xref: /linux/drivers/gpu/drm/drm_edid.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/cec.h>
33 #include <linux/hdmi.h>
34 #include <linux/i2c.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/slab.h>
39 #include <linux/vga_switcheroo.h>
40 
41 #include <drm/drm_displayid.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_edid.h>
44 #include <drm/drm_eld.h>
45 #include <drm/drm_encoder.h>
46 #include <drm/drm_print.h>
47 
48 #include "drm_crtc_internal.h"
49 #include "drm_internal.h"
50 
51 static int oui(u8 first, u8 second, u8 third)
52 {
53 	return (first << 16) | (second << 8) | third;
54 }
55 
56 #define EDID_EST_TIMINGS 16
57 #define EDID_STD_TIMINGS 8
58 #define EDID_DETAILED_TIMINGS 4
59 
60 /*
61  * EDID blocks out in the wild have a variety of bugs, try to collect
62  * them here (note that userspace may work around broken monitors first,
63  * but fixes should make their way here so that the kernel "just works"
64  * on as many displays as possible).
65  */
66 
67 /* First detailed mode wrong, use largest 60Hz mode */
68 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
69 /* Reported 135MHz pixel clock is too high, needs adjustment */
70 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
71 /* Prefer the largest mode at 75 Hz */
72 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
73 /* Detail timing is in cm not mm */
74 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
75 /* Detailed timing descriptors have bogus size values, so just take the
76  * maximum size and use that.
77  */
78 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
79 /* use +hsync +vsync for detailed mode */
80 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
81 /* Force reduced-blanking timings for detailed modes */
82 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
83 /* Force 8bpc */
84 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
85 /* Force 12bpc */
86 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
87 /* Force 6bpc */
88 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
89 /* Force 10bpc */
90 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
91 /* Non desktop display (i.e. HMD) */
92 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
93 /* Cap the DSC target bitrate to 15bpp */
94 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
95 
96 #define MICROSOFT_IEEE_OUI	0xca125c
97 
98 struct detailed_mode_closure {
99 	struct drm_connector *connector;
100 	const struct drm_edid *drm_edid;
101 	bool preferred;
102 	int modes;
103 };
104 
105 #define LEVEL_DMT	0
106 #define LEVEL_GTF	1
107 #define LEVEL_GTF2	2
108 #define LEVEL_CVT	3
109 
110 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
111 { \
112 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
113 					     product_id), \
114 	.quirks = _quirks \
115 }
116 
117 static const struct edid_quirk {
118 	u32 panel_id;
119 	u32 quirks;
120 } edid_quirk_list[] = {
121 	/* Acer AL1706 */
122 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
123 	/* Acer F51 */
124 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
125 
126 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
128 
129 	/* BenQ GW2765 */
130 	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
131 
132 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
134 
135 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
137 
138 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
140 
141 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
143 
144 	/* Belinea 10 15 55 */
145 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
147 
148 	/* Envision Peripherals, Inc. EN-7100e */
149 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150 	/* Envision EN2028 */
151 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
152 
153 	/* Funai Electronics PM36B */
154 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155 				       EDID_QUIRK_DETAILED_IN_CM),
156 
157 	/* LG 27GP950 */
158 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
159 
160 	/* LG 27GN950 */
161 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
162 
163 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
165 
166 	/* LG Philips LCD LP154W01-A5 */
167 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
169 
170 	/* Samsung SyncMaster 205BW.  Note: irony */
171 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172 	/* Samsung SyncMaster 22[5-6]BW */
173 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
175 
176 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
178 
179 	/* ViewSonic VA2026w */
180 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
181 
182 	/* Medion MD 30217 PG */
183 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
184 
185 	/* Lenovo G50 */
186 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
187 
188 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
190 
191 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
193 
194 	/* Valve Index Headset */
195 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
212 
213 	/* HTC Vive and Vive Pro VR Headsets */
214 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
216 
217 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
222 
223 	/* Windows Mixed Reality Headsets */
224 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
230 
231 	/* Sony PlayStation VR Headset */
232 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
233 
234 	/* Sensics VR Headsets */
235 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
236 
237 	/* OSVR HDK and HDK2 VR Headsets */
238 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239 	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
240 };
241 
242 /*
243  * Autogenerated from the DMT spec.
244  * This table is copied from xfree86/modes/xf86EdidModes.c.
245  */
246 static const struct drm_display_mode drm_dmt_modes[] = {
247 	/* 0x01 - 640x350@85Hz */
248 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249 		   736, 832, 0, 350, 382, 385, 445, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 	/* 0x02 - 640x400@85Hz */
252 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253 		   736, 832, 0, 400, 401, 404, 445, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 	/* 0x03 - 720x400@85Hz */
256 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257 		   828, 936, 0, 400, 401, 404, 446, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 0x04 - 640x480@60Hz */
260 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261 		   752, 800, 0, 480, 490, 492, 525, 0,
262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 0x05 - 640x480@72Hz */
264 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265 		   704, 832, 0, 480, 489, 492, 520, 0,
266 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 	/* 0x06 - 640x480@75Hz */
268 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269 		   720, 840, 0, 480, 481, 484, 500, 0,
270 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 	/* 0x07 - 640x480@85Hz */
272 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273 		   752, 832, 0, 480, 481, 484, 509, 0,
274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 0x08 - 800x600@56Hz */
276 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277 		   896, 1024, 0, 600, 601, 603, 625, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 0x09 - 800x600@60Hz */
280 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281 		   968, 1056, 0, 600, 601, 605, 628, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 0x0a - 800x600@72Hz */
284 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285 		   976, 1040, 0, 600, 637, 643, 666, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 	/* 0x0b - 800x600@75Hz */
288 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289 		   896, 1056, 0, 600, 601, 604, 625, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 	/* 0x0c - 800x600@85Hz */
292 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293 		   896, 1048, 0, 600, 601, 604, 631, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 0x0d - 800x600@120Hz RB */
296 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297 		   880, 960, 0, 600, 603, 607, 636, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 	/* 0x0e - 848x480@60Hz */
300 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301 		   976, 1088, 0, 480, 486, 494, 517, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 	/* 0x0f - 1024x768@43Hz, interlace */
304 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305 		   1208, 1264, 0, 768, 768, 776, 817, 0,
306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307 		   DRM_MODE_FLAG_INTERLACE) },
308 	/* 0x10 - 1024x768@60Hz */
309 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310 		   1184, 1344, 0, 768, 771, 777, 806, 0,
311 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 	/* 0x11 - 1024x768@70Hz */
313 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314 		   1184, 1328, 0, 768, 771, 777, 806, 0,
315 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 	/* 0x12 - 1024x768@75Hz */
317 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318 		   1136, 1312, 0, 768, 769, 772, 800, 0,
319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 	/* 0x13 - 1024x768@85Hz */
321 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322 		   1168, 1376, 0, 768, 769, 772, 808, 0,
323 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 	/* 0x14 - 1024x768@120Hz RB */
325 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326 		   1104, 1184, 0, 768, 771, 775, 813, 0,
327 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 	/* 0x15 - 1152x864@75Hz */
329 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330 		   1344, 1600, 0, 864, 865, 868, 900, 0,
331 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 	/* 0x55 - 1280x720@60Hz */
333 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334 		   1430, 1650, 0, 720, 725, 730, 750, 0,
335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 	/* 0x16 - 1280x768@60Hz RB */
337 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338 		   1360, 1440, 0, 768, 771, 778, 790, 0,
339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340 	/* 0x17 - 1280x768@60Hz */
341 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342 		   1472, 1664, 0, 768, 771, 778, 798, 0,
343 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 	/* 0x18 - 1280x768@75Hz */
345 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346 		   1488, 1696, 0, 768, 771, 778, 805, 0,
347 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 	/* 0x19 - 1280x768@85Hz */
349 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350 		   1496, 1712, 0, 768, 771, 778, 809, 0,
351 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 0x1a - 1280x768@120Hz RB */
353 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354 		   1360, 1440, 0, 768, 771, 778, 813, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356 	/* 0x1b - 1280x800@60Hz RB */
357 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358 		   1360, 1440, 0, 800, 803, 809, 823, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 	/* 0x1c - 1280x800@60Hz */
361 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362 		   1480, 1680, 0, 800, 803, 809, 831, 0,
363 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 	/* 0x1d - 1280x800@75Hz */
365 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366 		   1488, 1696, 0, 800, 803, 809, 838, 0,
367 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 	/* 0x1e - 1280x800@85Hz */
369 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370 		   1496, 1712, 0, 800, 803, 809, 843, 0,
371 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 	/* 0x1f - 1280x800@120Hz RB */
373 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374 		   1360, 1440, 0, 800, 803, 809, 847, 0,
375 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 	/* 0x20 - 1280x960@60Hz */
377 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 	/* 0x21 - 1280x960@85Hz */
381 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
383 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 0x22 - 1280x960@120Hz RB */
385 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
387 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 	/* 0x23 - 1280x1024@60Hz */
389 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 	/* 0x24 - 1280x1024@75Hz */
393 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 	/* 0x25 - 1280x1024@85Hz */
397 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 	/* 0x26 - 1280x1024@120Hz RB */
401 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 	/* 0x27 - 1360x768@60Hz */
405 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406 		   1536, 1792, 0, 768, 771, 777, 795, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 	/* 0x28 - 1360x768@120Hz RB */
409 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410 		   1440, 1520, 0, 768, 771, 776, 813, 0,
411 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 	/* 0x51 - 1366x768@60Hz */
413 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414 		   1579, 1792, 0, 768, 771, 774, 798, 0,
415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 	/* 0x56 - 1366x768@60Hz */
417 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418 		   1436, 1500, 0, 768, 769, 772, 800, 0,
419 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 0x29 - 1400x1050@60Hz RB */
421 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 	/* 0x2a - 1400x1050@60Hz */
425 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 0x2b - 1400x1050@75Hz */
429 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 	/* 0x2c - 1400x1050@85Hz */
433 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 	/* 0x2d - 1400x1050@120Hz RB */
437 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 	/* 0x2e - 1440x900@60Hz RB */
441 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442 		   1520, 1600, 0, 900, 903, 909, 926, 0,
443 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 	/* 0x2f - 1440x900@60Hz */
445 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446 		   1672, 1904, 0, 900, 903, 909, 934, 0,
447 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 	/* 0x30 - 1440x900@75Hz */
449 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450 		   1688, 1936, 0, 900, 903, 909, 942, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 0x31 - 1440x900@85Hz */
453 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454 		   1696, 1952, 0, 900, 903, 909, 948, 0,
455 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 	/* 0x32 - 1440x900@120Hz RB */
457 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458 		   1520, 1600, 0, 900, 903, 909, 953, 0,
459 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 	/* 0x53 - 1600x900@60Hz */
461 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 	/* 0x33 - 1600x1200@60Hz */
465 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 	/* 0x34 - 1600x1200@65Hz */
469 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 	/* 0x35 - 1600x1200@70Hz */
473 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 	/* 0x36 - 1600x1200@75Hz */
477 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 	/* 0x37 - 1600x1200@85Hz */
481 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 	/* 0x38 - 1600x1200@120Hz RB */
485 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 	/* 0x39 - 1680x1050@60Hz RB */
489 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 	/* 0x3a - 1680x1050@60Hz */
493 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 	/* 0x3b - 1680x1050@75Hz */
497 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 	/* 0x3c - 1680x1050@85Hz */
501 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 	/* 0x3d - 1680x1050@120Hz RB */
505 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 	/* 0x3e - 1792x1344@60Hz */
509 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512 	/* 0x3f - 1792x1344@75Hz */
513 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 	/* 0x40 - 1792x1344@120Hz RB */
517 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 	/* 0x41 - 1856x1392@60Hz */
521 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 	/* 0x42 - 1856x1392@75Hz */
525 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 	/* 0x43 - 1856x1392@120Hz RB */
529 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 	/* 0x52 - 1920x1080@60Hz */
533 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536 	/* 0x44 - 1920x1200@60Hz RB */
537 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 	/* 0x45 - 1920x1200@60Hz */
541 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 	/* 0x46 - 1920x1200@75Hz */
545 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 	/* 0x47 - 1920x1200@85Hz */
549 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552 	/* 0x48 - 1920x1200@120Hz RB */
553 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 	/* 0x49 - 1920x1440@60Hz */
557 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560 	/* 0x4a - 1920x1440@75Hz */
561 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 	/* 0x4b - 1920x1440@120Hz RB */
565 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568 	/* 0x54 - 2048x1152@60Hz */
569 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 	/* 0x4c - 2560x1600@60Hz RB */
573 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 	/* 0x4d - 2560x1600@60Hz */
577 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 	/* 0x4e - 2560x1600@75Hz */
581 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 	/* 0x4f - 2560x1600@85Hz */
585 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588 	/* 0x50 - 2560x1600@120Hz RB */
589 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592 	/* 0x57 - 4096x2160@60Hz RB */
593 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596 	/* 0x58 - 4096x2160@59.94Hz RB */
597 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
600 };
601 
602 /*
603  * These more or less come from the DMT spec.  The 720x400 modes are
604  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
605  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
606  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
607  * mode.
608  *
609  * The DMT modes have been fact-checked; the rest are mild guesses.
610  */
611 static const struct drm_display_mode edid_est_modes[] = {
612 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613 		   968, 1056, 0, 600, 601, 605, 628, 0,
614 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616 		   896, 1024, 0, 600, 601, 603,  625, 0,
617 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619 		   720, 840, 0, 480, 481, 484, 500, 0,
620 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622 		   704,  832, 0, 480, 489, 492, 520, 0,
623 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625 		   768,  864, 0, 480, 483, 486, 525, 0,
626 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628 		   752, 800, 0, 480, 490, 492, 525, 0,
629 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631 		   846, 900, 0, 400, 421, 423,  449, 0,
632 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634 		   846,  900, 0, 400, 412, 414, 449, 0,
635 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640 		   1136, 1312, 0,  768, 769, 772, 800, 0,
641 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643 		   1184, 1328, 0,  768, 771, 777, 806, 0,
644 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646 		   1184, 1344, 0,  768, 771, 777, 806, 0,
647 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649 		   1208, 1264, 0, 768, 768, 776, 817, 0,
650 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652 		   928, 1152, 0, 624, 625, 628, 667, 0,
653 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655 		   896, 1056, 0, 600, 601, 604,  625, 0,
656 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658 		   976, 1040, 0, 600, 637, 643, 666, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661 		   1344, 1600, 0,  864, 865, 868, 900, 0,
662 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
663 };
664 
665 struct minimode {
666 	short w;
667 	short h;
668 	short r;
669 	short rb;
670 };
671 
672 static const struct minimode est3_modes[] = {
673 	/* byte 6 */
674 	{ 640, 350, 85, 0 },
675 	{ 640, 400, 85, 0 },
676 	{ 720, 400, 85, 0 },
677 	{ 640, 480, 85, 0 },
678 	{ 848, 480, 60, 0 },
679 	{ 800, 600, 85, 0 },
680 	{ 1024, 768, 85, 0 },
681 	{ 1152, 864, 75, 0 },
682 	/* byte 7 */
683 	{ 1280, 768, 60, 1 },
684 	{ 1280, 768, 60, 0 },
685 	{ 1280, 768, 75, 0 },
686 	{ 1280, 768, 85, 0 },
687 	{ 1280, 960, 60, 0 },
688 	{ 1280, 960, 85, 0 },
689 	{ 1280, 1024, 60, 0 },
690 	{ 1280, 1024, 85, 0 },
691 	/* byte 8 */
692 	{ 1360, 768, 60, 0 },
693 	{ 1440, 900, 60, 1 },
694 	{ 1440, 900, 60, 0 },
695 	{ 1440, 900, 75, 0 },
696 	{ 1440, 900, 85, 0 },
697 	{ 1400, 1050, 60, 1 },
698 	{ 1400, 1050, 60, 0 },
699 	{ 1400, 1050, 75, 0 },
700 	/* byte 9 */
701 	{ 1400, 1050, 85, 0 },
702 	{ 1680, 1050, 60, 1 },
703 	{ 1680, 1050, 60, 0 },
704 	{ 1680, 1050, 75, 0 },
705 	{ 1680, 1050, 85, 0 },
706 	{ 1600, 1200, 60, 0 },
707 	{ 1600, 1200, 65, 0 },
708 	{ 1600, 1200, 70, 0 },
709 	/* byte 10 */
710 	{ 1600, 1200, 75, 0 },
711 	{ 1600, 1200, 85, 0 },
712 	{ 1792, 1344, 60, 0 },
713 	{ 1792, 1344, 75, 0 },
714 	{ 1856, 1392, 60, 0 },
715 	{ 1856, 1392, 75, 0 },
716 	{ 1920, 1200, 60, 1 },
717 	{ 1920, 1200, 60, 0 },
718 	/* byte 11 */
719 	{ 1920, 1200, 75, 0 },
720 	{ 1920, 1200, 85, 0 },
721 	{ 1920, 1440, 60, 0 },
722 	{ 1920, 1440, 75, 0 },
723 };
724 
725 static const struct minimode extra_modes[] = {
726 	{ 1024, 576,  60, 0 },
727 	{ 1366, 768,  60, 0 },
728 	{ 1600, 900,  60, 0 },
729 	{ 1680, 945,  60, 0 },
730 	{ 1920, 1080, 60, 0 },
731 	{ 2048, 1152, 60, 0 },
732 	{ 2048, 1536, 60, 0 },
733 };
734 
735 /*
736  * From CEA/CTA-861 spec.
737  *
738  * Do not access directly, instead always use cea_mode_for_vic().
739  */
740 static const struct drm_display_mode edid_cea_modes_1[] = {
741 	/* 1 - 640x480@60Hz 4:3 */
742 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743 		   752, 800, 0, 480, 490, 492, 525, 0,
744 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 	/* 2 - 720x480@60Hz 4:3 */
747 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748 		   798, 858, 0, 480, 489, 495, 525, 0,
749 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 	/* 3 - 720x480@60Hz 16:9 */
752 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753 		   798, 858, 0, 480, 489, 495, 525, 0,
754 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 	/* 4 - 1280x720@60Hz 16:9 */
757 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758 		   1430, 1650, 0, 720, 725, 730, 750, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 	/* 5 - 1920x1080i@60Hz 16:9 */
762 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 		   DRM_MODE_FLAG_INTERLACE),
766 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 	/* 6 - 720(1440)x480i@60Hz 4:3 */
768 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 		   801, 858, 0, 480, 488, 494, 525, 0,
770 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773 	/* 7 - 720(1440)x480i@60Hz 16:9 */
774 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 		   801, 858, 0, 480, 488, 494, 525, 0,
776 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779 	/* 8 - 720(1440)x240@60Hz 4:3 */
780 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 		   801, 858, 0, 240, 244, 247, 262, 0,
782 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 		   DRM_MODE_FLAG_DBLCLK),
784 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785 	/* 9 - 720(1440)x240@60Hz 16:9 */
786 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787 		   801, 858, 0, 240, 244, 247, 262, 0,
788 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 		   DRM_MODE_FLAG_DBLCLK),
790 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 	/* 10 - 2880x480i@60Hz 4:3 */
792 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 		   3204, 3432, 0, 480, 488, 494, 525, 0,
794 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 		   DRM_MODE_FLAG_INTERLACE),
796 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797 	/* 11 - 2880x480i@60Hz 16:9 */
798 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 		   3204, 3432, 0, 480, 488, 494, 525, 0,
800 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801 		   DRM_MODE_FLAG_INTERLACE),
802 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 	/* 12 - 2880x240@60Hz 4:3 */
804 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805 		   3204, 3432, 0, 240, 244, 247, 262, 0,
806 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 	/* 13 - 2880x240@60Hz 16:9 */
809 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810 		   3204, 3432, 0, 240, 244, 247, 262, 0,
811 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 	/* 14 - 1440x480@60Hz 4:3 */
814 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815 		   1596, 1716, 0, 480, 489, 495, 525, 0,
816 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 	/* 15 - 1440x480@60Hz 16:9 */
819 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820 		   1596, 1716, 0, 480, 489, 495, 525, 0,
821 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 	/* 16 - 1920x1080@60Hz 16:9 */
824 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 	/* 17 - 720x576@50Hz 4:3 */
829 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830 		   796, 864, 0, 576, 581, 586, 625, 0,
831 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 	/* 18 - 720x576@50Hz 16:9 */
834 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835 		   796, 864, 0, 576, 581, 586, 625, 0,
836 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 	/* 19 - 1280x720@50Hz 16:9 */
839 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840 		   1760, 1980, 0, 720, 725, 730, 750, 0,
841 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 	/* 20 - 1920x1080i@50Hz 16:9 */
844 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847 		   DRM_MODE_FLAG_INTERLACE),
848 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 21 - 720(1440)x576i@50Hz 4:3 */
850 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 		   795, 864, 0, 576, 580, 586, 625, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855 	/* 22 - 720(1440)x576i@50Hz 16:9 */
856 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 		   795, 864, 0, 576, 580, 586, 625, 0,
858 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 	/* 23 - 720(1440)x288@50Hz 4:3 */
862 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 		   795, 864, 0, 288, 290, 293, 312, 0,
864 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 		   DRM_MODE_FLAG_DBLCLK),
866 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867 	/* 24 - 720(1440)x288@50Hz 16:9 */
868 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869 		   795, 864, 0, 288, 290, 293, 312, 0,
870 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 		   DRM_MODE_FLAG_DBLCLK),
872 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 	/* 25 - 2880x576i@50Hz 4:3 */
874 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 		   3180, 3456, 0, 576, 580, 586, 625, 0,
876 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 		   DRM_MODE_FLAG_INTERLACE),
878 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 	/* 26 - 2880x576i@50Hz 16:9 */
880 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 		   3180, 3456, 0, 576, 580, 586, 625, 0,
882 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 		   DRM_MODE_FLAG_INTERLACE),
884 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 	/* 27 - 2880x288@50Hz 4:3 */
886 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887 		   3180, 3456, 0, 288, 290, 293, 312, 0,
888 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 	/* 28 - 2880x288@50Hz 16:9 */
891 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892 		   3180, 3456, 0, 288, 290, 293, 312, 0,
893 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 	/* 29 - 1440x576@50Hz 4:3 */
896 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897 		   1592, 1728, 0, 576, 581, 586, 625, 0,
898 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900 	/* 30 - 1440x576@50Hz 16:9 */
901 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902 		   1592, 1728, 0, 576, 581, 586, 625, 0,
903 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 	/* 31 - 1920x1080@50Hz 16:9 */
906 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 	/* 32 - 1920x1080@24Hz 16:9 */
911 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 	/* 33 - 1920x1080@25Hz 16:9 */
916 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920 	/* 34 - 1920x1080@30Hz 16:9 */
921 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 	/* 35 - 2880x480@60Hz 4:3 */
926 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927 		   3192, 3432, 0, 480, 489, 495, 525, 0,
928 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930 	/* 36 - 2880x480@60Hz 16:9 */
931 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932 		   3192, 3432, 0, 480, 489, 495, 525, 0,
933 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 	/* 37 - 2880x576@50Hz 4:3 */
936 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937 		   3184, 3456, 0, 576, 581, 586, 625, 0,
938 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 	/* 38 - 2880x576@50Hz 16:9 */
941 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942 		   3184, 3456, 0, 576, 581, 586, 625, 0,
943 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 	/* 39 - 1920x1080i@50Hz 16:9 */
946 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949 		   DRM_MODE_FLAG_INTERLACE),
950 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 	/* 40 - 1920x1080i@100Hz 16:9 */
952 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955 		   DRM_MODE_FLAG_INTERLACE),
956 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957 	/* 41 - 1280x720@100Hz 16:9 */
958 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959 		   1760, 1980, 0, 720, 725, 730, 750, 0,
960 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 	/* 42 - 720x576@100Hz 4:3 */
963 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 		   796, 864, 0, 576, 581, 586, 625, 0,
965 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 	/* 43 - 720x576@100Hz 16:9 */
968 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969 		   796, 864, 0, 576, 581, 586, 625, 0,
970 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 	/* 44 - 720(1440)x576i@100Hz 4:3 */
973 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 		   795, 864, 0, 576, 580, 586, 625, 0,
975 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 	/* 45 - 720(1440)x576i@100Hz 16:9 */
979 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980 		   795, 864, 0, 576, 580, 586, 625, 0,
981 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 	/* 46 - 1920x1080i@120Hz 16:9 */
985 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988 		   DRM_MODE_FLAG_INTERLACE),
989 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 	/* 47 - 1280x720@120Hz 16:9 */
991 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992 		   1430, 1650, 0, 720, 725, 730, 750, 0,
993 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 	/* 48 - 720x480@120Hz 4:3 */
996 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997 		   798, 858, 0, 480, 489, 495, 525, 0,
998 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 	/* 49 - 720x480@120Hz 16:9 */
1001 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002 		   798, 858, 0, 480, 489, 495, 525, 0,
1003 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 		   801, 858, 0, 480, 488, 494, 525, 0,
1008 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013 		   801, 858, 0, 480, 488, 494, 525, 0,
1014 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 	/* 52 - 720x576@200Hz 4:3 */
1018 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019 		   796, 864, 0, 576, 581, 586, 625, 0,
1020 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 	/* 53 - 720x576@200Hz 16:9 */
1023 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024 		   796, 864, 0, 576, 581, 586, 625, 0,
1025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 		   795, 864, 0, 576, 580, 586, 625, 0,
1030 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035 		   795, 864, 0, 576, 580, 586, 625, 0,
1036 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 	/* 56 - 720x480@240Hz 4:3 */
1040 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041 		   798, 858, 0, 480, 489, 495, 525, 0,
1042 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044 	/* 57 - 720x480@240Hz 16:9 */
1045 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046 		   798, 858, 0, 480, 489, 495, 525, 0,
1047 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 		   801, 858, 0, 480, 488, 494, 525, 0,
1052 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057 		   801, 858, 0, 480, 488, 494, 525, 0,
1058 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 	/* 60 - 1280x720@24Hz 16:9 */
1062 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 	/* 61 - 1280x720@25Hz 16:9 */
1067 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071 	/* 62 - 1280x720@30Hz 16:9 */
1072 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076 	/* 63 - 1920x1080@120Hz 16:9 */
1077 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 	/* 64 - 1920x1080@100Hz 16:9 */
1082 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 	/* 65 - 1280x720@24Hz 64:27 */
1087 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 	/* 66 - 1280x720@25Hz 64:27 */
1092 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 	/* 67 - 1280x720@30Hz 64:27 */
1097 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 	/* 68 - 1280x720@50Hz 64:27 */
1102 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 	/* 69 - 1280x720@60Hz 64:27 */
1107 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 	/* 70 - 1280x720@100Hz 64:27 */
1112 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 	/* 71 - 1280x720@120Hz 64:27 */
1117 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 	/* 72 - 1920x1080@24Hz 64:27 */
1122 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 	/* 73 - 1920x1080@25Hz 64:27 */
1127 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 	/* 74 - 1920x1080@30Hz 64:27 */
1132 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 	/* 75 - 1920x1080@50Hz 64:27 */
1137 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 	/* 76 - 1920x1080@60Hz 64:27 */
1142 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 	/* 77 - 1920x1080@100Hz 64:27 */
1147 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 	/* 78 - 1920x1080@120Hz 64:27 */
1152 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 	/* 79 - 1680x720@24Hz 64:27 */
1157 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 	/* 80 - 1680x720@25Hz 64:27 */
1162 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 	/* 81 - 1680x720@30Hz 64:27 */
1167 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 	/* 82 - 1680x720@50Hz 64:27 */
1172 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 	/* 83 - 1680x720@60Hz 64:27 */
1177 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 	/* 84 - 1680x720@100Hz 64:27 */
1182 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 	/* 85 - 1680x720@120Hz 64:27 */
1187 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 	/* 86 - 2560x1080@24Hz 64:27 */
1192 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 	/* 87 - 2560x1080@25Hz 64:27 */
1197 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 	/* 88 - 2560x1080@30Hz 64:27 */
1202 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 	/* 89 - 2560x1080@50Hz 64:27 */
1207 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 	/* 90 - 2560x1080@60Hz 64:27 */
1212 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 	/* 91 - 2560x1080@100Hz 64:27 */
1217 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 	/* 92 - 2560x1080@120Hz 64:27 */
1222 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 	/* 93 - 3840x2160@24Hz 16:9 */
1227 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 	/* 94 - 3840x2160@25Hz 16:9 */
1232 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236 	/* 95 - 3840x2160@30Hz 16:9 */
1237 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241 	/* 96 - 3840x2160@50Hz 16:9 */
1242 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246 	/* 97 - 3840x2160@60Hz 16:9 */
1247 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 	/* 98 - 4096x2160@24Hz 256:135 */
1252 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 	/* 99 - 4096x2160@25Hz 256:135 */
1257 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261 	/* 100 - 4096x2160@30Hz 256:135 */
1262 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266 	/* 101 - 4096x2160@50Hz 256:135 */
1267 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271 	/* 102 - 4096x2160@60Hz 256:135 */
1272 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 	/* 103 - 3840x2160@24Hz 64:27 */
1277 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281 	/* 104 - 3840x2160@25Hz 64:27 */
1282 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286 	/* 105 - 3840x2160@30Hz 64:27 */
1287 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291 	/* 106 - 3840x2160@50Hz 64:27 */
1292 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296 	/* 107 - 3840x2160@60Hz 64:27 */
1297 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 	/* 108 - 1280x720@48Hz 16:9 */
1302 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306 	/* 109 - 1280x720@48Hz 64:27 */
1307 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 	/* 110 - 1680x720@48Hz 64:27 */
1312 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 	/* 111 - 1920x1080@48Hz 16:9 */
1317 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321 	/* 112 - 1920x1080@48Hz 64:27 */
1322 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326 	/* 113 - 2560x1080@48Hz 64:27 */
1327 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 	/* 114 - 3840x2160@48Hz 16:9 */
1332 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336 	/* 115 - 4096x2160@48Hz 256:135 */
1337 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341 	/* 116 - 3840x2160@48Hz 64:27 */
1342 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 	/* 117 - 3840x2160@100Hz 16:9 */
1347 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351 	/* 118 - 3840x2160@120Hz 16:9 */
1352 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 	/* 119 - 3840x2160@100Hz 64:27 */
1357 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361 	/* 120 - 3840x2160@120Hz 64:27 */
1362 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 	/* 121 - 5120x2160@24Hz 64:27 */
1367 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371 	/* 122 - 5120x2160@25Hz 64:27 */
1372 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376 	/* 123 - 5120x2160@30Hz 64:27 */
1377 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 	/* 124 - 5120x2160@48Hz 64:27 */
1382 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 	/* 125 - 5120x2160@50Hz 64:27 */
1387 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 	/* 126 - 5120x2160@60Hz 64:27 */
1392 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 	/* 127 - 5120x2160@100Hz 64:27 */
1397 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401 };
1402 
1403 /*
1404  * From CEA/CTA-861 spec.
