1 /* 2 * Copyright (c) 2006 Luc Verhaegen (quirks list) 3 * Copyright (c) 2007-2008 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * Copyright 2010 Red Hat, Inc. 6 * 7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from 8 * FB layer. 9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com> 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sub license, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice (including the 19 * next paragraph) shall be included in all copies or substantial portions 20 * of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 28 * DEALINGS IN THE SOFTWARE. 29 */ 30 31 #include <linux/bitfield.h> 32 #include <linux/byteorder/generic.h> 33 #include <linux/cec.h> 34 #include <linux/hdmi.h> 35 #include <linux/i2c.h> 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/pci.h> 39 #include <linux/seq_buf.h> 40 #include <linux/slab.h> 41 #include <linux/vga_switcheroo.h> 42 43 #include <drm/drm_drv.h> 44 #include <drm/drm_edid.h> 45 #include <drm/drm_eld.h> 46 #include <drm/drm_encoder.h> 47 #include <drm/drm_print.h> 48 49 #include "drm_crtc_internal.h" 50 #include "drm_displayid_internal.h" 51 #include "drm_internal.h" 52 53 static int oui(u8 first, u8 second, u8 third) 54 { 55 return (first << 16) | (second << 8) | third; 56 } 57 58 #define EDID_EST_TIMINGS 16 59 #define EDID_STD_TIMINGS 8 60 #define EDID_DETAILED_TIMINGS 4 61 62 /* 63 * EDID blocks out in the wild have a variety of bugs, try to collect 64 * them here (note that userspace may work around broken monitors first, 65 * but fixes should make their way here so that the kernel "just works" 66 * on as many displays as possible). 67 */ 68 69 /* First detailed mode wrong, use largest 60Hz mode */ 70 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) 71 /* Reported 135MHz pixel clock is too high, needs adjustment */ 72 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) 73 /* Prefer the largest mode at 75 Hz */ 74 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) 75 /* Detail timing is in cm not mm */ 76 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) 77 /* Detailed timing descriptors have bogus size values, so just take the 78 * maximum size and use that. 79 */ 80 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) 81 /* use +hsync +vsync for detailed mode */ 82 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) 83 /* Force reduced-blanking timings for detailed modes */ 84 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) 85 /* Force 8bpc */ 86 #define EDID_QUIRK_FORCE_8BPC (1 << 8) 87 /* Force 12bpc */ 88 #define EDID_QUIRK_FORCE_12BPC (1 << 9) 89 /* Force 6bpc */ 90 #define EDID_QUIRK_FORCE_6BPC (1 << 10) 91 /* Force 10bpc */ 92 #define EDID_QUIRK_FORCE_10BPC (1 << 11) 93 /* Non desktop display (i.e. HMD) */ 94 #define EDID_QUIRK_NON_DESKTOP (1 << 12) 95 /* Cap the DSC target bitrate to 15bpp */ 96 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13) 97 98 #define MICROSOFT_IEEE_OUI 0xca125c 99 100 struct detailed_mode_closure { 101 struct drm_connector *connector; 102 const struct drm_edid *drm_edid; 103 bool preferred; 104 int modes; 105 }; 106 107 struct drm_edid_match_closure { 108 const struct drm_edid_ident *ident; 109 bool matched; 110 }; 111 112 #define LEVEL_DMT 0 113 #define LEVEL_GTF 1 114 #define LEVEL_GTF2 2 115 #define LEVEL_CVT 3 116 117 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \ 118 { \ 119 .ident = { \ 120 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, \ 121 vend_chr_2, product_id), \ 122 }, \ 123 .quirks = _quirks \ 124 } 125 126 static const struct edid_quirk { 127 const struct drm_edid_ident ident; 128 u32 quirks; 129 } edid_quirk_list[] = { 130 /* Acer AL1706 */ 131 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60), 132 /* Acer F51 */ 133 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60), 134 135 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */ 136 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC), 137 138 /* BenQ GW2765 */ 139 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC), 140 141 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */ 142 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC), 143 144 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */ 145 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC), 146 147 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */ 148 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC), 149 150 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */ 151 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC), 152 153 /* Belinea 10 15 55 */ 154 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60), 155 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60), 156 157 /* Envision Peripherals, Inc. EN-7100e */ 158 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH), 159 /* Envision EN2028 */ 160 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60), 161 162 /* Funai Electronics PM36B */ 163 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 | 164 EDID_QUIRK_DETAILED_IN_CM), 165 166 /* LG 27GP950 */ 167 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP), 168 169 /* LG 27GN950 */ 170 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP), 171 172 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */ 173 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC), 174 175 /* LG Philips LCD LP154W01-A5 */ 176 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), 177 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), 178 179 /* Samsung SyncMaster 205BW. Note: irony */ 180 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP), 181 /* Samsung SyncMaster 22[5-6]BW */ 182 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60), 183 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60), 184 185 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */ 186 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC), 187 188 /* ViewSonic VA2026w */ 189 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING), 190 191 /* Medion MD 30217 PG */ 192 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75), 193 194 /* Lenovo G50 */ 195 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC), 196 197 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ 198 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC), 199 200 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/ 201 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC), 202 203 /* Valve Index Headset */ 204 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP), 205 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP), 206 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP), 207 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP), 208 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP), 209 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP), 210 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP), 211 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP), 212 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP), 213 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP), 214 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP), 215 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP), 216 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP), 217 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP), 218 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP), 219 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP), 220 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP), 221 222 /* HTC Vive and Vive Pro VR Headsets */ 223 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP), 224 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP), 225 226 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */ 227 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP), 228 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP), 229 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP), 230 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP), 231 232 /* Windows Mixed Reality Headsets */ 233 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP), 234 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP), 235 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP), 236 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP), 237 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP), 238 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP), 239 240 /* Sony PlayStation VR Headset */ 241 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP), 242 243 /* Sensics VR Headsets */ 244 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP), 245 246 /* OSVR HDK and HDK2 VR Headsets */ 247 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP), 248 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP), 249 }; 250 251 /* 252 * Autogenerated from the DMT spec. 253 * This table is copied from xfree86/modes/xf86EdidModes.c. 254 */ 255 static const struct drm_display_mode drm_dmt_modes[] = { 256 /* 0x01 - 640x350@85Hz */ 257 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 258 736, 832, 0, 350, 382, 385, 445, 0, 259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 260 /* 0x02 - 640x400@85Hz */ 261 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 262 736, 832, 0, 400, 401, 404, 445, 0, 263 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 264 /* 0x03 - 720x400@85Hz */ 265 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 266 828, 936, 0, 400, 401, 404, 446, 0, 267 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 268 /* 0x04 - 640x480@60Hz */ 269 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 270 752, 800, 0, 480, 490, 492, 525, 0, 271 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 272 /* 0x05 - 640x480@72Hz */ 273 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 274 704, 832, 0, 480, 489, 492, 520, 0, 275 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 276 /* 0x06 - 640x480@75Hz */ 277 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 278 720, 840, 0, 480, 481, 484, 500, 0, 279 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 280 /* 0x07 - 640x480@85Hz */ 281 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 282 752, 832, 0, 480, 481, 484, 509, 0, 283 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 284 /* 0x08 - 800x600@56Hz */ 285 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 286 896, 1024, 0, 600, 601, 603, 625, 0, 287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 288 /* 0x09 - 800x600@60Hz */ 289 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 290 968, 1056, 0, 600, 601, 605, 628, 0, 291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 292 /* 0x0a - 800x600@72Hz */ 293 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 294 976, 1040, 0, 600, 637, 643, 666, 0, 295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 296 /* 0x0b - 800x600@75Hz */ 297 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 298 896, 1056, 0, 600, 601, 604, 625, 0, 299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 300 /* 0x0c - 800x600@85Hz */ 301 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 302 896, 1048, 0, 600, 601, 604, 631, 0, 303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 304 /* 0x0d - 800x600@120Hz RB */ 305 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 306 880, 960, 0, 600, 603, 607, 636, 0, 307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 308 /* 0x0e - 848x480@60Hz */ 309 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 310 976, 1088, 0, 480, 486, 494, 517, 0, 311 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 312 /* 0x0f - 1024x768@43Hz, interlace */ 313 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 314 1208, 1264, 0, 768, 768, 776, 817, 0, 315 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 316 DRM_MODE_FLAG_INTERLACE) }, 317 /* 0x10 - 1024x768@60Hz */ 318 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 319 1184, 1344, 0, 768, 771, 777, 806, 0, 320 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 321 /* 0x11 - 1024x768@70Hz */ 322 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 323 1184, 1328, 0, 768, 771, 777, 806, 0, 324 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 325 /* 0x12 - 1024x768@75Hz */ 326 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 327 1136, 1312, 0, 768, 769, 772, 800, 0, 328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 329 /* 0x13 - 1024x768@85Hz */ 330 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 331 1168, 1376, 0, 768, 769, 772, 808, 0, 332 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 333 /* 0x14 - 1024x768@120Hz RB */ 334 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 335 1104, 1184, 0, 768, 771, 775, 813, 0, 336 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 337 /* 0x15 - 1152x864@75Hz */ 338 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 339 1344, 1600, 0, 864, 865, 868, 900, 0, 340 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 341 /* 0x55 - 1280x720@60Hz */ 342 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 343 1430, 1650, 0, 720, 725, 730, 750, 0, 344 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 345 /* 0x16 - 1280x768@60Hz RB */ 346 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 347 1360, 1440, 0, 768, 771, 778, 790, 0, 348 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 349 /* 0x17 - 1280x768@60Hz */ 350 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 351 1472, 1664, 0, 768, 771, 778, 798, 0, 352 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 353 /* 0x18 - 1280x768@75Hz */ 354 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 355 1488, 1696, 0, 768, 771, 778, 805, 0, 356 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 357 /* 0x19 - 1280x768@85Hz */ 358 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 359 1496, 1712, 0, 768, 771, 778, 809, 0, 360 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 361 /* 0x1a - 1280x768@120Hz RB */ 362 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 363 1360, 1440, 0, 768, 771, 778, 813, 0, 364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 365 /* 0x1b - 1280x800@60Hz RB */ 366 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 367 1360, 1440, 0, 800, 803, 809, 823, 0, 368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 369 /* 0x1c - 1280x800@60Hz */ 370 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 371 1480, 1680, 0, 800, 803, 809, 831, 0, 372 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 373 /* 0x1d - 1280x800@75Hz */ 374 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 375 1488, 1696, 0, 800, 803, 809, 838, 0, 376 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 377 /* 0x1e - 1280x800@85Hz */ 378 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 379 1496, 1712, 0, 800, 803, 809, 843, 0, 380 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 381 /* 0x1f - 1280x800@120Hz RB */ 382 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 383 1360, 1440, 0, 800, 803, 809, 847, 0, 384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 385 /* 0x20 - 1280x960@60Hz */ 386 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 387 1488, 1800, 0, 960, 961, 964, 1000, 0, 388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 389 /* 0x21 - 1280x960@85Hz */ 390 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 391 1504, 1728, 0, 960, 961, 964, 1011, 0, 392 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 393 /* 0x22 - 1280x960@120Hz RB */ 394 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 395 1360, 1440, 0, 960, 963, 967, 1017, 0, 396 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 397 /* 0x23 - 1280x1024@60Hz */ 398 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 399 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 400 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 401 /* 0x24 - 1280x1024@75Hz */ 402 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 403 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 404 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 405 /* 0x25 - 1280x1024@85Hz */ 406 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 407 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, 408 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 409 /* 0x26 - 1280x1024@120Hz RB */ 410 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 411 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, 412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 413 /* 0x27 - 1360x768@60Hz */ 414 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 415 1536, 1792, 0, 768, 771, 777, 795, 0, 416 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 417 /* 0x28 - 1360x768@120Hz RB */ 418 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 419 1440, 1520, 0, 768, 771, 776, 813, 0, 420 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 421 /* 0x51 - 1366x768@60Hz */ 422 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436, 423 1579, 1792, 0, 768, 771, 774, 798, 0, 424 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 425 /* 0x56 - 1366x768@60Hz */ 426 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380, 427 1436, 1500, 0, 768, 769, 772, 800, 0, 428 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 429 /* 0x29 - 1400x1050@60Hz RB */ 430 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 431 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, 432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 433 /* 0x2a - 1400x1050@60Hz */ 434 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 435 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 436 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 437 /* 0x2b - 1400x1050@75Hz */ 438 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 439 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, 440 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 441 /* 0x2c - 1400x1050@85Hz */ 442 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 443 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, 444 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 445 /* 0x2d - 1400x1050@120Hz RB */ 446 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 447 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, 448 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 449 /* 0x2e - 1440x900@60Hz RB */ 450 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 451 1520, 1600, 0, 900, 903, 909, 926, 0, 452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 453 /* 0x2f - 1440x900@60Hz */ 454 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 455 1672, 1904, 0, 900, 903, 909, 934, 0, 456 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 457 /* 0x30 - 1440x900@75Hz */ 458 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 459 1688, 1936, 0, 900, 903, 909, 942, 0, 460 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 461 /* 0x31 - 1440x900@85Hz */ 462 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 463 1696, 1952, 0, 900, 903, 909, 948, 0, 464 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 465 /* 0x32 - 1440x900@120Hz RB */ 466 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 467 1520, 1600, 0, 900, 903, 909, 953, 0, 468 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 469 /* 0x53 - 1600x900@60Hz */ 470 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624, 471 1704, 1800, 0, 900, 901, 904, 1000, 0, 472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 473 /* 0x33 - 1600x1200@60Hz */ 474 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 475 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 476 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 477 /* 0x34 - 1600x1200@65Hz */ 478 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 479 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 480 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 481 /* 0x35 - 1600x1200@70Hz */ 482 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 483 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 484 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 485 /* 0x36 - 1600x1200@75Hz */ 486 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 487 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 488 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 489 /* 0x37 - 1600x1200@85Hz */ 490 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 491 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 492 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 493 /* 0x38 - 1600x1200@120Hz RB */ 494 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 495 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, 496 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 497 /* 0x39 - 1680x1050@60Hz RB */ 498 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 499 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, 500 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 501 /* 0x3a - 1680x1050@60Hz */ 502 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 503 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 504 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 505 /* 0x3b - 1680x1050@75Hz */ 506 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 507 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, 508 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 509 /* 0x3c - 1680x1050@85Hz */ 510 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 511 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, 512 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 513 /* 0x3d - 1680x1050@120Hz RB */ 514 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 515 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, 516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 517 /* 0x3e - 1792x1344@60Hz */ 518 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 519 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 520 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 521 /* 0x3f - 1792x1344@75Hz */ 522 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 523 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, 524 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 525 /* 0x40 - 1792x1344@120Hz RB */ 526 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 527 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, 528 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 529 /* 0x41 - 1856x1392@60Hz */ 530 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 531 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 532 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 533 /* 0x42 - 1856x1392@75Hz */ 534 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 535 2208, 2560, 0, 1392, 1393, 1396, 1500, 0, 536 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 537 /* 0x43 - 1856x1392@120Hz RB */ 538 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 539 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, 540 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 541 /* 0x52 - 1920x1080@60Hz */ 542 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 543 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 544 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 545 /* 0x44 - 1920x1200@60Hz RB */ 546 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 547 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, 548 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 549 /* 0x45 - 1920x1200@60Hz */ 550 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 551 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 552 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 553 /* 0x46 - 1920x1200@75Hz */ 554 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 555 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, 556 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 557 /* 0x47 - 1920x1200@85Hz */ 558 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 559 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, 560 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 561 /* 0x48 - 1920x1200@120Hz RB */ 562 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 563 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, 564 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 565 /* 0x49 - 1920x1440@60Hz */ 566 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 567 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 568 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 569 /* 0x4a - 1920x1440@75Hz */ 570 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 571 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, 572 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 573 /* 0x4b - 1920x1440@120Hz RB */ 574 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 575 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, 576 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 577 /* 0x54 - 2048x1152@60Hz */ 578 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074, 579 2154, 2250, 0, 1152, 1153, 1156, 1200, 0, 580 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 581 /* 0x4c - 2560x1600@60Hz RB */ 582 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 583 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, 584 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 585 /* 0x4d - 2560x1600@60Hz */ 586 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 587 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 588 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 589 /* 0x4e - 2560x1600@75Hz */ 590 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 591 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, 592 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 593 /* 0x4f - 2560x1600@85Hz */ 594 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 595 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, 596 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 597 /* 0x50 - 2560x1600@120Hz RB */ 598 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 599 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, 600 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 601 /* 0x57 - 4096x2160@60Hz RB */ 602 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104, 603 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 604 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 605 /* 0x58 - 4096x2160@59.94Hz RB */ 606 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104, 607 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 608 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 609 }; 610 611 /* 612 * These more or less come from the DMT spec. The 720x400 modes are 613 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 614 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode 615 * should be 1152x870, again for the Mac, but instead we use the x864 DMT 616 * mode. 617 * 618 * The DMT modes have been fact-checked; the rest are mild guesses. 619 */ 620 static const struct drm_display_mode edid_est_modes[] = { 621 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 622 968, 1056, 0, 600, 601, 605, 628, 0, 623 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ 624 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 625 896, 1024, 0, 600, 601, 603, 625, 0, 626 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ 627 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 628 720, 840, 0, 480, 481, 484, 500, 0, 629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ 630 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 631 704, 832, 0, 480, 489, 492, 520, 0, 632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ 633 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 634 768, 864, 0, 480, 483, 486, 525, 0, 635 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ 636 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 637 752, 800, 0, 480, 490, 492, 525, 0, 638 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ 639 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 640 846, 900, 0, 400, 421, 423, 449, 0, 641 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ 642 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 643 846, 900, 0, 400, 412, 414, 449, 0, 644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ 645 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 646 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 647 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ 648 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 649 1136, 1312, 0, 768, 769, 772, 800, 0, 650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ 651 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 652 1184, 1328, 0, 768, 771, 777, 806, 0, 653 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ 654 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 655 1184, 1344, 0, 768, 771, 777, 806, 0, 656 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ 657 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 658 1208, 1264, 0, 768, 768, 776, 817, 0, 659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ 660 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 661 928, 1152, 0, 624, 625, 628, 667, 0, 662 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ 663 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 664 896, 1056, 0, 600, 601, 604, 625, 0, 665 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ 666 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 667 976, 1040, 0, 600, 637, 643, 666, 0, 668 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ 669 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 670 1344, 1600, 0, 864, 865, 868, 900, 0, 671 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ 672 }; 673 674 struct minimode { 675 short w; 676 short h; 677 short r; 678 short rb; 679 }; 680 681 static const struct minimode est3_modes[] = { 682 /* byte 6 */ 683 { 640, 350, 85, 0 }, 684 { 640, 400, 85, 0 }, 685 { 720, 400, 85, 0 }, 686 { 640, 480, 85, 0 }, 687 { 848, 480, 60, 0 }, 688 { 800, 600, 85, 0 }, 689 { 1024, 768, 85, 0 }, 690 { 1152, 864, 75, 0 }, 691 /* byte 7 */ 692 { 1280, 768, 60, 1 }, 693 { 1280, 768, 60, 0 }, 694 { 1280, 768, 75, 0 }, 695 { 1280, 768, 85, 0 }, 696 { 1280, 960, 60, 0 }, 697 { 1280, 960, 85, 0 }, 698 { 1280, 1024, 60, 0 }, 699 { 1280, 1024, 85, 0 }, 700 /* byte 8 */ 701 { 1360, 768, 60, 0 }, 702 { 1440, 900, 60, 1 }, 703 { 1440, 900, 60, 0 }, 704 { 1440, 900, 75, 0 }, 705 { 1440, 900, 85, 0 }, 706 { 1400, 1050, 60, 1 }, 707 { 1400, 1050, 60, 0 }, 708 { 1400, 1050, 75, 0 }, 709 /* byte 9 */ 710 { 1400, 1050, 85, 0 }, 711 { 1680, 1050, 60, 1 }, 712 { 1680, 1050, 60, 0 }, 713 { 1680, 1050, 75, 0 }, 714 { 1680, 1050, 85, 0 }, 715 { 1600, 1200, 60, 0 }, 716 { 1600, 1200, 65, 0 }, 717 { 1600, 1200, 70, 0 }, 718 /* byte 10 */ 719 { 1600, 1200, 75, 0 }, 720 { 1600, 1200, 85, 0 }, 721 { 1792, 1344, 60, 0 }, 722 { 1792, 1344, 75, 0 }, 723 { 1856, 1392, 60, 0 }, 724 { 1856, 1392, 75, 0 }, 725 { 1920, 1200, 60, 1 }, 726 { 1920, 1200, 60, 0 }, 727 /* byte 11 */ 728 { 1920, 1200, 75, 0 }, 729 { 1920, 1200, 85, 0 }, 730 { 1920, 1440, 60, 0 }, 731 { 1920, 1440, 75, 0 }, 732 }; 733 734 static const struct minimode extra_modes[] = { 735 { 1024, 576, 60, 0 }, 736 { 1366, 768, 60, 0 }, 737 { 1600, 900, 60, 0 }, 738 { 1680, 945, 60, 0 }, 739 { 1920, 1080, 60, 0 }, 740 { 2048, 1152, 60, 0 }, 741 { 2048, 1536, 60, 0 }, 742 }; 743 744 /* 745 * From CEA/CTA-861 spec. 746 * 747 * Do not access directly, instead always use cea_mode_for_vic(). 