1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/dma-buf-map.h> 4 #include <linux/module.h> 5 6 #include <drm/drm_debugfs.h> 7 #include <drm/drm_device.h> 8 #include <drm/drm_drv.h> 9 #include <drm/drm_file.h> 10 #include <drm/drm_framebuffer.h> 11 #include <drm/drm_gem_atomic_helper.h> 12 #include <drm/drm_gem_ttm_helper.h> 13 #include <drm/drm_gem_vram_helper.h> 14 #include <drm/drm_managed.h> 15 #include <drm/drm_mode.h> 16 #include <drm/drm_plane.h> 17 #include <drm/drm_prime.h> 18 #include <drm/drm_simple_kms_helper.h> 19 20 static const struct drm_gem_object_funcs drm_gem_vram_object_funcs; 21 22 /** 23 * DOC: overview 24 * 25 * This library provides &struct drm_gem_vram_object (GEM VRAM), a GEM 26 * buffer object that is backed by video RAM (VRAM). It can be used for 27 * framebuffer devices with dedicated memory. 28 * 29 * The data structure &struct drm_vram_mm and its helpers implement a memory 30 * manager for simple framebuffer devices with dedicated video memory. GEM 31 * VRAM buffer objects are either placed in the video memory or remain evicted 32 * to system memory. 33 * 34 * With the GEM interface userspace applications create, manage and destroy 35 * graphics buffers, such as an on-screen framebuffer. GEM does not provide 36 * an implementation of these interfaces. It's up to the DRM driver to 37 * provide an implementation that suits the hardware. If the hardware device 38 * contains dedicated video memory, the DRM driver can use the VRAM helper 39 * library. Each active buffer object is stored in video RAM. Active 40 * buffer are used for drawing the current frame, typically something like 41 * the frame's scanout buffer or the cursor image. If there's no more space 42 * left in VRAM, inactive GEM objects can be moved to system memory. 43 * 44 * To initialize the VRAM helper library call drmm_vram_helper_alloc_mm(). 45 * The function allocates and initializes an instance of &struct drm_vram_mm 46 * in &struct drm_device.vram_mm . Use &DRM_GEM_VRAM_DRIVER to initialize 47 * &struct drm_driver and &DRM_VRAM_MM_FILE_OPERATIONS to initialize 48 * &struct file_operations; as illustrated below. 49 * 50 * .. code-block:: c 51 * 52 * struct file_operations fops ={ 53 * .owner = THIS_MODULE, 54 * DRM_VRAM_MM_FILE_OPERATION 55 * }; 56 * struct drm_driver drv = { 57 * .driver_feature = DRM_ ... , 58 * .fops = &fops, 59 * DRM_GEM_VRAM_DRIVER 60 * }; 61 * 62 * int init_drm_driver() 63 * { 64 * struct drm_device *dev; 65 * uint64_t vram_base; 66 * unsigned long vram_size; 67 * int ret; 68 * 69 * // setup device, vram base and size 70 * // ... 71 * 72 * ret = drmm_vram_helper_alloc_mm(dev, vram_base, vram_size); 73 * if (ret) 74 * return ret; 75 * return 0; 76 * } 77 * 78 * This creates an instance of &struct drm_vram_mm, exports DRM userspace 79 * interfaces for GEM buffer management and initializes file operations to 80 * allow for accessing created GEM buffers. With this setup, the DRM driver 81 * manages an area of video RAM with VRAM MM and provides GEM VRAM objects 82 * to userspace. 83 * 84 * You don't have to clean up the instance of VRAM MM. 85 * drmm_vram_helper_alloc_mm() is a managed interface that installs a 86 * clean-up handler to run during the DRM device's release. 87 * 88 * For drawing or scanout operations, rsp. buffer objects have to be pinned 89 * in video RAM. Call drm_gem_vram_pin() with &DRM_GEM_VRAM_PL_FLAG_VRAM or 90 * &DRM_GEM_VRAM_PL_FLAG_SYSTEM to pin a buffer object in video RAM or system 91 * memory. Call drm_gem_vram_unpin() to release the pinned object afterwards. 92 * 93 * A buffer object that is pinned in video RAM has a fixed address within that 94 * memory region. Call drm_gem_vram_offset() to retrieve this value. Typically 95 * it's used to program the hardware's scanout engine for framebuffers, set 96 * the cursor overlay's image for a mouse cursor, or use it as input to the 97 * hardware's draing engine. 98 * 99 * To access a buffer object's memory from the DRM driver, call 100 * drm_gem_vram_vmap(). It maps the buffer into kernel address 101 * space and returns the memory address. Use drm_gem_vram_vunmap() to 102 * release the mapping. 