395 break; 1396 1397 dma_resv_assert_held(vm_bo->obj->resv); 1398 if (!vm_bo->evicted) 1399 drm_gpuvm_bo_list_del_init(vm_bo, evict, false); 1400 } 1401 1402 return ret; 1403 } 1404 1405 /** 1406 * drm_gpuvm_validate() - validate all BOs marked as evicted 1407 * @gpuvm: the &drm_gpuvm to validate evicted BOs 1408 * @exec: the &drm_exec instance used for locking the GPUVM 1409 * 1410 * Calls the &drm_gpuvm_ops::vm_bo_validate callback for all evicted buffer 1411 * objects being mapped in the given &drm_gpuvm. 1412 * 1413 * Returns: 0 on success, negative error code on failure. 1414 */ 1415 int 1416 drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec) 1417 { 1418 const struct drm_gpuvm_ops *ops = gpuvm->ops; 1419 1420 if (unlikely(!ops || !ops->vm_bo_validate)) 1421 return -EOPNOTSUPP; 1422 1423 if (drm_gpuvm_resv_protected(gpuvm)) 1424 return drm_gpuvm_validate_locked(gpuvm, exec); 1425 else 1426 return __drm_gpuvm_validate(gpuvm, exec); 1427 } 1428 EXPORT_SYMBOL_GPL(drm_gpuvm_validate); 1429 1430 /** 1431 * drm_gpuvm_resv_add_fence - add fence to private and all extobj 1432 * dma-resv 1433 * @gpuvm: the &drm_gpuvm to add a fence to 1434 * @exec: the &drm_exec locking context 1435 * @fence: fence to add 1436 * @private_usage: private dma-resv usage 1437 * @extobj_usage: extobj dma-resv usage 1438 */ 1439 void 1440 drm_gpuvm_resv_add_fence(struct drm_gpuvm *gpuvm, 1441 struct drm_exec *exec, 1442 struct dma_fence *fence, 1443 enum dma_resv_usage private_usage, 1444 enum dma_resv_usage extobj_usage) 1445 { 1446 struct drm_gem_object *obj; 1447 unsigned long index; 1448 1449 drm_exec_for_each_locked_object(exec, index, obj) { 1450 dma_resv_assert_held(obj->resv); 1451 dma_resv_add_fence(obj->resv, fence, 1452 drm_gpuvm_is_extobj(gpuvm, obj) ? 1453 extobj_usage : private_usage); 1454 } 1455 } 1456 EXPORT_SYMBOL_GPL(drm_gpuvm_resv_add_fence); 1457 1458 /** 1459 * drm_gpuvm_bo_create() - create a new instance of struct drm_gpuvm_bo 1460 * @gpuvm: The &drm_gpuvm the @obj is mapped in. 1461 * @obj: The &drm_gem_object being mapped in the @gpuvm. 1462 * 1463 * If provided by the driver, this function uses the &drm_gpuvm_ops 1464 * vm_bo_alloc() callback to allocate. 1465 * 1466 * Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure 1467 */ 1468 struct drm_gpuvm_bo * 1469 drm_gpuvm_bo_create(struct drm_gpuvm *gpuvm, 1470 struct drm_gem_object *obj) 1471 { 1472 const struct drm_gpuvm_ops *ops = gpuvm->ops; 1473 struct drm_gpuvm_bo *vm_bo; 1474 1475 if (ops && ops->vm_bo_alloc) 1476 vm_bo = ops->vm_bo_alloc(); 1477 else 1478 vm_bo = kzalloc(sizeof(*vm_bo), GFP_KERNEL); 1479 1480 if (unlikely(!vm_bo)) 1481 return NULL; 1482 1483 vm_bo->vm = drm_gpuvm_get(gpuvm); 1484 vm_bo->obj = obj; 1485 drm_gem_object_get(obj); 1486 1487 kref_init(&vm_bo->kref); 1488 INIT_LIST_HEAD(&vm_bo->list.gpuva); 1489 INIT_LIST_HEAD(&vm_bo->list.entry.gem); 1490 1491 INIT_LIST_HEAD(&vm_bo->list.entry.extobj); 1492 INIT_LIST_HEAD(&vm_bo->list.entry.evict); 1493 1494 return vm_bo; 1495 } 1496 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_create); 1497 1498 static void 1499 drm_gpuvm_bo_destroy(struct kref *kref) 1500 { 1501 struct drm_gpuvm_bo *vm_bo = container_of(kref, struct drm_gpuvm_bo, 1502 kref); 1503 struct drm_gpuvm *gpuvm = vm_bo->vm; 1504 const struct drm_gpuvm_ops *ops = gpuvm->ops; 1505 struct drm_gem_object *obj = vm_bo->obj; 1506 bool lock = !drm_gpuvm_resv_protected(gpuvm); 1507 1508 if (!lock) 1509 drm_gpuvm_resv_assert_held(gpuvm); 1510 1511 drm_gpuvm_bo_list_del(vm_bo, extobj, lock); 1512 drm_gpuvm_bo_list_del(vm_bo, evict, lock); 1513 1514 drm_gem_gpuva_assert_lock_held(obj); 1515 list_del(&vm_bo->list.entry.gem); 1516 1517 if (ops && ops->vm_bo_free) 1518 ops->vm_bo_free(vm_bo); 1519 else 1520 kfree(vm_bo); 1521 1522 drm_gpuvm_put(gpuvm); 1523 drm_gem_object_put(obj); 1524 } 1525 1526 /** 1527 * drm_gpuvm_bo_put() - drop a struct drm_gpuvm_bo reference 1528 * @vm_bo: the &drm_gpuvm_bo to release the reference of 1529 * 1530 * This releases a reference to @vm_bo. 1531 * 1532 * If the reference count drops to zero, the &gpuvm_bo is destroyed, which 1533 * includes removing it from the GEMs gpuva list. Hence, if a call to this 1534 * function can potentially let the reference count drop to zero the caller must 1535 * hold the dma-resv or driver specific GEM gpuva lock. 1536 * 1537 * This function may only be called from non-atomic context. 1538 * 1539 * Returns: true if vm_bo was destroyed, false otherwise. 1540 */ 1541 bool 1542 drm_gpuvm_bo_put(struct drm_gpuvm_bo *vm_bo) 1543 { 1544 might_sleep(); 1545 1546 if (vm_bo) 1547 return !!kref_put(&vm_bo->kref, drm_gpuvm_bo_destroy); 1548 1549 return false; 1550 } 1551 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_put); 1552 1553 static struct drm_gpuvm_bo * 1554 __drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm, 1555 struct drm_gem_object *obj) 1556 { 1557 struct drm_gpuvm_bo *vm_bo; 1558 1559 drm_gem_gpuva_assert_lock_held(obj); 1560 drm_gem_for_each_gpuvm_bo(vm_bo, obj) 1561 if (vm_bo->vm == gpuvm) 1562 return vm_bo; 1563 1564 return NULL; 1565 } 1566 1567 /** 1568 * drm_gpuvm_bo_find() - find the &drm_gpuvm_bo for the given 1569 * &drm_gpuvm and &drm_gem_object 1570 * @gpuvm: The &drm_gpuvm the @obj is mapped in. 1571 * @obj: The &drm_gem_object being mapped in the @gpuvm. 