xref: /linux/drivers/gpu/drm/drm_gpuvm.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /*
3  * Copyright (c) 2022 Red Hat.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *     Danilo Krummrich <dakr@redhat.com>
25  *
26  */
27 
28 #include <drm/drm_gpuvm.h>
29 
30 #include <linux/export.h>
31 #include <linux/interval_tree_generic.h>
32 #include <linux/mm.h>
33 
34 /**
35  * DOC: Overview
36  *
37  * The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a
38  * GPU's virtual address (VA) space and manages the corresponding virtual
39  * mappings represented by &drm_gpuva objects. It also keeps track of the
40  * mapping's backing &drm_gem_object buffers.
41  *
42  * &drm_gem_object buffers maintain a list of &drm_gpuva objects representing
43  * all existing GPU VA mappings using this &drm_gem_object as backing buffer.
44  *
45  * GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also
46  * keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'.
47  *
48  * The GPU VA manager internally uses a rb-tree to manage the
49  * &drm_gpuva mappings within a GPU's virtual address space.
50  *
51  * The &drm_gpuvm structure contains a special &drm_gpuva representing the
52  * portion of VA space reserved by the kernel. This node is initialized together
53  * with the GPU VA manager instance and removed when the GPU VA manager is
54  * destroyed.
55  *
56  * In a typical application drivers would embed struct drm_gpuvm and
57  * struct drm_gpuva within their own driver specific structures, there won't be
58  * any memory allocations of its own nor memory allocations of &drm_gpuva
59  * entries.
60  *
61  * The data structures needed to store &drm_gpuvas within the &drm_gpuvm are
62  * contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva
63  * entries from within dma-fence signalling critical sections it is enough to
64  * pre-allocate the &drm_gpuva structures.
65  *
66  * &drm_gem_objects which are private to a single VM can share a common
67  * &dma_resv in order to improve locking efficiency (e.g. with &drm_exec).
68  * For this purpose drivers must pass a &drm_gem_object to drm_gpuvm_init(), in
69  * the following called 'resv object', which serves as the container of the
70  * GPUVM's shared &dma_resv. This resv object can be a driver specific
71  * &drm_gem_object, such as the &drm_gem_object containing the root page table,
72  * but it can also be a 'dummy' object, which can be allocated with
73  * drm_gpuvm_resv_object_alloc().
74  *
75  * In order to connect a struct drm_gpuva to its backing &drm_gem_object each
76  * &drm_gem_object maintains a list of &drm_gpuvm_bo structures, and each
77  * &drm_gpuvm_bo contains a list of &drm_gpuva structures.
78  *
79  * A &drm_gpuvm_bo is an abstraction that represents a combination of a
80  * &drm_gpuvm and a &drm_gem_object. Every such combination should be unique.
81  * This is ensured by the API through drm_gpuvm_bo_obtain() and
82  * drm_gpuvm_bo_obtain_prealloc() which first look into the corresponding
83  * &drm_gem_object list of &drm_gpuvm_bos for an existing instance of this
84  * particular combination. If not present, a new instance is created and linked
85  * to the &drm_gem_object.
86  *
87  * &drm_gpuvm_bo structures, since unique for a given &drm_gpuvm, are also used
88  * as entry for the &drm_gpuvm's lists of external and evicted objects. Those
89  * lists are maintained in order to accelerate locking of dma-resv locks and
90  * validation of evicted objects bound in a &drm_gpuvm. For instance, all
91  * &drm_gem_object's &dma_resv of a given &drm_gpuvm can be locked by calling
92  * drm_gpuvm_exec_lock(). Once locked drivers can call drm_gpuvm_validate() in
93  * order to validate all evicted &drm_gem_objects. It is also possible to lock
94  * additional &drm_gem_objects by providing the corresponding parameters to
95  * drm_gpuvm_exec_lock() as well as open code the &drm_exec loop while making
96  * use of helper functions such as drm_gpuvm_prepare_range() or
97  * drm_gpuvm_prepare_objects().
98  *
99  * Every bound &drm_gem_object is treated as external object when its &dma_resv
100  * structure is different than the &drm_gpuvm's common &dma_resv structure.
101  */
102 
103 /**
104  * DOC: Split and Merge
105  *
106  * Besides its capability to manage and represent a GPU VA space, the
107  * GPU VA manager also provides functions to let the &drm_gpuvm calculate a
108  * sequence of operations to satisfy a given map or unmap request.
109  *
110  * Therefore the DRM GPU VA manager provides an algorithm implementing splitting
111  * and merging of existing GPU VA mappings with the ones that are requested to
112  * be mapped or unmapped. This feature is required by the Vulkan API to
113  * implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this
114  * as VM BIND.
115  *
116  * Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks
117  * containing map, unmap and remap operations for a given newly requested
118  * mapping. The sequence of callbacks represents the set of operations to
119  * execute in order to integrate the new mapping cleanly into the current state
120  * of the GPU VA space.
121  *
122  * Depending on how the new GPU VA mapping intersects with the existing mappings
123  * of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount
124  * of unmap operations, a maximum of two remap operations and a single map
125  * operation. The caller might receive no callback at all if no operation is
126  * required, e.g. if the requested mapping already exists in the exact same way.
127  *
128  * The single map operation represents the original map operation requested by
129  * the caller.
130  *
131  * &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the
132  * &drm_gpuva to unmap is physically contiguous with the original mapping
133  * request. Optionally, if 'keep' is set, drivers may keep the actual page table
134  * entries for this &drm_gpuva, adding the missing page table entries only and
135  * update the &drm_gpuvm's view of things accordingly.
136  *
137  * Drivers may do the same optimization, namely delta page table updates, also
138  * for remap operations. This is possible since &drm_gpuva_op_remap consists of
139  * one unmap operation and one or two map operations, such that drivers can
140  * derive the page table update delta accordingly.
141  *
142  * Note that there can't be more than two existing mappings to split up, one at
143  * the beginning and one at the end of the new mapping, hence there is a
144  * maximum of two remap operations.
145  *
146  * Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to
147  * call back into the driver in order to unmap a range of GPU VA space. The
148  * logic behind this function is way simpler though: For all existing mappings
149  * enclosed by the given range unmap operations are created. For mappings which
150  * are only partially located within the given range, remap operations are
151  * created such that those mappings are split up and re-mapped partially.
152  *
153  * As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(),
154  * drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used
155  * to directly obtain an instance of struct drm_gpuva_ops containing a list of
156  * &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list
157  * contains the &drm_gpuva_ops analogous to the callbacks one would receive when
158  * calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires
159  * more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to
160  * iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory
161  * allocations are possible (e.g. to allocate GPU page tables) and once in the
162  * dma-fence signalling critical path.
163  *
164  * To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and
165  * drm_gpuva_remove() may be used. These functions can safely be used from
166  * &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or
167  * drm_gpuvm_sm_unmap(). However, it might be more convenient to use the
168  * provided helper functions drm_gpuva_map(), drm_gpuva_remap() and
169  * drm_gpuva_unmap() instead.
170  *
171  * The following diagram depicts the basic relationships of existing GPU VA
172  * mappings, a newly requested mapping and the resulting mappings as implemented
173  * by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these.
174  *
175  * 1) Requested mapping is identical. Replace it, but indicate the backing PTEs
176  *    could be kept.
177  *
178  *    ::
179  *
180  *	     0     a     1
181  *	old: |-----------| (bo_offset=n)
182  *
183  *	     0     a     1
184  *	req: |-----------| (bo_offset=n)
185  *
186  *	     0     a     1
187  *	new: |-----------| (bo_offset=n)
188  *
189  *
190  * 2) Requested mapping is identical, except for the BO offset, hence replace
191  *    the mapping.
192  *
193  *    ::
194  *
195  *	     0     a     1
196  *	old: |-----------| (bo_offset=n)
197  *
198  *	     0     a     1
199  *	req: |-----------| (bo_offset=m)
200  *
201  *	     0     a     1
202  *	new: |-----------| (bo_offset=m)
203  *
204  *
205  * 3) Requested mapping is identical, except for the backing BO, hence replace
206  *    the mapping.
207  *
208  *    ::
209  *
210  *	     0     a     1
211  *	old: |-----------| (bo_offset=n)
212  *
213  *	     0     b     1
214  *	req: |-----------| (bo_offset=n)
215  *
216  *	     0     b     1
217  *	new: |-----------| (bo_offset=n)
218  *
219  *
220  * 4) Existent mapping is a left aligned subset of the requested one, hence
221  *    replace the existing one.
222  *
223  *    ::
224  *
225  *	     0  a  1
226  *	old: |-----|       (bo_offset=n)
227  *
228  *	     0     a     2
229  *	req: |-----------| (bo_offset=n)
230  *
231  *	     0     a     2
232  *	new: |-----------| (bo_offset=n)
233  *
234  *    .. note::
235  *       We expect to see the same result for a request with a different BO
236  *       and/or non-contiguous BO offset.
237  *
238  *
239  * 5) Requested mapping's range is a left aligned subset of the existing one,
240  *    but backed by a different BO. Hence, map the requested mapping and split
241  *    the existing one adjusting its BO offset.
242  *
243  *    ::
244  *
245  *	     0     a     2
246  *	old: |-----------| (bo_offset=n)
247  *
248  *	     0  b  1
249  *	req: |-----|       (bo_offset=n)
250  *
251  *	     0  b  1  a' 2
252  *	new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1)
253  *
254  *    .. note::
255  *       We expect to see the same result for a request with a different BO
256  *       and/or non-contiguous BO offset.
257  *
258  *
259  * 6) Existent mapping is a superset of the requested mapping. Split it up, but
260  *    indicate that the backing PTEs could be kept.
261  *
262  *    ::
263  *
264  *	     0     a     2
265  *	old: |-----------| (bo_offset=n)
266  *
267  *	     0  a  1
268  *	req: |-----|       (bo_offset=n)
269  *
270  *	     0  a  1  a' 2
271  *	new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1)
272  *
273  *
274  * 7) Requested mapping's range is a right aligned subset of the existing one,
275  *    but backed by a different BO. Hence, map the requested mapping and split
276  *    the existing one, without adjusting the BO offset.
277  *
278  *    ::
279  *
280  *	     0     a     2
281  *	old: |-----------| (bo_offset=n)
282  *
283  *	           1  b  2
284  *	req:       |-----| (bo_offset=m)
285  *
286  *	     0  a  1  b  2
287  *	new: |-----|-----| (a.bo_offset=n,b.bo_offset=m)
288  *
289  *
290  * 8) Existent mapping is a superset of the requested mapping. Split it up, but
291  *    indicate that the backing PTEs could be kept.
292  *
293  *    ::
294  *
295  *	      0     a     2
296  *	old: |-----------| (bo_offset=n)
297  *
298  *	           1  a  2
299  *	req:       |-----| (bo_offset=n+1)
300  *
301  *	     0  a' 1  a  2
302  *	new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1)
303  *
304  *
305  * 9) Existent mapping is overlapped at the end by the requested mapping backed
306  *    by a different BO. Hence, map the requested mapping and split up the
307  *    existing one, without adjusting the BO offset.
308  *
309  *    ::
310  *
311  *	     0     a     2
312  *	old: |-----------|       (bo_offset=n)
313  *
314  *	           1     b     3
315  *	req:       |-----------| (bo_offset=m)
316  *
317  *	     0  a  1     b     3
318  *	new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m)
319  *
320  *
321  * 10) Existent mapping is overlapped by the requested mapping, both having the
322  *     same backing BO with a contiguous offset. Indicate the backing PTEs of
323  *     the old mapping could be kept.
324  *
325  *     ::
326  *
327  *	      0     a     2
328  *	 old: |-----------|       (bo_offset=n)
329  *
330  *	            1     a     3
331  *	 req:       |-----------| (bo_offset=n+1)
332  *
333  *	      0  a' 1     a     3
334  *	 new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1)
335  *
336  *
337  * 11) Requested mapping's range is a centered subset of the existing one
338  *     having a different backing BO. Hence, map the requested mapping and split
339  *     up the existing one in two mappings, adjusting the BO offset of the right
340  *     one accordingly.
341  *
342  *     ::
343  *
344  *	      0        a        3
345  *	 old: |-----------------| (bo_offset=n)
346  *
347  *	            1  b  2
348  *	 req:       |-----|       (bo_offset=m)
349  *
350  *	      0  a  1  b  2  a' 3
351  *	 new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2)
352  *
353  *
354  * 12) Requested mapping is a contiguous subset of the existing one. Split it
355  *     up, but indicate that the backing PTEs could be kept.
356  *
357  *     ::
358  *
359  *	      0        a        3
360  *	 old: |-----------------| (bo_offset=n)
361  *
362  *	            1  a  2
363  *	 req:       |-----|       (bo_offset=n+1)
364  *
365  *	      0  a' 1  a  2 a'' 3
366  *	 old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2)
367  *
368  *
369  * 13) Existent mapping is a right aligned subset of the requested one, hence
370  *     replace the existing one.
371  *
372  *     ::
373  *
374  *	            1  a  2
375  *	 old:       |-----| (bo_offset=n+1)
376  *
377  *	      0     a     2
378  *	 req: |-----------| (bo_offset=n)
379  *
380  *	      0     a     2
381  *	 new: |-----------| (bo_offset=n)
382  *
383  *     .. note::
384  *        We expect to see the same result for a request with a different bo
385  *        and/or non-contiguous bo_offset.
386  *
387  *
388  * 14) Existent mapping is a centered subset of the requested one, hence
389  *     replace the existing one.
390  *
391  *     ::
392  *
393  *	            1  a  2
394  *	 old:       |-----| (bo_offset=n+1)
395  *
396  *	      0        a       3
397  *	 req: |----------------| (bo_offset=n)
398  *
399  *	      0        a       3
400  *	 new: |----------------| (bo_offset=n)
401  *
402  *     .. note::
403  *        We expect to see the same result for a request with a different bo
404  *        and/or non-contiguous bo_offset.
405  *
406  *
407  * 15) Existent mappings is overlapped at the beginning by the requested mapping
408  *     backed by a different BO. Hence, map the requested mapping and split up
409  *     the existing one, adjusting its BO offset accordingly.
410  *
411  *     ::
412  *
413  *	            1     a     3
414  *	 old:       |-----------| (bo_offset=n)
415  *
416  *	      0     b     2
417  *	 req: |-----------|       (bo_offset=m)
418  *
419  *	      0     b     2  a' 3
420  *	 new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2)
421  */
422 
423 /**
424  * DOC: Madvise Logic - Splitting and Traversal
425  *
426  * This logic handles GPU VA range updates by generating remap and map operations
427  * without performing unmaps or merging existing mappings.