103 */ 104 105 /* 106 * Buffer-objects helpers 107 */ 108 109 static void drm_gem_vram_cleanup(struct drm_gem_vram_object *gbo) 110 { 111 /* We got here via ttm_bo_put(), which means that the 112 * TTM buffer object in 'bo' has already been cleaned 113 * up; only release the GEM object. 114 */ 115 116 WARN_ON(gbo->vmap_use_count); 117 WARN_ON(dma_buf_map_is_set(&gbo->map)); 118 119 drm_gem_object_release(&gbo->bo.base); 120 } 121 122 static void drm_gem_vram_destroy(struct drm_gem_vram_object *gbo) 123 { 124 drm_gem_vram_cleanup(gbo); 125 kfree(gbo); 126 } 127 128 static void ttm_buffer_object_destroy(struct ttm_buffer_object *bo) 129 { 130 struct drm_gem_vram_object *gbo = drm_gem_vram_of_bo(bo); 131 132 drm_gem_vram_destroy(gbo); 133 } 134 135 static void drm_gem_vram_placement(struct drm_gem_vram_object *gbo, 136 unsigned long pl_flag) 137 { 138 u32 invariant_flags = 0; 139 unsigned int i; 140 unsigned int c = 0; 141 142 if (pl_flag & DRM_GEM_VRAM_PL_FLAG_TOPDOWN) 143 invariant_flags = TTM_PL_FLAG_TOPDOWN; 144 145 gbo->placement.placement = gbo->placements; 146 gbo->placement.busy_placement = gbo->placements; 147 148 if (pl_flag & DRM_GEM_VRAM_PL_FLAG_VRAM) { 149 gbo->placements[c].mem_type = TTM_PL_VRAM; 150 gbo->placements[c++].flags = invariant_flags; 151 } 152 153 if (pl_flag & DRM_GEM_VRAM_PL_FLAG_SYSTEM || !c) { 154 gbo->placements[c].mem_type = TTM_PL_SYSTEM; 155 gbo->placements[c++].flags = invariant_flags; 156 } 157 158 gbo->placement.num_placement = c; 159 gbo->placement.num_busy_placement = c; 160 161 for (i = 0; i < c; ++i) { 162 gbo->placements[i].fpfn = 0; 163 gbo->placements[i].lpfn = 0; 164 } 165 } 166 167 /** 168 * drm_gem_vram_create() - Creates a VRAM-backed GEM object 169 * @dev: the DRM device 170 * @size: the buffer size in bytes 171 * @pg_align: the buffer's alignment in multiples of the page size 172 * 173 * GEM objects are allocated by calling struct drm_driver.gem_create_object, 174 * if set. Otherwise kzalloc() will be used. Drivers can set their own GEM 175 * object functions in struct drm_driver.gem_create_object. If no functions 176 * are set, the new GEM object will use the default functions from GEM VRAM 177 * helpers. 178 * 179 * Returns: 180 * A new instance of &struct drm_gem_vram_object on success, or 181 * an ERR_PTR()-encoded error code otherwise. 182 */ 183 struct drm_gem_vram_object *drm_gem_vram_create(struct drm_device *dev, 184 size_t size, 185 unsigned long pg_align) 186 { 187 struct drm_gem_vram_object *gbo; 188 struct drm_gem_object *gem; 189 struct drm_vram_mm *vmm = dev->vram_mm; 190 struct ttm_device *bdev; 191 int ret; 192 193 if (WARN_ONCE(!vmm, "VRAM MM not initialized")) 194 return ERR_PTR(-EINVAL); 195 196 if (dev->driver->gem_create_object) { 197 gem = dev->driver->gem_create_object(dev, size); 198 if (!gem) 199 return ERR_PTR(-ENOMEM); 200 gbo = drm_gem_vram_of_gem(gem); 201 } else { 202 gbo = kzalloc(sizeof(*gbo), GFP_KERNEL); 203 if (!gbo) 204 return ERR_PTR(-ENOMEM); 205 gem = &gbo->bo.base; 206 } 207 208 if (!gem->funcs) 209 gem->funcs = &drm_gem_vram_object_funcs; 210 211 ret = drm_gem_object_init(dev, gem, size); 212 if (ret) { 213 kfree(gbo); 214 return ERR_PTR(ret); 215 } 216 217 bdev = &vmm->bdev; 218 219 gbo->bo.bdev = bdev; 220 drm_gem_vram_placement(gbo, DRM_GEM_VRAM_PL_FLAG_SYSTEM); 221 222 /* 223 * A failing ttm_bo_init will call ttm_buffer_object_destroy 224 * to release gbo->bo.base and kfree gbo. 225 */ 226 ret = ttm_bo_init(bdev, &gbo->bo, size, ttm_bo_type_device, 227 &gbo->placement, pg_align, false, NULL, NULL, 228 ttm_buffer_object_destroy); 229 if (ret) 230 return ERR_PTR(ret); 231 232 return gbo; 233 } 234 EXPORT_SYMBOL(drm_gem_vram_create); 235 236 /** 237 * drm_gem_vram_put() - Releases a reference to a VRAM-backed GEM object 238 * @gbo: the GEM VRAM object 239 * 240 * See ttm_bo_put() for more information. 241 */ 242 void drm_gem_vram_put(struct drm_gem_vram_object *gbo) 243 { 244 ttm_bo_put(&gbo->bo); 245 } 246 EXPORT_SYMBOL(drm_gem_vram_put); 247 248 static u64 drm_gem_vram_pg_offset(struct drm_gem_vram_object *gbo) 249 { 250 /* Keep TTM behavior for now, remove when drivers are audited */ 251 if (WARN_ON_ONCE(!gbo->bo.mem.mm_node)) 252 return 0; 253 254 return gbo->bo.mem.start; 255 } 256 257 /** 258 * drm_gem_vram_offset() - \ 259 Returns a GEM VRAM object's offset in video memory 260 * @gbo: the GEM VRAM object 261 * 262 * This function returns the buffer object's offset in the device's video 263 * memory. The buffer object has to be pinned to %TTM_PL_VRAM. 264 * 265 * Returns: 266 * The buffer object's offset in video memory on success, or 267 * a negative errno code otherwise. 