xref: /linux/drivers/gpu/drm/drm_edid.c (revision c27dfca4555bf74dd7dd7161d8ef2790ec1c7283)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/cec.h>
33 #include <linux/hdmi.h>
34 #include <linux/i2c.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/slab.h>
39 #include <linux/vga_switcheroo.h>
40 
41 #include <drm/drm_displayid.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_edid.h>
44 #include <drm/drm_encoder.h>
45 #include <drm/drm_print.h>
46 
47 #include "drm_crtc_internal.h"
48 
49 static int oui(u8 first, u8 second, u8 third)
50 {
51 	return (first << 16) | (second << 8) | third;
52 }
53 
54 #define EDID_EST_TIMINGS 16
55 #define EDID_STD_TIMINGS 8
56 #define EDID_DETAILED_TIMINGS 4
57 
58 /*
59  * EDID blocks out in the wild have a variety of bugs, try to collect
60  * them here (note that userspace may work around broken monitors first,
61  * but fixes should make their way here so that the kernel "just works"
62  * on as many displays as possible).
63  */
64 
65 /* First detailed mode wrong, use largest 60Hz mode */
66 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
67 /* Reported 135MHz pixel clock is too high, needs adjustment */
68 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
69 /* Prefer the largest mode at 75 Hz */
70 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
71 /* Detail timing is in cm not mm */
72 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
73 /* Detailed timing descriptors have bogus size values, so just take the
74  * maximum size and use that.
75  */
76 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
77 /* use +hsync +vsync for detailed mode */
78 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
79 /* Force reduced-blanking timings for detailed modes */
80 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
81 /* Force 8bpc */
82 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
83 /* Force 12bpc */
84 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
85 /* Force 6bpc */
86 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
87 /* Force 10bpc */
88 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
89 /* Non desktop display (i.e. HMD) */
90 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
91 /* Cap the DSC target bitrate to 15bpp */
92 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
93 
94 #define MICROSOFT_IEEE_OUI	0xca125c
95 
96 struct detailed_mode_closure {
97 	struct drm_connector *connector;
98 	const struct drm_edid *drm_edid;
99 	bool preferred;
100 	int modes;
101 };
102 
103 #define LEVEL_DMT	0
104 #define LEVEL_GTF	1
105 #define LEVEL_GTF2	2
106 #define LEVEL_CVT	3
107 
108 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
109 { \
110 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
111 					     product_id), \
112 	.quirks = _quirks \
113 }
114 
115 static const struct edid_quirk {
116 	u32 panel_id;
117 	u32 quirks;
118 } edid_quirk_list[] = {
119 	/* Acer AL1706 */
120 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
121 	/* Acer F51 */
122 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
123 
124 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
125 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
126 
127 	/* BenQ GW2765 */
128 	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
129 
130 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
131 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
132 
133 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
134 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
135 
136 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
137 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
138 
139 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
140 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
141 
142 	/* Belinea 10 15 55 */
143 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
144 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
145 
146 	/* Envision Peripherals, Inc. EN-7100e */
147 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
148 	/* Envision EN2028 */
149 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
150 
151 	/* Funai Electronics PM36B */
152 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
153 				       EDID_QUIRK_DETAILED_IN_CM),
154 
155 	/* LG 27GP950 */
156 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
157 
158 	/* LG 27GN950 */
159 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
160 
161 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
162 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
163 
164 	/* LG Philips LCD LP154W01-A5 */
165 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
166 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
167 
168 	/* Samsung SyncMaster 205BW.  Note: irony */
169 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
170 	/* Samsung SyncMaster 22[5-6]BW */
171 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
172 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
173 
174 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
175 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
176 
177 	/* ViewSonic VA2026w */
178 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
179 
180 	/* Medion MD 30217 PG */
181 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
182 
183 	/* Lenovo G50 */
184 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
185 
186 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
187 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
188 
189 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
190 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
191 
192 	/* Valve Index Headset */
193 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
194 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
195 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
199 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
200 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
201 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
203 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
204 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
206 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
207 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
208 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
209 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
210 
211 	/* HTC Vive and Vive Pro VR Headsets */
212 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
213 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
214 
215 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
216 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
217 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
218 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
219 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
220 
221 	/* Windows Mixed Reality Headsets */
222 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
223 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
224 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
225 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
226 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
227 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
228 
229 	/* Sony PlayStation VR Headset */
230 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
231 
232 	/* Sensics VR Headsets */
233 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
234 
235 	/* OSVR HDK and HDK2 VR Headsets */
236 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
237 	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
238 };
239 
240 /*
241  * Autogenerated from the DMT spec.
242  * This table is copied from xfree86/modes/xf86EdidModes.c.
243  */
244 static const struct drm_display_mode drm_dmt_modes[] = {
245 	/* 0x01 - 640x350@85Hz */
246 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
247 		   736, 832, 0, 350, 382, 385, 445, 0,
248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
249 	/* 0x02 - 640x400@85Hz */
250 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
251 		   736, 832, 0, 400, 401, 404, 445, 0,
252 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
253 	/* 0x03 - 720x400@85Hz */
254 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
255 		   828, 936, 0, 400, 401, 404, 446, 0,
256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
257 	/* 0x04 - 640x480@60Hz */
258 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
259 		   752, 800, 0, 480, 490, 492, 525, 0,
260 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
261 	/* 0x05 - 640x480@72Hz */
262 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
263 		   704, 832, 0, 480, 489, 492, 520, 0,
264 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
265 	/* 0x06 - 640x480@75Hz */
266 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
267 		   720, 840, 0, 480, 481, 484, 500, 0,
268 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
269 	/* 0x07 - 640x480@85Hz */
270 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
271 		   752, 832, 0, 480, 481, 484, 509, 0,
272 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
273 	/* 0x08 - 800x600@56Hz */
274 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
275 		   896, 1024, 0, 600, 601, 603, 625, 0,
276 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 	/* 0x09 - 800x600@60Hz */
278 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
279 		   968, 1056, 0, 600, 601, 605, 628, 0,
280 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
281 	/* 0x0a - 800x600@72Hz */
282 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
283 		   976, 1040, 0, 600, 637, 643, 666, 0,
284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
285 	/* 0x0b - 800x600@75Hz */
286 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
287 		   896, 1056, 0, 600, 601, 604, 625, 0,
288 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 	/* 0x0c - 800x600@85Hz */
290 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
291 		   896, 1048, 0, 600, 601, 604, 631, 0,
292 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
293 	/* 0x0d - 800x600@120Hz RB */
294 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
295 		   880, 960, 0, 600, 603, 607, 636, 0,
296 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
297 	/* 0x0e - 848x480@60Hz */
298 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
299 		   976, 1088, 0, 480, 486, 494, 517, 0,
300 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
301 	/* 0x0f - 1024x768@43Hz, interlace */
302 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
303 		   1208, 1264, 0, 768, 768, 776, 817, 0,
304 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
305 		   DRM_MODE_FLAG_INTERLACE) },
306 	/* 0x10 - 1024x768@60Hz */
307 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
308 		   1184, 1344, 0, 768, 771, 777, 806, 0,
309 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
310 	/* 0x11 - 1024x768@70Hz */
311 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
312 		   1184, 1328, 0, 768, 771, 777, 806, 0,
313 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
314 	/* 0x12 - 1024x768@75Hz */
315 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
316 		   1136, 1312, 0, 768, 769, 772, 800, 0,
317 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 	/* 0x13 - 1024x768@85Hz */
319 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
320 		   1168, 1376, 0, 768, 769, 772, 808, 0,
321 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
322 	/* 0x14 - 1024x768@120Hz RB */
323 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
324 		   1104, 1184, 0, 768, 771, 775, 813, 0,
325 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
326 	/* 0x15 - 1152x864@75Hz */
327 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
328 		   1344, 1600, 0, 864, 865, 868, 900, 0,
329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 	/* 0x55 - 1280x720@60Hz */
331 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
332 		   1430, 1650, 0, 720, 725, 730, 750, 0,
333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
334 	/* 0x16 - 1280x768@60Hz RB */
335 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
336 		   1360, 1440, 0, 768, 771, 778, 790, 0,
337 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
338 	/* 0x17 - 1280x768@60Hz */
339 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
340 		   1472, 1664, 0, 768, 771, 778, 798, 0,
341 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 	/* 0x18 - 1280x768@75Hz */
343 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
344 		   1488, 1696, 0, 768, 771, 778, 805, 0,
345 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 	/* 0x19 - 1280x768@85Hz */
347 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
348 		   1496, 1712, 0, 768, 771, 778, 809, 0,
349 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
350 	/* 0x1a - 1280x768@120Hz RB */
351 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
352 		   1360, 1440, 0, 768, 771, 778, 813, 0,
353 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
354 	/* 0x1b - 1280x800@60Hz RB */
355 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
356 		   1360, 1440, 0, 800, 803, 809, 823, 0,
357 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
358 	/* 0x1c - 1280x800@60Hz */
359 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
360 		   1480, 1680, 0, 800, 803, 809, 831, 0,
361 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 	/* 0x1d - 1280x800@75Hz */
363 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
364 		   1488, 1696, 0, 800, 803, 809, 838, 0,
365 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 	/* 0x1e - 1280x800@85Hz */
367 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
368 		   1496, 1712, 0, 800, 803, 809, 843, 0,
369 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
370 	/* 0x1f - 1280x800@120Hz RB */
371 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
372 		   1360, 1440, 0, 800, 803, 809, 847, 0,
373 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
374 	/* 0x20 - 1280x960@60Hz */
375 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
376 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
377 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 	/* 0x21 - 1280x960@85Hz */
379 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
380 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
381 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
382 	/* 0x22 - 1280x960@120Hz RB */
383 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
384 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
385 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
386 	/* 0x23 - 1280x1024@60Hz */
387 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
388 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
390 	/* 0x24 - 1280x1024@75Hz */
391 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
392 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
393 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 	/* 0x25 - 1280x1024@85Hz */
395 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
396 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
397 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 	/* 0x26 - 1280x1024@120Hz RB */
399 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
400 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
401 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
402 	/* 0x27 - 1360x768@60Hz */
403 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
404 		   1536, 1792, 0, 768, 771, 777, 795, 0,
405 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
406 	/* 0x28 - 1360x768@120Hz RB */
407 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
408 		   1440, 1520, 0, 768, 771, 776, 813, 0,
409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
410 	/* 0x51 - 1366x768@60Hz */
411 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
412 		   1579, 1792, 0, 768, 771, 774, 798, 0,
413 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 	/* 0x56 - 1366x768@60Hz */
415 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
416 		   1436, 1500, 0, 768, 769, 772, 800, 0,
417 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
418 	/* 0x29 - 1400x1050@60Hz RB */
419 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
420 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
421 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
422 	/* 0x2a - 1400x1050@60Hz */
423 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
424 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
425 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 	/* 0x2b - 1400x1050@75Hz */
427 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
428 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
429 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 	/* 0x2c - 1400x1050@85Hz */
431 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
432 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
433 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
434 	/* 0x2d - 1400x1050@120Hz RB */
435 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
436 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 	/* 0x2e - 1440x900@60Hz RB */
439 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
440 		   1520, 1600, 0, 900, 903, 909, 926, 0,
441 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
442 	/* 0x2f - 1440x900@60Hz */
443 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
444 		   1672, 1904, 0, 900, 903, 909, 934, 0,
445 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 	/* 0x30 - 1440x900@75Hz */
447 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
448 		   1688, 1936, 0, 900, 903, 909, 942, 0,
449 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 	/* 0x31 - 1440x900@85Hz */
451 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
452 		   1696, 1952, 0, 900, 903, 909, 948, 0,
453 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
454 	/* 0x32 - 1440x900@120Hz RB */
455 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
456 		   1520, 1600, 0, 900, 903, 909, 953, 0,
457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
458 	/* 0x53 - 1600x900@60Hz */
459 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
460 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
461 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 	/* 0x33 - 1600x1200@60Hz */
463 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
464 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
465 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 	/* 0x34 - 1600x1200@65Hz */
467 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
468 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
469 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 	/* 0x35 - 1600x1200@70Hz */
471 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
472 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
473 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 	/* 0x36 - 1600x1200@75Hz */
475 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
476 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
478 	/* 0x37 - 1600x1200@85Hz */
479 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
480 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
481 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
482 	/* 0x38 - 1600x1200@120Hz RB */
483 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
484 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 	/* 0x39 - 1680x1050@60Hz RB */
487 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
488 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
489 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
490 	/* 0x3a - 1680x1050@60Hz */
491 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
492 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
493 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 	/* 0x3b - 1680x1050@75Hz */
495 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
496 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
497 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 	/* 0x3c - 1680x1050@85Hz */
499 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
500 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
501 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
502 	/* 0x3d - 1680x1050@120Hz RB */
503 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
504 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
505 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
506 	/* 0x3e - 1792x1344@60Hz */
507 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
508 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
509 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 	/* 0x3f - 1792x1344@75Hz */
511 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
512 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
513 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
514 	/* 0x40 - 1792x1344@120Hz RB */
515 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
516 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
518 	/* 0x41 - 1856x1392@60Hz */
519 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
520 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
521 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
522 	/* 0x42 - 1856x1392@75Hz */
523 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
524 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
525 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
526 	/* 0x43 - 1856x1392@120Hz RB */
527 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
528 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
529 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
530 	/* 0x52 - 1920x1080@60Hz */
531 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
532 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
533 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
534 	/* 0x44 - 1920x1200@60Hz RB */
535 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
536 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
538 	/* 0x45 - 1920x1200@60Hz */
539 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
540 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
541 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
542 	/* 0x46 - 1920x1200@75Hz */
543 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
544 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
545 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
546 	/* 0x47 - 1920x1200@85Hz */
547 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
548 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
549 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
550 	/* 0x48 - 1920x1200@120Hz RB */
551 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
552 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
553 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
554 	/* 0x49 - 1920x1440@60Hz */
555 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
556 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
557 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
558 	/* 0x4a - 1920x1440@75Hz */
559 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
560 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
561 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
562 	/* 0x4b - 1920x1440@120Hz RB */
563 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
564 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
565 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
566 	/* 0x54 - 2048x1152@60Hz */
567 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
568 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
569 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
570 	/* 0x4c - 2560x1600@60Hz RB */
571 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
572 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
573 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
574 	/* 0x4d - 2560x1600@60Hz */
575 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
576 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
577 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
578 	/* 0x4e - 2560x1600@75Hz */
579 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
580 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
581 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
582 	/* 0x4f - 2560x1600@85Hz */
583 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
584 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
585 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
586 	/* 0x50 - 2560x1600@120Hz RB */
587 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
588 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
589 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
590 	/* 0x57 - 4096x2160@60Hz RB */
591 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
592 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
593 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
594 	/* 0x58 - 4096x2160@59.94Hz RB */
595 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
596 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
597 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
598 };
599 
600 /*
601  * These more or less come from the DMT spec.  The 720x400 modes are
602  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
603  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
604  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
605  * mode.