1405  *
1406  * Do not access directly, instead always use cea_mode_for_vic().
1407  */
1408 static const struct drm_display_mode edid_cea_modes_193[] = {
1409 	/* 193 - 5120x2160@120Hz 64:27 */
1410 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414 	/* 194 - 7680x4320@24Hz 16:9 */
1415 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419 	/* 195 - 7680x4320@25Hz 16:9 */
1420 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424 	/* 196 - 7680x4320@30Hz 16:9 */
1425 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429 	/* 197 - 7680x4320@48Hz 16:9 */
1430 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434 	/* 198 - 7680x4320@50Hz 16:9 */
1435 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 	/* 199 - 7680x4320@60Hz 16:9 */
1440 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 	/* 200 - 7680x4320@100Hz 16:9 */
1445 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 	/* 201 - 7680x4320@120Hz 16:9 */
1450 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 	/* 202 - 7680x4320@24Hz 64:27 */
1455 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459 	/* 203 - 7680x4320@25Hz 64:27 */
1460 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464 	/* 204 - 7680x4320@30Hz 64:27 */
1465 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469 	/* 205 - 7680x4320@48Hz 64:27 */
1470 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474 	/* 206 - 7680x4320@50Hz 64:27 */
1475 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 	/* 207 - 7680x4320@60Hz 64:27 */
1480 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 	/* 208 - 7680x4320@100Hz 64:27 */
1485 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 	/* 209 - 7680x4320@120Hz 64:27 */
1490 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 	/* 210 - 10240x4320@24Hz 64:27 */
1495 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 	/* 211 - 10240x4320@25Hz 64:27 */
1500 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 	/* 212 - 10240x4320@30Hz 64:27 */
1505 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 	/* 213 - 10240x4320@48Hz 64:27 */
1510 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 	/* 214 - 10240x4320@50Hz 64:27 */
1515 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 	/* 215 - 10240x4320@60Hz 64:27 */
1520 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 	/* 216 - 10240x4320@100Hz 64:27 */
1525 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 	/* 217 - 10240x4320@120Hz 64:27 */
1530 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 	/* 218 - 4096x2160@100Hz 256:135 */
1535 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539 	/* 219 - 4096x2160@120Hz 256:135 */
1540 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544 };
1545 
1546 /*
1547  * HDMI 1.4 4k modes. Index using the VIC.
1548  */
1549 static const struct drm_display_mode edid_4k_modes[] = {
1550 	/* 0 - dummy, VICs start at 1 */
1551 	{ },
1552 	/* 1 - 3840x2160@30Hz */
1553 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 		   3840, 4016, 4104, 4400, 0,
1555 		   2160, 2168, 2178, 2250, 0,
1556 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 	/* 2 - 3840x2160@25Hz */
1559 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 		   3840, 4896, 4984, 5280, 0,
1561 		   2160, 2168, 2178, 2250, 0,
1562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 	/* 3 - 3840x2160@24Hz */
1565 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 		   3840, 5116, 5204, 5500, 0,
1567 		   2160, 2168, 2178, 2250, 0,
1568 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570 	/* 4 - 4096x2160@24Hz (SMPTE) */
1571 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572 		   4096, 5116, 5204, 5500, 0,
1573 		   2160, 2168, 2178, 2250, 0,
1574 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576 };
1577 
1578 /*** DDC fetch and block validation ***/
1579 
1580 /*
1581  * The opaque EDID type, internal to drm_edid.c.
1582  */
1583 struct drm_edid {
1584 	/* Size allocated for edid */
1585 	size_t size;
1586 	const struct edid *edid;
1587 };
1588 
1589 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590 
1591 static int edid_hfeeodb_block_count(const struct edid *edid)
1592 {
1593 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594 
1595 	return eeodb ? eeodb + 1 : 0;
1596 }
1597 
1598 static int edid_extension_block_count(const struct edid *edid)
1599 {
1600 	return edid->extensions;
1601 }
1602 
1603 static int edid_block_count(const struct edid *edid)
1604 {
1605 	return edid_extension_block_count(edid) + 1;
1606 }
1607 
1608 static int edid_size_by_blocks(int num_blocks)
1609 {
1610 	return num_blocks * EDID_LENGTH;
1611 }
1612 
1613 static int edid_size(const struct edid *edid)
1614 {
1615 	return edid_size_by_blocks(edid_block_count(edid));
1616 }
1617 
1618 static const void *edid_block_data(const struct edid *edid, int index)
1619 {
1620 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621 
1622 	return edid + index;
1623 }
1624 
1625 static const void *edid_extension_block_data(const struct edid *edid, int index)
1626 {
1627 	return edid_block_data(edid, index + 1);
1628 }
1629 
1630 /* EDID block count indicated in EDID, may exceed allocated size */
1631 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632 {
1633 	int num_blocks;
1634 
1635 	/* Starting point */
1636 	num_blocks = edid_block_count(drm_edid->edid);
1637 
1638 	/* HF-EEODB override */
1639 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640 		int eeodb;
1641 
1642 		/*
1643 		 * Note: HF-EEODB may specify a smaller extension count than the
1644 		 * regular one. Unlike in buffer allocation, here we can use it.
1645 		 */
1646 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647 		if (eeodb)
1648 			num_blocks = eeodb;
1649 	}
1650 
1651 	return num_blocks;
1652 }
1653 
1654 /* EDID block count, limited by allocated size */
1655 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656 {
1657 	/* Limit by allocated size */
1658 	return min(__drm_edid_block_count(drm_edid),
1659 		   (int)drm_edid->size / EDID_LENGTH);
1660 }
1661 
1662 /* EDID extension block count, limited by allocated size */
1663 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664 {
1665 	return drm_edid_block_count(drm_edid) - 1;
1666 }
1667 
1668 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669 {
1670 	return edid_block_data(drm_edid->edid, index);
1671 }
1672 
1673 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674 						 int index)
1675 {
1676 	return edid_extension_block_data(drm_edid->edid, index);
1677 }
1678 
1679 /*
1680  * Initializer helper for legacy interfaces, where we have no choice but to
1681  * trust edid size. Not for general purpose use.
1682  */
1683 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684 						   const struct edid *edid)
1685 {
1686 	if (!edid)
1687 		return NULL;
1688 
1689 	memset(drm_edid, 0, sizeof(*drm_edid));
1690 
1691 	drm_edid->edid = edid;
1692 	drm_edid->size = edid_size(edid);
1693 
1694 	return drm_edid;
1695 }
1696 
1697 /*
1698  * EDID base and extension block iterator.
1699  *
1700  * struct drm_edid_iter iter;
1701  * const u8 *block;
1702  *
1703  * drm_edid_iter_begin(drm_edid, &iter);
1704  * drm_edid_iter_for_each(block, &iter) {
1705  *         // do stuff with block
1706  * }
1707  * drm_edid_iter_end(&iter);
1708  */
1709 struct drm_edid_iter {
1710 	const struct drm_edid *drm_edid;
1711 
1712 	/* Current block index. */
1713 	int index;
1714 };
1715 
1716 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717 				struct drm_edid_iter *iter)
1718 {
1719 	memset(iter, 0, sizeof(*iter));
1720 
1721 	iter->drm_edid = drm_edid;
1722 }
1723 
1724 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725 {
1726 	const void *block = NULL;
1727 
1728 	if (!iter->drm_edid)
1729 		return NULL;
1730 
1731 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733 
1734 	return block;
1735 }
1736 
1737 #define drm_edid_iter_for_each(__block, __iter)			\
1738 	while (((__block) = __drm_edid_iter_next(__iter)))
1739 
1740 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741 {
1742 	memset(iter, 0, sizeof(*iter));
1743 }
1744 
1745 static const u8 edid_header[] = {
1746 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747 };
1748 
1749 static void edid_header_fix(void *edid)
1750 {
1751 	memcpy(edid, edid_header, sizeof(edid_header));
1752 }
1753 
1754 /**
1755  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756  * @_edid: pointer to raw base EDID block
1757  *
1758  * Sanity check the header of the base EDID block.
1759  *
1760  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761  */
1762 int drm_edid_header_is_valid(const void *_edid)
1763 {
1764 	const struct edid *edid = _edid;
1765 	int i, score = 0;
1766 
1767 	for (i = 0; i < sizeof(edid_header); i++) {
1768 		if (edid->header[i] == edid_header[i])
1769 			score++;
1770 	}
1771 
1772 	return score;
1773 }
1774 EXPORT_SYMBOL(drm_edid_header_is_valid);
1775 
1776 static int edid_fixup __read_mostly = 6;
1777 module_param_named(edid_fixup, edid_fixup, int, 0400);
1778 MODULE_PARM_DESC(edid_fixup,
1779 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780 
1781 static int edid_block_compute_checksum(const void *_block)
1782 {
1783 	const u8 *block = _block;
1784 	int i;
1785 	u8 csum = 0, crc = 0;
1786 
1787 	for (i = 0; i < EDID_LENGTH - 1; i++)
1788 		csum += block[i];
1789 
1790 	crc = 0x100 - csum;
1791 
1792 	return crc;
1793 }
1794 
1795 static int edid_block_get_checksum(const void *_block)
1796 {
1797 	const struct edid *block = _block;
1798 
1799 	return block->checksum;
1800 }
1801 
1802 static int edid_block_tag(const void *_block)
1803 {
1804 	const u8 *block = _block;
1805 
1806 	return block[0];
1807 }
1808 
1809 static bool edid_block_is_zero(const void *edid)
1810 {
1811 	return !memchr_inv(edid, 0, EDID_LENGTH);
1812 }
1813 
1814 /**
1815  * drm_edid_are_equal - compare two edid blobs.
1816  * @edid1: pointer to first blob
1817  * @edid2: pointer to second blob
1818  * This helper can be used during probing to determine if
1819  * edid had changed.
1820  */
1821 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822 {
1823 	int edid1_len, edid2_len;
1824 	bool edid1_present = edid1 != NULL;
1825 	bool edid2_present = edid2 != NULL;
1826 
1827 	if (edid1_present != edid2_present)
1828 		return false;
1829 
1830 	if (edid1) {
1831 		edid1_len = edid_size(edid1);
1832 		edid2_len = edid_size(edid2);
1833 
1834 		if (edid1_len != edid2_len)
1835 			return false;
1836 
1837 		if (memcmp(edid1, edid2, edid1_len))
1838 			return false;
1839 	}
1840 
1841 	return true;
1842 }
1843 EXPORT_SYMBOL(drm_edid_are_equal);
1844 
1845 enum edid_block_status {
1846 	EDID_BLOCK_OK = 0,
1847 	EDID_BLOCK_READ_FAIL,
1848 	EDID_BLOCK_NULL,
1849 	EDID_BLOCK_ZERO,
1850 	EDID_BLOCK_HEADER_CORRUPT,
1851 	EDID_BLOCK_HEADER_REPAIR,
1852 	EDID_BLOCK_HEADER_FIXED,
1853 	EDID_BLOCK_CHECKSUM,
1854 	EDID_BLOCK_VERSION,
1855 };
1856 
1857 static enum edid_block_status edid_block_check(const void *_block,
1858 					       bool is_base_block)
1859 {
1860 	const struct edid *block = _block;
1861 
1862 	if (!block)
1863 		return EDID_BLOCK_NULL;
1864 
1865 	if (is_base_block) {
1866 		int score = drm_edid_header_is_valid(block);
1867 
1868 		if (score < clamp(edid_fixup, 0, 8)) {
1869 			if (edid_block_is_zero(block))
1870 				return EDID_BLOCK_ZERO;
1871 			else
1872 				return EDID_BLOCK_HEADER_CORRUPT;
1873 		}
1874 
1875 		if (score < 8)
1876 			return EDID_BLOCK_HEADER_REPAIR;
1877 	}
1878 
1879 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880 		if (edid_block_is_zero(block))
1881 			return EDID_BLOCK_ZERO;
1882 		else
1883 			return EDID_BLOCK_CHECKSUM;
1884 	}
1885 
1886 	if (is_base_block) {
1887 		if (block->version != 1)
1888 			return EDID_BLOCK_VERSION;
1889 	}
1890 
1891 	return EDID_BLOCK_OK;
1892 }
1893 
1894 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895 {
1896 	return status == EDID_BLOCK_OK ||
1897 		status == EDID_BLOCK_HEADER_FIXED ||
1898 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899 }
1900 
1901 static bool edid_block_valid(const void *block, bool base)
1902 {
1903 	return edid_block_status_valid(edid_block_check(block, base),
1904 				       edid_block_tag(block));
1905 }
1906 
1907 static void edid_block_status_print(enum edid_block_status status,
1908 				    const struct edid *block,
1909 				    int block_num)
1910 {
1911 	switch (status) {
1912 	case EDID_BLOCK_OK:
1913 		break;
1914 	case EDID_BLOCK_READ_FAIL:
1915 		pr_debug("EDID block %d read failed\n", block_num);
1916 		break;
1917 	case EDID_BLOCK_NULL:
1918 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919 		break;
1920 	case EDID_BLOCK_ZERO:
1921 		pr_notice("EDID block %d is all zeroes\n", block_num);
1922 		break;
1923 	case EDID_BLOCK_HEADER_CORRUPT:
1924 		pr_notice("EDID has corrupt header\n");
1925 		break;
1926 	case EDID_BLOCK_HEADER_REPAIR:
1927 		pr_debug("EDID corrupt header needs repair\n");
1928 		break;
1929 	case EDID_BLOCK_HEADER_FIXED:
1930 		pr_debug("EDID corrupt header fixed\n");
1931 		break;
1932 	case EDID_BLOCK_CHECKSUM:
1933 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935 				 block_num, edid_block_tag(block),
1936 				 edid_block_compute_checksum(block));
1937 		} else {
1938 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939 				  block_num, edid_block_tag(block),
1940 				  edid_block_compute_checksum(block));
1941 		}
1942 		break;
1943 	case EDID_BLOCK_VERSION:
1944 		pr_notice("EDID has major version %d, instead of 1\n",
1945 			  block->version);
1946 		break;
1947 	default:
1948 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949 		     block_num, status);
1950 		break;
1951 	}
1952 }
1953 
1954 static void edid_block_dump(const char *level, const void *block, int block_num)
1955 {
1956 	enum edid_block_status status;
1957 	char prefix[20];
1958 
1959 	status = edid_block_check(block, block_num == 0);
1960 	if (status == EDID_BLOCK_ZERO)
1961 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964 	else
1965 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966 
1967 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968 		       block, EDID_LENGTH, false);
1969 }
1970 
1971 /**
1972  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973  * @_block: pointer to raw EDID block
1974  * @block_num: type of block to validate (0 for base, extension otherwise)
1975  * @print_bad_edid: if true, dump bad EDID blocks to the console
1976  * @edid_corrupt: if true, the header or checksum is invalid
1977  *
1978  * Validate a base or extension EDID block and optionally dump bad blocks to
1979  * the console.
1980  *
1981  * Return: True if the block is valid, false otherwise.
1982  */
1983 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984 			  bool *edid_corrupt)
1985 {
1986 	struct edid *block = (struct edid *)_block;
1987 	enum edid_block_status status;
1988 	bool is_base_block = block_num == 0;
1989 	bool valid;
1990 
1991 	if (WARN_ON(!block))
1992 		return false;
1993 
1994 	status = edid_block_check(block, is_base_block);
1995 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997 		edid_header_fix(block);
1998 
1999 		/* Retry with fixed header, update status if that worked. */
2000 		status = edid_block_check(block, is_base_block);
2001 		if (status == EDID_BLOCK_OK)
2002 			status = EDID_BLOCK_HEADER_FIXED;
2003 	}
2004 
2005 	if (edid_corrupt) {
2006 		/*
2007 		 * Unknown major version isn't corrupt but we can't use it. Only
2008 		 * the base block can reset edid_corrupt to false.
2009 		 */
2010 		if (is_base_block &&
2011 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012 			*edid_corrupt = false;
2013 		else if (status != EDID_BLOCK_OK)
2014 			*edid_corrupt = true;
2015 	}
2016 
2017 	edid_block_status_print(status, block, block_num);
2018 
2019 	/* Determine whether we can use this block with this status. */
2020 	valid = edid_block_status_valid(status, edid_block_tag(block));
2021 
2022 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023 		pr_notice("Raw EDID:\n");
2024 		edid_block_dump(KERN_NOTICE, block, block_num);
2025 	}
2026 
2027 	return valid;
2028 }
2029 EXPORT_SYMBOL(drm_edid_block_valid);
2030 
2031 /**
2032  * drm_edid_is_valid - sanity check EDID data
2033  * @edid: EDID data
2034  *
2035  * Sanity-check an entire EDID record (including extensions)
2036  *
2037  * Return: True if the EDID data is valid, false otherwise.
2038  */
2039 bool drm_edid_is_valid(struct edid *edid)
2040 {
2041 	int i;
2042 
2043 	if (!edid)
2044 		return false;
2045 
2046 	for (i = 0; i < edid_block_count(edid); i++) {
2047 		void *block = (void *)edid_block_data(edid, i);
2048 
2049 		if (!drm_edid_block_valid(block, i, true, NULL))
2050 			return false;
2051 	}
2052 
2053 	return true;
2054 }
2055 EXPORT_SYMBOL(drm_edid_is_valid);
2056 
2057 /**
2058  * drm_edid_valid - sanity check EDID data
2059  * @drm_edid: EDID data
2060  *
2061  * Sanity check an EDID. Cross check block count against allocated size and
2062  * checksum the blocks.
2063  *
2064  * Return: True if the EDID data is valid, false otherwise.
2065  */
2066 bool drm_edid_valid(const struct drm_edid *drm_edid)
2067 {
2068 	int i;
2069 
2070 	if (!drm_edid)
2071 		return false;
2072 
2073 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074 		return false;
2075 
2076 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 		const void *block = drm_edid_block_data(drm_edid, i);
2078 
2079 		if (!edid_block_valid(block, i == 0))
2080 			return false;
2081 	}
2082 
2083 	return true;
2084 }
2085 EXPORT_SYMBOL(drm_edid_valid);
2086 
2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088 					       size_t *alloc_size)
2089 {
2090 	struct edid *new;
2091 	int i, valid_blocks = 0;
2092 
2093 	/*
2094 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 	 * back to regular extension count here. We don't want to start
2096 	 * modifying the HF-EEODB extension too.