268 */ 269 s64 drm_gem_vram_offset(struct drm_gem_vram_object *gbo) 270 { 271 if (WARN_ON_ONCE(!gbo->bo.pin_count)) 272 return (s64)-ENODEV; 273 return drm_gem_vram_pg_offset(gbo) << PAGE_SHIFT; 274 } 275 EXPORT_SYMBOL(drm_gem_vram_offset); 276 277 static int drm_gem_vram_pin_locked(struct drm_gem_vram_object *gbo, 278 unsigned long pl_flag) 279 { 280 struct ttm_operation_ctx ctx = { false, false }; 281 int ret; 282 283 if (gbo->bo.pin_count) 284 goto out; 285 286 if (pl_flag) 287 drm_gem_vram_placement(gbo, pl_flag); 288 289 ret = ttm_bo_validate(&gbo->bo, &gbo->placement, &ctx); 290 if (ret < 0) 291 return ret; 292 293 out: 294 ttm_bo_pin(&gbo->bo); 295 296 return 0; 297 } 298 299 /** 300 * drm_gem_vram_pin() - Pins a GEM VRAM object in a region. 301 * @gbo: the GEM VRAM object 302 * @pl_flag: a bitmask of possible memory regions 303 * 304 * Pinning a buffer object ensures that it is not evicted from 305 * a memory region. A pinned buffer object has to be unpinned before 306 * it can be pinned to another region. If the pl_flag argument is 0, 307 * the buffer is pinned at its current location (video RAM or system 308 * memory). 309 * 310 * Small buffer objects, such as cursor images, can lead to memory 311 * fragmentation if they are pinned in the middle of video RAM. This 312 * is especially a problem on devices with only a small amount of 313 * video RAM. Fragmentation can prevent the primary framebuffer from 314 * fitting in, even though there's enough memory overall. The modifier 315 * DRM_GEM_VRAM_PL_FLAG_TOPDOWN marks the buffer object to be pinned 316 * at the high end of the memory region to avoid fragmentation. 317 * 318 * Returns: 319 * 0 on success, or 320 * a negative error code otherwise. 321 */ 322 int drm_gem_vram_pin(struct drm_gem_vram_object *gbo, unsigned long pl_flag) 323 { 324 int ret; 325 326 ret = ttm_bo_reserve(&gbo->bo, true, false, NULL); 327 if (ret) 328 return ret; 329 ret = drm_gem_vram_pin_locked(gbo, pl_flag); 330 ttm_bo_unreserve(&gbo->bo); 331 332 return ret; 333 } 334 EXPORT_SYMBOL(drm_gem_vram_pin); 335 336 static void drm_gem_vram_unpin_locked(struct drm_gem_vram_object *gbo) 337 { 338 ttm_bo_unpin(&gbo->bo); 339 } 340 341 /** 342 * drm_gem_vram_unpin() - Unpins a GEM VRAM object 343 * @gbo: the GEM VRAM object 344 * 345 * Returns: 346 * 0 on success, or 347 * a negative error code otherwise. 348 */ 349 int drm_gem_vram_unpin(struct drm_gem_vram_object *gbo) 350 { 351 int ret; 352 353 ret = ttm_bo_reserve(&gbo->bo, true, false, NULL); 354 if (ret) 355 return ret; 356 357 drm_gem_vram_unpin_locked(gbo); 358 ttm_bo_unreserve(&gbo->bo); 359 360 return 0; 361 } 362 EXPORT_SYMBOL(drm_gem_vram_unpin); 363 364 static int drm_gem_vram_kmap_locked(struct drm_gem_vram_object *gbo, 365 struct dma_buf_map *map) 366 { 367 int ret; 368 369 if (gbo->vmap_use_count > 0) 370 goto out; 371 372 /* 373 * VRAM helpers unmap the BO only on demand. So the previous 374 * page mapping might still be around. Only vmap if the there's 375 * no mapping present. 376 */ 377 if (dma_buf_map_is_null(&gbo->map)) { 378 ret = ttm_bo_vmap(&gbo->bo, &gbo->map); 379 if (ret) 380 return ret; 381 } 382 383 out: 384 ++gbo->vmap_use_count; 385 *map = gbo->map; 386 387 return 0; 388 } 389 390 static void drm_gem_vram_kunmap_locked(struct drm_gem_vram_object *gbo, 391 struct dma_buf_map *map) 392 { 393 struct drm_device *dev = gbo->bo.base.dev; 394 395 if (drm_WARN_ON_ONCE(dev, !gbo->vmap_use_count)) 396 return; 397 398 if (drm_WARN_ON_ONCE(dev, !dma_buf_map_is_equal(&gbo->map, map))) 399 return; /* BUG: map not mapped from this BO */ 400 401 if (--gbo->vmap_use_count > 0) 402 return; 403 404 /* 405 * Permanently mapping and unmapping buffers adds overhead from 406 * updating the page tables and creates debugging output. Therefore, 407 * we delay the actual unmap operation until the BO gets evicted 408 * from memory. See drm_gem_vram_bo_driver_move_notify(). 