748 */ 749 static const struct drm_display_mode edid_cea_modes_1[] = { 750 /* 1 - 640x480@60Hz 4:3 */ 751 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752 752, 800, 0, 480, 490, 492, 525, 0, 753 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 754 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 755 /* 2 - 720x480@60Hz 4:3 */ 756 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 757 798, 858, 0, 480, 489, 495, 525, 0, 758 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 759 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 760 /* 3 - 720x480@60Hz 16:9 */ 761 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 762 798, 858, 0, 480, 489, 495, 525, 0, 763 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 764 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 765 /* 4 - 1280x720@60Hz 16:9 */ 766 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 767 1430, 1650, 0, 720, 725, 730, 750, 0, 768 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 769 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 770 /* 5 - 1920x1080i@60Hz 16:9 */ 771 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 772 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 773 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 774 DRM_MODE_FLAG_INTERLACE), 775 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 776 /* 6 - 720(1440)x480i@60Hz 4:3 */ 777 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 778 801, 858, 0, 480, 488, 494, 525, 0, 779 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 780 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 781 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 782 /* 7 - 720(1440)x480i@60Hz 16:9 */ 783 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 784 801, 858, 0, 480, 488, 494, 525, 0, 785 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 786 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 787 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 788 /* 8 - 720(1440)x240@60Hz 4:3 */ 789 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 790 801, 858, 0, 240, 244, 247, 262, 0, 791 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 792 DRM_MODE_FLAG_DBLCLK), 793 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 794 /* 9 - 720(1440)x240@60Hz 16:9 */ 795 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 796 801, 858, 0, 240, 244, 247, 262, 0, 797 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 798 DRM_MODE_FLAG_DBLCLK), 799 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 800 /* 10 - 2880x480i@60Hz 4:3 */ 801 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 802 3204, 3432, 0, 480, 488, 494, 525, 0, 803 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 804 DRM_MODE_FLAG_INTERLACE), 805 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 806 /* 11 - 2880x480i@60Hz 16:9 */ 807 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 808 3204, 3432, 0, 480, 488, 494, 525, 0, 809 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 810 DRM_MODE_FLAG_INTERLACE), 811 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 812 /* 12 - 2880x240@60Hz 4:3 */ 813 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 814 3204, 3432, 0, 240, 244, 247, 262, 0, 815 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 816 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 817 /* 13 - 2880x240@60Hz 16:9 */ 818 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 819 3204, 3432, 0, 240, 244, 247, 262, 0, 820 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 821 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 822 /* 14 - 1440x480@60Hz 4:3 */ 823 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 824 1596, 1716, 0, 480, 489, 495, 525, 0, 825 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 826 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 827 /* 15 - 1440x480@60Hz 16:9 */ 828 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 829 1596, 1716, 0, 480, 489, 495, 525, 0, 830 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 831 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 832 /* 16 - 1920x1080@60Hz 16:9 */ 833 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 834 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 835 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 836 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 837 /* 17 - 720x576@50Hz 4:3 */ 838 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 839 796, 864, 0, 576, 581, 586, 625, 0, 840 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 841 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 842 /* 18 - 720x576@50Hz 16:9 */ 843 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 844 796, 864, 0, 576, 581, 586, 625, 0, 845 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 846 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 847 /* 19 - 1280x720@50Hz 16:9 */ 848 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 849 1760, 1980, 0, 720, 725, 730, 750, 0, 850 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 851 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 852 /* 20 - 1920x1080i@50Hz 16:9 */ 853 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 854 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 855 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 856 DRM_MODE_FLAG_INTERLACE), 857 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 858 /* 21 - 720(1440)x576i@50Hz 4:3 */ 859 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 860 795, 864, 0, 576, 580, 586, 625, 0, 861 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 862 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 863 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 864 /* 22 - 720(1440)x576i@50Hz 16:9 */ 865 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 866 795, 864, 0, 576, 580, 586, 625, 0, 867 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 868 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 869 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 870 /* 23 - 720(1440)x288@50Hz 4:3 */ 871 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 872 795, 864, 0, 288, 290, 293, 312, 0, 873 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 874 DRM_MODE_FLAG_DBLCLK), 875 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 876 /* 24 - 720(1440)x288@50Hz 16:9 */ 877 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 878 795, 864, 0, 288, 290, 293, 312, 0, 879 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 880 DRM_MODE_FLAG_DBLCLK), 881 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 882 /* 25 - 2880x576i@50Hz 4:3 */ 883 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 884 3180, 3456, 0, 576, 580, 586, 625, 0, 885 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 886 DRM_MODE_FLAG_INTERLACE), 887 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 888 /* 26 - 2880x576i@50Hz 16:9 */ 889 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 890 3180, 3456, 0, 576, 580, 586, 625, 0, 891 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 892 DRM_MODE_FLAG_INTERLACE), 893 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 894 /* 27 - 2880x288@50Hz 4:3 */ 895 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 896 3180, 3456, 0, 288, 290, 293, 312, 0, 897 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 898 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 899 /* 28 - 2880x288@50Hz 16:9 */ 900 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 901 3180, 3456, 0, 288, 290, 293, 312, 0, 902 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 903 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 904 /* 29 - 1440x576@50Hz 4:3 */ 905 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 906 1592, 1728, 0, 576, 581, 586, 625, 0, 907 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 908 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 909 /* 30 - 1440x576@50Hz 16:9 */ 910 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 911 1592, 1728, 0, 576, 581, 586, 625, 0, 912 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 913 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 914 /* 31 - 1920x1080@50Hz 16:9 */ 915 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 916 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 917 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 918 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 919 /* 32 - 1920x1080@24Hz 16:9 */ 920 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 921 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 922 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 923 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 924 /* 33 - 1920x1080@25Hz 16:9 */ 925 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 926 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 927 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 928 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 929 /* 34 - 1920x1080@30Hz 16:9 */ 930 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 931 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 932 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 933 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 934 /* 35 - 2880x480@60Hz 4:3 */ 935 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 936 3192, 3432, 0, 480, 489, 495, 525, 0, 937 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 938 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 939 /* 36 - 2880x480@60Hz 16:9 */ 940 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 941 3192, 3432, 0, 480, 489, 495, 525, 0, 942 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 943 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 944 /* 37 - 2880x576@50Hz 4:3 */ 945 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 946 3184, 3456, 0, 576, 581, 586, 625, 0, 947 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 948 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 949 /* 38 - 2880x576@50Hz 16:9 */ 950 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 951 3184, 3456, 0, 576, 581, 586, 625, 0, 952 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 953 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 954 /* 39 - 1920x1080i@50Hz 16:9 */ 955 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 956 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, 957 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | 958 DRM_MODE_FLAG_INTERLACE), 959 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 960 /* 40 - 1920x1080i@100Hz 16:9 */ 961 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 962 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 963 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 964 DRM_MODE_FLAG_INTERLACE), 965 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 966 /* 41 - 1280x720@100Hz 16:9 */ 967 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 968 1760, 1980, 0, 720, 725, 730, 750, 0, 969 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 970 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 971 /* 42 - 720x576@100Hz 4:3 */ 972 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 973 796, 864, 0, 576, 581, 586, 625, 0, 974 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 975 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 976 /* 43 - 720x576@100Hz 16:9 */ 977 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 978 796, 864, 0, 576, 581, 586, 625, 0, 979 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 980 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 981 /* 44 - 720(1440)x576i@100Hz 4:3 */ 982 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 983 795, 864, 0, 576, 580, 586, 625, 0, 984 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 985 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 986 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 987 /* 45 - 720(1440)x576i@100Hz 16:9 */ 988 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 989 795, 864, 0, 576, 580, 586, 625, 0, 990 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 991 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 992 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 993 /* 46 - 1920x1080i@120Hz 16:9 */ 994 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 995 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 996 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 997 DRM_MODE_FLAG_INTERLACE), 998 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 999 /* 47 - 1280x720@120Hz 16:9 */ 1000 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1001 1430, 1650, 0, 720, 725, 730, 750, 0, 1002 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1003 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1004 /* 48 - 720x480@120Hz 4:3 */ 1005 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 1006 798, 858, 0, 480, 489, 495, 525, 0, 1007 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1008 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1009 /* 49 - 720x480@120Hz 16:9 */ 1010 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 1011 798, 858, 0, 480, 489, 495, 525, 0, 1012 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1013 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1014 /* 50 - 720(1440)x480i@120Hz 4:3 */ 1015 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 1016 801, 858, 0, 480, 488, 494, 525, 0, 1017 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1018 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1019 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1020 /* 51 - 720(1440)x480i@120Hz 16:9 */ 1021 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 1022 801, 858, 0, 480, 488, 494, 525, 0, 1023 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1024 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1025 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1026 /* 52 - 720x576@200Hz 4:3 */ 1027 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 1028 796, 864, 0, 576, 581, 586, 625, 0, 1029 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1030 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1031 /* 53 - 720x576@200Hz 16:9 */ 1032 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 1033 796, 864, 0, 576, 581, 586, 625, 0, 1034 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1035 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1036 /* 54 - 720(1440)x576i@200Hz 4:3 */ 1037 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 1038 795, 864, 0, 576, 580, 586, 625, 0, 1039 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1040 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1041 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1042 /* 55 - 720(1440)x576i@200Hz 16:9 */ 1043 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 1044 795, 864, 0, 576, 580, 586, 625, 0, 1045 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1046 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1047 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1048 /* 56 - 720x480@240Hz 4:3 */ 1049 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1050 798, 858, 0, 480, 489, 495, 525, 0, 1051 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1052 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1053 /* 57 - 720x480@240Hz 16:9 */ 1054 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1055 798, 858, 0, 480, 489, 495, 525, 0, 1056 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1057 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1058 /* 58 - 720(1440)x480i@240Hz 4:3 */ 1059 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1060 801, 858, 0, 480, 488, 494, 525, 0, 1061 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1062 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1063 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1064 /* 59 - 720(1440)x480i@240Hz 16:9 */ 1065 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1066 801, 858, 0, 480, 488, 494, 525, 0, 1067 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1068 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1069 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1070 /* 60 - 1280x720@24Hz 16:9 */ 1071 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1072 3080, 3300, 0, 720, 725, 730, 750, 0, 1073 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1074 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1075 /* 61 - 1280x720@25Hz 16:9 */ 1076 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1077 3740, 3960, 0, 720, 725, 730, 750, 0, 1078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1079 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1080 /* 62 - 1280x720@30Hz 16:9 */ 1081 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1082 3080, 3300, 0, 720, 725, 730, 750, 0, 1083 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1084 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1085 /* 63 - 1920x1080@120Hz 16:9 */ 1086 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1087 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1088 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1089 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1090 /* 64 - 1920x1080@100Hz 16:9 */ 1091 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1092 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1093 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1094 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1095 /* 65 - 1280x720@24Hz 64:27 */ 1096 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1097 3080, 3300, 0, 720, 725, 730, 750, 0, 1098 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1099 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1100 /* 66 - 1280x720@25Hz 64:27 */ 1101 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1102 3740, 3960, 0, 720, 725, 730, 750, 0, 1103 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1104 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1105 /* 67 - 1280x720@30Hz 64:27 */ 1106 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1107 3080, 3300, 0, 720, 725, 730, 750, 0, 1108 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1109 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1110 /* 68 - 1280x720@50Hz 64:27 */ 1111 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1112 1760, 1980, 0, 720, 725, 730, 750, 0, 1113 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1114 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1115 /* 69 - 1280x720@60Hz 64:27 */ 1116 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1117 1430, 1650, 0, 720, 725, 730, 750, 0, 1118 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1119 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1120 /* 70 - 1280x720@100Hz 64:27 */ 1121 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1122 1760, 1980, 0, 720, 725, 730, 750, 0, 1123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1124 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1125 /* 71 - 1280x720@120Hz 64:27 */ 1126 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1127 1430, 1650, 0, 720, 725, 730, 750, 0, 1128 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1129 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1130 /* 72 - 1920x1080@24Hz 64:27 */ 1131 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 1132 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1134 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1135 /* 73 - 1920x1080@25Hz 64:27 */ 1136 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 1137 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1139 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1140 /* 74 - 1920x1080@30Hz 64:27 */ 1141 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 1142 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1143 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1144 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1145 /* 75 - 1920x1080@50Hz 64:27 */ 1146 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 1147 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1148 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1149 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1150 /* 76 - 1920x1080@60Hz 64:27 */ 1151 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 1152 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1153 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1154 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1155 /* 77 - 1920x1080@100Hz 64:27 */ 1156 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1157 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1159 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1160 /* 78 - 1920x1080@120Hz 64:27 */ 1161 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1162 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1163 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1164 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1165 /* 79 - 1680x720@24Hz 64:27 */ 1166 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040, 1167 3080, 3300, 0, 720, 725, 730, 750, 0, 1168 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1169 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1170 /* 80 - 1680x720@25Hz 64:27 */ 1171 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908, 1172 2948, 3168, 0, 720, 725, 730, 750, 0, 1173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1174 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1175 /* 81 - 1680x720@30Hz 64:27 */ 1176 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380, 1177 2420, 2640, 0, 720, 725, 730, 750, 0, 1178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1179 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1180 /* 82 - 1680x720@50Hz 64:27 */ 1181 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940, 1182 1980, 2200, 0, 720, 725, 730, 750, 0, 1183 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1184 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1185 /* 83 - 1680x720@60Hz 64:27 */ 1186 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940, 1187 1980, 2200, 0, 720, 725, 730, 750, 0, 1188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1189 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1190 /* 84 - 1680x720@100Hz 64:27 */ 1191 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740, 1192 1780, 2000, 0, 720, 725, 730, 825, 0, 1193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1194 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1195 /* 85 - 1680x720@120Hz 64:27 */ 1196 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740, 1197 1780, 2000, 0, 720, 725, 730, 825, 0, 1198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1199 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1200 /* 86 - 2560x1080@24Hz 64:27 */ 1201 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558, 1202 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, 1203 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1204 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1205 /* 87 - 2560x1080@25Hz 64:27 */ 1206 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008, 1207 3052, 3200, 0, 1080, 1084, 1089, 1125, 0, 1208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1209 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1210 /* 88 - 2560x1080@30Hz 64:27 */ 1211 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328, 1212 3372, 3520, 0, 1080, 1084, 1089, 1125, 0, 1213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1214 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1215 /* 89 - 2560x1080@50Hz 64:27 */ 1216 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108, 1217 3152, 3300, 0, 1080, 1084, 1089, 1125, 0, 1218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1219 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1220 /* 90 - 2560x1080@60Hz 64:27 */ 1221 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808, 1222 2852, 3000, 0, 1080, 1084, 1089, 1100, 0, 1223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1224 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1225 /* 91 - 2560x1080@100Hz 64:27 */ 1226 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778, 1227 2822, 2970, 0, 1080, 1084, 1089, 1250, 0, 1228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1229 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1230 /* 92 - 2560x1080@120Hz 64:27 */ 1231 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108, 1232 3152, 3300, 0, 1080, 1084, 1089, 1250, 0, 1233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1234 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1235 /* 93 - 3840x2160@24Hz 16:9 */ 1236 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1237 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1239 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1240 /* 94 - 3840x2160@25Hz 16:9 */ 1241 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1242 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1244 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1245 /* 95 - 3840x2160@30Hz 16:9 */ 1246 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1247 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1248 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1249 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1250 /* 96 - 3840x2160@50Hz 16:9 */ 1251 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1252 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1253 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1254 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1255 /* 97 - 3840x2160@60Hz 16:9 */ 1256 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1257 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1258 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1259 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1260 /* 98 - 4096x2160@24Hz 256:135 */ 1261 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 1262 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1263 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1264 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1265 /* 99 - 4096x2160@25Hz 256:135 */ 1266 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064, 1267 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1268 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1269 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1270 /* 100 - 4096x2160@30Hz 256:135 */ 1271 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184, 1272 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1273 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1274 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1275 /* 101 - 4096x2160@50Hz 256:135 */ 1276 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064, 1277 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1279 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1280 /* 102 - 4096x2160@60Hz 256:135 */ 1281 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184, 1282 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1284 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1285 /* 103 - 3840x2160@24Hz 64:27 */ 1286 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1287 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1288 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1289 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1290 /* 104 - 3840x2160@25Hz 64:27 */ 1291 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1292 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1293 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1294 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1295 /* 105 - 3840x2160@30Hz 64:27 */ 1296 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1297 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1299 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1300 /* 106 - 3840x2160@50Hz 64:27 */ 1301 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1302 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1304 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1305 /* 107 - 3840x2160@60Hz 64:27 */ 1306 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1307 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1308 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1309 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1310 /* 108 - 1280x720@48Hz 16:9 */ 1311 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 1312 2280, 2500, 0, 720, 725, 730, 750, 0, 1313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1314 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1315 /* 109 - 1280x720@48Hz 64:27 */ 1316 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 1317 2280, 2500, 0, 720, 725, 730, 750, 0, 1318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1319 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1320 /* 110 - 1680x720@48Hz 64:27 */ 1321 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490, 1322 2530, 2750, 0, 720, 725, 730, 750, 0, 1323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1324 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1325 /* 111 - 1920x1080@48Hz 16:9 */ 1326 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 1327 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1329 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1330 /* 112 - 1920x1080@48Hz 64:27 */ 1331 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 1332 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1334 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1335 /* 113 - 2560x1080@48Hz 64:27 */ 1336 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558, 1337 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, 1338 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1339 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1340 /* 114 - 3840x2160@48Hz 16:9 */ 1341 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 1342 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1344 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1345 /* 115 - 4096x2160@48Hz 256:135 */ 1346 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116, 1347 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1348 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1349 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1350 /* 116 - 3840x2160@48Hz 64:27 */ 1351 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 1352 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1354 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1355 /* 117 - 3840x2160@100Hz 16:9 */ 1356 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 1357 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1358 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1359 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1360 /* 118 - 3840x2160@120Hz 16:9 */ 1361 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 1362 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1364 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1365 /* 119 - 3840x2160@100Hz 64:27 */ 1366 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 1367 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1369 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1370 /* 120 - 3840x2160@120Hz 64:27 */ 1371 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 1372 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1374 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1375 /* 121 - 5120x2160@24Hz 64:27 */ 1376 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116, 1377 7204, 7500, 0, 2160, 2168, 2178, 2200, 0, 1378 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1379 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1380 /* 122 - 5120x2160@25Hz 64:27 */ 1381 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816, 1382 6904, 7200, 0, 2160, 2168, 2178, 2200, 0, 1383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1384 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1385 /* 123 - 5120x2160@30Hz 64:27 */ 1386 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784, 1387 5872, 6000, 0, 2160, 2168, 2178, 2200, 0, 1388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1389 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1390 /* 124 - 5120x2160@48Hz 64:27 */ 1391 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866, 1392 5954, 6250, 0, 2160, 2168, 2178, 2475, 0, 1393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1394 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1395 /* 125 - 5120x2160@50Hz 64:27 */ 1396 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216, 1397 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, 1398 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1399 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1400 /* 126 - 5120x2160@60Hz 64:27 */ 1401 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284, 1402 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, 1403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1404 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1405 /* 127 - 5120x2160@100Hz 64:27 */ 1406 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216, 1407 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, 1408 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1409 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1410 }; 1411 1412 /* 1413 * From CEA/CTA-861 spec. 1414 * 1415 * Do not access directly, instead always use cea_mode_for_vic(). 