2097 	 */
2098 	for (i = 0; i < edid_block_count(edid); i++) {
2099 		const void *src_block = edid_block_data(edid, i);
2100 
2101 		if (edid_block_valid(src_block, i == 0)) {
2102 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103 
2104 			memmove(dst_block, src_block, EDID_LENGTH);
2105 			valid_blocks++;
2106 		}
2107 	}
2108 
2109 	/* We already trusted the base block to be valid here... */
2110 	if (WARN_ON(!valid_blocks)) {
2111 		kfree(edid);
2112 		return NULL;
2113 	}
2114 
2115 	edid->extensions = valid_blocks - 1;
2116 	edid->checksum = edid_block_compute_checksum(edid);
2117 
2118 	*alloc_size = edid_size_by_blocks(valid_blocks);
2119 
2120 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121 	if (!new)
2122 		kfree(edid);
2123 
2124 	return new;
2125 }
2126 
2127 #define DDC_SEGMENT_ADDR 0x30
2128 /**
2129  * drm_do_probe_ddc_edid() - get EDID information via I2C
2130  * @data: I2C device adapter
2131  * @buf: EDID data buffer to be filled
2132  * @block: 128 byte EDID block to start fetching from
2133  * @len: EDID data buffer length to fetch
2134  *
2135  * Try to fetch EDID information by calling I2C driver functions.
2136  *
2137  * Return: 0 on success or -1 on failure.
2138  */
2139 static int
2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141 {
2142 	struct i2c_adapter *adapter = data;
2143 	unsigned char start = block * EDID_LENGTH;
2144 	unsigned char segment = block >> 1;
2145 	unsigned char xfers = segment ? 3 : 2;
2146 	int ret, retries = 5;
2147 
2148 	/*
2149 	 * The core I2C driver will automatically retry the transfer if the
2150 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 	 * are susceptible to errors under a heavily loaded machine and
2152 	 * generate spurious NAKs and timeouts. Retrying the transfer
2153 	 * of the individual block a few times seems to overcome this.
2154 	 */
2155 	do {
2156 		struct i2c_msg msgs[] = {
2157 			{
2158 				.addr	= DDC_SEGMENT_ADDR,
2159 				.flags	= 0,
2160 				.len	= 1,
2161 				.buf	= &segment,
2162 			}, {
2163 				.addr	= DDC_ADDR,
2164 				.flags	= 0,
2165 				.len	= 1,
2166 				.buf	= &start,
2167 			}, {
2168 				.addr	= DDC_ADDR,
2169 				.flags	= I2C_M_RD,
2170 				.len	= len,
2171 				.buf	= buf,
2172 			}
2173 		};
2174 
2175 		/*
2176 		 * Avoid sending the segment addr to not upset non-compliant
2177 		 * DDC monitors.
2178 		 */
2179 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180 
2181 		if (ret == -ENXIO) {
2182 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183 					adapter->name);
2184 			break;
2185 		}
2186 	} while (ret != xfers && --retries);
2187 
2188 	return ret == xfers ? 0 : -1;
2189 }
2190 
2191 static void connector_bad_edid(struct drm_connector *connector,
2192 			       const struct edid *edid, int num_blocks)
2193 {
2194 	int i;
2195 	u8 last_block;
2196 
2197 	/*
2198 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 	 * of 0x7e in the EDID of the _index_ of the last block in the
2201 	 * combined chunk of memory.
2202 	 */
2203 	last_block = edid->extensions;
2204 
2205 	/* Calculate real checksum for the last edid extension block data */
2206 	if (last_block < num_blocks)
2207 		connector->real_edid_checksum =
2208 			edid_block_compute_checksum(edid + last_block);
2209 
2210 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211 		return;
2212 
2213 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 		    connector->base.id, connector->name);
2215 	for (i = 0; i < num_blocks; i++)
2216 		edid_block_dump(KERN_DEBUG, edid + i, i);
2217 }
2218 
2219 /* Get override or firmware EDID */
2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221 {
2222 	const struct drm_edid *override = NULL;
2223 
2224 	mutex_lock(&connector->edid_override_mutex);
2225 
2226 	if (connector->edid_override)
2227 		override = drm_edid_dup(connector->edid_override);
2228 
2229 	mutex_unlock(&connector->edid_override_mutex);
2230 
2231 	if (!override)
2232 		override = drm_edid_load_firmware(connector);
2233 
2234 	return IS_ERR(override) ? NULL : override;
2235 }
2236 
2237 /* For debugfs edid_override implementation */
2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239 {
2240 	const struct drm_edid *drm_edid;
2241 
2242 	mutex_lock(&connector->edid_override_mutex);
2243 
2244 	drm_edid = connector->edid_override;
2245 	if (drm_edid)
2246 		seq_write(m, drm_edid->edid, drm_edid->size);
2247 
2248 	mutex_unlock(&connector->edid_override_mutex);
2249 
2250 	return 0;
2251 }
2252 
2253 /* For debugfs edid_override implementation */
2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255 			  size_t size)
2256 {
2257 	const struct drm_edid *drm_edid;
2258 
2259 	drm_edid = drm_edid_alloc(edid, size);
2260 	if (!drm_edid_valid(drm_edid)) {
2261 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 			    connector->base.id, connector->name);
2263 		drm_edid_free(drm_edid);
2264 		return -EINVAL;
2265 	}
2266 
2267 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 		    connector->base.id, connector->name);
2269 
2270 	mutex_lock(&connector->edid_override_mutex);
2271 
2272 	drm_edid_free(connector->edid_override);
2273 	connector->edid_override = drm_edid;
2274 
2275 	mutex_unlock(&connector->edid_override_mutex);
2276 
2277 	return 0;
2278 }
2279 
2280 /* For debugfs edid_override implementation */
2281 int drm_edid_override_reset(struct drm_connector *connector)
2282 {
2283 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 		    connector->base.id, connector->name);
2285 
2286 	mutex_lock(&connector->edid_override_mutex);
2287 
2288 	drm_edid_free(connector->edid_override);
2289 	connector->edid_override = NULL;
2290 
2291 	mutex_unlock(&connector->edid_override_mutex);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * drm_edid_override_connector_update - add modes from override/firmware EDID
2298  * @connector: connector we're probing
2299  *
2300  * Add modes from the override/firmware EDID, if available. Only to be used from
2301  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302  * failed during drm_get_edid() and caused the override/firmware EDID to be
2303  * skipped.
2304  *
2305  * Return: The number of modes added or 0 if we couldn't find any.
2306  */
2307 int drm_edid_override_connector_update(struct drm_connector *connector)
2308 {
2309 	const struct drm_edid *override;
2310 	int num_modes = 0;
2311 
2312 	override = drm_edid_override_get(connector);
2313 	if (override) {
2314 		if (drm_edid_connector_update(connector, override) == 0)
2315 			num_modes = drm_edid_connector_add_modes(connector);
2316 
2317 		drm_edid_free(override);
2318 
2319 		drm_dbg_kms(connector->dev,
2320 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321 			    connector->base.id, connector->name, num_modes);
2322 	}
2323 
2324 	return num_modes;
2325 }
2326 EXPORT_SYMBOL(drm_edid_override_connector_update);
2327 
2328 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329 
2330 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331 					      read_block_fn read_block,
2332 					      void *context)
2333 {
2334 	enum edid_block_status status;
2335 	bool is_base_block = block_num == 0;
2336 	int try;
2337 
2338 	for (try = 0; try < 4; try++) {
2339 		if (read_block(context, block, block_num, EDID_LENGTH))
2340 			return EDID_BLOCK_READ_FAIL;
2341 
2342 		status = edid_block_check(block, is_base_block);
2343 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344 			edid_header_fix(block);
2345 
2346 			/* Retry with fixed header, update status if that worked. */
2347 			status = edid_block_check(block, is_base_block);
2348 			if (status == EDID_BLOCK_OK)
2349 				status = EDID_BLOCK_HEADER_FIXED;
2350 		}
2351 
2352 		if (edid_block_status_valid(status, edid_block_tag(block)))
2353 			break;
2354 
2355 		/* Fail early for unrepairable base block all zeros. */
2356 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357 			break;
2358 	}
2359 
2360 	return status;
2361 }
2362 
2363 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364 				     read_block_fn read_block, void *context,
2365 				     size_t *size)
2366 {
2367 	enum edid_block_status status;
2368 	int i, num_blocks, invalid_blocks = 0;
2369 	const struct drm_edid *override;
2370 	struct edid *edid, *new;
2371 	size_t alloc_size = EDID_LENGTH;
2372 
2373 	override = drm_edid_override_get(connector);
2374 	if (override) {
2375 		alloc_size = override->size;
2376 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377 		drm_edid_free(override);
2378 		if (!edid)
2379 			return NULL;
2380 		goto ok;
2381 	}
2382 
2383 	edid = kmalloc(alloc_size, GFP_KERNEL);
2384 	if (!edid)
2385 		return NULL;
2386 
2387 	status = edid_block_read(edid, 0, read_block, context);
2388 
2389 	edid_block_status_print(status, edid, 0);
2390 
2391 	if (status == EDID_BLOCK_READ_FAIL)
2392 		goto fail;
2393 
2394 	/* FIXME: Clarify what a corrupt EDID actually means. */
2395 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396 		connector->edid_corrupt = false;
2397 	else
2398 		connector->edid_corrupt = true;
2399 
2400 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401 		if (status == EDID_BLOCK_ZERO)
2402 			connector->null_edid_counter++;
2403 
2404 		connector_bad_edid(connector, edid, 1);
2405 		goto fail;
2406 	}
2407 
2408 	if (!edid_extension_block_count(edid))
2409 		goto ok;
2410 
2411 	alloc_size = edid_size(edid);
2412 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413 	if (!new)
2414 		goto fail;
2415 	edid = new;
2416 
2417 	num_blocks = edid_block_count(edid);
2418 	for (i = 1; i < num_blocks; i++) {
2419 		void *block = (void *)edid_block_data(edid, i);
2420 
2421 		status = edid_block_read(block, i, read_block, context);
2422 
2423 		edid_block_status_print(status, block, i);
2424 
2425 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426 			if (status == EDID_BLOCK_READ_FAIL)
2427 				goto fail;
2428 			invalid_blocks++;
2429 		} else if (i == 1) {
2430 			/*
2431 			 * If the first EDID extension is a CTA extension, and
2432 			 * the first Data Block is HF-EEODB, override the
2433 			 * extension block count.
2434 			 *
2435 			 * Note: HF-EEODB could specify a smaller extension
2436 			 * count too, but we can't risk allocating a smaller
2437 			 * amount.
2438 			 */
2439 			int eeodb = edid_hfeeodb_block_count(edid);
2440 
2441 			if (eeodb > num_blocks) {
2442 				num_blocks = eeodb;
2443 				alloc_size = edid_size_by_blocks(num_blocks);
2444 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445 				if (!new)
2446 					goto fail;
2447 				edid = new;
2448 			}
2449 		}
2450 	}
2451 
2452 	if (invalid_blocks) {
2453 		connector_bad_edid(connector, edid, num_blocks);
2454 
2455 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456 	}
2457 
2458 ok:
2459 	if (size)
2460 		*size = alloc_size;
2461 
2462 	return edid;
2463 
2464 fail:
2465 	kfree(edid);
2466 	return NULL;
2467 }
2468 
2469 /**
2470  * drm_do_get_edid - get EDID data using a custom EDID block read function
2471  * @connector: connector we're probing
2472  * @read_block: EDID block read function
2473  * @context: private data passed to the block read function
2474  *
2475  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476  * exposes a different interface to read EDID blocks this function can be used
2477  * to get EDID data using a custom block read function.
2478  *
2479  * As in the general case the DDC bus is accessible by the kernel at the I2C
2480  * level, drivers must make all reasonable efforts to expose it as an I2C
2481  * adapter and use drm_get_edid() instead of abusing this function.
2482  *
2483  * The EDID may be overridden using debugfs override_edid or firmware EDID
2484  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485  * order. Having either of them bypasses actual EDID reads.
2486  *
2487  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488  */
2489 struct edid *drm_do_get_edid(struct drm_connector *connector,
2490 			     read_block_fn read_block,
2491 			     void *context)
2492 {
2493 	return _drm_do_get_edid(connector, read_block, context, NULL);
2494 }
2495 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2496 
2497 /**
2498  * drm_edid_raw - Get a pointer to the raw EDID data.
2499  * @drm_edid: drm_edid container
2500  *
2501  * Get a pointer to the raw EDID data.
2502  *
2503  * This is for transition only. Avoid using this like the plague.
2504  *
2505  * Return: Pointer to raw EDID data.
2506  */
2507 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508 {
2509 	if (!drm_edid || !drm_edid->size)
2510 		return NULL;
2511 
2512 	/*
2513 	 * Do not return pointers where relying on EDID extension count would
2514 	 * lead to buffer overflow.
2515 	 */
2516 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517 		return NULL;
2518 
2519 	return drm_edid->edid;
2520 }
2521 EXPORT_SYMBOL(drm_edid_raw);
2522 
2523 /* Allocate struct drm_edid container *without* duplicating the edid data */
2524 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525 {
2526 	struct drm_edid *drm_edid;
2527 
2528 	if (!edid || !size || size < EDID_LENGTH)
2529 		return NULL;
2530 
2531 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532 	if (drm_edid) {
2533 		drm_edid->edid = edid;
2534 		drm_edid->size = size;
2535 	}
2536 
2537 	return drm_edid;
2538 }
2539 
2540 /**
2541  * drm_edid_alloc - Allocate a new drm_edid container
2542  * @edid: Pointer to raw EDID data
2543  * @size: Size of memory allocated for EDID
2544  *
2545  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546  * the actual size that has been allocated for the data. There is no validation
2547  * of the raw EDID data against the size, but at least the EDID base block must
2548  * fit in the buffer.
2549  *
2550  * The returned pointer must be freed using drm_edid_free().
2551  *
2552  * Return: drm_edid container, or NULL on errors
2553  */
2554 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555 {
2556 	const struct drm_edid *drm_edid;
2557 
2558 	if (!edid || !size || size < EDID_LENGTH)
2559 		return NULL;
2560 
2561 	edid = kmemdup(edid, size, GFP_KERNEL);
2562 	if (!edid)
2563 		return NULL;
2564 
2565 	drm_edid = _drm_edid_alloc(edid, size);
2566 	if (!drm_edid)
2567 		kfree(edid);
2568 
2569 	return drm_edid;
2570 }
2571 EXPORT_SYMBOL(drm_edid_alloc);
2572 
2573 /**
2574  * drm_edid_dup - Duplicate a drm_edid container
2575  * @drm_edid: EDID to duplicate
2576  *
2577  * The returned pointer must be freed using drm_edid_free().
2578  *
2579  * Returns: drm_edid container copy, or NULL on errors
2580  */
2581 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582 {
2583 	if (!drm_edid)
2584 		return NULL;
2585 
2586 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587 }
2588 EXPORT_SYMBOL(drm_edid_dup);
2589 
2590 /**
2591  * drm_edid_free - Free the drm_edid container
2592  * @drm_edid: EDID to free
2593  */
2594 void drm_edid_free(const struct drm_edid *drm_edid)
2595 {
2596 	if (!drm_edid)
2597 		return;
2598 
2599 	kfree(drm_edid->edid);
2600 	kfree(drm_edid);
2601 }
2602 EXPORT_SYMBOL(drm_edid_free);
2603 
2604 /**
2605  * drm_probe_ddc() - probe DDC presence
2606  * @adapter: I2C adapter to probe
2607  *
2608  * Return: True on success, false on failure.
2609  */
2610 bool
2611 drm_probe_ddc(struct i2c_adapter *adapter)
2612 {
2613 	unsigned char out;
2614 
2615 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616 }
2617 EXPORT_SYMBOL(drm_probe_ddc);
2618 
2619 /**
2620  * drm_get_edid - get EDID data, if available
2621  * @connector: connector we're probing
2622  * @adapter: I2C adapter to use for DDC
2623  *
2624  * Poke the given I2C channel to grab EDID data if possible.  If found,
2625  * attach it to the connector.
2626  *
2627  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628  */
2629 struct edid *drm_get_edid(struct drm_connector *connector,
2630 			  struct i2c_adapter *adapter)
2631 {
2632 	struct edid *edid;
2633 
2634 	if (connector->force == DRM_FORCE_OFF)
2635 		return NULL;
2636 
2637 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638 		return NULL;
2639 
2640 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641 	drm_connector_update_edid_property(connector, edid);
2642 	return edid;
2643 }
2644 EXPORT_SYMBOL(drm_get_edid);
2645 
2646 /**
2647  * drm_edid_read_custom - Read EDID data using given EDID block read function
2648  * @connector: Connector to use
2649  * @read_block: EDID block read function
2650  * @context: Private data passed to the block read function
2651  *
2652  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653  * exposes a different interface to read EDID blocks this function can be used
2654  * to get EDID data using a custom block read function.
2655  *
2656  * As in the general case the DDC bus is accessible by the kernel at the I2C
2657  * level, drivers must make all reasonable efforts to expose it as an I2C
2658  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659  * this function.
2660  *
2661  * The EDID may be overridden using debugfs override_edid or firmware EDID
2662  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663  * order. Having either of them bypasses actual EDID reads.
2664  *
2665  * The returned pointer must be freed using drm_edid_free().
2666  *
2667  * Return: Pointer to EDID, or NULL if probe/read failed.
2668  */
2669 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670 					    read_block_fn read_block,
2671 					    void *context)
2672 {
2673 	const struct drm_edid *drm_edid;
2674 	struct edid *edid;
2675 	size_t size = 0;
2676 
2677 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2678 	if (!edid)
2679 		return NULL;
2680 
2681 	/* Sanity check for now */
2682 	drm_WARN_ON(connector->dev, !size);
2683 
2684 	drm_edid = _drm_edid_alloc(edid, size);
2685 	if (!drm_edid)
2686 		kfree(edid);
2687 
2688 	return drm_edid;
2689 }
2690 EXPORT_SYMBOL(drm_edid_read_custom);
2691 
2692 /**
2693  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694  * @connector: Connector to use
2695  * @adapter: I2C adapter to use for DDC
2696  *
2697  * Read EDID using the given I2C adapter.
2698  *
2699  * The EDID may be overridden using debugfs override_edid or firmware EDID
2700  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701  * order. Having either of them bypasses actual EDID reads.
2702  *
2703  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704  * using drm_edid_read() instead of this function.
2705  *
2706  * The returned pointer must be freed using drm_edid_free().
2707  *
2708  * Return: Pointer to EDID, or NULL if probe/read failed.
2709  */
2710 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711 					 struct i2c_adapter *adapter)
2712 {
2713 	const struct drm_edid *drm_edid;
2714 
2715 	if (connector->force == DRM_FORCE_OFF)
2716 		return NULL;
2717 
2718 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719 		return NULL;
2720 
2721 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722 
2723 	/* Note: Do *not* call connector updates here. */
2724 
2725 	return drm_edid;
2726 }
2727 EXPORT_SYMBOL(drm_edid_read_ddc);
2728 
2729 /**
2730  * drm_edid_read - Read EDID data using connector's I2C adapter
2731  * @connector: Connector to use
2732  *
2733  * Read EDID using the connector's I2C adapter.
2734  *
2735  * The EDID may be overridden using debugfs override_edid or firmware EDID
2736  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737  * order. Having either of them bypasses actual EDID reads.
2738  *
2739  * The returned pointer must be freed using drm_edid_free().
2740  *
2741  * Return: Pointer to EDID, or NULL if probe/read failed.
2742  */
2743 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744 {
2745 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2746 		return NULL;
2747 
2748 	return drm_edid_read_ddc(connector, connector->ddc);
2749 }
2750 EXPORT_SYMBOL(drm_edid_read);
2751 
2752 static u32 edid_extract_panel_id(const struct edid *edid)
2753 {
2754 	/*
2755 	 * We represent the ID as a 32-bit number so it can easily be compared
2756 	 * with "==".
2757 	 *
2758 	 * NOTE that we deal with endianness differently for the top half
2759 	 * of this ID than for the bottom half. The bottom half (the product
2760 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762 	 * gets stored as big endian because that makes
2763 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764 	 * to write (it's easier to extract the ASCII). It doesn't really
2765 	 * matter, though, as long as the number here is unique.
2766 	 */
2767 	return (u32)edid->mfg_id[0] << 24   |
2768 	       (u32)edid->mfg_id[1] << 16   |
2769 	       (u32)EDID_PRODUCT_ID(edid);
2770 }
2771 
2772 /**
2773  * drm_edid_get_panel_id - Get a panel's ID through DDC
2774  * @adapter: I2C adapter to use for DDC
2775  *
2776  * This function reads the first block of the EDID of a panel and (assuming
2777  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779  * supposed to be different for each different modem of panel.
2780  *
2781  * This function is intended to be used during early probing on devices where
2782  * more than one panel might be present. Because of its intended use it must
2783  * assume that the EDID of the panel is correct, at least as far as the ID
2784  * is concerned (in other words, we don't process any overrides here).
2785  *
2786  * NOTE: it's expected that this function and drm_do_get_edid() will both
2787  * be read the EDID, but there is no caching between them. Since we're only
2788  * reading the first block, hopefully this extra overhead won't be too big.
2789  *
2790  * Return: A 32-bit ID that should be different for each make/model of panel.
2791  *         See the functions drm_edid_encode_panel_id() and
2792  *         drm_edid_decode_panel_id() for some details on the structure of this
2793  *         ID.
2794  */
2795 
2796 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797 {
2798 	enum edid_block_status status;
2799 	void *base_block;
2800 	u32 panel_id = 0;
2801 
2802 	/*
2803 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2804 	 * the EDID then we'll just return 0.
2805 	 */
2806 
2807 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808 	if (!base_block)
2809 		return 0;
2810 
2811 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812 
2813 	edid_block_status_print(status, base_block, 0);
2814 
2815 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816 		panel_id = edid_extract_panel_id(base_block);
2817 	else
2818 		edid_block_dump(KERN_NOTICE, base_block, 0);
2819 
2820 	kfree(base_block);
2821 
2822 	return panel_id;
2823 }
2824 EXPORT_SYMBOL(drm_edid_get_panel_id);
2825 
2826 /**
2827  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828  * @connector: connector we're probing
2829  * @adapter: I2C adapter to use for DDC
2830  *
2831  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833  * switch DDC to the GPU which is retrieving EDID.
2834  *
2835  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836  */
2837 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838 				     struct i2c_adapter *adapter)
2839 {
2840 	struct drm_device *dev = connector->dev;
2841 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2842 	struct edid *edid;
2843 
2844 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845 		return NULL;
2846 
2847 	vga_switcheroo_lock_ddc(pdev);
2848 	edid = drm_get_edid(connector, adapter);
2849 	vga_switcheroo_unlock_ddc(pdev);
2850 
2851 	return edid;
2852 }
2853 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854 
2855 /**
2856  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857  * @connector: connector we're probing
2858  * @adapter: I2C adapter to use for DDC
2859  *
2860  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862  * temporarily switch DDC to the GPU which is retrieving EDID.
2863  *
2864  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865  */
2866 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867 						struct i2c_adapter *adapter)
2868 {
2869 	struct drm_device *dev = connector->dev;
2870 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2871 	const struct drm_edid *drm_edid;
2872 
2873 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874 		return NULL;
2875 
2876 	vga_switcheroo_lock_ddc(pdev);
2877 	drm_edid = drm_edid_read_ddc(connector, adapter);
2878 	vga_switcheroo_unlock_ddc(pdev);
2879 
2880 	return drm_edid;
2881 }
2882 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883 
2884 /**
2885  * drm_edid_duplicate - duplicate an EDID and the extensions
2886  * @edid: EDID to duplicate
2887  *
2888  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889  */
2890 struct edid *drm_edid_duplicate(const struct edid *edid)
2891 {
2892 	if (!edid)
2893 		return NULL;
2894 
2895 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896 }
2897 EXPORT_SYMBOL(drm_edid_duplicate);
2898 
2899 /*** EDID parsing ***/
2900 
2901 /**
2902  * edid_get_quirks - return quirk flags for a given EDID
2903  * @drm_edid: EDID to process
2904  *
2905  * This tells subsequent routines what fixes they need to apply.
2906  */
2907 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908 {
2909 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910 	const struct edid_quirk *quirk;
2911 	int i;
2912 
2913 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914 		quirk = &edid_quirk_list[i];
2915 		if (quirk->panel_id == panel_id)
2916 			return quirk->quirks;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
2922 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924 
2925 /*
2926  * Walk the mode list for connector, clearing the preferred status on existing
2927  * modes and setting it anew for the right mode ala quirks.