1572 * 1573 * Find the &drm_gpuvm_bo representing the combination of the given 1574 * &drm_gpuvm and &drm_gem_object. If found, increases the reference 1575 * count of the &drm_gpuvm_bo accordingly. 1576 * 1577 * Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure 1578 */ 1579 struct drm_gpuvm_bo * 1580 drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm, 1581 struct drm_gem_object *obj) 1582 { 1583 struct drm_gpuvm_bo *vm_bo = __drm_gpuvm_bo_find(gpuvm, obj); 1584 1585 return vm_bo ? drm_gpuvm_bo_get(vm_bo) : NULL; 1586 } 1587 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_find); 1588 1589 /** 1590 * drm_gpuvm_bo_obtain() - obtains and instance of the &drm_gpuvm_bo for the 1591 * given &drm_gpuvm and &drm_gem_object 1592 * @gpuvm: The &drm_gpuvm the @obj is mapped in. 1593 * @obj: The &drm_gem_object being mapped in the @gpuvm. 1594 * 1595 * Find the &drm_gpuvm_bo representing the combination of the given 1596 * &drm_gpuvm and &drm_gem_object. If found, increases the reference 1597 * count of the &drm_gpuvm_bo accordingly. If not found, allocates a new 1598 * &drm_gpuvm_bo. 1599 * 1600 * A new &drm_gpuvm_bo is added to the GEMs gpuva list. 1601 * 1602 * Returns: a pointer to the &drm_gpuvm_bo on success, an ERR_PTR on failure 1603 */ 1604 struct drm_gpuvm_bo * 1605 drm_gpuvm_bo_obtain(struct drm_gpuvm *gpuvm, 1606 struct drm_gem_object *obj) 1607 { 1608 struct drm_gpuvm_bo *vm_bo; 1609 1610 vm_bo = drm_gpuvm_bo_find(gpuvm, obj); 1611 if (vm_bo) 1612 return vm_bo; 1613 1614 vm_bo = drm_gpuvm_bo_create(gpuvm, obj); 1615 if (!vm_bo) 1616 return ERR_PTR(-ENOMEM); 1617 1618 drm_gem_gpuva_assert_lock_held(obj); 1619 list_add_tail(&vm_bo->list.entry.gem, &obj->gpuva.list); 1620 1621 return vm_bo; 1622 } 1623 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain); 1624 1625 /** 1626 * drm_gpuvm_bo_obtain_prealloc() - obtains and instance of the &drm_gpuvm_bo 1627 * for the given &drm_gpuvm and &drm_gem_object 1628 * @__vm_bo: A pre-allocated struct drm_gpuvm_bo. 1629 * 1630 * Find the &drm_gpuvm_bo representing the combination of the given 1631 * &drm_gpuvm and &drm_gem_object. If found, increases the reference 1632 * count of the found &drm_gpuvm_bo accordingly, while the @__vm_bo reference 1633 * count is decreased. If not found @__vm_bo is returned without further 1634 * increase of the reference count. 1635 * 1636 * A new &drm_gpuvm_bo is added to the GEMs gpuva list. 1637 * 1638 * Returns: a pointer to the found &drm_gpuvm_bo or @__vm_bo if no existing 1639 * &drm_gpuvm_bo was found 1640 */ 1641 struct drm_gpuvm_bo * 1642 drm_gpuvm_bo_obtain_prealloc(struct drm_gpuvm_bo *__vm_bo) 1643 { 1644 struct drm_gpuvm *gpuvm = __vm_bo->vm; 1645 struct drm_gem_object *obj = __vm_bo->obj; 1646 struct drm_gpuvm_bo *vm_bo; 1647 1648 vm_bo = drm_gpuvm_bo_find(gpuvm, obj); 1649 if (vm_bo) { 1650 drm_gpuvm_bo_put(__vm_bo); 1651 return vm_bo; 1652 } 1653 1654 drm_gem_gpuva_assert_lock_held(obj); 1655 list_add_tail(&__vm_bo->list.entry.gem, &obj->gpuva.list); 1656 1657 return __vm_bo; 1658 } 1659 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain_prealloc); 1660 1661 /** 1662 * drm_gpuvm_bo_extobj_add() - adds the &drm_gpuvm_bo to its &drm_gpuvm's 1663 * extobj list 1664 * @vm_bo: The &drm_gpuvm_bo to add to its &drm_gpuvm's the extobj list. 1665 * 1666 * Adds the given @vm_bo to its &drm_gpuvm's extobj list if not on the list 1667 * already and if the corresponding &drm_gem_object is an external object, 1668 * actually. 1669 */ 1670 void 1671 drm_gpuvm_bo_extobj_add(struct drm_gpuvm_bo *vm_bo) 1672 { 1673 struct drm_gpuvm *gpuvm = vm_bo->vm; 1674 bool lock = !drm_gpuvm_resv_protected(gpuvm); 1675 1676 if (!lock) 1677 drm_gpuvm_resv_assert_held(gpuvm); 1678 1679 if (drm_gpuvm_is_extobj(gpuvm, vm_bo->obj)) 1680 drm_gpuvm_bo_list_add(vm_bo, extobj, lock); 1681 } 1682 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_extobj_add); 1683 1684 /** 1685 * drm_gpuvm_bo_evict() - add / remove a &drm_gpuvm_bo to / from the &drm_gpuvms 1686 * evicted list 1687 * @vm_bo: the &drm_gpuvm_bo to add or remove 1688 * @evict: indicates whether the object is evicted 1689 * 1690 * Adds a &drm_gpuvm_bo to or removes it from the &drm_gpuvms evicted list. 1691 */ 1692 void 1693 drm_gpuvm_bo_evict(struct drm_gpuvm_bo *vm_bo, bool evict) 1694 { 1695 struct drm_gpuvm *gpuvm = vm_bo->vm; 1696 struct drm_gem_object *obj = vm_bo->obj; 1697 bool lock = !drm_gpuvm_resv_protected(gpuvm); 1698 1699 dma_resv_assert_held(obj->resv); 1700 vm_bo->evicted = evict; 1701 1702 /* Can't add external objects to the evicted list directly if not using 1703 * internal spinlocks, since in this case the evicted list is protected 1704 * with the VM's common dma-resv lock. 1705 */ 1706 if (drm_gpuvm_is_extobj(gpuvm, obj) && !lock) 1707 return; 1708 1709 if (evict) 1710 drm_gpuvm_bo_list_add(vm_bo, evict, lock); 1711 else 1712 drm_gpuvm_bo_list_del_init(vm_bo, evict, lock); 