428  *
429  * 1) The requested range lies entirely within a single drm_gpuva. The logic splits
430  * the existing mapping at the start and end boundaries and inserts a new map.
431  *
432  * ::
433  *              a      start    end     b
434  *         pre: |-----------------------|
435  *                     drm_gpuva1
436  *
437  *              a      start    end     b
438  *         new: |-----|=========|-------|
439  *               remap   map      remap
440  *
441  * one REMAP and one MAP : Same behaviour as SPLIT and MERGE
442  *
443  * 2) The requested range spans multiple drm_gpuva regions. The logic traverses
444  * across boundaries, remapping the start and end segments, and inserting two
445  * map operations to cover the full range.
446  *
447  * ::           a       start      b              c        end       d
448  *         pre: |------------------|--------------|------------------|
449  *                    drm_gpuva1      drm_gpuva2         drm_gpuva3
450  *
451  *              a       start      b              c        end       d
452  *         new: |-------|==========|--------------|========|---------|
453  *                remap1   map1       drm_gpuva2    map2     remap2
454  *
455  * two REMAPS and two MAPS
456  *
457  * 3) Either start or end lies within a drm_gpuva. A single remap and map operation
458  * are generated to update the affected portion.
459  *
460  *
461  * ::           a/start            b              c        end       d
462  *         pre: |------------------|--------------|------------------|
463  *                    drm_gpuva1      drm_gpuva2         drm_gpuva3
464  *
465  *              a/start            b              c        end       d
466  *         new: |------------------|--------------|========|---------|
467  *                drm_gpuva1         drm_gpuva2     map1     remap1
468  *
469  * ::           a       start      b              c/end              d
470  *         pre: |------------------|--------------|------------------|
471  *                    drm_gpuva1      drm_gpuva2         drm_gpuva3
472  *
473  *              a       start      b              c/end              d
474  *         new: |-------|==========|--------------|------------------|
475  *                remap1   map1       drm_gpuva2        drm_gpuva3
476  *
477  * one REMAP and one MAP
478  *
479  * 4) Both start and end align with existing drm_gpuva boundaries. No operations
480  * are needed as the range is already covered.
481  *
482  * 5) No existing drm_gpuvas. No operations.
483  *
484  * Unlike drm_gpuvm_sm_map_ops_create, this logic avoids unmaps and merging,
485  * focusing solely on remap and map operations for efficient traversal and update.
486  */
487 
488 /**
489  * DOC: Locking
490  *
491  * In terms of managing &drm_gpuva entries DRM GPUVM does not take care of
492  * locking itself, it is the drivers responsibility to take care about locking.
493  * Drivers might want to protect the following operations: inserting, removing
494  * and iterating &drm_gpuva objects as well as generating all kinds of
495  * operations, such as split / merge or prefetch.
496  *
497  * DRM GPUVM also does not take care of the locking of the backing
498  * &drm_gem_object buffers GPU VA lists and &drm_gpuvm_bo abstractions by
499  * itself; drivers are responsible to enforce mutual exclusion using either the
500  * GEMs dma_resv lock or the GEMs gpuva.lock mutex.
501  *
502  * However, DRM GPUVM contains lockdep checks to ensure callers of its API hold
503  * the corresponding lock whenever the &drm_gem_objects GPU VA list is accessed
504  * by functions such as drm_gpuva_link() or drm_gpuva_unlink(), but also
505  * drm_gpuvm_bo_obtain() and drm_gpuvm_bo_put().
506  *
507  * The latter is required since on creation and destruction of a &drm_gpuvm_bo
508  * the &drm_gpuvm_bo is attached / removed from the &drm_gem_objects gpuva list.
509  * Subsequent calls to drm_gpuvm_bo_obtain() for the same &drm_gpuvm and
510  * &drm_gem_object must be able to observe previous creations and destructions
511  * of &drm_gpuvm_bos in order to keep instances unique.
512  *
513  * The &drm_gpuvm's lists for keeping track of external and evicted objects are
514  * protected against concurrent insertion / removal and iteration internally.
515  *
516  * However, drivers still need ensure to protect concurrent calls to functions
517  * iterating those lists, namely drm_gpuvm_prepare_objects() and
518  * drm_gpuvm_validate().
519  *
520  * Alternatively, drivers can set the &DRM_GPUVM_RESV_PROTECTED flag to indicate
521  * that the corresponding &dma_resv locks are held in order to protect the
522  * lists. If &DRM_GPUVM_RESV_PROTECTED is set, internal locking is disabled and
523  * the corresponding lockdep checks are enabled. This is an optimization for
524  * drivers which are capable of taking the corresponding &dma_resv locks and
525  * hence do not require internal locking.
526  */
527 
528 /**
529  * DOC: Examples
530  *
531  * This section gives two examples on how to let the DRM GPUVA Manager generate
532  * &drm_gpuva_op in order to satisfy a given map or unmap request and how to
533  * make use of them.
534  *
535  * The below code is strictly limited to illustrate the generic usage pattern.
536  * To maintain simplicity, it doesn't make use of any abstractions for common
537  * code, different (asynchronous) stages with fence signalling critical paths,
538  * any other helpers or error handling in terms of freeing memory and dropping
539  * previously taken locks.
540  *
541  * 1) Obtain a list of &drm_gpuva_op to create a new mapping::
542  *
543  *	// Allocates a new &drm_gpuva.
544  *	struct drm_gpuva * driver_gpuva_alloc(void);
545  *
546  *	// Typically drivers would embed the &drm_gpuvm and &drm_gpuva
547  *	// structure in individual driver structures and lock the dma-resv with
548  *	// drm_exec or similar helpers.
549  *	int driver_mapping_create(struct drm_gpuvm *gpuvm,
550  *				  u64 addr, u64 range,
551  *				  struct drm_gem_object *obj, u64 offset)
552  *	{
553  *		struct drm_gpuvm_map_req map_req = {
554  *		        .map.va.addr = addr,
555  *	                .map.va.range = range,
556  *	                .map.gem.obj = obj,
557  *	                .map.gem.offset = offset,
558  *	           };
559  *		struct drm_gpuva_ops *ops;
560  *		struct drm_gpuva_op *op
561  *		struct drm_gpuvm_bo *vm_bo;
562  *
563  *		driver_lock_va_space();
564  *		ops = drm_gpuvm_sm_map_ops_create(gpuvm, &map_req);
565  *		if (IS_ERR(ops))
566  *			return PTR_ERR(ops);
567  *
568  *		vm_bo = drm_gpuvm_bo_obtain(gpuvm, obj);
569  *		if (IS_ERR(vm_bo))
570  *			return PTR_ERR(vm_bo);
571  *
572  *		drm_gpuva_for_each_op(op, ops) {
573  *			struct drm_gpuva *va;
574  *
575  *			switch (op->op) {
576  *			case DRM_GPUVA_OP_MAP:
577  *				va = driver_gpuva_alloc();
578  *				if (!va)
579  *					; // unwind previous VA space updates,
580  *					  // free memory and unlock
581  *
582  *				driver_vm_map();
583  *				drm_gpuva_map(gpuvm, va, &op->map);
584  *				drm_gpuva_link(va, vm_bo);
585  *
586  *				break;
587  *			case DRM_GPUVA_OP_REMAP: {
588  *				struct drm_gpuva *prev = NULL, *next = NULL;
589  *
590  *				va = op->remap.unmap->va;
591  *
592  *				if (op->remap.prev) {
593  *					prev = driver_gpuva_alloc();
594  *					if (!prev)
595  *						; // unwind previous VA space
596  *						  // updates, free memory and
597  *						  // unlock
598  *				}
599  *
600  *				if (op->remap.next) {
601  *					next = driver_gpuva_alloc();
602  *					if (!next)
603  *						; // unwind previous VA space
604  *						  // updates, free memory and
605  *						  // unlock
606  *				}
607  *
608  *				driver_vm_remap();
609  *				drm_gpuva_remap(prev, next, &op->remap);
610  *
611  *				if (prev)
612  *					drm_gpuva_link(prev, va->vm_bo);
613  *				if (next)
614  *					drm_gpuva_link(next, va->vm_bo);
615  *				drm_gpuva_unlink(va);
616  *
617  *				break;
618  *			}
619  *			case DRM_GPUVA_OP_UNMAP:
620  *				va = op->unmap->va;
621  *
622  *				driver_vm_unmap();
623  *				drm_gpuva_unlink(va);
624  *				drm_gpuva_unmap(&op->unmap);
625  *
626  *				break;
627  *			default:
628  *				break;
629  *			}
630  *		}
631  *		drm_gpuvm_bo_put(vm_bo);
632  *		driver_unlock_va_space();
633  *
634  *		return 0;
635  *	}
636  *
637  * 2) Receive a callback for each &drm_gpuva_op to create a new mapping::
638  *
639  *	struct driver_context {
640  *		struct drm_gpuvm *gpuvm;
641  *		struct drm_gpuvm_bo *vm_bo;
642  *		struct drm_gpuva *new_va;
643  *		struct drm_gpuva *prev_va;
644  *		struct drm_gpuva *next_va;
645  *	};
646  *
647  *	// ops to pass to drm_gpuvm_init()
648  *	static const struct drm_gpuvm_ops driver_gpuvm_ops = {
649  *		.sm_step_map = driver_gpuva_map,
650  *		.sm_step_remap = driver_gpuva_remap,
651  *		.sm_step_unmap = driver_gpuva_unmap,
652  *	};
653  *
654  *	// Typically drivers would embed the &drm_gpuvm and &drm_gpuva
655  *	// structure in individual driver structures and lock the dma-resv with
656  *	// drm_exec or similar helpers.
657  *	int driver_mapping_create(struct drm_gpuvm *gpuvm,
658  *				  u64 addr, u64 range,
659  *				  struct drm_gem_object *obj, u64 offset)
660  *	{
661  *		struct driver_context ctx;
662  *		struct drm_gpuvm_bo *vm_bo;
663  *		struct drm_gpuva_ops *ops;
664  *		struct drm_gpuva_op *op;
665  *		int ret = 0;
666  *
667  *		ctx.gpuvm = gpuvm;
668  *
669  *		ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL);
670  *		ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL);
671  *		ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL);
672  *		ctx.vm_bo = drm_gpuvm_bo_create(gpuvm, obj);
673  *		if (!ctx.new_va || !ctx.prev_va || !ctx.next_va || !vm_bo) {
674  *			ret = -ENOMEM;
675  *			goto out;
676  *		}
677  *
678  *		// Typically protected with a driver specific GEM gpuva lock
679  *		// used in the fence signaling path for drm_gpuva_link() and
680  *		// drm_gpuva_unlink(), hence pre-allocate.
681  *		ctx.vm_bo = drm_gpuvm_bo_obtain_prealloc(ctx.vm_bo);
682  *
683  *		driver_lock_va_space();
684  *		ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset);
685  *		driver_unlock_va_space();
686  *
687  *	out:
688  *		drm_gpuvm_bo_put(ctx.vm_bo);
689  *		kfree(ctx.new_va);
690  *		kfree(ctx.prev_va);
691  *		kfree(ctx.next_va);
692  *		return ret;
693  *	}
694  *
695  *	int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx)
696  *	{
697  *		struct driver_context *ctx = __ctx;
698  *
699  *		drm_gpuva_map(ctx->vm, ctx->new_va, &op->map);
700  *
701  *		drm_gpuva_link(ctx->new_va, ctx->vm_bo);
702  *
703  *		// prevent the new GPUVA from being freed in
704  *		// driver_mapping_create()
705  *		ctx->new_va = NULL;
706  *
707  *		return 0;
708  *	}
709  *
710  *	int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx)
711  *	{
712  *		struct driver_context *ctx = __ctx;
713  *		struct drm_gpuva *va = op->remap.unmap->va;
714  *
715  *		drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap);
716  *
717  *		if (op->remap.prev) {
718  *			drm_gpuva_link(ctx->prev_va, va->vm_bo);
719  *			ctx->prev_va = NULL;
720  *		}
721  *
722  *		if (op->remap.next) {
723  *			drm_gpuva_link(ctx->next_va, va->vm_bo);
724  *			ctx->next_va = NULL;
725  *		}
726  *
727  *		drm_gpuva_unlink(va);
728  *		kfree(va);
729  *
730  *		return 0;
731  *	}
732  *
733  *	int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx)
734  *	{
735  *		drm_gpuva_unlink(op->unmap.va);
736  *		drm_gpuva_unmap(&op->unmap);
737  *		kfree(op->unmap.va);
738  *
739  *		return 0;
740  *	}
741  */
742 
743 /**
744  * get_next_vm_bo_from_list() - get the next vm_bo element
745  * @__gpuvm: the &drm_gpuvm
746  * @__list_name: the name of the list we're iterating on
747  * @__local_list: a pointer to the local list used to store already iterated items
748  * @__prev_vm_bo: the previous element we got from get_next_vm_bo_from_list()
749  *
750  * This helper is here to provide lockless list iteration. Lockless as in, the
751  * iterator releases the lock immediately after picking the first element from
752  * the list, so list insertion and deletion can happen concurrently.
753  *
754  * Elements popped from the original list are kept in a local list, so removal
755  * and is_empty checks can still happen while we're iterating the list.
756  */
757 #define get_next_vm_bo_from_list(__gpuvm, __list_name, __local_list, __prev_vm_bo)	\
758 	({										\
759 		struct drm_gpuvm_bo *__vm_bo = NULL;					\
760 											\
761 		drm_gpuvm_bo_put(__prev_vm_bo);						\
762 											\
763 		spin_lock(&(__gpuvm)->__list_name.lock);				\
764 		if (!(__gpuvm)->__list_name.local_list)					\
765 			(__gpuvm)->__list_name.local_list = __local_list;		\
766 		else									\
767 			drm_WARN_ON((__gpuvm)->drm,					\
768 				    (__gpuvm)->__list_name.local_list != __local_list);	\
769 											\
770 		while (!list_empty(&(__gpuvm)->__list_name.list)) {			\
771 			__vm_bo = list_first_entry(&(__gpuvm)->__list_name.list,	\
772 						   struct drm_gpuvm_bo,			\
773 						   list.entry.__list_name);		\
774 			if (kref_get_unless_zero(&__vm_bo->kref)) {			\
775 				list_move_tail(&(__vm_bo)->list.entry.__list_name,	\
776 					       __local_list);				\
777 				break;							\
778 			} else {							\
779 				list_del_init(&(__vm_bo)->list.entry.__list_name);	\
780 				__vm_bo = NULL;						\
781 			}								\
782 		}									\
783 		spin_unlock(&(__gpuvm)->__list_name.lock);				\
784 											\
785 		__vm_bo;								\
786 	})
787 
788 /**
789  * for_each_vm_bo_in_list() - internal vm_bo list iterator
790  * @__gpuvm: the &drm_gpuvm
791  * @__list_name: the name of the list we're iterating on
792  * @__local_list: a pointer to the local list used to store already iterated items
793  * @__vm_bo: the struct drm_gpuvm_bo to assign in each iteration step
794  *
795  * This helper is here to provide lockless list iteration. Lockless as in, the
796  * iterator releases the lock immediately after picking the first element from the
797  * list, hence list insertion and deletion can happen concurrently.