2928  */
2929 static void edid_fixup_preferred(struct drm_connector *connector)
2930 {
2931 	const struct drm_display_info *info = &connector->display_info;
2932 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933 	int target_refresh = 0;
2934 	int cur_vrefresh, preferred_vrefresh;
2935 
2936 	if (list_empty(&connector->probed_modes))
2937 		return;
2938 
2939 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940 		target_refresh = 60;
2941 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942 		target_refresh = 75;
2943 
2944 	preferred_mode = list_first_entry(&connector->probed_modes,
2945 					  struct drm_display_mode, head);
2946 
2947 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949 
2950 		if (cur_mode == preferred_mode)
2951 			continue;
2952 
2953 		/* Largest mode is preferred */
2954 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955 			preferred_mode = cur_mode;
2956 
2957 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959 		/* At a given size, try to get closest to target refresh */
2960 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963 			preferred_mode = cur_mode;
2964 		}
2965 	}
2966 
2967 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968 }
2969 
2970 static bool
2971 mode_is_rb(const struct drm_display_mode *mode)
2972 {
2973 	return (mode->htotal - mode->hdisplay == 160) &&
2974 	       (mode->hsync_end - mode->hdisplay == 80) &&
2975 	       (mode->hsync_end - mode->hsync_start == 32) &&
2976 	       (mode->vsync_start - mode->vdisplay == 3);
2977 }
2978 
2979 /*
2980  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981  * @dev: Device to duplicate against
2982  * @hsize: Mode width
2983  * @vsize: Mode height
2984  * @fresh: Mode refresh rate
2985  * @rb: Mode reduced-blanking-ness
2986  *
2987  * Walk the DMT mode list looking for a match for the given parameters.
2988  *
2989  * Return: A newly allocated copy of the mode, or NULL if not found.
2990  */
2991 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992 					   int hsize, int vsize, int fresh,
2993 					   bool rb)
2994 {
2995 	int i;
2996 
2997 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999 
3000 		if (hsize != ptr->hdisplay)
3001 			continue;
3002 		if (vsize != ptr->vdisplay)
3003 			continue;
3004 		if (fresh != drm_mode_vrefresh(ptr))
3005 			continue;
3006 		if (rb != mode_is_rb(ptr))
3007 			continue;
3008 
3009 		return drm_mode_duplicate(dev, ptr);
3010 	}
3011 
3012 	return NULL;
3013 }
3014 EXPORT_SYMBOL(drm_mode_find_dmt);
3015 
3016 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017 {
3018 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021 
3022 	return descriptor->pixel_clock == 0 &&
3023 		descriptor->data.other_data.pad1 == 0 &&
3024 		descriptor->data.other_data.type == type;
3025 }
3026 
3027 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028 {
3029 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030 
3031 	return descriptor->pixel_clock != 0;
3032 }
3033 
3034 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035 
3036 static void
3037 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038 {
3039 	int i, n;
3040 	u8 d = ext[0x02];
3041 	const u8 *det_base = ext + d;
3042 
3043 	if (d < 4 || d > 127)
3044 		return;
3045 
3046 	n = (127 - d) / 18;
3047 	for (i = 0; i < n; i++)
3048 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049 }
3050 
3051 static void
3052 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053 {
3054 	unsigned int i, n = min((int)ext[0x02], 6);
3055 	const u8 *det_base = ext + 5;
3056 
3057 	if (ext[0x01] != 1)
3058 		return; /* unknown version */
3059 
3060 	for (i = 0; i < n; i++)
3061 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062 }
3063 
3064 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065 					detailed_cb *cb, void *closure)
3066 {
3067 	struct drm_edid_iter edid_iter;
3068 	const u8 *ext;
3069 	int i;
3070 
3071 	if (!drm_edid)
3072 		return;
3073 
3074 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075 		cb(&drm_edid->edid->detailed_timings[i], closure);
3076 
3077 	drm_edid_iter_begin(drm_edid, &edid_iter);
3078 	drm_edid_iter_for_each(ext, &edid_iter) {
3079 		switch (*ext) {
3080 		case CEA_EXT:
3081 			cea_for_each_detailed_block(ext, cb, closure);
3082 			break;
3083 		case VTB_EXT:
3084 			vtb_for_each_detailed_block(ext, cb, closure);
3085 			break;
3086 		default:
3087 			break;
3088 		}
3089 	}
3090 	drm_edid_iter_end(&edid_iter);
3091 }
3092 
3093 static void
3094 is_rb(const struct detailed_timing *descriptor, void *data)
3095 {
3096 	bool *res = data;
3097 
3098 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099 		return;
3100 
3101 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103 
3104 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106 		*res = true;
3107 }
3108 
3109 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3110 static bool
3111 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112 {
3113 	if (drm_edid->edid->revision >= 4) {
3114 		bool ret = false;
3115 
3116 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117 		return ret;
3118 	}
3119 
3120 	return drm_edid_is_digital(drm_edid);
3121 }
3122 
3123 static void
3124 find_gtf2(const struct detailed_timing *descriptor, void *data)
3125 {
3126 	const struct detailed_timing **res = data;
3127 
3128 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129 		return;
3130 
3131 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132 
3133 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134 		*res = descriptor;
3135 }
3136 
3137 /* Secondary GTF curve kicks in above some break frequency */
3138 static int
3139 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140 {
3141 	const struct detailed_timing *descriptor = NULL;
3142 
3143 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144 
3145 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146 
3147 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148 }
3149 
3150 static int
3151 drm_gtf2_2c(const struct drm_edid *drm_edid)
3152 {
3153 	const struct detailed_timing *descriptor = NULL;
3154 
3155 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156 
3157 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158 
3159 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160 }
3161 
3162 static int
3163 drm_gtf2_m(const struct drm_edid *drm_edid)
3164 {
3165 	const struct detailed_timing *descriptor = NULL;
3166 
3167 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168 
3169 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170 
3171 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172 }
3173 
3174 static int
3175 drm_gtf2_k(const struct drm_edid *drm_edid)
3176 {
3177 	const struct detailed_timing *descriptor = NULL;
3178 
3179 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180 
3181 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182 
3183 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184 }
3185 
3186 static int
3187 drm_gtf2_2j(const struct drm_edid *drm_edid)
3188 {
3189 	const struct detailed_timing *descriptor = NULL;
3190 
3191 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192 
3193 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194 
3195 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196 }
3197 
3198 static void
3199 get_timing_level(const struct detailed_timing *descriptor, void *data)
3200 {
3201 	int *res = data;
3202 
3203 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204 		return;
3205 
3206 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207 
3208 	switch (descriptor->data.other_data.data.range.flags) {
3209 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210 		*res = LEVEL_GTF;
3211 		break;
3212 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213 		*res = LEVEL_GTF2;
3214 		break;
3215 	case DRM_EDID_CVT_SUPPORT_FLAG:
3216 		*res = LEVEL_CVT;
3217 		break;
3218 	default:
3219 		break;
3220 	}
3221 }
3222 
3223 /* Get standard timing level (CVT/GTF/DMT). */
3224 static int standard_timing_level(const struct drm_edid *drm_edid)
3225 {
3226 	const struct edid *edid = drm_edid->edid;
3227 
3228 	if (edid->revision >= 4) {
3229 		/*
3230 		 * If the range descriptor doesn't
3231 		 * indicate otherwise default to CVT
3232 		 */
3233 		int ret = LEVEL_CVT;
3234 
3235 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236 
3237 		return ret;
3238 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239 		return LEVEL_GTF2;
3240 	} else if (edid->revision >= 2) {
3241 		return LEVEL_GTF;
3242 	} else {
3243 		return LEVEL_DMT;
3244 	}
3245 }
3246 
3247 /*
3248  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3249  * monitors fill with ascii space (0x20) instead.
3250  */
3251 static int
3252 bad_std_timing(u8 a, u8 b)
3253 {
3254 	return (a == 0x00 && b == 0x00) ||
3255 	       (a == 0x01 && b == 0x01) ||
3256 	       (a == 0x20 && b == 0x20);
3257 }
3258 
3259 static int drm_mode_hsync(const struct drm_display_mode *mode)
3260 {
3261 	if (mode->htotal <= 0)
3262 		return 0;
3263 
3264 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265 }
3266 
3267 static struct drm_display_mode *
3268 drm_gtf2_mode(struct drm_device *dev,
3269 	      const struct drm_edid *drm_edid,
3270 	      int hsize, int vsize, int vrefresh_rate)
3271 {
3272 	struct drm_display_mode *mode;
3273 
3274 	/*
3275 	 * This is potentially wrong if there's ever a monitor with
3276 	 * more than one ranges section, each claiming a different
3277 	 * secondary GTF curve.  Please don't do that.
3278 	 */
3279 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280 	if (!mode)
3281 		return NULL;
3282 
3283 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284 		drm_mode_destroy(dev, mode);
3285 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286 					    vrefresh_rate, 0, 0,
3287 					    drm_gtf2_m(drm_edid),
3288 					    drm_gtf2_2c(drm_edid),
3289 					    drm_gtf2_k(drm_edid),
3290 					    drm_gtf2_2j(drm_edid));
3291 	}
3292 
3293 	return mode;
3294 }
3295 
3296 /*
3297  * Take the standard timing params (in this case width, aspect, and refresh)
3298  * and convert them into a real mode using CVT/GTF/DMT.
3299  */
3300 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301 					     const struct drm_edid *drm_edid,
3302 					     const struct std_timing *t)
3303 {
3304 	struct drm_device *dev = connector->dev;
3305 	struct drm_display_mode *m, *mode = NULL;
3306 	int hsize, vsize;
3307 	int vrefresh_rate;
3308 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309 		>> EDID_TIMING_ASPECT_SHIFT;
3310 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311 		>> EDID_TIMING_VFREQ_SHIFT;
3312 	int timing_level = standard_timing_level(drm_edid);
3313 
3314 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315 		return NULL;
3316 
3317 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318 	hsize = t->hsize * 8 + 248;
3319 	/* vrefresh_rate = vfreq + 60 */
3320 	vrefresh_rate = vfreq + 60;
3321 	/* the vdisplay is calculated based on the aspect ratio */
3322 	if (aspect_ratio == 0) {
3323 		if (drm_edid->edid->revision < 3)
3324 			vsize = hsize;
3325 		else
3326 			vsize = (hsize * 10) / 16;
3327 	} else if (aspect_ratio == 1)
3328 		vsize = (hsize * 3) / 4;
3329 	else if (aspect_ratio == 2)
3330 		vsize = (hsize * 4) / 5;
3331 	else
3332 		vsize = (hsize * 9) / 16;
3333 
3334 	/* HDTV hack, part 1 */
3335 	if (vrefresh_rate == 60 &&
3336 	    ((hsize == 1360 && vsize == 765) ||
3337 	     (hsize == 1368 && vsize == 769))) {
3338 		hsize = 1366;
3339 		vsize = 768;
3340 	}
3341 
3342 	/*
3343 	 * If this connector already has a mode for this size and refresh
3344 	 * rate (because it came from detailed or CVT info), use that
3345 	 * instead.  This way we don't have to guess at interlace or
3346 	 * reduced blanking.
3347 	 */
3348 	list_for_each_entry(m, &connector->probed_modes, head)
3349 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350 		    drm_mode_vrefresh(m) == vrefresh_rate)
3351 			return NULL;
3352 
3353 	/* HDTV hack, part 2 */
3354 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356 				    false);
3357 		if (!mode)
3358 			return NULL;
3359 		mode->hdisplay = 1366;
3360 		mode->hsync_start = mode->hsync_start - 1;
3361 		mode->hsync_end = mode->hsync_end - 1;
3362 		return mode;
3363 	}
3364 
3365 	/* check whether it can be found in default mode table */
3366 	if (drm_monitor_supports_rb(drm_edid)) {
3367 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368 					 true);
3369 		if (mode)
3370 			return mode;
3371 	}
3372 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373 	if (mode)
3374 		return mode;
3375 
3376 	/* okay, generate it */
3377 	switch (timing_level) {
3378 	case LEVEL_DMT:
3379 		break;
3380 	case LEVEL_GTF:
3381 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382 		break;
3383 	case LEVEL_GTF2:
3384 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3385 		break;
3386 	case LEVEL_CVT:
3387 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388 				    false);
3389 		break;
3390 	}
3391 	return mode;
3392 }
3393 
3394 /*
3395  * EDID is delightfully ambiguous about how interlaced modes are to be
3396  * encoded.  Our internal representation is of frame height, but some
3397  * HDTV detailed timings are encoded as field height.
3398  *
3399  * The format list here is from CEA, in frame size.  Technically we
3400  * should be checking refresh rate too.  Whatever.
3401  */
3402 static void
3403 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404 			    const struct detailed_pixel_timing *pt)
3405 {
3406 	int i;
3407 	static const struct {
3408 		int w, h;
3409 	} cea_interlaced[] = {
3410 		{ 1920, 1080 },
3411 		{  720,  480 },
3412 		{ 1440,  480 },
3413 		{ 2880,  480 },
3414 		{  720,  576 },
3415 		{ 1440,  576 },
3416 		{ 2880,  576 },
3417 	};
3418 
3419 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420 		return;
3421 
3422 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3424 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425 			mode->vdisplay *= 2;
3426 			mode->vsync_start *= 2;
3427 			mode->vsync_end *= 2;
3428 			mode->vtotal *= 2;
3429 			mode->vtotal |= 1;
3430 		}
3431 	}
3432 
3433 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434 }
3435 
3436 /*
3437  * Create a new mode from an EDID detailed timing section. An EDID detailed
3438  * timing block contains enough info for us to create and return a new struct
3439  * drm_display_mode.
3440  */
3441 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442 						  const struct drm_edid *drm_edid,
3443 						  const struct detailed_timing *timing)
3444 {
3445 	const struct drm_display_info *info = &connector->display_info;
3446 	struct drm_device *dev = connector->dev;
3447 	struct drm_display_mode *mode;
3448 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457 
3458 	/* ignore tiny modes */
3459 	if (hactive < 64 || vactive < 64)
3460 		return NULL;
3461 
3462 	if (pt->misc & DRM_EDID_PT_STEREO) {
3463 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464 			    connector->base.id, connector->name);
3465 		return NULL;
3466 	}
3467 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469 			    connector->base.id, connector->name);
3470 	}
3471 
3472 	/* it is incorrect if hsync/vsync width is zero */
3473 	if (!hsync_pulse_width || !vsync_pulse_width) {
3474 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475 			    connector->base.id, connector->name);
3476 		return NULL;
3477 	}
3478 
3479 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481 		if (!mode)
3482 			return NULL;
3483 
3484 		goto set_size;
3485 	}
3486 
3487 	mode = drm_mode_create(dev);
3488 	if (!mode)
3489 		return NULL;
3490 
3491 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492 		mode->clock = 1088 * 10;
3493 	else
3494 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495 
3496 	mode->hdisplay = hactive;
3497 	mode->hsync_start = mode->hdisplay + hsync_offset;
3498 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499 	mode->htotal = mode->hdisplay + hblank;
3500 
3501 	mode->vdisplay = vactive;
3502 	mode->vsync_start = mode->vdisplay + vsync_offset;
3503 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504 	mode->vtotal = mode->vdisplay + vblank;
3505 
3506 	/* Some EDIDs have bogus h/vsync_end values */
3507 	if (mode->hsync_end > mode->htotal) {
3508 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509 			    connector->base.id, connector->name,
3510 			    mode->hsync_end, mode->htotal);
3511 		mode->hsync_end = mode->htotal;
3512 	}
3513 	if (mode->vsync_end > mode->vtotal) {
3514 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515 			    connector->base.id, connector->name,
3516 			    mode->vsync_end, mode->vtotal);
3517 		mode->vsync_end = mode->vtotal;
3518 	}
3519 
3520 	drm_mode_do_interlace_quirk(mode, pt);
3521 
3522 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524 	} else {
3525 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529 	}
3530 
3531 set_size:
3532 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534 
3535 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536 		mode->width_mm *= 10;
3537 		mode->height_mm *= 10;
3538 	}
3539 
3540 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541 		mode->width_mm = drm_edid->edid->width_cm * 10;
3542 		mode->height_mm = drm_edid->edid->height_cm * 10;
3543 	}
3544 
3545 	mode->type = DRM_MODE_TYPE_DRIVER;
3546 	drm_mode_set_name(mode);
3547 
3548 	return mode;
3549 }
3550 
3551 static bool
3552 mode_in_hsync_range(const struct drm_display_mode *mode,
3553 		    const struct edid *edid, const u8 *t)
3554 {
3555 	int hsync, hmin, hmax;
3556 
3557 	hmin = t[7];
3558 	if (edid->revision >= 4)
3559 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3560 	hmax = t[8];
3561 	if (edid->revision >= 4)
3562 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3563 	hsync = drm_mode_hsync(mode);
3564 
3565 	return (hsync <= hmax && hsync >= hmin);
3566 }
3567 
3568 static bool
3569 mode_in_vsync_range(const struct drm_display_mode *mode,
3570 		    const struct edid *edid, const u8 *t)
3571 {
3572 	int vsync, vmin, vmax;
3573 
3574 	vmin = t[5];
3575 	if (edid->revision >= 4)
3576 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3577 	vmax = t[6];
3578 	if (edid->revision >= 4)
3579 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3580 	vsync = drm_mode_vrefresh(mode);
3581 
3582 	return (vsync <= vmax && vsync >= vmin);
3583 }
3584 
3585 static u32
3586 range_pixel_clock(const struct edid *edid, const u8 *t)
3587 {
3588 	/* unspecified */
3589 	if (t[9] == 0 || t[9] == 255)
3590 		return 0;
3591 
3592 	/* 1.4 with CVT support gives us real precision, yay */
3593 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595 
3596 	/* 1.3 is pathetic, so fuzz up a bit */
3597 	return t[9] * 10000 + 5001;
3598 }
3599 
3600 static bool mode_in_range(const struct drm_display_mode *mode,
3601 			  const struct drm_edid *drm_edid,
3602 			  const struct detailed_timing *timing)
3603 {
3604 	const struct edid *edid = drm_edid->edid;
3605 	u32 max_clock;
3606 	const u8 *t = (const u8 *)timing;
3607 
3608 	if (!mode_in_hsync_range(mode, edid, t))
3609 		return false;
3610 
3611 	if (!mode_in_vsync_range(mode, edid, t))
3612 		return false;
3613 
3614 	max_clock = range_pixel_clock(edid, t);
3615 	if (max_clock)
3616 		if (mode->clock > max_clock)
3617 			return false;
3618 
3619 	/* 1.4 max horizontal check */
3620 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3621 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3622 			return false;
3623 
3624 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3625 		return false;
3626 
3627 	return true;
3628 }
3629 
3630 static bool valid_inferred_mode(const struct drm_connector *connector,
3631 				const struct drm_display_mode *mode)
3632 {
3633 	const struct drm_display_mode *m;
3634 	bool ok = false;
3635 
3636 	list_for_each_entry(m, &connector->probed_modes, head) {
3637 		if (mode->hdisplay == m->hdisplay &&
3638 		    mode->vdisplay == m->vdisplay &&
3639 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3640 			return false; /* duplicated */
3641 		if (mode->hdisplay <= m->hdisplay &&
3642 		    mode->vdisplay <= m->vdisplay)
3643 			ok = true;
3644 	}
3645 	return ok;
3646 }
3647 
3648 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3649 				   const struct drm_edid *drm_edid,
3650 				   const struct detailed_timing *timing)
3651 {
3652 	int i, modes = 0;
3653 	struct drm_display_mode *newmode;
3654 	struct drm_device *dev = connector->dev;
3655 
3656 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3657 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3658 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3659 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3660 			if (newmode) {
3661 				drm_mode_probed_add(connector, newmode);
3662 				modes++;
3663 			}
3664 		}
3665 	}
3666 
3667 	return modes;
3668 }
3669 
3670 /* fix up 1366x768 mode from 1368x768;
3671  * GFT/CVT can't express 1366 width which isn't dividable by 8
3672  */
3673 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3674 {
3675 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3676 		mode->hdisplay = 1366;
3677 		mode->hsync_start--;
3678 		mode->hsync_end--;
3679 		drm_mode_set_name(mode);
3680 	}
3681 }
3682 
3683 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3684 				   const struct drm_edid *drm_edid,
3685 				   const struct detailed_timing *timing)
3686 {
3687 	int i, modes = 0;
3688 	struct drm_display_mode *newmode;
3689 	struct drm_device *dev = connector->dev;
3690 
3691 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3692 		const struct minimode *m = &extra_modes[i];
3693 
3694 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3695 		if (!newmode)
3696 			return modes;
3697 
3698 		drm_mode_fixup_1366x768(newmode);
3699 		if (!mode_in_range(newmode, drm_edid, timing) ||
3700 		    !valid_inferred_mode(connector, newmode)) {
3701 			drm_mode_destroy(dev, newmode);
3702 			continue;
3703 		}
3704 
3705 		drm_mode_probed_add(connector, newmode);
3706 		modes++;
3707 	}
3708 
3709 	return modes;
3710 }
3711 
3712 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3713 				    const struct drm_edid *drm_edid,
3714 				    const struct detailed_timing *timing)
3715 {
3716 	int i, modes = 0;
3717 	struct drm_display_mode *newmode;
3718 	struct drm_device *dev = connector->dev;
3719 
3720 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3721 		const struct minimode *m = &extra_modes[i];
3722 
3723 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3724 		if (!newmode)
3725 			return modes;
3726 
3727 		drm_mode_fixup_1366x768(newmode);
3728 		if (!mode_in_range(newmode, drm_edid, timing) ||
3729 		    !valid_inferred_mode(connector, newmode)) {
3730 			drm_mode_destroy(dev, newmode);
3731 			continue;
3732 		}
3733 
3734 		drm_mode_probed_add(connector, newmode);
3735 		modes++;
3736 	}
3737 
3738 	return modes;
3739 }
3740 
3741 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3742 				   const struct drm_edid *drm_edid,
3743 				   const struct detailed_timing *timing)
3744 {
3745 	int i, modes = 0;
3746 	struct drm_display_mode *newmode;
3747 	struct drm_device *dev = connector->dev;
3748 	bool rb = drm_monitor_supports_rb(drm_edid);
3749 
3750 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3751 		const struct minimode *m = &extra_modes[i];
3752 
3753 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3754 		if (!newmode)
3755 			return modes;
3756 
3757 		drm_mode_fixup_1366x768(newmode);
3758 		if (!mode_in_range(newmode, drm_edid, timing) ||
3759 		    !valid_inferred_mode(connector, newmode)) {
3760 			drm_mode_destroy(dev, newmode);
3761 			continue;
3762 		}
3763 
3764 		drm_mode_probed_add(connector, newmode);
3765 		modes++;
3766 	}
3767 
3768 	return modes;
3769 }
3770 
3771 static void
3772 do_inferred_modes(const struct detailed_timing *timing, void *c)
3773 {
3774 	struct detailed_mode_closure *closure = c;
3775 	const struct detailed_non_pixel *data = &timing->data.other_data;
3776 	const struct detailed_data_monitor_range *range = &data->data.range;
3777 
3778 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3779 		return;
3780 
3781 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3782 						  closure->drm_edid,
3783 						  timing);
3784 
3785 	if (closure->drm_edid->edid->revision < 2)
3786 		return; /* GTF not defined yet */
3787 
3788 	switch (range->flags) {
3789 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3790 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3791 							   closure->drm_edid,
3792 							   timing);
3793 		break;
3794 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3795 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3796 							  closure->drm_edid,
3797 							  timing);
3798 		break;
3799 	case DRM_EDID_CVT_SUPPORT_FLAG:
3800 		if (closure->drm_edid->edid->revision < 4)
3801 			break;
3802 
3803 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3804 							  closure->drm_edid,
3805 							  timing);
3806 		break;
3807 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3808 	default:
3809 		break;
3810 	}
3811 }
3812 
3813 static int add_inferred_modes(struct drm_connector *connector,
3814 			      const struct drm_edid *drm_edid)
3815 {
3816 	struct detailed_mode_closure closure = {
3817 		.connector = connector,
3818 		.drm_edid = drm_edid,
3819 	};
3820 
3821 	if (drm_edid->edid->revision >= 1)
3822 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3823 
3824 	return closure.modes;
3825 }
3826 
3827 static int
3828 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3829 {
3830 	int i, j, m, modes = 0;
3831 	struct drm_display_mode *mode;
3832 	const u8 *est = ((const u8 *)timing) + 6;
3833 
3834 	for (i = 0; i < 6; i++) {
3835 		for (j = 7; j >= 0; j--) {
3836 			m = (i * 8) + (7 - j);
3837 			if (m >= ARRAY_SIZE(est3_modes))
3838 				break;
3839 			if (est[i] & (1 << j)) {
3840 				mode = drm_mode_find_dmt(connector->dev,
3841 							 est3_modes[m].w,
3842 							 est3_modes[m].h,
3843 							 est3_modes[m].r,
3844 							 est3_modes[m].rb);
3845 				if (mode) {
3846 					drm_mode_probed_add(connector, mode);
3847 					modes++;
3848 				}
3849 			}
3850 		}
3851 	}
3852 
3853 	return modes;
3854 }
3855 
3856 static void
3857 do_established_modes(const struct detailed_timing *timing, void *c)
3858 {
3859 	struct detailed_mode_closure *closure = c;
3860 
3861 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3862 		return;
3863 
3864 	closure->modes += drm_est3_modes(closure->connector, timing);
3865 }
3866 
3867 /*
3868  * Get established modes from EDID and add them. Each EDID block contains a
3869  * bitmap of the supported "established modes" list (defined above). Tease them
3870  * out and add them to the global modes list.