606  *
607  * The DMT modes have been fact-checked; the rest are mild guesses.
608  */
609 static const struct drm_display_mode edid_est_modes[] = {
610 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
611 		   968, 1056, 0, 600, 601, 605, 628, 0,
612 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
613 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
614 		   896, 1024, 0, 600, 601, 603,  625, 0,
615 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
616 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
617 		   720, 840, 0, 480, 481, 484, 500, 0,
618 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
619 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
620 		   704,  832, 0, 480, 489, 492, 520, 0,
621 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
622 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
623 		   768,  864, 0, 480, 483, 486, 525, 0,
624 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
625 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
626 		   752, 800, 0, 480, 490, 492, 525, 0,
627 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
628 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
629 		   846, 900, 0, 400, 421, 423,  449, 0,
630 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
631 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
632 		   846,  900, 0, 400, 412, 414, 449, 0,
633 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
634 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
635 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
636 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
637 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
638 		   1136, 1312, 0,  768, 769, 772, 800, 0,
639 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
640 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
641 		   1184, 1328, 0,  768, 771, 777, 806, 0,
642 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
643 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
644 		   1184, 1344, 0,  768, 771, 777, 806, 0,
645 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
646 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
647 		   1208, 1264, 0, 768, 768, 776, 817, 0,
648 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
649 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
650 		   928, 1152, 0, 624, 625, 628, 667, 0,
651 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
652 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
653 		   896, 1056, 0, 600, 601, 604,  625, 0,
654 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
655 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
656 		   976, 1040, 0, 600, 637, 643, 666, 0,
657 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
658 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
659 		   1344, 1600, 0,  864, 865, 868, 900, 0,
660 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
661 };
662 
663 struct minimode {
664 	short w;
665 	short h;
666 	short r;
667 	short rb;
668 };
669 
670 static const struct minimode est3_modes[] = {
671 	/* byte 6 */
672 	{ 640, 350, 85, 0 },
673 	{ 640, 400, 85, 0 },
674 	{ 720, 400, 85, 0 },
675 	{ 640, 480, 85, 0 },
676 	{ 848, 480, 60, 0 },
677 	{ 800, 600, 85, 0 },
678 	{ 1024, 768, 85, 0 },
679 	{ 1152, 864, 75, 0 },
680 	/* byte 7 */
681 	{ 1280, 768, 60, 1 },
682 	{ 1280, 768, 60, 0 },
683 	{ 1280, 768, 75, 0 },
684 	{ 1280, 768, 85, 0 },
685 	{ 1280, 960, 60, 0 },
686 	{ 1280, 960, 85, 0 },
687 	{ 1280, 1024, 60, 0 },
688 	{ 1280, 1024, 85, 0 },
689 	/* byte 8 */
690 	{ 1360, 768, 60, 0 },
691 	{ 1440, 900, 60, 1 },
692 	{ 1440, 900, 60, 0 },
693 	{ 1440, 900, 75, 0 },
694 	{ 1440, 900, 85, 0 },
695 	{ 1400, 1050, 60, 1 },
696 	{ 1400, 1050, 60, 0 },
697 	{ 1400, 1050, 75, 0 },
698 	/* byte 9 */
699 	{ 1400, 1050, 85, 0 },
700 	{ 1680, 1050, 60, 1 },
701 	{ 1680, 1050, 60, 0 },
702 	{ 1680, 1050, 75, 0 },
703 	{ 1680, 1050, 85, 0 },
704 	{ 1600, 1200, 60, 0 },
705 	{ 1600, 1200, 65, 0 },
706 	{ 1600, 1200, 70, 0 },
707 	/* byte 10 */
708 	{ 1600, 1200, 75, 0 },
709 	{ 1600, 1200, 85, 0 },
710 	{ 1792, 1344, 60, 0 },
711 	{ 1792, 1344, 75, 0 },
712 	{ 1856, 1392, 60, 0 },
713 	{ 1856, 1392, 75, 0 },
714 	{ 1920, 1200, 60, 1 },
715 	{ 1920, 1200, 60, 0 },
716 	/* byte 11 */
717 	{ 1920, 1200, 75, 0 },
718 	{ 1920, 1200, 85, 0 },
719 	{ 1920, 1440, 60, 0 },
720 	{ 1920, 1440, 75, 0 },
721 };
722 
723 static const struct minimode extra_modes[] = {
724 	{ 1024, 576,  60, 0 },
725 	{ 1366, 768,  60, 0 },
726 	{ 1600, 900,  60, 0 },
727 	{ 1680, 945,  60, 0 },
728 	{ 1920, 1080, 60, 0 },
729 	{ 2048, 1152, 60, 0 },
730 	{ 2048, 1536, 60, 0 },
731 };
732 
733 /*
734  * From CEA/CTA-861 spec.
735  *
736  * Do not access directly, instead always use cea_mode_for_vic().
737  */
738 static const struct drm_display_mode edid_cea_modes_1[] = {
739 	/* 1 - 640x480@60Hz 4:3 */
740 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
741 		   752, 800, 0, 480, 490, 492, 525, 0,
742 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
743 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
744 	/* 2 - 720x480@60Hz 4:3 */
745 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
746 		   798, 858, 0, 480, 489, 495, 525, 0,
747 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
748 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
749 	/* 3 - 720x480@60Hz 16:9 */
750 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
751 		   798, 858, 0, 480, 489, 495, 525, 0,
752 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
753 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
754 	/* 4 - 1280x720@60Hz 16:9 */
755 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
756 		   1430, 1650, 0, 720, 725, 730, 750, 0,
757 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
758 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
759 	/* 5 - 1920x1080i@60Hz 16:9 */
760 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
761 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
762 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
763 		   DRM_MODE_FLAG_INTERLACE),
764 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
765 	/* 6 - 720(1440)x480i@60Hz 4:3 */
766 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
767 		   801, 858, 0, 480, 488, 494, 525, 0,
768 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
769 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
770 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
771 	/* 7 - 720(1440)x480i@60Hz 16:9 */
772 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
773 		   801, 858, 0, 480, 488, 494, 525, 0,
774 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
775 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
776 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
777 	/* 8 - 720(1440)x240@60Hz 4:3 */
778 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
779 		   801, 858, 0, 240, 244, 247, 262, 0,
780 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
781 		   DRM_MODE_FLAG_DBLCLK),
782 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
783 	/* 9 - 720(1440)x240@60Hz 16:9 */
784 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
785 		   801, 858, 0, 240, 244, 247, 262, 0,
786 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
787 		   DRM_MODE_FLAG_DBLCLK),
788 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
789 	/* 10 - 2880x480i@60Hz 4:3 */
790 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
791 		   3204, 3432, 0, 480, 488, 494, 525, 0,
792 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
793 		   DRM_MODE_FLAG_INTERLACE),
794 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
795 	/* 11 - 2880x480i@60Hz 16:9 */
796 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
797 		   3204, 3432, 0, 480, 488, 494, 525, 0,
798 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
799 		   DRM_MODE_FLAG_INTERLACE),
800 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
801 	/* 12 - 2880x240@60Hz 4:3 */
802 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
803 		   3204, 3432, 0, 240, 244, 247, 262, 0,
804 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
805 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
806 	/* 13 - 2880x240@60Hz 16:9 */
807 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
808 		   3204, 3432, 0, 240, 244, 247, 262, 0,
809 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
810 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
811 	/* 14 - 1440x480@60Hz 4:3 */
812 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
813 		   1596, 1716, 0, 480, 489, 495, 525, 0,
814 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
815 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
816 	/* 15 - 1440x480@60Hz 16:9 */
817 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
818 		   1596, 1716, 0, 480, 489, 495, 525, 0,
819 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
820 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821 	/* 16 - 1920x1080@60Hz 16:9 */
822 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
823 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
824 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
825 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
826 	/* 17 - 720x576@50Hz 4:3 */
827 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
828 		   796, 864, 0, 576, 581, 586, 625, 0,
829 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
830 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
831 	/* 18 - 720x576@50Hz 16:9 */
832 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
833 		   796, 864, 0, 576, 581, 586, 625, 0,
834 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
835 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
836 	/* 19 - 1280x720@50Hz 16:9 */
837 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
838 		   1760, 1980, 0, 720, 725, 730, 750, 0,
839 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
840 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
841 	/* 20 - 1920x1080i@50Hz 16:9 */
842 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
843 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
844 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
845 		   DRM_MODE_FLAG_INTERLACE),
846 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
847 	/* 21 - 720(1440)x576i@50Hz 4:3 */
848 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
849 		   795, 864, 0, 576, 580, 586, 625, 0,
850 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
851 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
852 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
853 	/* 22 - 720(1440)x576i@50Hz 16:9 */
854 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
855 		   795, 864, 0, 576, 580, 586, 625, 0,
856 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
857 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
858 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 	/* 23 - 720(1440)x288@50Hz 4:3 */
860 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
861 		   795, 864, 0, 288, 290, 293, 312, 0,
862 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
863 		   DRM_MODE_FLAG_DBLCLK),
864 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
865 	/* 24 - 720(1440)x288@50Hz 16:9 */
866 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
867 		   795, 864, 0, 288, 290, 293, 312, 0,
868 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
869 		   DRM_MODE_FLAG_DBLCLK),
870 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
871 	/* 25 - 2880x576i@50Hz 4:3 */
872 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
873 		   3180, 3456, 0, 576, 580, 586, 625, 0,
874 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
875 		   DRM_MODE_FLAG_INTERLACE),
876 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
877 	/* 26 - 2880x576i@50Hz 16:9 */
878 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
879 		   3180, 3456, 0, 576, 580, 586, 625, 0,
880 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
881 		   DRM_MODE_FLAG_INTERLACE),
882 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
883 	/* 27 - 2880x288@50Hz 4:3 */
884 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
885 		   3180, 3456, 0, 288, 290, 293, 312, 0,
886 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
887 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
888 	/* 28 - 2880x288@50Hz 16:9 */
889 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
890 		   3180, 3456, 0, 288, 290, 293, 312, 0,
891 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
892 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
893 	/* 29 - 1440x576@50Hz 4:3 */
894 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
895 		   1592, 1728, 0, 576, 581, 586, 625, 0,
896 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
897 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
898 	/* 30 - 1440x576@50Hz 16:9 */
899 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
900 		   1592, 1728, 0, 576, 581, 586, 625, 0,
901 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
902 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
903 	/* 31 - 1920x1080@50Hz 16:9 */
904 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
905 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
906 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
907 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
908 	/* 32 - 1920x1080@24Hz 16:9 */
909 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
910 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
911 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
912 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
913 	/* 33 - 1920x1080@25Hz 16:9 */
914 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
915 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
916 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
917 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
918 	/* 34 - 1920x1080@30Hz 16:9 */
919 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
920 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
921 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
922 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
923 	/* 35 - 2880x480@60Hz 4:3 */
924 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
925 		   3192, 3432, 0, 480, 489, 495, 525, 0,
926 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
927 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
928 	/* 36 - 2880x480@60Hz 16:9 */
929 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
930 		   3192, 3432, 0, 480, 489, 495, 525, 0,
931 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
932 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
933 	/* 37 - 2880x576@50Hz 4:3 */
934 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
935 		   3184, 3456, 0, 576, 581, 586, 625, 0,
936 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
937 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
938 	/* 38 - 2880x576@50Hz 16:9 */
939 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
940 		   3184, 3456, 0, 576, 581, 586, 625, 0,
941 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
942 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
943 	/* 39 - 1920x1080i@50Hz 16:9 */
944 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
945 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
946 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
947 		   DRM_MODE_FLAG_INTERLACE),
948 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
949 	/* 40 - 1920x1080i@100Hz 16:9 */
950 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
951 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
952 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
953 		   DRM_MODE_FLAG_INTERLACE),
954 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
955 	/* 41 - 1280x720@100Hz 16:9 */
956 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
957 		   1760, 1980, 0, 720, 725, 730, 750, 0,
958 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
959 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
960 	/* 42 - 720x576@100Hz 4:3 */
961 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
962 		   796, 864, 0, 576, 581, 586, 625, 0,
963 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
964 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
965 	/* 43 - 720x576@100Hz 16:9 */
966 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
967 		   796, 864, 0, 576, 581, 586, 625, 0,
968 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
969 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
970 	/* 44 - 720(1440)x576i@100Hz 4:3 */
971 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
972 		   795, 864, 0, 576, 580, 586, 625, 0,
973 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
974 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
975 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
976 	/* 45 - 720(1440)x576i@100Hz 16:9 */
977 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
978 		   795, 864, 0, 576, 580, 586, 625, 0,
979 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
980 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
981 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
982 	/* 46 - 1920x1080i@120Hz 16:9 */
983 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
984 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
985 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
986 		   DRM_MODE_FLAG_INTERLACE),
987 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
988 	/* 47 - 1280x720@120Hz 16:9 */
989 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
990 		   1430, 1650, 0, 720, 725, 730, 750, 0,
991 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
992 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
993 	/* 48 - 720x480@120Hz 4:3 */
994 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
995 		   798, 858, 0, 480, 489, 495, 525, 0,
996 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
997 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
998 	/* 49 - 720x480@120Hz 16:9 */
999 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1000 		   798, 858, 0, 480, 489, 495, 525, 0,
1001 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1002 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1003 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1004 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1005 		   801, 858, 0, 480, 488, 494, 525, 0,
1006 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1007 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1008 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1009 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1010 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1011 		   801, 858, 0, 480, 488, 494, 525, 0,
1012 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1013 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1014 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1015 	/* 52 - 720x576@200Hz 4:3 */
1016 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1017 		   796, 864, 0, 576, 581, 586, 625, 0,
1018 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1019 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1020 	/* 53 - 720x576@200Hz 16:9 */
1021 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1022 		   796, 864, 0, 576, 581, 586, 625, 0,
1023 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1024 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1025 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1026 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1027 		   795, 864, 0, 576, 580, 586, 625, 0,
1028 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1029 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1030 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1031 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1032 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1033 		   795, 864, 0, 576, 580, 586, 625, 0,
1034 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1035 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1036 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1037 	/* 56 - 720x480@240Hz 4:3 */
1038 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1039 		   798, 858, 0, 480, 489, 495, 525, 0,
1040 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1041 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1042 	/* 57 - 720x480@240Hz 16:9 */
1043 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1044 		   798, 858, 0, 480, 489, 495, 525, 0,
1045 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1046 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1047 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1048 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1049 		   801, 858, 0, 480, 488, 494, 525, 0,
1050 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1051 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1052 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1053 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1054 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1055 		   801, 858, 0, 480, 488, 494, 525, 0,
1056 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1057 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1058 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1059 	/* 60 - 1280x720@24Hz 16:9 */
1060 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1061 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1062 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1063 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1064 	/* 61 - 1280x720@25Hz 16:9 */
1065 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1066 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1067 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1068 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1069 	/* 62 - 1280x720@30Hz 16:9 */
1070 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1071 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1072 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1073 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1074 	/* 63 - 1920x1080@120Hz 16:9 */
1075 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1076 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1077 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1078 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1079 	/* 64 - 1920x1080@100Hz 16:9 */
1080 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1081 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1083 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1084 	/* 65 - 1280x720@24Hz 64:27 */
1085 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1086 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1087 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1088 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1089 	/* 66 - 1280x720@25Hz 64:27 */
1090 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1091 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1092 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1093 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1094 	/* 67 - 1280x720@30Hz 64:27 */