409 */ 410 } 411 412 /** 413 * drm_gem_vram_vmap() - Pins and maps a GEM VRAM object into kernel address 414 * space 415 * @gbo: The GEM VRAM object to map 416 * @map: Returns the kernel virtual address of the VRAM GEM object's backing 417 * store. 418 * 419 * The vmap function pins a GEM VRAM object to its current location, either 420 * system or video memory, and maps its buffer into kernel address space. 421 * As pinned object cannot be relocated, you should avoid pinning objects 422 * permanently. Call drm_gem_vram_vunmap() with the returned address to 423 * unmap and unpin the GEM VRAM object. 424 * 425 * Returns: 426 * 0 on success, or a negative error code otherwise. 427 */ 428 int drm_gem_vram_vmap(struct drm_gem_vram_object *gbo, struct dma_buf_map *map) 429 { 430 int ret; 431 432 ret = ttm_bo_reserve(&gbo->bo, true, false, NULL); 433 if (ret) 434 return ret; 435 436 ret = drm_gem_vram_pin_locked(gbo, 0); 437 if (ret) 438 goto err_ttm_bo_unreserve; 439 ret = drm_gem_vram_kmap_locked(gbo, map); 440 if (ret) 441 goto err_drm_gem_vram_unpin_locked; 442 443 ttm_bo_unreserve(&gbo->bo); 444 445 return 0; 446 447 err_drm_gem_vram_unpin_locked: 448 drm_gem_vram_unpin_locked(gbo); 449 err_ttm_bo_unreserve: 450 ttm_bo_unreserve(&gbo->bo); 451 return ret; 452 } 453 EXPORT_SYMBOL(drm_gem_vram_vmap); 454 455 /** 456 * drm_gem_vram_vunmap() - Unmaps and unpins a GEM VRAM object 457 * @gbo: The GEM VRAM object to unmap 458 * @map: Kernel virtual address where the VRAM GEM object was mapped 459 * 460 * A call to drm_gem_vram_vunmap() unmaps and unpins a GEM VRAM buffer. See 461 * the documentation for drm_gem_vram_vmap() for more information. 462 */ 463 void drm_gem_vram_vunmap(struct drm_gem_vram_object *gbo, struct dma_buf_map *map) 464 { 465 int ret; 466 467 ret = ttm_bo_reserve(&gbo->bo, false, false, NULL); 468 if (WARN_ONCE(ret, "ttm_bo_reserve_failed(): ret=%d\n", ret)) 469 return; 470 471 drm_gem_vram_kunmap_locked(gbo, map); 472 drm_gem_vram_unpin_locked(gbo); 473 474 ttm_bo_unreserve(&gbo->bo); 475 } 476 EXPORT_SYMBOL(drm_gem_vram_vunmap); 477 478 /** 479 * drm_gem_vram_fill_create_dumb() - \ 480 Helper for implementing &struct drm_driver.dumb_create 481 * @file: the DRM file 482 * @dev: the DRM device 483 * @pg_align: the buffer's alignment in multiples of the page size 484 * @pitch_align: the scanline's alignment in powers of 2 485 * @args: the arguments as provided to \ 486 &struct drm_driver.dumb_create 487 * 488 * This helper function fills &struct drm_mode_create_dumb, which is used 489 * by &struct drm_driver.dumb_create. Implementations of this interface 490 * should forwards their arguments to this helper, plus the driver-specific 491 * parameters. 492 * 493 * Returns: 494 * 0 on success, or 495 * a negative error code otherwise. 496 */ 497 int drm_gem_vram_fill_create_dumb(struct drm_file *file, 498 struct drm_device *dev, 499 unsigned long pg_align, 500 unsigned long pitch_align, 501 struct drm_mode_create_dumb *args) 502 { 503 size_t pitch, size; 504 struct drm_gem_vram_object *gbo; 505 int ret; 506 u32 handle; 507 508 pitch = args->width * DIV_ROUND_UP(args->bpp, 8); 509 if (pitch_align) { 510 if (WARN_ON_ONCE(!is_power_of_2(pitch_align))) 511 return -EINVAL; 512 pitch = ALIGN(pitch, pitch_align); 513 } 514 size = pitch * args->height; 515 516 size = roundup(size, PAGE_SIZE); 517 if (!size) 518 return -EINVAL; 519 520 gbo = drm_gem_vram_create(dev, size, pg_align); 521 if (IS_ERR(gbo)) 522 return PTR_ERR(gbo); 523 524 ret = drm_gem_handle_create(file, &gbo->bo.base, &handle); 525 if (ret) 526 goto err_drm_gem_object_put; 527 528 drm_gem_object_put(&gbo->bo.base); 529 530 args->pitch = pitch; 531 args->size = size; 532 args->handle = handle; 533 534 return 0; 535 536 err_drm_gem_object_put: 537 drm_gem_object_put(&gbo->bo.base); 538 return ret; 539 } 540 EXPORT_SYMBOL(drm_gem_vram_fill_create_dumb); 541 542 /* 543 * Helpers for struct ttm_device_funcs 544 */ 545 546 static bool drm_is_gem_vram(struct ttm_buffer_object *bo) 547 { 548 return (bo->destroy == ttm_buffer_object_destroy); 549 } 550 551 static void drm_gem_vram_bo_driver_evict_flags(struct drm_gem_vram_object *gbo, 552 struct ttm_placement *pl) 553 { 554 