3871  */
3872 static int add_established_modes(struct drm_connector *connector,
3873 				 const struct drm_edid *drm_edid)
3874 {
3875 	struct drm_device *dev = connector->dev;
3876 	const struct edid *edid = drm_edid->edid;
3877 	unsigned long est_bits = edid->established_timings.t1 |
3878 		(edid->established_timings.t2 << 8) |
3879 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3880 	int i, modes = 0;
3881 	struct detailed_mode_closure closure = {
3882 		.connector = connector,
3883 		.drm_edid = drm_edid,
3884 	};
3885 
3886 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3887 		if (est_bits & (1<<i)) {
3888 			struct drm_display_mode *newmode;
3889 
3890 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3891 			if (newmode) {
3892 				drm_mode_probed_add(connector, newmode);
3893 				modes++;
3894 			}
3895 		}
3896 	}
3897 
3898 	if (edid->revision >= 1)
3899 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3900 					    &closure);
3901 
3902 	return modes + closure.modes;
3903 }
3904 
3905 static void
3906 do_standard_modes(const struct detailed_timing *timing, void *c)
3907 {
3908 	struct detailed_mode_closure *closure = c;
3909 	const struct detailed_non_pixel *data = &timing->data.other_data;
3910 	struct drm_connector *connector = closure->connector;
3911 	int i;
3912 
3913 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3914 		return;
3915 
3916 	for (i = 0; i < 6; i++) {
3917 		const struct std_timing *std = &data->data.timings[i];
3918 		struct drm_display_mode *newmode;
3919 
3920 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3921 		if (newmode) {
3922 			drm_mode_probed_add(connector, newmode);
3923 			closure->modes++;
3924 		}
3925 	}
3926 }
3927 
3928 /*
3929  * Get standard modes from EDID and add them. Standard modes can be calculated
3930  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3931  * add them to the list.
3932  */
3933 static int add_standard_modes(struct drm_connector *connector,
3934 			      const struct drm_edid *drm_edid)
3935 {
3936 	int i, modes = 0;
3937 	struct detailed_mode_closure closure = {
3938 		.connector = connector,
3939 		.drm_edid = drm_edid,
3940 	};
3941 
3942 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3943 		struct drm_display_mode *newmode;
3944 
3945 		newmode = drm_mode_std(connector, drm_edid,
3946 				       &drm_edid->edid->standard_timings[i]);
3947 		if (newmode) {
3948 			drm_mode_probed_add(connector, newmode);
3949 			modes++;
3950 		}
3951 	}
3952 
3953 	if (drm_edid->edid->revision >= 1)
3954 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3955 					    &closure);
3956 
3957 	/* XXX should also look for standard codes in VTB blocks */
3958 
3959 	return modes + closure.modes;
3960 }
3961 
3962 static int drm_cvt_modes(struct drm_connector *connector,
3963 			 const struct detailed_timing *timing)
3964 {
3965 	int i, j, modes = 0;
3966 	struct drm_display_mode *newmode;
3967 	struct drm_device *dev = connector->dev;
3968 	const struct cvt_timing *cvt;
3969 	static const int rates[] = { 60, 85, 75, 60, 50 };
3970 	const u8 empty[3] = { 0, 0, 0 };
3971 
3972 	for (i = 0; i < 4; i++) {
3973 		int width, height;
3974 
3975 		cvt = &(timing->data.other_data.data.cvt[i]);
3976 
3977 		if (!memcmp(cvt->code, empty, 3))
3978 			continue;
3979 
3980 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3981 		switch (cvt->code[1] & 0x0c) {
3982 		/* default - because compiler doesn't see that we've enumerated all cases */
3983 		default:
3984 		case 0x00:
3985 			width = height * 4 / 3;
3986 			break;
3987 		case 0x04:
3988 			width = height * 16 / 9;
3989 			break;
3990 		case 0x08:
3991 			width = height * 16 / 10;
3992 			break;
3993 		case 0x0c:
3994 			width = height * 15 / 9;
3995 			break;
3996 		}
3997 
3998 		for (j = 1; j < 5; j++) {
3999 			if (cvt->code[2] & (1 << j)) {
4000 				newmode = drm_cvt_mode(dev, width, height,
4001 						       rates[j], j == 0,
4002 						       false, false);
4003 				if (newmode) {
4004 					drm_mode_probed_add(connector, newmode);
4005 					modes++;
4006 				}
4007 			}
4008 		}
4009 	}
4010 
4011 	return modes;
4012 }
4013 
4014 static void
4015 do_cvt_mode(const struct detailed_timing *timing, void *c)
4016 {
4017 	struct detailed_mode_closure *closure = c;
4018 
4019 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4020 		return;
4021 
4022 	closure->modes += drm_cvt_modes(closure->connector, timing);
4023 }
4024 
4025 static int
4026 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4027 {
4028 	struct detailed_mode_closure closure = {
4029 		.connector = connector,
4030 		.drm_edid = drm_edid,
4031 	};
4032 
4033 	if (drm_edid->edid->revision >= 3)
4034 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4035 
4036 	/* XXX should also look for CVT codes in VTB blocks */
4037 
4038 	return closure.modes;
4039 }
4040 
4041 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4042 					  struct drm_display_mode *mode);
4043 
4044 static void
4045 do_detailed_mode(const struct detailed_timing *timing, void *c)
4046 {
4047 	struct detailed_mode_closure *closure = c;
4048 	struct drm_display_mode *newmode;
4049 
4050 	if (!is_detailed_timing_descriptor(timing))
4051 		return;
4052 
4053 	newmode = drm_mode_detailed(closure->connector,
4054 				    closure->drm_edid, timing);
4055 	if (!newmode)
4056 		return;
4057 
4058 	if (closure->preferred)
4059 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4060 
4061 	/*
4062 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4063 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4064 	 * is just slightly off.
4065 	 */
4066 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4067 
4068 	drm_mode_probed_add(closure->connector, newmode);
4069 	closure->modes++;
4070 	closure->preferred = false;
4071 }
4072 
4073 /*
4074  * add_detailed_modes - Add modes from detailed timings
4075  * @connector: attached connector
4076  * @drm_edid: EDID block to scan
4077  */
4078 static int add_detailed_modes(struct drm_connector *connector,
4079 			      const struct drm_edid *drm_edid)
4080 {
4081 	struct detailed_mode_closure closure = {
4082 		.connector = connector,
4083 		.drm_edid = drm_edid,
4084 	};
4085 
4086 	if (drm_edid->edid->revision >= 4)
4087 		closure.preferred = true; /* first detailed timing is always preferred */
4088 	else
4089 		closure.preferred =
4090 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4091 
4092 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4093 
4094 	return closure.modes;
4095 }
4096 
4097 /* CTA-861-H Table 60 - CTA Tag Codes */
4098 #define CTA_DB_AUDIO			1
4099 #define CTA_DB_VIDEO			2
4100 #define CTA_DB_VENDOR			3
4101 #define CTA_DB_SPEAKER			4
4102 #define CTA_DB_EXTENDED_TAG		7
4103 
4104 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4105 #define CTA_EXT_DB_VIDEO_CAP		0
4106 #define CTA_EXT_DB_VENDOR		1
4107 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4108 #define CTA_EXT_DB_420_VIDEO_DATA	14
4109 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4110 #define CTA_EXT_DB_HF_EEODB		0x78
4111 #define CTA_EXT_DB_HF_SCDB		0x79
4112 
4113 #define EDID_BASIC_AUDIO	(1 << 6)
4114 #define EDID_CEA_YCRCB444	(1 << 5)
4115 #define EDID_CEA_YCRCB422	(1 << 4)
4116 #define EDID_CEA_VCDB_QS	(1 << 6)
4117 
4118 /*
4119  * Search EDID for CEA extension block.
4120  *
4121  * FIXME: Prefer not returning pointers to raw EDID data.
4122  */
4123 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4124 				  int ext_id, int *ext_index)
4125 {
4126 	const u8 *edid_ext = NULL;
4127 	int i;
4128 
4129 	/* No EDID or EDID extensions */
4130 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4131 		return NULL;
4132 
4133 	/* Find CEA extension */
4134 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4135 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4136 		if (edid_block_tag(edid_ext) == ext_id)
4137 			break;
4138 	}
4139 
4140 	if (i >= drm_edid_extension_block_count(drm_edid))
4141 		return NULL;
4142 
4143 	*ext_index = i + 1;
4144 
4145 	return edid_ext;
4146 }
4147 
4148 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4149 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4150 {
4151 	const struct displayid_block *block;
4152 	struct displayid_iter iter;
4153 	int ext_index = 0;
4154 	bool found = false;
4155 
4156 	/* Look for a top level CEA extension block */
4157 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4158 		return true;
4159 
4160 	/* CEA blocks can also be found embedded in a DisplayID block */
4161 	displayid_iter_edid_begin(drm_edid, &iter);
4162 	displayid_iter_for_each(block, &iter) {
4163 		if (block->tag == DATA_BLOCK_CTA) {
4164 			found = true;
4165 			break;
4166 		}
4167 	}
4168 	displayid_iter_end(&iter);
4169 
4170 	return found;
4171 }
4172 
4173 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4174 {
4175 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4176 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4177 
4178 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4179 		return &edid_cea_modes_1[vic - 1];
4180 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4181 		return &edid_cea_modes_193[vic - 193];
4182 	return NULL;
4183 }
4184 
4185 static u8 cea_num_vics(void)
4186 {
4187 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4188 }
4189 
4190 static u8 cea_next_vic(u8 vic)
4191 {
4192 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4193 		vic = 193;
4194 	return vic;
4195 }
4196 
4197 /*
4198  * Calculate the alternate clock for the CEA mode
4199  * (60Hz vs. 59.94Hz etc.)
4200  */
4201 static unsigned int
4202 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4203 {
4204 	unsigned int clock = cea_mode->clock;
4205 
4206 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4207 		return clock;
4208 
4209 	/*
4210 	 * edid_cea_modes contains the 59.94Hz
4211 	 * variant for 240 and 480 line modes,
4212 	 * and the 60Hz variant otherwise.
4213 	 */
4214 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4215 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4216 	else
4217 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4218 
4219 	return clock;
4220 }
4221 
4222 static bool
4223 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4224 {
4225 	/*
4226 	 * For certain VICs the spec allows the vertical
4227 	 * front porch to vary by one or two lines.
4228 	 *
4229 	 * cea_modes[] stores the variant with the shortest
4230 	 * vertical front porch. We can adjust the mode to
4231 	 * get the other variants by simply increasing the
4232 	 * vertical front porch length.
4233 	 */
4234 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4235 		     cea_mode_for_vic(9)->vtotal != 262 ||
4236 		     cea_mode_for_vic(12)->vtotal != 262 ||
4237 		     cea_mode_for_vic(13)->vtotal != 262 ||
4238 		     cea_mode_for_vic(23)->vtotal != 312 ||
4239 		     cea_mode_for_vic(24)->vtotal != 312 ||
4240 		     cea_mode_for_vic(27)->vtotal != 312 ||
4241 		     cea_mode_for_vic(28)->vtotal != 312);
4242 
4243 	if (((vic == 8 || vic == 9 ||
4244 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4245 	    ((vic == 23 || vic == 24 ||
4246 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4247 		mode->vsync_start++;
4248 		mode->vsync_end++;
4249 		mode->vtotal++;
4250 
4251 		return true;
4252 	}
4253 
4254 	return false;
4255 }
4256 
4257 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4258 					     unsigned int clock_tolerance)
4259 {
4260 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4261 	u8 vic;
4262 
4263 	if (!to_match->clock)
4264 		return 0;
4265 
4266 	if (to_match->picture_aspect_ratio)
4267 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4268 
4269 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4270 		struct drm_display_mode cea_mode;
4271 		unsigned int clock1, clock2;
4272 
4273 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4274 
4275 		/* Check both 60Hz and 59.94Hz */
4276 		clock1 = cea_mode.clock;
4277 		clock2 = cea_mode_alternate_clock(&cea_mode);
4278 
4279 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4280 		    abs(to_match->clock - clock2) > clock_tolerance)
4281 			continue;
4282 
4283 		do {
4284 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4285 				return vic;
4286 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 /**
4293  * drm_match_cea_mode - look for a CEA mode matching given mode
4294  * @to_match: display mode
4295  *
4296  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4297  * mode.
4298  */
4299 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4300 {
4301 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4302 	u8 vic;
4303 
4304 	if (!to_match->clock)
4305 		return 0;
4306 
4307 	if (to_match->picture_aspect_ratio)
4308 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4309 
4310 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4311 		struct drm_display_mode cea_mode;
4312 		unsigned int clock1, clock2;
4313 
4314 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4315 
4316 		/* Check both 60Hz and 59.94Hz */
4317 		clock1 = cea_mode.clock;
4318 		clock2 = cea_mode_alternate_clock(&cea_mode);
4319 
4320 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4321 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4322 			continue;
4323 
4324 		do {
4325 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4326 				return vic;
4327 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4328 	}
4329 
4330 	return 0;
4331 }
4332 EXPORT_SYMBOL(drm_match_cea_mode);
4333 
4334 static bool drm_valid_cea_vic(u8 vic)
4335 {
4336 	return cea_mode_for_vic(vic) != NULL;
4337 }
4338 
4339 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4340 {
4341 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4342 
4343 	if (mode)
4344 		return mode->picture_aspect_ratio;
4345 
4346 	return HDMI_PICTURE_ASPECT_NONE;
4347 }
4348 
4349 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4350 {
4351 	return edid_4k_modes[video_code].picture_aspect_ratio;
4352 }
4353 
4354 /*
4355  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4356  * specific block).
4357  */
4358 static unsigned int
4359 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4360 {
4361 	return cea_mode_alternate_clock(hdmi_mode);
4362 }
4363 
4364 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4365 					      unsigned int clock_tolerance)
4366 {
4367 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4368 	u8 vic;
4369 
4370 	if (!to_match->clock)
4371 		return 0;
4372 
4373 	if (to_match->picture_aspect_ratio)
4374 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4375 
4376 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4377 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4378 		unsigned int clock1, clock2;
4379 
4380 		/* Make sure to also match alternate clocks */
4381 		clock1 = hdmi_mode->clock;
4382 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4383 
4384 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4385 		    abs(to_match->clock - clock2) > clock_tolerance)
4386 			continue;
4387 
4388 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4389 			return vic;
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 /*
4396  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4397  * @to_match: display mode
4398  *
4399  * An HDMI mode is one defined in the HDMI vendor specific block.
4400  *
4401  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4402  */
4403 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4404 {
4405 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4406 	u8 vic;
4407 
4408 	if (!to_match->clock)
4409 		return 0;
4410 
4411 	if (to_match->picture_aspect_ratio)
4412 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4413 
4414 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4415 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4416 		unsigned int clock1, clock2;
4417 
4418 		/* Make sure to also match alternate clocks */
4419 		clock1 = hdmi_mode->clock;
4420 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4421 
4422 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4423 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4424 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4425 			return vic;
4426 	}
4427 	return 0;
4428 }
4429 
4430 static bool drm_valid_hdmi_vic(u8 vic)
4431 {
4432 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4433 }
4434 
4435 static int add_alternate_cea_modes(struct drm_connector *connector,
4436 				   const struct drm_edid *drm_edid)
4437 {
4438 	struct drm_device *dev = connector->dev;
4439 	struct drm_display_mode *mode, *tmp;
4440 	LIST_HEAD(list);
4441 	int modes = 0;
4442 
4443 	/* Don't add CTA modes if the CTA extension block is missing */
4444 	if (!drm_edid_has_cta_extension(drm_edid))
4445 		return 0;
4446 
4447 	/*
4448 	 * Go through all probed modes and create a new mode
4449 	 * with the alternate clock for certain CEA modes.
4450 	 */
4451 	list_for_each_entry(mode, &connector->probed_modes, head) {
4452 		const struct drm_display_mode *cea_mode = NULL;
4453 		struct drm_display_mode *newmode;
4454 		u8 vic = drm_match_cea_mode(mode);
4455 		unsigned int clock1, clock2;
4456 
4457 		if (drm_valid_cea_vic(vic)) {
4458 			cea_mode = cea_mode_for_vic(vic);
4459 			clock2 = cea_mode_alternate_clock(cea_mode);
4460 		} else {
4461 			vic = drm_match_hdmi_mode(mode);
4462 			if (drm_valid_hdmi_vic(vic)) {
4463 				cea_mode = &edid_4k_modes[vic];
4464 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4465 			}
4466 		}
4467 
4468 		if (!cea_mode)
4469 			continue;
4470 
4471 		clock1 = cea_mode->clock;
4472 
4473 		if (clock1 == clock2)
4474 			continue;
4475 
4476 		if (mode->clock != clock1 && mode->clock != clock2)
4477 			continue;
4478 
4479 		newmode = drm_mode_duplicate(dev, cea_mode);
4480 		if (!newmode)
4481 			continue;
4482 
4483 		/* Carry over the stereo flags */
4484 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4485 
4486 		/*
4487 		 * The current mode could be either variant. Make
4488 		 * sure to pick the "other" clock for the new mode.
4489 		 */
4490 		if (mode->clock != clock1)
4491 			newmode->clock = clock1;
4492 		else
4493 			newmode->clock = clock2;
4494 
4495 		list_add_tail(&newmode->head, &list);
4496 	}
4497 
4498 	list_for_each_entry_safe(mode, tmp, &list, head) {
4499 		list_del(&mode->head);
4500 		drm_mode_probed_add(connector, mode);
4501 		modes++;
4502 	}
4503 
4504 	return modes;
4505 }
4506 
4507 static u8 svd_to_vic(u8 svd)
4508 {
4509 	/* 0-6 bit vic, 7th bit native mode indicator */
4510 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4511 		return svd & 127;
4512 
4513 	return svd;
4514 }
4515 
4516 /*
4517  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4518  * the EDID, or NULL on errors.
4519  */
4520 static struct drm_display_mode *
4521 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4522 {
4523 	const struct drm_display_info *info = &connector->display_info;
4524 	struct drm_device *dev = connector->dev;
4525 
4526 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4527 		return NULL;
4528 
4529 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4530 }
4531 
4532 /*
4533  * do_y420vdb_modes - Parse YCBCR 420 only modes
4534  * @connector: connector corresponding to the HDMI sink
4535  * @svds: start of the data block of CEA YCBCR 420 VDB
4536  * @len: length of the CEA YCBCR 420 VDB
4537  *
4538  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4539  * which contains modes which can be supported in YCBCR 420
4540  * output format only.
4541  */
4542 static int do_y420vdb_modes(struct drm_connector *connector,
4543 			    const u8 *svds, u8 svds_len)
4544 {
4545 	struct drm_device *dev = connector->dev;
4546 	int modes = 0, i;
4547 
4548 	for (i = 0; i < svds_len; i++) {
4549 		u8 vic = svd_to_vic(svds[i]);
4550 		struct drm_display_mode *newmode;
4551 
4552 		if (!drm_valid_cea_vic(vic))
4553 			continue;
4554 
4555 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4556 		if (!newmode)
4557 			break;
4558 		drm_mode_probed_add(connector, newmode);
4559 		modes++;
4560 	}
4561 
4562 	return modes;
4563 }
4564 
4565 /**
4566  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4567  * @dev: DRM device
4568  * @video_code: CEA VIC of the mode
4569  *
4570  * Creates a new mode matching the specified CEA VIC.
4571  *
4572  * Returns: A new drm_display_mode on success or NULL on failure
4573  */
4574 struct drm_display_mode *
4575 drm_display_mode_from_cea_vic(struct drm_device *dev,
4576 			      u8 video_code)
4577 {
4578 	const struct drm_display_mode *cea_mode;
4579 	struct drm_display_mode *newmode;
4580 
4581 	cea_mode = cea_mode_for_vic(video_code);
4582 	if (!cea_mode)
4583 		return NULL;
4584 
4585 	newmode = drm_mode_duplicate(dev, cea_mode);
4586 	if (!newmode)
4587 		return NULL;
4588 
4589 	return newmode;
4590 }
4591 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4592 
4593 /* Add modes based on VICs parsed in parse_cta_vdb() */
4594 static int add_cta_vdb_modes(struct drm_connector *connector)
4595 {
4596 	const struct drm_display_info *info = &connector->display_info;
4597 	int i, modes = 0;
4598 
4599 	if (!info->vics)
4600 		return 0;
4601 
4602 	for (i = 0; i < info->vics_len; i++) {
4603 		struct drm_display_mode *mode;
4604 
4605 		mode = drm_display_mode_from_vic_index(connector, i);
4606 		if (mode) {
4607 			drm_mode_probed_add(connector, mode);
4608 			modes++;
4609 		}
4610 	}
4611 
4612 	return modes;
4613 }
4614 
4615 struct stereo_mandatory_mode {
4616 	int width, height, vrefresh;
4617 	unsigned int flags;
4618 };
4619 
4620 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4621 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4622 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4623 	{ 1920, 1080, 50,
4624 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4625 	{ 1920, 1080, 60,
4626 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4627 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4628 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4629 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4630 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4631 };
4632 
4633 static bool
4634 stereo_match_mandatory(const struct drm_display_mode *mode,
4635 		       const struct stereo_mandatory_mode *stereo_mode)
4636 {
4637 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4638 
4639 	return mode->hdisplay == stereo_mode->width &&
4640 	       mode->vdisplay == stereo_mode->height &&
4641 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4642 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4643 }
4644 
4645 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4646 {
4647 	struct drm_device *dev = connector->dev;
4648 	const struct drm_display_mode *mode;
4649 	struct list_head stereo_modes;
4650 	int modes = 0, i;
4651 
4652 	INIT_LIST_HEAD(&stereo_modes);
4653 
4654 	list_for_each_entry(mode, &connector->probed_modes, head) {
4655 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4656 			const struct stereo_mandatory_mode *mandatory;
4657 			struct drm_display_mode *new_mode;
4658 
4659 			if (!stereo_match_mandatory(mode,
4660 						    &stereo_mandatory_modes[i]))
4661 				continue;
4662 
4663 			mandatory = &stereo_mandatory_modes[i];
4664 			new_mode = drm_mode_duplicate(dev, mode);
4665 			if (!new_mode)
4666 				continue;
4667 
4668 			new_mode->flags |= mandatory->flags;
4669 			list_add_tail(&new_mode->head, &stereo_modes);
4670 			modes++;
4671 		}
4672 	}
4673 
4674 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4675 
4676 	return modes;
4677 }
4678 
4679 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4680 {
4681 	struct drm_device *dev = connector->dev;
4682 	struct drm_display_mode *newmode;
4683 
4684 	if (!drm_valid_hdmi_vic(vic)) {
4685 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4686 			connector->base.id, connector->name, vic);
4687 		return 0;
4688 	}
4689 
4690 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4691 	if (!newmode)
4692 		return 0;
4693 
4694 	drm_mode_probed_add(connector, newmode);
4695 
4696 	return 1;
4697 }
4698 
4699 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4700 			       int vic_index)
4701 {
4702 	struct drm_display_mode *newmode;
4703 	int modes = 0;
4704 
4705 	if (structure & (1 << 0)) {
4706 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4707 		if (newmode) {
4708 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4709 			drm_mode_probed_add(connector, newmode);
4710 			modes++;
4711 		}
4712 	}
4713 	if (structure & (1 << 6)) {
4714 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4715 		if (newmode) {
4716 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717 			drm_mode_probed_add(connector, newmode);
4718 			modes++;
4719 		}
4720 	}
4721 	if (structure & (1 << 8)) {
4722 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4723 		if (newmode) {
4724 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4725 			drm_mode_probed_add(connector, newmode);
4726 			modes++;
4727 		}
4728 	}
4729 
4730 	return modes;
4731 }
4732 
4733 static bool hdmi_vsdb_latency_present(const u8 *db)
4734 {
4735 	return db[8] & BIT(7);
4736 }
4737 
4738 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4739 {
4740 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4741 }
4742 
4743 static int hdmi_vsdb_latency_length(const u8 *db)
4744 {
4745 	if (hdmi_vsdb_i_latency_present(db))
4746 		return 4;
4747 	else if (hdmi_vsdb_latency_present(db))
4748 		return 2;
4749 	else
4750 		return 0;
4751 }
4752 
4753 /*
4754  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4755  * @connector: connector corresponding to the HDMI sink
4756  * @db: start of the CEA vendor specific block
4757  * @len: length of the CEA block payload, ie. one can access up to db[len]
4758  *
4759  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4760  * also adds the stereo 3d modes when applicable.