1713 } 1714 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_evict); 1715 1716 static int 1717 __drm_gpuva_insert(struct drm_gpuvm *gpuvm, 1718 struct drm_gpuva *va) 1719 { 1720 struct rb_node *node; 1721 struct list_head *head; 1722 1723 if (drm_gpuva_it_iter_first(&gpuvm->rb.tree, 1724 GPUVA_START(va), 1725 GPUVA_LAST(va))) 1726 return -EEXIST; 1727 1728 va->vm = gpuvm; 1729 1730 drm_gpuva_it_insert(va, &gpuvm->rb.tree); 1731 1732 node = rb_prev(&va->rb.node); 1733 if (node) 1734 head = &(to_drm_gpuva(node))->rb.entry; 1735 else 1736 head = &gpuvm->rb.list; 1737 1738 list_add(&va->rb.entry, head); 1739 1740 return 0; 1741 } 1742 1743 /** 1744 * drm_gpuva_insert() - insert a &drm_gpuva 1745 * @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in 1746 * @va: the &drm_gpuva to insert 1747 * 1748 * Insert a &drm_gpuva with a given address and range into a 1749 * &drm_gpuvm. 1750 * 1751 * It is safe to use this function using the safe versions of iterating the GPU 1752 * VA space, such as drm_gpuvm_for_each_va_safe() and 1753 * drm_gpuvm_for_each_va_range_safe(). 1754 * 1755 * Returns: 0 on success, negative error code on failure. 1756 */ 1757 int 1758 drm_gpuva_insert(struct drm_gpuvm *gpuvm, 1759 struct drm_gpuva *va) 1760 { 1761 u64 addr = va->va.addr; 1762 u64 range = va->va.range; 1763 int ret; 1764 1765 if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range))) 1766 return -EINVAL; 1767 1768 ret = __drm_gpuva_insert(gpuvm, va); 1769 if (likely(!ret)) 1770 /* Take a reference of the GPUVM for the successfully inserted 1771 * drm_gpuva. We can't take the reference in 1772 * __drm_gpuva_insert() itself, since we don't want to increse 1773 * the reference count for the GPUVM's kernel_alloc_node. 1774 */ 1775 drm_gpuvm_get(gpuvm); 1776 1777 return ret; 1778 } 1779 EXPORT_SYMBOL_GPL(drm_gpuva_insert); 1780 1781 static void 1782 __drm_gpuva_remove(struct drm_gpuva *va) 1783 { 1784 drm_gpuva_it_remove(va, &va->vm->rb.tree); 1785 list_del_init(&va->rb.entry); 1786 } 1787 1788 /** 1789 * drm_gpuva_remove() - remove a &drm_gpuva 1790 * @va: the &drm_gpuva to remove 1791 * 1792 * This removes the given &va from the underlaying tree. 1793 * 1794 * It is safe to use this function using the safe versions of iterating the GPU 1795 * VA space, such as drm_gpuvm_for_each_va_safe() and 1796 * drm_gpuvm_for_each_va_range_safe(). 1797 */ 1798 void 1799 drm_gpuva_remove(struct drm_gpuva *va) 1800 { 1801 struct drm_gpuvm *gpuvm = va->vm; 1802 1803 if (unlikely(va == &gpuvm->kernel_alloc_node)) { 1804 drm_WARN(gpuvm->drm, 1, 1805 "Can't destroy kernel reserved node.\n"); 1806 return; 1807 } 1808 1809 __drm_gpuva_remove(va); 1810 drm_gpuvm_put(va->vm); 1811 } 1812 EXPORT_SYMBOL_GPL(drm_gpuva_remove); 1813 1814 /** 1815 * drm_gpuva_link() - link a &drm_gpuva 1816 * @va: the &drm_gpuva to link 1817 * @vm_bo: the &drm_gpuvm_bo to add the &drm_gpuva to 1818 * 1819 * This adds the given &va to the GPU VA list of the &drm_gpuvm_bo and the 1820 * &drm_gpuvm_bo to the &drm_gem_object it is associated with. 1821 * 1822 * For every &drm_gpuva entry added to the &drm_gpuvm_bo an additional 1823 * reference of the latter is taken. 1824 * 1825 * This function expects the caller to protect the GEM's GPUVA list against 1826 * concurrent access using either the GEMs dma_resv lock or a driver specific 1827 * lock set through drm_gem_gpuva_set_lock(). 1828 */ 1829 void 1830 drm_gpuva_link(struct drm_gpuva *va, struct drm_gpuvm_bo *vm_bo) 1831 { 1832 struct drm_gem_object *obj = va->gem.obj; 1833 struct drm_gpuvm *gpuvm = va->vm; 1834 1835 if (unlikely(!obj)) 1836 return; 1837 1838 drm_WARN_ON(gpuvm->drm, obj != vm_bo->obj); 1839 1840 va->vm_bo = drm_gpuvm_bo_get(vm_bo); 1841 1842 drm_gem_gpuva_assert_lock_held(obj); 1843 list_add_tail(&va->gem.entry, &vm_bo->list.gpuva); 1844 } 1845 EXPORT_SYMBOL_GPL(drm_gpuva_link); 1846 1847 /** 1848 * drm_gpuva_unlink() - unlink a &drm_gpuva 1849 * @va: the &drm_gpuva to unlink 1850 * 1851 * This removes the given &va from the GPU VA list of the &drm_gem_object it is 1852 * associated with. 1853 * 1854 * This removes the given &va from the GPU VA list of the &drm_gpuvm_bo and 1855 * the &drm_gpuvm_bo from the &drm_gem_object it is associated with in case 1856 * this call unlinks the last &drm_gpuva from the &drm_gpuvm_bo. 1857 * 1858 * For every &drm_gpuva entry removed from the &drm_gpuvm_bo a reference of 1859 * the latter is dropped. 1860 * 1861 * This function expects the caller to protect the GEM's GPUVA list against 1862 * concurrent access using either the GEMs dma_resv lock or a driver specific 1863 * lock set through drm_gem_gpuva_set_lock(). 