1095 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1096 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1097 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1098 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1099 	/* 68 - 1280x720@50Hz 64:27 */
1100 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1101 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1102 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1103 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1104 	/* 69 - 1280x720@60Hz 64:27 */
1105 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1106 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1107 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1108 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1109 	/* 70 - 1280x720@100Hz 64:27 */
1110 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1111 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1112 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1113 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1114 	/* 71 - 1280x720@120Hz 64:27 */
1115 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1116 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1117 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1118 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1119 	/* 72 - 1920x1080@24Hz 64:27 */
1120 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1121 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1122 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1123 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1124 	/* 73 - 1920x1080@25Hz 64:27 */
1125 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1126 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1127 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1128 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1129 	/* 74 - 1920x1080@30Hz 64:27 */
1130 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1131 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1132 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1133 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1134 	/* 75 - 1920x1080@50Hz 64:27 */
1135 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1136 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1137 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1138 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1139 	/* 76 - 1920x1080@60Hz 64:27 */
1140 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1141 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1142 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1143 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1144 	/* 77 - 1920x1080@100Hz 64:27 */
1145 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1146 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1147 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1148 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1149 	/* 78 - 1920x1080@120Hz 64:27 */
1150 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1151 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1152 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1153 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1154 	/* 79 - 1680x720@24Hz 64:27 */
1155 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1156 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1157 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1158 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1159 	/* 80 - 1680x720@25Hz 64:27 */
1160 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1161 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1163 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1164 	/* 81 - 1680x720@30Hz 64:27 */
1165 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1166 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1167 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1168 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1169 	/* 82 - 1680x720@50Hz 64:27 */
1170 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1171 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1172 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1173 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1174 	/* 83 - 1680x720@60Hz 64:27 */
1175 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1176 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1177 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1178 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1179 	/* 84 - 1680x720@100Hz 64:27 */
1180 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1181 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1183 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1184 	/* 85 - 1680x720@120Hz 64:27 */
1185 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1186 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1187 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1188 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1189 	/* 86 - 2560x1080@24Hz 64:27 */
1190 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1191 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1192 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1193 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1194 	/* 87 - 2560x1080@25Hz 64:27 */
1195 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1196 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1198 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1199 	/* 88 - 2560x1080@30Hz 64:27 */
1200 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1201 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1202 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1203 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1204 	/* 89 - 2560x1080@50Hz 64:27 */
1205 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1206 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1207 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1208 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1209 	/* 90 - 2560x1080@60Hz 64:27 */
1210 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1211 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1212 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1213 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1214 	/* 91 - 2560x1080@100Hz 64:27 */
1215 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1216 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1217 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1218 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1219 	/* 92 - 2560x1080@120Hz 64:27 */
1220 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1221 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1223 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1224 	/* 93 - 3840x2160@24Hz 16:9 */
1225 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1226 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1227 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1228 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1229 	/* 94 - 3840x2160@25Hz 16:9 */
1230 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1231 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1232 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1233 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1234 	/* 95 - 3840x2160@30Hz 16:9 */
1235 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1236 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1237 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1238 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1239 	/* 96 - 3840x2160@50Hz 16:9 */
1240 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1241 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1243 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1244 	/* 97 - 3840x2160@60Hz 16:9 */
1245 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1246 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1247 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1248 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1249 	/* 98 - 4096x2160@24Hz 256:135 */
1250 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1251 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1252 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1253 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1254 	/* 99 - 4096x2160@25Hz 256:135 */
1255 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1256 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1257 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1258 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1259 	/* 100 - 4096x2160@30Hz 256:135 */
1260 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1261 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1263 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1264 	/* 101 - 4096x2160@50Hz 256:135 */
1265 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1266 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1267 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1268 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1269 	/* 102 - 4096x2160@60Hz 256:135 */
1270 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1271 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1272 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1273 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1274 	/* 103 - 3840x2160@24Hz 64:27 */
1275 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1276 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1277 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1278 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1279 	/* 104 - 3840x2160@25Hz 64:27 */
1280 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1281 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1283 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1284 	/* 105 - 3840x2160@30Hz 64:27 */
1285 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1286 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1288 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1289 	/* 106 - 3840x2160@50Hz 64:27 */
1290 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1291 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1292 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1293 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1294 	/* 107 - 3840x2160@60Hz 64:27 */
1295 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1296 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1297 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1298 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1299 	/* 108 - 1280x720@48Hz 16:9 */
1300 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1301 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1303 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1304 	/* 109 - 1280x720@48Hz 64:27 */
1305 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1306 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1307 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1308 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1309 	/* 110 - 1680x720@48Hz 64:27 */
1310 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1311 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1312 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1313 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1314 	/* 111 - 1920x1080@48Hz 16:9 */
1315 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1316 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1317 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1318 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1319 	/* 112 - 1920x1080@48Hz 64:27 */
1320 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1321 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1323 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1324 	/* 113 - 2560x1080@48Hz 64:27 */
1325 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1326 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1327 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1328 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1329 	/* 114 - 3840x2160@48Hz 16:9 */
1330 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1331 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1332 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1333 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1334 	/* 115 - 4096x2160@48Hz 256:135 */
1335 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1336 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1337 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1338 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1339 	/* 116 - 3840x2160@48Hz 64:27 */
1340 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1341 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1343 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1344 	/* 117 - 3840x2160@100Hz 16:9 */
1345 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1346 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1347 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1348 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1349 	/* 118 - 3840x2160@120Hz 16:9 */
1350 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1351 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1352 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1353 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1354 	/* 119 - 3840x2160@100Hz 64:27 */
1355 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1356 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1357 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1358 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1359 	/* 120 - 3840x2160@120Hz 64:27 */
1360 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1361 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1362 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1363 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1364 	/* 121 - 5120x2160@24Hz 64:27 */
1365 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1366 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1367 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1368 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1369 	/* 122 - 5120x2160@25Hz 64:27 */
1370 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1371 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1372 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1373 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1374 	/* 123 - 5120x2160@30Hz 64:27 */
1375 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1376 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1377 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1378 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1379 	/* 124 - 5120x2160@48Hz 64:27 */
1380 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1381 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1382 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1383 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1384 	/* 125 - 5120x2160@50Hz 64:27 */
1385 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1386 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1387 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1388 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1389 	/* 126 - 5120x2160@60Hz 64:27 */
1390 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1391 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1392 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1393 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1394 	/* 127 - 5120x2160@100Hz 64:27 */
1395 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1396 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1397 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1398 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1399 };
1400 
1401 /*
1402  * From CEA/CTA-861 spec.
1403  *
1404  * Do not access directly, instead always use cea_mode_for_vic().
1405  */
1406 static const struct drm_display_mode edid_cea_modes_193[] = {
1407 	/* 193 - 5120x2160@120Hz 64:27 */
1408 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1409 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1410 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1411 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1412 	/* 194 - 7680x4320@24Hz 16:9 */
1413 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1414 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1416 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1417 	/* 195 - 7680x4320@25Hz 16:9 */
1418 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1419 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1420 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1421 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1422 	/* 196 - 7680x4320@30Hz 16:9 */
1423 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1424 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1425 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1426 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1427 	/* 197 - 7680x4320@48Hz 16:9 */
1428 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1429 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1430 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1431 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1432 	/* 198 - 7680x4320@50Hz 16:9 */
1433 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1434 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1435 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1436 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1437 	/* 199 - 7680x4320@60Hz 16:9 */
1438 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1439 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1440 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1441 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1442 	/* 200 - 7680x4320@100Hz 16:9 */
1443 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1444 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1445 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1446 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1447 	/* 201 - 7680x4320@120Hz 16:9 */
1448 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1449 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1450 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1451 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1452 	/* 202 - 7680x4320@24Hz 64:27 */
1453 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1454 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1455 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1456 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1457 	/* 203 - 7680x4320@25Hz 64:27 */
1458 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1459 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1460 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1461 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1462 	/* 204 - 7680x4320@30Hz 64:27 */
1463 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1464 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1465 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1466 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1467 	/* 205 - 7680x4320@48Hz 64:27 */
1468 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1469 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1470 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1471 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1472 	/* 206 - 7680x4320@50Hz 64:27 */
1473 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1474 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1475 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1476 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1477 	/* 207 - 7680x4320@60Hz 64:27 */
1478 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1479 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1480 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1481 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1482 	/* 208 - 7680x4320@100Hz 64:27 */
1483 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1484 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1486 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1487 	/* 209 - 7680x4320@120Hz 64:27 */
1488 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1489 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1490 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1491 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1492 	/* 210 - 10240x4320@24Hz 64:27 */
1493 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1494 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1495 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1496 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1497 	/* 211 - 10240x4320@25Hz 64:27 */
1498 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1499 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1501 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1502 	/* 212 - 10240x4320@30Hz 64:27 */
1503 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1504 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1505 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1506 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1507 	/* 213 - 10240x4320@48Hz 64:27 */
1508 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1509 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1510 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1511 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1512 	/* 214 - 10240x4320@50Hz 64:27 */
1513 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1514 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1515 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1516 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1517 	/* 215 - 10240x4320@60Hz 64:27 */
1518 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1519 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1520 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1521 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1522 	/* 216 - 10240x4320@100Hz 64:27 */
1523 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1524 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1525 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1526 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1527 	/* 217 - 10240x4320@120Hz 64:27 */
1528 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1529 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1530 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1531 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1532 	/* 218 - 4096x2160@100Hz 256:135 */
1533 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1534 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1535 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1536 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1537 	/* 219 - 4096x2160@120Hz 256:135 */
1538 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1539 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1540 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1541 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1542 };
1543 
1544 /*
1545  * HDMI 1.4 4k modes. Index using the VIC.