798  *
799  * It is not allowed to re-assign the vm_bo pointer from inside this loop.
800  *
801  * Typical use:
802  *
803  *	struct drm_gpuvm_bo *vm_bo;
804  *	LIST_HEAD(my_local_list);
805  *
806  *	ret = 0;
807  *	for_each_vm_bo_in_list(gpuvm, <list_name>, &my_local_list, vm_bo) {
808  *		ret = do_something_with_vm_bo(..., vm_bo);
809  *		if (ret)
810  *			break;
811  *	}
812  *	// Drop ref in case we break out of the loop.
813  *	drm_gpuvm_bo_put(vm_bo);
814  *	restore_vm_bo_list(gpuvm, <list_name>, &my_local_list);
815  *
816  *
817  * Only used for internal list iterations, not meant to be exposed to the outside
818  * world.
819  */
820 #define for_each_vm_bo_in_list(__gpuvm, __list_name, __local_list, __vm_bo)	\
821 	for (__vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name,		\
822 						__local_list, NULL);		\
823 	     __vm_bo;								\
824 	     __vm_bo = get_next_vm_bo_from_list(__gpuvm, __list_name,		\
825 						__local_list, __vm_bo))
826 
827 static void
828 __restore_vm_bo_list(struct drm_gpuvm *gpuvm, spinlock_t *lock,
829 		     struct list_head *list, struct list_head **local_list)
830 {
831 	/* Merge back the two lists, moving local list elements to the
832 	 * head to preserve previous ordering, in case it matters.
833 	 */
834 	spin_lock(lock);
835 	if (*local_list) {
836 		list_splice(*local_list, list);
837 		*local_list = NULL;
838 	}
839 	spin_unlock(lock);
840 }
841 
842 /**
843  * restore_vm_bo_list() - move vm_bo elements back to their original list
844  * @__gpuvm: the &drm_gpuvm
845  * @__list_name: the name of the list we're iterating on
846  *
847  * When we're done iterating a vm_bo list, we should call restore_vm_bo_list()
848  * to restore the original state and let new iterations take place.
849  */
850 #define restore_vm_bo_list(__gpuvm, __list_name)			\
851 	__restore_vm_bo_list((__gpuvm), &(__gpuvm)->__list_name.lock,	\
852 			     &(__gpuvm)->__list_name.list,		\
853 			     &(__gpuvm)->__list_name.local_list)
854 
855 static void
856 cond_spin_lock(spinlock_t *lock, bool cond)
857 {
858 	if (cond)
859 		spin_lock(lock);
860 }
861 
862 static void
863 cond_spin_unlock(spinlock_t *lock, bool cond)
864 {
865 	if (cond)
866 		spin_unlock(lock);
867 }
868 
869 static void
870 __drm_gpuvm_bo_list_add(struct drm_gpuvm *gpuvm, spinlock_t *lock,
871 			struct list_head *entry, struct list_head *list)
872 {
873 	cond_spin_lock(lock, !!lock);
874 	if (list_empty(entry))
875 		list_add_tail(entry, list);
876 	cond_spin_unlock(lock, !!lock);
877 }
878 
879 /**
880  * drm_gpuvm_bo_list_add() - insert a vm_bo into the given list
881  * @__vm_bo: the &drm_gpuvm_bo
882  * @__list_name: the name of the list to insert into
883  * @__lock: whether to lock with the internal spinlock
884  *
885  * Inserts the given @__vm_bo into the list specified by @__list_name.
886  */
887 #define drm_gpuvm_bo_list_add(__vm_bo, __list_name, __lock)			\
888 	__drm_gpuvm_bo_list_add((__vm_bo)->vm,					\
889 				__lock ? &(__vm_bo)->vm->__list_name.lock :	\
890 					 NULL,					\
891 				&(__vm_bo)->list.entry.__list_name,		\
892 				&(__vm_bo)->vm->__list_name.list)
893 
894 static void
895 __drm_gpuvm_bo_list_del(struct drm_gpuvm *gpuvm, spinlock_t *lock,
896 			struct list_head *entry, bool init)
897 {
898 	cond_spin_lock(lock, !!lock);
899 	if (init) {
900 		if (!list_empty(entry))
901 			list_del_init(entry);
902 	} else {
903 		list_del(entry);
904 	}
905 	cond_spin_unlock(lock, !!lock);
906 }
907 
908 /**
909  * drm_gpuvm_bo_list_del_init() - remove a vm_bo from the given list
910  * @__vm_bo: the &drm_gpuvm_bo
911  * @__list_name: the name of the list to insert into
912  * @__lock: whether to lock with the internal spinlock
913  *
914  * Removes the given @__vm_bo from the list specified by @__list_name.
915  */
916 #define drm_gpuvm_bo_list_del_init(__vm_bo, __list_name, __lock)		\
917 	__drm_gpuvm_bo_list_del((__vm_bo)->vm,					\
918 				__lock ? &(__vm_bo)->vm->__list_name.lock :	\
919 					 NULL,					\
920 				&(__vm_bo)->list.entry.__list_name,		\
921 				true)
922 
923 /**
924  * drm_gpuvm_bo_list_del() - remove a vm_bo from the given list
925  * @__vm_bo: the &drm_gpuvm_bo
926  * @__list_name: the name of the list to insert into
927  * @__lock: whether to lock with the internal spinlock
928  *
929  * Removes the given @__vm_bo from the list specified by @__list_name.
930  */
931 #define drm_gpuvm_bo_list_del(__vm_bo, __list_name, __lock)			\
932 	__drm_gpuvm_bo_list_del((__vm_bo)->vm,					\
933 				__lock ? &(__vm_bo)->vm->__list_name.lock :	\
934 					 NULL,					\
935 				&(__vm_bo)->list.entry.__list_name,		\
936 				false)
937 
938 #define to_drm_gpuva(__node)	container_of((__node), struct drm_gpuva, rb.node)
939 
940 #define GPUVA_START(node) ((node)->va.addr)
941 #define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1)
942 
943 /* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain
944  * about this.
945  */
946 INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last,
947 		     GPUVA_START, GPUVA_LAST, static __maybe_unused,
948 		     drm_gpuva_it)
949 
950 static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm,
951 			      struct drm_gpuva *va);
952 static void __drm_gpuva_remove(struct drm_gpuva *va);
953 
954 static bool
955 drm_gpuvm_check_overflow(u64 addr, u64 range)
956 {
957 	u64 end;
958 
959 	return check_add_overflow(addr, range, &end);
960 }
961 
962 static bool
963 drm_gpuvm_warn_check_overflow(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
964 {
965 	return drm_WARN(gpuvm->drm, drm_gpuvm_check_overflow(addr, range),
966 			"GPUVA address limited to %zu bytes.\n", sizeof(addr));
967 }
968 
969 static bool
970 drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
971 {
972 	u64 end = addr + range;
973 	u64 mm_start = gpuvm->mm_start;
974 	u64 mm_end = mm_start + gpuvm->mm_range;
975 
976 	return addr >= mm_start && end <= mm_end;
977 }
978 
979 static bool
980 drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
981 {
982 	u64 end = addr + range;
983 	u64 kstart = gpuvm->kernel_alloc_node.va.addr;
984 	u64 krange = gpuvm->kernel_alloc_node.va.range;
985 	u64 kend = kstart + krange;
986 
987 	return krange && addr < kend && kstart < end;
988 }
989 
990 /**
991  * drm_gpuvm_range_valid() - checks whether the given range is valid for the
992  * given &drm_gpuvm
993  * @gpuvm: the GPUVM to check the range for
994  * @addr: the base address
995  * @range: the range starting from the base address
996  *
997  * Checks whether the range is within the GPUVM's managed boundaries.
998  *
999  * Returns: true for a valid range, false otherwise
1000  */
1001 bool
1002 drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm,
1003 		      u64 addr, u64 range)
1004 {
1005 	return !drm_gpuvm_check_overflow(addr, range) &&
1006 	       drm_gpuvm_in_mm_range(gpuvm, addr, range) &&
1007 	       !drm_gpuvm_in_kernel_node(gpuvm, addr, range);
1008 }
1009 EXPORT_SYMBOL_GPL(drm_gpuvm_range_valid);
1010 
1011 static void
1012 drm_gpuvm_gem_object_free(struct drm_gem_object *obj)
1013 {
1014 	drm_gem_object_release(obj);
1015 	kfree(obj);
1016 }
1017 
1018 static const struct drm_gem_object_funcs drm_gpuvm_object_funcs = {
1019 	.free = drm_gpuvm_gem_object_free,
1020 };
1021 
1022 /**
1023  * drm_gpuvm_resv_object_alloc() - allocate a dummy &drm_gem_object
1024  * @drm: the drivers &drm_device
1025  *
1026  * Allocates a dummy &drm_gem_object which can be passed to drm_gpuvm_init() in
1027  * order to serve as root GEM object providing the &drm_resv shared across
1028  * &drm_gem_objects local to a single GPUVM.
1029  *
1030  * Returns: the &drm_gem_object on success, NULL on failure
1031  */
1032 struct drm_gem_object *
1033 drm_gpuvm_resv_object_alloc(struct drm_device *drm)
1034 {
1035 	struct drm_gem_object *obj;
1036 
1037 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
1038 	if (!obj)
1039 		return NULL;
1040 
1041 	obj->funcs = &drm_gpuvm_object_funcs;
1042 	drm_gem_private_object_init(drm, obj, 0);
1043 
1044 	return obj;
1045 }
1046 EXPORT_SYMBOL_GPL(drm_gpuvm_resv_object_alloc);
1047 
1048 /**
1049  * drm_gpuvm_init() - initialize a &drm_gpuvm
1050  * @gpuvm: pointer to the &drm_gpuvm to initialize
1051  * @name: the name of the GPU VA space
1052  * @flags: the &drm_gpuvm_flags for this GPUVM
1053  * @drm: the &drm_device this VM resides in
1054  * @r_obj: the resv &drm_gem_object providing the GPUVM's common &dma_resv
1055  * @start_offset: the start offset of the GPU VA space
1056  * @range: the size of the GPU VA space
1057  * @reserve_offset: the start of the kernel reserved GPU VA area
1058  * @reserve_range: the size of the kernel reserved GPU VA area
1059  * @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap
1060  *
1061  * The &drm_gpuvm must be initialized with this function before use.
1062  *
1063  * Note that @gpuvm must be cleared to 0 before calling this function. The given
1064  * &name is expected to be managed by the surrounding driver structures.
1065  */
1066 void
1067 drm_gpuvm_init(struct drm_gpuvm *gpuvm, const char *name,
1068 	       enum drm_gpuvm_flags flags,
1069 	       struct drm_device *drm,
1070 	       struct drm_gem_object *r_obj,
1071 	       u64 start_offset, u64 range,
1072 	       u64 reserve_offset, u64 reserve_range,
1073 	       const struct drm_gpuvm_ops *ops)
1074 {
1075 	gpuvm->rb.tree = RB_ROOT_CACHED;
1076 	INIT_LIST_HEAD(&gpuvm->rb.list);
1077 
1078 	INIT_LIST_HEAD(&gpuvm->extobj.list);
1079 	spin_lock_init(&gpuvm->extobj.lock);
1080 
1081 	INIT_LIST_HEAD(&gpuvm->evict.list);
1082 	spin_lock_init(&gpuvm->evict.lock);
1083 
1084 	kref_init(&gpuvm->kref);
1085 
1086 	gpuvm->name = name ? name : "unknown";
1087 	gpuvm->flags = flags;
1088 	gpuvm->ops = ops;
1089 	gpuvm->drm = drm;
1090 	gpuvm->r_obj = r_obj;
1091 
1092 	drm_gem_object_get(r_obj);
1093 
1094 	drm_gpuvm_warn_check_overflow(gpuvm, start_offset, range);
1095 	gpuvm->mm_start = start_offset;
1096 	gpuvm->mm_range = range;
1097 
1098 	memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva));
1099 	if (reserve_range) {
1100 		gpuvm->kernel_alloc_node.va.addr = reserve_offset;
1101 		gpuvm->kernel_alloc_node.va.range = reserve_range;
1102 
1103 		if (likely(!drm_gpuvm_warn_check_overflow(gpuvm, reserve_offset,
1104 							  reserve_range)))
1105 			__drm_gpuva_insert(gpuvm, &gpuvm->kernel_alloc_node);
1106 	}
1107 }
1108 EXPORT_SYMBOL_GPL(drm_gpuvm_init);
1109 
1110 static void
1111 drm_gpuvm_fini(struct drm_gpuvm *gpuvm)
1112 {
1113 	gpuvm->name = NULL;
1114 
1115 	if (gpuvm->kernel_alloc_node.va.range)
1116 		__drm_gpuva_remove(&gpuvm->kernel_alloc_node);
1117 
1118 	drm_WARN(gpuvm->drm, !RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root),
1119 		 "GPUVA tree is not empty, potentially leaking memory.\n");
1120 
1121 	drm_WARN(gpuvm->drm, !list_empty(&gpuvm->extobj.list),
1122 		 "Extobj list should be empty.\n");
1123 	drm_WARN(gpuvm->drm, !list_empty(&gpuvm->evict.list),
1124 		 "Evict list should be empty.\n");
1125 
1126 	drm_gem_object_put(gpuvm->r_obj);
1127 }
1128 
1129 static void
1130 drm_gpuvm_free(struct kref *kref)
1131 {
1132 	struct drm_gpuvm *gpuvm = container_of(kref, struct drm_gpuvm, kref);
1133 
1134 	drm_gpuvm_fini(gpuvm);
1135 
1136 	if (drm_WARN_ON(gpuvm->drm, !gpuvm->ops->vm_free))
1137 		return;
1138 
1139 	gpuvm->ops->vm_free(gpuvm);
1140 }
1141 
1142 /**
1143  * drm_gpuvm_put() - drop a struct drm_gpuvm reference
1144  * @gpuvm: the &drm_gpuvm to release the reference of
1145  *
1146  * This releases a reference to @gpuvm.