1416 */ 1417 static const struct drm_display_mode edid_cea_modes_193[] = { 1418 /* 193 - 5120x2160@120Hz 64:27 */ 1419 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284, 1420 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, 1421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1422 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1423 /* 194 - 7680x4320@24Hz 16:9 */ 1424 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 1425 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1426 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1427 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1428 /* 195 - 7680x4320@25Hz 16:9 */ 1429 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 1430 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1432 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1433 /* 196 - 7680x4320@30Hz 16:9 */ 1434 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 1435 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1436 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1437 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1438 /* 197 - 7680x4320@48Hz 16:9 */ 1439 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 1440 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1441 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1442 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1443 /* 198 - 7680x4320@50Hz 16:9 */ 1444 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 1445 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1446 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1447 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1448 /* 199 - 7680x4320@60Hz 16:9 */ 1449 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 1450 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1451 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1452 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1453 /* 200 - 7680x4320@100Hz 16:9 */ 1454 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 1455 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, 1456 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1457 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1458 /* 201 - 7680x4320@120Hz 16:9 */ 1459 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 1460 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, 1461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1462 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1463 /* 202 - 7680x4320@24Hz 64:27 */ 1464 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 1465 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1466 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1467 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1468 /* 203 - 7680x4320@25Hz 64:27 */ 1469 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 1470 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1472 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1473 /* 204 - 7680x4320@30Hz 64:27 */ 1474 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 1475 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1476 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1477 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1478 /* 205 - 7680x4320@48Hz 64:27 */ 1479 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 1480 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1482 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1483 /* 206 - 7680x4320@50Hz 64:27 */ 1484 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 1485 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1486 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1487 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1488 /* 207 - 7680x4320@60Hz 64:27 */ 1489 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 1490 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1492 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1493 /* 208 - 7680x4320@100Hz 64:27 */ 1494 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 1495 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, 1496 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1497 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1498 /* 209 - 7680x4320@120Hz 64:27 */ 1499 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 1500 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, 1501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1502 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1503 /* 210 - 10240x4320@24Hz 64:27 */ 1504 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732, 1505 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, 1506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1507 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1508 /* 211 - 10240x4320@25Hz 64:27 */ 1509 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732, 1510 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, 1511 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1512 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1513 /* 212 - 10240x4320@30Hz 64:27 */ 1514 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528, 1515 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1517 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1518 /* 213 - 10240x4320@48Hz 64:27 */ 1519 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732, 1520 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, 1521 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1522 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1523 /* 214 - 10240x4320@50Hz 64:27 */ 1524 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732, 1525 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, 1526 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1527 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1528 /* 215 - 10240x4320@60Hz 64:27 */ 1529 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528, 1530 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1532 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1533 /* 216 - 10240x4320@100Hz 64:27 */ 1534 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432, 1535 12608, 13200, 0, 4320, 4336, 4356, 4500, 0, 1536 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1537 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1538 /* 217 - 10240x4320@120Hz 64:27 */ 1539 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528, 1540 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1541 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1542 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1543 /* 218 - 4096x2160@100Hz 256:135 */ 1544 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896, 1545 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1546 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1547 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1548 /* 219 - 4096x2160@120Hz 256:135 */ 1549 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184, 1550 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1551 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1552 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1553 }; 1554 1555 /* 1556 * HDMI 1.4 4k modes. Index using the VIC. 1557 */ 1558 static const struct drm_display_mode edid_4k_modes[] = { 1559 /* 0 - dummy, VICs start at 1 */ 1560 { }, 1561 /* 1 - 3840x2160@30Hz */ 1562 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1563 3840, 4016, 4104, 4400, 0, 1564 2160, 2168, 2178, 2250, 0, 1565 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1566 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1567 /* 2 - 3840x2160@25Hz */ 1568 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1569 3840, 4896, 4984, 5280, 0, 1570 2160, 2168, 2178, 2250, 0, 1571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1572 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1573 /* 3 - 3840x2160@24Hz */ 1574 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1575 3840, 5116, 5204, 5500, 0, 1576 2160, 2168, 2178, 2250, 0, 1577 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1578 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1579 /* 4 - 4096x2160@24Hz (SMPTE) */ 1580 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 1581 4096, 5116, 5204, 5500, 0, 1582 2160, 2168, 2178, 2250, 0, 1583 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1584 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1585 }; 1586 1587 /*** DDC fetch and block validation ***/ 1588 1589 /* 1590 * The opaque EDID type, internal to drm_edid.c. 1591 */ 1592 struct drm_edid { 1593 /* Size allocated for edid */ 1594 size_t size; 1595 const struct edid *edid; 1596 }; 1597 1598 static int edid_hfeeodb_extension_block_count(const struct edid *edid); 1599 1600 static int edid_hfeeodb_block_count(const struct edid *edid) 1601 { 1602 int eeodb = edid_hfeeodb_extension_block_count(edid); 1603 1604 return eeodb ? eeodb + 1 : 0; 1605 } 1606 1607 static int edid_extension_block_count(const struct edid *edid) 1608 { 1609 return edid->extensions; 1610 } 1611 1612 static int edid_block_count(const struct edid *edid) 1613 { 1614 return edid_extension_block_count(edid) + 1; 1615 } 1616 1617 static int edid_size_by_blocks(int num_blocks) 1618 { 1619 return num_blocks * EDID_LENGTH; 1620 } 1621 1622 static int edid_size(const struct edid *edid) 1623 { 1624 return edid_size_by_blocks(edid_block_count(edid)); 1625 } 1626 1627 static const void *edid_block_data(const struct edid *edid, int index) 1628 { 1629 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH); 1630 1631 return edid + index; 1632 } 1633 1634 static const void *edid_extension_block_data(const struct edid *edid, int index) 1635 { 1636 return edid_block_data(edid, index + 1); 1637 } 1638 1639 /* EDID block count indicated in EDID, may exceed allocated size */ 1640 static int __drm_edid_block_count(const struct drm_edid *drm_edid) 1641 { 1642 int num_blocks; 1643 1644 /* Starting point */ 1645 num_blocks = edid_block_count(drm_edid->edid); 1646 1647 /* HF-EEODB override */ 1648 if (drm_edid->size >= edid_size_by_blocks(2)) { 1649 int eeodb; 1650 1651 /* 1652 * Note: HF-EEODB may specify a smaller extension count than the 1653 * regular one. Unlike in buffer allocation, here we can use it. 1654 */ 1655 eeodb = edid_hfeeodb_block_count(drm_edid->edid); 1656 if (eeodb) 1657 num_blocks = eeodb; 1658 } 1659 1660 return num_blocks; 1661 } 1662 1663 /* EDID block count, limited by allocated size */ 1664 static int drm_edid_block_count(const struct drm_edid *drm_edid) 1665 { 1666 /* Limit by allocated size */ 1667 return min(__drm_edid_block_count(drm_edid), 1668 (int)drm_edid->size / EDID_LENGTH); 1669 } 1670 1671 /* EDID extension block count, limited by allocated size */ 1672 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid) 1673 { 1674 return drm_edid_block_count(drm_edid) - 1; 1675 } 1676 1677 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index) 1678 { 1679 return edid_block_data(drm_edid->edid, index); 1680 } 1681 1682 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid, 1683 int index) 1684 { 1685 return edid_extension_block_data(drm_edid->edid, index); 1686 } 1687 1688 /* 1689 * Initializer helper for legacy interfaces, where we have no choice but to 1690 * trust edid size. Not for general purpose use. 1691 */ 1692 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid, 1693 const struct edid *edid) 1694 { 1695 if (!edid) 1696 return NULL; 1697 1698 memset(drm_edid, 0, sizeof(*drm_edid)); 1699 1700 drm_edid->edid = edid; 1701 drm_edid->size = edid_size(edid); 1702 1703 return drm_edid; 1704 } 1705 1706 /* 1707 * EDID base and extension block iterator. 1708 * 1709 * struct drm_edid_iter iter; 1710 * const u8 *block; 1711 * 1712 * drm_edid_iter_begin(drm_edid, &iter); 1713 * drm_edid_iter_for_each(block, &iter) { 1714 * // do stuff with block 1715 * } 1716 * drm_edid_iter_end(&iter); 1717 */ 1718 struct drm_edid_iter { 1719 const struct drm_edid *drm_edid; 1720 1721 /* Current block index. */ 1722 int index; 1723 }; 1724 1725 static void drm_edid_iter_begin(const struct drm_edid *drm_edid, 1726 struct drm_edid_iter *iter) 1727 { 1728 memset(iter, 0, sizeof(*iter)); 1729 1730 iter->drm_edid = drm_edid; 1731 } 1732 1733 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter) 1734 { 1735 const void *block = NULL; 1736 1737 if (!iter->drm_edid) 1738 return NULL; 1739 1740 if (iter->index < drm_edid_block_count(iter->drm_edid)) 1741 block = drm_edid_block_data(iter->drm_edid, iter->index++); 1742 1743 return block; 1744 } 1745 1746 #define drm_edid_iter_for_each(__block, __iter) \ 1747 while (((__block) = __drm_edid_iter_next(__iter))) 1748 1749 static void drm_edid_iter_end(struct drm_edid_iter *iter) 1750 { 1751 memset(iter, 0, sizeof(*iter)); 1752 } 1753 1754 static const u8 edid_header[] = { 1755 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 1756 }; 1757 1758 static void edid_header_fix(void *edid) 1759 { 1760 memcpy(edid, edid_header, sizeof(edid_header)); 1761 } 1762 1763 /** 1764 * drm_edid_header_is_valid - sanity check the header of the base EDID block 1765 * @_edid: pointer to raw base EDID block 1766 * 1767 * Sanity check the header of the base EDID block. 1768 * 1769 * Return: 8 if the header is perfect, down to 0 if it's totally wrong. 1770 */ 1771 int drm_edid_header_is_valid(const void *_edid) 1772 { 1773 const struct edid *edid = _edid; 1774 int i, score = 0; 1775 1776 for (i = 0; i < sizeof(edid_header); i++) { 1777 if (edid->header[i] == edid_header[i]) 1778 score++; 1779 } 1780 1781 return score; 1782 } 1783 EXPORT_SYMBOL(drm_edid_header_is_valid); 1784 1785 static int edid_fixup __read_mostly = 6; 1786 module_param_named(edid_fixup, edid_fixup, int, 0400); 1787 MODULE_PARM_DESC(edid_fixup, 1788 "Minimum number of valid EDID header bytes (0-8, default 6)"); 1789 1790 static int edid_block_compute_checksum(const void *_block) 1791 { 1792 const u8 *block = _block; 1793 int i; 1794 u8 csum = 0, crc = 0; 1795 1796 for (i = 0; i < EDID_LENGTH - 1; i++) 1797 csum += block[i]; 1798 1799 crc = 0x100 - csum; 1800 1801 return crc; 1802 } 1803 1804 static int edid_block_get_checksum(const void *_block) 1805 { 1806 const struct edid *block = _block; 1807 1808 return block->checksum; 1809 } 1810 1811 static int edid_block_tag(const void *_block) 1812 { 1813 const u8 *block = _block; 1814 1815 return block[0]; 1816 } 1817 1818 static bool edid_block_is_zero(const void *edid) 1819 { 1820 return mem_is_zero(edid, EDID_LENGTH); 1821 } 1822 1823 static bool drm_edid_eq(const struct drm_edid *drm_edid, 1824 const void *raw_edid, size_t raw_edid_size) 1825 { 1826 bool edid1_present = drm_edid && drm_edid->edid && drm_edid->size; 1827 bool edid2_present = raw_edid && raw_edid_size; 1828 1829 if (edid1_present != edid2_present) 1830 return false; 1831 1832 if (edid1_present) { 1833 if (drm_edid->size != raw_edid_size) 1834 return false; 1835 1836 if (memcmp(drm_edid->edid, raw_edid, drm_edid->size)) 1837 return false; 1838 } 1839 1840 return true; 1841 } 1842 1843 enum edid_block_status { 1844 EDID_BLOCK_OK = 0, 1845 EDID_BLOCK_READ_FAIL, 1846 EDID_BLOCK_NULL, 1847 EDID_BLOCK_ZERO, 1848 EDID_BLOCK_HEADER_CORRUPT, 1849 EDID_BLOCK_HEADER_REPAIR, 1850 EDID_BLOCK_HEADER_FIXED, 1851 EDID_BLOCK_CHECKSUM, 1852 EDID_BLOCK_VERSION, 1853 }; 1854 1855 static enum edid_block_status edid_block_check(const void *_block, 1856 bool is_base_block) 1857 { 1858 const struct edid *block = _block; 1859 1860 if (!block) 1861 return EDID_BLOCK_NULL; 1862 1863 if (is_base_block) { 1864 int score = drm_edid_header_is_valid(block); 1865 1866 if (score < clamp(edid_fixup, 0, 8)) { 1867 if (edid_block_is_zero(block)) 1868 return EDID_BLOCK_ZERO; 1869 else 1870 return EDID_BLOCK_HEADER_CORRUPT; 1871 } 1872 1873 if (score < 8) 1874 return EDID_BLOCK_HEADER_REPAIR; 1875 } 1876 1877 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) { 1878 if (edid_block_is_zero(block)) 1879 return EDID_BLOCK_ZERO; 1880 else 1881 return EDID_BLOCK_CHECKSUM; 1882 } 1883 1884 if (is_base_block) { 1885 if (block->version != 1) 1886 return EDID_BLOCK_VERSION; 1887 } 1888 1889 return EDID_BLOCK_OK; 1890 } 1891 1892 static bool edid_block_status_valid(enum edid_block_status status, int tag) 1893 { 1894 return status == EDID_BLOCK_OK || 1895 status == EDID_BLOCK_HEADER_FIXED || 1896 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT); 1897 } 1898 1899 static bool edid_block_valid(const void *block, bool base) 1900 { 1901 return edid_block_status_valid(edid_block_check(block, base), 1902 edid_block_tag(block)); 1903 } 1904 1905 static void edid_block_status_print(enum edid_block_status status, 1906 const struct edid *block, 1907 int block_num) 1908 { 1909 switch (status) { 1910 case EDID_BLOCK_OK: 1911 break; 1912 case EDID_BLOCK_READ_FAIL: 1913 pr_debug("EDID block %d read failed\n", block_num); 1914 break; 1915 case EDID_BLOCK_NULL: 1916 pr_debug("EDID block %d pointer is NULL\n", block_num); 1917 break; 1918 case EDID_BLOCK_ZERO: 1919 pr_notice("EDID block %d is all zeroes\n", block_num); 1920 break; 1921 case EDID_BLOCK_HEADER_CORRUPT: 1922 pr_notice("EDID has corrupt header\n"); 1923 break; 1924 case EDID_BLOCK_HEADER_REPAIR: 1925 pr_debug("EDID corrupt header needs repair\n"); 1926 break; 1927 case EDID_BLOCK_HEADER_FIXED: 1928 pr_debug("EDID corrupt header fixed\n"); 1929 break; 1930 case EDID_BLOCK_CHECKSUM: 1931 if (edid_block_status_valid(status, edid_block_tag(block))) { 1932 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n", 1933 block_num, edid_block_tag(block), 1934 edid_block_compute_checksum(block)); 1935 } else { 1936 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n", 1937 block_num, edid_block_tag(block), 1938 edid_block_compute_checksum(block)); 1939 } 1940 break; 1941 case EDID_BLOCK_VERSION: 1942 pr_notice("EDID has major version %d, instead of 1\n", 1943 block->version); 1944 break; 1945 default: 1946 WARN(1, "EDID block %d unknown edid block status code %d\n", 1947 block_num, status); 1948 break; 1949 } 1950 } 1951 1952 static void edid_block_dump(const char *level, const void *block, int block_num) 1953 { 1954 enum edid_block_status status; 1955 char prefix[20]; 1956 1957 status = edid_block_check(block, block_num == 0); 1958 if (status == EDID_BLOCK_ZERO) 1959 sprintf(prefix, "\t[%02x] ZERO ", block_num); 1960 else if (!edid_block_status_valid(status, edid_block_tag(block))) 1961 sprintf(prefix, "\t[%02x] BAD ", block_num); 1962 else 1963 sprintf(prefix, "\t[%02x] GOOD ", block_num); 1964 1965 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1, 1966 block, EDID_LENGTH, false); 1967 } 1968 1969 /* 1970 * Validate a base or extension EDID block and optionally dump bad blocks to 1971 * the console. 1972 */ 1973 static bool drm_edid_block_valid(void *_block, int block_num, bool print_bad_edid, 1974 bool *edid_corrupt) 1975 { 1976 struct edid *block = _block; 1977 enum edid_block_status status; 1978 bool is_base_block = block_num == 0; 1979 bool valid; 1980 1981 if (WARN_ON(!block)) 1982 return false; 1983 1984 status = edid_block_check(block, is_base_block); 1985 if (status == EDID_BLOCK_HEADER_REPAIR) { 1986 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n"); 1987 edid_header_fix(block); 1988 1989 /* Retry with fixed header, update status if that worked. */ 1990 status = edid_block_check(block, is_base_block); 1991 if (status == EDID_BLOCK_OK) 1992 status = EDID_BLOCK_HEADER_FIXED; 1993 } 1994 1995 if (edid_corrupt) { 1996 /* 1997 * Unknown major version isn't corrupt but we can't use it. Only 1998 * the base block can reset edid_corrupt to false. 1999 */ 2000 if (is_base_block && 2001 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)) 2002 *edid_corrupt = false; 2003 else if (status != EDID_BLOCK_OK) 2004 *edid_corrupt = true; 2005 } 2006 2007 edid_block_status_print(status, block, block_num); 2008 2009 /* Determine whether we can use this block with this status. */ 2010 valid = edid_block_status_valid(status, edid_block_tag(block)); 2011 2012 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) { 2013 pr_notice("Raw EDID:\n"); 2014 edid_block_dump(KERN_NOTICE, block, block_num); 2015 } 2016 2017 return valid; 2018 } 2019 2020 /** 2021 * drm_edid_is_valid - sanity check EDID data 2022 * @edid: EDID data 2023 * 2024 * Sanity-check an entire EDID record (including extensions) 2025 * 2026 * Return: True if the EDID data is valid, false otherwise. 2027 */ 2028 bool drm_edid_is_valid(struct edid *edid) 2029 { 2030 int i; 2031 2032 if (!edid) 2033 return false; 2034 2035 for (i = 0; i < edid_block_count(edid); i++) { 2036 void *block = (void *)edid_block_data(edid, i); 2037 2038 if (!drm_edid_block_valid(block, i, true, NULL)) 2039 return false; 2040 } 2041 2042 return true; 2043 } 2044 EXPORT_SYMBOL(drm_edid_is_valid); 2045 2046 /** 2047 * drm_edid_valid - sanity check EDID data 2048 * @drm_edid: EDID data 2049 * 2050 * Sanity check an EDID. Cross check block count against allocated size and 2051 * checksum the blocks. 2052 * 2053 * Return: True if the EDID data is valid, false otherwise. 2054 */ 2055 bool drm_edid_valid(const struct drm_edid *drm_edid) 2056 { 2057 int i; 2058 2059 if (!drm_edid) 2060 return false; 2061 2062 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size) 2063 return false; 2064 2065 for (i = 0; i < drm_edid_block_count(drm_edid); i++) { 2066 const void *block = drm_edid_block_data(drm_edid, i); 2067 2068 if (!edid_block_valid(block, i == 0)) 2069 return false; 2070 } 2071 2072 return true; 2073 } 2074 EXPORT_SYMBOL(drm_edid_valid); 2075 2076 static struct edid *edid_filter_invalid_blocks(struct edid *edid, 2077 size_t *alloc_size) 2078 { 2079 struct edid *new; 2080 int i, valid_blocks = 0; 2081 2082 /* 2083 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert 2084 * back to regular extension count here. We don't want to start 2085 * modifying the HF-EEODB extension too. 2086 */ 2087 for (i = 0; i < edid_block_count(edid); i++) { 2088 const void *src_block = edid_block_data(edid, i); 2089 2090 if (edid_block_valid(src_block, i == 0)) { 2091 void *dst_block = (void *)edid_block_data(edid, valid_blocks); 2092 2093 memmove(dst_block, src_block, EDID_LENGTH); 2094 valid_blocks++; 2095 } 2096 } 2097 2098 /* We already trusted the base block to be valid here... */ 2099 if (WARN_ON(!valid_blocks)) { 2100 kfree(edid); 2101 return NULL; 2102 } 2103 2104 edid->extensions = valid_blocks - 1; 2105 edid->checksum = edid_block_compute_checksum(edid); 2106 2107 *alloc_size = edid_size_by_blocks(valid_blocks); 2108 2109 new = krealloc(edid, *alloc_size, GFP_KERNEL); 2110 if (!new) 2111 kfree(edid); 2112 2113 return new; 2114 } 2115 2116 #define DDC_SEGMENT_ADDR 0x30 2117 /** 2118 * drm_do_probe_ddc_edid() - get EDID information via I2C 2119 * @data: I2C device adapter 2120 * @buf: EDID data buffer to be filled 2121 * @block: 128 byte EDID block to start fetching from 2122 * @len: EDID data buffer length to fetch 2123 * 2124 * Try to fetch EDID information by calling I2C driver functions. 2125 * 2126 * Return: 0 on success or -1 on failure. 2127 */ 2128 static int 2129 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len) 2130 { 2131 struct i2c_adapter *adapter = data; 2132 unsigned char start = block * EDID_LENGTH; 2133 unsigned char segment = block >> 1; 2134 unsigned char xfers = segment ? 3 : 2; 2135 int ret, retries = 5; 2136 2137 /* 2138 * The core I2C driver will automatically retry the transfer if the 2139 * adapter reports EAGAIN. However, we find that bit-banging transfers 2140 * are susceptible to errors under a heavily loaded machine and 2141 * generate spurious NAKs and timeouts. Retrying the transfer 2142 * of the individual block a few times seems to overcome this. 2143 */ 2144 do { 2145 struct i2c_msg msgs[] = { 2146 { 2147 .addr = DDC_SEGMENT_ADDR, 2148 .flags = 0, 2149 .len = 1, 2150 .buf = &segment, 2151 }, { 2152 .addr = DDC_ADDR, 2153 .flags = 0, 2154 .len = 1, 2155 .buf = &start, 2156 }, { 2157 .addr = DDC_ADDR, 2158 .flags = I2C_M_RD, 2159 .len = len, 2160 .buf = buf, 2161 } 2162 }; 2163 2164 /* 2165 * Avoid sending the segment addr to not upset non-compliant 2166 * DDC monitors. 2167 */ 2168 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); 2169 2170 if (ret == -ENXIO) { 2171 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", 2172 adapter->name); 2173 break; 2174 } 2175 } while (ret != xfers && --retries); 2176 2177 return ret == xfers ? 0 : -1; 2178 } 2179 2180 static void connector_bad_edid(struct drm_connector *connector, 2181 const struct edid *edid, int num_blocks) 2182 { 2183 int i; 2184 u8 last_block; 2185 2186 /* 2187 * 0x7e in the EDID is the number of extension blocks. The EDID 2188 * is 1 (base block) + num_ext_blocks big. That means we can think 2189 * of 0x7e in the EDID of the _index_ of the last block in the 2190 * combined chunk of memory. 2191 */ 2192 last_block = edid->extensions; 2193 2194 /* Calculate real checksum for the last edid extension block data */ 2195 if (last_block < num_blocks) 2196 connector->real_edid_checksum = 2197 edid_block_compute_checksum(edid + last_block); 2198 2199 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS)) 2200 return; 2201 2202 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n", 2203 connector->base.id, connector->name); 2204 for (i = 0; i < num_blocks; i++) 2205 edid_block_dump(KERN_DEBUG, edid + i, i); 2206 } 2207 2208 /* Get override or firmware EDID */ 2209 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector) 2210 { 2211 const struct drm_edid *override = NULL; 2212 2213 mutex_lock(&connector->edid_override_mutex); 2214 2215 if (connector->edid_override) 2216 override = drm_edid_dup(connector->edid_override); 2217 2218 mutex_unlock(&connector->edid_override_mutex); 2219 2220 if (!override) 2221 override = drm_edid_load_firmware(connector); 2222 2223 return IS_ERR(override) ? NULL : override; 2224 } 2225 2226 /* For debugfs edid_override implementation */ 2227 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m) 2228 { 2229 const struct drm_edid *drm_edid; 2230 2231 mutex_lock(&connector->edid_override_mutex); 2232 2233 drm_edid = connector->edid_override; 2234 if (drm_edid) 2235 seq_write(m, drm_edid->edid, drm_edid->size); 2236 2237 mutex_unlock(&connector->edid_override_mutex); 2238 2239 return 0; 2240 } 2241 2242 /* For debugfs edid_override implementation */ 2243 int drm_edid_override_set(struct drm_connector *connector, const void *edid, 2244 size_t size) 2245 { 2246 const struct drm_edid *drm_edid; 2247 2248 drm_edid = drm_edid_alloc(edid, size); 2249 if (!drm_edid_valid(drm_edid)) { 2250 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n", 2251 connector->base.id, connector->name); 2252 drm_edid_free(drm_edid); 2253 return -EINVAL; 2254 } 2255 2256 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n", 2257 connector->base.id, connector->name); 2258 2259 mutex_lock(&connector->edid_override_mutex); 2260 2261 drm_edid_free(connector->edid_override); 2262 connector->edid_override = drm_edid; 2263 2264 mutex_unlock(&connector->edid_override_mutex); 2265 2266 return 0; 2267 } 2268 2269 /* For debugfs edid_override implementation */ 2270 int drm_edid_override_reset(struct drm_connector *connector) 2271 { 2272 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n", 2273 connector->base.id, connector->name); 2274 2275 mutex_lock(&connector->edid_override_mutex); 2276 2277 drm_edid_free(connector->edid_override); 2278 connector->edid_override = NULL; 2279 2280 mutex_unlock(&connector->edid_override_mutex); 2281 2282 return 0; 2283 } 2284 2285 /** 2286 * drm_edid_override_connector_update - add modes from override/firmware EDID 2287 * @connector: connector we're probing 2288 * 2289 * Add modes from the override/firmware EDID, if available. Only to be used from 2290 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe 2291 * failed during drm_get_edid() and caused the override/firmware EDID to be 2292 * skipped. 