1864 */ 1865 void 1866 drm_gpuva_unlink(struct drm_gpuva *va) 1867 { 1868 struct drm_gem_object *obj = va->gem.obj; 1869 struct drm_gpuvm_bo *vm_bo = va->vm_bo; 1870 1871 if (unlikely(!obj)) 1872 return; 1873 1874 drm_gem_gpuva_assert_lock_held(obj); 1875 list_del_init(&va->gem.entry); 1876 1877 va->vm_bo = NULL; 1878 drm_gpuvm_bo_put(vm_bo); 1879 } 1880 EXPORT_SYMBOL_GPL(drm_gpuva_unlink); 1881 1882 /** 1883 * drm_gpuva_find_first() - find the first &drm_gpuva in the given range 1884 * @gpuvm: the &drm_gpuvm to search in 1885 * @addr: the &drm_gpuvas address 1886 * @range: the &drm_gpuvas range 1887 * 1888 * Returns: the first &drm_gpuva within the given range 1889 */ 1890 struct drm_gpuva * 1891 drm_gpuva_find_first(struct drm_gpuvm *gpuvm, 1892 u64 addr, u64 range) 1893 { 1894 u64 last = addr + range - 1; 1895 1896 return drm_gpuva_it_iter_first(&gpuvm->rb.tree, addr, last); 1897 } 1898 EXPORT_SYMBOL_GPL(drm_gpuva_find_first); 1899 1900 /** 1901 * drm_gpuva_find() - find a &drm_gpuva 1902 * @gpuvm: the &drm_gpuvm to search in 1903 * @addr: the &drm_gpuvas address 1904 * @range: the &drm_gpuvas range 1905 * 1906 * Returns: the &drm_gpuva at a given &addr and with a given &range 1907 */ 1908 struct drm_gpuva * 1909 drm_gpuva_find(struct drm_gpuvm *gpuvm, 1910 u64 addr, u64 range) 1911 { 1912 struct drm_gpuva *va; 1913 1914 va = drm_gpuva_find_first(gpuvm, addr, range); 1915 if (!va) 1916 goto out; 1917 1918 if (va->va.addr != addr || 1919 va->va.range != range) 1920 goto out; 1921 1922 return va; 1923 1924 out: 1925 return NULL; 1926 } 1927 EXPORT_SYMBOL_GPL(drm_gpuva_find); 1928 1929 /** 1930 * drm_gpuva_find_prev() - find the &drm_gpuva before the given address 1931 * @gpuvm: the &drm_gpuvm to search in 1932 * @start: the given GPU VA's start address 1933 * 1934 * Find the adjacent &drm_gpuva before the GPU VA with given &start address. 1935 * 1936 * Note that if there is any free space between the GPU VA mappings no mapping 1937 * is returned. 1938 * 1939 * Returns: a pointer to the found &drm_gpuva or NULL if none was found 1940 */ 1941 struct drm_gpuva * 1942 drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start) 1943 { 1944 if (!drm_gpuvm_range_valid(gpuvm, start - 1, 1)) 1945 return NULL; 1946 1947 return drm_gpuva_it_iter_first(&gpuvm->rb.tree, start - 1, start); 1948 } 1949 EXPORT_SYMBOL_GPL(drm_gpuva_find_prev); 1950 1951 /** 1952 * drm_gpuva_find_next() - find the &drm_gpuva after the given address 1953 * @gpuvm: the &drm_gpuvm to search in 1954 * @end: the given GPU VA's end address 1955 * 1956 * Find the adjacent &drm_gpuva after the GPU VA with given &end address. 1957 * 1958 * Note that if there is any free space between the GPU VA mappings no mapping 1959 * is returned. 1960 * 1961 * Returns: a pointer to the found &drm_gpuva or NULL if none was found 1962 */ 1963 struct drm_gpuva * 1964 drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end) 1965 { 1966 if (!drm_gpuvm_range_valid(gpuvm, end, 1)) 1967 return NULL; 1968 1969 return drm_gpuva_it_iter_first(&gpuvm->rb.tree, end, end + 1); 1970 } 1971 EXPORT_SYMBOL_GPL(drm_gpuva_find_next); 1972 1973 /** 1974 * drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space 1975 * is empty 1976 * @gpuvm: the &drm_gpuvm to check the range for 1977 * @addr: the start address of the range 1978 * @range: the range of the interval 1979 * 1980 * Returns: true if the interval is empty, false otherwise 1981 */ 1982 bool 1983 drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range) 1984 { 1985 return !drm_gpuva_find_first(gpuvm, addr, range); 1986 } 1987 EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty); 1988 1989 /** 1990 * drm_gpuva_map() - helper to insert a &drm_gpuva according to a 1991 * &drm_gpuva_op_map 1992 * @gpuvm: the &drm_gpuvm 1993 * @va: the &drm_gpuva to insert 1994 * @op: the &drm_gpuva_op_map to initialize @va with 1995 * 1996 * Initializes the @va from the @op and inserts it into the given @gpuvm. 1997 */ 1998 void 1999 drm_gpuva_map(struct drm_gpuvm *gpuvm, 2000 struct drm_gpuva *va, 2001 struct drm_gpuva_op_map *op) 2002 { 2003 drm_gpuva_init_from_op(va, op); 2004 drm_gpuva_insert(gpuvm, va); 2005 } 2006 EXPORT_SYMBOL_GPL(drm_gpuva_map); 2007 2008 /** 2009 * drm_gpuva_remap() - helper to remap a &drm_gpuva according to a 2010 * &drm_gpuva_op_remap 2011 * @prev: the &drm_gpuva to remap when keeping the start of a mapping 2012 * @next: the &drm_gpuva to remap when keeping the end of a mapping 2013 * @op: the &drm_gpuva_op_remap to initialize @prev and @next with 2014 * 2015 * Removes the currently mapped &drm_gpuva and remaps it using @prev and/or 2016 * @next. 2017 */ 2018 void 2019 drm_gpuva_remap(struct drm_gpuva *prev, 2020 struct drm_gpuva *next, 2021 struct drm_gpuva_op_remap *op) 2022 { 2023 struct drm_gpuva *va = op->unmap->va; 2024 struct drm_gpuvm *gpuvm = va->vm; 2025 2026 drm_gpuva_remove(va); 2027 2028 if (op->prev) { 2029 drm_gpuva_init_from_op(prev, op->prev); 2030 drm_gpuva_insert(gpuvm, prev); 2031 } 2032 2033 if (op->next) { 2034 drm_gpuva_init_from_op(next, op->next); 2035 drm_gpuva_insert(gpuvm, next); 2036 } 2037 } 2038 EXPORT_SYMBOL_GPL(drm_gpuva_remap); 2039 2040 /** 2041 * drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a 2042 * &drm_gpuva_op_unmap 2043 * @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove 2044 * 2045 * Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap. 2046 */ 2047 void 2048 drm_gpuva_unmap(struct drm_gpuva_op_unmap *op) 2049 { 2050 drm_gpuva_remove(op->va); 2051 } 2052 EXPORT_SYMBOL_GPL(drm_gpuva_unmap); 2053 2054 static int 2055 