1147  *
1148  * This function may be called from atomic context.
1149  */
1150 void
1151 drm_gpuvm_put(struct drm_gpuvm *gpuvm)
1152 {
1153 	if (gpuvm)
1154 		kref_put(&gpuvm->kref, drm_gpuvm_free);
1155 }
1156 EXPORT_SYMBOL_GPL(drm_gpuvm_put);
1157 
1158 static int
1159 exec_prepare_obj(struct drm_exec *exec, struct drm_gem_object *obj,
1160 		 unsigned int num_fences)
1161 {
1162 	return num_fences ? drm_exec_prepare_obj(exec, obj, num_fences) :
1163 			    drm_exec_lock_obj(exec, obj);
1164 }
1165 
1166 /**
1167  * drm_gpuvm_prepare_vm() - prepare the GPUVMs common dma-resv
1168  * @gpuvm: the &drm_gpuvm
1169  * @exec: the &drm_exec context
1170  * @num_fences: the amount of &dma_fences to reserve
1171  *
1172  * Calls drm_exec_prepare_obj() for the GPUVMs dummy &drm_gem_object; if
1173  * @num_fences is zero drm_exec_lock_obj() is called instead.
1174  *
1175  * Using this function directly, it is the drivers responsibility to call
1176  * drm_exec_init() and drm_exec_fini() accordingly.
1177  *
1178  * Returns: 0 on success, negative error code on failure.
1179  */
1180 int
1181 drm_gpuvm_prepare_vm(struct drm_gpuvm *gpuvm,
1182 		     struct drm_exec *exec,
1183 		     unsigned int num_fences)
1184 {
1185 	return exec_prepare_obj(exec, gpuvm->r_obj, num_fences);
1186 }
1187 EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_vm);
1188 
1189 static int
1190 __drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm,
1191 			    struct drm_exec *exec,
1192 			    unsigned int num_fences)
1193 {
1194 	struct drm_gpuvm_bo *vm_bo;
1195 	LIST_HEAD(extobjs);
1196 	int ret = 0;
1197 
1198 	for_each_vm_bo_in_list(gpuvm, extobj, &extobjs, vm_bo) {
1199 		ret = exec_prepare_obj(exec, vm_bo->obj, num_fences);
1200 		if (ret)
1201 			break;
1202 	}
1203 	/* Drop ref in case we break out of the loop. */
1204 	drm_gpuvm_bo_put(vm_bo);
1205 	restore_vm_bo_list(gpuvm, extobj);
1206 
1207 	return ret;
1208 }
1209 
1210 static int
1211 drm_gpuvm_prepare_objects_locked(struct drm_gpuvm *gpuvm,
1212 				 struct drm_exec *exec,
1213 				 unsigned int num_fences)
1214 {
1215 	struct drm_gpuvm_bo *vm_bo;
1216 	int ret = 0;
1217 
1218 	drm_gpuvm_resv_assert_held(gpuvm);
1219 	list_for_each_entry(vm_bo, &gpuvm->extobj.list, list.entry.extobj) {
1220 		ret = exec_prepare_obj(exec, vm_bo->obj, num_fences);
1221 		if (ret)
1222 			break;
1223 
1224 		if (vm_bo->evicted)
1225 			drm_gpuvm_bo_list_add(vm_bo, evict, false);
1226 	}
1227 
1228 	return ret;
1229 }
1230 
1231 /**
1232  * drm_gpuvm_prepare_objects() - prepare all associated BOs
1233  * @gpuvm: the &drm_gpuvm
1234  * @exec: the &drm_exec locking context
1235  * @num_fences: the amount of &dma_fences to reserve
1236  *
1237  * Calls drm_exec_prepare_obj() for all &drm_gem_objects the given
1238  * &drm_gpuvm contains mappings of; if @num_fences is zero drm_exec_lock_obj()
1239  * is called instead.
1240  *
1241  * Using this function directly, it is the drivers responsibility to call
1242  * drm_exec_init() and drm_exec_fini() accordingly.
1243  *
1244  * Note: This function is safe against concurrent insertion and removal of
1245  * external objects, however it is not safe against concurrent usage itself.
1246  *
1247  * Drivers need to make sure to protect this case with either an outer VM lock
1248  * or by calling drm_gpuvm_prepare_vm() before this function within the
1249  * drm_exec_until_all_locked() loop, such that the GPUVM's dma-resv lock ensures
1250  * mutual exclusion.
1251  *
1252  * Returns: 0 on success, negative error code on failure.
1253  */
1254 int
1255 drm_gpuvm_prepare_objects(struct drm_gpuvm *gpuvm,
1256 			  struct drm_exec *exec,
1257 			  unsigned int num_fences)
1258 {
1259 	if (drm_gpuvm_resv_protected(gpuvm))
1260 		return drm_gpuvm_prepare_objects_locked(gpuvm, exec,
1261 							num_fences);
1262 	else
1263 		return __drm_gpuvm_prepare_objects(gpuvm, exec, num_fences);
1264 }
1265 EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_objects);
1266 
1267 /**
1268  * drm_gpuvm_prepare_range() - prepare all BOs mapped within a given range
1269  * @gpuvm: the &drm_gpuvm
1270  * @exec: the &drm_exec locking context
1271  * @addr: the start address within the VA space
1272  * @range: the range to iterate within the VA space
1273  * @num_fences: the amount of &dma_fences to reserve
1274  *
1275  * Calls drm_exec_prepare_obj() for all &drm_gem_objects mapped between @addr
1276  * and @addr + @range; if @num_fences is zero drm_exec_lock_obj() is called
1277  * instead.
1278  *
1279  * Returns: 0 on success, negative error code on failure.
1280  */
1281 int
1282 drm_gpuvm_prepare_range(struct drm_gpuvm *gpuvm, struct drm_exec *exec,
1283 			u64 addr, u64 range, unsigned int num_fences)
1284 {
1285 	struct drm_gpuva *va;
1286 	u64 end = addr + range;
1287 	int ret;
1288 
1289 	drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
1290 		struct drm_gem_object *obj = va->gem.obj;
1291 
1292 		ret = exec_prepare_obj(exec, obj, num_fences);
1293 		if (ret)
1294 			return ret;
1295 	}
1296 
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL_GPL(drm_gpuvm_prepare_range);
1300 
1301 /**
1302  * drm_gpuvm_exec_lock() - lock all dma-resv of all associated BOs
1303  * @vm_exec: the &drm_gpuvm_exec wrapper
1304  *
1305  * Acquires all dma-resv locks of all &drm_gem_objects the given
1306  * &drm_gpuvm contains mappings of.
1307  *
1308  * Additionally, when calling this function with struct drm_gpuvm_exec::extra
1309  * being set the driver receives the given @fn callback to lock additional
1310  * dma-resv in the context of the &drm_gpuvm_exec instance. Typically, drivers
1311  * would call drm_exec_prepare_obj() from within this callback.
1312  *
1313  * Returns: 0 on success, negative error code on failure.
1314  */
1315 int
1316 drm_gpuvm_exec_lock(struct drm_gpuvm_exec *vm_exec)
1317 {
1318 	struct drm_gpuvm *gpuvm = vm_exec->vm;
1319 	struct drm_exec *exec = &vm_exec->exec;
1320 	unsigned int num_fences = vm_exec->num_fences;
1321 	int ret;
1322 
1323 	drm_exec_init(exec, vm_exec->flags, 0);
1324 
1325 	drm_exec_until_all_locked(exec) {
1326 		ret = drm_gpuvm_prepare_vm(gpuvm, exec, num_fences);
1327 		drm_exec_retry_on_contention(exec);
1328 		if (ret)
1329 			goto err;
1330 
1331 		ret = drm_gpuvm_prepare_objects(gpuvm, exec, num_fences);
1332 		drm_exec_retry_on_contention(exec);
1333 		if (ret)
1334 			goto err;
1335 
1336 		if (vm_exec->extra.fn) {
1337 			ret = vm_exec->extra.fn(vm_exec);
1338 			drm_exec_retry_on_contention(exec);
1339 			if (ret)
1340 				goto err;
1341 		}
1342 	}
1343 
1344 	return 0;
1345 
1346 err:
1347 	drm_exec_fini(exec);
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock);
1351 
1352 static int
1353 fn_lock_array(struct drm_gpuvm_exec *vm_exec)
1354 {
1355 	struct {
1356 		struct drm_gem_object **objs;
1357 		unsigned int num_objs;
1358 	} *args = vm_exec->extra.priv;
1359 
1360 	return drm_exec_prepare_array(&vm_exec->exec, args->objs,
1361 				      args->num_objs, vm_exec->num_fences);
1362 }
1363 
1364 /**
1365  * drm_gpuvm_exec_lock_array() - lock all dma-resv of all associated BOs
1366  * @vm_exec: the &drm_gpuvm_exec wrapper
1367  * @objs: additional &drm_gem_objects to lock
1368  * @num_objs: the number of additional &drm_gem_objects to lock
1369  *
1370  * Acquires all dma-resv locks of all &drm_gem_objects the given &drm_gpuvm
1371  * contains mappings of, plus the ones given through @objs.
1372  *
1373  * Returns: 0 on success, negative error code on failure.
1374  */
1375 int
1376 drm_gpuvm_exec_lock_array(struct drm_gpuvm_exec *vm_exec,
1377 			  struct drm_gem_object **objs,
1378 			  unsigned int num_objs)
1379 {
1380 	struct {
1381 		struct drm_gem_object **objs;
1382 		unsigned int num_objs;
1383 	} args;
1384 
1385 	args.objs = objs;
1386 	args.num_objs = num_objs;
1387 
1388 	vm_exec->extra.fn = fn_lock_array;
1389 	vm_exec->extra.priv = &args;
1390 
1391 	return drm_gpuvm_exec_lock(vm_exec);
1392 }
1393 EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_array);
1394 
1395 /**
1396  * drm_gpuvm_exec_lock_range() - prepare all BOs mapped within a given range
1397  * @vm_exec: the &drm_gpuvm_exec wrapper
1398  * @addr: the start address within the VA space
1399  * @range: the range to iterate within the VA space
1400  *
1401  * Acquires all dma-resv locks of all &drm_gem_objects mapped between @addr and
1402  * @addr + @range.
1403  *
1404  * Returns: 0 on success, negative error code on failure.
1405  */
1406 int
1407 drm_gpuvm_exec_lock_range(struct drm_gpuvm_exec *vm_exec,
1408 			  u64 addr, u64 range)
1409 {
1410 	struct drm_gpuvm *gpuvm = vm_exec->vm;
1411 	struct drm_exec *exec = &vm_exec->exec;
1412 	int ret;
1413 
1414 	drm_exec_init(exec, vm_exec->flags, 0);
1415 
1416 	drm_exec_until_all_locked(exec) {
1417 		ret = drm_gpuvm_prepare_range(gpuvm, exec, addr, range,
1418 					      vm_exec->num_fences);
1419 		drm_exec_retry_on_contention(exec);
1420 		if (ret)
1421 			goto err;
1422 	}
1423 
1424 	return ret;
1425 
1426 err:
1427 	drm_exec_fini(exec);
1428 	return ret;
1429 }
1430 EXPORT_SYMBOL_GPL(drm_gpuvm_exec_lock_range);
1431 
1432 static int
1433 __drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
1434 {
1435 	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1436 	struct drm_gpuvm_bo *vm_bo;
1437 	LIST_HEAD(evict);
1438 	int ret = 0;
1439 
1440 	for_each_vm_bo_in_list(gpuvm, evict, &evict, vm_bo) {
1441 		ret = ops->vm_bo_validate(vm_bo, exec);
1442 		if (ret)
1443 			break;
1444 	}
1445 	/* Drop ref in case we break out of the loop. */
1446 	drm_gpuvm_bo_put(vm_bo);
1447 	restore_vm_bo_list(gpuvm, evict);
1448 
1449 	return ret;
1450 }
1451 
1452 static int
1453 drm_gpuvm_validate_locked(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
1454 {
1455 	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1456 	struct drm_gpuvm_bo *vm_bo, *next;
1457 	int ret = 0;
1458 
1459 	drm_gpuvm_resv_assert_held(gpuvm);
1460 
1461 	list_for_each_entry_safe(vm_bo, next, &gpuvm->evict.list,
1462 				 list.entry.evict) {
1463 		ret = ops->vm_bo_validate(vm_bo, exec);
1464 		if (ret)
1465 			break;
1466 
1467 		dma_resv_assert_held(vm_bo->obj->resv);
1468 		if (!vm_bo->evicted)
1469 			drm_gpuvm_bo_list_del_init(vm_bo, evict, false);
1470 	}
1471 
1472 	return ret;
1473 }
1474 
1475 /**
1476  * drm_gpuvm_validate() - validate all BOs marked as evicted
1477  * @gpuvm: the &drm_gpuvm to validate evicted BOs
1478  * @exec: the &drm_exec instance used for locking the GPUVM
1479  *
1480  * Calls the &drm_gpuvm_ops::vm_bo_validate callback for all evicted buffer
1481  * objects being mapped in the given &drm_gpuvm.
1482  *
1483  * Returns: 0 on success, negative error code on failure.
1484  */
1485 int
1486 drm_gpuvm_validate(struct drm_gpuvm *gpuvm, struct drm_exec *exec)
1487 {
1488 	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1489 
1490 	if (unlikely(!ops || !ops->vm_bo_validate))
1491 		return -EOPNOTSUPP;
1492 
1493 	if (drm_gpuvm_resv_protected(gpuvm))
1494 		return drm_gpuvm_validate_locked(gpuvm, exec);
1495 	else
1496 		return __drm_gpuvm_validate(gpuvm, exec);
1497 }
1498 EXPORT_SYMBOL_GPL(drm_gpuvm_validate);
1499 
1500 /**
1501  * drm_gpuvm_resv_add_fence - add fence to private and all extobj
1502  * dma-resv
1503  * @gpuvm: the &drm_gpuvm to add a fence to
1504  * @exec: the &drm_exec locking context
1505  * @fence: fence to add
1506  * @private_usage: private dma-resv usage
1507  * @extobj_usage: extobj dma-resv usage
1508  */
1509 void
1510 drm_gpuvm_resv_add_fence(struct drm_gpuvm *gpuvm,
1511 			 struct drm_exec *exec,
1512 			 struct dma_fence *fence,
1513 			 enum dma_resv_usage private_usage,
1514 			 enum dma_resv_usage extobj_usage)
1515 {
1516 	struct drm_gem_object *obj;
1517 	unsigned long index;
1518 
1519 	drm_exec_for_each_locked_object(exec, index, obj) {
1520 		dma_resv_assert_held(obj->resv);
1521 		dma_resv_add_fence(obj->resv, fence,
1522 				   drm_gpuvm_is_extobj(gpuvm, obj) ?