2293 * 2294 * Return: The number of modes added or 0 if we couldn't find any. 2295 */ 2296 int drm_edid_override_connector_update(struct drm_connector *connector) 2297 { 2298 const struct drm_edid *override; 2299 int num_modes = 0; 2300 2301 override = drm_edid_override_get(connector); 2302 if (override) { 2303 if (drm_edid_connector_update(connector, override) == 0) 2304 num_modes = drm_edid_connector_add_modes(connector); 2305 2306 drm_edid_free(override); 2307 2308 drm_dbg_kms(connector->dev, 2309 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n", 2310 connector->base.id, connector->name, num_modes); 2311 } 2312 2313 return num_modes; 2314 } 2315 EXPORT_SYMBOL(drm_edid_override_connector_update); 2316 2317 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len); 2318 2319 static enum edid_block_status edid_block_read(void *block, unsigned int block_num, 2320 read_block_fn read_block, 2321 void *context) 2322 { 2323 enum edid_block_status status; 2324 bool is_base_block = block_num == 0; 2325 int try; 2326 2327 for (try = 0; try < 4; try++) { 2328 if (read_block(context, block, block_num, EDID_LENGTH)) 2329 return EDID_BLOCK_READ_FAIL; 2330 2331 status = edid_block_check(block, is_base_block); 2332 if (status == EDID_BLOCK_HEADER_REPAIR) { 2333 edid_header_fix(block); 2334 2335 /* Retry with fixed header, update status if that worked. */ 2336 status = edid_block_check(block, is_base_block); 2337 if (status == EDID_BLOCK_OK) 2338 status = EDID_BLOCK_HEADER_FIXED; 2339 } 2340 2341 if (edid_block_status_valid(status, edid_block_tag(block))) 2342 break; 2343 2344 /* Fail early for unrepairable base block all zeros. */ 2345 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO) 2346 break; 2347 } 2348 2349 return status; 2350 } 2351 2352 static struct edid *_drm_do_get_edid(struct drm_connector *connector, 2353 read_block_fn read_block, void *context, 2354 size_t *size) 2355 { 2356 enum edid_block_status status; 2357 int i, num_blocks, invalid_blocks = 0; 2358 const struct drm_edid *override; 2359 struct edid *edid, *new; 2360 size_t alloc_size = EDID_LENGTH; 2361 2362 override = drm_edid_override_get(connector); 2363 if (override) { 2364 alloc_size = override->size; 2365 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL); 2366 drm_edid_free(override); 2367 if (!edid) 2368 return NULL; 2369 goto ok; 2370 } 2371 2372 edid = kmalloc(alloc_size, GFP_KERNEL); 2373 if (!edid) 2374 return NULL; 2375 2376 status = edid_block_read(edid, 0, read_block, context); 2377 2378 edid_block_status_print(status, edid, 0); 2379 2380 if (status == EDID_BLOCK_READ_FAIL) 2381 goto fail; 2382 2383 /* FIXME: Clarify what a corrupt EDID actually means. */ 2384 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION) 2385 connector->edid_corrupt = false; 2386 else 2387 connector->edid_corrupt = true; 2388 2389 if (!edid_block_status_valid(status, edid_block_tag(edid))) { 2390 if (status == EDID_BLOCK_ZERO) 2391 connector->null_edid_counter++; 2392 2393 connector_bad_edid(connector, edid, 1); 2394 goto fail; 2395 } 2396 2397 if (!edid_extension_block_count(edid)) 2398 goto ok; 2399 2400 alloc_size = edid_size(edid); 2401 new = krealloc(edid, alloc_size, GFP_KERNEL); 2402 if (!new) 2403 goto fail; 2404 edid = new; 2405 2406 num_blocks = edid_block_count(edid); 2407 for (i = 1; i < num_blocks; i++) { 2408 void *block = (void *)edid_block_data(edid, i); 2409 2410 status = edid_block_read(block, i, read_block, context); 2411 2412 edid_block_status_print(status, block, i); 2413 2414 if (!edid_block_status_valid(status, edid_block_tag(block))) { 2415 if (status == EDID_BLOCK_READ_FAIL) 2416 goto fail; 2417 invalid_blocks++; 2418 } else if (i == 1) { 2419 /* 2420 * If the first EDID extension is a CTA extension, and 2421 * the first Data Block is HF-EEODB, override the 2422 * extension block count. 2423 * 2424 * Note: HF-EEODB could specify a smaller extension 2425 * count too, but we can't risk allocating a smaller 2426 * amount. 2427 */ 2428 int eeodb = edid_hfeeodb_block_count(edid); 2429 2430 if (eeodb > num_blocks) { 2431 num_blocks = eeodb; 2432 alloc_size = edid_size_by_blocks(num_blocks); 2433 new = krealloc(edid, alloc_size, GFP_KERNEL); 2434 if (!new) 2435 goto fail; 2436 edid = new; 2437 } 2438 } 2439 } 2440 2441 if (invalid_blocks) { 2442 connector_bad_edid(connector, edid, num_blocks); 2443 2444 edid = edid_filter_invalid_blocks(edid, &alloc_size); 2445 } 2446 2447 ok: 2448 if (size) 2449 *size = alloc_size; 2450 2451 return edid; 2452 2453 fail: 2454 kfree(edid); 2455 return NULL; 2456 } 2457 2458 /** 2459 * drm_edid_raw - Get a pointer to the raw EDID data. 2460 * @drm_edid: drm_edid container 2461 * 2462 * Get a pointer to the raw EDID data. 2463 * 2464 * This is for transition only. Avoid using this like the plague. 2465 * 2466 * Return: Pointer to raw EDID data. 2467 */ 2468 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid) 2469 { 2470 if (!drm_edid || !drm_edid->size) 2471 return NULL; 2472 2473 /* 2474 * Do not return pointers where relying on EDID extension count would 2475 * lead to buffer overflow. 2476 */ 2477 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size)) 2478 return NULL; 2479 2480 return drm_edid->edid; 2481 } 2482 EXPORT_SYMBOL(drm_edid_raw); 2483 2484 /* Allocate struct drm_edid container *without* duplicating the edid data */ 2485 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size) 2486 { 2487 struct drm_edid *drm_edid; 2488 2489 if (!edid || !size || size < EDID_LENGTH) 2490 return NULL; 2491 2492 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL); 2493 if (drm_edid) { 2494 drm_edid->edid = edid; 2495 drm_edid->size = size; 2496 } 2497 2498 return drm_edid; 2499 } 2500 2501 /** 2502 * drm_edid_alloc - Allocate a new drm_edid container 2503 * @edid: Pointer to raw EDID data 2504 * @size: Size of memory allocated for EDID 2505 * 2506 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass 2507 * the actual size that has been allocated for the data. There is no validation 2508 * of the raw EDID data against the size, but at least the EDID base block must 2509 * fit in the buffer. 2510 * 2511 * The returned pointer must be freed using drm_edid_free(). 2512 * 2513 * Return: drm_edid container, or NULL on errors 2514 */ 2515 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size) 2516 { 2517 const struct drm_edid *drm_edid; 2518 2519 if (!edid || !size || size < EDID_LENGTH) 2520 return NULL; 2521 2522 edid = kmemdup(edid, size, GFP_KERNEL); 2523 if (!edid) 2524 return NULL; 2525 2526 drm_edid = _drm_edid_alloc(edid, size); 2527 if (!drm_edid) 2528 kfree(edid); 2529 2530 return drm_edid; 2531 } 2532 EXPORT_SYMBOL(drm_edid_alloc); 2533 2534 /** 2535 * drm_edid_dup - Duplicate a drm_edid container 2536 * @drm_edid: EDID to duplicate 2537 * 2538 * The returned pointer must be freed using drm_edid_free(). 2539 * 2540 * Returns: drm_edid container copy, or NULL on errors 2541 */ 2542 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid) 2543 { 2544 if (!drm_edid) 2545 return NULL; 2546 2547 return drm_edid_alloc(drm_edid->edid, drm_edid->size); 2548 } 2549 EXPORT_SYMBOL(drm_edid_dup); 2550 2551 /** 2552 * drm_edid_free - Free the drm_edid container 2553 * @drm_edid: EDID to free 2554 */ 2555 void drm_edid_free(const struct drm_edid *drm_edid) 2556 { 2557 if (!drm_edid) 2558 return; 2559 2560 kfree(drm_edid->edid); 2561 kfree(drm_edid); 2562 } 2563 EXPORT_SYMBOL(drm_edid_free); 2564 2565 /** 2566 * drm_probe_ddc() - probe DDC presence 2567 * @adapter: I2C adapter to probe 2568 * 2569 * Return: True on success, false on failure. 2570 */ 2571 bool 2572 drm_probe_ddc(struct i2c_adapter *adapter) 2573 { 2574 unsigned char out; 2575 2576 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); 2577 } 2578 EXPORT_SYMBOL(drm_probe_ddc); 2579 2580 /** 2581 * drm_get_edid - get EDID data, if available 2582 * @connector: connector we're probing 2583 * @adapter: I2C adapter to use for DDC 2584 * 2585 * Poke the given I2C channel to grab EDID data if possible. If found, 2586 * attach it to the connector. 2587 * 2588 * Return: Pointer to valid EDID or NULL if we couldn't find any. 2589 */ 2590 struct edid *drm_get_edid(struct drm_connector *connector, 2591 struct i2c_adapter *adapter) 2592 { 2593 struct edid *edid; 2594 2595 if (connector->force == DRM_FORCE_OFF) 2596 return NULL; 2597 2598 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 2599 return NULL; 2600 2601 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL); 2602 drm_connector_update_edid_property(connector, edid); 2603 return edid; 2604 } 2605 EXPORT_SYMBOL(drm_get_edid); 2606 2607 /** 2608 * drm_edid_read_custom - Read EDID data using given EDID block read function 2609 * @connector: Connector to use 2610 * @read_block: EDID block read function 2611 * @context: Private data passed to the block read function 2612 * 2613 * When the I2C adapter connected to the DDC bus is hidden behind a device that 2614 * exposes a different interface to read EDID blocks this function can be used 2615 * to get EDID data using a custom block read function. 2616 * 2617 * As in the general case the DDC bus is accessible by the kernel at the I2C 2618 * level, drivers must make all reasonable efforts to expose it as an I2C 2619 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing 2620 * this function. 2621 * 2622 * The EDID may be overridden using debugfs override_edid or firmware EDID 2623 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2624 * order. Having either of them bypasses actual EDID reads. 2625 * 2626 * The returned pointer must be freed using drm_edid_free(). 2627 * 2628 * Return: Pointer to EDID, or NULL if probe/read failed. 2629 */ 2630 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector, 2631 read_block_fn read_block, 2632 void *context) 2633 { 2634 const struct drm_edid *drm_edid; 2635 struct edid *edid; 2636 size_t size = 0; 2637 2638 edid = _drm_do_get_edid(connector, read_block, context, &size); 2639 if (!edid) 2640 return NULL; 2641 2642 /* Sanity check for now */ 2643 drm_WARN_ON(connector->dev, !size); 2644 2645 drm_edid = _drm_edid_alloc(edid, size); 2646 if (!drm_edid) 2647 kfree(edid); 2648 2649 return drm_edid; 2650 } 2651 EXPORT_SYMBOL(drm_edid_read_custom); 2652 2653 /** 2654 * drm_edid_read_ddc - Read EDID data using given I2C adapter 2655 * @connector: Connector to use 2656 * @adapter: I2C adapter to use for DDC 2657 * 2658 * Read EDID using the given I2C adapter. 2659 * 2660 * The EDID may be overridden using debugfs override_edid or firmware EDID 2661 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2662 * order. Having either of them bypasses actual EDID reads. 2663 * 2664 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and 2665 * using drm_edid_read() instead of this function. 2666 * 2667 * The returned pointer must be freed using drm_edid_free(). 2668 * 2669 * Return: Pointer to EDID, or NULL if probe/read failed. 2670 */ 2671 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector, 2672 struct i2c_adapter *adapter) 2673 { 2674 const struct drm_edid *drm_edid; 2675 2676 if (connector->force == DRM_FORCE_OFF) 2677 return NULL; 2678 2679 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 2680 return NULL; 2681 2682 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter); 2683 2684 /* Note: Do *not* call connector updates here. */ 2685 2686 return drm_edid; 2687 } 2688 EXPORT_SYMBOL(drm_edid_read_ddc); 2689 2690 /** 2691 * drm_edid_read - Read EDID data using connector's I2C adapter 2692 * @connector: Connector to use 2693 * 2694 * Read EDID using the connector's I2C adapter. 2695 * 2696 * The EDID may be overridden using debugfs override_edid or firmware EDID 2697 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2698 * order. Having either of them bypasses actual EDID reads. 2699 * 2700 * The returned pointer must be freed using drm_edid_free(). 2701 * 2702 * Return: Pointer to EDID, or NULL if probe/read failed. 2703 */ 2704 const struct drm_edid *drm_edid_read(struct drm_connector *connector) 2705 { 2706 if (drm_WARN_ON(connector->dev, !connector->ddc)) 2707 return NULL; 2708 2709 return drm_edid_read_ddc(connector, connector->ddc); 2710 } 2711 EXPORT_SYMBOL(drm_edid_read); 2712 2713 /** 2714 * drm_edid_get_product_id - Get the vendor and product identification 2715 * @drm_edid: EDID 2716 * @id: Where to place the product id 2717 */ 2718 void drm_edid_get_product_id(const struct drm_edid *drm_edid, 2719 struct drm_edid_product_id *id) 2720 { 2721 if (drm_edid && drm_edid->edid && drm_edid->size >= EDID_LENGTH) 2722 memcpy(id, &drm_edid->edid->product_id, sizeof(*id)); 2723 else 2724 memset(id, 0, sizeof(*id)); 2725 } 2726 EXPORT_SYMBOL(drm_edid_get_product_id); 2727 2728 static void decode_date(struct seq_buf *s, const struct drm_edid_product_id *id) 2729 { 2730 int week = id->week_of_manufacture; 2731 int year = id->year_of_manufacture + 1990; 2732 2733 if (week == 0xff) 2734 seq_buf_printf(s, "model year: %d", year); 2735 else if (!week) 2736 seq_buf_printf(s, "year of manufacture: %d", year); 2737 else 2738 seq_buf_printf(s, "week/year of manufacture: %d/%d", week, year); 2739 } 2740 2741 /** 2742 * drm_edid_print_product_id - Print decoded product id to printer 2743 * @p: drm printer 2744 * @id: EDID product id 2745 * @raw: If true, also print the raw hex 2746 * 2747 * See VESA E-EDID 1.4 section 3.4. 2748 */ 2749 void drm_edid_print_product_id(struct drm_printer *p, 2750 const struct drm_edid_product_id *id, bool raw) 2751 { 2752 DECLARE_SEQ_BUF(date, 40); 2753 char vend[4]; 2754 2755 drm_edid_decode_mfg_id(be16_to_cpu(id->manufacturer_name), vend); 2756 2757 decode_date(&date, id); 2758 2759 drm_printf(p, "manufacturer name: %s, product code: %u, serial number: %u, %s\n", 2760 vend, le16_to_cpu(id->product_code), 2761 le32_to_cpu(id->serial_number), seq_buf_str(&date)); 2762 2763 if (raw) 2764 drm_printf(p, "raw product id: %*ph\n", (int)sizeof(*id), id); 2765 2766 WARN_ON(seq_buf_has_overflowed(&date)); 2767 } 2768 EXPORT_SYMBOL(drm_edid_print_product_id); 2769 2770 /** 2771 * drm_edid_get_panel_id - Get a panel's ID from EDID 2772 * @drm_edid: EDID that contains panel ID. 2773 * 2774 * This function uses the first block of the EDID of a panel and (assuming 2775 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value 2776 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's 2777 * supposed to be different for each different modem of panel. 2778 * 2779 * Return: A 32-bit ID that should be different for each make/model of panel. 2780 * See the functions drm_edid_encode_panel_id() and 2781 * drm_edid_decode_panel_id() for some details on the structure of this 2782 * ID. Return 0 if the EDID size is less than a base block. 2783 */ 2784 u32 drm_edid_get_panel_id(const struct drm_edid *drm_edid) 2785 { 2786 const struct edid *edid = drm_edid->edid; 2787 2788 if (drm_edid->size < EDID_LENGTH) 2789 return 0; 2790 2791 /* 2792 * We represent the ID as a 32-bit number so it can easily be compared 2793 * with "==". 2794 * 2795 * NOTE that we deal with endianness differently for the top half 2796 * of this ID than for the bottom half. The bottom half (the product 2797 * id) gets decoded as little endian by the EDID_PRODUCT_ID because 2798 * that's how everyone seems to interpret it. The top half (the mfg_id) 2799 * gets stored as big endian because that makes 2800 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier 2801 * to write (it's easier to extract the ASCII). It doesn't really 2802 * matter, though, as long as the number here is unique. 2803 */ 2804 return (u32)edid->mfg_id[0] << 24 | 2805 (u32)edid->mfg_id[1] << 16 | 2806 (u32)EDID_PRODUCT_ID(edid); 2807 } 2808 EXPORT_SYMBOL(drm_edid_get_panel_id); 2809 2810 /** 2811 * drm_edid_read_base_block - Get a panel's EDID base block 2812 * @adapter: I2C adapter to use for DDC 2813 * 2814 * This function returns the drm_edid containing the first block of the EDID of 2815 * a panel. 2816 * 2817 * This function is intended to be used during early probing on devices where 2818 * more than one panel might be present. Because of its intended use it must 2819 * assume that the EDID of the panel is correct, at least as far as the base 2820 * block is concerned (in other words, we don't process any overrides here). 2821 * 2822 * Caller should call drm_edid_free() after use. 2823 * 2824 * NOTE: it's expected that this function and drm_do_get_edid() will both 2825 * be read the EDID, but there is no caching between them. Since we're only 2826 * reading the first block, hopefully this extra overhead won't be too big. 2827 * 2828 * WARNING: Only use this function when the connector is unknown. For example, 2829 * during the early probe of panel. The EDID read from the function is temporary 2830 * and should be replaced by the full EDID returned from other drm_edid_read. 2831 * 2832 * Return: Pointer to allocated EDID base block, or NULL on any failure. 2833 */ 2834 const struct drm_edid *drm_edid_read_base_block(struct i2c_adapter *adapter) 2835 { 2836 enum edid_block_status status; 2837 void *base_block; 2838 2839 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL); 2840 if (!base_block) 2841 return NULL; 2842 2843 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter); 2844 2845 edid_block_status_print(status, base_block, 0); 2846 2847 if (!edid_block_status_valid(status, edid_block_tag(base_block))) { 2848 edid_block_dump(KERN_NOTICE, base_block, 0); 2849 kfree(base_block); 2850 return NULL; 2851 } 2852 2853 return _drm_edid_alloc(base_block, EDID_LENGTH); 2854 } 2855 EXPORT_SYMBOL(drm_edid_read_base_block); 2856 2857 /** 2858 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output 2859 * @connector: connector we're probing 2860 * @adapter: I2C adapter to use for DDC 2861 * 2862 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of 2863 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily 2864 * switch DDC to the GPU which is retrieving EDID. 2865 * 2866 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 2867 */ 2868 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector, 2869 struct i2c_adapter *adapter) 2870 { 2871 struct drm_device *dev = connector->dev; 2872 struct pci_dev *pdev = to_pci_dev(dev->dev); 2873 struct edid *edid; 2874 2875 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) 2876 return NULL; 2877 2878 vga_switcheroo_lock_ddc(pdev); 2879 edid = drm_get_edid(connector, adapter); 2880 vga_switcheroo_unlock_ddc(pdev); 2881 2882 return edid; 2883 } 2884 EXPORT_SYMBOL(drm_get_edid_switcheroo); 2885 2886 /** 2887 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output 2888 * @connector: connector we're probing 2889 * @adapter: I2C adapter to use for DDC 2890 * 2891 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set 2892 * of outputs. The wrapper adds the requisite vga_switcheroo calls to 2893 * temporarily switch DDC to the GPU which is retrieving EDID. 2894 * 2895 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 2896 */ 2897 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector, 2898 struct i2c_adapter *adapter) 2899 { 2900 struct drm_device *dev = connector->dev; 2901 struct pci_dev *pdev = to_pci_dev(dev->dev); 2902 const struct drm_edid *drm_edid; 2903 2904 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) 2905 return NULL; 2906 2907 vga_switcheroo_lock_ddc(pdev); 2908 drm_edid = drm_edid_read_ddc(connector, adapter); 2909 vga_switcheroo_unlock_ddc(pdev); 2910 2911 return drm_edid; 2912 } 2913 EXPORT_SYMBOL(drm_edid_read_switcheroo); 2914 2915 /** 2916 * drm_edid_duplicate - duplicate an EDID and the extensions 2917 * @edid: EDID to duplicate 2918 * 2919 * Return: Pointer to duplicated EDID or NULL on allocation failure. 2920 */ 2921 struct edid *drm_edid_duplicate(const struct edid *edid) 2922 { 2923 if (!edid) 2924 return NULL; 2925 2926 return kmemdup(edid, edid_size(edid), GFP_KERNEL); 2927 } 2928 EXPORT_SYMBOL(drm_edid_duplicate); 2929 2930 /*** EDID parsing ***/ 2931 2932 /** 2933 * edid_get_quirks - return quirk flags for a given EDID 2934 * @drm_edid: EDID to process 2935 * 2936 * This tells subsequent routines what fixes they need to apply. 2937 * 2938 * Return: A u32 represents the quirks to apply. 2939 */ 2940 static u32 edid_get_quirks(const struct drm_edid *drm_edid) 2941 { 2942 const struct edid_quirk *quirk; 2943 int i; 2944 2945 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { 2946 quirk = &edid_quirk_list[i]; 2947 if (drm_edid_match(drm_edid, &quirk->ident)) 2948 return quirk->quirks; 2949 } 2950 2951 return 0; 2952 } 2953 2954 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) 2955 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) 2956 2957 /* 2958 * Walk the mode list for connector, clearing the preferred status on existing 2959 * modes and setting it anew for the right mode ala quirks. 2960 */ 2961 static void edid_fixup_preferred(struct drm_connector *connector) 2962 { 2963 const struct drm_display_info *info = &connector->display_info; 2964 struct drm_display_mode *t, *cur_mode, *preferred_mode; 2965 int target_refresh = 0; 2966 int cur_vrefresh, preferred_vrefresh; 2967 2968 if (list_empty(&connector->probed_modes)) 2969 return; 2970 2971 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60) 2972 target_refresh = 60; 2973 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75) 2974 target_refresh = 75; 2975 2976 preferred_mode = list_first_entry(&connector->probed_modes, 2977 struct drm_display_mode, head); 2978 2979 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { 2980 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; 2981 2982 if (cur_mode == preferred_mode) 2983 continue; 2984 2985 /* Largest mode is preferred */ 2986 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) 2987 preferred_mode = cur_mode; 2988 2989 cur_vrefresh = drm_mode_vrefresh(cur_mode); 2990 preferred_vrefresh = drm_mode_vrefresh(preferred_mode); 2991 /* At a given size, try to get closest to target refresh */ 2992 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && 2993 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < 2994 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { 2995 preferred_mode = cur_mode; 2996 } 2997 } 2998 2999 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; 3000 } 3001 3002 static bool 3003 mode_is_rb(const struct drm_display_mode *mode) 3004 { 3005 return (mode->htotal - mode->hdisplay == 160) && 3006 (mode->hsync_end - mode->hdisplay == 80) && 3007 (mode->hsync_end - mode->hsync_start == 32) && 3008 (mode->vsync_start - mode->vdisplay == 3); 3009 } 3010 3011 /* 3012 * drm_mode_find_dmt - Create a copy of a mode if present in DMT 3013 * @dev: Device to duplicate against 3014 * @hsize: Mode width 3015 * @vsize: Mode height 3016 * @fresh: Mode refresh rate 3017 * @rb: Mode reduced-blanking-ness 3018 * 3019 * Walk the DMT mode list looking for a match for the given parameters. 3020 * 3021 * Return: A newly allocated copy of the mode, or NULL if not found. 3022 */ 3023 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, 3024 int hsize, int vsize, int fresh, 3025 bool rb) 3026 { 3027 int i; 3028 3029 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 3030 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 3031 3032 if (hsize != ptr->hdisplay) 3033 continue; 3034 if (vsize != ptr->vdisplay) 3035 continue; 3036 if (fresh != drm_mode_vrefresh(ptr)) 3037 continue; 3038 if (rb != mode_is_rb(ptr)) 3039 continue; 3040 3041 return drm_mode_duplicate(dev, ptr); 3042 } 3043 3044 return NULL; 3045 } 3046 EXPORT_SYMBOL(drm_mode_find_dmt); 3047 3048 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type) 3049 { 3050 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); 3051 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2); 3052 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3); 3053 3054 return descriptor->pixel_clock == 0 && 3055 descriptor->data.other_data.pad1 == 0 && 3056 descriptor->data.other_data.type == type; 3057 } 3058 3059 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor) 3060 { 3061 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); 3062 3063 return descriptor->pixel_clock != 0; 3064 } 3065 3066 typedef void detailed_cb(const struct detailed_timing *timing, void *closure); 3067 3068 static void 3069 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) 3070 { 3071 int i, n; 3072 u8 d = ext[0x02]; 3073 const u8 *det_base = ext + d; 3074 3075 if (d < 4 || d > 127) 3076 return; 3077 3078 n = (127 - d) / 18; 3079 for (i = 0; i < n; i++) 3080 cb((const struct detailed_timing *)(det_base + 18 * i), closure); 3081 } 3082 3083 static void 3084 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) 3085 { 3086 unsigned int i, n = min((int)ext[0x02], 6); 3087 const u8 *det_base = ext + 5; 3088 3089 if (ext[0x01] != 1) 3090 return; /* unknown version */ 3091 3092 for (i = 0; i < n; i++) 3093 cb((const struct detailed_timing *)(det_base + 18 * i), closure); 3094 } 3095 3096 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid, 3097 detailed_cb *cb, void *closure) 3098 { 3099 struct drm_edid_iter edid_iter; 3100 const u8 *ext; 3101 int i; 3102 3103 if (!drm_edid) 3104 return; 3105 3106 for (i = 0; i < EDID_DETAILED_TIMINGS; i++) 3107 cb(&drm_edid->edid->detailed_timings[i], closure); 3108 3109 drm_edid_iter_begin(drm_edid, &edid_iter); 3110 drm_edid_iter_for_each(ext, &edid_iter) { 3111 switch (*ext) { 3112 case CEA_EXT: 3113 cea_for_each_detailed_block(ext, cb, closure); 3114 break; 3115 case VTB_EXT: 3116 vtb_for_each_detailed_block(ext, cb, closure); 3117 break; 3118 default: 3119 break; 3120 } 3121 } 3122 drm_edid_iter_end(&edid_iter); 3123 } 3124 3125 static void 3126 is_rb(const struct detailed_timing *descriptor, void *data) 3127 { 3128 bool *res = data; 3129 3130 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3131 return; 3132 3133 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3134 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15); 3135 3136 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG && 3137 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING) 3138 *res = true; 3139 } 3140 3141 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ 3142 static bool 3143 drm_monitor_supports_rb(const struct drm_edid *drm_edid) 3144 { 3145 if (drm_edid->edid->revision >= 4) { 3146 bool ret = false; 3147 3148 drm_for_each_detailed_block(drm_edid, is_rb, &ret); 3149 return ret; 3150 } 3151 3152 return drm_edid_is_digital(drm_edid); 3153 } 3154 3155 static void 3156 find_gtf2(const struct detailed_timing *descriptor, void *data) 3157 { 3158 const struct detailed_timing **res = data; 3159 3160 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3161 return; 3162 3163 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3164 3165 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG) 3166 *res = descriptor; 3167 } 3168 3169 /* Secondary GTF curve kicks in above some break frequency */ 3170 static int 3171 drm_gtf2_hbreak(const struct drm_edid *drm_edid) 3172 { 3173 const struct detailed_timing *descriptor = NULL; 3174 3175 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3176 3177 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12); 3178 3179 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0; 3180 } 3181 3182 static int 3183 drm_gtf2_2c(const struct drm_edid *drm_edid) 3184 { 3185 const struct detailed_timing *descriptor = NULL; 3186 3187 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3188 3189 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13); 3190 3191 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0; 3192 } 3193 3194 static int 3195 drm_gtf2_m(const struct drm_edid *drm_edid) 3196 { 3197 const struct detailed_timing *descriptor = NULL; 3198 3199 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3200 3201 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14); 3202 3203 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0; 3204 } 3205 3206 static int 3207 drm_gtf2_k(const struct drm_edid *drm_edid) 3208 { 3209 const struct detailed_timing *descriptor = NULL; 3210 3211 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3212 3213 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16); 3214 3215 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0; 3216 } 3217 3218 static int 3219 drm_gtf2_2j(const struct drm_edid *drm_edid) 3220 { 3221 const struct detailed_timing *descriptor = NULL; 3222 3223 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3224 3225 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17); 3226 3227 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0; 3228 } 3229 3230 static void 3231 get_timing_level(const struct detailed_timing *descriptor, void *data) 3232 { 3233 int *res = data; 3234 3235 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3236 return; 3237 3238 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3239 3240 switch (descriptor->data.other_data.data.range.flags) { 3241 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: 3242 *res = LEVEL_GTF; 3243 break; 3244 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: 3245 *res = LEVEL_GTF2; 3246 break; 3247 case DRM_EDID_CVT_SUPPORT_FLAG: 3248 *res = LEVEL_CVT; 3249 break; 3250 default: 3251 break; 3252 } 3253 } 3254 3255 /* Get standard timing level (CVT/GTF/DMT). */ 3256 static int standard_timing_level(const struct drm_edid *drm_edid) 3257 { 3258 const struct edid *edid = drm_edid->edid; 3259 3260 if (edid->revision >= 4) { 3261 /* 3262 * If the range descriptor doesn't 3263 * indicate otherwise default to CVT 3264 */ 3265 int ret = LEVEL_CVT; 3266 3267 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret); 3268 3269 return ret; 3270 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) { 3271 return LEVEL_GTF2; 3272 } else if (edid->revision >= 2) { 3273 return LEVEL_GTF; 3274 } else { 3275 return LEVEL_DMT; 3276 } 3277 } 3278 3279 /* 3280 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old 3281 * monitors fill with ascii space (0x20) instead. 3282 */ 3283 static int 3284 bad_std_timing(u8 a, u8 b) 3285 { 3286 return (a == 0x00 && b == 0x00) || 3287 (a == 0x01 && b == 0x01) || 3288 (a == 0x20 && b == 0x20); 3289 } 3290 3291 static int drm_mode_hsync(const struct drm_display_mode *mode) 3292 { 3293 if (mode->htotal <= 0) 3294 return 0; 3295 3296 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal); 3297 } 3298 3299 static struct drm_display_mode * 3300 drm_gtf2_mode(struct drm_device *dev, 3301 const struct drm_edid *drm_edid, 3302 int hsize, int vsize, int vrefresh_rate) 3303 { 3304 struct drm_display_mode *mode; 3305 3306 /* 3307 * This is potentially wrong if there's ever a monitor with 3308 * more than one ranges section, each claiming a different 3309 * secondary GTF curve. Please don't do that. 3310 */ 3311 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 3312 if (!mode) 3313 return NULL; 3314 3315 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) { 3316 drm_mode_destroy(dev, mode); 3317 mode = drm_gtf_mode_complex(dev, hsize, vsize, 3318 vrefresh_rate, 0, 0, 3319 drm_gtf2_m(drm_edid), 3320 drm_gtf2_2c(drm_edid), 3321 drm_gtf2_k(drm_edid), 3322 drm_gtf2_2j(drm_edid)); 3323 } 3324 3325 return mode; 3326 } 3327 3328 /* 3329 * Take the standard timing params (in this case width, aspect, and refresh) 3330 * and convert them into a real mode using CVT/GTF/DMT. 3331 */ 3332 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector, 3333 const struct drm_edid *drm_edid, 3334 const struct std_timing *t) 3335 { 3336 struct drm_device *dev = connector->dev; 3337 struct drm_display_mode *m, *mode = NULL; 3338 int hsize, vsize; 3339 int vrefresh_rate; 3340 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) 3341 >> EDID_TIMING_ASPECT_SHIFT; 3342 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) 3343 >> EDID_TIMING_VFREQ_SHIFT; 3344 int timing_level = standard_timing_level(drm_edid); 3345 3346 if (bad_std_timing(t->hsize, t->vfreq_aspect)) 3347 return NULL; 3348 3349 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ 3350 hsize = t->hsize * 8 + 248; 3351 /* vrefresh_rate = vfreq + 60 */ 3352 vrefresh_rate = vfreq + 60; 3353 /* the vdisplay is calculated based on the aspect ratio */ 3354 if (aspect_ratio == 0) { 3355 if (drm_edid->edid->revision < 3) 3356 vsize = hsize; 3357 else 3358 vsize = (hsize * 10) / 16; 3359 } else if (aspect_ratio == 1) 3360 vsize = (hsize * 3) / 4; 3361 else if (aspect_ratio == 2) 3362 vsize = (hsize * 4) / 5; 3363 else 3364 vsize = (hsize * 9) / 16; 3365 3366 /* HDTV hack, part 1 */ 3367 if (vrefresh_rate == 60 && 3368 ((hsize == 1360 && vsize == 765) || 3369 (hsize == 1368 && vsize == 769))) { 3370 hsize = 1366; 3371 vsize = 768; 3372 } 3373 3374 /* 3375 * If this connector already has a mode for this size and refresh 3376 * rate (because it came from detailed or CVT info), use that 3377 * instead. This way we don't have to guess at interlace or 3378 * reduced blanking. 