op_map_cb(const struct drm_gpuvm_ops *fn, void *priv, 2056 u64 addr, u64 range, 2057 struct drm_gem_object *obj, u64 offset) 2058 { 2059 struct drm_gpuva_op op = {}; 2060 2061 op.op = DRM_GPUVA_OP_MAP; 2062 op.map.va.addr = addr; 2063 op.map.va.range = range; 2064 op.map.gem.obj = obj; 2065 op.map.gem.offset = offset; 2066 2067 return fn->sm_step_map(&op, priv); 2068 } 2069 2070 static int 2071 op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv, 2072 struct drm_gpuva_op_map *prev, 2073 struct drm_gpuva_op_map *next, 2074 struct drm_gpuva_op_unmap *unmap) 2075 { 2076 struct drm_gpuva_op op = {}; 2077 struct drm_gpuva_op_remap *r; 2078 2079 op.op = DRM_GPUVA_OP_REMAP; 2080 r = &op.remap; 2081 r->prev = prev; 2082 r->next = next; 2083 r->unmap = unmap; 2084 2085 return fn->sm_step_remap(&op, priv); 2086 } 2087 2088 static int 2089 op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv, 2090 struct drm_gpuva *va, bool merge) 2091 { 2092 struct drm_gpuva_op op = {}; 2093 2094 op.op = DRM_GPUVA_OP_UNMAP; 2095 op.unmap.va = va; 2096 op.unmap.keep = merge; 2097 2098 return fn->sm_step_unmap(&op, priv); 2099 } 2100 2101 static int 2102 __drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, 2103 const struct drm_gpuvm_ops *ops, void *priv, 2104 u64 req_addr, u64 req_range, 2105 struct drm_gem_object *req_obj, u64 req_offset) 2106 { 2107 struct drm_gpuva *va, *next; 2108 u64 req_end = req_addr + req_range; 2109 int ret; 2110 2111 if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range))) 2112 return -EINVAL; 2113 2114 drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) { 2115 struct drm_gem_object *obj = va->gem.obj; 2116 u64 offset = va->gem.offset; 2117 u64 addr = va->va.addr; 2118 u64 range = va->va.range; 2119 u64 end = addr + range; 2120 bool merge = !!va->gem.obj; 2121 2122 if (addr == req_addr) { 2123 merge &= obj == req_obj && 2124 offset == req_offset; 2125 2126 if (end == req_end) { 2127 ret = op_unmap_cb(ops, priv, va, merge); 2128 if (ret) 2129 return ret; 2130 break; 2131 } 2132 2133 if (end < req_end) { 2134 ret = op_unmap_cb(ops, priv, va, merge); 2135 if (ret) 2136 return ret; 2137 continue; 2138 } 2139 2140 if (end > req_end) { 2141 struct drm_gpuva_op_map n = { 2142 .va.addr = req_end, 2143 .va.range = range - req_range, 2144 .gem.obj = obj, 2145 .gem.offset = offset + req_range, 2146 }; 2147 struct drm_gpuva_op_unmap u = { 2148 .va = va, 2149 .keep = merge, 2150 }; 2151 2152 ret = op_remap_cb(ops, priv, NULL, &n, &u); 2153 if (ret) 2154 return ret; 2155 break; 2156 } 2157 } else if (addr < req_addr) { 2158 u64 ls_range = req_addr - addr; 2159 struct drm_gpuva_op_map p = { 2160 .va.addr = addr, 2161 .va.range = ls_range, 2162 .gem.obj = obj, 2163 .gem.offset = offset, 2164 }; 2165 struct drm_gpuva_op_unmap u = { .va = va }; 2166 2167 merge &= obj == req_obj && 2168 offset + ls_range == req_offset; 2169 u.keep = merge; 2170 2171 if (end == req_end) { 2172 ret = op_remap_cb(ops, priv, &p, NULL, &u); 2173 if (ret) 2174 return ret; 2175 break; 2176 } 2177 2178 if (end < req_end) { 2179 ret = op_remap_cb(ops, priv, &p, NULL, &u); 2180 if (ret) 2181 return ret; 2182 continue; 2183 } 2184 2185 if (end > req_end) { 2186 struct drm_gpuva_op_map n = { 2187 .va.addr = req_end, 2188 .va.range = end - req_end, 2189 .gem.obj = obj, 2190 .gem.offset = offset + ls_range + 2191 req_range, 2192 }; 2193 2194 ret = op_remap_cb(ops, priv, &p, &n, &u); 2195 if (ret) 2196 return ret; 2197 break; 2198 } 2199 } else if (addr > req_addr) { 2200 merge &= obj == req_obj && 2201 offset == req_offset + 2202 (addr - req_addr); 2203 2204 if (end == req_end) { 2205 ret = op_unmap_cb(ops, priv, va, merge); 2206 if (ret) 2207 return ret; 2208 break; 2209 } 2210 2211 if (end < req_end) { 2212 ret = op_unmap_cb(ops, priv, va, merge); 2213 if (ret) 2214 return ret; 2215 continue; 2216 } 2217 2218 if (end > req_end) { 2219 struct drm_gpuva_op_map n = { 2220 .va.addr = req_end, 2221 .va.range = end - req_end, 2222 .gem.obj = obj, 2223 .gem.offset = offset + req_end - addr, 2224 }; 2225 struct drm_gpuva_op_unmap u = { 2226 .va = va, 2227 .keep = merge, 2228 }; 2229 2230 ret = op_remap_cb(ops, priv, NULL, &n, &u); 2231 if (ret) 2232 return ret; 2233 break; 2234 } 2235 } 2236 } 2237 2238 return op_map_cb(ops, priv, 2239 req_addr, req_range, 2240 req_obj, req_offset); 2241 } 2242 2243 static int 2244 __drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, 2245 const struct drm_gpuvm_ops *ops, void *priv, 2246 u64 req_addr, u64 req_range) 2247 { 2248 struct drm_gpuva *va, *next; 2249 u64 req_end = req_addr + req_range; 2250 int ret; 2251 2252 if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range))) 2253 return -EINVAL; 2254 2255 drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) { 2256 struct drm_gpuva_op_map prev = {}, next = {}; 2257 bool prev_split = false, next_split = false; 2258 struct drm_gem_object *obj = va->gem.obj; 2259 u64 offset = va->gem.offset; 2260 u64 addr = va->va.addr; 2261 u64 range = va->va.range; 2262 u64 end = addr + range; 2263 2264 if (addr < req_addr) { 2265 prev.va.addr = addr; 2266 prev.va.range = req_addr - addr; 2267 prev.gem.obj = obj; 2268 prev.gem.offset = offset; 2269 2270 prev_split = true; 2271 } 2272 2273 if (end > req_end) { 2274 next.va.addr = req_end; 2275 next.va.range = end - req_end; 2276 next.gem.obj = obj; 2277 next.gem.offset = offset + (req_end - addr); 2278 2279 next_split = true; 2280 } 2281 2282 if (prev_split || next_split) { 2283 struct drm_gpuva_op_unmap unmap = { .va = va }; 2284 2285 ret = op_remap_cb(ops, priv, 2286 prev_split ? &prev : NULL, 2287 next_split ? &next : NULL, 2288 &unmap); 2289 if (ret) 2290 return ret; 2291 } else { 2292 ret = op_unmap_cb(ops, priv, va, false); 2293 if (ret) 2294 return ret; 2295 } 2296 } 2297 2298 return 0; 2299 } 2300 2301 /** 2302 * drm_gpuvm_sm_map() - creates the &drm_gpuva_op split/merge steps 2303 * @gpuvm: the &drm_gpuvm representing the GPU VA space 2304 * @req_addr: the start address of the new mapping 2305 * @req_range: the range of the new mapping 2306 * @req_obj: the &drm_gem_object to map 2307 * @req_offset: the offset within the &drm_gem_object 2308 * @priv: pointer to a driver private data structure 2309 * 2310 * This function iterates the given range of the GPU VA space. It utilizes the 2311 * &drm_gpuvm_ops to call back into the driver providing the split and merge 2312 * steps. 2313 * 2314 * Drivers may use these callbacks to update the GPU VA space right away within 2315 * the callback. In case the driver decides to copy and store the operations for 2316 * later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to 2317 * be called before the &drm_gpuvm's view of the GPU VA space was 2318 * updated with the previous set of operations. To update the 2319 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(), 2320 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be 2321 * used. 2322 * 2323 * A sequence of callbacks can contain map, unmap and remap operations, but 2324 * the sequence of callbacks might also be empty if no operation is required, 2325 * e.g. if the requested mapping already exists in the exact same way. 2326 * 2327 * There can be an arbitrary amount of unmap operations, a maximum of two remap 2328 * operations and a single map operation. The latter one represents the original 2329 * map operation requested by the caller. 2330 * 2331 * Returns: 0 on success or a negative error code 2332 */ 2333 int 2334 drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv, 2335 u64 req_addr, u64 req_range, 2336 struct drm_gem_object *req_obj, u64 req_offset) 2337 { 2338 const struct drm_gpuvm_ops *ops = gpuvm->ops; 2339 2340 if (unlikely(!(ops && ops->sm_step_map && 2341 ops->sm_step_remap && 2342 ops->sm_step_unmap))) 2343 return -EINVAL; 2344 2345 return __drm_gpuvm_sm_map(gpuvm, ops, priv, 2346 req_addr, req_range, 2347 req_obj, req_offset); 2348 } 2349 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map); 2350 2351 /** 2352 * drm_gpuvm_sm_unmap() - creates the &drm_gpuva_ops to split on unmap 2353 * @gpuvm: the &drm_gpuvm representing the GPU VA space 2354 * @priv: pointer to a driver private data structure 2355 * @req_addr: the start address of the range to unmap 2356 * @req_range: the range of the mappings to unmap 2357 * 2358 * This function iterates the given range of the GPU VA space. It utilizes the 2359 * &drm_gpuvm_ops to call back into the driver providing the operations to 2360 * unmap and, if required, split existent mappings. 2361 * 2362 * Drivers may use these callbacks to update the GPU VA space right away within 2363 * the callback. In case the driver decides to copy and store the operations for 2364 * later processing neither this function nor &drm_gpuvm_sm_map is allowed to be 2365 * called before the &drm_gpuvm's view of the GPU VA space was updated 2366 * with the previous set of operations. To update the &drm_gpuvm's view 2367 * of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or 2368 * drm_gpuva_destroy_unlocked() should be used. 2369 * 2370 * A sequence of callbacks can contain unmap and remap operations, depending on 2371 * whether there are actual overlapping mappings to split. 2372 * 2373 * There can be an arbitrary amount of unmap operations and a maximum of two 2374 * remap operations. 2375 * 2376 * Returns: 0 on success or a negative error code 2377 */ 2378 int 2379 drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv, 2380 u64 req_addr, u64 req_range) 2381 { 2382 const struct drm_gpuvm_ops *ops = gpuvm->ops; 2383 2384 if (unlikely(!