1523 				   extobj_usage : private_usage);
1524 	}
1525 }
1526 EXPORT_SYMBOL_GPL(drm_gpuvm_resv_add_fence);
1527 
1528 /**
1529  * drm_gpuvm_bo_create() - create a new instance of struct drm_gpuvm_bo
1530  * @gpuvm: The &drm_gpuvm the @obj is mapped in.
1531  * @obj: The &drm_gem_object being mapped in the @gpuvm.
1532  *
1533  * If provided by the driver, this function uses the &drm_gpuvm_ops
1534  * vm_bo_alloc() callback to allocate.
1535  *
1536  * Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure
1537  */
1538 struct drm_gpuvm_bo *
1539 drm_gpuvm_bo_create(struct drm_gpuvm *gpuvm,
1540 		    struct drm_gem_object *obj)
1541 {
1542 	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1543 	struct drm_gpuvm_bo *vm_bo;
1544 
1545 	if (ops && ops->vm_bo_alloc)
1546 		vm_bo = ops->vm_bo_alloc();
1547 	else
1548 		vm_bo = kzalloc(sizeof(*vm_bo), GFP_KERNEL);
1549 
1550 	if (unlikely(!vm_bo))
1551 		return NULL;
1552 
1553 	vm_bo->vm = drm_gpuvm_get(gpuvm);
1554 	vm_bo->obj = obj;
1555 	drm_gem_object_get(obj);
1556 
1557 	kref_init(&vm_bo->kref);
1558 	INIT_LIST_HEAD(&vm_bo->list.gpuva);
1559 	INIT_LIST_HEAD(&vm_bo->list.entry.gem);
1560 
1561 	INIT_LIST_HEAD(&vm_bo->list.entry.extobj);
1562 	INIT_LIST_HEAD(&vm_bo->list.entry.evict);
1563 
1564 	return vm_bo;
1565 }
1566 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_create);
1567 
1568 static void
1569 drm_gpuvm_bo_destroy(struct kref *kref)
1570 {
1571 	struct drm_gpuvm_bo *vm_bo = container_of(kref, struct drm_gpuvm_bo,
1572 						  kref);
1573 	struct drm_gpuvm *gpuvm = vm_bo->vm;
1574 	const struct drm_gpuvm_ops *ops = gpuvm->ops;
1575 	struct drm_gem_object *obj = vm_bo->obj;
1576 	bool lock = !drm_gpuvm_resv_protected(gpuvm);
1577 
1578 	if (!lock)
1579 		drm_gpuvm_resv_assert_held(gpuvm);
1580 
1581 	drm_gpuvm_bo_list_del(vm_bo, extobj, lock);
1582 	drm_gpuvm_bo_list_del(vm_bo, evict, lock);
1583 
1584 	drm_gem_gpuva_assert_lock_held(gpuvm, obj);
1585 	list_del(&vm_bo->list.entry.gem);
1586 
1587 	if (ops && ops->vm_bo_free)
1588 		ops->vm_bo_free(vm_bo);
1589 	else
1590 		kfree(vm_bo);
1591 
1592 	drm_gpuvm_put(gpuvm);
1593 	drm_gem_object_put(obj);
1594 }
1595 
1596 /**
1597  * drm_gpuvm_bo_put() - drop a struct drm_gpuvm_bo reference
1598  * @vm_bo: the &drm_gpuvm_bo to release the reference of
1599  *
1600  * This releases a reference to @vm_bo.
1601  *
1602  * If the reference count drops to zero, the &gpuvm_bo is destroyed, which
1603  * includes removing it from the GEMs gpuva list. Hence, if a call to this
1604  * function can potentially let the reference count drop to zero the caller must
1605  * hold the lock that the GEM uses for its gpuva list (either the GEM's
1606  * dma-resv or gpuva.lock mutex).
1607  *
1608  * This function may only be called from non-atomic context.
1609  *
1610  * Returns: true if vm_bo was destroyed, false otherwise.
1611  */
1612 bool
1613 drm_gpuvm_bo_put(struct drm_gpuvm_bo *vm_bo)
1614 {
1615 	might_sleep();
1616 
1617 	if (vm_bo)
1618 		return !!kref_put(&vm_bo->kref, drm_gpuvm_bo_destroy);
1619 
1620 	return false;
1621 }
1622 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_put);
1623 
1624 static struct drm_gpuvm_bo *
1625 __drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm,
1626 		    struct drm_gem_object *obj)
1627 {
1628 	struct drm_gpuvm_bo *vm_bo;
1629 
1630 	drm_gem_gpuva_assert_lock_held(gpuvm, obj);
1631 	drm_gem_for_each_gpuvm_bo(vm_bo, obj)
1632 		if (vm_bo->vm == gpuvm)
1633 			return vm_bo;
1634 
1635 	return NULL;
1636 }
1637 
1638 /**
1639  * drm_gpuvm_bo_find() - find the &drm_gpuvm_bo for the given
1640  * &drm_gpuvm and &drm_gem_object
1641  * @gpuvm: The &drm_gpuvm the @obj is mapped in.
1642  * @obj: The &drm_gem_object being mapped in the @gpuvm.
1643  *
1644  * Find the &drm_gpuvm_bo representing the combination of the given
1645  * &drm_gpuvm and &drm_gem_object. If found, increases the reference
1646  * count of the &drm_gpuvm_bo accordingly.
1647  *
1648  * Returns: a pointer to the &drm_gpuvm_bo on success, NULL on failure
1649  */
1650 struct drm_gpuvm_bo *
1651 drm_gpuvm_bo_find(struct drm_gpuvm *gpuvm,
1652 		  struct drm_gem_object *obj)
1653 {
1654 	struct drm_gpuvm_bo *vm_bo = __drm_gpuvm_bo_find(gpuvm, obj);
1655 
1656 	return vm_bo ? drm_gpuvm_bo_get(vm_bo) : NULL;
1657 }
1658 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_find);
1659 
1660 /**
1661  * drm_gpuvm_bo_obtain() - obtains an instance of the &drm_gpuvm_bo for the
1662  * given &drm_gpuvm and &drm_gem_object
1663  * @gpuvm: The &drm_gpuvm the @obj is mapped in.
1664  * @obj: The &drm_gem_object being mapped in the @gpuvm.
1665  *
1666  * Find the &drm_gpuvm_bo representing the combination of the given
1667  * &drm_gpuvm and &drm_gem_object. If found, increases the reference
1668  * count of the &drm_gpuvm_bo accordingly. If not found, allocates a new
1669  * &drm_gpuvm_bo.
1670  *
1671  * A new &drm_gpuvm_bo is added to the GEMs gpuva list.
1672  *
1673  * Returns: a pointer to the &drm_gpuvm_bo on success, an ERR_PTR on failure
1674  */
1675 struct drm_gpuvm_bo *
1676 drm_gpuvm_bo_obtain(struct drm_gpuvm *gpuvm,
1677 		    struct drm_gem_object *obj)
1678 {
1679 	struct drm_gpuvm_bo *vm_bo;
1680 
1681 	vm_bo = drm_gpuvm_bo_find(gpuvm, obj);
1682 	if (vm_bo)
1683 		return vm_bo;
1684 
1685 	vm_bo = drm_gpuvm_bo_create(gpuvm, obj);
1686 	if (!vm_bo)
1687 		return ERR_PTR(-ENOMEM);
1688 
1689 	drm_gem_gpuva_assert_lock_held(gpuvm, obj);
1690 	list_add_tail(&vm_bo->list.entry.gem, &obj->gpuva.list);
1691 
1692 	return vm_bo;
1693 }
1694 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain);
1695 
1696 /**
1697  * drm_gpuvm_bo_obtain_prealloc() - obtains an instance of the &drm_gpuvm_bo
1698  * for the given &drm_gpuvm and &drm_gem_object
1699  * @__vm_bo: A pre-allocated struct drm_gpuvm_bo.
1700  *
1701  * Find the &drm_gpuvm_bo representing the combination of the given
1702  * &drm_gpuvm and &drm_gem_object. If found, increases the reference
1703  * count of the found &drm_gpuvm_bo accordingly, while the @__vm_bo reference
1704  * count is decreased. If not found @__vm_bo is returned without further
1705  * increase of the reference count.
1706  *
1707  * A new &drm_gpuvm_bo is added to the GEMs gpuva list.
1708  *
1709  * Returns: a pointer to the found &drm_gpuvm_bo or @__vm_bo if no existing
1710  * &drm_gpuvm_bo was found
1711  */
1712 struct drm_gpuvm_bo *
1713 drm_gpuvm_bo_obtain_prealloc(struct drm_gpuvm_bo *__vm_bo)
1714 {
1715 	struct drm_gpuvm *gpuvm = __vm_bo->vm;
1716 	struct drm_gem_object *obj = __vm_bo->obj;
1717 	struct drm_gpuvm_bo *vm_bo;
1718 
1719 	vm_bo = drm_gpuvm_bo_find(gpuvm, obj);
1720 	if (vm_bo) {
1721 		drm_gpuvm_bo_put(__vm_bo);
1722 		return vm_bo;
1723 	}
1724 
1725 	drm_gem_gpuva_assert_lock_held(gpuvm, obj);
1726 	list_add_tail(&__vm_bo->list.entry.gem, &obj->gpuva.list);
1727 
1728 	return __vm_bo;
1729 }
1730 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_obtain_prealloc);
1731 
1732 /**
1733  * drm_gpuvm_bo_extobj_add() - adds the &drm_gpuvm_bo to its &drm_gpuvm's
1734  * extobj list
1735  * @vm_bo: The &drm_gpuvm_bo to add to its &drm_gpuvm's the extobj list.
1736  *
1737  * Adds the given @vm_bo to its &drm_gpuvm's extobj list if not on the list
1738  * already and if the corresponding &drm_gem_object is an external object,
1739  * actually.
1740  */
1741 void
1742 drm_gpuvm_bo_extobj_add(struct drm_gpuvm_bo *vm_bo)
1743 {
1744 	struct drm_gpuvm *gpuvm = vm_bo->vm;
1745 	bool lock = !drm_gpuvm_resv_protected(gpuvm);
1746 
1747 	if (!lock)
1748 		drm_gpuvm_resv_assert_held(gpuvm);
1749 
1750 	if (drm_gpuvm_is_extobj(gpuvm, vm_bo->obj))
1751 		drm_gpuvm_bo_list_add(vm_bo, extobj, lock);
1752 }
1753 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_extobj_add);
1754 
1755 /**
1756  * drm_gpuvm_bo_evict() - add / remove a &drm_gpuvm_bo to / from the &drm_gpuvms
1757  * evicted list
1758  * @vm_bo: the &drm_gpuvm_bo to add or remove
1759  * @evict: indicates whether the object is evicted
1760  *
1761  * Adds a &drm_gpuvm_bo to or removes it from the &drm_gpuvm's evicted list.
1762  */
1763 void
1764 drm_gpuvm_bo_evict(struct drm_gpuvm_bo *vm_bo, bool evict)
1765 {
1766 	struct drm_gpuvm *gpuvm = vm_bo->vm;
1767 	struct drm_gem_object *obj = vm_bo->obj;
1768 	bool lock = !drm_gpuvm_resv_protected(gpuvm);
1769 
1770 	dma_resv_assert_held(obj->resv);
1771 	vm_bo->evicted = evict;
1772 
1773 	/* Can't add external objects to the evicted list directly if not using
1774 	 * internal spinlocks, since in this case the evicted list is protected
1775 	 * with the VM's common dma-resv lock.
1776 	 */
1777 	if (drm_gpuvm_is_extobj(gpuvm, obj) && !lock)
1778 		return;
1779 
1780 	if (evict)
1781 		drm_gpuvm_bo_list_add(vm_bo, evict, lock);
1782 	else
1783 		drm_gpuvm_bo_list_del_init(vm_bo, evict, lock);
1784 }
1785 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_evict);
1786 
1787 static int
1788 __drm_gpuva_insert(struct drm_gpuvm *gpuvm,
1789 		   struct drm_gpuva *va)
1790 {
1791 	struct rb_node *node;
1792 	struct list_head *head;
1793 
1794 	if (drm_gpuva_it_iter_first(&gpuvm->rb.tree,
1795 				    GPUVA_START(va),
1796 				    GPUVA_LAST(va)))
1797 		return -EEXIST;
1798 
1799 	va->vm = gpuvm;
1800 
1801 	drm_gpuva_it_insert(va, &gpuvm->rb.tree);
1802 
1803 	node = rb_prev(&va->rb.node);
1804 	if (node)
1805 		head = &(to_drm_gpuva(node))->rb.entry;
1806 	else
1807 		head = &gpuvm->rb.list;
1808 
1809 	list_add(&va->rb.entry, head);
1810 
1811 	return 0;
1812 }
1813 
1814 /**
1815  * drm_gpuva_insert() - insert a &drm_gpuva
1816  * @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in
1817  * @va: the &drm_gpuva to insert
1818  *
1819  * Insert a &drm_gpuva with a given address and range into a
1820  * &drm_gpuvm.
1821  *
1822  * It is safe to use this function using the safe versions of iterating the GPU
1823  * VA space, such as drm_gpuvm_for_each_va_safe() and
1824  * drm_gpuvm_for_each_va_range_safe().
1825  *
1826  * Returns: 0 on success, negative error code on failure.
1827  */
1828 int
1829 drm_gpuva_insert(struct drm_gpuvm *gpuvm,
1830 		 struct drm_gpuva *va)
1831 {
1832 	u64 addr = va->va.addr;
1833 	u64 range = va->va.range;
1834 	int ret;
1835 
1836 	if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range)))
1837 		return -EINVAL;
1838 
1839 	ret = __drm_gpuva_insert(gpuvm, va);
1840 	if (likely(!ret))
1841 		/* Take a reference of the GPUVM for the successfully inserted
1842 		 * drm_gpuva. We can't take the reference in
1843 		 * __drm_gpuva_insert() itself, since we don't want to increse
1844 		 * the reference count for the GPUVM's kernel_alloc_node.