1546  */
1547 static const struct drm_display_mode edid_4k_modes[] = {
1548 	/* 0 - dummy, VICs start at 1 */
1549 	{ },
1550 	/* 1 - 3840x2160@30Hz */
1551 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1552 		   3840, 4016, 4104, 4400, 0,
1553 		   2160, 2168, 2178, 2250, 0,
1554 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1555 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1556 	/* 2 - 3840x2160@25Hz */
1557 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1558 		   3840, 4896, 4984, 5280, 0,
1559 		   2160, 2168, 2178, 2250, 0,
1560 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1561 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1562 	/* 3 - 3840x2160@24Hz */
1563 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1564 		   3840, 5116, 5204, 5500, 0,
1565 		   2160, 2168, 2178, 2250, 0,
1566 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1567 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1568 	/* 4 - 4096x2160@24Hz (SMPTE) */
1569 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1570 		   4096, 5116, 5204, 5500, 0,
1571 		   2160, 2168, 2178, 2250, 0,
1572 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1573 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1574 };
1575 
1576 /*** DDC fetch and block validation ***/
1577 
1578 /*
1579  * The opaque EDID type, internal to drm_edid.c.
1580  */
1581 struct drm_edid {
1582 	/* Size allocated for edid */
1583 	size_t size;
1584 	const struct edid *edid;
1585 };
1586 
1587 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1588 
1589 static int edid_hfeeodb_block_count(const struct edid *edid)
1590 {
1591 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1592 
1593 	return eeodb ? eeodb + 1 : 0;
1594 }
1595 
1596 static int edid_extension_block_count(const struct edid *edid)
1597 {
1598 	return edid->extensions;
1599 }
1600 
1601 static int edid_block_count(const struct edid *edid)
1602 {
1603 	return edid_extension_block_count(edid) + 1;
1604 }
1605 
1606 static int edid_size_by_blocks(int num_blocks)
1607 {
1608 	return num_blocks * EDID_LENGTH;
1609 }
1610 
1611 static int edid_size(const struct edid *edid)
1612 {
1613 	return edid_size_by_blocks(edid_block_count(edid));
1614 }
1615 
1616 static const void *edid_block_data(const struct edid *edid, int index)
1617 {
1618 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1619 
1620 	return edid + index;
1621 }
1622 
1623 static const void *edid_extension_block_data(const struct edid *edid, int index)
1624 {
1625 	return edid_block_data(edid, index + 1);
1626 }
1627 
1628 /* EDID block count indicated in EDID, may exceed allocated size */
1629 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1630 {
1631 	int num_blocks;
1632 
1633 	/* Starting point */
1634 	num_blocks = edid_block_count(drm_edid->edid);
1635 
1636 	/* HF-EEODB override */
1637 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1638 		int eeodb;
1639 
1640 		/*
1641 		 * Note: HF-EEODB may specify a smaller extension count than the
1642 		 * regular one. Unlike in buffer allocation, here we can use it.
1643 		 */
1644 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1645 		if (eeodb)
1646 			num_blocks = eeodb;
1647 	}
1648 
1649 	return num_blocks;
1650 }
1651 
1652 /* EDID block count, limited by allocated size */
1653 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1654 {
1655 	/* Limit by allocated size */
1656 	return min(__drm_edid_block_count(drm_edid),
1657 		   (int)drm_edid->size / EDID_LENGTH);
1658 }
1659 
1660 /* EDID extension block count, limited by allocated size */
1661 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1662 {
1663 	return drm_edid_block_count(drm_edid) - 1;
1664 }
1665 
1666 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1667 {
1668 	return edid_block_data(drm_edid->edid, index);
1669 }
1670 
1671 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1672 						 int index)
1673 {
1674 	return edid_extension_block_data(drm_edid->edid, index);
1675 }
1676 
1677 /*
1678  * Initializer helper for legacy interfaces, where we have no choice but to
1679  * trust edid size. Not for general purpose use.
1680  */
1681 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1682 						   const struct edid *edid)
1683 {
1684 	if (!edid)
1685 		return NULL;
1686 
1687 	memset(drm_edid, 0, sizeof(*drm_edid));
1688 
1689 	drm_edid->edid = edid;
1690 	drm_edid->size = edid_size(edid);
1691 
1692 	return drm_edid;
1693 }
1694 
1695 /*
1696  * EDID base and extension block iterator.
1697  *
1698  * struct drm_edid_iter iter;
1699  * const u8 *block;
1700  *
1701  * drm_edid_iter_begin(drm_edid, &iter);
1702  * drm_edid_iter_for_each(block, &iter) {
1703  *         // do stuff with block
1704  * }
1705  * drm_edid_iter_end(&iter);
1706  */
1707 struct drm_edid_iter {
1708 	const struct drm_edid *drm_edid;
1709 
1710 	/* Current block index. */
1711 	int index;
1712 };
1713 
1714 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1715 				struct drm_edid_iter *iter)
1716 {
1717 	memset(iter, 0, sizeof(*iter));
1718 
1719 	iter->drm_edid = drm_edid;
1720 }
1721 
1722 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1723 {
1724 	const void *block = NULL;
1725 
1726 	if (!iter->drm_edid)
1727 		return NULL;
1728 
1729 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1730 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1731 
1732 	return block;
1733 }
1734 
1735 #define drm_edid_iter_for_each(__block, __iter)			\
1736 	while (((__block) = __drm_edid_iter_next(__iter)))
1737 
1738 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1739 {
1740 	memset(iter, 0, sizeof(*iter));
1741 }
1742 
1743 static const u8 edid_header[] = {
1744 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1745 };
1746 
1747 static void edid_header_fix(void *edid)
1748 {
1749 	memcpy(edid, edid_header, sizeof(edid_header));
1750 }
1751 
1752 /**
1753  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1754  * @_edid: pointer to raw base EDID block
1755  *
1756  * Sanity check the header of the base EDID block.
1757  *
1758  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1759  */
1760 int drm_edid_header_is_valid(const void *_edid)
1761 {
1762 	const struct edid *edid = _edid;
1763 	int i, score = 0;
1764 
1765 	for (i = 0; i < sizeof(edid_header); i++) {
1766 		if (edid->header[i] == edid_header[i])
1767 			score++;
1768 	}
1769 
1770 	return score;
1771 }
1772 EXPORT_SYMBOL(drm_edid_header_is_valid);
1773 
1774 static int edid_fixup __read_mostly = 6;
1775 module_param_named(edid_fixup, edid_fixup, int, 0400);
1776 MODULE_PARM_DESC(edid_fixup,
1777 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1778 
1779 static int edid_block_compute_checksum(const void *_block)
1780 {
1781 	const u8 *block = _block;
1782 	int i;
1783 	u8 csum = 0, crc = 0;
1784 
1785 	for (i = 0; i < EDID_LENGTH - 1; i++)
1786 		csum += block[i];
1787 
1788 	crc = 0x100 - csum;
1789 
1790 	return crc;
1791 }
1792 
1793 static int edid_block_get_checksum(const void *_block)
1794 {
1795 	const struct edid *block = _block;
1796 
1797 	return block->checksum;
1798 }
1799 
1800 static int edid_block_tag(const void *_block)
1801 {
1802 	const u8 *block = _block;
1803 
1804 	return block[0];
1805 }
1806 
1807 static bool edid_block_is_zero(const void *edid)
1808 {
1809 	return !memchr_inv(edid, 0, EDID_LENGTH);
1810 }
1811 
1812 /**
1813  * drm_edid_are_equal - compare two edid blobs.
1814  * @edid1: pointer to first blob
1815  * @edid2: pointer to second blob
1816  * This helper can be used during probing to determine if
1817  * edid had changed.
1818  */
1819 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1820 {
1821 	int edid1_len, edid2_len;
1822 	bool edid1_present = edid1 != NULL;
1823 	bool edid2_present = edid2 != NULL;
1824 
1825 	if (edid1_present != edid2_present)
1826 		return false;
1827 
1828 	if (edid1) {
1829 		edid1_len = edid_size(edid1);
1830 		edid2_len = edid_size(edid2);
1831 
1832 		if (edid1_len != edid2_len)
1833 			return false;
1834 
1835 		if (memcmp(edid1, edid2, edid1_len))
1836 			return false;
1837 	}
1838 
1839 	return true;
1840 }
1841 EXPORT_SYMBOL(drm_edid_are_equal);
1842 
1843 enum edid_block_status {
1844 	EDID_BLOCK_OK = 0,
1845 	EDID_BLOCK_READ_FAIL,
1846 	EDID_BLOCK_NULL,
1847 	EDID_BLOCK_ZERO,
1848 	EDID_BLOCK_HEADER_CORRUPT,
1849 	EDID_BLOCK_HEADER_REPAIR,
1850 	EDID_BLOCK_HEADER_FIXED,
1851 	EDID_BLOCK_CHECKSUM,
1852 	EDID_BLOCK_VERSION,
1853 };
1854 
1855 static enum edid_block_status edid_block_check(const void *_block,
1856 					       bool is_base_block)
1857 {
1858 	const struct edid *block = _block;
1859 
1860 	if (!block)
1861 		return EDID_BLOCK_NULL;
1862 
1863 	if (is_base_block) {
1864 		int score = drm_edid_header_is_valid(block);
1865 
1866 		if (score < clamp(edid_fixup, 0, 8)) {
1867 			if (edid_block_is_zero(block))
1868 				return EDID_BLOCK_ZERO;
1869 			else
1870 				return EDID_BLOCK_HEADER_CORRUPT;
1871 		}
1872 
1873 		if (score < 8)
1874 			return EDID_BLOCK_HEADER_REPAIR;
1875 	}
1876 
1877 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1878 		if (edid_block_is_zero(block))
1879 			return EDID_BLOCK_ZERO;
1880 		else
1881 			return EDID_BLOCK_CHECKSUM;
1882 	}
1883 
1884 	if (is_base_block) {
1885 		if (block->version != 1)
1886 			return EDID_BLOCK_VERSION;
1887 	}
1888 
1889 	return EDID_BLOCK_OK;
1890 }
1891 
1892 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1893 {
1894 	return status == EDID_BLOCK_OK ||
1895 		status == EDID_BLOCK_HEADER_FIXED ||
1896 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1897 }
1898 
1899 static bool edid_block_valid(const void *block, bool base)
1900 {
1901 	return edid_block_status_valid(edid_block_check(block, base),
1902 				       edid_block_tag(block));
1903 }
1904 
1905 static void edid_block_status_print(enum edid_block_status status,
1906 				    const struct edid *block,
1907 				    int block_num)
1908 {
1909 	switch (status) {
1910 	case EDID_BLOCK_OK:
1911 		break;
1912 	case EDID_BLOCK_READ_FAIL:
1913 		pr_debug("EDID block %d read failed\n", block_num);
1914 		break;
1915 	case EDID_BLOCK_NULL:
1916 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1917 		break;
1918 	case EDID_BLOCK_ZERO:
1919 		pr_notice("EDID block %d is all zeroes\n", block_num);
1920 		break;
1921 	case EDID_BLOCK_HEADER_CORRUPT:
1922 		pr_notice("EDID has corrupt header\n");
1923 		break;
1924 	case EDID_BLOCK_HEADER_REPAIR:
1925 		pr_debug("EDID corrupt header needs repair\n");
1926 		break;
1927 	case EDID_BLOCK_HEADER_FIXED:
1928 		pr_debug("EDID corrupt header fixed\n");
1929 		break;
1930 	case EDID_BLOCK_CHECKSUM:
1931 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1932 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1933 				 block_num, edid_block_tag(block),
1934 				 edid_block_compute_checksum(block));
1935 		} else {
1936 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1937 				  block_num, edid_block_tag(block),
1938 				  edid_block_compute_checksum(block));
1939 		}
1940 		break;
1941 	case EDID_BLOCK_VERSION:
1942 		pr_notice("EDID has major version %d, instead of 1\n",
1943 			  block->version);
1944 		break;
1945 	default:
1946 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1947 		     block_num, status);
1948 		break;
1949 	}
1950 }
1951 
1952 static void edid_block_dump(const char *level, const void *block, int block_num)
1953 {
1954 	enum edid_block_status status;
1955 	char prefix[20];
1956 
1957 	status = edid_block_check(block, block_num == 0);
1958 	if (status == EDID_BLOCK_ZERO)
1959 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1960 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1961 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1962 	else
1963 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1964 
1965 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1966 		       block, EDID_LENGTH, false);
1967 }
1968 
1969 /**
1970  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1971  * @_block: pointer to raw EDID block
1972  * @block_num: type of block to validate (0 for base, extension otherwise)
1973  * @print_bad_edid: if true, dump bad EDID blocks to the console
1974  * @edid_corrupt: if true, the header or checksum is invalid
1975  *
1976  * Validate a base or extension EDID block and optionally dump bad blocks to
1977  * the console.