(ops && ops->sm_step_remap && 2385 ops->sm_step_unmap))) 2386 return -EINVAL; 2387 2388 return __drm_gpuvm_sm_unmap(gpuvm, ops, priv, 2389 req_addr, req_range); 2390 } 2391 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap); 2392 2393 static struct drm_gpuva_op * 2394 gpuva_op_alloc(struct drm_gpuvm *gpuvm) 2395 { 2396 const struct drm_gpuvm_ops *fn = gpuvm->ops; 2397 struct drm_gpuva_op *op; 2398 2399 if (fn && fn->op_alloc) 2400 op = fn->op_alloc(); 2401 else 2402 op = kzalloc(sizeof(*op), GFP_KERNEL); 2403 2404 if (unlikely(!op)) 2405 return NULL; 2406 2407 return op; 2408 } 2409 2410 static void 2411 gpuva_op_free(struct drm_gpuvm *gpuvm, 2412 struct drm_gpuva_op *op) 2413 { 2414 const struct drm_gpuvm_ops *fn = gpuvm->ops; 2415 2416 if (fn && fn->op_free) 2417 fn->op_free(op); 2418 else 2419 kfree(op); 2420 } 2421 2422 static int 2423 drm_gpuva_sm_step(struct drm_gpuva_op *__op, 2424 void *priv) 2425 { 2426 struct { 2427 struct drm_gpuvm *vm; 2428 struct drm_gpuva_ops *ops; 2429 } *args = priv; 2430 struct drm_gpuvm *gpuvm = args->vm; 2431 struct drm_gpuva_ops *ops = args->ops; 2432 struct drm_gpuva_op *op; 2433 2434 op = gpuva_op_alloc(gpuvm); 2435 if (unlikely(!op)) 2436 goto err; 2437 2438 memcpy(op, __op, sizeof(*op)); 2439 2440 if (op->op == DRM_GPUVA_OP_REMAP) { 2441 struct drm_gpuva_op_remap *__r = &__op->remap; 2442 struct drm_gpuva_op_remap *r = &op->remap; 2443 2444 r->unmap = kmemdup(__r->unmap, sizeof(*r->unmap), 2445 GFP_KERNEL); 2446 if (unlikely(!r->unmap)) 2447 goto err_free_op; 2448 2449 if (__r->prev) { 2450 r->prev = kmemdup(__r->prev, sizeof(*r->prev), 2451 GFP_KERNEL); 2452 if (unlikely(!r->prev)) 2453 goto err_free_unmap; 2454 } 2455 2456 if (__r->next) { 2457 r->next = kmemdup(__r->next, sizeof(*r->next), 2458 GFP_KERNEL); 2459 if (unlikely(!r->next)) 2460 goto err_free_prev; 2461 } 2462 } 2463 2464 list_add_tail(&op->entry, &ops->list); 2465 2466 return 0; 2467 2468 err_free_unmap: 2469 kfree(op->remap.unmap); 2470 err_free_prev: 2471 kfree(op->remap.prev); 2472 err_free_op: 2473 gpuva_op_free(gpuvm, op); 2474 err: 2475 return -ENOMEM; 2476 } 2477 2478 static const struct drm_gpuvm_ops gpuvm_list_ops = { 2479 .sm_step_map = drm_gpuva_sm_step, 2480 .sm_step_remap = drm_gpuva_sm_step, 2481 .sm_step_unmap = drm_gpuva_sm_step, 2482 }; 2483 2484 /** 2485 * drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge 2486 * @gpuvm: the &drm_gpuvm representing the GPU VA space 2487 * @req_addr: the start address of the new mapping 2488 * @req_range: the range of the new mapping 2489 * @req_obj: the &drm_gem_object to map 2490 * @req_offset: the offset within the &drm_gem_object 2491 * 2492 * This function creates a list of operations to perform splitting and merging 2493 * of existent mapping(s) with the newly requested one. 2494 * 2495 * The list can be iterated with &drm_gpuva_for_each_op and must be processed 2496 * in the given order. It can contain map, unmap and remap operations, but it 2497 * also can be empty if no operation is required, e.g. if the requested mapping 2498 * already exists is the exact same way. 2499 * 2500 * There can be an arbitrary amount of unmap operations, a maximum of two remap 2501 * operations and a single map operation. The latter one represents the original 2502 * map operation requested by the caller. 2503 * 2504 * Note that before calling this function again with another mapping request it 2505 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The 2506 * previously obtained operations must be either processed or abandoned. To 2507 * update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(), 2508 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be 2509 * used. 2510 * 2511 * After the caller finished processing the returned &drm_gpuva_ops, they must 2512 * be freed with &drm_gpuva_ops_free. 2513 * 2514 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure 2515 */ 2516 struct drm_gpuva_ops * 2517 drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm, 2518 u64 req_addr, u64 req_range, 2519 struct drm_gem_object *req_obj, u64 req_offset) 2520 { 2521 struct drm_gpuva_ops *ops; 2522 struct { 2523 struct drm_gpuvm *vm; 2524 struct drm_gpuva_ops *ops; 2525 } args; 2526 int ret; 2527 2528 ops = kzalloc(sizeof(*ops), GFP_KERNEL); 2529 if (unlikely(!ops)) 2530 return ERR_PTR(-ENOMEM); 2531 2532 INIT_LIST_HEAD(&ops->list); 2533 2534 args.vm = gpuvm; 2535 args.ops = ops; 2536 2537 ret = __drm_gpuvm_sm_map(gpuvm, &gpuvm_list_ops, &args, 2538 req_addr, req_range, 2539 req_obj, req_offset); 2540 if (ret) 2541 goto err_free_ops; 2542 2543 return ops; 2544 2545 err_free_ops: 2546 drm_gpuva_ops_free(gpuvm, ops); 2547 return ERR_PTR(ret); 2548 } 2549 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create); 2550 2551 /** 2552 * drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on 2553 * unmap 2554 * @gpuvm: the &drm_gpuvm representing the GPU VA space 2555 * @req_addr: the start address of the range to unmap 2556 * @req_range: the range of the mappings to unmap 2557 * 2558 * This function creates a list of operations to perform unmapping and, if 2559 * required, splitting of the mappings overlapping the unmap range. 2560 * 2561 * The list can be iterated with &drm_gpuva_for_each_op and must be processed 2562 * in the given order. It can contain unmap and remap operations, depending on 2563 * whether there are actual overlapping mappings to split. 2564 * 2565 * There can be an arbitrary amount of unmap operations and a maximum of two 2566 * remap operations. 