1845 		 */
1846 		drm_gpuvm_get(gpuvm);
1847 
1848 	return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(drm_gpuva_insert);
1851 
1852 static void
1853 __drm_gpuva_remove(struct drm_gpuva *va)
1854 {
1855 	drm_gpuva_it_remove(va, &va->vm->rb.tree);
1856 	list_del_init(&va->rb.entry);
1857 }
1858 
1859 /**
1860  * drm_gpuva_remove() - remove a &drm_gpuva
1861  * @va: the &drm_gpuva to remove
1862  *
1863  * This removes the given &va from the underlying tree.
1864  *
1865  * It is safe to use this function using the safe versions of iterating the GPU
1866  * VA space, such as drm_gpuvm_for_each_va_safe() and
1867  * drm_gpuvm_for_each_va_range_safe().
1868  */
1869 void
1870 drm_gpuva_remove(struct drm_gpuva *va)
1871 {
1872 	struct drm_gpuvm *gpuvm = va->vm;
1873 
1874 	if (unlikely(va == &gpuvm->kernel_alloc_node)) {
1875 		drm_WARN(gpuvm->drm, 1,
1876 			 "Can't destroy kernel reserved node.\n");
1877 		return;
1878 	}
1879 
1880 	__drm_gpuva_remove(va);
1881 	drm_gpuvm_put(va->vm);
1882 }
1883 EXPORT_SYMBOL_GPL(drm_gpuva_remove);
1884 
1885 /**
1886  * drm_gpuva_link() - link a &drm_gpuva
1887  * @va: the &drm_gpuva to link
1888  * @vm_bo: the &drm_gpuvm_bo to add the &drm_gpuva to
1889  *
1890  * This adds the given &va to the GPU VA list of the &drm_gpuvm_bo and the
1891  * &drm_gpuvm_bo to the &drm_gem_object it is associated with.
1892  *
1893  * For every &drm_gpuva entry added to the &drm_gpuvm_bo an additional
1894  * reference of the latter is taken.
1895  *
1896  * This function expects the caller to protect the GEM's GPUVA list against
1897  * concurrent access using either the GEM's dma-resv or gpuva.lock mutex.
1898  */
1899 void
1900 drm_gpuva_link(struct drm_gpuva *va, struct drm_gpuvm_bo *vm_bo)
1901 {
1902 	struct drm_gem_object *obj = va->gem.obj;
1903 	struct drm_gpuvm *gpuvm = va->vm;
1904 
1905 	if (unlikely(!obj))
1906 		return;
1907 
1908 	drm_WARN_ON(gpuvm->drm, obj != vm_bo->obj);
1909 
1910 	va->vm_bo = drm_gpuvm_bo_get(vm_bo);
1911 
1912 	drm_gem_gpuva_assert_lock_held(gpuvm, obj);
1913 	list_add_tail(&va->gem.entry, &vm_bo->list.gpuva);
1914 }
1915 EXPORT_SYMBOL_GPL(drm_gpuva_link);
1916 
1917 /**
1918  * drm_gpuva_unlink() - unlink a &drm_gpuva
1919  * @va: the &drm_gpuva to unlink
1920  *
1921  * This removes the given &va from the GPU VA list of the &drm_gem_object it is
1922  * associated with.
1923  *
1924  * This removes the given &va from the GPU VA list of the &drm_gpuvm_bo and
1925  * the &drm_gpuvm_bo from the &drm_gem_object it is associated with in case
1926  * this call unlinks the last &drm_gpuva from the &drm_gpuvm_bo.
1927  *
1928  * For every &drm_gpuva entry removed from the &drm_gpuvm_bo a reference of
1929  * the latter is dropped.
1930  *
1931  * This function expects the caller to protect the GEM's GPUVA list against
1932  * concurrent access using either the GEM's dma-resv or gpuva.lock mutex.
1933  */
1934 void
1935 drm_gpuva_unlink(struct drm_gpuva *va)
1936 {
1937 	struct drm_gem_object *obj = va->gem.obj;
1938 	struct drm_gpuvm_bo *vm_bo = va->vm_bo;
1939 
1940 	if (unlikely(!obj))
1941 		return;
1942 
1943 	drm_gem_gpuva_assert_lock_held(va->vm, obj);
1944 	list_del_init(&va->gem.entry);
1945 
1946 	va->vm_bo = NULL;
1947 	drm_gpuvm_bo_put(vm_bo);
1948 }
1949 EXPORT_SYMBOL_GPL(drm_gpuva_unlink);
1950 
1951 /**
1952  * drm_gpuva_find_first() - find the first &drm_gpuva in the given range
1953  * @gpuvm: the &drm_gpuvm to search in
1954  * @addr: the &drm_gpuvas address
1955  * @range: the &drm_gpuvas range
1956  *
1957  * Returns: the first &drm_gpuva within the given range
1958  */
1959 struct drm_gpuva *
1960 drm_gpuva_find_first(struct drm_gpuvm *gpuvm,
1961 		     u64 addr, u64 range)
1962 {
1963 	u64 last = addr + range - 1;
1964 
1965 	return drm_gpuva_it_iter_first(&gpuvm->rb.tree, addr, last);
1966 }
1967 EXPORT_SYMBOL_GPL(drm_gpuva_find_first);
1968 
1969 /**
1970  * drm_gpuva_find() - find a &drm_gpuva
1971  * @gpuvm: the &drm_gpuvm to search in
1972  * @addr: the &drm_gpuvas address
1973  * @range: the &drm_gpuvas range
1974  *
1975  * Returns: the &drm_gpuva at a given &addr and with a given &range
1976  */
1977 struct drm_gpuva *
1978 drm_gpuva_find(struct drm_gpuvm *gpuvm,
1979 	       u64 addr, u64 range)
1980 {
1981 	struct drm_gpuva *va;
1982 
1983 	va = drm_gpuva_find_first(gpuvm, addr, range);
1984 	if (!va)
1985 		goto out;
1986 
1987 	if (va->va.addr != addr ||
1988 	    va->va.range != range)
1989 		goto out;
1990 
1991 	return va;
1992 
1993 out:
1994 	return NULL;
1995 }
1996 EXPORT_SYMBOL_GPL(drm_gpuva_find);
1997 
1998 /**
1999  * drm_gpuva_find_prev() - find the &drm_gpuva before the given address
2000  * @gpuvm: the &drm_gpuvm to search in
2001  * @start: the given GPU VA's start address
2002  *
2003  * Find the adjacent &drm_gpuva before the GPU VA with given &start address.
2004  *
2005  * Note that if there is any free space between the GPU VA mappings no mapping
2006  * is returned.
2007  *
2008  * Returns: a pointer to the found &drm_gpuva or NULL if none was found
2009  */
2010 struct drm_gpuva *
2011 drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start)
2012 {
2013 	if (!drm_gpuvm_range_valid(gpuvm, start - 1, 1))
2014 		return NULL;
2015 
2016 	return drm_gpuva_it_iter_first(&gpuvm->rb.tree, start - 1, start);
2017 }
2018 EXPORT_SYMBOL_GPL(drm_gpuva_find_prev);
2019 
2020 /**
2021  * drm_gpuva_find_next() - find the &drm_gpuva after the given address
2022  * @gpuvm: the &drm_gpuvm to search in
2023  * @end: the given GPU VA's end address
2024  *
2025  * Find the adjacent &drm_gpuva after the GPU VA with given &end address.
2026  *
2027  * Note that if there is any free space between the GPU VA mappings no mapping
2028  * is returned.
2029  *
2030  * Returns: a pointer to the found &drm_gpuva or NULL if none was found
2031  */
2032 struct drm_gpuva *
2033 drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end)
2034 {
2035 	if (!drm_gpuvm_range_valid(gpuvm, end, 1))
2036 		return NULL;
2037 
2038 	return drm_gpuva_it_iter_first(&gpuvm->rb.tree, end, end + 1);
2039 }
2040 EXPORT_SYMBOL_GPL(drm_gpuva_find_next);
2041 
2042 /**
2043  * drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space
2044  * is empty
2045  * @gpuvm: the &drm_gpuvm to check the range for
2046  * @addr: the start address of the range
2047  * @range: the range of the interval
2048  *
2049  * Returns: true if the interval is empty, false otherwise
2050  */
2051 bool
2052 drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
2053 {
2054 	return !drm_gpuva_find_first(gpuvm, addr, range);
2055 }
2056 EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty);
2057 
2058 /**
2059  * drm_gpuva_map() - helper to insert a &drm_gpuva according to a
2060  * &drm_gpuva_op_map
2061  * @gpuvm: the &drm_gpuvm
2062  * @va: the &drm_gpuva to insert
2063  * @op: the &drm_gpuva_op_map to initialize @va with
2064  *
2065  * Initializes the @va from the @op and inserts it into the given @gpuvm.
2066  */
2067 void
2068 drm_gpuva_map(struct drm_gpuvm *gpuvm,
2069 	      struct drm_gpuva *va,
2070 	      struct drm_gpuva_op_map *op)
2071 {
2072 	drm_gpuva_init_from_op(va, op);
2073 	drm_gpuva_insert(gpuvm, va);
2074 }
2075 EXPORT_SYMBOL_GPL(drm_gpuva_map);
2076 
2077 /**
2078  * drm_gpuva_remap() - helper to remap a &drm_gpuva according to a
2079  * &drm_gpuva_op_remap
2080  * @prev: the &drm_gpuva to remap when keeping the start of a mapping
2081  * @next: the &drm_gpuva to remap when keeping the end of a mapping
2082  * @op: the &drm_gpuva_op_remap to initialize @prev and @next with
2083  *
2084  * Removes the currently mapped &drm_gpuva and remaps it using @prev and/or
2085  * @next.
2086  */
2087 void
2088 drm_gpuva_remap(struct drm_gpuva *prev,
2089 		struct drm_gpuva *next,
2090 		struct drm_gpuva_op_remap *op)
2091 {
2092 	struct drm_gpuva *va = op->unmap->va;
2093 	struct drm_gpuvm *gpuvm = va->vm;
2094 
2095 	drm_gpuva_remove(va);
2096 
2097 	if (op->prev) {
2098 		drm_gpuva_init_from_op(prev, op->prev);
2099 		drm_gpuva_insert(gpuvm, prev);
2100 	}
2101 
2102 	if (op->next) {
2103 		drm_gpuva_init_from_op(next, op->next);
2104 		drm_gpuva_insert(gpuvm, next);
2105 	}
2106 }
2107 EXPORT_SYMBOL_GPL(drm_gpuva_remap);
2108 
2109 /**
2110  * drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a
2111  * &drm_gpuva_op_unmap
2112  * @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove
2113  *
2114  * Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap.