drm_gem_vram_placement(gbo, DRM_GEM_VRAM_PL_FLAG_SYSTEM); 555 *pl = gbo->placement; 556 } 557 558 static void drm_gem_vram_bo_driver_move_notify(struct drm_gem_vram_object *gbo) 559 { 560 struct ttm_buffer_object *bo = &gbo->bo; 561 struct drm_device *dev = bo->base.dev; 562 563 if (drm_WARN_ON_ONCE(dev, gbo->vmap_use_count)) 564 return; 565 566 ttm_bo_vunmap(bo, &gbo->map); 567 dma_buf_map_clear(&gbo->map); /* explicitly clear mapping for next vmap call */ 568 } 569 570 static int drm_gem_vram_bo_driver_move(struct drm_gem_vram_object *gbo, 571 bool evict, 572 struct ttm_operation_ctx *ctx, 573 struct ttm_resource *new_mem) 574 { 575 drm_gem_vram_bo_driver_move_notify(gbo); 576 return ttm_bo_move_memcpy(&gbo->bo, ctx, new_mem); 577 } 578 579 /* 580 * Helpers for struct drm_gem_object_funcs 581 */ 582 583 /** 584 * drm_gem_vram_object_free() - \ 585 Implements &struct drm_gem_object_funcs.free 586 * @gem: GEM object. Refers to &struct drm_gem_vram_object.gem 587 */ 588 static void drm_gem_vram_object_free(struct drm_gem_object *gem) 589 { 590 struct drm_gem_vram_object *gbo = drm_gem_vram_of_gem(gem); 591 592 drm_gem_vram_put(gbo); 593 } 594 595 /* 596 * Helpers for dump buffers 597 */ 598 599 /** 600 * drm_gem_vram_driver_dumb_create() - \ 601 Implements &struct drm_driver.dumb_create 602 * @file: the DRM file 603 * @dev: the DRM device 604 * @args: the arguments as provided to \ 605 &struct drm_driver.dumb_create 606 * 607 * This function requires the driver to use @drm_device.vram_mm for its 608 * instance of VRAM MM. 609 * 610 * Returns: 611 * 0 on success, or 612 * a negative error code otherwise. 613 */ 614 int drm_gem_vram_driver_dumb_create(struct drm_file *file, 615 struct drm_device *dev, 616 struct drm_mode_create_dumb *args) 617 { 618 if (WARN_ONCE(!dev->vram_mm, "VRAM MM not initialized")) 619 return -EINVAL; 620 621 return drm_gem_vram_fill_create_dumb(file, dev, 0, 0, args); 622 } 623 EXPORT_SYMBOL(drm_gem_vram_driver_dumb_create); 624 625 /* 626 * Helpers for struct drm_plane_helper_funcs 627 */ 628 629 /** 630 * drm_gem_vram_plane_helper_prepare_fb() - \ 631 * Implements &struct drm_plane_helper_funcs.prepare_fb 632 * @plane: a DRM plane 633 * @new_state: the plane's new state 634 * 635 * During plane updates, this function sets the plane's fence and 636 * pins the GEM VRAM objects of the plane's new framebuffer to VRAM. 637 * Call drm_gem_vram_plane_helper_cleanup_fb() to unpin them. 638 * 639 * Returns: 640 * 0 on success, or 641 * a negative errno code otherwise. 642 */ 643 int 644 drm_gem_vram_plane_helper_prepare_fb(struct drm_plane *plane, 645 struct drm_plane_state *new_state) 646 { 647 size_t i; 648 struct drm_gem_vram_object *gbo; 649 int ret; 650 651 if (!new_state->fb) 652 return 0; 653 654 for (i = 0; i < ARRAY_SIZE(new_state->fb->obj); ++i) { 655 if (!new_state->fb->obj[i]) 656 continue; 657 gbo = drm_gem_vram_of_gem(new_state->fb->obj[i]); 658 ret = drm_gem_vram_pin(gbo, DRM_GEM_VRAM_PL_FLAG_VRAM); 659 if (ret) 660 goto err_drm_gem_vram_unpin; 661 } 662 663 ret = drm_gem_plane_helper_prepare_fb(plane, new_state); 664 if (ret) 665 goto err_drm_gem_vram_unpin; 666 667 return 0; 668 669 err_drm_gem_vram_unpin: 670 while (i) { 671 --i; 672 gbo = drm_gem_vram_of_gem(new_state->fb->obj[i]); 673 drm_gem_vram_unpin(gbo); 674 } 675 return ret; 676 } 677 EXPORT_SYMBOL(drm_gem_vram_plane_helper_prepare_fb); 678 679 /** 680 * drm_gem_vram_plane_helper_cleanup_fb() - \ 681 * Implements &struct drm_plane_helper_funcs.cleanup_fb 682 * @plane: a DRM plane 683 * @old_state: the plane's old state 684 * 685 * During plane updates, this function unpins the GEM VRAM 686 * objects of the plane's old framebuffer from VRAM. Complements 687 * drm_gem_vram_plane_helper_prepare_fb(). 