1978  *
1979  * Return: True if the block is valid, false otherwise.
1980  */
1981 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1982 			  bool *edid_corrupt)
1983 {
1984 	struct edid *block = (struct edid *)_block;
1985 	enum edid_block_status status;
1986 	bool is_base_block = block_num == 0;
1987 	bool valid;
1988 
1989 	if (WARN_ON(!block))
1990 		return false;
1991 
1992 	status = edid_block_check(block, is_base_block);
1993 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1994 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1995 		edid_header_fix(block);
1996 
1997 		/* Retry with fixed header, update status if that worked. */
1998 		status = edid_block_check(block, is_base_block);
1999 		if (status == EDID_BLOCK_OK)
2000 			status = EDID_BLOCK_HEADER_FIXED;
2001 	}
2002 
2003 	if (edid_corrupt) {
2004 		/*
2005 		 * Unknown major version isn't corrupt but we can't use it. Only
2006 		 * the base block can reset edid_corrupt to false.
2007 		 */
2008 		if (is_base_block &&
2009 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2010 			*edid_corrupt = false;
2011 		else if (status != EDID_BLOCK_OK)
2012 			*edid_corrupt = true;
2013 	}
2014 
2015 	edid_block_status_print(status, block, block_num);
2016 
2017 	/* Determine whether we can use this block with this status. */
2018 	valid = edid_block_status_valid(status, edid_block_tag(block));
2019 
2020 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2021 		pr_notice("Raw EDID:\n");
2022 		edid_block_dump(KERN_NOTICE, block, block_num);
2023 	}
2024 
2025 	return valid;
2026 }
2027 EXPORT_SYMBOL(drm_edid_block_valid);
2028 
2029 /**
2030  * drm_edid_is_valid - sanity check EDID data
2031  * @edid: EDID data
2032  *
2033  * Sanity-check an entire EDID record (including extensions)
2034  *
2035  * Return: True if the EDID data is valid, false otherwise.
2036  */
2037 bool drm_edid_is_valid(struct edid *edid)
2038 {
2039 	int i;
2040 
2041 	if (!edid)
2042 		return false;
2043 
2044 	for (i = 0; i < edid_block_count(edid); i++) {
2045 		void *block = (void *)edid_block_data(edid, i);
2046 
2047 		if (!drm_edid_block_valid(block, i, true, NULL))
2048 			return false;
2049 	}
2050 
2051 	return true;
2052 }
2053 EXPORT_SYMBOL(drm_edid_is_valid);
2054 
2055 /**
2056  * drm_edid_valid - sanity check EDID data
2057  * @drm_edid: EDID data
2058  *
2059  * Sanity check an EDID. Cross check block count against allocated size and
2060  * checksum the blocks.
2061  *
2062  * Return: True if the EDID data is valid, false otherwise.
2063  */
2064 bool drm_edid_valid(const struct drm_edid *drm_edid)
2065 {
2066 	int i;
2067 
2068 	if (!drm_edid)
2069 		return false;
2070 
2071 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2072 		return false;
2073 
2074 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2075 		const void *block = drm_edid_block_data(drm_edid, i);
2076 
2077 		if (!edid_block_valid(block, i == 0))
2078 			return false;
2079 	}
2080 
2081 	return true;
2082 }
2083 EXPORT_SYMBOL(drm_edid_valid);
2084 
2085 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2086 					       size_t *alloc_size)
2087 {
2088 	struct edid *new;
2089 	int i, valid_blocks = 0;
2090 
2091 	/*
2092 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2093 	 * back to regular extension count here. We don't want to start
2094 	 * modifying the HF-EEODB extension too.
2095 	 */
2096 	for (i = 0; i < edid_block_count(edid); i++) {
2097 		const void *src_block = edid_block_data(edid, i);
2098 
2099 		if (edid_block_valid(src_block, i == 0)) {
2100 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2101 
2102 			memmove(dst_block, src_block, EDID_LENGTH);
2103 			valid_blocks++;
2104 		}
2105 	}
2106 
2107 	/* We already trusted the base block to be valid here... */
2108 	if (WARN_ON(!valid_blocks)) {
2109 		kfree(edid);
2110 		return NULL;
2111 	}
2112 
2113 	edid->extensions = valid_blocks - 1;
2114 	edid->checksum = edid_block_compute_checksum(edid);
2115 
2116 	*alloc_size = edid_size_by_blocks(valid_blocks);
2117 
2118 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2119 	if (!new)
2120 		kfree(edid);
2121 
2122 	return new;
2123 }
2124 
2125 #define DDC_SEGMENT_ADDR 0x30
2126 /**
2127  * drm_do_probe_ddc_edid() - get EDID information via I2C
2128  * @data: I2C device adapter
2129  * @buf: EDID data buffer to be filled
2130  * @block: 128 byte EDID block to start fetching from
2131  * @len: EDID data buffer length to fetch
2132  *
2133  * Try to fetch EDID information by calling I2C driver functions.
2134  *
2135  * Return: 0 on success or -1 on failure.
2136  */
2137 static int
2138 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2139 {
2140 	struct i2c_adapter *adapter = data;
2141 	unsigned char start = block * EDID_LENGTH;
2142 	unsigned char segment = block >> 1;
2143 	unsigned char xfers = segment ? 3 : 2;
2144 	int ret, retries = 5;
2145 
2146 	/*
2147 	 * The core I2C driver will automatically retry the transfer if the
2148 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2149 	 * are susceptible to errors under a heavily loaded machine and
2150 	 * generate spurious NAKs and timeouts. Retrying the transfer
2151 	 * of the individual block a few times seems to overcome this.
2152 	 */
2153 	do {
2154 		struct i2c_msg msgs[] = {
2155 			{
2156 				.addr	= DDC_SEGMENT_ADDR,
2157 				.flags	= 0,
2158 				.len	= 1,
2159 				.buf	= &segment,
2160 			}, {
2161 				.addr	= DDC_ADDR,
2162 				.flags	= 0,
2163 				.len	= 1,
2164 				.buf	= &start,
2165 			}, {
2166 				.addr	= DDC_ADDR,
2167 				.flags	= I2C_M_RD,
2168 				.len	= len,
2169 				.buf	= buf,
2170 			}
2171 		};
2172 
2173 		/*
2174 		 * Avoid sending the segment addr to not upset non-compliant
2175 		 * DDC monitors.
2176 		 */
2177 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2178 
2179 		if (ret == -ENXIO) {
2180 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2181 					adapter->name);
2182 			break;
2183 		}
2184 	} while (ret != xfers && --retries);
2185 
2186 	return ret == xfers ? 0 : -1;
2187 }
2188 
2189 static void connector_bad_edid(struct drm_connector *connector,
2190 			       const struct edid *edid, int num_blocks)
2191 {
2192 	int i;
2193 	u8 last_block;
2194 
2195 	/*
2196 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2197 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2198 	 * of 0x7e in the EDID of the _index_ of the last block in the
2199 	 * combined chunk of memory.
2200 	 */
2201 	last_block = edid->extensions;
2202 
2203 	/* Calculate real checksum for the last edid extension block data */
2204 	if (last_block < num_blocks)
2205 		connector->real_edid_checksum =
2206 			edid_block_compute_checksum(edid + last_block);
2207 
2208 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2209 		return;
2210 
2211 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2212 		    connector->base.id, connector->name);
2213 	for (i = 0; i < num_blocks; i++)
2214 		edid_block_dump(KERN_DEBUG, edid + i, i);
2215 }
2216 
2217 /* Get override or firmware EDID */
2218 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2219 {
2220 	const struct drm_edid *override = NULL;
2221 
2222 	mutex_lock(&connector->edid_override_mutex);
2223 
2224 	if (connector->edid_override)
2225 		override = drm_edid_dup(connector->edid_override);
2226 
2227 	mutex_unlock(&connector->edid_override_mutex);
2228 
2229 	if (!override)
2230 		override = drm_edid_load_firmware(connector);
2231 
2232 	return IS_ERR(override) ? NULL : override;
2233 }
2234 
2235 /* For debugfs edid_override implementation */
2236 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2237 {
2238 	const struct drm_edid *drm_edid;
2239 
2240 	mutex_lock(&connector->edid_override_mutex);
2241 
2242 	drm_edid = connector->edid_override;
2243 	if (drm_edid)
2244 		seq_write(m, drm_edid->edid, drm_edid->size);
2245 
2246 	mutex_unlock(&connector->edid_override_mutex);
2247 
2248 	return 0;
2249 }
2250 
2251 /* For debugfs edid_override implementation */
2252 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2253 			  size_t size)
2254 {
2255 	const struct drm_edid *drm_edid;
2256 
2257 	drm_edid = drm_edid_alloc(edid, size);
2258 	if (!drm_edid_valid(drm_edid)) {
2259 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2260 			    connector->base.id, connector->name);
2261 		drm_edid_free(drm_edid);
2262 		return -EINVAL;
2263 	}
2264 
2265 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2266 		    connector->base.id, connector->name);
2267 
2268 	mutex_lock(&connector->edid_override_mutex);
2269 
2270 	drm_edid_free(connector->edid_override);
2271 	connector->edid_override = drm_edid;
2272 
2273 	mutex_unlock(&connector->edid_override_mutex);
2274 
2275 	return 0;
2276 }
2277 
2278 /* For debugfs edid_override implementation */
2279 int drm_edid_override_reset(struct drm_connector *connector)
2280 {
2281 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2282 		    connector->base.id, connector->name);
2283 
2284 	mutex_lock(&connector->edid_override_mutex);
2285 
2286 	drm_edid_free(connector->edid_override);
2287 	connector->edid_override = NULL;
2288 
2289 	mutex_unlock(&connector->edid_override_mutex);
2290 
2291 	return 0;
2292 }
2293 
2294 /**
2295  * drm_edid_override_connector_update - add modes from override/firmware EDID
2296  * @connector: connector we're probing
2297  *
2298  * Add modes from the override/firmware EDID, if available. Only to be used from
2299  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2300  * failed during drm_get_edid() and caused the override/firmware EDID to be
2301  * skipped.
2302  *
2303  * Return: The number of modes added or 0 if we couldn't find any.
2304  */
2305 int drm_edid_override_connector_update(struct drm_connector *connector)
2306 {
2307 	const struct drm_edid *override;
2308 	int num_modes = 0;
2309 
2310 	override = drm_edid_override_get(connector);
2311 	if (override) {
2312 		num_modes = drm_edid_connector_update(connector, override);
2313 
2314 		drm_edid_free(override);
2315 
2316 		drm_dbg_kms(connector->dev,
2317 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2318 			    connector->base.id, connector->name, num_modes);
2319 	}
2320 
2321 	return num_modes;
2322 }
2323 EXPORT_SYMBOL(drm_edid_override_connector_update);
2324 
2325 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2326 
2327 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2328 					      read_block_fn read_block,
2329 					      void *context)
2330 {
2331 	enum edid_block_status status;
2332 	bool is_base_block = block_num == 0;
2333 	int try;
2334 
2335 	for (try = 0; try < 4; try++) {
2336 		if (read_block(context, block, block_num, EDID_LENGTH))
2337 			return EDID_BLOCK_READ_FAIL;
2338 
2339 		status = edid_block_check(block, is_base_block);
2340 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2341 			edid_header_fix(block);
2342 
2343 			/* Retry with fixed header, update status if that worked. */
2344 			status = edid_block_check(block, is_base_block);
2345 			if (status == EDID_BLOCK_OK)
2346 				status = EDID_BLOCK_HEADER_FIXED;
2347 		}
2348 
2349 		if (edid_block_status_valid(status, edid_block_tag(block)))
2350 			break;
2351 
2352 		/* Fail early for unrepairable base block all zeros. */
2353 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2354 			break;
2355 	}
2356 
2357 	return status;
2358 }
2359 
2360 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2361 				     read_block_fn read_block, void *context,
2362 				     size_t *size)
2363 {
2364 	enum edid_block_status status;
2365 	int i, num_blocks, invalid_blocks = 0;
2366 	const struct drm_edid *override;
2367 	struct edid *edid, *new;
2368 	size_t alloc_size = EDID_LENGTH;
2369 
2370 	override = drm_edid_override_get(connector);
2371 	if (override) {
2372 		alloc_size = override->size;
2373 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2374 		drm_edid_free(override);
2375 		if (!edid)
2376 			return NULL;
2377 		goto ok;
2378 	}
2379 
2380 	edid = kmalloc(alloc_size, GFP_KERNEL);
2381 	if (!edid)
2382 		return NULL;
2383 
2384 	status = edid_block_read(edid, 0, read_block, context);
2385 
2386 	edid_block_status_print(status, edid, 0);
2387 
2388 	if (status == EDID_BLOCK_READ_FAIL)
2389 		goto fail;
2390 
2391 	/* FIXME: Clarify what a corrupt EDID actually means. */
2392 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2393 		connector->edid_corrupt = false;
2394 	else
2395 		connector->edid_corrupt = true;
2396 
2397 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2398 		if (status == EDID_BLOCK_ZERO)
2399 			connector->null_edid_counter++;
2400 
2401 		connector_bad_edid(connector, edid, 1);
2402 		goto fail;
2403 	}
2404 
2405 	if (!edid_extension_block_count(edid))
2406 		goto ok;
2407 
2408 	alloc_size = edid_size(edid);
2409 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2410 	if (!new)
2411 		goto fail;
2412 	edid = new;
2413 
2414 	num_blocks = edid_block_count(edid);
2415 	for (i = 1; i < num_blocks; i++) {
2416 		void *block = (void *)edid_block_data(edid, i);
2417 
2418 		status = edid_block_read(block, i, read_block, context);
2419 
2420 		edid_block_status_print(status, block, i);
2421 
2422 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2423 			if (status == EDID_BLOCK_READ_FAIL)
2424 				goto fail;
2425 			invalid_blocks++;
2426 		} else if (i == 1) {
2427 			/*
2428 			 * If the first EDID extension is a CTA extension, and
2429 			 * the first Data Block is HF-EEODB, override the
2430 			 * extension block count.