3379 */ 3380 list_for_each_entry(m, &connector->probed_modes, head) 3381 if (m->hdisplay == hsize && m->vdisplay == vsize && 3382 drm_mode_vrefresh(m) == vrefresh_rate) 3383 return NULL; 3384 3385 /* HDTV hack, part 2 */ 3386 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { 3387 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, 3388 false); 3389 if (!mode) 3390 return NULL; 3391 mode->hdisplay = 1366; 3392 mode->hsync_start = mode->hsync_start - 1; 3393 mode->hsync_end = mode->hsync_end - 1; 3394 return mode; 3395 } 3396 3397 /* check whether it can be found in default mode table */ 3398 if (drm_monitor_supports_rb(drm_edid)) { 3399 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, 3400 true); 3401 if (mode) 3402 return mode; 3403 } 3404 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); 3405 if (mode) 3406 return mode; 3407 3408 /* okay, generate it */ 3409 switch (timing_level) { 3410 case LEVEL_DMT: 3411 break; 3412 case LEVEL_GTF: 3413 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 3414 break; 3415 case LEVEL_GTF2: 3416 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate); 3417 break; 3418 case LEVEL_CVT: 3419 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, 3420 false); 3421 break; 3422 } 3423 return mode; 3424 } 3425 3426 /* 3427 * EDID is delightfully ambiguous about how interlaced modes are to be 3428 * encoded. Our internal representation is of frame height, but some 3429 * HDTV detailed timings are encoded as field height. 3430 * 3431 * The format list here is from CEA, in frame size. Technically we 3432 * should be checking refresh rate too. Whatever. 3433 */ 3434 static void 3435 drm_mode_do_interlace_quirk(struct drm_display_mode *mode, 3436 const struct detailed_pixel_timing *pt) 3437 { 3438 int i; 3439 static const struct { 3440 int w, h; 3441 } cea_interlaced[] = { 3442 { 1920, 1080 }, 3443 { 720, 480 }, 3444 { 1440, 480 }, 3445 { 2880, 480 }, 3446 { 720, 576 }, 3447 { 1440, 576 }, 3448 { 2880, 576 }, 3449 }; 3450 3451 if (!(pt->misc & DRM_EDID_PT_INTERLACED)) 3452 return; 3453 3454 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { 3455 if ((mode->hdisplay == cea_interlaced[i].w) && 3456 (mode->vdisplay == cea_interlaced[i].h / 2)) { 3457 mode->vdisplay *= 2; 3458 mode->vsync_start *= 2; 3459 mode->vsync_end *= 2; 3460 mode->vtotal *= 2; 3461 mode->vtotal |= 1; 3462 } 3463 } 3464 3465 mode->flags |= DRM_MODE_FLAG_INTERLACE; 3466 } 3467 3468 /* 3469 * Create a new mode from an EDID detailed timing section. An EDID detailed 3470 * timing block contains enough info for us to create and return a new struct 3471 * drm_display_mode. 3472 */ 3473 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector, 3474 const struct drm_edid *drm_edid, 3475 const struct detailed_timing *timing) 3476 { 3477 const struct drm_display_info *info = &connector->display_info; 3478 struct drm_device *dev = connector->dev; 3479 struct drm_display_mode *mode; 3480 const struct detailed_pixel_timing *pt = &timing->data.pixel_data; 3481 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; 3482 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; 3483 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; 3484 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; 3485 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; 3486 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; 3487 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; 3488 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); 3489 3490 /* ignore tiny modes */ 3491 if (hactive < 64 || vactive < 64) 3492 return NULL; 3493 3494 if (pt->misc & DRM_EDID_PT_STEREO) { 3495 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n", 3496 connector->base.id, connector->name); 3497 return NULL; 3498 } 3499 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { 3500 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n", 3501 connector->base.id, connector->name); 3502 } 3503 3504 /* it is incorrect if hsync/vsync width is zero */ 3505 if (!hsync_pulse_width || !vsync_pulse_width) { 3506 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n", 3507 connector->base.id, connector->name); 3508 return NULL; 3509 } 3510 3511 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { 3512 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); 3513 if (!mode) 3514 return NULL; 3515 3516 goto set_size; 3517 } 3518 3519 mode = drm_mode_create(dev); 3520 if (!mode) 3521 return NULL; 3522 3523 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) 3524 mode->clock = 1088 * 10; 3525 else 3526 mode->clock = le16_to_cpu(timing->pixel_clock) * 10; 3527 3528 mode->hdisplay = hactive; 3529 mode->hsync_start = mode->hdisplay + hsync_offset; 3530 mode->hsync_end = mode->hsync_start + hsync_pulse_width; 3531 mode->htotal = mode->hdisplay + hblank; 3532 3533 mode->vdisplay = vactive; 3534 mode->vsync_start = mode->vdisplay + vsync_offset; 3535 mode->vsync_end = mode->vsync_start + vsync_pulse_width; 3536 mode->vtotal = mode->vdisplay + vblank; 3537 3538 /* Some EDIDs have bogus h/vsync_end values */ 3539 if (mode->hsync_end > mode->htotal) { 3540 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n", 3541 connector->base.id, connector->name, 3542 mode->hsync_end, mode->htotal); 3543 mode->hsync_end = mode->htotal; 3544 } 3545 if (mode->vsync_end > mode->vtotal) { 3546 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n", 3547 connector->base.id, connector->name, 3548 mode->vsync_end, mode->vtotal); 3549 mode->vsync_end = mode->vtotal; 3550 } 3551 3552 drm_mode_do_interlace_quirk(mode, pt); 3553 3554 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) { 3555 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC; 3556 } else { 3557 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? 3558 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 3559 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? 3560 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 3561 } 3562 3563 set_size: 3564 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; 3565 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; 3566 3567 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) { 3568 mode->width_mm *= 10; 3569 mode->height_mm *= 10; 3570 } 3571 3572 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { 3573 mode->width_mm = drm_edid->edid->width_cm * 10; 3574 mode->height_mm = drm_edid->edid->height_cm * 10; 3575 } 3576 3577 mode->type = DRM_MODE_TYPE_DRIVER; 3578 drm_mode_set_name(mode); 3579 3580 return mode; 3581 } 3582 3583 static bool 3584 mode_in_hsync_range(const struct drm_display_mode *mode, 3585 const struct edid *edid, const u8 *t) 3586 { 3587 int hsync, hmin, hmax; 3588 3589 hmin = t[7]; 3590 if (edid->revision >= 4) 3591 hmin += ((t[4] & 0x04) ? 255 : 0); 3592 hmax = t[8]; 3593 if (edid->revision >= 4) 3594 hmax += ((t[4] & 0x08) ? 255 : 0); 3595 hsync = drm_mode_hsync(mode); 3596 3597 return (hsync <= hmax && hsync >= hmin); 3598 } 3599 3600 static bool 3601 mode_in_vsync_range(const struct drm_display_mode *mode, 3602 const struct edid *edid, const u8 *t) 3603 { 3604 int vsync, vmin, vmax; 3605 3606 vmin = t[5]; 3607 if (edid->revision >= 4) 3608 vmin += ((t[4] & 0x01) ? 255 : 0); 3609 vmax = t[6]; 3610 if (edid->revision >= 4) 3611 vmax += ((t[4] & 0x02) ? 255 : 0); 3612 vsync = drm_mode_vrefresh(mode); 3613 3614 return (vsync <= vmax && vsync >= vmin); 3615 } 3616 3617 static u32 3618 range_pixel_clock(const struct edid *edid, const u8 *t) 3619 { 3620 /* unspecified */ 3621 if (t[9] == 0 || t[9] == 255) 3622 return 0; 3623 3624 /* 1.4 with CVT support gives us real precision, yay */ 3625 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) 3626 return (t[9] * 10000) - ((t[12] >> 2) * 250); 3627 3628 /* 1.3 is pathetic, so fuzz up a bit */ 3629 return t[9] * 10000 + 5001; 3630 } 3631 3632 static bool mode_in_range(const struct drm_display_mode *mode, 3633 const struct drm_edid *drm_edid, 3634 const struct detailed_timing *timing) 3635 { 3636 const struct edid *edid = drm_edid->edid; 3637 u32 max_clock; 3638 const u8 *t = (const u8 *)timing; 3639 3640 if (!mode_in_hsync_range(mode, edid, t)) 3641 return false; 3642 3643 if (!mode_in_vsync_range(mode, edid, t)) 3644 return false; 3645 3646 max_clock = range_pixel_clock(edid, t); 3647 if (max_clock) 3648 if (mode->clock > max_clock) 3649 return false; 3650 3651 /* 1.4 max horizontal check */ 3652 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) 3653 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) 3654 return false; 3655 3656 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid)) 3657 return false; 3658 3659 return true; 3660 } 3661 3662 static bool valid_inferred_mode(const struct drm_connector *connector, 3663 const struct drm_display_mode *mode) 3664 { 3665 const struct drm_display_mode *m; 3666 bool ok = false; 3667 3668 list_for_each_entry(m, &connector->probed_modes, head) { 3669 if (mode->hdisplay == m->hdisplay && 3670 mode->vdisplay == m->vdisplay && 3671 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) 3672 return false; /* duplicated */ 3673 if (mode->hdisplay <= m->hdisplay && 3674 mode->vdisplay <= m->vdisplay) 3675 ok = true; 3676 } 3677 return ok; 3678 } 3679 3680 static int drm_dmt_modes_for_range(struct drm_connector *connector, 3681 const struct drm_edid *drm_edid, 3682 const struct detailed_timing *timing) 3683 { 3684 int i, modes = 0; 3685 struct drm_display_mode *newmode; 3686 struct drm_device *dev = connector->dev; 3687 3688 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 3689 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) && 3690 valid_inferred_mode(connector, drm_dmt_modes + i)) { 3691 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); 3692 if (newmode) { 3693 drm_mode_probed_add(connector, newmode); 3694 modes++; 3695 } 3696 } 3697 } 3698 3699 return modes; 3700 } 3701 3702 /* fix up 1366x768 mode from 1368x768; 3703 * GFT/CVT can't express 1366 width which isn't dividable by 8 3704 */ 3705 void drm_mode_fixup_1366x768(struct drm_display_mode *mode) 3706 { 3707 if (mode->hdisplay == 1368 && mode->vdisplay == 768) { 3708 mode->hdisplay = 1366; 3709 mode->hsync_start--; 3710 mode->hsync_end--; 3711 drm_mode_set_name(mode); 3712 } 3713 } 3714 3715 static int drm_gtf_modes_for_range(struct drm_connector *connector, 3716 const struct drm_edid *drm_edid, 3717 const struct detailed_timing *timing) 3718 { 3719 int i, modes = 0; 3720 struct drm_display_mode *newmode; 3721 struct drm_device *dev = connector->dev; 3722 3723 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3724 const struct minimode *m = &extra_modes[i]; 3725 3726 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); 3727 if (!newmode) 3728 return modes; 3729 3730 drm_mode_fixup_1366x768(newmode); 3731 if (!mode_in_range(newmode, drm_edid, timing) || 3732 !valid_inferred_mode(connector, newmode)) { 3733 drm_mode_destroy(dev, newmode); 3734 continue; 3735 } 3736 3737 drm_mode_probed_add(connector, newmode); 3738 modes++; 3739 } 3740 3741 return modes; 3742 } 3743 3744 static int drm_gtf2_modes_for_range(struct drm_connector *connector, 3745 const struct drm_edid *drm_edid, 3746 const struct detailed_timing *timing) 3747 { 3748 int i, modes = 0; 3749 struct drm_display_mode *newmode; 3750 struct drm_device *dev = connector->dev; 3751 3752 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3753 const struct minimode *m = &extra_modes[i]; 3754 3755 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r); 3756 if (!newmode) 3757 return modes; 3758 3759 drm_mode_fixup_1366x768(newmode); 3760 if (!mode_in_range(newmode, drm_edid, timing) || 3761 !valid_inferred_mode(connector, newmode)) { 3762 drm_mode_destroy(dev, newmode); 3763 continue; 3764 } 3765 3766 drm_mode_probed_add(connector, newmode); 3767 modes++; 3768 } 3769 3770 return modes; 3771 } 3772 3773 static int drm_cvt_modes_for_range(struct drm_connector *connector, 3774 const struct drm_edid *drm_edid, 3775 const struct detailed_timing *timing) 3776 { 3777 int i, modes = 0; 3778 struct drm_display_mode *newmode; 3779 struct drm_device *dev = connector->dev; 3780 bool rb = drm_monitor_supports_rb(drm_edid); 3781 3782 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3783 const struct minimode *m = &extra_modes[i]; 3784 3785 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); 3786 if (!newmode) 3787 return modes; 3788 3789 drm_mode_fixup_1366x768(newmode); 3790 if (!mode_in_range(newmode, drm_edid, timing) || 3791 !valid_inferred_mode(connector, newmode)) { 3792 drm_mode_destroy(dev, newmode); 3793 continue; 3794 } 3795 3796 drm_mode_probed_add(connector, newmode); 3797 modes++; 3798 } 3799 3800 return modes; 3801 } 3802 3803 static void 3804 do_inferred_modes(const struct detailed_timing *timing, void *c) 3805 { 3806 struct detailed_mode_closure *closure = c; 3807 const struct detailed_non_pixel *data = &timing->data.other_data; 3808 const struct detailed_data_monitor_range *range = &data->data.range; 3809 3810 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) 3811 return; 3812 3813 closure->modes += drm_dmt_modes_for_range(closure->connector, 3814 closure->drm_edid, 3815 timing); 3816 3817 if (closure->drm_edid->edid->revision < 2) 3818 return; /* GTF not defined yet */ 3819 3820 switch (range->flags) { 3821 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: 3822 closure->modes += drm_gtf2_modes_for_range(closure->connector, 3823 closure->drm_edid, 3824 timing); 3825 break; 3826 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: 3827 closure->modes += drm_gtf_modes_for_range(closure->connector, 3828 closure->drm_edid, 3829 timing); 3830 break; 3831 case DRM_EDID_CVT_SUPPORT_FLAG: 3832 if (closure->drm_edid->edid->revision < 4) 3833 break; 3834 3835 closure->modes += drm_cvt_modes_for_range(closure->connector, 3836 closure->drm_edid, 3837 timing); 3838 break; 3839 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG: 3840 default: 3841 break; 3842 } 3843 } 3844 3845 static int add_inferred_modes(struct drm_connector *connector, 3846 const struct drm_edid *drm_edid) 3847 { 3848 struct detailed_mode_closure closure = { 3849 .connector = connector, 3850 .drm_edid = drm_edid, 3851 }; 3852 3853 if (drm_edid->edid->revision >= 1) 3854 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure); 3855 3856 return closure.modes; 3857 } 3858 3859 static int 3860 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing) 3861 { 3862 int i, j, m, modes = 0; 3863 struct drm_display_mode *mode; 3864 const u8 *est = ((const u8 *)timing) + 6; 3865 3866 for (i = 0; i < 6; i++) { 3867 for (j = 7; j >= 0; j--) { 3868 m = (i * 8) + (7 - j); 3869 if (m >= ARRAY_SIZE(est3_modes)) 3870 break; 3871 if (est[i] & (1 << j)) { 3872 mode = drm_mode_find_dmt(connector->dev, 3873 est3_modes[m].w, 3874 est3_modes[m].h, 3875 est3_modes[m].r, 3876 est3_modes[m].rb); 3877 if (mode) { 3878 drm_mode_probed_add(connector, mode); 3879 modes++; 3880 } 3881 } 3882 } 3883 } 3884 3885 return modes; 3886 } 3887 3888 static void 3889 do_established_modes(const struct detailed_timing *timing, void *c) 3890 { 3891 struct detailed_mode_closure *closure = c; 3892 3893 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS)) 3894 return; 3895 3896 closure->modes += drm_est3_modes(closure->connector, timing); 3897 } 3898 3899 /* 3900 * Get established modes from EDID and add them. Each EDID block contains a 3901 * bitmap of the supported "established modes" list (defined above). Tease them 3902 * out and add them to the global modes list. 3903 */ 3904 static int add_established_modes(struct drm_connector *connector, 3905 const struct drm_edid *drm_edid) 3906 { 3907 struct drm_device *dev = connector->dev; 3908 const struct edid *edid = drm_edid->edid; 3909 unsigned long est_bits = edid->established_timings.t1 | 3910 (edid->established_timings.t2 << 8) | 3911 ((edid->established_timings.mfg_rsvd & 0x80) << 9); 3912 int i, modes = 0; 3913 struct detailed_mode_closure closure = { 3914 .connector = connector, 3915 .drm_edid = drm_edid, 3916 }; 3917 3918 for (i = 0; i <= EDID_EST_TIMINGS; i++) { 3919 if (est_bits & (1<<i)) { 3920 struct drm_display_mode *newmode; 3921 3922 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]); 3923 if (newmode) { 3924 drm_mode_probed_add(connector, newmode); 3925 modes++; 3926 } 3927 } 3928 } 3929 3930 if (edid->revision >= 1) 3931 drm_for_each_detailed_block(drm_edid, do_established_modes, 3932 &closure); 3933 3934 return modes + closure.modes; 3935 } 3936 3937 static void 3938 do_standard_modes(const struct detailed_timing *timing, void *c) 3939 { 3940 struct detailed_mode_closure *closure = c; 3941 const struct detailed_non_pixel *data = &timing->data.other_data; 3942 struct drm_connector *connector = closure->connector; 3943 int i; 3944 3945 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES)) 3946 return; 3947 3948 for (i = 0; i < 6; i++) { 3949 const struct std_timing *std = &data->data.timings[i]; 3950 struct drm_display_mode *newmode; 3951 3952 newmode = drm_mode_std(connector, closure->drm_edid, std); 3953 if (newmode) { 3954 drm_mode_probed_add(connector, newmode); 3955 closure->modes++; 3956 } 3957 } 3958 } 3959 3960 /* 3961 * Get standard modes from EDID and add them. Standard modes can be calculated 3962 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and 3963 * add them to the list. 3964 */ 3965 static int add_standard_modes(struct drm_connector *connector, 3966 const struct drm_edid *drm_edid) 3967 { 3968 int i, modes = 0; 3969 struct detailed_mode_closure closure = { 3970 .connector = connector, 3971 .drm_edid = drm_edid, 3972 }; 3973 3974 for (i = 0; i < EDID_STD_TIMINGS; i++) { 3975 struct drm_display_mode *newmode; 3976 3977 newmode = drm_mode_std(connector, drm_edid, 3978 &drm_edid->edid->standard_timings[i]); 3979 if (newmode) { 3980 drm_mode_probed_add(connector, newmode); 3981 modes++; 3982 } 3983 } 3984 3985 if (drm_edid->edid->revision >= 1) 3986 drm_for_each_detailed_block(drm_edid, do_standard_modes, 3987 &closure); 3988 3989 /* XXX should also look for standard codes in VTB blocks */ 3990 3991 return modes + closure.modes; 3992 } 3993 3994 static int drm_cvt_modes(struct drm_connector *connector, 3995 const struct detailed_timing *timing) 3996 { 3997 int i, j, modes = 0; 3998 struct drm_display_mode *newmode; 3999 struct drm_device *dev = connector->dev; 4000 const struct cvt_timing *cvt; 4001 static const int rates[] = { 60, 85, 75, 60, 50 }; 4002 const u8 empty[3] = { 0, 0, 0 }; 4003 4004 for (i = 0; i < 4; i++) { 4005 int width, height; 4006 4007 cvt = &(timing->data.other_data.data.cvt[i]); 4008 4009 if (!memcmp(cvt->code, empty, 3)) 4010 continue; 4011 4012 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; 4013 switch (cvt->code[1] & 0x0c) { 4014 /* default - because compiler doesn't see that we've enumerated all cases */ 4015 default: 4016 case 0x00: 4017 width = height * 4 / 3; 4018 break; 4019 case 0x04: 4020 width = height * 16 / 9; 4021 break; 4022 case 0x08: 4023 width = height * 16 / 10; 4024 break; 4025 case 0x0c: 4026 width = height * 15 / 9; 4027 break; 4028 } 4029 4030 for (j = 1; j < 5; j++) { 4031 if (cvt->code[2] & (1 << j)) { 4032 newmode = drm_cvt_mode(dev, width, height, 4033 rates[j], j == 0, 4034 false, false); 4035 if (newmode) { 4036 drm_mode_probed_add(connector, newmode); 4037 modes++; 4038 } 4039 } 4040 } 4041 } 4042 4043 return modes; 4044 } 4045 4046 static void 4047 do_cvt_mode(const struct detailed_timing *timing, void *c) 4048 { 4049 struct detailed_mode_closure *closure = c; 4050 4051 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE)) 4052 return; 4053 4054 closure->modes += drm_cvt_modes(closure->connector, timing); 4055 } 4056 4057 static int 4058 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) 4059 { 4060 struct detailed_mode_closure closure = { 4061 .connector = connector, 4062 .drm_edid = drm_edid, 4063 }; 4064 4065 if (drm_edid->edid->revision >= 3) 4066 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure); 4067 4068 /* XXX should also look for CVT codes in VTB blocks */ 4069 4070 return closure.modes; 4071 } 4072 4073 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, 4074 struct drm_display_mode *mode); 4075 4076 static void 4077 do_detailed_mode(const struct detailed_timing *timing, void *c) 4078 { 4079 struct detailed_mode_closure *closure = c; 4080 struct drm_display_mode *newmode; 4081 4082 if (!is_detailed_timing_descriptor(timing)) 4083 return; 4084 4085 newmode = drm_mode_detailed(closure->connector, 4086 closure->drm_edid, timing); 4087 if (!newmode) 4088 return; 4089 4090 if (closure->preferred) 4091 newmode->type |= DRM_MODE_TYPE_PREFERRED; 4092 4093 /* 4094 * Detailed modes are limited to 10kHz pixel clock resolution, 4095 * so fix up anything that looks like CEA/HDMI mode, but the clock 4096 * is just slightly off. 4097 */ 4098 fixup_detailed_cea_mode_clock(closure->connector, newmode); 4099 4100 drm_mode_probed_add(closure->connector, newmode); 4101 closure->modes++; 4102 closure->preferred = false; 4103 } 4104 4105 /* 4106 * add_detailed_modes - Add modes from detailed timings 4107 * @connector: attached connector 4108 * @drm_edid: EDID block to scan 4109 */ 4110 static int add_detailed_modes(struct drm_connector *connector, 4111 const struct drm_edid *drm_edid) 4112 { 4113 struct detailed_mode_closure closure = { 4114 .connector = connector, 4115 .drm_edid = drm_edid, 4116 }; 4117 4118 if (drm_edid->edid->revision >= 4) 4119 closure.preferred = true; /* first detailed timing is always preferred */ 4120 else 4121 closure.preferred = 4122 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING; 4123 4124 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure); 4125 4126 return closure.modes; 4127 } 4128 4129 /* CTA-861-H Table 60 - CTA Tag Codes */ 4130 #define CTA_DB_AUDIO 1 4131 #define CTA_DB_VIDEO 2 4132 #define CTA_DB_VENDOR 3 4133 #define CTA_DB_SPEAKER 4 4134 #define CTA_DB_EXTENDED_TAG 7 4135 4136 /* CTA-861-H Table 62 - CTA Extended Tag Codes */ 4137 #define CTA_EXT_DB_VIDEO_CAP 0 4138 #define CTA_EXT_DB_VENDOR 1 4139 #define CTA_EXT_DB_HDR_STATIC_METADATA 6 4140 #define CTA_EXT_DB_420_VIDEO_DATA 14 4141 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15 4142 #define CTA_EXT_DB_HF_EEODB 0x78 4143 #define CTA_EXT_DB_HF_SCDB 0x79 4144 4145 #define EDID_BASIC_AUDIO (1 << 6) 4146 #define EDID_CEA_YCRCB444 (1 << 5) 4147 #define EDID_CEA_YCRCB422 (1 << 4) 4148 #define EDID_CEA_VCDB_QS (1 << 6) 4149 4150 /* 4151 * Search EDID for CEA extension block. 4152 * 4153 * FIXME: Prefer not returning pointers to raw EDID data. 4154 */ 4155 const u8 *drm_edid_find_extension(const struct drm_edid *drm_edid, 4156 int ext_id, int *ext_index) 4157 { 4158 const u8 *edid_ext = NULL; 4159 int i; 4160 4161 /* No EDID or EDID extensions */ 4162 if (!drm_edid || !drm_edid_extension_block_count(drm_edid)) 4163 return NULL; 4164 4165 /* Find CEA extension */ 4166 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) { 4167 edid_ext = drm_edid_extension_block_data(drm_edid, i); 4168 if (edid_block_tag(edid_ext) == ext_id) 4169 break; 4170 } 4171 4172 if (i >= drm_edid_extension_block_count(drm_edid)) 4173 return NULL; 4174 4175 *ext_index = i + 1; 4176 4177 return edid_ext; 4178 } 4179 4180 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */ 4181 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid) 4182 { 4183 const struct displayid_block *block; 4184 struct displayid_iter iter; 4185 struct drm_edid_iter edid_iter; 4186 const u8 *ext; 4187 bool found = false; 4188 4189 /* Look for a top level CEA extension block */ 4190 drm_edid_iter_begin(drm_edid, &edid_iter); 4191 drm_edid_iter_for_each(ext, &edid_iter) { 4192 if (ext[0] == CEA_EXT) { 4193 found = true; 4194 break; 4195 } 4196 } 4197 drm_edid_iter_end(&edid_iter); 4198 4199 if (found) 4200 return true; 4201 4202 /* CEA blocks can also be found embedded in a DisplayID block */ 4203 displayid_iter_edid_begin(drm_edid, &iter); 4204 displayid_iter_for_each(block, &iter) { 4205 if (block->tag == DATA_BLOCK_CTA) { 4206 found = true; 4207 break; 4208 } 4209 } 4210 displayid_iter_end(&iter); 4211 4212 return found; 4213 } 4214 4215 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic) 4216 { 4217 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127); 4218 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219); 4219 4220 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1)) 4221 return &edid_cea_modes_1[vic - 1]; 4222 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193)) 4223 return &edid_cea_modes_193[vic - 193]; 4224 return NULL; 4225 } 4226 4227 static u8 cea_num_vics(void) 4228 { 4229 return 193 + ARRAY_SIZE(edid_cea_modes_193); 4230 } 4231 4232 static u8 cea_next_vic(u8 vic) 4233 { 4234 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1)) 4235 vic = 193; 4236 return vic; 4237 } 4238 4239 /* 4240 * Calculate the alternate clock for the CEA mode 4241 * (60Hz vs. 59.94Hz etc.) 4242 */ 4243 static unsigned int 4244 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) 4245 { 4246 unsigned int clock = cea_mode->clock; 4247 4248 if (drm_mode_vrefresh(cea_mode) % 6 != 0) 4249 return clock; 4250 4251 /* 4252 * edid_cea_modes contains the 59.94Hz 4253 * variant for 240 and 480 line modes, 4254 * and the 60Hz variant otherwise. 4255 */ 4256 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) 4257 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000); 4258 else 4259 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001); 4260 4261 return clock; 4262 } 4263 4264 static bool 4265 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode) 4266 { 4267 /* 4268 * For certain VICs the spec allows the vertical 4269 * front porch to vary by one or two lines. 4270 * 4271 * cea_modes[] stores the variant with the shortest 4272 * vertical front porch. We can adjust the mode to 4273 * get the other variants by simply increasing the 4274 * vertical front porch length. 4275 */ 4276 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 || 4277 cea_mode_for_vic(9)->vtotal != 262 || 4278 cea_mode_for_vic(12)->vtotal != 262 || 4279 cea_mode_for_vic(13)->vtotal != 262 || 4280 cea_mode_for_vic(23)->vtotal != 312 || 4281 cea_mode_for_vic(24)->vtotal != 312 || 4282 cea_mode_for_vic(27)->vtotal != 312 || 4283 cea_mode_for_vic(28)->vtotal != 312); 4284 4285 if (((vic == 8 || vic == 9 || 4286 vic == 12 || vic == 13) && mode->vtotal < 263) || 4287 ((vic == 23 || vic == 24 || 4288 vic == 27 || vic == 28) && mode->vtotal < 314)) { 4289 mode->vsync_start++; 4290 mode->vsync_end++; 4291 mode->vtotal++; 4292 4293 return true; 4294 } 4295 4296 return false; 4297 } 4298 4299 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match, 4300 unsigned int clock_tolerance) 4301 { 4302 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4303 u8 vic; 4304 4305 if (!to_match->clock) 4306 return 0; 4307 4308 if (to_match->picture_aspect_ratio) 4309 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4310 4311 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { 4312 struct drm_display_mode cea_mode; 4313 unsigned int clock1, clock2; 4314 4315 drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); 4316 4317 /* Check both 60Hz and 59.94Hz */ 4318 clock1 = cea_mode.clock; 4319 clock2 = cea_mode_alternate_clock(&cea_mode); 4320 4321 if (abs(to_match->clock - clock1) > clock_tolerance && 4322 abs(to_match->clock - clock2) > clock_tolerance) 4323 continue; 4324 4325 do { 4326 if (drm_mode_match(to_match, &cea_mode, match_flags)) 4327 return vic; 4328 } while (cea_mode_alternate_timings(vic, &cea_mode)); 4329 } 4330 4331 return 0; 4332 } 4333 4334 /** 4335 * drm_match_cea_mode - look for a CEA mode matching given mode 4336 * @to_match: display mode 4337 * 4338 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 4339 * mode. 4340 */ 4341 u8 drm_match_cea_mode(const struct drm_display_mode *to_match) 4342 { 4343 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4344 u8 vic; 4345 4346 if (!to_match->clock) 4347 return 0; 4348 4349 if (to_match->picture_aspect_ratio) 4350 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4351 4352 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { 4353 struct drm_display_mode cea_mode; 4354 unsigned int clock1, clock2; 4355 4356 drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); 4357 4358 /* Check both 60Hz and 59.94Hz */ 4359 clock1 = cea_mode.clock; 4360 clock2 = cea_mode_alternate_clock(&cea_mode); 4361 4362 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) && 4363 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2)) 4364 continue; 4365 4366 do { 4367 if (drm_mode_match(to_match, &cea_mode, match_flags)) 4368 return vic; 4369 } while (cea_mode_alternate_timings(vic, &cea_mode)); 4370 } 4371 4372 return 0; 4373 } 4374 EXPORT_SYMBOL(drm_match_cea_mode); 4375 4376 static bool drm_valid_cea_vic(u8 vic) 4377 { 4378 return cea_mode_for_vic(vic) != NULL; 4379 } 4380 4381 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code) 4382 { 4383 const struct drm_display_mode *mode = cea_mode_for_vic(video_code); 4384 4385 if (mode) 4386 return mode->picture_aspect_ratio; 4387 4388 return HDMI_PICTURE_ASPECT_NONE; 4389 } 4390 4391 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code) 4392 { 4393 return edid_4k_modes[video_code].picture_aspect_ratio; 4394 } 4395 4396 /* 4397 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor 4398 * specific block). 