4761  */
4762 static int
4763 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4764 {
4765 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4766 	u8 vic_len, hdmi_3d_len = 0;
4767 	u16 mask;
4768 	u16 structure_all;
4769 
4770 	if (len < 8)
4771 		goto out;
4772 
4773 	/* no HDMI_Video_Present */
4774 	if (!(db[8] & (1 << 5)))
4775 		goto out;
4776 
4777 	offset += hdmi_vsdb_latency_length(db);
4778 
4779 	/* the declared length is not long enough for the 2 first bytes
4780 	 * of additional video format capabilities */
4781 	if (len < (8 + offset + 2))
4782 		goto out;
4783 
4784 	/* 3D_Present */
4785 	offset++;
4786 	if (db[8 + offset] & (1 << 7)) {
4787 		modes += add_hdmi_mandatory_stereo_modes(connector);
4788 
4789 		/* 3D_Multi_present */
4790 		multi_present = (db[8 + offset] & 0x60) >> 5;
4791 	}
4792 
4793 	offset++;
4794 	vic_len = db[8 + offset] >> 5;
4795 	hdmi_3d_len = db[8 + offset] & 0x1f;
4796 
4797 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4798 		u8 vic;
4799 
4800 		vic = db[9 + offset + i];
4801 		modes += add_hdmi_mode(connector, vic);
4802 	}
4803 	offset += 1 + vic_len;
4804 
4805 	if (multi_present == 1)
4806 		multi_len = 2;
4807 	else if (multi_present == 2)
4808 		multi_len = 4;
4809 	else
4810 		multi_len = 0;
4811 
4812 	if (len < (8 + offset + hdmi_3d_len - 1))
4813 		goto out;
4814 
4815 	if (hdmi_3d_len < multi_len)
4816 		goto out;
4817 
4818 	if (multi_present == 1 || multi_present == 2) {
4819 		/* 3D_Structure_ALL */
4820 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4821 
4822 		/* check if 3D_MASK is present */
4823 		if (multi_present == 2)
4824 			mask = (db[10 + offset] << 8) | db[11 + offset];
4825 		else
4826 			mask = 0xffff;
4827 
4828 		for (i = 0; i < 16; i++) {
4829 			if (mask & (1 << i))
4830 				modes += add_3d_struct_modes(connector,
4831 							     structure_all, i);
4832 		}
4833 	}
4834 
4835 	offset += multi_len;
4836 
4837 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4838 		int vic_index;
4839 		struct drm_display_mode *newmode = NULL;
4840 		unsigned int newflag = 0;
4841 		bool detail_present;
4842 
4843 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4844 
4845 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4846 			break;
4847 
4848 		/* 2D_VIC_order_X */
4849 		vic_index = db[8 + offset + i] >> 4;
4850 
4851 		/* 3D_Structure_X */
4852 		switch (db[8 + offset + i] & 0x0f) {
4853 		case 0:
4854 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4855 			break;
4856 		case 6:
4857 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4858 			break;
4859 		case 8:
4860 			/* 3D_Detail_X */
4861 			if ((db[9 + offset + i] >> 4) == 1)
4862 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4863 			break;
4864 		}
4865 
4866 		if (newflag != 0) {
4867 			newmode = drm_display_mode_from_vic_index(connector,
4868 								  vic_index);
4869 
4870 			if (newmode) {
4871 				newmode->flags |= newflag;
4872 				drm_mode_probed_add(connector, newmode);
4873 				modes++;
4874 			}
4875 		}
4876 
4877 		if (detail_present)
4878 			i++;
4879 	}
4880 
4881 out:
4882 	return modes;
4883 }
4884 
4885 static int
4886 cea_revision(const u8 *cea)
4887 {
4888 	/*
4889 	 * FIXME is this correct for the DispID variant?
4890 	 * The DispID spec doesn't really specify whether
4891 	 * this is the revision of the CEA extension or
4892 	 * the DispID CEA data block. And the only value
4893 	 * given as an example is 0.
4894 	 */
4895 	return cea[1];
4896 }
4897 
4898 /*
4899  * CTA Data Block iterator.
4900  *
4901  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4902  * CTA Data Blocks.
4903  *
4904  * struct cea_db *db:
4905  * struct cea_db_iter iter;
4906  *
4907  * cea_db_iter_edid_begin(edid, &iter);
4908  * cea_db_iter_for_each(db, &iter) {
4909  *         // do stuff with db
4910  * }
4911  * cea_db_iter_end(&iter);
4912  */
4913 struct cea_db_iter {
4914 	struct drm_edid_iter edid_iter;
4915 	struct displayid_iter displayid_iter;
4916 
4917 	/* Current Data Block Collection. */
4918 	const u8 *collection;
4919 
4920 	/* Current Data Block index in current collection. */
4921 	int index;
4922 
4923 	/* End index in current collection. */
4924 	int end;
4925 };
4926 
4927 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4928 struct cea_db {
4929 	u8 tag_length;
4930 	u8 data[];
4931 } __packed;
4932 
4933 static int cea_db_tag(const struct cea_db *db)
4934 {
4935 	return db->tag_length >> 5;
4936 }
4937 
4938 static int cea_db_payload_len(const void *_db)
4939 {
4940 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4941 	const struct cea_db *db = _db;
4942 
4943 	return db->tag_length & 0x1f;
4944 }
4945 
4946 static const void *cea_db_data(const struct cea_db *db)
4947 {
4948 	return db->data;
4949 }
4950 
4951 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4952 {
4953 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4954 		cea_db_payload_len(db) >= 1 &&
4955 		db->data[0] == tag;
4956 }
4957 
4958 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4959 {
4960 	const u8 *data = cea_db_data(db);
4961 
4962 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4963 		cea_db_payload_len(db) >= 3 &&
4964 		oui(data[2], data[1], data[0]) == vendor_oui;
4965 }
4966 
4967 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4968 				   struct cea_db_iter *iter)
4969 {
4970 	memset(iter, 0, sizeof(*iter));
4971 
4972 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4973 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4974 }
4975 
4976 static const struct cea_db *
4977 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4978 {
4979 	const struct cea_db *db;
4980 
4981 	if (!iter->collection)
4982 		return NULL;
4983 
4984 	db = (const struct cea_db *)&iter->collection[iter->index];
4985 
4986 	if (iter->index + sizeof(*db) <= iter->end &&
4987 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4988 		return db;
4989 
4990 	return NULL;
4991 }
4992 
4993 /*
4994  * References:
4995  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4996  */
4997 static int cea_db_collection_size(const u8 *cta)
4998 {
4999 	u8 d = cta[2];
5000 
5001 	if (d < 4 || d > 127)
5002 		return 0;
5003 
5004 	return d - 4;
5005 }
5006 
5007 /*
5008  * References:
5009  * - VESA E-EDID v1.4
5010  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5011  */
5012 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5013 {
5014 	const u8 *ext;
5015 
5016 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5017 		int size;
5018 
5019 		/* Only support CTA Extension revision 3+ */
5020 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5021 			continue;
5022 
5023 		size = cea_db_collection_size(ext);
5024 		if (!size)
5025 			continue;
5026 
5027 		iter->index = 4;
5028 		iter->end = iter->index + size;
5029 
5030 		return ext;
5031 	}
5032 
5033 	return NULL;
5034 }
5035 
5036 /*
5037  * References:
5038  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5039  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5040  *
5041  * Note that the above do not specify any connection between DisplayID Data
5042  * Block revision and CTA Extension versions.
5043  */
5044 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5045 {
5046 	const struct displayid_block *block;
5047 
5048 	displayid_iter_for_each(block, &iter->displayid_iter) {
5049 		if (block->tag != DATA_BLOCK_CTA)
5050 			continue;
5051 
5052 		/*
5053 		 * The displayid iterator has already verified the block bounds
5054 		 * in displayid_iter_block().
5055 		 */
5056 		iter->index = sizeof(*block);
5057 		iter->end = iter->index + block->num_bytes;
5058 
5059 		return block;
5060 	}
5061 
5062 	return NULL;
5063 }
5064 
5065 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5066 {
5067 	const struct cea_db *db;
5068 
5069 	if (iter->collection) {
5070 		/* Current collection should always be valid. */
5071 		db = __cea_db_iter_current_block(iter);
5072 		if (WARN_ON(!db)) {
5073 			iter->collection = NULL;
5074 			return NULL;
5075 		}
5076 
5077 		/* Next block in CTA Data Block Collection */
5078 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5079 
5080 		db = __cea_db_iter_current_block(iter);
5081 		if (db)
5082 			return db;
5083 	}
5084 
5085 	for (;;) {
5086 		/*
5087 		 * Find the next CTA Data Block Collection. First iterate all
5088 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5089 		 *
5090 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5091 		 * Extension, it's recommended that DisplayID extensions are
5092 		 * exposed after all of the CTA Extensions.
5093 		 */
5094 		iter->collection = __cea_db_iter_edid_next(iter);
5095 		if (!iter->collection)
5096 			iter->collection = __cea_db_iter_displayid_next(iter);
5097 
5098 		if (!iter->collection)
5099 			return NULL;
5100 
5101 		db = __cea_db_iter_current_block(iter);
5102 		if (db)
5103 			return db;
5104 	}
5105 }
5106 
5107 #define cea_db_iter_for_each(__db, __iter) \
5108 	while (((__db) = __cea_db_iter_next(__iter)))
5109 
5110 static void cea_db_iter_end(struct cea_db_iter *iter)
5111 {
5112 	displayid_iter_end(&iter->displayid_iter);
5113 	drm_edid_iter_end(&iter->edid_iter);
5114 
5115 	memset(iter, 0, sizeof(*iter));
5116 }
5117 
5118 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5119 {
5120 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5121 		cea_db_payload_len(db) >= 5;
5122 }
5123 
5124 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5125 {
5126 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5127 		cea_db_payload_len(db) >= 7;
5128 }
5129 
5130 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5131 {
5132 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5133 		cea_db_payload_len(db) >= 2;
5134 }
5135 
5136 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5137 {
5138 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5139 		cea_db_payload_len(db) == 21;
5140 }
5141 
5142 static bool cea_db_is_vcdb(const struct cea_db *db)
5143 {
5144 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5145 		cea_db_payload_len(db) == 2;
5146 }
5147 
5148 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5149 {
5150 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5151 		cea_db_payload_len(db) >= 7;
5152 }
5153 
5154 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5155 {
5156 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5157 }
5158 
5159 static bool cea_db_is_y420vdb(const struct cea_db *db)
5160 {
5161 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5162 }
5163 
5164 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5165 {
5166 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5167 		cea_db_payload_len(db) >= 3;
5168 }
5169 
5170 /*
5171  * Get the HF-EEODB override extension block count from EDID.
5172  *
5173  * The passed in EDID may be partially read, as long as it has at least two
5174  * blocks (base block and one extension block) if EDID extension count is > 0.
5175  *
5176  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5177  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5178  * iterators instead.
5179  *
5180  * References:
5181  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5182  */
5183 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5184 {
5185 	const u8 *cta;
5186 
5187 	/* No extensions according to base block, no HF-EEODB. */
5188 	if (!edid_extension_block_count(edid))
5189 		return 0;
5190 
5191 	/* HF-EEODB is always in the first EDID extension block only */
5192 	cta = edid_extension_block_data(edid, 0);
5193 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5194 		return 0;
5195 
5196 	/* Need to have the data block collection, and at least 3 bytes. */
5197 	if (cea_db_collection_size(cta) < 3)
5198 		return 0;
5199 
5200 	/*
5201 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5202 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5203 	 * through 6 of Block 1 of the E-EDID.
5204 	 */
5205 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5206 		return 0;
5207 
5208 	return cta[4 + 2];
5209 }
5210 
5211 /*
5212  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5213  *
5214  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5215  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5216  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5217  * support YCBCR420 output too.
5218  */
5219 static void parse_cta_y420cmdb(struct drm_connector *connector,
5220 			       const struct cea_db *db, u64 *y420cmdb_map)
5221 {
5222 	struct drm_display_info *info = &connector->display_info;
5223 	int i, map_len = cea_db_payload_len(db) - 1;
5224 	const u8 *data = cea_db_data(db) + 1;
5225 	u64 map = 0;
5226 
5227 	if (map_len == 0) {
5228 		/* All CEA modes support ycbcr420 sampling also.*/
5229 		map = U64_MAX;
5230 		goto out;
5231 	}
5232 
5233 	/*
5234 	 * This map indicates which of the existing CEA block modes
5235 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5236 	 * set, first mode from VDB can support YCBCR420 output too.
5237 	 * We will parse and keep this map, before parsing VDB itself
5238 	 * to avoid going through the same block again and again.
5239 	 *
5240 	 * Spec is not clear about max possible size of this block.
5241 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5242 	 * address 8 CEA modes, in this way this map can address
5243 	 * 8*8 = first 64 SVDs.
5244 	 */
5245 	if (WARN_ON_ONCE(map_len > 8))
5246 		map_len = 8;
5247 
5248 	for (i = 0; i < map_len; i++)
5249 		map |= (u64)data[i] << (8 * i);
5250 
5251 out:
5252 	if (map)
5253 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5254 
5255 	*y420cmdb_map = map;
5256 }
5257 
5258 static int add_cea_modes(struct drm_connector *connector,
5259 			 const struct drm_edid *drm_edid)
5260 {
5261 	const struct cea_db *db;
5262 	struct cea_db_iter iter;
5263 	int modes;
5264 
5265 	/* CTA VDB block VICs parsed earlier */
5266 	modes = add_cta_vdb_modes(connector);
5267 
5268 	cea_db_iter_edid_begin(drm_edid, &iter);
5269 	cea_db_iter_for_each(db, &iter) {
5270 		if (cea_db_is_hdmi_vsdb(db)) {
5271 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5272 						    cea_db_payload_len(db));
5273 		} else if (cea_db_is_y420vdb(db)) {
5274 			const u8 *vdb420 = cea_db_data(db) + 1;
5275 
5276 			/* Add 4:2:0(only) modes present in EDID */
5277 			modes += do_y420vdb_modes(connector, vdb420,
5278 						  cea_db_payload_len(db) - 1);
5279 		}
5280 	}
5281 	cea_db_iter_end(&iter);
5282 
5283 	return modes;
5284 }
5285 
5286 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5287 					  struct drm_display_mode *mode)
5288 {
5289 	const struct drm_display_mode *cea_mode;
5290 	int clock1, clock2, clock;
5291 	u8 vic;
5292 	const char *type;
5293 
5294 	/*
5295 	 * allow 5kHz clock difference either way to account for
5296 	 * the 10kHz clock resolution limit of detailed timings.
5297 	 */
5298 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5299 	if (drm_valid_cea_vic(vic)) {
5300 		type = "CEA";
5301 		cea_mode = cea_mode_for_vic(vic);
5302 		clock1 = cea_mode->clock;
5303 		clock2 = cea_mode_alternate_clock(cea_mode);
5304 	} else {
5305 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5306 		if (drm_valid_hdmi_vic(vic)) {
5307 			type = "HDMI";
5308 			cea_mode = &edid_4k_modes[vic];
5309 			clock1 = cea_mode->clock;
5310 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5311 		} else {
5312 			return;
5313 		}
5314 	}
5315 
5316 	/* pick whichever is closest */
5317 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5318 		clock = clock1;
5319 	else
5320 		clock = clock2;
5321 
5322 	if (mode->clock == clock)
5323 		return;
5324 
5325 	drm_dbg_kms(connector->dev,
5326 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5327 		    connector->base.id, connector->name,
5328 		    type, vic, mode->clock, clock);
5329 	mode->clock = clock;
5330 }
5331 
5332 static void drm_calculate_luminance_range(struct drm_connector *connector)
5333 {
5334 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5335 	struct drm_luminance_range_info *luminance_range =
5336 		&connector->display_info.luminance_range;
5337 	static const u8 pre_computed_values[] = {
5338 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5339 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5340 	};
5341 	u32 max_avg, min_cll, max, min, q, r;
5342 
5343 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5344 		return;
5345 
5346 	max_avg = hdr_metadata->max_fall;
5347 	min_cll = hdr_metadata->min_cll;
5348 
5349 	/*
5350 	 * From the specification (CTA-861-G), for calculating the maximum
5351 	 * luminance we need to use:
5352 	 *	Luminance = 50*2**(CV/32)
5353 	 * Where CV is a one-byte value.
5354 	 * For calculating this expression we may need float point precision;
5355 	 * to avoid this complexity level, we take advantage that CV is divided
5356 	 * by a constant. From the Euclids division algorithm, we know that CV
5357 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5358 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5359 	 * need to pre-compute the value of r/32. For pre-computing the values
5360 	 * We just used the following Ruby line:
5361 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5362 	 * The results of the above expressions can be verified at
5363 	 * pre_computed_values.
5364 	 */
5365 	q = max_avg >> 5;
5366 	r = max_avg % 32;
5367 	max = (1 << q) * pre_computed_values[r];
5368 
5369 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5370 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5371 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5372 
5373 	luminance_range->min_luminance = min;
5374 	luminance_range->max_luminance = max;
5375 }
5376 
5377 static uint8_t eotf_supported(const u8 *edid_ext)
5378 {
5379 	return edid_ext[2] &
5380 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5381 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5382 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5383 		 BIT(HDMI_EOTF_BT_2100_HLG));
5384 }
5385 
5386 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5387 {
5388 	return edid_ext[3] &
5389 		BIT(HDMI_STATIC_METADATA_TYPE1);
5390 }
5391 
5392 static void
5393 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5394 {
5395 	u16 len;
5396 
5397 	len = cea_db_payload_len(db);
5398 
5399 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5400 						eotf_supported(db);
5401 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5402 						hdr_metadata_type(db);
5403 
5404 	if (len >= 4)
5405 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5406 	if (len >= 5)
5407 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5408 	if (len >= 6) {
5409 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5410 
5411 		/* Calculate only when all values are available */
5412 		drm_calculate_luminance_range(connector);
5413 	}
5414 }
5415 
5416 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5417 static void
5418 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5419 {
5420 	u8 len = cea_db_payload_len(db);
5421 
5422 	if (len >= 6 && (db[6] & (1 << 7)))
5423 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5424 
5425 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5426 		connector->latency_present[0] = true;
5427 		connector->video_latency[0] = db[9];
5428 		connector->audio_latency[0] = db[10];
5429 	}
5430 
5431 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5432 		connector->latency_present[1] = true;
5433 		connector->video_latency[1] = db[11];
5434 		connector->audio_latency[1] = db[12];
5435 	}
5436 
5437 	drm_dbg_kms(connector->dev,
5438 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5439 		    connector->base.id, connector->name,
5440 		    connector->latency_present[0], connector->latency_present[1],
5441 		    connector->video_latency[0], connector->video_latency[1],
5442 		    connector->audio_latency[0], connector->audio_latency[1]);
5443 }
5444 
5445 static void
5446 monitor_name(const struct detailed_timing *timing, void *data)
5447 {
5448 	const char **res = data;
5449 
5450 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5451 		return;
5452 
5453 	*res = timing->data.other_data.data.str.str;
5454 }
5455 
5456 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5457 {
5458 	const char *edid_name = NULL;
5459 	int mnl;
5460 
5461 	if (!drm_edid || !name)
5462 		return 0;
5463 
5464 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5465 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5466 		if (edid_name[mnl] == 0x0a)
5467 			break;
5468 
5469 		name[mnl] = edid_name[mnl];
5470 	}
5471 
5472 	return mnl;
5473 }
5474 
5475 /**
5476  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5477  * @edid: monitor EDID information
5478  * @name: pointer to a character array to hold the name of the monitor
5479  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5480  *
5481  */
5482 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5483 {
5484 	int name_length = 0;
5485 
5486 	if (bufsize <= 0)
5487 		return;
5488 
5489 	if (edid) {
5490 		char buf[13];
5491 		struct drm_edid drm_edid = {
5492 			.edid = edid,
5493 			.size = edid_size(edid),
5494 		};
5495 
5496 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5497 		memcpy(name, buf, name_length);
5498 	}
5499 
5500 	name[name_length] = '\0';
5501 }
5502 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5503 
5504 static void clear_eld(struct drm_connector *connector)
5505 {
5506 	memset(connector->eld, 0, sizeof(connector->eld));
5507 
5508 	connector->latency_present[0] = false;
5509 	connector->latency_present[1] = false;
5510 	connector->video_latency[0] = 0;
5511 	connector->audio_latency[0] = 0;
5512 	connector->video_latency[1] = 0;
5513 	connector->audio_latency[1] = 0;
5514 }
5515 
5516 /*
5517  * Get 3-byte SAD buffer from struct cea_sad.
5518  */
5519 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5520 {
5521 	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5522 	sad[1] = cta_sad->freq;
5523 	sad[2] = cta_sad->byte2;
5524 }
5525 
5526 /*
5527  * Set struct cea_sad from 3-byte SAD buffer.
5528  */
5529 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5530 {
5531 	cta_sad->format = (sad[0] & 0x78) >> 3;
5532 	cta_sad->channels = sad[0] & 0x07;
5533 	cta_sad->freq = sad[1] & 0x7f;
5534 	cta_sad->byte2 = sad[2];
5535 }
5536 
5537 /*
5538  * drm_edid_to_eld - build ELD from EDID
5539  * @connector: connector corresponding to the HDMI/DP sink
5540  * @drm_edid: EDID to parse
5541  *
5542  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5543  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5544  */
5545 static void drm_edid_to_eld(struct drm_connector *connector,
5546 			    const struct drm_edid *drm_edid)
5547 {
5548 	const struct drm_display_info *info = &connector->display_info;
5549 	const struct cea_db *db;
5550 	struct cea_db_iter iter;
5551 	uint8_t *eld = connector->eld;
5552 	int total_sad_count = 0;
5553 	int mnl;
5554 
5555 	if (!drm_edid)
5556 		return;
5557 
5558 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5559 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5560 		    connector->base.id, connector->name,
5561 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5562 
5563 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5564 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5565 
5566 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5567 
5568 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5569 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5570 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5571 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5572 
5573 	cea_db_iter_edid_begin(drm_edid, &iter);
5574 	cea_db_iter_for_each(db, &iter) {
5575 		const u8 *data = cea_db_data(db);
5576 		int len = cea_db_payload_len(db);
5577 		int sad_count;
5578 
5579 		switch (cea_db_tag(db)) {
5580 		case CTA_DB_AUDIO:
5581 			/* Audio Data Block, contains SADs */
5582 			sad_count = min(len / 3, 15 - total_sad_count);
5583 			if (sad_count >= 1)
5584 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5585 				       data, sad_count * 3);
5586 			total_sad_count += sad_count;
5587 			break;
5588 		case CTA_DB_SPEAKER:
5589 			/* Speaker Allocation Data Block */
5590 			if (len >= 1)
5591 				eld[DRM_ELD_SPEAKER] = data[0];
5592 			break;
5593 		case CTA_DB_VENDOR:
5594 			/* HDMI Vendor-Specific Data Block */
5595 			if (cea_db_is_hdmi_vsdb(db))
5596 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5597 			break;
5598 		default:
5599 			break;
5600 		}
5601 	}
5602 	cea_db_iter_end(&iter);
5603 
5604 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5605 
5606 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5607 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5608 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5609 	else
5610 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5611 
5612 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5613 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5614 
5615 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5616 		    connector->base.id, connector->name,
5617 		    drm_eld_size(eld), total_sad_count);
5618 }
5619 
5620 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5621 			    struct cea_sad **psads)
5622 {
5623 	const struct cea_db *db;
5624 	struct cea_db_iter iter;
5625 	int count = 0;
5626 
5627 	cea_db_iter_edid_begin(drm_edid, &iter);
5628 	cea_db_iter_for_each(db, &iter) {
5629 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5630 			struct cea_sad *sads;
5631 			int i;
5632 
5633 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5634 			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5635 			*psads = sads;
5636 			if (!sads)
5637 				return -ENOMEM;
5638 			for (i = 0; i < count; i++)
5639 				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5640 			break;
5641 		}
5642 	}
5643 	cea_db_iter_end(&iter);
5644 
5645 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5646 
5647 	return count;
5648 }
5649 
5650 /**
5651  * drm_edid_to_sad - extracts SADs from EDID
5652  * @edid: EDID to parse
5653  * @sads: pointer that will be set to the extracted SADs
5654  *
5655  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5656  *
5657  * Note: The returned pointer needs to be freed using kfree().
5658  *
5659  * Return: The number of found SADs or negative number on error.