2431 			 *
2432 			 * Note: HF-EEODB could specify a smaller extension
2433 			 * count too, but we can't risk allocating a smaller
2434 			 * amount.
2435 			 */
2436 			int eeodb = edid_hfeeodb_block_count(edid);
2437 
2438 			if (eeodb > num_blocks) {
2439 				num_blocks = eeodb;
2440 				alloc_size = edid_size_by_blocks(num_blocks);
2441 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2442 				if (!new)
2443 					goto fail;
2444 				edid = new;
2445 			}
2446 		}
2447 	}
2448 
2449 	if (invalid_blocks) {
2450 		connector_bad_edid(connector, edid, num_blocks);
2451 
2452 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2453 	}
2454 
2455 ok:
2456 	if (size)
2457 		*size = alloc_size;
2458 
2459 	return edid;
2460 
2461 fail:
2462 	kfree(edid);
2463 	return NULL;
2464 }
2465 
2466 /**
2467  * drm_do_get_edid - get EDID data using a custom EDID block read function
2468  * @connector: connector we're probing
2469  * @read_block: EDID block read function
2470  * @context: private data passed to the block read function
2471  *
2472  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2473  * exposes a different interface to read EDID blocks this function can be used
2474  * to get EDID data using a custom block read function.
2475  *
2476  * As in the general case the DDC bus is accessible by the kernel at the I2C
2477  * level, drivers must make all reasonable efforts to expose it as an I2C
2478  * adapter and use drm_get_edid() instead of abusing this function.
2479  *
2480  * The EDID may be overridden using debugfs override_edid or firmware EDID
2481  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2482  * order. Having either of them bypasses actual EDID reads.
2483  *
2484  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2485  */
2486 struct edid *drm_do_get_edid(struct drm_connector *connector,
2487 			     read_block_fn read_block,
2488 			     void *context)
2489 {
2490 	return _drm_do_get_edid(connector, read_block, context, NULL);
2491 }
2492 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2493 
2494 /**
2495  * drm_edid_raw - Get a pointer to the raw EDID data.
2496  * @drm_edid: drm_edid container
2497  *
2498  * Get a pointer to the raw EDID data.
2499  *
2500  * This is for transition only. Avoid using this like the plague.
2501  *
2502  * Return: Pointer to raw EDID data.
2503  */
2504 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2505 {
2506 	if (!drm_edid || !drm_edid->size)
2507 		return NULL;
2508 
2509 	/*
2510 	 * Do not return pointers where relying on EDID extension count would
2511 	 * lead to buffer overflow.
2512 	 */
2513 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2514 		return NULL;
2515 
2516 	return drm_edid->edid;
2517 }
2518 EXPORT_SYMBOL(drm_edid_raw);
2519 
2520 /* Allocate struct drm_edid container *without* duplicating the edid data */
2521 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2522 {
2523 	struct drm_edid *drm_edid;
2524 
2525 	if (!edid || !size || size < EDID_LENGTH)
2526 		return NULL;
2527 
2528 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2529 	if (drm_edid) {
2530 		drm_edid->edid = edid;
2531 		drm_edid->size = size;
2532 	}
2533 
2534 	return drm_edid;
2535 }
2536 
2537 /**
2538  * drm_edid_alloc - Allocate a new drm_edid container
2539  * @edid: Pointer to raw EDID data
2540  * @size: Size of memory allocated for EDID
2541  *
2542  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2543  * the actual size that has been allocated for the data. There is no validation
2544  * of the raw EDID data against the size, but at least the EDID base block must
2545  * fit in the buffer.
2546  *
2547  * The returned pointer must be freed using drm_edid_free().
2548  *
2549  * Return: drm_edid container, or NULL on errors
2550  */
2551 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2552 {
2553 	const struct drm_edid *drm_edid;
2554 
2555 	if (!edid || !size || size < EDID_LENGTH)
2556 		return NULL;
2557 
2558 	edid = kmemdup(edid, size, GFP_KERNEL);
2559 	if (!edid)
2560 		return NULL;
2561 
2562 	drm_edid = _drm_edid_alloc(edid, size);
2563 	if (!drm_edid)
2564 		kfree(edid);
2565 
2566 	return drm_edid;
2567 }
2568 EXPORT_SYMBOL(drm_edid_alloc);
2569 
2570 /**
2571  * drm_edid_dup - Duplicate a drm_edid container
2572  * @drm_edid: EDID to duplicate
2573  *
2574  * The returned pointer must be freed using drm_edid_free().
2575  *
2576  * Returns: drm_edid container copy, or NULL on errors
2577  */
2578 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2579 {
2580 	if (!drm_edid)
2581 		return NULL;
2582 
2583 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2584 }
2585 EXPORT_SYMBOL(drm_edid_dup);
2586 
2587 /**
2588  * drm_edid_free - Free the drm_edid container
2589  * @drm_edid: EDID to free
2590  */
2591 void drm_edid_free(const struct drm_edid *drm_edid)
2592 {
2593 	if (!drm_edid)
2594 		return;
2595 
2596 	kfree(drm_edid->edid);
2597 	kfree(drm_edid);
2598 }
2599 EXPORT_SYMBOL(drm_edid_free);
2600 
2601 /**
2602  * drm_probe_ddc() - probe DDC presence
2603  * @adapter: I2C adapter to probe
2604  *
2605  * Return: True on success, false on failure.
2606  */
2607 bool
2608 drm_probe_ddc(struct i2c_adapter *adapter)
2609 {
2610 	unsigned char out;
2611 
2612 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2613 }
2614 EXPORT_SYMBOL(drm_probe_ddc);
2615 
2616 /**
2617  * drm_get_edid - get EDID data, if available
2618  * @connector: connector we're probing
2619  * @adapter: I2C adapter to use for DDC
2620  *
2621  * Poke the given I2C channel to grab EDID data if possible.  If found,
2622  * attach it to the connector.
2623  *
2624  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2625  */
2626 struct edid *drm_get_edid(struct drm_connector *connector,
2627 			  struct i2c_adapter *adapter)
2628 {
2629 	struct edid *edid;
2630 
2631 	if (connector->force == DRM_FORCE_OFF)
2632 		return NULL;
2633 
2634 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2635 		return NULL;
2636 
2637 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2638 	drm_connector_update_edid_property(connector, edid);
2639 	return edid;
2640 }
2641 EXPORT_SYMBOL(drm_get_edid);
2642 
2643 /**
2644  * drm_edid_read_custom - Read EDID data using given EDID block read function
2645  * @connector: Connector to use
2646  * @read_block: EDID block read function
2647  * @context: Private data passed to the block read function
2648  *
2649  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2650  * exposes a different interface to read EDID blocks this function can be used
2651  * to get EDID data using a custom block read function.
2652  *
2653  * As in the general case the DDC bus is accessible by the kernel at the I2C
2654  * level, drivers must make all reasonable efforts to expose it as an I2C
2655  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2656  * this function.
2657  *
2658  * The EDID may be overridden using debugfs override_edid or firmware EDID
2659  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2660  * order. Having either of them bypasses actual EDID reads.
2661  *
2662  * The returned pointer must be freed using drm_edid_free().
2663  *
2664  * Return: Pointer to EDID, or NULL if probe/read failed.
2665  */
2666 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2667 					    read_block_fn read_block,
2668 					    void *context)
2669 {
2670 	const struct drm_edid *drm_edid;
2671 	struct edid *edid;
2672 	size_t size = 0;
2673 
2674 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2675 	if (!edid)
2676 		return NULL;
2677 
2678 	/* Sanity check for now */
2679 	drm_WARN_ON(connector->dev, !size);
2680 
2681 	drm_edid = _drm_edid_alloc(edid, size);
2682 	if (!drm_edid)
2683 		kfree(edid);
2684 
2685 	return drm_edid;
2686 }
2687 EXPORT_SYMBOL(drm_edid_read_custom);
2688 
2689 /**
2690  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2691  * @connector: Connector to use
2692  * @adapter: I2C adapter to use for DDC
2693  *
2694  * Read EDID using the given I2C adapter.
2695  *
2696  * The EDID may be overridden using debugfs override_edid or firmware EDID
2697  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2698  * order. Having either of them bypasses actual EDID reads.
2699  *
2700  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2701  * using drm_edid_read() instead of this function.
2702  *
2703  * The returned pointer must be freed using drm_edid_free().
2704  *
2705  * Return: Pointer to EDID, or NULL if probe/read failed.
2706  */
2707 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2708 					 struct i2c_adapter *adapter)
2709 {
2710 	const struct drm_edid *drm_edid;
2711 
2712 	if (connector->force == DRM_FORCE_OFF)
2713 		return NULL;
2714 
2715 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2716 		return NULL;
2717 
2718 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2719 
2720 	/* Note: Do *not* call connector updates here. */
2721 
2722 	return drm_edid;
2723 }
2724 EXPORT_SYMBOL(drm_edid_read_ddc);
2725 
2726 /**
2727  * drm_edid_read - Read EDID data using connector's I2C adapter
2728  * @connector: Connector to use
2729  *
2730  * Read EDID using the connector's I2C adapter.
2731  *
2732  * The EDID may be overridden using debugfs override_edid or firmware EDID
2733  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2734  * order. Having either of them bypasses actual EDID reads.
2735  *
2736  * The returned pointer must be freed using drm_edid_free().
2737  *
2738  * Return: Pointer to EDID, or NULL if probe/read failed.
2739  */
2740 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2741 {
2742 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2743 		return NULL;
2744 
2745 	return drm_edid_read_ddc(connector, connector->ddc);
2746 }
2747 EXPORT_SYMBOL(drm_edid_read);
2748 
2749 static u32 edid_extract_panel_id(const struct edid *edid)
2750 {
2751 	/*
2752 	 * We represent the ID as a 32-bit number so it can easily be compared
2753 	 * with "==".
2754 	 *
2755 	 * NOTE that we deal with endianness differently for the top half
2756 	 * of this ID than for the bottom half. The bottom half (the product
2757 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2758 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2759 	 * gets stored as big endian because that makes
2760 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2761 	 * to write (it's easier to extract the ASCII). It doesn't really
2762 	 * matter, though, as long as the number here is unique.
2763 	 */
2764 	return (u32)edid->mfg_id[0] << 24   |
2765 	       (u32)edid->mfg_id[1] << 16   |
2766 	       (u32)EDID_PRODUCT_ID(edid);
2767 }
2768 
2769 /**
2770  * drm_edid_get_panel_id - Get a panel's ID through DDC
2771  * @adapter: I2C adapter to use for DDC
2772  *
2773  * This function reads the first block of the EDID of a panel and (assuming
2774  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2775  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2776  * supposed to be different for each different modem of panel.
2777  *
2778  * This function is intended to be used during early probing on devices where
2779  * more than one panel might be present. Because of its intended use it must
2780  * assume that the EDID of the panel is correct, at least as far as the ID
2781  * is concerned (in other words, we don't process any overrides here).
2782  *
2783  * NOTE: it's expected that this function and drm_do_get_edid() will both
2784  * be read the EDID, but there is no caching between them. Since we're only
2785  * reading the first block, hopefully this extra overhead won't be too big.
2786  *
2787  * Return: A 32-bit ID that should be different for each make/model of panel.
2788  *         See the functions drm_edid_encode_panel_id() and
2789  *         drm_edid_decode_panel_id() for some details on the structure of this
2790  *         ID.
2791  */
2792 
2793 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2794 {
2795 	enum edid_block_status status;
2796 	void *base_block;
2797 	u32 panel_id = 0;
2798 
2799 	/*
2800 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2801 	 * the EDID then we'll just return 0.
2802 	 */
2803 
2804 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2805 	if (!base_block)
2806 		return 0;
2807 
2808 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2809 
2810 	edid_block_status_print(status, base_block, 0);
2811 
2812 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2813 		panel_id = edid_extract_panel_id(base_block);
2814 	else
2815 		edid_block_dump(KERN_NOTICE, base_block, 0);
2816 
2817 	kfree(base_block);
2818 
2819 	return panel_id;
2820 }
2821 EXPORT_SYMBOL(drm_edid_get_panel_id);
2822 
2823 /**
2824  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2825  * @connector: connector we're probing
2826  * @adapter: I2C adapter to use for DDC
2827  *
2828  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2829  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2830  * switch DDC to the GPU which is retrieving EDID.