4399 */ 4400 static unsigned int 4401 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) 4402 { 4403 return cea_mode_alternate_clock(hdmi_mode); 4404 } 4405 4406 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match, 4407 unsigned int clock_tolerance) 4408 { 4409 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4410 u8 vic; 4411 4412 if (!to_match->clock) 4413 return 0; 4414 4415 if (to_match->picture_aspect_ratio) 4416 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4417 4418 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 4419 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 4420 unsigned int clock1, clock2; 4421 4422 /* Make sure to also match alternate clocks */ 4423 clock1 = hdmi_mode->clock; 4424 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 4425 4426 if (abs(to_match->clock - clock1) > clock_tolerance && 4427 abs(to_match->clock - clock2) > clock_tolerance) 4428 continue; 4429 4430 if (drm_mode_match(to_match, hdmi_mode, match_flags)) 4431 return vic; 4432 } 4433 4434 return 0; 4435 } 4436 4437 /* 4438 * drm_match_hdmi_mode - look for a HDMI mode matching given mode 4439 * @to_match: display mode 4440 * 4441 * An HDMI mode is one defined in the HDMI vendor specific block. 4442 * 4443 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. 4444 */ 4445 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) 4446 { 4447 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4448 u8 vic; 4449 4450 if (!to_match->clock) 4451 return 0; 4452 4453 if (to_match->picture_aspect_ratio) 4454 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4455 4456 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 4457 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 4458 unsigned int clock1, clock2; 4459 4460 /* Make sure to also match alternate clocks */ 4461 clock1 = hdmi_mode->clock; 4462 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 4463 4464 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || 4465 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && 4466 drm_mode_match(to_match, hdmi_mode, match_flags)) 4467 return vic; 4468 } 4469 return 0; 4470 } 4471 4472 static bool drm_valid_hdmi_vic(u8 vic) 4473 { 4474 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes); 4475 } 4476 4477 static int add_alternate_cea_modes(struct drm_connector *connector, 4478 const struct drm_edid *drm_edid) 4479 { 4480 struct drm_device *dev = connector->dev; 4481 struct drm_display_mode *mode, *tmp; 4482 LIST_HEAD(list); 4483 int modes = 0; 4484 4485 /* Don't add CTA modes if the CTA extension block is missing */ 4486 if (!drm_edid_has_cta_extension(drm_edid)) 4487 return 0; 4488 4489 /* 4490 * Go through all probed modes and create a new mode 4491 * with the alternate clock for certain CEA modes. 4492 */ 4493 list_for_each_entry(mode, &connector->probed_modes, head) { 4494 const struct drm_display_mode *cea_mode = NULL; 4495 struct drm_display_mode *newmode; 4496 u8 vic = drm_match_cea_mode(mode); 4497 unsigned int clock1, clock2; 4498 4499 if (drm_valid_cea_vic(vic)) { 4500 cea_mode = cea_mode_for_vic(vic); 4501 clock2 = cea_mode_alternate_clock(cea_mode); 4502 } else { 4503 vic = drm_match_hdmi_mode(mode); 4504 if (drm_valid_hdmi_vic(vic)) { 4505 cea_mode = &edid_4k_modes[vic]; 4506 clock2 = hdmi_mode_alternate_clock(cea_mode); 4507 } 4508 } 4509 4510 if (!cea_mode) 4511 continue; 4512 4513 clock1 = cea_mode->clock; 4514 4515 if (clock1 == clock2) 4516 continue; 4517 4518 if (mode->clock != clock1 && mode->clock != clock2) 4519 continue; 4520 4521 newmode = drm_mode_duplicate(dev, cea_mode); 4522 if (!newmode) 4523 continue; 4524 4525 /* Carry over the stereo flags */ 4526 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; 4527 4528 /* 4529 * The current mode could be either variant. Make 4530 * sure to pick the "other" clock for the new mode. 4531 */ 4532 if (mode->clock != clock1) 4533 newmode->clock = clock1; 4534 else 4535 newmode->clock = clock2; 4536 4537 list_add_tail(&newmode->head, &list); 4538 } 4539 4540 list_for_each_entry_safe(mode, tmp, &list, head) { 4541 list_del(&mode->head); 4542 drm_mode_probed_add(connector, mode); 4543 modes++; 4544 } 4545 4546 return modes; 4547 } 4548 4549 static u8 svd_to_vic(u8 svd) 4550 { 4551 /* 0-6 bit vic, 7th bit native mode indicator */ 4552 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192)) 4553 return svd & 127; 4554 4555 return svd; 4556 } 4557 4558 /* 4559 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in 4560 * the EDID, or NULL on errors. 4561 */ 4562 static struct drm_display_mode * 4563 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index) 4564 { 4565 const struct drm_display_info *info = &connector->display_info; 4566 struct drm_device *dev = connector->dev; 4567 4568 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index]) 4569 return NULL; 4570 4571 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]); 4572 } 4573 4574 /* 4575 * do_y420vdb_modes - Parse YCBCR 420 only modes 4576 * @connector: connector corresponding to the HDMI sink 4577 * @svds: start of the data block of CEA YCBCR 420 VDB 4578 * @len: length of the CEA YCBCR 420 VDB 4579 * 4580 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB) 4581 * which contains modes which can be supported in YCBCR 420 4582 * output format only. 4583 */ 4584 static int do_y420vdb_modes(struct drm_connector *connector, 4585 const u8 *svds, u8 svds_len) 4586 { 4587 struct drm_device *dev = connector->dev; 4588 int modes = 0, i; 4589 4590 for (i = 0; i < svds_len; i++) { 4591 u8 vic = svd_to_vic(svds[i]); 4592 struct drm_display_mode *newmode; 4593 4594 if (!drm_valid_cea_vic(vic)) 4595 continue; 4596 4597 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic)); 4598 if (!newmode) 4599 break; 4600 drm_mode_probed_add(connector, newmode); 4601 modes++; 4602 } 4603 4604 return modes; 4605 } 4606 4607 /** 4608 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC 4609 * @dev: DRM device 4610 * @video_code: CEA VIC of the mode 4611 * 4612 * Creates a new mode matching the specified CEA VIC. 4613 * 4614 * Returns: A new drm_display_mode on success or NULL on failure 4615 */ 4616 struct drm_display_mode * 4617 drm_display_mode_from_cea_vic(struct drm_device *dev, 4618 u8 video_code) 4619 { 4620 const struct drm_display_mode *cea_mode; 4621 struct drm_display_mode *newmode; 4622 4623 cea_mode = cea_mode_for_vic(video_code); 4624 if (!cea_mode) 4625 return NULL; 4626 4627 newmode = drm_mode_duplicate(dev, cea_mode); 4628 if (!newmode) 4629 return NULL; 4630 4631 return newmode; 4632 } 4633 EXPORT_SYMBOL(drm_display_mode_from_cea_vic); 4634 4635 /* Add modes based on VICs parsed in parse_cta_vdb() */ 4636 static int add_cta_vdb_modes(struct drm_connector *connector) 4637 { 4638 const struct drm_display_info *info = &connector->display_info; 4639 int i, modes = 0; 4640 4641 if (!info->vics) 4642 return 0; 4643 4644 for (i = 0; i < info->vics_len; i++) { 4645 struct drm_display_mode *mode; 4646 4647 mode = drm_display_mode_from_vic_index(connector, i); 4648 if (mode) { 4649 drm_mode_probed_add(connector, mode); 4650 modes++; 4651 } 4652 } 4653 4654 return modes; 4655 } 4656 4657 struct stereo_mandatory_mode { 4658 int width, height, vrefresh; 4659 unsigned int flags; 4660 }; 4661 4662 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { 4663 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4664 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, 4665 { 1920, 1080, 50, 4666 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 4667 { 1920, 1080, 60, 4668 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 4669 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4670 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, 4671 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4672 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } 4673 }; 4674 4675 static bool 4676 stereo_match_mandatory(const struct drm_display_mode *mode, 4677 const struct stereo_mandatory_mode *stereo_mode) 4678 { 4679 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 4680 4681 return mode->hdisplay == stereo_mode->width && 4682 mode->vdisplay == stereo_mode->height && 4683 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && 4684 drm_mode_vrefresh(mode) == stereo_mode->vrefresh; 4685 } 4686 4687 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) 4688 { 4689 struct drm_device *dev = connector->dev; 4690 const struct drm_display_mode *mode; 4691 struct list_head stereo_modes; 4692 int modes = 0, i; 4693 4694 INIT_LIST_HEAD(&stereo_modes); 4695 4696 list_for_each_entry(mode, &connector->probed_modes, head) { 4697 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { 4698 const struct stereo_mandatory_mode *mandatory; 4699 struct drm_display_mode *new_mode; 4700 4701 if (!stereo_match_mandatory(mode, 4702 &stereo_mandatory_modes[i])) 4703 continue; 4704 4705 mandatory = &stereo_mandatory_modes[i]; 4706 new_mode = drm_mode_duplicate(dev, mode); 4707 if (!new_mode) 4708 continue; 4709 4710 new_mode->flags |= mandatory->flags; 4711 list_add_tail(&new_mode->head, &stereo_modes); 4712 modes++; 4713 } 4714 } 4715 4716 list_splice_tail(&stereo_modes, &connector->probed_modes); 4717 4718 return modes; 4719 } 4720 4721 static int add_hdmi_mode(struct drm_connector *connector, u8 vic) 4722 { 4723 struct drm_device *dev = connector->dev; 4724 struct drm_display_mode *newmode; 4725 4726 if (!drm_valid_hdmi_vic(vic)) { 4727 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n", 4728 connector->base.id, connector->name, vic); 4729 return 0; 4730 } 4731 4732 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); 4733 if (!newmode) 4734 return 0; 4735 4736 drm_mode_probed_add(connector, newmode); 4737 4738 return 1; 4739 } 4740 4741 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, 4742 int vic_index) 4743 { 4744 struct drm_display_mode *newmode; 4745 int modes = 0; 4746 4747 if (structure & (1 << 0)) { 4748 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4749 if (newmode) { 4750 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; 4751 drm_mode_probed_add(connector, newmode); 4752 modes++; 4753 } 4754 } 4755 if (structure & (1 << 6)) { 4756 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4757 if (newmode) { 4758 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 4759 drm_mode_probed_add(connector, newmode); 4760 modes++; 4761 } 4762 } 4763 if (structure & (1 << 8)) { 4764 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4765 if (newmode) { 4766 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 4767 drm_mode_probed_add(connector, newmode); 4768 modes++; 4769 } 4770 } 4771 4772 return modes; 4773 } 4774 4775 static bool hdmi_vsdb_latency_present(const u8 *db) 4776 { 4777 return db[8] & BIT(7); 4778 } 4779 4780 static bool hdmi_vsdb_i_latency_present(const u8 *db) 4781 { 4782 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6); 4783 } 4784 4785 static int hdmi_vsdb_latency_length(const u8 *db) 4786 { 4787 if (hdmi_vsdb_i_latency_present(db)) 4788 return 4; 4789 else if (hdmi_vsdb_latency_present(db)) 4790 return 2; 4791 else 4792 return 0; 4793 } 4794 4795 /* 4796 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block 4797 * @connector: connector corresponding to the HDMI sink 4798 * @db: start of the CEA vendor specific block 4799 * @len: length of the CEA block payload, ie. one can access up to db[len] 4800 * 4801 * Parses the HDMI VSDB looking for modes to add to @connector. This function 4802 * also adds the stereo 3d modes when applicable. 4803 */ 4804 static int 4805 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len) 4806 { 4807 int modes = 0, offset = 0, i, multi_present = 0, multi_len; 4808 u8 vic_len, hdmi_3d_len = 0; 4809 u16 mask; 4810 u16 structure_all; 4811 4812 if (len < 8) 4813 goto out; 4814 4815 /* no HDMI_Video_Present */ 4816 if (!(db[8] & (1 << 5))) 4817 goto out; 4818 4819 offset += hdmi_vsdb_latency_length(db); 4820 4821 /* the declared length is not long enough for the 2 first bytes 4822 * of additional video format capabilities */ 4823 if (len < (8 + offset + 2)) 4824 goto out; 4825 4826 /* 3D_Present */ 4827 offset++; 4828 if (db[8 + offset] & (1 << 7)) { 4829 modes += add_hdmi_mandatory_stereo_modes(connector); 4830 4831 /* 3D_Multi_present */ 4832 multi_present = (db[8 + offset] & 0x60) >> 5; 4833 } 4834 4835 offset++; 4836 vic_len = db[8 + offset] >> 5; 4837 hdmi_3d_len = db[8 + offset] & 0x1f; 4838 4839 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { 4840 u8 vic; 4841 4842 vic = db[9 + offset + i]; 4843 modes += add_hdmi_mode(connector, vic); 4844 } 4845 offset += 1 + vic_len; 4846 4847 if (multi_present == 1) 4848 multi_len = 2; 4849 else if (multi_present == 2) 4850 multi_len = 4; 4851 else 4852 multi_len = 0; 4853 4854 if (len < (8 + offset + hdmi_3d_len - 1)) 4855 goto out; 4856 4857 if (hdmi_3d_len < multi_len) 4858 goto out; 4859 4860 if (multi_present == 1 || multi_present == 2) { 4861 /* 3D_Structure_ALL */ 4862 structure_all = (db[8 + offset] << 8) | db[9 + offset]; 4863 4864 /* check if 3D_MASK is present */ 4865 if (multi_present == 2) 4866 mask = (db[10 + offset] << 8) | db[11 + offset]; 4867 else 4868 mask = 0xffff; 4869 4870 for (i = 0; i < 16; i++) { 4871 if (mask & (1 << i)) 4872 modes += add_3d_struct_modes(connector, 4873 structure_all, i); 4874 } 4875 } 4876 4877 offset += multi_len; 4878 4879 for (i = 0; i < (hdmi_3d_len - multi_len); i++) { 4880 int vic_index; 4881 struct drm_display_mode *newmode = NULL; 4882 unsigned int newflag = 0; 4883 bool detail_present; 4884 4885 detail_present = ((db[8 + offset + i] & 0x0f) > 7); 4886 4887 if (detail_present && (i + 1 == hdmi_3d_len - multi_len)) 4888 break; 4889 4890 /* 2D_VIC_order_X */ 4891 vic_index = db[8 + offset + i] >> 4; 4892 4893 /* 3D_Structure_X */ 4894 switch (db[8 + offset + i] & 0x0f) { 4895 case 0: 4896 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING; 4897 break; 4898 case 6: 4899 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 4900 break; 4901 case 8: 4902 /* 3D_Detail_X */ 4903 if ((db[9 + offset + i] >> 4) == 1) 4904 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 4905 break; 4906 } 4907 4908 if (newflag != 0) { 4909 newmode = drm_display_mode_from_vic_index(connector, 4910 vic_index); 4911 4912 if (newmode) { 4913 newmode->flags |= newflag; 4914 drm_mode_probed_add(connector, newmode); 4915 modes++; 4916 } 4917 } 4918 4919 if (detail_present) 4920 i++; 4921 } 4922 4923 out: 4924 return modes; 4925 } 4926 4927 static int 4928 cea_revision(const u8 *cea) 4929 { 4930 /* 4931 * FIXME is this correct for the DispID variant? 4932 * The DispID spec doesn't really specify whether 4933 * this is the revision of the CEA extension or 4934 * the DispID CEA data block. And the only value 4935 * given as an example is 0. 4936 */ 4937 return cea[1]; 4938 } 4939 4940 /* 4941 * CTA Data Block iterator. 4942 * 4943 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID 4944 * CTA Data Blocks. 4945 * 4946 * struct cea_db *db: 4947 * struct cea_db_iter iter; 4948 * 4949 * cea_db_iter_edid_begin(edid, &iter); 4950 * cea_db_iter_for_each(db, &iter) { 4951 * // do stuff with db 4952 * } 4953 * cea_db_iter_end(&iter); 4954 */ 4955 struct cea_db_iter { 4956 struct drm_edid_iter edid_iter; 4957 struct displayid_iter displayid_iter; 4958 4959 /* Current Data Block Collection. */ 4960 const u8 *collection; 4961 4962 /* Current Data Block index in current collection. */ 4963 int index; 4964 4965 /* End index in current collection. */ 4966 int end; 4967 }; 4968 4969 /* CTA-861-H section 7.4 CTA Data BLock Collection */ 4970 struct cea_db { 4971 u8 tag_length; 4972 u8 data[]; 4973 } __packed; 4974 4975 static int cea_db_tag(const struct cea_db *db) 4976 { 4977 return db->tag_length >> 5; 4978 } 4979 4980 static int cea_db_payload_len(const void *_db) 4981 { 4982 /* FIXME: Transition to passing struct cea_db * everywhere. */ 4983 const struct cea_db *db = _db; 4984 4985 return db->tag_length & 0x1f; 4986 } 4987 4988 static const void *cea_db_data(const struct cea_db *db) 4989 { 4990 return db->data; 4991 } 4992 4993 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag) 4994 { 4995 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG && 4996 cea_db_payload_len(db) >= 1 && 4997 db->data[0] == tag; 4998 } 4999 5000 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui) 5001 { 5002 const u8 *data = cea_db_data(db); 5003 5004 return cea_db_tag(db) == CTA_DB_VENDOR && 5005 cea_db_payload_len(db) >= 3 && 5006 oui(data[2], data[1], data[0]) == vendor_oui; 5007 } 5008 5009 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid, 5010 struct cea_db_iter *iter) 5011 { 5012 memset(iter, 0, sizeof(*iter)); 5013 5014 drm_edid_iter_begin(drm_edid, &iter->edid_iter); 5015 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter); 5016 } 5017 5018 static const struct cea_db * 5019 __cea_db_iter_current_block(const struct cea_db_iter *iter) 5020 { 5021 const struct cea_db *db; 5022 5023 if (!iter->collection) 5024 return NULL; 5025 5026 db = (const struct cea_db *)&iter->collection[iter->index]; 5027 5028 if (iter->index + sizeof(*db) <= iter->end && 5029 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end) 5030 return db; 5031 5032 return NULL; 5033 } 5034 5035 /* 5036 * References: 5037 * - CTA-861-H section 7.3.3 CTA Extension Version 3 5038 */ 5039 static int cea_db_collection_size(const u8 *cta) 5040 { 5041 u8 d = cta[2]; 5042 5043 if (d < 4 || d > 127) 5044 return 0; 5045 5046 return d - 4; 5047 } 5048 5049 /* 5050 * References: 5051 * - VESA E-EDID v1.4 5052 * - CTA-861-H section 7.3.3 CTA Extension Version 3 5053 */ 5054 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter) 5055 { 5056 const u8 *ext; 5057 5058 drm_edid_iter_for_each(ext, &iter->edid_iter) { 5059 int size; 5060 5061 /* Only support CTA Extension revision 3+ */ 5062 if (ext[0] != CEA_EXT || cea_revision(ext) < 3) 5063 continue; 5064 5065 size = cea_db_collection_size(ext); 5066 if (!size) 5067 continue; 5068 5069 iter->index = 4; 5070 iter->end = iter->index + size; 5071 5072 return ext; 5073 } 5074 5075 return NULL; 5076 } 5077 5078 /* 5079 * References: 5080 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block 5081 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block 5082 * 5083 * Note that the above do not specify any connection between DisplayID Data 5084 * Block revision and CTA Extension versions. 5085 */ 5086 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter) 5087 { 5088 const struct displayid_block *block; 5089 5090 displayid_iter_for_each(block, &iter->displayid_iter) { 5091 if (block->tag != DATA_BLOCK_CTA) 5092 continue; 5093 5094 /* 5095 * The displayid iterator has already verified the block bounds 5096 * in displayid_iter_block(). 5097 */ 5098 iter->index = sizeof(*block); 5099 iter->end = iter->index + block->num_bytes; 5100 5101 return block; 5102 } 5103 5104 return NULL; 5105 } 5106 5107 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter) 5108 { 5109 const struct cea_db *db; 5110 5111 if (iter->collection) { 5112 /* Current collection should always be valid. */ 5113 db = __cea_db_iter_current_block(iter); 5114 if (WARN_ON(!db)) { 5115 iter->collection = NULL; 5116 return NULL; 5117 } 5118 5119 /* Next block in CTA Data Block Collection */ 5120 iter->index += sizeof(*db) + cea_db_payload_len(db); 5121 5122 db = __cea_db_iter_current_block(iter); 5123 if (db) 5124 return db; 5125 } 5126 5127 for (;;) { 5128 /* 5129 * Find the next CTA Data Block Collection. First iterate all 5130 * the EDID CTA Extensions, then all the DisplayID CTA blocks. 5131 * 5132 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID 5133 * Extension, it's recommended that DisplayID extensions are 5134 * exposed after all of the CTA Extensions. 5135 */ 5136 iter->collection = __cea_db_iter_edid_next(iter); 5137 if (!iter->collection) 5138 iter->collection = __cea_db_iter_displayid_next(iter); 5139 5140 if (!iter->collection) 5141 return NULL; 5142 5143 db = __cea_db_iter_current_block(iter); 5144 if (db) 5145 return db; 5146 } 5147 } 5148 5149 #define cea_db_iter_for_each(__db, __iter) \ 5150 while (((__db) = __cea_db_iter_next(__iter))) 5151 5152 static void cea_db_iter_end(struct cea_db_iter *iter) 5153 { 5154 displayid_iter_end(&iter->displayid_iter); 5155 drm_edid_iter_end(&iter->edid_iter); 5156 5157 memset(iter, 0, sizeof(*iter)); 5158 } 5159 5160 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db) 5161 { 5162 return cea_db_is_vendor(db, HDMI_IEEE_OUI) && 5163 cea_db_payload_len(db) >= 5; 5164 } 5165 5166 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db) 5167 { 5168 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) && 5169 cea_db_payload_len(db) >= 7; 5170 } 5171 5172 static bool cea_db_is_hdmi_forum_eeodb(const void *db) 5173 { 5174 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) && 5175 cea_db_payload_len(db) >= 2; 5176 } 5177 5178 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db) 5179 { 5180 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) && 5181 cea_db_payload_len(db) == 21; 5182 } 5183 5184 static bool cea_db_is_vcdb(const struct cea_db *db) 5185 { 5186 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) && 5187 cea_db_payload_len(db) == 2; 5188 } 5189 5190 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db) 5191 { 5192 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) && 5193 cea_db_payload_len(db) >= 7; 5194 } 5195 5196 static bool cea_db_is_y420cmdb(const struct cea_db *db) 5197 { 5198 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP); 5199 } 5200 5201 static bool cea_db_is_y420vdb(const struct cea_db *db) 5202 { 5203 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA); 5204 } 5205 5206 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db) 5207 { 5208 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) && 5209 cea_db_payload_len(db) >= 3; 5210 } 5211 5212 /* 5213 * Get the HF-EEODB override extension block count from EDID. 5214 * 5215 * The passed in EDID may be partially read, as long as it has at least two 5216 * blocks (base block and one extension block) if EDID extension count is > 0. 5217 * 5218 * Note that this is *not* how you should parse CTA Data Blocks in general; this 5219 * is only to handle partially read EDIDs. Normally, use the CTA Data Block 5220 * iterators instead. 5221 * 5222 * References: 5223 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block 5224 */ 5225 static int edid_hfeeodb_extension_block_count(const struct edid *edid) 5226 { 5227 const u8 *cta; 5228 5229 /* No extensions according to base block, no HF-EEODB. */ 5230 if (!edid_extension_block_count(edid)) 5231 return 0; 5232 5233 /* HF-EEODB is always in the first EDID extension block only */ 5234 cta = edid_extension_block_data(edid, 0); 5235 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3) 5236 return 0; 5237 5238 /* Need to have the data block collection, and at least 3 bytes. */ 5239 if (cea_db_collection_size(cta) < 3) 5240 return 0; 5241 5242 /* 5243 * Sinks that include the HF-EEODB in their E-EDID shall include one and 5244 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4 5245 * through 6 of Block 1 of the E-EDID. 5246 */ 5247 if (!cea_db_is_hdmi_forum_eeodb(&cta[4])) 5248 return 0; 5249 5250 return cta[4 + 2]; 5251 } 5252 5253 /* 5254 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB) 5255 * 5256 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB, 5257 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444 5258 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can 5259 * support YCBCR420 output too. 5260 */ 5261 static void parse_cta_y420cmdb(struct drm_connector *connector, 5262 const struct cea_db *db, u64 *y420cmdb_map) 5263 { 5264 struct drm_display_info *info = &connector->display_info; 5265 int i, map_len = cea_db_payload_len(db) - 1; 5266 const u8 *data = cea_db_data(db) + 1; 5267 u64 map = 0; 5268 5269 if (map_len == 0) { 5270 /* All CEA modes support ycbcr420 sampling also.*/ 5271 map = U64_MAX; 5272 goto out; 5273 } 5274 5275 /* 5276 * This map indicates which of the existing CEA block modes 5277 * from VDB can support YCBCR420 output too. So if bit=0 is 5278 * set, first mode from VDB can support YCBCR420 output too. 5279 * We will parse and keep this map, before parsing VDB itself 5280 * to avoid going through the same block again and again. 5281 * 5282 * Spec is not clear about max possible size of this block. 5283 * Clamping max bitmap block size at 8 bytes. Every byte can 5284 * address 8 CEA modes, in this way this map can address 5285 * 8*8 = first 64 SVDs. 5286 */ 5287 if (WARN_ON_ONCE(map_len > 8)) 5288 map_len = 8; 5289 5290 for (i = 0; i < map_len; i++) 5291 map |= (u64)data[i] << (8 * i); 5292 5293 out: 5294 if (map) 5295 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; 5296 5297 *y420cmdb_map = map; 5298 } 5299 5300 static int add_cea_modes(struct drm_connector *connector, 5301 const struct drm_edid *drm_edid) 5302 { 5303 const struct cea_db *db; 5304 struct cea_db_iter iter; 5305 int modes; 5306 5307 /* CTA VDB block VICs parsed earlier */ 5308 modes = add_cta_vdb_modes(connector); 5309 5310 cea_db_iter_edid_begin(drm_edid, &iter); 5311 cea_db_iter_for_each(db, &iter) { 5312 if (cea_db_is_hdmi_vsdb(db)) { 5313 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db, 5314 cea_db_payload_len(db)); 5315 } else if (cea_db_is_y420vdb(db)) { 5316 const u8 *vdb420 = cea_db_data(db) + 1; 5317 5318 /* Add 4:2:0(only) modes present in EDID */ 5319 modes += do_y420vdb_modes(connector, vdb420, 5320 cea_db_payload_len(db) - 1); 5321 } 5322 } 5323 cea_db_iter_end(&iter); 5324 5325 return modes; 5326 } 5327 5328 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, 5329 struct drm_display_mode *mode) 5330 { 5331 const struct drm_display_mode *cea_mode; 5332 int clock1, clock2, clock; 5333 u8 vic; 5334 const char *type; 5335 5336 /* 5337 * allow 5kHz clock difference either way to account for 5338 * the 10kHz clock resolution limit of detailed timings. 5339 */ 5340 vic = drm_match_cea_mode_clock_tolerance(mode, 5); 5341 if (drm_valid_cea_vic(vic)) { 5342 type = "CEA"; 5343 cea_mode = cea_mode_for_vic(vic); 5344 clock1 = cea_mode->clock; 5345 clock2 = cea_mode_alternate_clock(cea_mode); 5346 } else { 5347 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5); 5348 if (drm_valid_hdmi_vic(vic)) { 5349 type = "HDMI"; 5350 cea_mode = &edid_4k_modes[vic]; 5351 clock1 = cea_mode->clock; 5352 clock2 = hdmi_mode_alternate_clock(cea_mode); 5353 } else { 5354 return; 5355 } 5356 } 5357 5358 /* pick whichever is closest */ 5359 if (abs(mode->clock - clock1) < abs(mode->clock - clock2)) 5360 clock = clock1; 5361 else 5362 clock = clock2; 5363 5364 if (mode->clock == clock) 5365 return; 5366 5367 drm_dbg_kms(connector->dev, 5368 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n", 5369 connector->base.id, connector->name, 5370 type, vic, mode->clock, clock); 5371 mode->clock = clock; 5372 } 5373 5374 static void drm_calculate_luminance_range(struct drm_connector *connector) 5375 { 5376 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1; 5377 struct drm_luminance_range_info *luminance_range = 5378 &connector->display_info.luminance_range; 5379 static const u8 pre_computed_values[] = { 5380 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 5381 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98 5382 }; 5383 u32 max_avg, min_cll, max, min, q, r; 5384 5385 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1))) 5386 return; 5387 5388 max_avg = hdr_metadata->max_fall; 5389 min_cll = hdr_metadata->min_cll; 5390 5391 /* 5392 * From the specification (CTA-861-G), for calculating the maximum 5393 * luminance we need to use: 5394 * Luminance = 50*2**(CV/32) 5395 * Where CV is a one-byte value. 5396 * For calculating this expression we may need float point precision; 5397 * to avoid this complexity level, we take advantage that CV is divided 5398 * by a constant. From the Euclids division algorithm, we know that CV 5399 * can be written as: CV = 32*q + r. Next, we replace CV in the 5400 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just 5401 * need to pre-compute the value of r/32. For pre-computing the values 5402 * We just used the following Ruby line: 5403 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round} 5404 * The results of the above expressions can be verified at 5405 * pre_computed_values. 5406 */ 5407 q = max_avg >> 5; 5408 r = max_avg % 32; 5409 max = (1 << q) * pre_computed_values[r]; 5410 5411 /* min luminance: maxLum * (CV/255)^2 / 100 */ 5412 q = DIV_ROUND_CLOSEST(min_cll, 255); 5413 min = max * DIV_ROUND_CLOSEST((q * q), 100); 5414 5415 luminance_range->min_luminance = min; 5416 luminance_range->max_luminance = max; 5417 } 5418 5419 static uint8_t eotf_supported(const u8 *edid_ext) 5420 { 5421 return edid_ext[2] & 5422 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) | 5423 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) | 5424 BIT(HDMI_EOTF_SMPTE_ST2084) | 5425 BIT(HDMI_EOTF_BT_2100_HLG)); 5426 } 5427 5428 static uint8_t hdr_metadata_type(const u8 *edid_ext) 5429 { 5430 return edid_ext[3] & 5431 BIT(HDMI_STATIC_METADATA_TYPE1); 5432 } 5433 5434 static void 5435 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db) 5436 { 5437 u16 len; 5438 5439 len = cea_db_payload_len(db); 5440 5441 connector->hdr_sink_metadata.hdmi_type1.eotf = 5442 eotf_supported(db); 5443 connector->hdr_sink_metadata.hdmi_type1.metadata_type = 5444 hdr_metadata_type(db); 5445 5446 if (len >= 4) 5447 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4]; 5448 if (len >= 5) 5449 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5]; 5450 if (len >= 6) { 5451 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6]; 5452 5453 /* Calculate only when all values are available */ 5454 drm_calculate_luminance_range(connector); 5455 } 5456 } 5457 5458 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ 5459 static void 5460 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db) 5461 { 5462 u8 len = cea_db_payload_len(db); 5463 5464 if (len >= 6 && (db[6] & (1 << 7))) 5465 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI; 5466 5467 if (len >= 10 && hdmi_vsdb_latency_present(db)) { 5468 connector->latency_present[0] = true; 5469 connector->video_latency[0] = db[9]; 5470 connector->audio_latency[0] = db[10]; 5471 } 5472 5473 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) { 5474 connector->latency_present[1] = true; 5475 connector->video_latency[1] = db[11]; 5476 connector->audio_latency[1] = db[12]; 5477 } 5478 5479 drm_dbg_kms(connector->dev, 5480 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n", 5481 connector->base.id, connector->name, 5482 connector->latency_present[0], connector->latency_present[1], 5483 connector->video_latency[0], connector->video_latency[1], 5484 connector->audio_latency[0], connector->audio_latency[1]); 5485 } 5486 5487 static void 5488 match_identity(const struct detailed_timing *timing, void *data) 5489 { 5490 struct drm_edid_match_closure *closure = data; 5491 unsigned int i; 5492 const char *name = closure->ident->name; 5493 unsigned int name_len = strlen(name); 5494 const char *desc = timing->data.other_data.data.str.str; 5495 unsigned int desc_len = ARRAY_SIZE(timing->data.other_data.data.str.str); 5496 5497 if (name_len > desc_len || 5498 !