5660  */
5661 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5662 {
5663 	struct drm_edid drm_edid;
5664 
5665 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5666 }
5667 EXPORT_SYMBOL(drm_edid_to_sad);
5668 
5669 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5670 					   u8 **sadb)
5671 {
5672 	const struct cea_db *db;
5673 	struct cea_db_iter iter;
5674 	int count = 0;
5675 
5676 	cea_db_iter_edid_begin(drm_edid, &iter);
5677 	cea_db_iter_for_each(db, &iter) {
5678 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5679 		    cea_db_payload_len(db) == 3) {
5680 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5681 					GFP_KERNEL);
5682 			if (!*sadb)
5683 				return -ENOMEM;
5684 			count = cea_db_payload_len(db);
5685 			break;
5686 		}
5687 	}
5688 	cea_db_iter_end(&iter);
5689 
5690 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5691 
5692 	return count;
5693 }
5694 
5695 /**
5696  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5697  * @edid: EDID to parse
5698  * @sadb: pointer to the speaker block
5699  *
5700  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5701  *
5702  * Note: The returned pointer needs to be freed using kfree().
5703  *
5704  * Return: The number of found Speaker Allocation Blocks or negative number on
5705  * error.
5706  */
5707 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5708 {
5709 	struct drm_edid drm_edid;
5710 
5711 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5712 					       sadb);
5713 }
5714 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5715 
5716 /**
5717  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5718  * @connector: connector associated with the HDMI/DP sink
5719  * @mode: the display mode
5720  *
5721  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5722  * the sink doesn't support audio or video.
5723  */
5724 int drm_av_sync_delay(struct drm_connector *connector,
5725 		      const struct drm_display_mode *mode)
5726 {
5727 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5728 	int a, v;
5729 
5730 	if (!connector->latency_present[0])
5731 		return 0;
5732 	if (!connector->latency_present[1])
5733 		i = 0;
5734 
5735 	a = connector->audio_latency[i];
5736 	v = connector->video_latency[i];
5737 
5738 	/*
5739 	 * HDMI/DP sink doesn't support audio or video?
5740 	 */
5741 	if (a == 255 || v == 255)
5742 		return 0;
5743 
5744 	/*
5745 	 * Convert raw EDID values to millisecond.
5746 	 * Treat unknown latency as 0ms.
5747 	 */
5748 	if (a)
5749 		a = min(2 * (a - 1), 500);
5750 	if (v)
5751 		v = min(2 * (v - 1), 500);
5752 
5753 	return max(v - a, 0);
5754 }
5755 EXPORT_SYMBOL(drm_av_sync_delay);
5756 
5757 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5758 {
5759 	const struct cea_db *db;
5760 	struct cea_db_iter iter;
5761 	bool hdmi = false;
5762 
5763 	/*
5764 	 * Because HDMI identifier is in Vendor Specific Block,
5765 	 * search it from all data blocks of CEA extension.
5766 	 */
5767 	cea_db_iter_edid_begin(drm_edid, &iter);
5768 	cea_db_iter_for_each(db, &iter) {
5769 		if (cea_db_is_hdmi_vsdb(db)) {
5770 			hdmi = true;
5771 			break;
5772 		}
5773 	}
5774 	cea_db_iter_end(&iter);
5775 
5776 	return hdmi;
5777 }
5778 
5779 /**
5780  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5781  * @edid: monitor EDID information
5782  *
5783  * Parse the CEA extension according to CEA-861-B.
5784  *
5785  * Drivers that have added the modes parsed from EDID to drm_display_info
5786  * should use &drm_display_info.is_hdmi instead of calling this function.
5787  *
5788  * Return: True if the monitor is HDMI, false if not or unknown.
5789  */
5790 bool drm_detect_hdmi_monitor(const struct edid *edid)
5791 {
5792 	struct drm_edid drm_edid;
5793 
5794 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5795 }
5796 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5797 
5798 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5799 {
5800 	struct drm_edid_iter edid_iter;
5801 	const struct cea_db *db;
5802 	struct cea_db_iter iter;
5803 	const u8 *edid_ext;
5804 	bool has_audio = false;
5805 
5806 	drm_edid_iter_begin(drm_edid, &edid_iter);
5807 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5808 		if (edid_ext[0] == CEA_EXT) {
5809 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5810 			if (has_audio)
5811 				break;
5812 		}
5813 	}
5814 	drm_edid_iter_end(&edid_iter);
5815 
5816 	if (has_audio) {
5817 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5818 		goto end;
5819 	}
5820 
5821 	cea_db_iter_edid_begin(drm_edid, &iter);
5822 	cea_db_iter_for_each(db, &iter) {
5823 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5824 			const u8 *data = cea_db_data(db);
5825 			int i;
5826 
5827 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5828 				DRM_DEBUG_KMS("CEA audio format %d\n",
5829 					      (data[i] >> 3) & 0xf);
5830 			has_audio = true;
5831 			break;
5832 		}
5833 	}
5834 	cea_db_iter_end(&iter);
5835 
5836 end:
5837 	return has_audio;
5838 }
5839 
5840 /**
5841  * drm_detect_monitor_audio - check monitor audio capability
5842  * @edid: EDID block to scan
5843  *
5844  * Monitor should have CEA extension block.
5845  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5846  * audio' only. If there is any audio extension block and supported
5847  * audio format, assume at least 'basic audio' support, even if 'basic
5848  * audio' is not defined in EDID.
5849  *
5850  * Return: True if the monitor supports audio, false otherwise.
5851  */
5852 bool drm_detect_monitor_audio(const struct edid *edid)
5853 {
5854 	struct drm_edid drm_edid;
5855 
5856 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5857 }
5858 EXPORT_SYMBOL(drm_detect_monitor_audio);
5859 
5860 
5861 /**
5862  * drm_default_rgb_quant_range - default RGB quantization range
5863  * @mode: display mode
5864  *
5865  * Determine the default RGB quantization range for the mode,
5866  * as specified in CEA-861.
5867  *
5868  * Return: The default RGB quantization range for the mode
5869  */
5870 enum hdmi_quantization_range
5871 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5872 {
5873 	/* All CEA modes other than VIC 1 use limited quantization range. */
5874 	return drm_match_cea_mode(mode) > 1 ?
5875 		HDMI_QUANTIZATION_RANGE_LIMITED :
5876 		HDMI_QUANTIZATION_RANGE_FULL;
5877 }
5878 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5879 
5880 /* CTA-861 Video Data Block (CTA VDB) */
5881 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5882 {
5883 	struct drm_display_info *info = &connector->display_info;
5884 	int i, vic_index, len = cea_db_payload_len(db);
5885 	const u8 *svds = cea_db_data(db);
5886 	u8 *vics;
5887 
5888 	if (!len)
5889 		return;
5890 
5891 	/* Gracefully handle multiple VDBs, however unlikely that is */
5892 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5893 	if (!vics)
5894 		return;
5895 
5896 	vic_index = info->vics_len;
5897 	info->vics_len += len;
5898 	info->vics = vics;
5899 
5900 	for (i = 0; i < len; i++) {
5901 		u8 vic = svd_to_vic(svds[i]);
5902 
5903 		if (!drm_valid_cea_vic(vic))
5904 			vic = 0;
5905 
5906 		info->vics[vic_index++] = vic;
5907 	}
5908 }
5909 
5910 /*
5911  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5912  *
5913  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5914  * using the VICs themselves.
5915  */
5916 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5917 {
5918 	struct drm_display_info *info = &connector->display_info;
5919 	struct drm_hdmi_info *hdmi = &info->hdmi;
5920 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5921 
5922 	for (i = 0; i < len; i++) {
5923 		u8 vic = info->vics[i];
5924 
5925 		if (vic && y420cmdb_map & BIT_ULL(i))
5926 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5927 	}
5928 }
5929 
5930 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5931 {
5932 	const struct drm_display_info *info = &connector->display_info;
5933 	int i;
5934 
5935 	if (!vic || !info->vics)
5936 		return false;
5937 
5938 	for (i = 0; i < info->vics_len; i++) {
5939 		if (info->vics[i] == vic)
5940 			return true;
5941 	}
5942 
5943 	return false;
5944 }
5945 
5946 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5947 static void parse_cta_y420vdb(struct drm_connector *connector,
5948 			      const struct cea_db *db)
5949 {
5950 	struct drm_display_info *info = &connector->display_info;
5951 	struct drm_hdmi_info *hdmi = &info->hdmi;
5952 	const u8 *svds = cea_db_data(db) + 1;
5953 	int i;
5954 
5955 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5956 		u8 vic = svd_to_vic(svds[i]);
5957 
5958 		if (!drm_valid_cea_vic(vic))
5959 			continue;
5960 
5961 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5962 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5963 	}
5964 }
5965 
5966 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5967 {
5968 	struct drm_display_info *info = &connector->display_info;
5969 
5970 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5971 		    connector->base.id, connector->name, db[2]);
5972 
5973 	if (db[2] & EDID_CEA_VCDB_QS)
5974 		info->rgb_quant_range_selectable = true;
5975 }
5976 
5977 static
5978 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5979 {
5980 	switch (max_frl_rate) {
5981 	case 1:
5982 		*max_lanes = 3;
5983 		*max_rate_per_lane = 3;
5984 		break;
5985 	case 2:
5986 		*max_lanes = 3;
5987 		*max_rate_per_lane = 6;
5988 		break;
5989 	case 3:
5990 		*max_lanes = 4;
5991 		*max_rate_per_lane = 6;
5992 		break;
5993 	case 4:
5994 		*max_lanes = 4;
5995 		*max_rate_per_lane = 8;
5996 		break;
5997 	case 5:
5998 		*max_lanes = 4;
5999 		*max_rate_per_lane = 10;
6000 		break;
6001 	case 6:
6002 		*max_lanes = 4;
6003 		*max_rate_per_lane = 12;
6004 		break;
6005 	case 0:
6006 	default:
6007 		*max_lanes = 0;
6008 		*max_rate_per_lane = 0;
6009 	}
6010 }
6011 
6012 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6013 					       const u8 *db)
6014 {
6015 	u8 dc_mask;
6016 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6017 
6018 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6019 	hdmi->y420_dc_modes = dc_mask;
6020 }
6021 
6022 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6023 			       const u8 *hf_scds)
6024 {
6025 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6026 
6027 	if (!hdmi_dsc->v_1p2)
6028 		return;
6029 
6030 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6031 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6032 
6033 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6034 		hdmi_dsc->bpc_supported = 16;
6035 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6036 		hdmi_dsc->bpc_supported = 12;
6037 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6038 		hdmi_dsc->bpc_supported = 10;
6039 	else
6040 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6041 		hdmi_dsc->bpc_supported = 8;
6042 
6043 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6044 		u8 dsc_max_slices;
6045 		u8 dsc_max_frl_rate;
6046 
6047 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6048 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6049 				     &hdmi_dsc->max_frl_rate_per_lane);
6050 
6051 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6052 
6053 		switch (dsc_max_slices) {
6054 		case 1:
6055 			hdmi_dsc->max_slices = 1;
6056 			hdmi_dsc->clk_per_slice = 340;
6057 			break;
6058 		case 2:
6059 			hdmi_dsc->max_slices = 2;
6060 			hdmi_dsc->clk_per_slice = 340;
6061 			break;
6062 		case 3:
6063 			hdmi_dsc->max_slices = 4;
6064 			hdmi_dsc->clk_per_slice = 340;
6065 			break;
6066 		case 4:
6067 			hdmi_dsc->max_slices = 8;
6068 			hdmi_dsc->clk_per_slice = 340;
6069 			break;
6070 		case 5:
6071 			hdmi_dsc->max_slices = 8;
6072 			hdmi_dsc->clk_per_slice = 400;
6073 			break;
6074 		case 6:
6075 			hdmi_dsc->max_slices = 12;
6076 			hdmi_dsc->clk_per_slice = 400;
6077 			break;
6078 		case 7:
6079 			hdmi_dsc->max_slices = 16;
6080 			hdmi_dsc->clk_per_slice = 400;
6081 			break;
6082 		case 0:
6083 		default:
6084 			hdmi_dsc->max_slices = 0;
6085 			hdmi_dsc->clk_per_slice = 0;
6086 		}
6087 	}
6088 
6089 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6090 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6091 }
6092 
6093 /* Sink Capability Data Structure */
6094 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6095 				      const u8 *hf_scds)
6096 {
6097 	struct drm_display_info *info = &connector->display_info;
6098 	struct drm_hdmi_info *hdmi = &info->hdmi;
6099 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6100 	int max_tmds_clock = 0;
6101 	u8 max_frl_rate = 0;
6102 	bool dsc_support = false;
6103 
6104 	info->has_hdmi_infoframe = true;
6105 
6106 	if (hf_scds[6] & 0x80) {
6107 		hdmi->scdc.supported = true;
6108 		if (hf_scds[6] & 0x40)
6109 			hdmi->scdc.read_request = true;
6110 	}
6111 
6112 	/*
6113 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6114 	 * And as per the spec, three factors confirm this:
6115 	 * * Availability of a HF-VSDB block in EDID (check)
6116 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6117 	 * * SCDC support available (let's check)
6118 	 * Lets check it out.
6119 	 */
6120 
6121 	if (hf_scds[5]) {
6122 		struct drm_scdc *scdc = &hdmi->scdc;
6123 
6124 		/* max clock is 5000 KHz times block value */
6125 		max_tmds_clock = hf_scds[5] * 5000;
6126 
6127 		if (max_tmds_clock > 340000) {
6128 			info->max_tmds_clock = max_tmds_clock;
6129 		}
6130 
6131 		if (scdc->supported) {
6132 			scdc->scrambling.supported = true;
6133 
6134 			/* Few sinks support scrambling for clocks < 340M */
6135 			if ((hf_scds[6] & 0x8))
6136 				scdc->scrambling.low_rates = true;
6137 		}
6138 	}
6139 
6140 	if (hf_scds[7]) {
6141 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6142 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6143 				     &hdmi->max_frl_rate_per_lane);
6144 	}
6145 
6146 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6147 
6148 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6149 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6150 		dsc_support = true;
6151 	}
6152 
6153 	drm_dbg_kms(connector->dev,
6154 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6155 		    connector->base.id, connector->name,
6156 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6157 }
6158 
6159 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6160 					   const u8 *hdmi)
6161 {
6162 	struct drm_display_info *info = &connector->display_info;
6163 	unsigned int dc_bpc = 0;
6164 
6165 	/* HDMI supports at least 8 bpc */
6166 	info->bpc = 8;
6167 
6168 	if (cea_db_payload_len(hdmi) < 6)
6169 		return;
6170 
6171 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6172 		dc_bpc = 10;
6173 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6174 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6175 			    connector->base.id, connector->name);
6176 	}
6177 
6178 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6179 		dc_bpc = 12;
6180 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6181 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6182 			    connector->base.id, connector->name);
6183 	}
6184 
6185 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6186 		dc_bpc = 16;
6187 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6188 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6189 			    connector->base.id, connector->name);
6190 	}
6191 
6192 	if (dc_bpc == 0) {
6193 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6194 			    connector->base.id, connector->name);
6195 		return;
6196 	}
6197 
6198 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6199 		    connector->base.id, connector->name, dc_bpc);
6200 	info->bpc = dc_bpc;
6201 
6202 	/* YCRCB444 is optional according to spec. */
6203 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6204 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6205 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6206 			    connector->base.id, connector->name);
6207 	}
6208 
6209 	/*
6210 	 * Spec says that if any deep color mode is supported at all,
6211 	 * then deep color 36 bit must be supported.
6212 	 */
6213 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6214 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6215 			    connector->base.id, connector->name);
6216 	}
6217 }
6218 
6219 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6220 static void
6221 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6222 {
6223 	struct drm_display_info *info = &connector->display_info;
6224 	u8 len = cea_db_payload_len(db);
6225 
6226 	info->is_hdmi = true;
6227 
6228 	info->source_physical_address = (db[4] << 8) | db[5];
6229 
6230 	if (len >= 6)
6231 		info->dvi_dual = db[6] & 1;
6232 	if (len >= 7)
6233 		info->max_tmds_clock = db[7] * 5000;
6234 
6235 	/*
6236 	 * Try to infer whether the sink supports HDMI infoframes.
6237 	 *
6238 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6239 	 * supports infoframes if HDMI_Video_present is set.
6240 	 */
6241 	if (len >= 8 && db[8] & BIT(5))
6242 		info->has_hdmi_infoframe = true;
6243 
6244 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6245 		    connector->base.id, connector->name,
6246 		    info->dvi_dual, info->max_tmds_clock);
6247 
6248 	drm_parse_hdmi_deep_color_info(connector, db);
6249 }
6250 
6251 /*
6252  * See EDID extension for head-mounted and specialized monitors, specified at:
6253  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6254  */
6255 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6256 				     const u8 *db)
6257 {
6258 	struct drm_display_info *info = &connector->display_info;
6259 	u8 version = db[4];
6260 	bool desktop_usage = db[5] & BIT(6);
6261 
6262 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6263 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6264 		info->non_desktop = true;
6265 
6266 	drm_dbg_kms(connector->dev,
6267 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6268 		    connector->base.id, connector->name, version, db[5]);
6269 }
6270 
6271 static void drm_parse_cea_ext(struct drm_connector *connector,
6272 			      const struct drm_edid *drm_edid)
6273 {
6274 	struct drm_display_info *info = &connector->display_info;
6275 	struct drm_edid_iter edid_iter;
6276 	const struct cea_db *db;
6277 	struct cea_db_iter iter;
6278 	const u8 *edid_ext;
6279 	u64 y420cmdb_map = 0;
6280 
6281 	drm_edid_iter_begin(drm_edid, &edid_iter);
6282 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6283 		if (edid_ext[0] != CEA_EXT)
6284 			continue;
6285 
6286 		if (!info->cea_rev)
6287 			info->cea_rev = edid_ext[1];
6288 
6289 		if (info->cea_rev != edid_ext[1])
6290 			drm_dbg_kms(connector->dev,
6291 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6292 				    connector->base.id, connector->name,
6293 				    info->cea_rev, edid_ext[1]);
6294 
6295 		/* The existence of a CTA extension should imply RGB support */
6296 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6297 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6298 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6299 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6300 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6301 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6302 			info->has_audio = true;
6303 
6304 	}
6305 	drm_edid_iter_end(&edid_iter);
6306 
6307 	cea_db_iter_edid_begin(drm_edid, &iter);
6308 	cea_db_iter_for_each(db, &iter) {
6309 		/* FIXME: convert parsers to use struct cea_db */
6310 		const u8 *data = (const u8 *)db;
6311 
6312 		if (cea_db_is_hdmi_vsdb(db))
6313 			drm_parse_hdmi_vsdb_video(connector, data);
6314 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6315 			 cea_db_is_hdmi_forum_scdb(db))
6316 			drm_parse_hdmi_forum_scds(connector, data);
6317 		else if (cea_db_is_microsoft_vsdb(db))
6318 			drm_parse_microsoft_vsdb(connector, data);
6319 		else if (cea_db_is_y420cmdb(db))
6320 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6321 		else if (cea_db_is_y420vdb(db))
6322 			parse_cta_y420vdb(connector, db);
6323 		else if (cea_db_is_vcdb(db))
6324 			drm_parse_vcdb(connector, data);
6325 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6326 			drm_parse_hdr_metadata_block(connector, data);
6327 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6328 			parse_cta_vdb(connector, db);
6329 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6330 			info->has_audio = true;
6331 	}
6332 	cea_db_iter_end(&iter);
6333 
6334 	if (y420cmdb_map)
6335 		update_cta_y420cmdb(connector, y420cmdb_map);
6336 }
6337 
6338 static
6339 void get_monitor_range(const struct detailed_timing *timing, void *c)
6340 {
6341 	struct detailed_mode_closure *closure = c;
6342 	struct drm_display_info *info = &closure->connector->display_info;
6343 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6344 	const struct detailed_non_pixel *data = &timing->data.other_data;
6345 	const struct detailed_data_monitor_range *range = &data->data.range;
6346 	const struct edid *edid = closure->drm_edid->edid;
6347 
6348 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6349 		return;
6350 
6351 	/*
6352 	 * These limits are used to determine the VRR refresh
6353 	 * rate range. Only the "range limits only" variant
6354 	 * of the range descriptor seems to guarantee that
6355 	 * any and all timings are accepted by the sink, as
6356 	 * opposed to just timings conforming to the indicated
6357 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6358 	 * range descriptor are not accepted here.
6359 	 */
6360 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6361 		return;
6362 
6363 	monitor_range->min_vfreq = range->min_vfreq;
6364 	monitor_range->max_vfreq = range->max_vfreq;
6365 
6366 	if (edid->revision >= 4) {
6367 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6368 			monitor_range->min_vfreq += 255;
6369 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6370 			monitor_range->max_vfreq += 255;
6371 	}
6372 }
6373 
6374 static void drm_get_monitor_range(struct drm_connector *connector,
6375 				  const struct drm_edid *drm_edid)
6376 {
6377 	const struct drm_display_info *info = &connector->display_info;
6378 	struct detailed_mode_closure closure = {
6379 		.connector = connector,
6380 		.drm_edid = drm_edid,
6381 	};
6382 
6383 	if (drm_edid->edid->revision < 4)
6384 		return;
6385 
6386 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6387 		return;
6388 
6389 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6390 
6391 	drm_dbg_kms(connector->dev,
6392 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6393 		    connector->base.id, connector->name,
6394 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6395 }
6396 
6397 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6398 				    const struct displayid_block *block)
6399 {
6400 	struct displayid_vesa_vendor_specific_block *vesa =
6401 		(struct displayid_vesa_vendor_specific_block *)block;
6402 	struct drm_display_info *info = &connector->display_info;
6403 
6404 	if (block->num_bytes < 3) {
6405 		drm_dbg_kms(connector->dev,
6406 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6407 			    connector->base.id, connector->name, block->num_bytes);
6408 		return;
6409 	}
6410 
6411 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6412 		return;
6413 
6414 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6415 		drm_dbg_kms(connector->dev,
6416 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6417 			    connector->base.id, connector->name);
6418 		return;
6419 	}
6420 
6421 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6422 	default:
6423 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6424 			    connector->base.id, connector->name);
6425 		fallthrough;
6426 	case 0:
6427 		info->mso_stream_count = 0;
6428 		break;
6429 	case 1:
6430 		info->mso_stream_count = 2; /* 2 or 4 links */
6431 		break;
6432 	case 2:
6433 		info->mso_stream_count = 4; /* 4 links */
6434 		break;
6435 	}
6436 
6437 	if (!info->mso_stream_count) {
6438 		info->mso_pixel_overlap = 0;
6439 		return;
6440 	}
6441 
6442 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6443 	if (info->mso_pixel_overlap > 8) {
6444 		drm_dbg_kms(connector->dev,
6445 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6446 			    connector->base.id, connector->name,
6447 			    info->mso_pixel_overlap);
6448 		info->mso_pixel_overlap = 8;
6449 	}
6450 
6451 	drm_dbg_kms(connector->dev,
6452 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6453 		    connector->base.id, connector->name,
6454 		    info->mso_stream_count, info->mso_pixel_overlap);
6455 }
6456 
6457 static void drm_update_mso(struct drm_connector *connector,
6458 			   const struct drm_edid *drm_edid)
6459 {
6460 	const struct displayid_block *block;
6461 	struct displayid_iter iter;
6462 
6463 	displayid_iter_edid_begin(drm_edid, &iter);
6464 	displayid_iter_for_each(block, &iter) {
6465 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6466 			drm_parse_vesa_mso_data(connector, block);
6467 	}
6468 	displayid_iter_end(&iter);
6469 }
6470 
6471 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6472  * all of the values which would have been set from EDID
6473  */
6474 static void drm_reset_display_info(struct drm_connector *connector)
6475 {
6476 	struct drm_display_info *info = &connector->display_info;
6477 
6478 	info->width_mm = 0;
6479 	info->height_mm = 0;
6480 
6481 	info->bpc = 0;
6482 	info->color_formats = 0;
6483 	info->cea_rev = 0;
6484 	info->max_tmds_clock = 0;
6485 	info->dvi_dual = false;
6486 	info->is_hdmi = false;
6487 	info->has_audio = false;
6488 	info->has_hdmi_infoframe = false;
6489 	info->rgb_quant_range_selectable = false;
6490 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6491 
6492 	info->edid_hdmi_rgb444_dc_modes = 0;
6493 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6494 
6495 	info->non_desktop = 0;
6496 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6497 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6498 
6499 	info->mso_stream_count = 0;
6500 	info->mso_pixel_overlap = 0;
6501 	info->max_dsc_bpp = 0;
6502 
6503 	kfree(info->vics);
6504 	info->vics = NULL;
6505 	info->vics_len = 0;
6506 
6507 	info->quirks = 0;
6508 
6509 	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6510 }
6511 
6512 static void update_displayid_info(struct drm_connector *connector,
6513 				  const struct drm_edid *drm_edid)
6514 {
6515 	struct drm_display_info *info = &connector->display_info;
6516 	const struct displayid_block *block;
6517 	struct displayid_iter iter;
6518 
6519 	displayid_iter_edid_begin(drm_edid, &iter);
6520 	displayid_iter_for_each(block, &iter) {
6521 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6522 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6523 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6524 			info->non_desktop = true;
6525 
6526 		/*
6527 		 * We're only interested in the base section here, no need to
6528 		 * iterate further.