688 */ 689 void 690 drm_gem_vram_plane_helper_cleanup_fb(struct drm_plane *plane, 691 struct drm_plane_state *old_state) 692 { 693 size_t i; 694 struct drm_gem_vram_object *gbo; 695 696 if (!old_state->fb) 697 return; 698 699 for (i = 0; i < ARRAY_SIZE(old_state->fb->obj); ++i) { 700 if (!old_state->fb->obj[i]) 701 continue; 702 gbo = drm_gem_vram_of_gem(old_state->fb->obj[i]); 703 drm_gem_vram_unpin(gbo); 704 } 705 } 706 EXPORT_SYMBOL(drm_gem_vram_plane_helper_cleanup_fb); 707 708 /* 709 * Helpers for struct drm_simple_display_pipe_funcs 710 */ 711 712 /** 713 * drm_gem_vram_simple_display_pipe_prepare_fb() - \ 714 * Implements &struct drm_simple_display_pipe_funcs.prepare_fb 715 * @pipe: a simple display pipe 716 * @new_state: the plane's new state 717 * 718 * During plane updates, this function pins the GEM VRAM 719 * objects of the plane's new framebuffer to VRAM. Call 720 * drm_gem_vram_simple_display_pipe_cleanup_fb() to unpin them. 721 * 722 * Returns: 723 * 0 on success, or 724 * a negative errno code otherwise. 725 */ 726 int drm_gem_vram_simple_display_pipe_prepare_fb( 727 struct drm_simple_display_pipe *pipe, 728 struct drm_plane_state *new_state) 729 { 730 return drm_gem_vram_plane_helper_prepare_fb(&pipe->plane, new_state); 731 } 732 EXPORT_SYMBOL(drm_gem_vram_simple_display_pipe_prepare_fb); 733 734 /** 735 * drm_gem_vram_simple_display_pipe_cleanup_fb() - \ 736 * Implements &struct drm_simple_display_pipe_funcs.cleanup_fb 737 * @pipe: a simple display pipe 738 * @old_state: the plane's old state 739 * 740 * During plane updates, this function unpins the GEM VRAM 741 * objects of the plane's old framebuffer from VRAM. Complements 742 * drm_gem_vram_simple_display_pipe_prepare_fb(). 743 */ 744 void drm_gem_vram_simple_display_pipe_cleanup_fb( 745 struct drm_simple_display_pipe *pipe, 746 struct drm_plane_state *old_state) 747 { 748 drm_gem_vram_plane_helper_cleanup_fb(&pipe->plane, old_state); 749 } 750 EXPORT_SYMBOL(drm_gem_vram_simple_display_pipe_cleanup_fb); 751 752 /* 753 * PRIME helpers 754 */ 755 756 /** 757 * drm_gem_vram_object_pin() - \ 758 Implements &struct drm_gem_object_funcs.pin 759 * @gem: The GEM object to pin 760 * 761 * Returns: 762 * 0 on success, or 763 * a negative errno code otherwise. 764 */ 765 static int drm_gem_vram_object_pin(struct drm_gem_object *gem) 766 { 767 struct drm_gem_vram_object *gbo = drm_gem_vram_of_gem(gem); 768 769 /* Fbdev console emulation is the use case of these PRIME 770 * helpers. This may involve updating a hardware buffer from 771 * a shadow FB. We pin the buffer to it's current location 772 * (either video RAM or system memory) to prevent it from 773 * being relocated during the update operation. If you require 774 * the buffer to be pinned to VRAM, implement a callback that 775 * sets the flags accordingly. 776 */ 777 return drm_gem_vram_pin(gbo, 0); 778 } 779 780 /** 781 * drm_gem_vram_object_unpin() - \ 782 Implements &struct drm_gem_object_funcs.unpin 783 * @gem: The GEM object to unpin 784 */ 785 static void drm_gem_vram_object_unpin(struct drm_gem_object *gem) 786 { 787 struct drm_gem_vram_object *gbo = drm_gem_vram_of_gem(gem); 788 789 drm_gem_vram_unpin(gbo); 790 } 791 792 /** 793 * drm_gem_vram_object_vmap() - 794 * Implements &struct drm_gem_object_funcs.vmap 795 * @gem: The GEM object to map 796 * @map: Returns the kernel virtual address of the VRAM GEM object's backing 797 * store. 798 * 799 * Returns: 800 * 0 on success, or a negative error code otherwise. 801 */ 802 static int drm_gem_vram_object_vmap(struct drm_gem_object *gem, struct dma_buf_map *map) 803 { 804 struct drm_gem_vram_object *gbo = drm_gem_vram_of_gem(gem); 805 806 return drm_gem_vram_vmap(gbo, map); 807 } 808 809 /** 810 * drm_gem_vram_object_vunmap() - 811 * Implements &struct drm_gem_object_funcs.vunmap 812 * @gem: The GEM object to unmap 813 * @map: Kernel virtual address where the VRAM GEM object was mapped 814 */ 815 static void drm_gem_vram_object_vunmap(struct drm_gem_object *gem, struct dma_buf_map *map) 816 { 817 struct drm_gem_vram_object *gbo = drm_gem_vram_of_gem(gem); 818 819 drm_gem_vram_vunmap(gbo, map); 820 } 821 822 /* 823 * GEM object funcs 824 */ 825 826 static const struct drm_gem_object_funcs drm_gem_vram_object_funcs = { 827 .free = drm_gem_vram_object_free, 828 .pin = drm_gem_vram_object_pin, 829 .unpin = drm_gem_vram_object_unpin, 830 .vmap = drm_gem_vram_object_vmap, 831 .vunmap = drm_gem_vram_object_vunmap, 832 .mmap = drm_gem_ttm_mmap, 833 .print_info = drm_gem_ttm_print_info, 834 }; 835 836 /* 837 * VRAM memory manager 838 */ 839 840 /* 841 * TTM TT 842 */ 843 844 static void bo_driver_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *tt) 845 { 846 