(is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME) || 5499 is_display_descriptor(timing, EDID_DETAIL_MONITOR_STRING))) 5500 return; 5501 5502 if (strncmp(name, desc, name_len)) 5503 return; 5504 5505 for (i = name_len; i < desc_len; i++) { 5506 if (desc[i] == '\n') 5507 break; 5508 /* Allow white space before EDID string terminator. */ 5509 if (!isspace(desc[i])) 5510 return; 5511 } 5512 5513 closure->matched = true; 5514 } 5515 5516 /** 5517 * drm_edid_match - match drm_edid with given identity 5518 * @drm_edid: EDID 5519 * @ident: the EDID identity to match with 5520 * 5521 * Check if the EDID matches with the given identity. 5522 * 5523 * Return: True if the given identity matched with EDID, false otherwise. 5524 */ 5525 bool drm_edid_match(const struct drm_edid *drm_edid, 5526 const struct drm_edid_ident *ident) 5527 { 5528 if (!drm_edid || drm_edid_get_panel_id(drm_edid) != ident->panel_id) 5529 return false; 5530 5531 /* Match with name only if it's not NULL. */ 5532 if (ident->name) { 5533 struct drm_edid_match_closure closure = { 5534 .ident = ident, 5535 .matched = false, 5536 }; 5537 5538 drm_for_each_detailed_block(drm_edid, match_identity, &closure); 5539 5540 return closure.matched; 5541 } 5542 5543 return true; 5544 } 5545 EXPORT_SYMBOL(drm_edid_match); 5546 5547 static void 5548 monitor_name(const struct detailed_timing *timing, void *data) 5549 { 5550 const char **res = data; 5551 5552 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME)) 5553 return; 5554 5555 *res = timing->data.other_data.data.str.str; 5556 } 5557 5558 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13]) 5559 { 5560 const char *edid_name = NULL; 5561 int mnl; 5562 5563 if (!drm_edid || !name) 5564 return 0; 5565 5566 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name); 5567 for (mnl = 0; edid_name && mnl < 13; mnl++) { 5568 if (edid_name[mnl] == 0x0a) 5569 break; 5570 5571 name[mnl] = edid_name[mnl]; 5572 } 5573 5574 return mnl; 5575 } 5576 5577 /** 5578 * drm_edid_get_monitor_name - fetch the monitor name from the edid 5579 * @edid: monitor EDID information 5580 * @name: pointer to a character array to hold the name of the monitor 5581 * @bufsize: The size of the name buffer (should be at least 14 chars.) 5582 * 5583 */ 5584 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize) 5585 { 5586 int name_length = 0; 5587 5588 if (bufsize <= 0) 5589 return; 5590 5591 if (edid) { 5592 char buf[13]; 5593 struct drm_edid drm_edid = { 5594 .edid = edid, 5595 .size = edid_size(edid), 5596 }; 5597 5598 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1); 5599 memcpy(name, buf, name_length); 5600 } 5601 5602 name[name_length] = '\0'; 5603 } 5604 EXPORT_SYMBOL(drm_edid_get_monitor_name); 5605 5606 static void clear_eld(struct drm_connector *connector) 5607 { 5608 mutex_lock(&connector->eld_mutex); 5609 memset(connector->eld, 0, sizeof(connector->eld)); 5610 mutex_unlock(&connector->eld_mutex); 5611 5612 connector->latency_present[0] = false; 5613 connector->latency_present[1] = false; 5614 connector->video_latency[0] = 0; 5615 connector->audio_latency[0] = 0; 5616 connector->video_latency[1] = 0; 5617 connector->audio_latency[1] = 0; 5618 } 5619 5620 /* 5621 * Get 3-byte SAD buffer from struct cea_sad. 5622 */ 5623 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad) 5624 { 5625 sad[0] = cta_sad->format << 3 | cta_sad->channels; 5626 sad[1] = cta_sad->freq; 5627 sad[2] = cta_sad->byte2; 5628 } 5629 5630 /* 5631 * Set struct cea_sad from 3-byte SAD buffer. 5632 */ 5633 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad) 5634 { 5635 cta_sad->format = (sad[0] & 0x78) >> 3; 5636 cta_sad->channels = sad[0] & 0x07; 5637 cta_sad->freq = sad[1] & 0x7f; 5638 cta_sad->byte2 = sad[2]; 5639 } 5640 5641 /* 5642 * drm_edid_to_eld - build ELD from EDID 5643 * @connector: connector corresponding to the HDMI/DP sink 5644 * @drm_edid: EDID to parse 5645 * 5646 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The 5647 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in. 5648 */ 5649 static void drm_edid_to_eld(struct drm_connector *connector, 5650 const struct drm_edid *drm_edid) 5651 { 5652 const struct drm_display_info *info = &connector->display_info; 5653 const struct cea_db *db; 5654 struct cea_db_iter iter; 5655 uint8_t *eld = connector->eld; 5656 int total_sad_count = 0; 5657 int mnl; 5658 5659 if (!drm_edid) 5660 return; 5661 5662 mutex_lock(&connector->eld_mutex); 5663 5664 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]); 5665 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n", 5666 connector->base.id, connector->name, 5667 &eld[DRM_ELD_MONITOR_NAME_STRING]); 5668 5669 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT; 5670 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl; 5671 5672 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D; 5673 5674 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0]; 5675 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1]; 5676 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0]; 5677 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1]; 5678 5679 cea_db_iter_edid_begin(drm_edid, &iter); 5680 cea_db_iter_for_each(db, &iter) { 5681 const u8 *data = cea_db_data(db); 5682 int len = cea_db_payload_len(db); 5683 int sad_count; 5684 5685 switch (cea_db_tag(db)) { 5686 case CTA_DB_AUDIO: 5687 /* Audio Data Block, contains SADs */ 5688 sad_count = min(len / 3, 15 - total_sad_count); 5689 if (sad_count >= 1) 5690 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)], 5691 data, sad_count * 3); 5692 total_sad_count += sad_count; 5693 break; 5694 case CTA_DB_SPEAKER: 5695 /* Speaker Allocation Data Block */ 5696 if (len >= 1) 5697 eld[DRM_ELD_SPEAKER] = data[0]; 5698 break; 5699 case CTA_DB_VENDOR: 5700 /* HDMI Vendor-Specific Data Block */ 5701 if (cea_db_is_hdmi_vsdb(db)) 5702 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db); 5703 break; 5704 default: 5705 break; 5706 } 5707 } 5708 cea_db_iter_end(&iter); 5709 5710 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT; 5711 5712 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || 5713 connector->connector_type == DRM_MODE_CONNECTOR_eDP) 5714 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP; 5715 else 5716 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI; 5717 5718 eld[DRM_ELD_BASELINE_ELD_LEN] = 5719 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4); 5720 5721 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n", 5722 connector->base.id, connector->name, 5723 drm_eld_size(eld), total_sad_count); 5724 5725 mutex_unlock(&connector->eld_mutex); 5726 } 5727 5728 static int _drm_edid_to_sad(const struct drm_edid *drm_edid, 5729 struct cea_sad **psads) 5730 { 5731 const struct cea_db *db; 5732 struct cea_db_iter iter; 5733 int count = 0; 5734 5735 cea_db_iter_edid_begin(drm_edid, &iter); 5736 cea_db_iter_for_each(db, &iter) { 5737 if (cea_db_tag(db) == CTA_DB_AUDIO) { 5738 struct cea_sad *sads; 5739 int i; 5740 5741 count = cea_db_payload_len(db) / 3; /* SAD is 3B */ 5742 sads = kcalloc(count, sizeof(*sads), GFP_KERNEL); 5743 *psads = sads; 5744 if (!sads) 5745 return -ENOMEM; 5746 for (i = 0; i < count; i++) 5747 drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]); 5748 break; 5749 } 5750 } 5751 cea_db_iter_end(&iter); 5752 5753 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count); 5754 5755 return count; 5756 } 5757 5758 /** 5759 * drm_edid_to_sad - extracts SADs from EDID 5760 * @edid: EDID to parse 5761 * @sads: pointer that will be set to the extracted SADs 5762 * 5763 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. 5764 * 5765 * Note: The returned pointer needs to be freed using kfree(). 5766 * 5767 * Return: The number of found SADs or negative number on error. 5768 */ 5769 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads) 5770 { 5771 struct drm_edid drm_edid; 5772 5773 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads); 5774 } 5775 EXPORT_SYMBOL(drm_edid_to_sad); 5776 5777 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid, 5778 u8 **sadb) 5779 { 5780 const struct cea_db *db; 5781 struct cea_db_iter iter; 5782 int count = 0; 5783 5784 cea_db_iter_edid_begin(drm_edid, &iter); 5785 cea_db_iter_for_each(db, &iter) { 5786 if (cea_db_tag(db) == CTA_DB_SPEAKER && 5787 cea_db_payload_len(db) == 3) { 5788 *sadb = kmemdup(db->data, cea_db_payload_len(db), 5789 GFP_KERNEL); 5790 if (!*sadb) 5791 return -ENOMEM; 5792 count = cea_db_payload_len(db); 5793 break; 5794 } 5795 } 5796 cea_db_iter_end(&iter); 5797 5798 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count); 5799 5800 return count; 5801 } 5802 5803 /** 5804 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID 5805 * @edid: EDID to parse 5806 * @sadb: pointer to the speaker block 5807 * 5808 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. 5809 * 5810 * Note: The returned pointer needs to be freed using kfree(). 5811 * 5812 * Return: The number of found Speaker Allocation Blocks or negative number on 5813 * error. 5814 */ 5815 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb) 5816 { 5817 struct drm_edid drm_edid; 5818 5819 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid), 5820 sadb); 5821 } 5822 EXPORT_SYMBOL(drm_edid_to_speaker_allocation); 5823 5824 /** 5825 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay 5826 * @connector: connector associated with the HDMI/DP sink 5827 * @mode: the display mode 5828 * 5829 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if 5830 * the sink doesn't support audio or video. 5831 */ 5832 int drm_av_sync_delay(struct drm_connector *connector, 5833 const struct drm_display_mode *mode) 5834 { 5835 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); 5836 int a, v; 5837 5838 if (!connector->latency_present[0]) 5839 return 0; 5840 if (!connector->latency_present[1]) 5841 i = 0; 5842 5843 a = connector->audio_latency[i]; 5844 v = connector->video_latency[i]; 5845 5846 /* 5847 * HDMI/DP sink doesn't support audio or video? 5848 */ 5849 if (a == 255 || v == 255) 5850 return 0; 5851 5852 /* 5853 * Convert raw EDID values to millisecond. 5854 * Treat unknown latency as 0ms. 5855 */ 5856 if (a) 5857 a = min(2 * (a - 1), 500); 5858 if (v) 5859 v = min(2 * (v - 1), 500); 5860 5861 return max(v - a, 0); 5862 } 5863 EXPORT_SYMBOL(drm_av_sync_delay); 5864 5865 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid) 5866 { 5867 const struct cea_db *db; 5868 struct cea_db_iter iter; 5869 bool hdmi = false; 5870 5871 /* 5872 * Because HDMI identifier is in Vendor Specific Block, 5873 * search it from all data blocks of CEA extension. 5874 */ 5875 cea_db_iter_edid_begin(drm_edid, &iter); 5876 cea_db_iter_for_each(db, &iter) { 5877 if (cea_db_is_hdmi_vsdb(db)) { 5878 hdmi = true; 5879 break; 5880 } 5881 } 5882 cea_db_iter_end(&iter); 5883 5884 return hdmi; 5885 } 5886 5887 /** 5888 * drm_detect_hdmi_monitor - detect whether monitor is HDMI 5889 * @edid: monitor EDID information 5890 * 5891 * Parse the CEA extension according to CEA-861-B. 5892 * 5893 * Drivers that have added the modes parsed from EDID to drm_display_info 5894 * should use &drm_display_info.is_hdmi instead of calling this function. 5895 * 5896 * Return: True if the monitor is HDMI, false if not or unknown. 5897 */ 5898 bool drm_detect_hdmi_monitor(const struct edid *edid) 5899 { 5900 struct drm_edid drm_edid; 5901 5902 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid)); 5903 } 5904 EXPORT_SYMBOL(drm_detect_hdmi_monitor); 5905 5906 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid) 5907 { 5908 struct drm_edid_iter edid_iter; 5909 const struct cea_db *db; 5910 struct cea_db_iter iter; 5911 const u8 *edid_ext; 5912 bool has_audio = false; 5913 5914 drm_edid_iter_begin(drm_edid, &edid_iter); 5915 drm_edid_iter_for_each(edid_ext, &edid_iter) { 5916 if (edid_ext[0] == CEA_EXT) { 5917 has_audio = edid_ext[3] & EDID_BASIC_AUDIO; 5918 if (has_audio) 5919 break; 5920 } 5921 } 5922 drm_edid_iter_end(&edid_iter); 5923 5924 if (has_audio) { 5925 DRM_DEBUG_KMS("Monitor has basic audio support\n"); 5926 goto end; 5927 } 5928 5929 cea_db_iter_edid_begin(drm_edid, &iter); 5930 cea_db_iter_for_each(db, &iter) { 5931 if (cea_db_tag(db) == CTA_DB_AUDIO) { 5932 const u8 *data = cea_db_data(db); 5933 int i; 5934 5935 for (i = 0; i < cea_db_payload_len(db); i += 3) 5936 DRM_DEBUG_KMS("CEA audio format %d\n", 5937 (data[i] >> 3) & 0xf); 5938 has_audio = true; 5939 break; 5940 } 5941 } 5942 cea_db_iter_end(&iter); 5943 5944 end: 5945 return has_audio; 5946 } 5947 5948 /** 5949 * drm_detect_monitor_audio - check monitor audio capability 5950 * @edid: EDID block to scan 5951 * 5952 * Monitor should have CEA extension block. 5953 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic 5954 * audio' only. If there is any audio extension block and supported 5955 * audio format, assume at least 'basic audio' support, even if 'basic 5956 * audio' is not defined in EDID. 5957 * 5958 * Return: True if the monitor supports audio, false otherwise. 5959 */ 5960 bool drm_detect_monitor_audio(const struct edid *edid) 5961 { 5962 struct drm_edid drm_edid; 5963 5964 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid)); 5965 } 5966 EXPORT_SYMBOL(drm_detect_monitor_audio); 5967 5968 5969 /** 5970 * drm_default_rgb_quant_range - default RGB quantization range 5971 * @mode: display mode 5972 * 5973 * Determine the default RGB quantization range for the mode, 5974 * as specified in CEA-861. 5975 * 5976 * Return: The default RGB quantization range for the mode 5977 */ 5978 enum hdmi_quantization_range 5979 drm_default_rgb_quant_range(const struct drm_display_mode *mode) 5980 { 5981 /* All CEA modes other than VIC 1 use limited quantization range. */ 5982 return drm_match_cea_mode(mode) > 1 ? 5983 HDMI_QUANTIZATION_RANGE_LIMITED : 5984 HDMI_QUANTIZATION_RANGE_FULL; 5985 } 5986 EXPORT_SYMBOL(drm_default_rgb_quant_range); 5987 5988 /* CTA-861 Video Data Block (CTA VDB) */ 5989 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db) 5990 { 5991 struct drm_display_info *info = &connector->display_info; 5992 int i, vic_index, len = cea_db_payload_len(db); 5993 const u8 *svds = cea_db_data(db); 5994 u8 *vics; 5995 5996 if (!len) 5997 return; 5998 5999 /* Gracefully handle multiple VDBs, however unlikely that is */ 6000 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL); 6001 if (!vics) 6002 return; 6003 6004 vic_index = info->vics_len; 6005 info->vics_len += len; 6006 info->vics = vics; 6007 6008 for (i = 0; i < len; i++) { 6009 u8 vic = svd_to_vic(svds[i]); 6010 6011 if (!drm_valid_cea_vic(vic)) 6012 vic = 0; 6013 6014 info->vics[vic_index++] = vic; 6015 } 6016 } 6017 6018 /* 6019 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB. 6020 * 6021 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed 6022 * using the VICs themselves. 6023 */ 6024 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map) 6025 { 6026 struct drm_display_info *info = &connector->display_info; 6027 struct drm_hdmi_info *hdmi = &info->hdmi; 6028 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map)); 6029 6030 for (i = 0; i < len; i++) { 6031 u8 vic = info->vics[i]; 6032 6033 if (vic && y420cmdb_map & BIT_ULL(i)) 6034 bitmap_set(hdmi->y420_cmdb_modes, vic, 1); 6035 } 6036 } 6037 6038 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic) 6039 { 6040 const struct drm_display_info *info = &connector->display_info; 6041 int i; 6042 6043 if (!vic || !info->vics) 6044 return false; 6045 6046 for (i = 0; i < info->vics_len; i++) { 6047 if (info->vics[i] == vic) 6048 return true; 6049 } 6050 6051 return false; 6052 } 6053 6054 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */ 6055 static void parse_cta_y420vdb(struct drm_connector *connector, 6056 const struct cea_db *db) 6057 { 6058 struct drm_display_info *info = &connector->display_info; 6059 struct drm_hdmi_info *hdmi = &info->hdmi; 6060 const u8 *svds = cea_db_data(db) + 1; 6061 int i; 6062 6063 for (i = 0; i < cea_db_payload_len(db) - 1; i++) { 6064 u8 vic = svd_to_vic(svds[i]); 6065 6066 if (!drm_valid_cea_vic(vic)) 6067 continue; 6068 6069 bitmap_set(hdmi->y420_vdb_modes, vic, 1); 6070 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; 6071 } 6072 } 6073 6074 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db) 6075 { 6076 struct drm_display_info *info = &connector->display_info; 6077 6078 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n", 6079 connector->base.id, connector->name, db[2]); 6080 6081 if (db[2] & EDID_CEA_VCDB_QS) 6082 info->rgb_quant_range_selectable = true; 6083 } 6084 6085 static 6086 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane) 6087 { 6088 switch (max_frl_rate) { 6089 case 1: 6090 *max_lanes = 3; 6091 *max_rate_per_lane = 3; 6092 break; 6093 case 2: 6094 *max_lanes = 3; 6095 *max_rate_per_lane = 6; 6096 break; 6097 case 3: 6098 *max_lanes = 4; 6099 *max_rate_per_lane = 6; 6100 break; 6101 case 4: 6102 *max_lanes = 4; 6103 *max_rate_per_lane = 8; 6104 break; 6105 case 5: 6106 *max_lanes = 4; 6107 *max_rate_per_lane = 10; 6108 break; 6109 case 6: 6110 *max_lanes = 4; 6111 *max_rate_per_lane = 12; 6112 break; 6113 case 0: 6114 default: 6115 *max_lanes = 0; 6116 *max_rate_per_lane = 0; 6117 } 6118 } 6119 6120 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector, 6121 const u8 *db) 6122 { 6123 u8 dc_mask; 6124 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 6125 6126 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK; 6127 hdmi->y420_dc_modes = dc_mask; 6128 } 6129 6130 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc, 6131 const u8 *hf_scds) 6132 { 6133 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2; 6134 6135 if (!hdmi_dsc->v_1p2) 6136 return; 6137 6138 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420; 6139 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP; 6140 6141 if (hf_scds[11] & DRM_EDID_DSC_16BPC) 6142 hdmi_dsc->bpc_supported = 16; 6143 else if (hf_scds[11] & DRM_EDID_DSC_12BPC) 6144 hdmi_dsc->bpc_supported = 12; 6145 else if (hf_scds[11] & DRM_EDID_DSC_10BPC) 6146 hdmi_dsc->bpc_supported = 10; 6147 else 6148 /* Supports min 8 BPC if DSC 1.2 is supported*/ 6149 hdmi_dsc->bpc_supported = 8; 6150 6151 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) { 6152 u8 dsc_max_slices; 6153 u8 dsc_max_frl_rate; 6154 6155 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4; 6156 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes, 6157 &hdmi_dsc->max_frl_rate_per_lane); 6158 6159 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES; 6160 6161 switch (dsc_max_slices) { 6162 case 1: 6163 hdmi_dsc->max_slices = 1; 6164 hdmi_dsc->clk_per_slice = 340; 6165 break; 6166 case 2: 6167 hdmi_dsc->max_slices = 2; 6168 hdmi_dsc->clk_per_slice = 340; 6169 break; 6170 case 3: 6171 hdmi_dsc->max_slices = 4; 6172 hdmi_dsc->clk_per_slice = 340; 6173 break; 6174 case 4: 6175 hdmi_dsc->max_slices = 8; 6176 hdmi_dsc->clk_per_slice = 340; 6177 break; 6178 case 5: 6179 hdmi_dsc->max_slices = 8; 6180 hdmi_dsc->clk_per_slice = 400; 6181 break; 6182 case 6: 6183 hdmi_dsc->max_slices = 12; 6184 hdmi_dsc->clk_per_slice = 400; 6185 break; 6186 case 7: 6187 hdmi_dsc->max_slices = 16; 6188 hdmi_dsc->clk_per_slice = 400; 6189 break; 6190 case 0: 6191 default: 6192 hdmi_dsc->max_slices = 0; 6193 hdmi_dsc->clk_per_slice = 0; 6194 } 6195 } 6196 6197 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13]) 6198 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES; 6199 } 6200 6201 /* Sink Capability Data Structure */ 6202 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector, 6203 const u8 *hf_scds) 6204 { 6205 struct drm_display_info *info = &connector->display_info; 6206 struct drm_hdmi_info *hdmi = &info->hdmi; 6207 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap; 6208 int max_tmds_clock = 0; 6209 u8 max_frl_rate = 0; 6210 bool dsc_support = false; 6211 6212 info->has_hdmi_infoframe = true; 6213 6214 if (hf_scds[6] & 0x80) { 6215 hdmi->scdc.supported = true; 6216 if (hf_scds[6] & 0x40) 6217 hdmi->scdc.read_request = true; 6218 } 6219 6220 /* 6221 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz. 6222 * And as per the spec, three factors confirm this: 6223 * * Availability of a HF-VSDB block in EDID (check) 6224 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check) 6225 * * SCDC support available (let's check) 6226 * Lets check it out. 6227 */ 6228 6229 if (hf_scds[5]) { 6230 struct drm_scdc *scdc = &hdmi->scdc; 6231 6232 /* max clock is 5000 KHz times block value */ 6233 max_tmds_clock = hf_scds[5] * 5000; 6234 6235 if (max_tmds_clock > 340000) { 6236 info->max_tmds_clock = max_tmds_clock; 6237 } 6238 6239 if (scdc->supported) { 6240 scdc->scrambling.supported = true; 6241 6242 /* Few sinks support scrambling for clocks < 340M */ 6243 if ((hf_scds[6] & 0x8)) 6244 scdc->scrambling.low_rates = true; 6245 } 6246 } 6247 6248 if (hf_scds[7]) { 6249 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4; 6250 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes, 6251 &hdmi->max_frl_rate_per_lane); 6252 } 6253 6254 drm_parse_ycbcr420_deep_color_info(connector, hf_scds); 6255 6256 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) { 6257 drm_parse_dsc_info(hdmi_dsc, hf_scds); 6258 dsc_support = true; 6259 } 6260 6261 drm_dbg_kms(connector->dev, 6262 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n", 6263 connector->base.id, connector->name, 6264 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support)); 6265 } 6266 6267 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector, 6268 const u8 *hdmi) 6269 { 6270 struct drm_display_info *info = &connector->display_info; 6271 unsigned int dc_bpc = 0; 6272 6273 /* HDMI supports at least 8 bpc */ 6274 info->bpc = 8; 6275 6276 if (cea_db_payload_len(hdmi) < 6) 6277 return; 6278 6279 if (hdmi[6] & DRM_EDID_HDMI_DC_30) { 6280 dc_bpc = 10; 6281 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30; 6282 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n", 6283 connector->base.id, connector->name); 6284 } 6285 6286 if (hdmi[6] & DRM_EDID_HDMI_DC_36) { 6287 dc_bpc = 12; 6288 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36; 6289 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n", 6290 connector->base.id, connector->name); 6291 } 6292 6293 if (hdmi[6] & DRM_EDID_HDMI_DC_48) { 6294 dc_bpc = 16; 6295 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48; 6296 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n", 6297 connector->base.id, connector->name); 6298 } 6299 6300 if (dc_bpc == 0) { 6301 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n", 6302 connector->base.id, connector->name); 6303 return; 6304 } 6305 6306 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n", 6307 connector->base.id, connector->name, dc_bpc); 6308 info->bpc = dc_bpc; 6309 6310 /* YCRCB444 is optional according to spec. */ 6311 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) { 6312 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes; 6313 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n", 6314 connector->base.id, connector->name); 6315 } 6316 6317 /* 6318 * Spec says that if any deep color mode is supported at all, 6319 * then deep color 36 bit must be supported. 6320 */ 6321 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) { 6322 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n", 6323 connector->base.id, connector->name); 6324 } 6325 } 6326 6327 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ 6328 static void 6329 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db) 6330 { 6331 struct drm_display_info *info = &connector->display_info; 6332 u8 len = cea_db_payload_len(db); 6333 6334 info->is_hdmi = true; 6335 6336 info->source_physical_address = (db[4] << 8) | db[5]; 6337 6338 if (len >= 6) 6339 info->dvi_dual = db[6] & 1; 6340 if (len >= 7) 6341 info->max_tmds_clock = db[7] * 5000; 6342 6343 /* 6344 * Try to infer whether the sink supports HDMI infoframes. 6345 * 6346 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink 6347 * supports infoframes if HDMI_Video_present is set. 6348 */ 6349 if (len >= 8 && db[8] & BIT(5)) 6350 info->has_hdmi_infoframe = true; 6351 6352 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n", 6353 connector->base.id, connector->name, 6354 info->dvi_dual, info->max_tmds_clock); 6355 6356 drm_parse_hdmi_deep_color_info(connector, db); 6357 } 6358 6359 /* 6360 * See EDID extension for head-mounted and specialized monitors, specified at: 6361 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension 6362 */ 6363 static void drm_parse_microsoft_vsdb(struct drm_connector *connector, 6364 const u8 *db) 6365 { 6366 struct drm_display_info *info = &connector->display_info; 6367 u8 version = db[4]; 6368 bool desktop_usage = db[5] & BIT(6); 6369 6370 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */ 6371 if (version == 1 || version == 2 || (version == 3 && !desktop_usage)) 6372 info->non_desktop = true; 6373 6374 drm_dbg_kms(connector->dev, 6375 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n", 6376 connector->base.id, connector->name, version, db[5]); 6377 } 6378 6379 static void drm_parse_cea_ext(struct drm_connector *connector, 6380 const struct drm_edid *drm_edid) 6381 { 6382 struct drm_display_info *info = &connector->display_info; 6383 struct drm_edid_iter edid_iter; 6384 const struct cea_db *db; 6385 struct cea_db_iter iter; 6386 const u8 *edid_ext; 6387 u64 y420cmdb_map = 0; 6388 6389 drm_edid_iter_begin(drm_edid, &edid_iter); 6390 drm_edid_iter_for_each(edid_ext, &edid_iter) { 6391 if (edid_ext[0] != CEA_EXT) 6392 continue; 6393 6394 if (!info->cea_rev) 6395 info->cea_rev = edid_ext[1]; 6396 6397 if (info->cea_rev != edid_ext[1]) 6398 drm_dbg_kms(connector->dev, 6399 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n", 6400 connector->base.id, connector->name, 6401 info->cea_rev, edid_ext[1]); 6402 6403 /* The existence of a CTA extension should imply RGB support */ 6404 info->color_formats = DRM_COLOR_FORMAT_RGB444; 6405 if (edid_ext[3] & EDID_CEA_YCRCB444) 6406 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; 6407 if (edid_ext[3] & EDID_CEA_YCRCB422) 6408 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; 6409 if (edid_ext[3] & EDID_BASIC_AUDIO) 6410 info->has_audio = true; 6411 6412 } 6413 drm_edid_iter_end(&edid_iter); 6414 6415 cea_db_iter_edid_begin(drm_edid, &iter); 6416 cea_db_iter_for_each(db, &iter) { 6417 /* FIXME: convert parsers to use struct cea_db */ 6418 const u8 *data = (const u8 *)db; 6419 6420 if (cea_db_is_hdmi_vsdb(db)) 6421 drm_parse_hdmi_vsdb_video(connector, data); 6422 else if (cea_db_is_hdmi_forum_vsdb(db) || 6423 cea_db_is_hdmi_forum_scdb(db)) 6424 drm_parse_hdmi_forum_scds(connector, data); 6425 else if (cea_db_is_microsoft_vsdb(db)) 6426 drm_parse_microsoft_vsdb(connector, data); 6427 else if (cea_db_is_y420cmdb(db)) 6428 parse_cta_y420cmdb(connector, db, &y420cmdb_map); 6429 else if (cea_db_is_y420vdb(db)) 6430 parse_cta_y420vdb(connector, db); 6431 else if (cea_db_is_vcdb(db)) 6432 drm_parse_vcdb(connector, data); 6433 else if (cea_db_is_hdmi_hdr_metadata_block(db)) 6434 drm_parse_hdr_metadata_block(connector, data); 6435 else if (cea_db_tag(db) == CTA_DB_VIDEO) 6436 parse_cta_vdb(connector, db); 6437 else if (cea_db_tag(db) == CTA_DB_AUDIO) 6438 info->has_audio = true; 6439 } 6440 cea_db_iter_end(&iter); 6441 6442 if (y420cmdb_map) 6443 update_cta_y420cmdb(connector, y420cmdb_map); 6444 } 6445 6446 static 6447 void get_monitor_range(const struct detailed_timing *timing, void *c) 6448 { 6449 struct detailed_mode_closure *closure = c; 6450 struct drm_display_info *info = &closure->connector->display_info; 6451 struct drm_monitor_range_info *monitor_range = &info->monitor_range; 6452 const struct detailed_non_pixel *data = &timing->data.other_data; 6453 const struct detailed_data_monitor_range *range = &data->data.range; 6454 const struct edid *edid = closure->drm_edid->edid; 6455 6456 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) 6457 return; 6458 6459 /* 6460 * These limits are used to determine the VRR refresh 6461 * rate range. Only the "range limits only" variant 6462 * of the range descriptor seems to guarantee that 6463 * any and all timings are accepted by the sink, as 6464 * opposed to just timings conforming to the indicated 6465 * formula (GTF/GTF2/CVT). Thus other variants of the 6466 * range descriptor are not accepted here. 6467 */ 6468 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG) 6469 return; 6470 6471 monitor_range->min_vfreq = range->min_vfreq; 6472 monitor_range->max_vfreq = range->max_vfreq; 6473 6474 if (edid->revision >= 4) { 6475 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ) 6476 monitor_range->min_vfreq += 255; 6477 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ) 6478 monitor_range->max_vfreq += 255; 6479 } 6480 } 6481 6482 static void drm_get_monitor_range(struct drm_connector *connector, 6483 const struct drm_edid *drm_edid) 6484 { 6485 const struct drm_display_info *info = &connector->display_info; 6486 struct detailed_mode_closure closure = { 6487 .connector = connector, 6488 .drm_edid = drm_edid, 6489 }; 6490 6491 if (drm_edid->edid->revision < 4) 6492 return; 6493 6494 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)) 6495 return; 6496 6497 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure); 6498 6499 drm_dbg_kms(connector->dev, 6500 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n", 6501 connector->base.id, connector->name, 6502 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq); 6503 } 6504 6505 static void drm_parse_vesa_mso_data(struct drm_connector *connector, 6506 const struct displayid_block *block) 6507 { 6508 struct displayid_vesa_vendor_specific_block *vesa = 6509 (struct displayid_vesa_vendor_specific_block *)block; 6510 struct drm_display_info *info = &connector->display_info; 6511 6512 if (block->num_bytes < 3) { 6513 drm_dbg_kms(connector->dev, 6514 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n", 6515 connector->base.id, connector->name, block->num_bytes); 6516 return; 6517 } 6518 6519 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI) 6520 return; 6521 6522 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) { 6523 drm_dbg_kms(connector->dev, 6524 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n", 6525 connector->base.id, connector->name); 6526 return; 6527 } 6528 6529 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) { 6530 default: 6531 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n", 6532 connector->base.id, connector->name); 6533 fallthrough; 6534 case 0: 6535 info->mso_stream_count = 0; 6536 break; 6537 case 1: 6538 info->mso_stream_count = 2; /* 2 or 4 links */ 6539 break; 6540 case 2: 6541 info->mso_stream_count = 4; /* 4 links */ 6542 break; 6543 } 6544 6545 if (!info->mso_stream_count) { 6546 info->mso_pixel_overlap = 0; 6547 return; 6548 } 6549 6550 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso); 6551 if (info->mso_pixel_overlap > 8) { 6552 drm_dbg_kms(connector->dev, 6553 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n", 6554 connector->base.id, connector->name, 6555 info->mso_pixel_overlap); 6556 info->mso_pixel_overlap = 8; 6557 } 6558 6559 drm_dbg_kms(connector->dev, 6560 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n", 6561 connector->base.id, connector->name, 6562 info->mso_stream_count, info->mso_pixel_overlap); 6563 } 6564 6565 static void drm_update_mso(struct drm_connector *connector, 6566 const struct drm_edid *drm_edid) 6567 { 6568 const struct displayid_block *block; 6569 struct displayid_iter iter; 6570 6571 displayid_iter_edid_begin(drm_edid, &iter); 6572 displayid_iter_for_each(block, &iter) { 6573 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC) 6574 drm_parse_vesa_mso_data(connector, block); 6575 } 6576 displayid_iter_end(&iter); 6577 } 6578 6579 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset 6580 * all of the values which would have been set from EDID 6581 */ 6582 static void drm_reset_display_info(struct drm_connector *connector) 6583 { 6584 struct drm_display_info *info = &connector->display_info; 6585 6586 info->width_mm = 0; 6587 info->height_mm = 0; 6588 6589 info->bpc = 0; 6590 info->color_formats = 0; 6591 info->cea_rev = 0; 6592 info->max_tmds_clock = 0; 6593 info->dvi_dual = false; 6594 info->is_hdmi = false; 6595 info->has_audio = false; 6596 info->has_hdmi_infoframe = false; 6597 info->rgb_quant_range_selectable = false; 6598 memset(&info->hdmi, 0, sizeof(info->hdmi)); 6599 6600 info->edid_hdmi_rgb444_dc_modes = 0; 6601 info->edid_hdmi_ycbcr444_dc_modes = 0; 6602 6603 info->non_desktop = 0; 6604 memset(&info->monitor_range, 0, sizeof(info->monitor_range)); 6605 memset(&info->luminance_range, 0, sizeof(info->luminance_range)); 6606 6607 info->mso_stream_count = 0; 6608 info->mso_pixel_overlap = 0; 6609 info->max_dsc_bpp = 0; 6610 6611 kfree(info->vics); 6612 info->vics = NULL; 6613 info->vics_len = 0; 6614 6615 info->quirks = 0; 6616 6617 info->source_physical_address = CEC_PHYS_ADDR_INVALID; 6618 } 6619 6620 static void update_displayid_info(struct drm_connector *connector, 6621 const struct drm_edid *drm_edid) 6622 { 6623 struct drm_display_info *info = &connector->display_info; 6624 const struct displayid_block *block; 6625 struct displayid_iter iter; 6626 6627 displayid_iter_edid_begin(drm_edid, &iter); 6628 displayid_iter_for_each(block, &iter) { 6629 drm_dbg_kms(connector->dev, 6630 "[CONNECTOR:%d:%s] DisplayID extension version 0x%02x, primary use 0x%02x\n", 6631 connector->base.id, connector->name, 6632 displayid_version(&iter), 6633 displayid_primary_use(&iter)); 6634 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 && 6635 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR || 6636 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR)) 6637 info->non_desktop = true; 6638 6639 /* 6640 * We're only interested in the base section here, no need to 6641 * iterate further. 