2567 * 2568 * Note that before calling this function again with another range to unmap it 2569 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The 2570 * previously obtained operations must be processed or abandoned. To update the 2571 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(), 2572 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be 2573 * used. 2574 * 2575 * After the caller finished processing the returned &drm_gpuva_ops, they must 2576 * be freed with &drm_gpuva_ops_free. 2577 * 2578 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure 2579 */ 2580 struct drm_gpuva_ops * 2581 drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm, 2582 u64 req_addr, u64 req_range) 2583 { 2584 struct drm_gpuva_ops *ops; 2585 struct { 2586 struct drm_gpuvm *vm; 2587 struct drm_gpuva_ops *ops; 2588 } args; 2589 int ret; 2590 2591 ops = kzalloc(sizeof(*ops), GFP_KERNEL); 2592 if (unlikely(!ops)) 2593 return ERR_PTR(-ENOMEM); 2594 2595 INIT_LIST_HEAD(&ops->list); 2596 2597 args.vm = gpuvm; 2598 args.ops = ops; 2599 2600 ret = __drm_gpuvm_sm_unmap(gpuvm, &gpuvm_list_ops, &args, 2601 req_addr, req_range); 2602 if (ret) 2603 goto err_free_ops; 2604 2605 return ops; 2606 2607 err_free_ops: 2608 drm_gpuva_ops_free(gpuvm, ops); 2609 return ERR_PTR(ret); 2610 } 2611 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create); 2612 2613 /** 2614 * drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch 2615 * @gpuvm: the &drm_gpuvm representing the GPU VA space 2616 * @addr: the start address of the range to prefetch 2617 * @range: the range of the mappings to prefetch 2618 * 2619 * This function creates a list of operations to perform prefetching. 2620 * 2621 * The list can be iterated with &drm_gpuva_for_each_op and must be processed 2622 * in the given order. It can contain prefetch operations. 2623 * 2624 * There can be an arbitrary amount of prefetch operations. 2625 * 2626 * After the caller finished processing the returned &drm_gpuva_ops, they must 2627 * be freed with &drm_gpuva_ops_free. 2628 * 2629 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure 2630 */ 2631 struct drm_gpuva_ops * 2632 drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm, 2633 u64 addr, u64 range) 2634 { 2635 struct drm_gpuva_ops *ops; 2636 struct drm_gpuva_op *op; 2637 struct drm_gpuva *va; 2638 u64 end = addr + range; 2639 int ret; 2640 2641 ops = kzalloc(sizeof(*ops), GFP_KERNEL); 2642 if (!ops) 2643 return ERR_PTR(-ENOMEM); 2644 2645 INIT_LIST_HEAD(&ops->list); 2646 2647 drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) { 2648 op = gpuva_op_alloc(gpuvm); 2649 if (!op) { 2650 ret = -ENOMEM; 2651 goto err_free_ops; 2652 } 2653 2654 op->op = DRM_GPUVA_OP_PREFETCH; 2655 op->prefetch.va = va; 2656 list_add_tail(&op->entry, &ops->list); 2657 } 2658 2659 return ops; 2660 2661 err_free_ops: 2662 drm_gpuva_ops_free(gpuvm, ops); 2663 return ERR_PTR(ret); 2664 } 2665 EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create); 2666 2667 /** 2668 * drm_gpuvm_bo_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM 2669 * @vm_bo: the &drm_gpuvm_bo abstraction 2670 * 2671 * This function creates a list of operations to perform unmapping for every 2672 * GPUVA attached to a GEM. 2673 * 2674 * The list can be iterated with &drm_gpuva_for_each_op and consists out of an 2675 * arbitrary amount of unmap operations. 2676 * 2677 * After the caller finished processing the returned &drm_gpuva_ops, they must 2678 * be freed with &drm_gpuva_ops_free. 2679 * 2680 * It is the callers responsibility to protect the GEMs GPUVA list against 2681 * concurrent access using the GEMs dma_resv lock. 2682 * 2683 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure 2684 */ 2685 struct drm_gpuva_ops * 2686 drm_gpuvm_bo_unmap_ops_create(struct drm_gpuvm_bo *vm_bo) 2687 { 2688 struct drm_gpuva_ops *ops; 2689 struct drm_gpuva_op *op; 2690 struct drm_gpuva *va; 2691 int ret; 2692 2693 drm_gem_gpuva_assert_lock_held(vm_bo->obj); 2694 2695 ops = kzalloc(sizeof(*ops), GFP_KERNEL); 2696 if (!ops) 2697 return ERR_PTR(-ENOMEM); 2698 2699 INIT_LIST_HEAD(&ops->list); 2700 2701 drm_gpuvm_bo_for_each_va(va, vm_bo) { 2702 op = gpuva_op_alloc(vm_bo->vm); 2703 if (!op) { 2704 ret = -ENOMEM; 2705 goto err_free_ops; 2706 } 2707 2708 op->op = DRM_GPUVA_OP_UNMAP; 2709 op->unmap.va = va; 2710 list_add_tail(&op->entry, &ops->list); 2711 } 2712 2713 return ops; 2714 2715 err_free_ops: 2716 drm_gpuva_ops_free(vm_bo->vm, ops); 2717 return ERR_PTR(ret); 2718 } 2719 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_unmap_ops_create); 2720 2721 /** 2722 * drm_gpuva_ops_free() - free the given &drm_gpuva_ops 2723 * @gpuvm: the &drm_gpuvm the ops were created for 2724 * @ops: the &drm_gpuva_ops to free 2725 * 2726 * Frees the given &drm_gpuva_ops structure including all the ops associated 2727 * with it. 2728 */ 2729 void 2730 drm_gpuva_ops_free(struct drm_gpuvm *gpuvm, 2731 struct drm_gpuva_ops *ops) 2732 { 2733 struct drm_gpuva_op *op, *next; 2734 2735 drm_gpuva_for_each_op_safe(op, next, ops) { 2736 list_del(&op->entry); 2737 2738 if (op->op == DRM_GPUVA_OP_REMAP) { 2739 kfree(op->remap.prev); 2740 kfree(op->remap.next); 2741 kfree(op->remap.unmap); 2742 } 2743 2744 gpuva_op_free(gpuvm, op); 2745 } 2746 2747 kfree(ops); 2748 } 2749 EXPORT_SYMBOL_GPL(drm_gpuva_ops_free); 2750 2751 MODULE_DESCRIPTION("DRM GPUVM"); 2752 MODULE_LICENSE("GPL"); 2753