2115  */
2116 void
2117 drm_gpuva_unmap(struct drm_gpuva_op_unmap *op)
2118 {
2119 	drm_gpuva_remove(op->va);
2120 }
2121 EXPORT_SYMBOL_GPL(drm_gpuva_unmap);
2122 
2123 static int
2124 op_map_cb(const struct drm_gpuvm_ops *fn, void *priv,
2125 	  const struct drm_gpuvm_map_req *req)
2126 {
2127 	struct drm_gpuva_op op = {};
2128 
2129 	if (!req)
2130 		return 0;
2131 
2132 	op.op = DRM_GPUVA_OP_MAP;
2133 	op.map.va.addr = req->map.va.addr;
2134 	op.map.va.range = req->map.va.range;
2135 	op.map.gem.obj = req->map.gem.obj;
2136 	op.map.gem.offset = req->map.gem.offset;
2137 
2138 	return fn->sm_step_map(&op, priv);
2139 }
2140 
2141 static int
2142 op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv,
2143 	    struct drm_gpuva_op_map *prev,
2144 	    struct drm_gpuva_op_map *next,
2145 	    struct drm_gpuva_op_unmap *unmap)
2146 {
2147 	struct drm_gpuva_op op = {};
2148 	struct drm_gpuva_op_remap *r;
2149 
2150 	op.op = DRM_GPUVA_OP_REMAP;
2151 	r = &op.remap;
2152 	r->prev = prev;
2153 	r->next = next;
2154 	r->unmap = unmap;
2155 
2156 	return fn->sm_step_remap(&op, priv);
2157 }
2158 
2159 static int
2160 op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv,
2161 	    struct drm_gpuva *va, bool merge, bool madvise)
2162 {
2163 	struct drm_gpuva_op op = {};
2164 
2165 	if (madvise)
2166 		return 0;
2167 
2168 	op.op = DRM_GPUVA_OP_UNMAP;
2169 	op.unmap.va = va;
2170 	op.unmap.keep = merge;
2171 
2172 	return fn->sm_step_unmap(&op, priv);
2173 }
2174 
2175 static int
2176 __drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm,
2177 		   const struct drm_gpuvm_ops *ops, void *priv,
2178 		   const struct drm_gpuvm_map_req *req,
2179 		   bool madvise)
2180 {
2181 	struct drm_gem_object *req_obj = req->map.gem.obj;
2182 	const struct drm_gpuvm_map_req *op_map = madvise ? NULL : req;
2183 	struct drm_gpuva *va, *next;
2184 	u64 req_offset = req->map.gem.offset;
2185 	u64 req_range = req->map.va.range;
2186 	u64 req_addr = req->map.va.addr;
2187 	u64 req_end = req_addr + req_range;
2188 	int ret;
2189 
2190 	if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
2191 		return -EINVAL;
2192 
2193 	drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
2194 		struct drm_gem_object *obj = va->gem.obj;
2195 		u64 offset = va->gem.offset;
2196 		u64 addr = va->va.addr;
2197 		u64 range = va->va.range;
2198 		u64 end = addr + range;
2199 		bool merge = !!va->gem.obj;
2200 
2201 		if (madvise && obj)
2202 			continue;
2203 
2204 		if (addr == req_addr) {
2205 			merge &= obj == req_obj &&
2206 				 offset == req_offset;
2207 
2208 			if (end == req_end) {
2209 				ret = op_unmap_cb(ops, priv, va, merge, madvise);
2210 				if (ret)
2211 					return ret;
2212 				break;
2213 			}
2214 
2215 			if (end < req_end) {
2216 				ret = op_unmap_cb(ops, priv, va, merge, madvise);
2217 				if (ret)
2218 					return ret;
2219 				continue;
2220 			}
2221 
2222 			if (end > req_end) {
2223 				struct drm_gpuva_op_map n = {
2224 					.va.addr = req_end,
2225 					.va.range = range - req_range,
2226 					.gem.obj = obj,
2227 					.gem.offset = offset + req_range,
2228 				};
2229 				struct drm_gpuva_op_unmap u = {
2230 					.va = va,
2231 					.keep = merge,
2232 				};
2233 
2234 				ret = op_remap_cb(ops, priv, NULL, &n, &u);
2235 				if (ret)
2236 					return ret;
2237 
2238 				if (madvise)
2239 					op_map = req;
2240 				break;
2241 			}
2242 		} else if (addr < req_addr) {
2243 			u64 ls_range = req_addr - addr;
2244 			struct drm_gpuva_op_map p = {
2245 				.va.addr = addr,
2246 				.va.range = ls_range,
2247 				.gem.obj = obj,
2248 				.gem.offset = offset,
2249 			};
2250 			struct drm_gpuva_op_unmap u = { .va = va };
2251 
2252 			merge &= obj == req_obj &&
2253 				 offset + ls_range == req_offset;
2254 			u.keep = merge;
2255 
2256 			if (end == req_end) {
2257 				ret = op_remap_cb(ops, priv, &p, NULL, &u);
2258 				if (ret)
2259 					return ret;
2260 
2261 				if (madvise)
2262 					op_map = req;
2263 				break;
2264 			}
2265 
2266 			if (end < req_end) {
2267 				ret = op_remap_cb(ops, priv, &p, NULL, &u);
2268 				if (ret)
2269 					return ret;
2270 
2271 				if (madvise) {
2272 					struct drm_gpuvm_map_req map_req = {
2273 						.map.va.addr =  req_addr,
2274 						.map.va.range = end - req_addr,
2275 					};
2276 
2277 					ret = op_map_cb(ops, priv, &map_req);
2278 					if (ret)
2279 						return ret;
2280 				}
2281 
2282 				continue;
2283 			}
2284 
2285 			if (end > req_end) {
2286 				struct drm_gpuva_op_map n = {
2287 					.va.addr = req_end,
2288 					.va.range = end - req_end,
2289 					.gem.obj = obj,
2290 					.gem.offset = offset + ls_range +
2291 						      req_range,
2292 				};
2293 
2294 				ret = op_remap_cb(ops, priv, &p, &n, &u);
2295 				if (ret)
2296 					return ret;
2297 
2298 				if (madvise)
2299 					op_map = req;
2300 				break;
2301 			}
2302 		} else if (addr > req_addr) {
2303 			merge &= obj == req_obj &&
2304 				 offset == req_offset +
2305 					   (addr - req_addr);
2306 
2307 			if (end == req_end) {
2308 				ret = op_unmap_cb(ops, priv, va, merge, madvise);
2309 				if (ret)
2310 					return ret;
2311 
2312 				break;
2313 			}
2314 
2315 			if (end < req_end) {
2316 				ret = op_unmap_cb(ops, priv, va, merge, madvise);
2317 				if (ret)
2318 					return ret;
2319 
2320 				continue;
2321 			}
2322 
2323 			if (end > req_end) {
2324 				struct drm_gpuva_op_map n = {
2325 					.va.addr = req_end,
2326 					.va.range = end - req_end,
2327 					.gem.obj = obj,
2328 					.gem.offset = offset + req_end - addr,
2329 				};
2330 				struct drm_gpuva_op_unmap u = {
2331 					.va = va,
2332 					.keep = merge,
2333 				};
2334 
2335 				ret = op_remap_cb(ops, priv, NULL, &n, &u);
2336 				if (ret)
2337 					return ret;
2338 
2339 				if (madvise) {
2340 					struct drm_gpuvm_map_req map_req = {
2341 						.map.va.addr =  addr,
2342 						.map.va.range = req_end - addr,
2343 					};
2344 
2345 					return op_map_cb(ops, priv, &map_req);
2346 				}
2347 				break;
2348 			}
2349 		}
2350 	}
2351 	return op_map_cb(ops, priv, op_map);
2352 }
2353 
2354 static int
2355 __drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm,
2356 		     const struct drm_gpuvm_ops *ops, void *priv,
2357 		     u64 req_addr, u64 req_range)
2358 {
2359 	struct drm_gpuva *va, *next;
2360 	u64 req_end = req_addr + req_range;
2361 	int ret;
2362 
2363 	if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
2364 		return -EINVAL;
2365 
2366 	drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
2367 		struct drm_gpuva_op_map prev = {}, next = {};
2368 		bool prev_split = false, next_split = false;
2369 		struct drm_gem_object *obj = va->gem.obj;
2370 		u64 offset = va->gem.offset;
2371 		u64 addr = va->va.addr;
2372 		u64 range = va->va.range;
2373 		u64 end = addr + range;
2374 
2375 		if (addr < req_addr) {
2376 			prev.va.addr = addr;
2377 			prev.va.range = req_addr - addr;
2378 			prev.gem.obj = obj;
2379 			prev.gem.offset = offset;
2380 
2381 			prev_split = true;
2382 		}
2383 
2384 		if (end > req_end) {
2385 			next.va.addr = req_end;
2386 			next.va.range = end - req_end;
2387 			next.gem.obj = obj;
2388 			next.gem.offset = offset + (req_end - addr);
2389 
2390 			next_split = true;
2391 		}
2392 
2393 		if (prev_split || next_split) {
2394 			struct drm_gpuva_op_unmap unmap = { .va = va };
2395 
2396 			ret = op_remap_cb(ops, priv,
2397 					  prev_split ? &prev : NULL,
2398 					  next_split ? &next : NULL,
2399 					  &unmap);
2400 			if (ret)
2401 				return ret;
2402 		} else {
2403 			ret = op_unmap_cb(ops, priv, va, false, false);
2404 			if (ret)
2405 				return ret;
2406 		}
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 /**
2413  * drm_gpuvm_sm_map() - calls the &drm_gpuva_op split/merge steps
2414  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2415  * @priv: pointer to a driver private data structure
2416  * @req: ptr to struct drm_gpuvm_map_req
2417  *
2418  * This function iterates the given range of the GPU VA space. It utilizes the
2419  * &drm_gpuvm_ops to call back into the driver providing the split and merge
2420  * steps.
2421  *
2422  * Drivers may use these callbacks to update the GPU VA space right away within
2423  * the callback. In case the driver decides to copy and store the operations for
2424  * later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to
2425  * be called before the &drm_gpuvm's view of the GPU VA space was
2426  * updated with the previous set of operations. To update the
2427  * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
2428  * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
2429  * used.
2430  *
2431  * A sequence of callbacks can contain map, unmap and remap operations, but
2432  * the sequence of callbacks might also be empty if no operation is required,
2433  * e.g. if the requested mapping already exists in the exact same way.
2434  *
2435  * There can be an arbitrary amount of unmap operations, a maximum of two remap
2436  * operations and a single map operation. The latter one represents the original
2437  * map operation requested by the caller.
2438  *
2439  * Returns: 0 on success or a negative error code
2440  */
2441 int
2442 drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv,
2443 		 const struct drm_gpuvm_map_req *req)
2444 {
2445 	const struct drm_gpuvm_ops *ops = gpuvm->ops;
2446 
2447 	if (unlikely(!(ops && ops->sm_step_map &&
2448 		       ops->sm_step_remap &&
2449 		       ops->sm_step_unmap)))
2450 		return -EINVAL;
2451 
2452 	return __drm_gpuvm_sm_map(gpuvm, ops, priv, req, false);
2453 }
2454 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map);
2455 
2456 /**
2457  * drm_gpuvm_sm_unmap() - calls the &drm_gpuva_ops to split on unmap
2458  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2459  * @priv: pointer to a driver private data structure
2460  * @req_addr: the start address of the range to unmap
2461  * @req_range: the range of the mappings to unmap
2462  *
2463  * This function iterates the given range of the GPU VA space. It utilizes the
2464  * &drm_gpuvm_ops to call back into the driver providing the operations to
2465  * unmap and, if required, split existing mappings.
2466  *
2467  * Drivers may use these callbacks to update the GPU VA space right away within
2468  * the callback. In case the driver decides to copy and store the operations for
2469  * later processing neither this function nor &drm_gpuvm_sm_map is allowed to be
2470  * called before the &drm_gpuvm's view of the GPU VA space was updated
2471  * with the previous set of operations. To update the &drm_gpuvm's view
2472  * of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or
2473  * drm_gpuva_destroy_unlocked() should be used.
2474  *
2475  * A sequence of callbacks can contain unmap and remap operations, depending on
2476  * whether there are actual overlapping mappings to split.
2477  *
2478  * There can be an arbitrary amount of unmap operations and a maximum of two
2479  * remap operations.
2480  *
2481  * Returns: 0 on success or a negative error code
2482  */
2483 int
2484 drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv,
2485 		   u64 req_addr, u64 req_range)
2486 {
2487 	const struct drm_gpuvm_ops *ops = gpuvm->ops;
2488 
2489 	if (unlikely(!(ops && ops->sm_step_remap &&
2490 		       ops->sm_step_unmap)))
2491 		return -EINVAL;
2492 
2493 	return __drm_gpuvm_sm_unmap(gpuvm, ops, priv,
2494 				    req_addr, req_range);
2495 }
2496 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap);
2497 
2498 static int
2499 drm_gpuva_sm_step_lock(struct drm_gpuva_op *op, void *priv)
2500 {
2501 	struct drm_exec *exec = priv;
2502 
2503 	switch (op->op) {
2504 	case DRM_GPUVA_OP_REMAP:
2505 		if (op->remap.unmap->va->gem.obj)
2506 			return drm_exec_lock_obj(exec, op->remap.unmap->va->gem.obj);
2507 		return 0;
2508 	case DRM_GPUVA_OP_UNMAP:
2509 		if (op->unmap.va->gem.obj)
2510 			return drm_exec_lock_obj(exec, op->unmap.va->gem.obj);
2511 		return 0;
2512 	default:
2513 		return 0;
2514 	}
2515 }
2516 
2517 static const struct drm_gpuvm_ops lock_ops = {
2518 	.sm_step_map = drm_gpuva_sm_step_lock,
2519 	.sm_step_remap = drm_gpuva_sm_step_lock,
2520 	.sm_step_unmap = drm_gpuva_sm_step_lock,
2521 };
2522 
2523 /**
2524  * drm_gpuvm_sm_map_exec_lock() - locks the objects touched by a drm_gpuvm_sm_map()
2525  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2526  * @exec: the &drm_exec locking context
2527  * @num_fences: for newly mapped objects, the # of fences to reserve
2528  * @req: ptr to drm_gpuvm_map_req struct
2529  *
2530  * This function locks (drm_exec_lock_obj()) objects that will be unmapped/
2531  * remapped, and locks+prepares (drm_exec_prepare_object()) objects that
2532  * will be newly mapped.
2533  *
2534  * The expected usage is::
2535  *
2536  *    vm_bind {
2537  *        struct drm_exec exec;
2538  *
2539  *        // IGNORE_DUPLICATES is required, INTERRUPTIBLE_WAIT is recommended:
2540  *        drm_exec_init(&exec, IGNORE_DUPLICATES | INTERRUPTIBLE_WAIT, 0);
2541  *
2542  *        drm_exec_until_all_locked (&exec) {
2543  *            for_each_vm_bind_operation {
2544  *                switch (op->op) {
2545  *                case DRIVER_OP_UNMAP:
2546  *                    ret = drm_gpuvm_sm_unmap_exec_lock(gpuvm, &exec, op->addr, op->range);
2547  *                    break;
2548  *                case DRIVER_OP_MAP:
2549  *                    ret = drm_gpuvm_sm_map_exec_lock(gpuvm, &exec, num_fences, &req);
2550  *                    break;
2551  *                }
2552  *
2553  *                drm_exec_retry_on_contention(&exec);
2554  *                if (ret)
2555  *                    return ret;
2556  *            }
2557  *        }
2558  *    }
2559  *
2560  * This enables all locking to be performed before the driver begins modifying
2561  * the VM.  This is safe to do in the case of overlapping DRIVER_VM_BIND_OPs,
2562  * where an earlier op can alter the sequence of steps generated for a later
2563  * op, because the later altered step will involve the same GEM object(s)
2564  * already seen in the earlier locking step.  For example:
2565  *
2566  * 1) An earlier driver DRIVER_OP_UNMAP op removes the need for a
2567  *    DRM_GPUVA_OP_REMAP/UNMAP step.  This is safe because we've already
2568  *    locked the GEM object in the earlier DRIVER_OP_UNMAP op.
2569  *
2570  * 2) An earlier DRIVER_OP_MAP op overlaps with a later DRIVER_OP_MAP/UNMAP
2571  *    op, introducing a DRM_GPUVA_OP_REMAP/UNMAP that wouldn't have been
2572  *    required without the earlier DRIVER_OP_MAP.  This is safe because we've
2573  *    already locked the GEM object in the earlier DRIVER_OP_MAP step.
2574  *
2575  * Returns: 0 on success or a negative error code
2576  */
2577 int
2578 drm_gpuvm_sm_map_exec_lock(struct drm_gpuvm *gpuvm,
2579 			   struct drm_exec *exec, unsigned int num_fences,
2580 			   struct drm_gpuvm_map_req *req)
2581 {
2582 	struct drm_gem_object *req_obj = req->map.gem.obj;
2583 
2584 	if (req_obj) {
2585 		int ret = drm_exec_prepare_obj(exec, req_obj, num_fences);
2586 		if (ret)
2587 			return ret;
2588 	}
2589 
2590 	return __drm_gpuvm_sm_map(gpuvm, &lock_ops, exec, req, false);
2591 
2592 }
2593 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_exec_lock);
2594 
2595 /**
2596  * drm_gpuvm_sm_unmap_exec_lock() - locks the objects touched by drm_gpuvm_sm_unmap()
2597  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2598  * @exec: the &drm_exec locking context
2599  * @req_addr: the start address of the range to unmap
2600  * @req_range: the range of the mappings to unmap
2601  *
2602  * This function locks (drm_exec_lock_obj()) objects that will be unmapped/
2603  * remapped by drm_gpuvm_sm_unmap().
2604  *
2605  * See drm_gpuvm_sm_map_exec_lock() for expected usage.