ttm_tt_destroy_common(bdev, tt); 847 ttm_tt_fini(tt); 848 kfree(tt); 849 } 850 851 /* 852 * TTM BO device 853 */ 854 855 static struct ttm_tt *bo_driver_ttm_tt_create(struct ttm_buffer_object *bo, 856 uint32_t page_flags) 857 { 858 struct ttm_tt *tt; 859 int ret; 860 861 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 862 if (!tt) 863 return NULL; 864 865 ret = ttm_tt_init(tt, bo, page_flags, ttm_cached); 866 if (ret < 0) 867 goto err_ttm_tt_init; 868 869 return tt; 870 871 err_ttm_tt_init: 872 kfree(tt); 873 return NULL; 874 } 875 876 static void bo_driver_evict_flags(struct ttm_buffer_object *bo, 877 struct ttm_placement *placement) 878 { 879 struct drm_gem_vram_object *gbo; 880 881 /* TTM may pass BOs that are not GEM VRAM BOs. */ 882 if (!drm_is_gem_vram(bo)) 883 return; 884 885 gbo = drm_gem_vram_of_bo(bo); 886 887 drm_gem_vram_bo_driver_evict_flags(gbo, placement); 888 } 889 890 static void bo_driver_delete_mem_notify(struct ttm_buffer_object *bo) 891 { 892 struct drm_gem_vram_object *gbo; 893 894 /* TTM may pass BOs that are not GEM VRAM BOs. */ 895 if (!drm_is_gem_vram(bo)) 896 return; 897 898 gbo = drm_gem_vram_of_bo(bo); 899 900 drm_gem_vram_bo_driver_move_notify(gbo); 901 } 902 903 static int bo_driver_move(struct ttm_buffer_object *bo, 904 bool evict, 905 struct ttm_operation_ctx *ctx, 906 struct ttm_resource *new_mem, 907 struct ttm_place *hop) 908 { 909 struct drm_gem_vram_object *gbo; 910 911 gbo = drm_gem_vram_of_bo(bo); 912 913 return drm_gem_vram_bo_driver_move(gbo, evict, ctx, new_mem); 914 } 915 916 static int bo_driver_io_mem_reserve(struct ttm_device *bdev, 917 struct ttm_resource *mem) 918 { 919 struct drm_vram_mm *vmm = drm_vram_mm_of_bdev(bdev); 920 921 switch (mem->mem_type) { 922 case TTM_PL_SYSTEM: /* nothing to do */ 923 break; 924 case TTM_PL_VRAM: 925 mem->bus.offset = (mem->start << PAGE_SHIFT) + vmm->vram_base; 926 mem->bus.is_iomem = true; 927 mem->bus.caching = ttm_write_combined; 928 break; 929 default: 930 return -EINVAL; 931 } 932 933 return 0; 934 } 935 936 static struct ttm_device_funcs bo_driver = { 937 .ttm_tt_create = bo_driver_ttm_tt_create, 938 .ttm_tt_destroy = bo_driver_ttm_tt_destroy, 939 .eviction_valuable = ttm_bo_eviction_valuable, 940 .evict_flags = bo_driver_evict_flags, 941 .move = bo_driver_move, 942 .delete_mem_notify = bo_driver_delete_mem_notify, 943 .io_mem_reserve = bo_driver_io_mem_reserve, 944 }; 945 946 /* 947 * struct drm_vram_mm 948 */ 949 950 static int drm_vram_mm_debugfs(struct seq_file *m, void *data) 951 { 952 struct drm_info_node *node = (struct drm_info_node *) m->private; 953 struct drm_vram_mm *vmm = node->minor->dev->vram_mm; 954 struct ttm_resource_manager *man = ttm_manager_type(&vmm->bdev, TTM_PL_VRAM); 955 struct drm_printer p = drm_seq_file_printer(m); 956 957 ttm_resource_manager_debug(man, &p); 958 return 0; 959 } 960 961 static const struct drm_info_list drm_vram_mm_debugfs_list[] = { 962 { "vram-mm", drm_vram_mm_debugfs, 0, NULL }, 963 }; 964 965 /** 966 * drm_vram_mm_debugfs_init() - Register VRAM MM debugfs file. 967 * 968 * @minor: drm minor device. 969 * 970 */ 971 void drm_vram_mm_debugfs_init(struct drm_minor *minor) 972 { 973 drm_debugfs_create_files(drm_vram_mm_debugfs_list, 974 ARRAY_SIZE(drm_vram_mm_debugfs_list), 975 minor->debugfs_root, minor); 976 } 977 EXPORT_SYMBOL(drm_vram_mm_debugfs_init); 978 979 static int drm_vram_mm_init(struct drm_vram_mm *vmm, struct drm_device *dev, 980 uint64_t vram_base, size_t vram_size) 981 { 982 int ret; 983 984 vmm->vram_base = vram_base; 985 vmm->vram_size = vram_size; 986 987 ret = ttm_device_init(&vmm->bdev, &bo_driver, dev->dev, 988 dev->anon_inode->i_mapping, 989 dev->vma_offset_manager, 990 false, true); 991 if (ret) 992 return ret; 993 994 ret = ttm_range_man_init(&vmm->bdev, TTM_PL_VRAM, 995 false, vram_size >> PAGE_SHIFT); 996 if (ret) 997 return ret; 998 999 return 0; 1000 } 1001 1002 static void drm_vram_mm_cleanup(struct drm_vram_mm *vmm) 1003 { 1004 ttm_range_man_fini(&vmm->bdev, TTM_PL_VRAM); 1005 ttm_device_fini(&vmm->bdev); 1006 } 1007 1008 /* 1009 * Helpers for integration with struct drm_device 1010 */ 1011 1012 /* deprecated; use drmm_vram_mm_init() */ 1013 struct drm_vram_mm *drm_vram_helper_alloc_mm( 1014 struct drm_device *dev, uint64_t vram_base, size_t vram_size) 1015 { 1016 int ret; 1017 1018 if (WARN_ON(dev->vram_mm)) 1019 return dev->vram_mm; 1020 1021 dev->vram_mm = kzalloc(sizeof(*dev->vram_mm), GFP_KERNEL); 1022 if (!dev->vram_mm) 1023 return ERR_PTR(-ENOMEM); 1024 1025 ret = drm_vram_mm_init(dev->vram_mm, dev, vram_base, vram_size); 1026 if (ret) 1027 goto err_kfree; 1028 1029 return dev->vram_mm; 1030 1031 err_kfree: 1032 kfree(dev->vram_mm); 1033 dev->vram_mm = NULL; 1034 return ERR_PTR(ret); 1035 } 1036 EXPORT_SYMBOL(drm_vram_helper_alloc_mm); 1037 1038 void drm_vram_helper_release_mm(struct drm_device *dev) 1039 { 1040 if (!dev->vram_mm) 1041 return; 1042 1043 drm_vram_mm_cleanup(dev->vram_mm); 1044 kfree(dev->vram_mm); 1045 dev->vram_mm = NULL; 1046 } 1047 EXPORT_SYMBOL(drm_vram_helper_release_mm); 1048 1049 static void drm_vram_mm_release(struct drm_device *dev, void *ptr) 1050 { 1051 drm_vram_helper_release_mm(dev); 1052 } 1053 1054 /** 1055 * drmm_vram_helper_init - Initializes a device's instance of 1056 * &struct drm_vram_mm 1057 * @dev: the DRM device 1058 * @vram_base: the base address of the video memory 1059 * @vram_size: the size of the video memory in bytes 1060 * 1061 * Creates a new instance of &struct drm_vram_mm and stores it in 1062 * struct &drm_device.vram_mm. The instance is auto-managed and cleaned 1063 * up as part of device cleanup. Calling this function multiple times 1064 * will generate an error message. 1065 * 1066 * Returns: 1067 * 0 on success, or a negative errno code otherwise. 1068 */ 1069 int drmm_vram_helper_init(struct drm_device *dev, uint64_t vram_base, 1070 size_t vram_size) 1071 { 1072 struct drm_vram_mm *vram_mm; 1073 1074 if (drm_WARN_ON_ONCE(dev, dev->vram_mm)) 1075 return 0; 1076 1077 vram_mm = drm_vram_helper_alloc_mm(dev, vram_base, vram_size); 1078 if (IS_ERR(vram_mm)) 1079 return PTR_ERR(vram_mm); 1080 return drmm_add_action_or_reset(dev, drm_vram_mm_release, NULL); 1081 } 1082 EXPORT_SYMBOL(drmm_vram_helper_init); 1083 1084 /* 1085 * Mode-config helpers 1086 */ 1087 1088 static enum drm_mode_status 1089 drm_vram_helper_mode_valid_internal(struct drm_device *dev, 1090 const struct drm_display_mode *mode, 1091 unsigned long max_bpp) 1092 { 1093 struct drm_vram_mm *vmm = dev->vram_mm; 1094 unsigned long fbsize, fbpages, max_fbpages; 1095 1096 if (WARN_ON(!dev->vram_mm)) 1097 return MODE_BAD; 1098 1099 max_fbpages = (vmm->vram_size / 2) >> PAGE_SHIFT; 1100 1101 fbsize = mode->hdisplay * mode->vdisplay * max_bpp; 1102 fbpages = DIV_ROUND_UP(fbsize, PAGE_SIZE); 1103 1104 if (fbpages > max_fbpages) 1105 return MODE_MEM; 1106 1107 return MODE_OK; 1108 } 1109 1110 /** 1111 * drm_vram_helper_mode_valid - Tests if a display mode's 1112 * framebuffer fits into the available video memory. 1113 * @dev: the DRM device 1114 * @mode: the mode to test 1115 * 1116 * This function tests if enough video memory is available for using the 1117 * specified display mode. Atomic modesetting requires importing the 1118 * designated framebuffer into video memory before evicting the active 1119 * one. Hence, any framebuffer may consume at most half of the available 1120 * VRAM. Display modes that require a larger framebuffer can not be used, 1121 * even if the CRTC does support them. Each framebuffer is assumed to 1122 * have 32-bit color depth. 1123 * 1124 * Note: 1125 * The function can only test if the display mode is supported in 1126 * general. If there are too many framebuffers pinned to video memory, 1127 * a display mode may still not be usable in practice. The color depth of 1128 * 32-bit fits all current use case. A more flexible test can be added 1129 * when necessary. 1130 * 1131 * Returns: 1132 * MODE_OK if the display mode is supported, or an error code of type 1133 * enum drm_mode_status otherwise. 1134 */ 1135 enum drm_mode_status 1136 drm_vram_helper_mode_valid(struct drm_device *dev, 1137 const struct drm_display_mode *mode) 1138 { 1139 static const unsigned long max_bpp = 4; /* DRM_FORMAT_XRGB8888 */ 1140 1141 return drm_vram_helper_mode_valid_internal(dev, mode, max_bpp); 1142 } 1143 EXPORT_SYMBOL(drm_vram_helper_mode_valid); 1144 1145 MODULE_DESCRIPTION("DRM VRAM memory-management helpers"); 1146 MODULE_LICENSE("GPL"); 1147