2831  *
2832  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2833  */
2834 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2835 				     struct i2c_adapter *adapter)
2836 {
2837 	struct drm_device *dev = connector->dev;
2838 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2839 	struct edid *edid;
2840 
2841 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2842 		return NULL;
2843 
2844 	vga_switcheroo_lock_ddc(pdev);
2845 	edid = drm_get_edid(connector, adapter);
2846 	vga_switcheroo_unlock_ddc(pdev);
2847 
2848 	return edid;
2849 }
2850 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2851 
2852 /**
2853  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2854  * @connector: connector we're probing
2855  * @adapter: I2C adapter to use for DDC
2856  *
2857  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2858  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2859  * temporarily switch DDC to the GPU which is retrieving EDID.
2860  *
2861  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2862  */
2863 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2864 						struct i2c_adapter *adapter)
2865 {
2866 	struct drm_device *dev = connector->dev;
2867 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2868 	const struct drm_edid *drm_edid;
2869 
2870 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2871 		return NULL;
2872 
2873 	vga_switcheroo_lock_ddc(pdev);
2874 	drm_edid = drm_edid_read_ddc(connector, adapter);
2875 	vga_switcheroo_unlock_ddc(pdev);
2876 
2877 	return drm_edid;
2878 }
2879 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2880 
2881 /**
2882  * drm_edid_duplicate - duplicate an EDID and the extensions
2883  * @edid: EDID to duplicate
2884  *
2885  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2886  */
2887 struct edid *drm_edid_duplicate(const struct edid *edid)
2888 {
2889 	if (!edid)
2890 		return NULL;
2891 
2892 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2893 }
2894 EXPORT_SYMBOL(drm_edid_duplicate);
2895 
2896 /*** EDID parsing ***/
2897 
2898 /**
2899  * edid_get_quirks - return quirk flags for a given EDID
2900  * @drm_edid: EDID to process
2901  *
2902  * This tells subsequent routines what fixes they need to apply.
2903  */
2904 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2905 {
2906 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2907 	const struct edid_quirk *quirk;
2908 	int i;
2909 
2910 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2911 		quirk = &edid_quirk_list[i];
2912 		if (quirk->panel_id == panel_id)
2913 			return quirk->quirks;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2920 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2921 
2922 /*
2923  * Walk the mode list for connector, clearing the preferred status on existing
2924  * modes and setting it anew for the right mode ala quirks.
2925  */
2926 static void edid_fixup_preferred(struct drm_connector *connector)
2927 {
2928 	const struct drm_display_info *info = &connector->display_info;
2929 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2930 	int target_refresh = 0;
2931 	int cur_vrefresh, preferred_vrefresh;
2932 
2933 	if (list_empty(&connector->probed_modes))
2934 		return;
2935 
2936 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2937 		target_refresh = 60;
2938 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2939 		target_refresh = 75;
2940 
2941 	preferred_mode = list_first_entry(&connector->probed_modes,
2942 					  struct drm_display_mode, head);
2943 
2944 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2945 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2946 
2947 		if (cur_mode == preferred_mode)
2948 			continue;
2949 
2950 		/* Largest mode is preferred */
2951 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2952 			preferred_mode = cur_mode;
2953 
2954 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2955 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2956 		/* At a given size, try to get closest to target refresh */
2957 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2958 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2959 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2960 			preferred_mode = cur_mode;
2961 		}
2962 	}
2963 
2964 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2965 }
2966 
2967 static bool
2968 mode_is_rb(const struct drm_display_mode *mode)
2969 {
2970 	return (mode->htotal - mode->hdisplay == 160) &&
2971 	       (mode->hsync_end - mode->hdisplay == 80) &&
2972 	       (mode->hsync_end - mode->hsync_start == 32) &&
2973 	       (mode->vsync_start - mode->vdisplay == 3);
2974 }
2975 
2976 /*
2977  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2978  * @dev: Device to duplicate against
2979  * @hsize: Mode width
2980  * @vsize: Mode height
2981  * @fresh: Mode refresh rate
2982  * @rb: Mode reduced-blanking-ness
2983  *
2984  * Walk the DMT mode list looking for a match for the given parameters.
2985  *
2986  * Return: A newly allocated copy of the mode, or NULL if not found.
2987  */
2988 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2989 					   int hsize, int vsize, int fresh,
2990 					   bool rb)
2991 {
2992 	int i;
2993 
2994 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2995 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2996 
2997 		if (hsize != ptr->hdisplay)
2998 			continue;
2999 		if (vsize != ptr->vdisplay)
3000 			continue;
3001 		if (fresh != drm_mode_vrefresh(ptr))
3002 			continue;
3003 		if (rb != mode_is_rb(ptr))
3004 			continue;
3005 
3006 		return drm_mode_duplicate(dev, ptr);
3007 	}
3008 
3009 	return NULL;
3010 }
3011 EXPORT_SYMBOL(drm_mode_find_dmt);
3012 
3013 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3014 {
3015 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3016 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3017 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3018 
3019 	return descriptor->pixel_clock == 0 &&
3020 		descriptor->data.other_data.pad1 == 0 &&
3021 		descriptor->data.other_data.type == type;
3022 }
3023 
3024 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3025 {
3026 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3027 
3028 	return descriptor->pixel_clock != 0;
3029 }
3030 
3031 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3032 
3033 static void
3034 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3035 {
3036 	int i, n;
3037 	u8 d = ext[0x02];
3038 	const u8 *det_base = ext + d;
3039 
3040 	if (d < 4 || d > 127)
3041 		return;
3042 
3043 	n = (127 - d) / 18;
3044 	for (i = 0; i < n; i++)
3045 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3046 }
3047 
3048 static void
3049 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3050 {
3051 	unsigned int i, n = min((int)ext[0x02], 6);
3052 	const u8 *det_base = ext + 5;
3053 
3054 	if (ext[0x01] != 1)
3055 		return; /* unknown version */
3056 
3057 	for (i = 0; i < n; i++)
3058 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3059 }
3060 
3061 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3062 					detailed_cb *cb, void *closure)
3063 {
3064 	struct drm_edid_iter edid_iter;
3065 	const u8 *ext;
3066 	int i;
3067 
3068 	if (!drm_edid)
3069 		return;
3070 
3071 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3072 		cb(&drm_edid->edid->detailed_timings[i], closure);
3073 
3074 	drm_edid_iter_begin(drm_edid, &edid_iter);
3075 	drm_edid_iter_for_each(ext, &edid_iter) {
3076 		switch (*ext) {
3077 		case CEA_EXT:
3078 			cea_for_each_detailed_block(ext, cb, closure);
3079 			break;
3080 		case VTB_EXT:
3081 			vtb_for_each_detailed_block(ext, cb, closure);
3082 			break;
3083 		default:
3084 			break;
3085 		}
3086 	}
3087 	drm_edid_iter_end(&edid_iter);
3088 }
3089 
3090 static void
3091 is_rb(const struct detailed_timing *descriptor, void *data)
3092 {
3093 	bool *res = data;
3094 
3095 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3096 		return;
3097 
3098 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3099 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3100 
3101 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3102 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3103 		*res = true;
3104 }
3105 
3106 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3107 static bool
3108 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3109 {
3110 	if (drm_edid->edid->revision >= 4) {
3111 		bool ret = false;
3112 
3113 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3114 		return ret;
3115 	}
3116 
3117 	return drm_edid_is_digital(drm_edid);
3118 }
3119 
3120 static void
3121 find_gtf2(const struct detailed_timing *descriptor, void *data)
3122 {
3123 	const struct detailed_timing **res = data;
3124 
3125 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3126 		return;
3127 
3128 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3129 
3130 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3131 		*res = descriptor;
3132 }
3133 
3134 /* Secondary GTF curve kicks in above some break frequency */
3135 static int
3136 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3137 {
3138 	const struct detailed_timing *descriptor = NULL;
3139 
3140 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3141 
3142 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3143 
3144 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3145 }
3146 
3147 static int
3148 drm_gtf2_2c(const struct drm_edid *drm_edid)
3149 {
3150 	const struct detailed_timing *descriptor = NULL;
3151 
3152 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3153 
3154 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3155 
3156 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3157 }
3158 
3159 static int
3160 drm_gtf2_m(const struct drm_edid *drm_edid)
3161 {
3162 	const struct detailed_timing *descriptor = NULL;
3163 
3164 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3165 
3166 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3167 
3168 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3169 }
3170 
3171 static int
3172 drm_gtf2_k(const struct drm_edid *drm_edid)
3173 {
3174 	const struct detailed_timing *descriptor = NULL;
3175 
3176 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3177 
3178 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3179 
3180 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3181 }
3182 
3183 static int
3184 drm_gtf2_2j(const struct drm_edid *drm_edid)
3185 {
3186 	const struct detailed_timing *descriptor = NULL;
3187 
3188 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3189 
3190 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3191 
3192 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3193 }
3194 
3195 static void
3196 get_timing_level(const struct detailed_timing *descriptor, void *data)
3197 {
3198 	int *res = data;
3199 
3200 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3201 		return;
3202 
3203 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3204 
3205 	switch (descriptor->data.other_data.data.range.flags) {
3206 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3207 		*res = LEVEL_GTF;
3208 		break;
3209 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3210 		*res = LEVEL_GTF2;
3211 		break;
3212 	case DRM_EDID_CVT_SUPPORT_FLAG:
3213 		*res = LEVEL_CVT;
3214 		break;
3215 	default:
3216 		break;
3217 	}
3218 }
3219 
3220 /* Get standard timing level (CVT/GTF/DMT). */
3221 static int standard_timing_level(const struct drm_edid *drm_edid)
3222 {
3223 	const struct edid *edid = drm_edid->edid;
3224 
3225 	if (edid->revision >= 4) {
3226 		/*
3227 		 * If the range descriptor doesn't
3228 		 * indicate otherwise default to CVT
3229 		 */
3230 		int ret = LEVEL_CVT;
3231 
3232 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3233 
3234 		return ret;
3235 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3236 		return LEVEL_GTF2;
3237 	} else if (edid->revision >= 2) {
3238 		return LEVEL_GTF;
3239 	} else {
3240 		return LEVEL_DMT;
3241 	}
3242 }
3243 
3244 /*
3245  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3246  * monitors fill with ascii space (0x20) instead.
3247  */
3248 static int
3249 bad_std_timing(u8 a, u8 b)
3250 {
3251 	return (a == 0x00 && b == 0x00) ||
3252 	       (a == 0x01 && b == 0x01) ||
3253 	       (a == 0x20 && b == 0x20);
3254 }
3255 
3256 static int drm_mode_hsync(const struct drm_display_mode *mode)
3257 {
3258 	if (mode->htotal <= 0)
3259 		return 0;
3260 
3261 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3262 }
3263 
3264 static struct drm_display_mode *
3265 drm_gtf2_mode(struct drm_device *dev,
3266 	      const struct drm_edid *drm_edid,
3267 	      int hsize, int vsize, int vrefresh_rate)
3268 {
3269 	struct drm_display_mode *mode;
3270 
3271 	/*
3272 	 * This is potentially wrong if there's ever a monitor with
3273 	 * more than one ranges section, each claiming a different
3274 	 * secondary GTF curve.  Please don't do that.
3275 	 */
3276 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3277 	if (!mode)
3278 		return NULL;
3279 
3280 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3281 		drm_mode_destroy(dev, mode);
3282 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3283 					    vrefresh_rate, 0, 0,
3284 					    drm_gtf2_m(drm_edid),
3285 					    drm_gtf2_2c(drm_edid),
3286 					    drm_gtf2_k(drm_edid),
3287 					    drm_gtf2_2j(drm_edid));
3288 	}
3289 
3290 	return mode;
3291 }
3292 
3293 /*
3294  * Take the standard timing params (in this case width, aspect, and refresh)
3295  * and convert them into a real mode using CVT/GTF/DMT.
3296  */
3297 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3298 					     const struct drm_edid *drm_edid,
3299 					     const struct std_timing *t)
3300 {
3301 	struct drm_device *dev = connector->dev;
3302 	struct drm_display_mode *m, *mode = NULL;
3303 	int hsize, vsize;
3304 	int vrefresh_rate;
3305 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3306 		>> EDID_TIMING_ASPECT_SHIFT;
3307 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3308 		>> EDID_TIMING_VFREQ_SHIFT;
3309 	int timing_level = standard_timing_level(drm_edid);
3310 
3311 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3312 		return NULL;
3313 
3314 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3315 	hsize = t->hsize * 8 + 248;
3316 	/* vrefresh_rate = vfreq + 60 */
3317 	vrefresh_rate = vfreq + 60;
3318 	/* the vdisplay is calculated based on the aspect ratio */
3319 	if (aspect_ratio == 0) {
3320 		if (drm_edid->edid->revision < 3)
3321 			vsize = hsize;
3322 		else
3323 			vsize = (hsize * 10) / 16;
3324 	} else if (aspect_ratio == 1)
3325 		vsize = (hsize * 3) / 4;
3326 	else if (aspect_ratio == 2)
3327 		vsize = (hsize * 4) / 5;
3328 	else
3329 		vsize = (hsize * 9) / 16;
3330 
3331 	/* HDTV hack, part 1 */
3332 	if (vrefresh_rate == 60 &&
3333 	    ((hsize == 1360 && vsize == 765) ||
3334 	     (hsize == 1368 && vsize == 769))) {
3335 		hsize = 1366;
3336 		vsize = 768;
3337 	}
3338 
3339 	/*
3340 	 * If this connector already has a mode for this size and refresh
3341 	 * rate (because it came from detailed or CVT info), use that
3342 	 * instead.  This way we don't have to guess at interlace or
3343 	 * reduced blanking.