6642 */ 6643 break; 6644 } 6645 displayid_iter_end(&iter); 6646 } 6647 6648 static void update_display_info(struct drm_connector *connector, 6649 const struct drm_edid *drm_edid) 6650 { 6651 struct drm_display_info *info = &connector->display_info; 6652 const struct edid *edid; 6653 6654 drm_reset_display_info(connector); 6655 clear_eld(connector); 6656 6657 if (!drm_edid) 6658 return; 6659 6660 edid = drm_edid->edid; 6661 6662 info->quirks = edid_get_quirks(drm_edid); 6663 6664 info->width_mm = edid->width_cm * 10; 6665 info->height_mm = edid->height_cm * 10; 6666 6667 drm_get_monitor_range(connector, drm_edid); 6668 6669 if (edid->revision < 3) 6670 goto out; 6671 6672 if (!drm_edid_is_digital(drm_edid)) 6673 goto out; 6674 6675 info->color_formats |= DRM_COLOR_FORMAT_RGB444; 6676 drm_parse_cea_ext(connector, drm_edid); 6677 6678 update_displayid_info(connector, drm_edid); 6679 6680 /* 6681 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3? 6682 * 6683 * For such displays, the DFP spec 1.0, section 3.10 "EDID support" 6684 * tells us to assume 8 bpc color depth if the EDID doesn't have 6685 * extensions which tell otherwise. 6686 */ 6687 if (info->bpc == 0 && edid->revision == 3 && 6688 edid->input & DRM_EDID_DIGITAL_DFP_1_X) { 6689 info->bpc = 8; 6690 drm_dbg_kms(connector->dev, 6691 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n", 6692 connector->base.id, connector->name, info->bpc); 6693 } 6694 6695 /* Only defined for 1.4 with digital displays */ 6696 if (edid->revision < 4) 6697 goto out; 6698 6699 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { 6700 case DRM_EDID_DIGITAL_DEPTH_6: 6701 info->bpc = 6; 6702 break; 6703 case DRM_EDID_DIGITAL_DEPTH_8: 6704 info->bpc = 8; 6705 break; 6706 case DRM_EDID_DIGITAL_DEPTH_10: 6707 info->bpc = 10; 6708 break; 6709 case DRM_EDID_DIGITAL_DEPTH_12: 6710 info->bpc = 12; 6711 break; 6712 case DRM_EDID_DIGITAL_DEPTH_14: 6713 info->bpc = 14; 6714 break; 6715 case DRM_EDID_DIGITAL_DEPTH_16: 6716 info->bpc = 16; 6717 break; 6718 case DRM_EDID_DIGITAL_DEPTH_UNDEF: 6719 default: 6720 info->bpc = 0; 6721 break; 6722 } 6723 6724 drm_dbg_kms(connector->dev, 6725 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n", 6726 connector->base.id, connector->name, info->bpc); 6727 6728 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) 6729 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; 6730 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) 6731 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; 6732 6733 drm_update_mso(connector, drm_edid); 6734 6735 out: 6736 if (info->quirks & EDID_QUIRK_NON_DESKTOP) { 6737 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n", 6738 connector->base.id, connector->name, 6739 info->non_desktop ? " (redundant quirk)" : ""); 6740 info->non_desktop = true; 6741 } 6742 6743 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP) 6744 info->max_dsc_bpp = 15; 6745 6746 if (info->quirks & EDID_QUIRK_FORCE_6BPC) 6747 info->bpc = 6; 6748 6749 if (info->quirks & EDID_QUIRK_FORCE_8BPC) 6750 info->bpc = 8; 6751 6752 if (info->quirks & EDID_QUIRK_FORCE_10BPC) 6753 info->bpc = 10; 6754 6755 if (info->quirks & EDID_QUIRK_FORCE_12BPC) 6756 info->bpc = 12; 6757 6758 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */ 6759 drm_edid_to_eld(connector, drm_edid); 6760 } 6761 6762 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev, 6763 struct displayid_detailed_timings_1 *timings, 6764 bool type_7) 6765 { 6766 struct drm_display_mode *mode; 6767 unsigned pixel_clock = (timings->pixel_clock[0] | 6768 (timings->pixel_clock[1] << 8) | 6769 (timings->pixel_clock[2] << 16)) + 1; 6770 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1; 6771 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1; 6772 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1; 6773 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1; 6774 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1; 6775 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1; 6776 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1; 6777 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1; 6778 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1; 6779 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1; 6780 6781 mode = drm_mode_create(dev); 6782 if (!mode) 6783 return NULL; 6784 6785 /* resolution is kHz for type VII, and 10 kHz for type I */ 6786 mode->clock = type_7 ? pixel_clock : pixel_clock * 10; 6787 mode->hdisplay = hactive; 6788 mode->hsync_start = mode->hdisplay + hsync; 6789 mode->hsync_end = mode->hsync_start + hsync_width; 6790 mode->htotal = mode->hdisplay + hblank; 6791 6792 mode->vdisplay = vactive; 6793 mode->vsync_start = mode->vdisplay + vsync; 6794 mode->vsync_end = mode->vsync_start + vsync_width; 6795 mode->vtotal = mode->vdisplay + vblank; 6796 6797 mode->flags = 0; 6798 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 6799 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 6800 mode->type = DRM_MODE_TYPE_DRIVER; 6801 6802 if (timings->flags & 0x80) 6803 mode->type |= DRM_MODE_TYPE_PREFERRED; 6804 drm_mode_set_name(mode); 6805 6806 return mode; 6807 } 6808 6809 static int add_displayid_detailed_1_modes(struct drm_connector *connector, 6810 const struct displayid_block *block) 6811 { 6812 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block; 6813 int i; 6814 int num_timings; 6815 struct drm_display_mode *newmode; 6816 int num_modes = 0; 6817 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING; 6818 /* blocks must be multiple of 20 bytes length */ 6819 if (block->num_bytes % 20) 6820 return 0; 6821 6822 num_timings = block->num_bytes / 20; 6823 for (i = 0; i < num_timings; i++) { 6824 struct displayid_detailed_timings_1 *timings = &det->timings[i]; 6825 6826 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7); 6827 if (!newmode) 6828 continue; 6829 6830 drm_mode_probed_add(connector, newmode); 6831 num_modes++; 6832 } 6833 return num_modes; 6834 } 6835 6836 static int add_displayid_detailed_modes(struct drm_connector *connector, 6837 const struct drm_edid *drm_edid) 6838 { 6839 const struct displayid_block *block; 6840 struct displayid_iter iter; 6841 int num_modes = 0; 6842 6843 displayid_iter_edid_begin(drm_edid, &iter); 6844 displayid_iter_for_each(block, &iter) { 6845 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING || 6846 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING) 6847 num_modes += add_displayid_detailed_1_modes(connector, block); 6848 } 6849 displayid_iter_end(&iter); 6850 6851 return num_modes; 6852 } 6853 6854 static int _drm_edid_connector_add_modes(struct drm_connector *connector, 6855 const struct drm_edid *drm_edid) 6856 { 6857 const struct drm_display_info *info = &connector->display_info; 6858 int num_modes = 0; 6859 6860 if (!drm_edid) 6861 return 0; 6862 6863 /* 6864 * EDID spec says modes should be preferred in this order: 6865 * - preferred detailed mode 6866 * - other detailed modes from base block 6867 * - detailed modes from extension blocks 6868 * - CVT 3-byte code modes 6869 * - standard timing codes 6870 * - established timing codes 6871 * - modes inferred from GTF or CVT range information 6872 * 6873 * We get this pretty much right. 6874 * 6875 * XXX order for additional mode types in extension blocks? 6876 */ 6877 num_modes += add_detailed_modes(connector, drm_edid); 6878 num_modes += add_cvt_modes(connector, drm_edid); 6879 num_modes += add_standard_modes(connector, drm_edid); 6880 num_modes += add_established_modes(connector, drm_edid); 6881 num_modes += add_cea_modes(connector, drm_edid); 6882 num_modes += add_alternate_cea_modes(connector, drm_edid); 6883 num_modes += add_displayid_detailed_modes(connector, drm_edid); 6884 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ) 6885 num_modes += add_inferred_modes(connector, drm_edid); 6886 6887 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) 6888 edid_fixup_preferred(connector); 6889 6890 return num_modes; 6891 } 6892 6893 static void _drm_update_tile_info(struct drm_connector *connector, 6894 const struct drm_edid *drm_edid); 6895 6896 static int _drm_edid_connector_property_update(struct drm_connector *connector, 6897 const struct drm_edid *drm_edid) 6898 { 6899 struct drm_device *dev = connector->dev; 6900 int ret; 6901 6902 if (connector->edid_blob_ptr) { 6903 const void *old_edid = connector->edid_blob_ptr->data; 6904 size_t old_edid_size = connector->edid_blob_ptr->length; 6905 6906 if (old_edid && !drm_edid_eq(drm_edid, old_edid, old_edid_size)) { 6907 connector->epoch_counter++; 6908 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n", 6909 connector->base.id, connector->name, 6910 connector->epoch_counter); 6911 } 6912 } 6913 6914 ret = drm_property_replace_global_blob(dev, 6915 &connector->edid_blob_ptr, 6916 drm_edid ? drm_edid->size : 0, 6917 drm_edid ? drm_edid->edid : NULL, 6918 &connector->base, 6919 dev->mode_config.edid_property); 6920 if (ret) { 6921 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n", 6922 connector->base.id, connector->name, ret); 6923 goto out; 6924 } 6925 6926 ret = drm_object_property_set_value(&connector->base, 6927 dev->mode_config.non_desktop_property, 6928 connector->display_info.non_desktop); 6929 if (ret) { 6930 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n", 6931 connector->base.id, connector->name, ret); 6932 goto out; 6933 } 6934 6935 ret = drm_connector_set_tile_property(connector); 6936 if (ret) { 6937 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n", 6938 connector->base.id, connector->name, ret); 6939 goto out; 6940 } 6941 6942 out: 6943 return ret; 6944 } 6945 6946 /* For sysfs edid show implementation */ 6947 ssize_t drm_edid_connector_property_show(struct drm_connector *connector, 6948 char *buf, loff_t off, size_t count) 6949 { 6950 const void *edid; 6951 size_t size; 6952 ssize_t ret = 0; 6953 6954 mutex_lock(&connector->dev->mode_config.mutex); 6955 6956 if (!connector->edid_blob_ptr) 6957 goto unlock; 6958 6959 edid = connector->edid_blob_ptr->data; 6960 size = connector->edid_blob_ptr->length; 6961 if (!edid) 6962 goto unlock; 6963 6964 if (off >= size) 6965 goto unlock; 6966 6967 if (off + count > size) 6968 count = size - off; 6969 6970 memcpy(buf, edid + off, count); 6971 6972 ret = count; 6973 unlock: 6974 mutex_unlock(&connector->dev->mode_config.mutex); 6975 6976 return ret; 6977 } 6978 6979 /** 6980 * drm_edid_connector_update - Update connector information from EDID 6981 * @connector: Connector 6982 * @drm_edid: EDID 6983 * 6984 * Update the connector display info, ELD, HDR metadata, relevant properties, 6985 * etc. from the passed in EDID. 6986 * 6987 * If EDID is NULL, reset the information. 6988 * 6989 * Must be called before calling drm_edid_connector_add_modes(). 6990 * 6991 * Return: 0 on success, negative error on errors. 6992 */ 6993 int drm_edid_connector_update(struct drm_connector *connector, 6994 const struct drm_edid *drm_edid) 6995 { 6996 update_display_info(connector, drm_edid); 6997 6998 _drm_update_tile_info(connector, drm_edid); 6999 7000 return _drm_edid_connector_property_update(connector, drm_edid); 7001 } 7002 EXPORT_SYMBOL(drm_edid_connector_update); 7003 7004 /** 7005 * drm_edid_connector_add_modes - Update probed modes from the EDID property 7006 * @connector: Connector 7007 * 7008 * Add the modes from the previously updated EDID property to the connector 7009 * probed modes list. 7010 * 7011 * drm_edid_connector_update() must have been called before this to update the 7012 * EDID property. 7013 * 7014 * Return: The number of modes added, or 0 if we couldn't find any. 7015 */ 7016 int drm_edid_connector_add_modes(struct drm_connector *connector) 7017 { 7018 const struct drm_edid *drm_edid = NULL; 7019 int count; 7020 7021 if (connector->edid_blob_ptr) 7022 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data, 7023 connector->edid_blob_ptr->length); 7024 7025 count = _drm_edid_connector_add_modes(connector, drm_edid); 7026 7027 drm_edid_free(drm_edid); 7028 7029 return count; 7030 } 7031 EXPORT_SYMBOL(drm_edid_connector_add_modes); 7032 7033 /** 7034 * drm_connector_update_edid_property - update the edid property of a connector 7035 * @connector: drm connector 7036 * @edid: new value of the edid property 7037 * 7038 * This function creates a new blob modeset object and assigns its id to the 7039 * connector's edid property. 7040 * Since we also parse tile information from EDID's displayID block, we also 7041 * set the connector's tile property here. See drm_connector_set_tile_property() 7042 * for more details. 7043 * 7044 * This function is deprecated. Use drm_edid_connector_update() instead. 7045 * 7046 * Returns: 7047 * Zero on success, negative errno on failure. 7048 */ 7049 int drm_connector_update_edid_property(struct drm_connector *connector, 7050 const struct edid *edid) 7051 { 7052 struct drm_edid drm_edid; 7053 7054 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid)); 7055 } 7056 EXPORT_SYMBOL(drm_connector_update_edid_property); 7057 7058 /** 7059 * drm_add_edid_modes - add modes from EDID data, if available 7060 * @connector: connector we're probing 7061 * @edid: EDID data 7062 * 7063 * Add the specified modes to the connector's mode list. Also fills out the 7064 * &drm_display_info structure and ELD in @connector with any information which 7065 * can be derived from the edid. 7066 * 7067 * This function is deprecated. Use drm_edid_connector_add_modes() instead. 7068 * 7069 * Return: The number of modes added or 0 if we couldn't find any. 7070 */ 7071 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) 7072 { 7073 struct drm_edid _drm_edid; 7074 const struct drm_edid *drm_edid; 7075 7076 if (edid && !drm_edid_is_valid(edid)) { 7077 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n", 7078 connector->base.id, connector->name); 7079 edid = NULL; 7080 } 7081 7082 drm_edid = drm_edid_legacy_init(&_drm_edid, edid); 7083 7084 update_display_info(connector, drm_edid); 7085 7086 return _drm_edid_connector_add_modes(connector, drm_edid); 7087 } 7088 EXPORT_SYMBOL(drm_add_edid_modes); 7089 7090 /** 7091 * drm_add_modes_noedid - add modes for the connectors without EDID 7092 * @connector: connector we're probing 7093 * @hdisplay: the horizontal display limit 7094 * @vdisplay: the vertical display limit 7095 * 7096 * Add the specified modes to the connector's mode list. Only when the 7097 * hdisplay/vdisplay is not beyond the given limit, it will be added. 7098 * 7099 * Return: The number of modes added or 0 if we couldn't find any. 7100 */ 7101 int drm_add_modes_noedid(struct drm_connector *connector, 7102 int hdisplay, int vdisplay) 7103 { 7104 int i, count, num_modes = 0; 7105 struct drm_display_mode *mode; 7106 struct drm_device *dev = connector->dev; 7107 7108 count = ARRAY_SIZE(drm_dmt_modes); 7109 if (hdisplay < 0) 7110 hdisplay = 0; 7111 if (vdisplay < 0) 7112 vdisplay = 0; 7113 7114 for (i = 0; i < count; i++) { 7115 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 7116 7117 if (hdisplay && vdisplay) { 7118 /* 7119 * Only when two are valid, they will be used to check 7120 * whether the mode should be added to the mode list of 7121 * the connector. 7122 */ 7123 if (ptr->hdisplay > hdisplay || 7124 ptr->vdisplay > vdisplay) 7125 continue; 7126 } 7127 if (drm_mode_vrefresh(ptr) > 61) 7128 continue; 7129 mode = drm_mode_duplicate(dev, ptr); 7130 if (mode) { 7131 drm_mode_probed_add(connector, mode); 7132 num_modes++; 7133 } 7134 } 7135 return num_modes; 7136 } 7137 EXPORT_SYMBOL(drm_add_modes_noedid); 7138 7139 static bool is_hdmi2_sink(const struct drm_connector *connector) 7140 { 7141 /* 7142 * FIXME: sil-sii8620 doesn't have a connector around when 7143 * we need one, so we have to be prepared for a NULL connector. 7144 */ 7145 if (!connector) 7146 return true; 7147 7148 return connector->display_info.hdmi.scdc.supported || 7149 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420; 7150 } 7151 7152 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector, 7153 const struct drm_display_mode *mode) 7154 { 7155 bool has_hdmi_infoframe = connector ? 7156 connector->display_info.has_hdmi_infoframe : false; 7157 7158 if (!has_hdmi_infoframe) 7159 return 0; 7160 7161 /* No HDMI VIC when signalling 3D video format */ 7162 if (mode->flags & DRM_MODE_FLAG_3D_MASK) 7163 return 0; 7164 7165 return drm_match_hdmi_mode(mode); 7166 } 7167 7168 static u8 drm_mode_cea_vic(const struct drm_connector *connector, 7169 const struct drm_display_mode *mode) 7170 { 7171 /* 7172 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes 7173 * we should send its VIC in vendor infoframes, else send the 7174 * VIC in AVI infoframes. Lets check if this mode is present in 7175 * HDMI 1.4b 4K modes 7176 */ 7177 if (drm_mode_hdmi_vic(connector, mode)) 7178 return 0; 7179 7180 return drm_match_cea_mode(mode); 7181 } 7182 7183 /* 7184 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that 7185 * conform to HDMI 1.4. 7186 * 7187 * HDMI 1.4 (CTA-861-D) VIC range: [1..64] 7188 * HDMI 2.0 (CTA-861-F) VIC range: [1..107] 7189 * 7190 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI 7191 * version. 7192 */ 7193 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic) 7194 { 7195 if (!is_hdmi2_sink(connector) && vic > 64 && 7196 !cta_vdb_has_vic(connector, vic)) 7197 return 0; 7198 7199 return vic; 7200 } 7201 7202 /** 7203 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with 7204 * data from a DRM display mode 7205 * @frame: HDMI AVI infoframe 7206 * @connector: the connector 7207 * @mode: DRM display mode 7208 * 7209 * Return: 0 on success or a negative error code on failure. 7210 */ 7211 int 7212 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, 7213 const struct drm_connector *connector, 7214 const struct drm_display_mode *mode) 7215 { 7216 enum hdmi_picture_aspect picture_aspect; 7217 u8 vic, hdmi_vic; 7218 7219 if (!frame || !mode) 7220 return -EINVAL; 7221 7222 hdmi_avi_infoframe_init(frame); 7223 7224 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 7225 frame->pixel_repeat = 1; 7226 7227 vic = drm_mode_cea_vic(connector, mode); 7228 hdmi_vic = drm_mode_hdmi_vic(connector, mode); 7229 7230 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; 7231 7232 /* 7233 * As some drivers don't support atomic, we can't use connector state. 7234 * So just initialize the frame with default values, just the same way 7235 * as it's done with other properties here. 7236 */ 7237 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS; 7238 frame->itc = 0; 7239 7240 /* 7241 * Populate picture aspect ratio from either 7242 * user input (if specified) or from the CEA/HDMI mode lists. 7243 */ 7244 picture_aspect = mode->picture_aspect_ratio; 7245 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) { 7246 if (vic) 7247 picture_aspect = drm_get_cea_aspect_ratio(vic); 7248 else if (hdmi_vic) 7249 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic); 7250 } 7251 7252 /* 7253 * The infoframe can't convey anything but none, 4:3 7254 * and 16:9, so if the user has asked for anything else 7255 * we can only satisfy it by specifying the right VIC. 7256 */ 7257 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) { 7258 if (vic) { 7259 if (picture_aspect != drm_get_cea_aspect_ratio(vic)) 7260 return -EINVAL; 7261 } else if (hdmi_vic) { 7262 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic)) 7263 return -EINVAL; 7264 } else { 7265 return -EINVAL; 7266 } 7267 7268 picture_aspect = HDMI_PICTURE_ASPECT_NONE; 7269 } 7270 7271 frame->video_code = vic_for_avi_infoframe(connector, vic); 7272 frame->picture_aspect = picture_aspect; 7273 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; 7274 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN; 7275 7276 return 0; 7277 } 7278 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); 7279 7280 /** 7281 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe 7282 * quantization range information 7283 * @frame: HDMI AVI infoframe 7284 * @connector: the connector 7285 * @mode: DRM display mode 7286 * @rgb_quant_range: RGB quantization range (Q) 7287 */ 7288 void 7289 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame, 7290 const struct drm_connector *connector, 7291 const struct drm_display_mode *mode, 7292 enum hdmi_quantization_range rgb_quant_range) 7293 { 7294 const struct drm_display_info *info = &connector->display_info; 7295 7296 /* 7297 * CEA-861: 7298 * "A Source shall not send a non-zero Q value that does not correspond 7299 * to the default RGB Quantization Range for the transmitted Picture 7300 * unless the Sink indicates support for the Q bit in a Video 7301 * Capabilities Data Block." 7302 * 7303 * HDMI 2.0 recommends sending non-zero Q when it does match the 7304 * default RGB quantization range for the mode, even when QS=0. 7305 */ 7306 if (info->rgb_quant_range_selectable || 7307 rgb_quant_range == drm_default_rgb_quant_range(mode)) 7308 frame->quantization_range = rgb_quant_range; 7309 else 7310 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 7311 7312 /* 7313 * CEA-861-F: 7314 * "When transmitting any RGB colorimetry, the Source should set the 7315 * YQ-field to match the RGB Quantization Range being transmitted 7316 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB, 7317 * set YQ=1) and the Sink shall ignore the YQ-field." 7318 * 7319 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused 7320 * by non-zero YQ when receiving RGB. There doesn't seem to be any 7321 * good way to tell which version of CEA-861 the sink supports, so 7322 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based 7323 * on CEA-861-F. 7324 */ 7325 if (!is_hdmi2_sink(connector) || 7326 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) 7327 frame->ycc_quantization_range = 7328 HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 7329 else 7330 frame->ycc_quantization_range = 7331 HDMI_YCC_QUANTIZATION_RANGE_FULL; 7332 } 7333 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range); 7334 7335 static enum hdmi_3d_structure 7336 s3d_structure_from_display_mode(const struct drm_display_mode *mode) 7337 { 7338 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; 7339 7340 switch (layout) { 7341 case DRM_MODE_FLAG_3D_FRAME_PACKING: 7342 return HDMI_3D_STRUCTURE_FRAME_PACKING; 7343 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: 7344 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; 7345 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: 7346 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; 7347 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: 7348 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; 7349 case DRM_MODE_FLAG_3D_L_DEPTH: 7350 return HDMI_3D_STRUCTURE_L_DEPTH; 7351 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: 7352 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; 7353 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: 7354 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; 7355 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: 7356 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; 7357 default: 7358 return HDMI_3D_STRUCTURE_INVALID; 7359 } 7360 } 7361 7362 /** 7363 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with 7364 * data from a DRM display mode 7365 * @frame: HDMI vendor infoframe 7366 * @connector: the connector 7367 * @mode: DRM display mode 7368 * 7369 * Note that there's is a need to send HDMI vendor infoframes only when using a 7370 * 4k or stereoscopic 3D mode. So when giving any other mode as input this 7371 * function will return -EINVAL, error that can be safely ignored. 7372 * 7373 * Return: 0 on success or a negative error code on failure. 7374 */ 7375 int 7376 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, 7377 const struct drm_connector *connector, 7378 const struct drm_display_mode *mode) 7379 { 7380 /* 7381 * FIXME: sil-sii8620 doesn't have a connector around when 7382 * we need one, so we have to be prepared for a NULL connector. 7383 */ 7384 bool has_hdmi_infoframe = connector ? 7385 connector->display_info.has_hdmi_infoframe : false; 7386 int err; 7387 7388 if (!frame || !mode) 7389 return -EINVAL; 7390 7391 if (!has_hdmi_infoframe) 7392 return -EINVAL; 7393 7394 err = hdmi_vendor_infoframe_init(frame); 7395 if (err < 0) 7396 return err; 7397 7398 /* 7399 * Even if it's not absolutely necessary to send the infoframe 7400 * (ie.vic==0 and s3d_struct==0) we will still send it if we 7401 * know that the sink can handle it. This is based on a 7402 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks 7403 * have trouble realizing that they should switch from 3D to 2D 7404 * mode if the source simply stops sending the infoframe when 7405 * it wants to switch from 3D to 2D. 7406 */ 7407 frame->vic = drm_mode_hdmi_vic(connector, mode); 7408 frame->s3d_struct = s3d_structure_from_display_mode(mode); 7409 7410 return 0; 7411 } 7412 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); 7413 7414 static void drm_parse_tiled_block(struct drm_connector *connector, 7415 const struct displayid_block *block) 7416 { 7417 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block; 7418 u16 w, h; 7419 u8 tile_v_loc, tile_h_loc; 7420 u8 num_v_tile, num_h_tile; 7421 struct drm_tile_group *tg; 7422 7423 w = tile->tile_size[0] | tile->tile_size[1] << 8; 7424 h = tile->tile_size[2] | tile->tile_size[3] << 8; 7425 7426 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30); 7427 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30); 7428 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4); 7429 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4); 7430 7431 connector->has_tile = true; 7432 if (tile->tile_cap & 0x80) 7433 connector->tile_is_single_monitor = true; 7434 7435 connector->num_h_tile = num_h_tile + 1; 7436 connector->num_v_tile = num_v_tile + 1; 7437 connector->tile_h_loc = tile_h_loc; 7438 connector->tile_v_loc = tile_v_loc; 7439 connector->tile_h_size = w + 1; 7440 connector->tile_v_size = h + 1; 7441 7442 drm_dbg_kms(connector->dev, 7443 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c", 7444 connector->base.id, connector->name, 7445 tile->tile_cap, 7446 connector->tile_h_size, connector->tile_v_size, 7447 connector->num_h_tile, connector->num_v_tile, 7448 connector->tile_h_loc, connector->tile_v_loc, 7449 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]); 7450 7451 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id); 7452 if (!tg) 7453 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id); 7454 if (!tg) 7455 return; 7456 7457 if (connector->tile_group != tg) { 7458 /* if we haven't got a pointer, 7459 take the reference, drop ref to old tile group */ 7460 if (connector->tile_group) 7461 drm_mode_put_tile_group(connector->dev, connector->tile_group); 7462 connector->tile_group = tg; 7463 } else { 7464 /* if same tile group, then release the ref we just took. */ 7465 drm_mode_put_tile_group(connector->dev, tg); 7466 } 7467 } 7468 7469 static bool displayid_is_tiled_block(const struct displayid_iter *iter, 7470 const struct displayid_block *block) 7471 { 7472 return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 && 7473 block->tag == DATA_BLOCK_TILED_DISPLAY) || 7474 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 && 7475 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY); 7476 } 7477 7478 static void _drm_update_tile_info(struct drm_connector *connector, 7479 const struct drm_edid *drm_edid) 7480 { 7481 const struct displayid_block *block; 7482 struct displayid_iter iter; 7483 7484 connector->has_tile = false; 7485 7486 displayid_iter_edid_begin(drm_edid, &iter); 7487 displayid_iter_for_each(block, &iter) { 7488 if (displayid_is_tiled_block(&iter, block)) 7489 drm_parse_tiled_block(connector, block); 7490 } 7491 displayid_iter_end(&iter); 7492 7493 if (!connector->has_tile && connector->tile_group) { 7494 drm_mode_put_tile_group(connector->dev, connector->tile_group); 7495 connector->tile_group = NULL; 7496 } 7497 } 7498 7499 /** 7500 * drm_edid_is_digital - is digital? 7501 * @drm_edid: The EDID 7502 * 7503 * Return true if input is digital. 7504 */ 7505 bool drm_edid_is_digital(const struct drm_edid *drm_edid) 7506 { 7507 return drm_edid && drm_edid->edid && 7508 drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL; 7509 } 7510 EXPORT_SYMBOL(drm_edid_is_digital); 7511