2606  *
2607  * Returns: 0 on success or a negative error code
2608  */
2609 int
2610 drm_gpuvm_sm_unmap_exec_lock(struct drm_gpuvm *gpuvm, struct drm_exec *exec,
2611 			     u64 req_addr, u64 req_range)
2612 {
2613 	return __drm_gpuvm_sm_unmap(gpuvm, &lock_ops, exec,
2614 				    req_addr, req_range);
2615 }
2616 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_exec_lock);
2617 
2618 static struct drm_gpuva_op *
2619 gpuva_op_alloc(struct drm_gpuvm *gpuvm)
2620 {
2621 	const struct drm_gpuvm_ops *fn = gpuvm->ops;
2622 	struct drm_gpuva_op *op;
2623 
2624 	if (fn && fn->op_alloc)
2625 		op = fn->op_alloc();
2626 	else
2627 		op = kzalloc(sizeof(*op), GFP_KERNEL);
2628 
2629 	if (unlikely(!op))
2630 		return NULL;
2631 
2632 	return op;
2633 }
2634 
2635 static void
2636 gpuva_op_free(struct drm_gpuvm *gpuvm,
2637 	      struct drm_gpuva_op *op)
2638 {
2639 	const struct drm_gpuvm_ops *fn = gpuvm->ops;
2640 
2641 	if (fn && fn->op_free)
2642 		fn->op_free(op);
2643 	else
2644 		kfree(op);
2645 }
2646 
2647 static int
2648 drm_gpuva_sm_step(struct drm_gpuva_op *__op,
2649 		  void *priv)
2650 {
2651 	struct {
2652 		struct drm_gpuvm *vm;
2653 		struct drm_gpuva_ops *ops;
2654 	} *args = priv;
2655 	struct drm_gpuvm *gpuvm = args->vm;
2656 	struct drm_gpuva_ops *ops = args->ops;
2657 	struct drm_gpuva_op *op;
2658 
2659 	op = gpuva_op_alloc(gpuvm);
2660 	if (unlikely(!op))
2661 		goto err;
2662 
2663 	memcpy(op, __op, sizeof(*op));
2664 
2665 	if (op->op == DRM_GPUVA_OP_REMAP) {
2666 		struct drm_gpuva_op_remap *__r = &__op->remap;
2667 		struct drm_gpuva_op_remap *r = &op->remap;
2668 
2669 		r->unmap = kmemdup(__r->unmap, sizeof(*r->unmap),
2670 				   GFP_KERNEL);
2671 		if (unlikely(!r->unmap))
2672 			goto err_free_op;
2673 
2674 		if (__r->prev) {
2675 			r->prev = kmemdup(__r->prev, sizeof(*r->prev),
2676 					  GFP_KERNEL);
2677 			if (unlikely(!r->prev))
2678 				goto err_free_unmap;
2679 		}
2680 
2681 		if (__r->next) {
2682 			r->next = kmemdup(__r->next, sizeof(*r->next),
2683 					  GFP_KERNEL);
2684 			if (unlikely(!r->next))
2685 				goto err_free_prev;
2686 		}
2687 	}
2688 
2689 	list_add_tail(&op->entry, &ops->list);
2690 
2691 	return 0;
2692 
2693 err_free_unmap:
2694 	kfree(op->remap.unmap);
2695 err_free_prev:
2696 	kfree(op->remap.prev);
2697 err_free_op:
2698 	gpuva_op_free(gpuvm, op);
2699 err:
2700 	return -ENOMEM;
2701 }
2702 
2703 static const struct drm_gpuvm_ops gpuvm_list_ops = {
2704 	.sm_step_map = drm_gpuva_sm_step,
2705 	.sm_step_remap = drm_gpuva_sm_step,
2706 	.sm_step_unmap = drm_gpuva_sm_step,
2707 };
2708 
2709 static struct drm_gpuva_ops *
2710 __drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm,
2711 			      const struct drm_gpuvm_map_req *req,
2712 			      bool madvise)
2713 {
2714 	struct drm_gpuva_ops *ops;
2715 	struct {
2716 		struct drm_gpuvm *vm;
2717 		struct drm_gpuva_ops *ops;
2718 	} args;
2719 	int ret;
2720 
2721 	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2722 	if (unlikely(!ops))
2723 		return ERR_PTR(-ENOMEM);
2724 
2725 	INIT_LIST_HEAD(&ops->list);
2726 
2727 	args.vm = gpuvm;
2728 	args.ops = ops;
2729 
2730 	ret = __drm_gpuvm_sm_map(gpuvm, &gpuvm_list_ops, &args, req, madvise);
2731 	if (ret)
2732 		goto err_free_ops;
2733 
2734 	return ops;
2735 
2736 err_free_ops:
2737 	drm_gpuva_ops_free(gpuvm, ops);
2738 	return ERR_PTR(ret);
2739 }
2740 
2741 /**
2742  * drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge
2743  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2744  * @req: map request arguments
2745  *
2746  * This function creates a list of operations to perform splitting and merging
2747  * of existing mapping(s) with the newly requested one.
2748  *
2749  * The list can be iterated with &drm_gpuva_for_each_op and must be processed
2750  * in the given order. It can contain map, unmap and remap operations, but it
2751  * also can be empty if no operation is required, e.g. if the requested mapping
2752  * already exists in the exact same way.
2753  *
2754  * There can be an arbitrary amount of unmap operations, a maximum of two remap
2755  * operations and a single map operation. The latter one represents the original
2756  * map operation requested by the caller.
2757  *
2758  * Note that before calling this function again with another mapping request it
2759  * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
2760  * previously obtained operations must be either processed or abandoned. To
2761  * update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
2762  * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
2763  * used.
2764  *
2765  * After the caller finished processing the returned &drm_gpuva_ops, they must
2766  * be freed with &drm_gpuva_ops_free.
2767  *
2768  * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2769  */
2770 struct drm_gpuva_ops *
2771 drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm,
2772 			    const struct drm_gpuvm_map_req *req)
2773 {
2774 	return __drm_gpuvm_sm_map_ops_create(gpuvm, req, false);
2775 }
2776 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create);
2777 
2778 /**
2779  * drm_gpuvm_madvise_ops_create() - creates the &drm_gpuva_ops to split
2780  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2781  * @req: map request arguments
2782  *
2783  * This function creates a list of operations to perform splitting
2784  * of existent mapping(s) at start or end, based on the request map.
2785  *
2786  * The list can be iterated with &drm_gpuva_for_each_op and must be processed
2787  * in the given order. It can contain map and remap operations, but it
2788  * also can be empty if no operation is required, e.g. if the requested mapping
2789  * already exists is the exact same way.
2790  *
2791  * There will be no unmap operations, a maximum of two remap operations and two
2792  * map operations. The two map operations correspond to: one from start to the
2793  * end of drm_gpuvaX, and another from the start of drm_gpuvaY to end.
2794  *
2795  * Note that before calling this function again with another mapping request it
2796  * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
2797  * previously obtained operations must be either processed or abandoned. To
2798  * update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
2799  * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
2800  * used.
2801  *
2802  * After the caller finished processing the returned &drm_gpuva_ops, they must
2803  * be freed with &drm_gpuva_ops_free.
2804  *
2805  * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2806  */
2807 struct drm_gpuva_ops *
2808 drm_gpuvm_madvise_ops_create(struct drm_gpuvm *gpuvm,
2809 			     const struct drm_gpuvm_map_req *req)
2810 {
2811 	return __drm_gpuvm_sm_map_ops_create(gpuvm, req, true);
2812 }
2813 EXPORT_SYMBOL_GPL(drm_gpuvm_madvise_ops_create);
2814 
2815 /**
2816  * drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on
2817  * unmap
2818  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2819  * @req_addr: the start address of the range to unmap
2820  * @req_range: the range of the mappings to unmap
2821  *
2822  * This function creates a list of operations to perform unmapping and, if
2823  * required, splitting of the mappings overlapping the unmap range.
2824  *
2825  * The list can be iterated with &drm_gpuva_for_each_op and must be processed
2826  * in the given order. It can contain unmap and remap operations, depending on
2827  * whether there are actual overlapping mappings to split.
2828  *
2829  * There can be an arbitrary amount of unmap operations and a maximum of two
2830  * remap operations.
2831  *
2832  * Note that before calling this function again with another range to unmap it
2833  * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
2834  * previously obtained operations must be processed or abandoned. To update the
2835  * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
2836  * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
2837  * used.
2838  *
2839  * After the caller finished processing the returned &drm_gpuva_ops, they must
2840  * be freed with &drm_gpuva_ops_free.
2841  *
2842  * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2843  */
2844 struct drm_gpuva_ops *
2845 drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm,
2846 			      u64 req_addr, u64 req_range)
2847 {
2848 	struct drm_gpuva_ops *ops;
2849 	struct {
2850 		struct drm_gpuvm *vm;
2851 		struct drm_gpuva_ops *ops;
2852 	} args;
2853 	int ret;
2854 
2855 	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2856 	if (unlikely(!ops))
2857 		return ERR_PTR(-ENOMEM);
2858 
2859 	INIT_LIST_HEAD(&ops->list);
2860 
2861 	args.vm = gpuvm;
2862 	args.ops = ops;
2863 
2864 	ret = __drm_gpuvm_sm_unmap(gpuvm, &gpuvm_list_ops, &args,
2865 				   req_addr, req_range);
2866 	if (ret)
2867 		goto err_free_ops;
2868 
2869 	return ops;
2870 
2871 err_free_ops:
2872 	drm_gpuva_ops_free(gpuvm, ops);
2873 	return ERR_PTR(ret);
2874 }
2875 EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create);
2876 
2877 /**
2878  * drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch
2879  * @gpuvm: the &drm_gpuvm representing the GPU VA space
2880  * @addr: the start address of the range to prefetch
2881  * @range: the range of the mappings to prefetch
2882  *
2883  * This function creates a list of operations to perform prefetching.
2884  *
2885  * The list can be iterated with &drm_gpuva_for_each_op and must be processed
2886  * in the given order. It can contain prefetch operations.
2887  *
2888  * There can be an arbitrary amount of prefetch operations.
2889  *
2890  * After the caller finished processing the returned &drm_gpuva_ops, they must
2891  * be freed with &drm_gpuva_ops_free.
2892  *
2893  * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2894  */
2895 struct drm_gpuva_ops *
2896 drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm,
2897 			      u64 addr, u64 range)
2898 {
2899 	struct drm_gpuva_ops *ops;
2900 	struct drm_gpuva_op *op;
2901 	struct drm_gpuva *va;
2902 	u64 end = addr + range;
2903 	int ret;
2904 
2905 	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2906 	if (!ops)
2907 		return ERR_PTR(-ENOMEM);
2908 
2909 	INIT_LIST_HEAD(&ops->list);
2910 
2911 	drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
2912 		op = gpuva_op_alloc(gpuvm);
2913 		if (!op) {
2914 			ret = -ENOMEM;
2915 			goto err_free_ops;
2916 		}
2917 
2918 		op->op = DRM_GPUVA_OP_PREFETCH;
2919 		op->prefetch.va = va;
2920 		list_add_tail(&op->entry, &ops->list);
2921 	}
2922 
2923 	return ops;
2924 
2925 err_free_ops:
2926 	drm_gpuva_ops_free(gpuvm, ops);
2927 	return ERR_PTR(ret);
2928 }
2929 EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create);
2930 
2931 /**
2932  * drm_gpuvm_bo_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM
2933  * @vm_bo: the &drm_gpuvm_bo abstraction
2934  *
2935  * This function creates a list of operations to perform unmapping for every
2936  * GPUVA attached to a GEM.
2937  *
2938  * The list can be iterated with &drm_gpuva_for_each_op and consists out of an
2939  * arbitrary amount of unmap operations.
2940  *
2941  * After the caller finished processing the returned &drm_gpuva_ops, they must
2942  * be freed with &drm_gpuva_ops_free.
2943  *
2944  * This function expects the caller to protect the GEM's GPUVA list against
2945  * concurrent access using either the GEM's dma-resv or gpuva.lock mutex.
2946  *
2947  * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
2948  */
2949 struct drm_gpuva_ops *
2950 drm_gpuvm_bo_unmap_ops_create(struct drm_gpuvm_bo *vm_bo)
2951 {
2952 	struct drm_gpuva_ops *ops;
2953 	struct drm_gpuva_op *op;
2954 	struct drm_gpuva *va;
2955 	int ret;
2956 
2957 	drm_gem_gpuva_assert_lock_held(vm_bo->vm, vm_bo->obj);
2958 
2959 	ops = kzalloc(sizeof(*ops), GFP_KERNEL);
2960 	if (!ops)
2961 		return ERR_PTR(-ENOMEM);
2962 
2963 	INIT_LIST_HEAD(&ops->list);
2964 
2965 	drm_gpuvm_bo_for_each_va(va, vm_bo) {
2966 		op = gpuva_op_alloc(vm_bo->vm);
2967 		if (!op) {
2968 			ret = -ENOMEM;
2969 			goto err_free_ops;
2970 		}
2971 
2972 		op->op = DRM_GPUVA_OP_UNMAP;
2973 		op->unmap.va = va;
2974 		list_add_tail(&op->entry, &ops->list);
2975 	}
2976 
2977 	return ops;
2978 
2979 err_free_ops:
2980 	drm_gpuva_ops_free(vm_bo->vm, ops);
2981 	return ERR_PTR(ret);
2982 }
2983 EXPORT_SYMBOL_GPL(drm_gpuvm_bo_unmap_ops_create);
2984 
2985 /**
2986  * drm_gpuva_ops_free() - free the given &drm_gpuva_ops
2987  * @gpuvm: the &drm_gpuvm the ops were created for
2988  * @ops: the &drm_gpuva_ops to free
2989  *
2990  * Frees the given &drm_gpuva_ops structure including all the ops associated
2991  * with it.
2992  */
2993 void
2994 drm_gpuva_ops_free(struct drm_gpuvm *gpuvm,
2995 		   struct drm_gpuva_ops *ops)
2996 {
2997 	struct drm_gpuva_op *op, *next;
2998 
2999 	drm_gpuva_for_each_op_safe(op, next, ops) {
3000 		list_del(&op->entry);
3001 
3002 		if (op->op == DRM_GPUVA_OP_REMAP) {
3003 			kfree(op->remap.prev);
3004 			kfree(op->remap.next);
3005 			kfree(op->remap.unmap);
3006 		}
3007 
3008 		gpuva_op_free(gpuvm, op);
3009 	}
3010 
3011 	kfree(ops);
3012 }
3013 EXPORT_SYMBOL_GPL(drm_gpuva_ops_free);
3014 
3015 MODULE_DESCRIPTION("DRM GPUVM");
3016 MODULE_LICENSE("GPL");
3017