6529 		 */
6530 		break;
6531 	}
6532 	displayid_iter_end(&iter);
6533 }
6534 
6535 static void update_display_info(struct drm_connector *connector,
6536 				const struct drm_edid *drm_edid)
6537 {
6538 	struct drm_display_info *info = &connector->display_info;
6539 	const struct edid *edid;
6540 
6541 	drm_reset_display_info(connector);
6542 	clear_eld(connector);
6543 
6544 	if (!drm_edid)
6545 		return;
6546 
6547 	edid = drm_edid->edid;
6548 
6549 	info->quirks = edid_get_quirks(drm_edid);
6550 
6551 	info->width_mm = edid->width_cm * 10;
6552 	info->height_mm = edid->height_cm * 10;
6553 
6554 	drm_get_monitor_range(connector, drm_edid);
6555 
6556 	if (edid->revision < 3)
6557 		goto out;
6558 
6559 	if (!drm_edid_is_digital(drm_edid))
6560 		goto out;
6561 
6562 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6563 	drm_parse_cea_ext(connector, drm_edid);
6564 
6565 	update_displayid_info(connector, drm_edid);
6566 
6567 	/*
6568 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6569 	 *
6570 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6571 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6572 	 * extensions which tell otherwise.
6573 	 */
6574 	if (info->bpc == 0 && edid->revision == 3 &&
6575 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6576 		info->bpc = 8;
6577 		drm_dbg_kms(connector->dev,
6578 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6579 			    connector->base.id, connector->name, info->bpc);
6580 	}
6581 
6582 	/* Only defined for 1.4 with digital displays */
6583 	if (edid->revision < 4)
6584 		goto out;
6585 
6586 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6587 	case DRM_EDID_DIGITAL_DEPTH_6:
6588 		info->bpc = 6;
6589 		break;
6590 	case DRM_EDID_DIGITAL_DEPTH_8:
6591 		info->bpc = 8;
6592 		break;
6593 	case DRM_EDID_DIGITAL_DEPTH_10:
6594 		info->bpc = 10;
6595 		break;
6596 	case DRM_EDID_DIGITAL_DEPTH_12:
6597 		info->bpc = 12;
6598 		break;
6599 	case DRM_EDID_DIGITAL_DEPTH_14:
6600 		info->bpc = 14;
6601 		break;
6602 	case DRM_EDID_DIGITAL_DEPTH_16:
6603 		info->bpc = 16;
6604 		break;
6605 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6606 	default:
6607 		info->bpc = 0;
6608 		break;
6609 	}
6610 
6611 	drm_dbg_kms(connector->dev,
6612 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6613 		    connector->base.id, connector->name, info->bpc);
6614 
6615 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6616 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6617 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6618 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6619 
6620 	drm_update_mso(connector, drm_edid);
6621 
6622 out:
6623 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6624 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6625 			    connector->base.id, connector->name,
6626 			    info->non_desktop ? " (redundant quirk)" : "");
6627 		info->non_desktop = true;
6628 	}
6629 
6630 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6631 		info->max_dsc_bpp = 15;
6632 
6633 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6634 		info->bpc = 6;
6635 
6636 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6637 		info->bpc = 8;
6638 
6639 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6640 		info->bpc = 10;
6641 
6642 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6643 		info->bpc = 12;
6644 
6645 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6646 	drm_edid_to_eld(connector, drm_edid);
6647 }
6648 
6649 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6650 							    struct displayid_detailed_timings_1 *timings,
6651 							    bool type_7)
6652 {
6653 	struct drm_display_mode *mode;
6654 	unsigned pixel_clock = (timings->pixel_clock[0] |
6655 				(timings->pixel_clock[1] << 8) |
6656 				(timings->pixel_clock[2] << 16)) + 1;
6657 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6658 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6659 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6660 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6661 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6662 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6663 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6664 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6665 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6666 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6667 
6668 	mode = drm_mode_create(dev);
6669 	if (!mode)
6670 		return NULL;
6671 
6672 	/* resolution is kHz for type VII, and 10 kHz for type I */
6673 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6674 	mode->hdisplay = hactive;
6675 	mode->hsync_start = mode->hdisplay + hsync;
6676 	mode->hsync_end = mode->hsync_start + hsync_width;
6677 	mode->htotal = mode->hdisplay + hblank;
6678 
6679 	mode->vdisplay = vactive;
6680 	mode->vsync_start = mode->vdisplay + vsync;
6681 	mode->vsync_end = mode->vsync_start + vsync_width;
6682 	mode->vtotal = mode->vdisplay + vblank;
6683 
6684 	mode->flags = 0;
6685 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6686 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6687 	mode->type = DRM_MODE_TYPE_DRIVER;
6688 
6689 	if (timings->flags & 0x80)
6690 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6691 	drm_mode_set_name(mode);
6692 
6693 	return mode;
6694 }
6695 
6696 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6697 					  const struct displayid_block *block)
6698 {
6699 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6700 	int i;
6701 	int num_timings;
6702 	struct drm_display_mode *newmode;
6703 	int num_modes = 0;
6704 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6705 	/* blocks must be multiple of 20 bytes length */
6706 	if (block->num_bytes % 20)
6707 		return 0;
6708 
6709 	num_timings = block->num_bytes / 20;
6710 	for (i = 0; i < num_timings; i++) {
6711 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6712 
6713 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6714 		if (!newmode)
6715 			continue;
6716 
6717 		drm_mode_probed_add(connector, newmode);
6718 		num_modes++;
6719 	}
6720 	return num_modes;
6721 }
6722 
6723 static int add_displayid_detailed_modes(struct drm_connector *connector,
6724 					const struct drm_edid *drm_edid)
6725 {
6726 	const struct displayid_block *block;
6727 	struct displayid_iter iter;
6728 	int num_modes = 0;
6729 
6730 	displayid_iter_edid_begin(drm_edid, &iter);
6731 	displayid_iter_for_each(block, &iter) {
6732 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6733 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6734 			num_modes += add_displayid_detailed_1_modes(connector, block);
6735 	}
6736 	displayid_iter_end(&iter);
6737 
6738 	return num_modes;
6739 }
6740 
6741 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6742 					 const struct drm_edid *drm_edid)
6743 {
6744 	const struct drm_display_info *info = &connector->display_info;
6745 	int num_modes = 0;
6746 
6747 	if (!drm_edid)
6748 		return 0;
6749 
6750 	/*
6751 	 * EDID spec says modes should be preferred in this order:
6752 	 * - preferred detailed mode
6753 	 * - other detailed modes from base block
6754 	 * - detailed modes from extension blocks
6755 	 * - CVT 3-byte code modes
6756 	 * - standard timing codes
6757 	 * - established timing codes
6758 	 * - modes inferred from GTF or CVT range information
6759 	 *
6760 	 * We get this pretty much right.
6761 	 *
6762 	 * XXX order for additional mode types in extension blocks?
6763 	 */
6764 	num_modes += add_detailed_modes(connector, drm_edid);
6765 	num_modes += add_cvt_modes(connector, drm_edid);
6766 	num_modes += add_standard_modes(connector, drm_edid);
6767 	num_modes += add_established_modes(connector, drm_edid);
6768 	num_modes += add_cea_modes(connector, drm_edid);
6769 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6770 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6771 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6772 		num_modes += add_inferred_modes(connector, drm_edid);
6773 
6774 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6775 		edid_fixup_preferred(connector);
6776 
6777 	return num_modes;
6778 }
6779 
6780 static void _drm_update_tile_info(struct drm_connector *connector,
6781 				  const struct drm_edid *drm_edid);
6782 
6783 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6784 					       const struct drm_edid *drm_edid)
6785 {
6786 	struct drm_device *dev = connector->dev;
6787 	int ret;
6788 
6789 	if (connector->edid_blob_ptr) {
6790 		const struct edid *old_edid = connector->edid_blob_ptr->data;
6791 
6792 		if (old_edid) {
6793 			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6794 				connector->epoch_counter++;
6795 				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6796 					    connector->base.id, connector->name,
6797 					    connector->epoch_counter);
6798 			}
6799 		}
6800 	}
6801 
6802 	ret = drm_property_replace_global_blob(dev,
6803 					       &connector->edid_blob_ptr,
6804 					       drm_edid ? drm_edid->size : 0,
6805 					       drm_edid ? drm_edid->edid : NULL,
6806 					       &connector->base,
6807 					       dev->mode_config.edid_property);
6808 	if (ret) {
6809 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6810 			    connector->base.id, connector->name, ret);
6811 		goto out;
6812 	}
6813 
6814 	ret = drm_object_property_set_value(&connector->base,
6815 					    dev->mode_config.non_desktop_property,
6816 					    connector->display_info.non_desktop);
6817 	if (ret) {
6818 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6819 			    connector->base.id, connector->name, ret);
6820 		goto out;
6821 	}
6822 
6823 	ret = drm_connector_set_tile_property(connector);
6824 	if (ret) {
6825 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6826 			    connector->base.id, connector->name, ret);
6827 		goto out;
6828 	}
6829 
6830 out:
6831 	return ret;
6832 }
6833 
6834 /**
6835  * drm_edid_connector_update - Update connector information from EDID
6836  * @connector: Connector
6837  * @drm_edid: EDID
6838  *
6839  * Update the connector display info, ELD, HDR metadata, relevant properties,
6840  * etc. from the passed in EDID.
6841  *
6842  * If EDID is NULL, reset the information.
6843  *
6844  * Must be called before calling drm_edid_connector_add_modes().
6845  *
6846  * Return: 0 on success, negative error on errors.
6847  */
6848 int drm_edid_connector_update(struct drm_connector *connector,
6849 			      const struct drm_edid *drm_edid)
6850 {
6851 	update_display_info(connector, drm_edid);
6852 
6853 	_drm_update_tile_info(connector, drm_edid);
6854 
6855 	return _drm_edid_connector_property_update(connector, drm_edid);
6856 }
6857 EXPORT_SYMBOL(drm_edid_connector_update);
6858 
6859 /**
6860  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6861  * @connector: Connector
6862  *
6863  * Add the modes from the previously updated EDID property to the connector
6864  * probed modes list.
6865  *
6866  * drm_edid_connector_update() must have been called before this to update the
6867  * EDID property.
6868  *
6869  * Return: The number of modes added, or 0 if we couldn't find any.
6870  */
6871 int drm_edid_connector_add_modes(struct drm_connector *connector)
6872 {
6873 	const struct drm_edid *drm_edid = NULL;
6874 	int count;
6875 
6876 	if (connector->edid_blob_ptr)
6877 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6878 					  connector->edid_blob_ptr->length);
6879 
6880 	count = _drm_edid_connector_add_modes(connector, drm_edid);
6881 
6882 	drm_edid_free(drm_edid);
6883 
6884 	return count;
6885 }
6886 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6887 
6888 /**
6889  * drm_connector_update_edid_property - update the edid property of a connector
6890  * @connector: drm connector
6891  * @edid: new value of the edid property
6892  *
6893  * This function creates a new blob modeset object and assigns its id to the
6894  * connector's edid property.
6895  * Since we also parse tile information from EDID's displayID block, we also
6896  * set the connector's tile property here. See drm_connector_set_tile_property()
6897  * for more details.
6898  *
6899  * This function is deprecated. Use drm_edid_connector_update() instead.
6900  *
6901  * Returns:
6902  * Zero on success, negative errno on failure.
6903  */
6904 int drm_connector_update_edid_property(struct drm_connector *connector,
6905 				       const struct edid *edid)
6906 {
6907 	struct drm_edid drm_edid;
6908 
6909 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6910 }
6911 EXPORT_SYMBOL(drm_connector_update_edid_property);
6912 
6913 /**
6914  * drm_add_edid_modes - add modes from EDID data, if available
6915  * @connector: connector we're probing
6916  * @edid: EDID data
6917  *
6918  * Add the specified modes to the connector's mode list. Also fills out the
6919  * &drm_display_info structure and ELD in @connector with any information which
6920  * can be derived from the edid.
6921  *
6922  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6923  *
6924  * Return: The number of modes added or 0 if we couldn't find any.
6925  */
6926 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6927 {
6928 	struct drm_edid _drm_edid;
6929 	const struct drm_edid *drm_edid;
6930 
6931 	if (edid && !drm_edid_is_valid(edid)) {
6932 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6933 			 connector->base.id, connector->name);
6934 		edid = NULL;
6935 	}
6936 
6937 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6938 
6939 	update_display_info(connector, drm_edid);
6940 
6941 	return _drm_edid_connector_add_modes(connector, drm_edid);
6942 }
6943 EXPORT_SYMBOL(drm_add_edid_modes);
6944 
6945 /**
6946  * drm_add_modes_noedid - add modes for the connectors without EDID
6947  * @connector: connector we're probing
6948  * @hdisplay: the horizontal display limit
6949  * @vdisplay: the vertical display limit
6950  *
6951  * Add the specified modes to the connector's mode list. Only when the
6952  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6953  *
6954  * Return: The number of modes added or 0 if we couldn't find any.
6955  */
6956 int drm_add_modes_noedid(struct drm_connector *connector,
6957 			int hdisplay, int vdisplay)
6958 {
6959 	int i, count, num_modes = 0;
6960 	struct drm_display_mode *mode;
6961 	struct drm_device *dev = connector->dev;
6962 
6963 	count = ARRAY_SIZE(drm_dmt_modes);
6964 	if (hdisplay < 0)
6965 		hdisplay = 0;
6966 	if (vdisplay < 0)
6967 		vdisplay = 0;
6968 
6969 	for (i = 0; i < count; i++) {
6970 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6971 
6972 		if (hdisplay && vdisplay) {
6973 			/*
6974 			 * Only when two are valid, they will be used to check
6975 			 * whether the mode should be added to the mode list of
6976 			 * the connector.
6977 			 */
6978 			if (ptr->hdisplay > hdisplay ||
6979 					ptr->vdisplay > vdisplay)
6980 				continue;
6981 		}
6982 		if (drm_mode_vrefresh(ptr) > 61)
6983 			continue;
6984 		mode = drm_mode_duplicate(dev, ptr);
6985 		if (mode) {
6986 			drm_mode_probed_add(connector, mode);
6987 			num_modes++;
6988 		}
6989 	}
6990 	return num_modes;
6991 }
6992 EXPORT_SYMBOL(drm_add_modes_noedid);
6993 
6994 static bool is_hdmi2_sink(const struct drm_connector *connector)
6995 {
6996 	/*
6997 	 * FIXME: sil-sii8620 doesn't have a connector around when
6998 	 * we need one, so we have to be prepared for a NULL connector.
6999 	 */
7000 	if (!connector)
7001 		return true;
7002 
7003 	return connector->display_info.hdmi.scdc.supported ||
7004 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7005 }
7006 
7007 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7008 			    const struct drm_display_mode *mode)
7009 {
7010 	bool has_hdmi_infoframe = connector ?
7011 		connector->display_info.has_hdmi_infoframe : false;
7012 
7013 	if (!has_hdmi_infoframe)
7014 		return 0;
7015 
7016 	/* No HDMI VIC when signalling 3D video format */
7017 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7018 		return 0;
7019 
7020 	return drm_match_hdmi_mode(mode);
7021 }
7022 
7023 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7024 			   const struct drm_display_mode *mode)
7025 {
7026 	/*
7027 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7028 	 * we should send its VIC in vendor infoframes, else send the
7029 	 * VIC in AVI infoframes. Lets check if this mode is present in
7030 	 * HDMI 1.4b 4K modes
7031 	 */
7032 	if (drm_mode_hdmi_vic(connector, mode))
7033 		return 0;
7034 
7035 	return drm_match_cea_mode(mode);
7036 }
7037 
7038 /*
7039  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7040  * conform to HDMI 1.4.
7041  *
7042  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7043  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7044  *
7045  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7046  * version.
7047  */
7048 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7049 {
7050 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7051 	    !cta_vdb_has_vic(connector, vic))
7052 		return 0;
7053 
7054 	return vic;
7055 }
7056 
7057 /**
7058  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7059  *                                              data from a DRM display mode
7060  * @frame: HDMI AVI infoframe
7061  * @connector: the connector
7062  * @mode: DRM display mode
7063  *
7064  * Return: 0 on success or a negative error code on failure.
7065  */
7066 int
7067 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7068 					 const struct drm_connector *connector,
7069 					 const struct drm_display_mode *mode)
7070 {
7071 	enum hdmi_picture_aspect picture_aspect;
7072 	u8 vic, hdmi_vic;
7073 
7074 	if (!frame || !mode)
7075 		return -EINVAL;
7076 
7077 	hdmi_avi_infoframe_init(frame);
7078 
7079 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7080 		frame->pixel_repeat = 1;
7081 
7082 	vic = drm_mode_cea_vic(connector, mode);
7083 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7084 
7085 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7086 
7087 	/*
7088 	 * As some drivers don't support atomic, we can't use connector state.
7089 	 * So just initialize the frame with default values, just the same way
7090 	 * as it's done with other properties here.
7091 	 */
7092 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7093 	frame->itc = 0;
7094 
7095 	/*
7096 	 * Populate picture aspect ratio from either
7097 	 * user input (if specified) or from the CEA/HDMI mode lists.
7098 	 */
7099 	picture_aspect = mode->picture_aspect_ratio;
7100 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7101 		if (vic)
7102 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7103 		else if (hdmi_vic)
7104 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7105 	}
7106 
7107 	/*
7108 	 * The infoframe can't convey anything but none, 4:3
7109 	 * and 16:9, so if the user has asked for anything else
7110 	 * we can only satisfy it by specifying the right VIC.
7111 	 */
7112 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7113 		if (vic) {
7114 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7115 				return -EINVAL;
7116 		} else if (hdmi_vic) {
7117 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7118 				return -EINVAL;
7119 		} else {
7120 			return -EINVAL;
7121 		}
7122 
7123 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7124 	}
7125 
7126 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7127 	frame->picture_aspect = picture_aspect;
7128 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7129 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7130 
7131 	return 0;
7132 }
7133 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7134 
7135 /**
7136  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7137  *                                        quantization range information
7138  * @frame: HDMI AVI infoframe
7139  * @connector: the connector
7140  * @mode: DRM display mode
7141  * @rgb_quant_range: RGB quantization range (Q)
7142  */
7143 void
7144 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7145 				   const struct drm_connector *connector,
7146 				   const struct drm_display_mode *mode,
7147 				   enum hdmi_quantization_range rgb_quant_range)
7148 {
7149 	const struct drm_display_info *info = &connector->display_info;
7150 
7151 	/*
7152 	 * CEA-861:
7153 	 * "A Source shall not send a non-zero Q value that does not correspond
7154 	 *  to the default RGB Quantization Range for the transmitted Picture
7155 	 *  unless the Sink indicates support for the Q bit in a Video
7156 	 *  Capabilities Data Block."
7157 	 *
7158 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7159 	 * default RGB quantization range for the mode, even when QS=0.
7160 	 */
7161 	if (info->rgb_quant_range_selectable ||
7162 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7163 		frame->quantization_range = rgb_quant_range;
7164 	else
7165 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7166 
7167 	/*
7168 	 * CEA-861-F:
7169 	 * "When transmitting any RGB colorimetry, the Source should set the
7170 	 *  YQ-field to match the RGB Quantization Range being transmitted
7171 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7172 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7173 	 *
7174 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7175 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7176 	 * good way to tell which version of CEA-861 the sink supports, so
7177 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7178 	 * on CEA-861-F.
7179 	 */
7180 	if (!is_hdmi2_sink(connector) ||
7181 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7182 		frame->ycc_quantization_range =
7183 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7184 	else
7185 		frame->ycc_quantization_range =
7186 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7187 }
7188 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7189 
7190 static enum hdmi_3d_structure
7191 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7192 {
7193 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7194 
7195 	switch (layout) {
7196 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7197 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7198 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7199 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7200 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7201 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7202 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7203 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7204 	case DRM_MODE_FLAG_3D_L_DEPTH:
7205 		return HDMI_3D_STRUCTURE_L_DEPTH;
7206 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7207 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7208 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7209 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7210 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7211 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7212 	default:
7213 		return HDMI_3D_STRUCTURE_INVALID;
7214 	}
7215 }
7216 
7217 /**
7218  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7219  * data from a DRM display mode
7220  * @frame: HDMI vendor infoframe
7221  * @connector: the connector
7222  * @mode: DRM display mode
7223  *
7224  * Note that there's is a need to send HDMI vendor infoframes only when using a
7225  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7226  * function will return -EINVAL, error that can be safely ignored.
7227  *
7228  * Return: 0 on success or a negative error code on failure.
7229  */
7230 int
7231 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7232 					    const struct drm_connector *connector,
7233 					    const struct drm_display_mode *mode)
7234 {
7235 	/*
7236 	 * FIXME: sil-sii8620 doesn't have a connector around when
7237 	 * we need one, so we have to be prepared for a NULL connector.
7238 	 */
7239 	bool has_hdmi_infoframe = connector ?
7240 		connector->display_info.has_hdmi_infoframe : false;
7241 	int err;
7242 
7243 	if (!frame || !mode)
7244 		return -EINVAL;
7245 
7246 	if (!has_hdmi_infoframe)
7247 		return -EINVAL;
7248 
7249 	err = hdmi_vendor_infoframe_init(frame);
7250 	if (err < 0)
7251 		return err;
7252 
7253 	/*
7254 	 * Even if it's not absolutely necessary to send the infoframe
7255 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7256 	 * know that the sink can handle it. This is based on a
7257 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7258 	 * have trouble realizing that they should switch from 3D to 2D
7259 	 * mode if the source simply stops sending the infoframe when
7260 	 * it wants to switch from 3D to 2D.
7261 	 */
7262 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7263 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7264 
7265 	return 0;
7266 }
7267 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7268 
7269 static void drm_parse_tiled_block(struct drm_connector *connector,
7270 				  const struct displayid_block *block)
7271 {
7272 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7273 	u16 w, h;
7274 	u8 tile_v_loc, tile_h_loc;
7275 	u8 num_v_tile, num_h_tile;
7276 	struct drm_tile_group *tg;
7277 
7278 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7279 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7280 
7281 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7282 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7283 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7284 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7285 
7286 	connector->has_tile = true;
7287 	if (tile->tile_cap & 0x80)
7288 		connector->tile_is_single_monitor = true;
7289 
7290 	connector->num_h_tile = num_h_tile + 1;
7291 	connector->num_v_tile = num_v_tile + 1;
7292 	connector->tile_h_loc = tile_h_loc;
7293 	connector->tile_v_loc = tile_v_loc;
7294 	connector->tile_h_size = w + 1;
7295 	connector->tile_v_size = h + 1;
7296 
7297 	drm_dbg_kms(connector->dev,
7298 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7299 		    connector->base.id, connector->name,
7300 		    tile->tile_cap,
7301 		    connector->tile_h_size, connector->tile_v_size,
7302 		    connector->num_h_tile, connector->num_v_tile,
7303 		    connector->tile_h_loc, connector->tile_v_loc,
7304 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7305 
7306 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7307 	if (!tg)
7308 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7309 	if (!tg)
7310 		return;
7311 
7312 	if (connector->tile_group != tg) {
7313 		/* if we haven't got a pointer,
7314 		   take the reference, drop ref to old tile group */
7315 		if (connector->tile_group)
7316 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7317 		connector->tile_group = tg;
7318 	} else {
7319 		/* if same tile group, then release the ref we just took. */
7320 		drm_mode_put_tile_group(connector->dev, tg);
7321 	}
7322 }
7323 
7324 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7325 				     const struct displayid_block *block)
7326 {
7327 	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7328 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7329 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7330 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7331 }
7332 
7333 static void _drm_update_tile_info(struct drm_connector *connector,
7334 				  const struct drm_edid *drm_edid)
7335 {
7336 	const struct displayid_block *block;
7337 	struct displayid_iter iter;
7338 
7339 	connector->has_tile = false;
7340 
7341 	displayid_iter_edid_begin(drm_edid, &iter);
7342 	displayid_iter_for_each(block, &iter) {
7343 		if (displayid_is_tiled_block(&iter, block))
7344 			drm_parse_tiled_block(connector, block);
7345 	}
7346 	displayid_iter_end(&iter);
7347 
7348 	if (!connector->has_tile && connector->tile_group) {
7349 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7350 		connector->tile_group = NULL;
7351 	}
7352 }
7353 
7354 /**
7355  * drm_edid_is_digital - is digital?
7356  * @drm_edid: The EDID
7357  *
7358  * Return true if input is digital.
7359  */
7360 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7361 {
7362 	return drm_edid && drm_edid->edid &&
7363 		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7364 }
7365 EXPORT_SYMBOL(drm_edid_is_digital);
7366