3344 	 */
3345 	list_for_each_entry(m, &connector->probed_modes, head)
3346 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3347 		    drm_mode_vrefresh(m) == vrefresh_rate)
3348 			return NULL;
3349 
3350 	/* HDTV hack, part 2 */
3351 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3352 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3353 				    false);
3354 		if (!mode)
3355 			return NULL;
3356 		mode->hdisplay = 1366;
3357 		mode->hsync_start = mode->hsync_start - 1;
3358 		mode->hsync_end = mode->hsync_end - 1;
3359 		return mode;
3360 	}
3361 
3362 	/* check whether it can be found in default mode table */
3363 	if (drm_monitor_supports_rb(drm_edid)) {
3364 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3365 					 true);
3366 		if (mode)
3367 			return mode;
3368 	}
3369 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3370 	if (mode)
3371 		return mode;
3372 
3373 	/* okay, generate it */
3374 	switch (timing_level) {
3375 	case LEVEL_DMT:
3376 		break;
3377 	case LEVEL_GTF:
3378 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3379 		break;
3380 	case LEVEL_GTF2:
3381 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3382 		break;
3383 	case LEVEL_CVT:
3384 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3385 				    false);
3386 		break;
3387 	}
3388 	return mode;
3389 }
3390 
3391 /*
3392  * EDID is delightfully ambiguous about how interlaced modes are to be
3393  * encoded.  Our internal representation is of frame height, but some
3394  * HDTV detailed timings are encoded as field height.
3395  *
3396  * The format list here is from CEA, in frame size.  Technically we
3397  * should be checking refresh rate too.  Whatever.
3398  */
3399 static void
3400 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3401 			    const struct detailed_pixel_timing *pt)
3402 {
3403 	int i;
3404 	static const struct {
3405 		int w, h;
3406 	} cea_interlaced[] = {
3407 		{ 1920, 1080 },
3408 		{  720,  480 },
3409 		{ 1440,  480 },
3410 		{ 2880,  480 },
3411 		{  720,  576 },
3412 		{ 1440,  576 },
3413 		{ 2880,  576 },
3414 	};
3415 
3416 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3417 		return;
3418 
3419 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3420 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3421 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3422 			mode->vdisplay *= 2;
3423 			mode->vsync_start *= 2;
3424 			mode->vsync_end *= 2;
3425 			mode->vtotal *= 2;
3426 			mode->vtotal |= 1;
3427 		}
3428 	}
3429 
3430 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3431 }
3432 
3433 /*
3434  * Create a new mode from an EDID detailed timing section. An EDID detailed
3435  * timing block contains enough info for us to create and return a new struct
3436  * drm_display_mode.
3437  */
3438 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3439 						  const struct drm_edid *drm_edid,
3440 						  const struct detailed_timing *timing)
3441 {
3442 	const struct drm_display_info *info = &connector->display_info;
3443 	struct drm_device *dev = connector->dev;
3444 	struct drm_display_mode *mode;
3445 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3446 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3447 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3448 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3449 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3450 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3451 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3452 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3453 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3454 
3455 	/* ignore tiny modes */
3456 	if (hactive < 64 || vactive < 64)
3457 		return NULL;
3458 
3459 	if (pt->misc & DRM_EDID_PT_STEREO) {
3460 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3461 			    connector->base.id, connector->name);
3462 		return NULL;
3463 	}
3464 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3465 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3466 			    connector->base.id, connector->name);
3467 	}
3468 
3469 	/* it is incorrect if hsync/vsync width is zero */
3470 	if (!hsync_pulse_width || !vsync_pulse_width) {
3471 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3472 			    connector->base.id, connector->name);
3473 		return NULL;
3474 	}
3475 
3476 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3477 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3478 		if (!mode)
3479 			return NULL;
3480 
3481 		goto set_size;
3482 	}
3483 
3484 	mode = drm_mode_create(dev);
3485 	if (!mode)
3486 		return NULL;
3487 
3488 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3489 		mode->clock = 1088 * 10;
3490 	else
3491 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3492 
3493 	mode->hdisplay = hactive;
3494 	mode->hsync_start = mode->hdisplay + hsync_offset;
3495 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3496 	mode->htotal = mode->hdisplay + hblank;
3497 
3498 	mode->vdisplay = vactive;
3499 	mode->vsync_start = mode->vdisplay + vsync_offset;
3500 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3501 	mode->vtotal = mode->vdisplay + vblank;
3502 
3503 	/* Some EDIDs have bogus h/vsync_end values */
3504 	if (mode->hsync_end > mode->htotal) {
3505 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3506 			    connector->base.id, connector->name,
3507 			    mode->hsync_end, mode->htotal);
3508 		mode->hsync_end = mode->htotal;
3509 	}
3510 	if (mode->vsync_end > mode->vtotal) {
3511 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3512 			    connector->base.id, connector->name,
3513 			    mode->vsync_end, mode->vtotal);
3514 		mode->vsync_end = mode->vtotal;
3515 	}
3516 
3517 	drm_mode_do_interlace_quirk(mode, pt);
3518 
3519 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3520 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3521 	} else {
3522 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3523 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3524 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3525 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3526 	}
3527 
3528 set_size:
3529 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3530 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3531 
3532 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3533 		mode->width_mm *= 10;
3534 		mode->height_mm *= 10;
3535 	}
3536 
3537 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3538 		mode->width_mm = drm_edid->edid->width_cm * 10;
3539 		mode->height_mm = drm_edid->edid->height_cm * 10;
3540 	}
3541 
3542 	mode->type = DRM_MODE_TYPE_DRIVER;
3543 	drm_mode_set_name(mode);
3544 
3545 	return mode;
3546 }
3547 
3548 static bool
3549 mode_in_hsync_range(const struct drm_display_mode *mode,
3550 		    const struct edid *edid, const u8 *t)
3551 {
3552 	int hsync, hmin, hmax;
3553 
3554 	hmin = t[7];
3555 	if (edid->revision >= 4)
3556 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3557 	hmax = t[8];
3558 	if (edid->revision >= 4)
3559 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3560 	hsync = drm_mode_hsync(mode);
3561 
3562 	return (hsync <= hmax && hsync >= hmin);
3563 }
3564 
3565 static bool
3566 mode_in_vsync_range(const struct drm_display_mode *mode,
3567 		    const struct edid *edid, const u8 *t)
3568 {
3569 	int vsync, vmin, vmax;
3570 
3571 	vmin = t[5];
3572 	if (edid->revision >= 4)
3573 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3574 	vmax = t[6];
3575 	if (edid->revision >= 4)
3576 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3577 	vsync = drm_mode_vrefresh(mode);
3578 
3579 	return (vsync <= vmax && vsync >= vmin);
3580 }
3581 
3582 static u32
3583 range_pixel_clock(const struct edid *edid, const u8 *t)
3584 {
3585 	/* unspecified */
3586 	if (t[9] == 0 || t[9] == 255)
3587 		return 0;
3588 
3589 	/* 1.4 with CVT support gives us real precision, yay */
3590 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3591 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3592 
3593 	/* 1.3 is pathetic, so fuzz up a bit */
3594 	return t[9] * 10000 + 5001;
3595 }
3596 
3597 static bool mode_in_range(const struct drm_display_mode *mode,
3598 			  const struct drm_edid *drm_edid,
3599 			  const struct detailed_timing *timing)
3600 {
3601 	const struct edid *edid = drm_edid->edid;
3602 	u32 max_clock;
3603 	const u8 *t = (const u8 *)timing;
3604 
3605 	if (!mode_in_hsync_range(mode, edid, t))
3606 		return false;
3607 
3608 	if (!mode_in_vsync_range(mode, edid, t))
3609 		return false;
3610 
3611 	if ((max_clock = range_pixel_clock(edid, t)))
3612 		if (mode->clock > max_clock)
3613 			return false;
3614 
3615 	/* 1.4 max horizontal check */
3616 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3617 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3618 			return false;
3619 
3620 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3621 		return false;
3622 
3623 	return true;
3624 }
3625 
3626 static bool valid_inferred_mode(const struct drm_connector *connector,
3627 				const struct drm_display_mode *mode)
3628 {
3629 	const struct drm_display_mode *m;
3630 	bool ok = false;
3631 
3632 	list_for_each_entry(m, &connector->probed_modes, head) {
3633 		if (mode->hdisplay == m->hdisplay &&
3634 		    mode->vdisplay == m->vdisplay &&
3635 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3636 			return false; /* duplicated */
3637 		if (mode->hdisplay <= m->hdisplay &&
3638 		    mode->vdisplay <= m->vdisplay)
3639 			ok = true;
3640 	}
3641 	return ok;
3642 }
3643 
3644 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3645 				   const struct drm_edid *drm_edid,
3646 				   const struct detailed_timing *timing)
3647 {
3648 	int i, modes = 0;
3649 	struct drm_display_mode *newmode;
3650 	struct drm_device *dev = connector->dev;
3651 
3652 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3653 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3654 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3655 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3656 			if (newmode) {
3657 				drm_mode_probed_add(connector, newmode);
3658 				modes++;
3659 			}
3660 		}
3661 	}
3662 
3663 	return modes;
3664 }
3665 
3666 /* fix up 1366x768 mode from 1368x768;
3667  * GFT/CVT can't express 1366 width which isn't dividable by 8
3668  */
3669 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3670 {
3671 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3672 		mode->hdisplay = 1366;
3673 		mode->hsync_start--;
3674 		mode->hsync_end--;
3675 		drm_mode_set_name(mode);
3676 	}
3677 }
3678 
3679 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3680 				   const struct drm_edid *drm_edid,
3681 				   const struct detailed_timing *timing)
3682 {
3683 	int i, modes = 0;
3684 	struct drm_display_mode *newmode;
3685 	struct drm_device *dev = connector->dev;
3686 
3687 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3688 		const struct minimode *m = &extra_modes[i];
3689 
3690 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3691 		if (!newmode)
3692 			return modes;
3693 
3694 		drm_mode_fixup_1366x768(newmode);
3695 		if (!mode_in_range(newmode, drm_edid, timing) ||
3696 		    !valid_inferred_mode(connector, newmode)) {
3697 			drm_mode_destroy(dev, newmode);
3698 			continue;
3699 		}
3700 
3701 		drm_mode_probed_add(connector, newmode);
3702 		modes++;
3703 	}
3704 
3705 	return modes;
3706 }
3707 
3708 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3709 				    const struct drm_edid *drm_edid,
3710 				    const struct detailed_timing *timing)
3711 {
3712 	int i, modes = 0;
3713 	struct drm_display_mode *newmode;
3714 	struct drm_device *dev = connector->dev;
3715 
3716 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3717 		const struct minimode *m = &extra_modes[i];
3718 
3719 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3720 		if (!newmode)
3721 			return modes;
3722 
3723 		drm_mode_fixup_1366x768(newmode);
3724 		if (!mode_in_range(newmode, drm_edid, timing) ||
3725 		    !valid_inferred_mode(connector, newmode)) {
3726 			drm_mode_destroy(dev, newmode);
3727 			continue;
3728 		}
3729 
3730 		drm_mode_probed_add(connector, newmode);
3731 		modes++;
3732 	}
3733 
3734 	return modes;
3735 }
3736 
3737 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3738 				   const struct drm_edid *drm_edid,
3739 				   const struct detailed_timing *timing)
3740 {
3741 	int i, modes = 0;
3742 	struct drm_display_mode *newmode;
3743 	struct drm_device *dev = connector->dev;
3744 	bool rb = drm_monitor_supports_rb(drm_edid);
3745 
3746 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3747 		const struct minimode *m = &extra_modes[i];
3748 
3749 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3750 		if (!newmode)
3751 			return modes;
3752 
3753 		drm_mode_fixup_1366x768(newmode);
3754 		if (!mode_in_range(newmode, drm_edid, timing) ||
3755 		    !valid_inferred_mode(connector, newmode)) {
3756 			drm_mode_destroy(dev, newmode);
3757 			continue;
3758 		}
3759 
3760 		drm_mode_probed_add(connector, newmode);
3761 		modes++;
3762 	}
3763 
3764 	return modes;
3765 }
3766 
3767 static void
3768 do_inferred_modes(const struct detailed_timing *timing, void *c)
3769 {
3770 	struct detailed_mode_closure *closure = c;
3771 	const struct detailed_non_pixel *data = &timing->data.other_data;
3772 	const struct detailed_data_monitor_range *range = &data->data.range;
3773 
3774 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3775 		return;
3776 
3777 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3778 						  closure->drm_edid,
3779 						  timing);
3780 
3781 	if (closure->drm_edid->edid->revision < 2)
3782 		return; /* GTF not defined yet */
3783 
3784 	switch (range->flags) {
3785 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3786 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3787 							   closure->drm_edid,
3788 							   timing);
3789 		break;
3790 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3791 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3792 							  closure->drm_edid,
3793 							  timing);
3794 		break;
3795 	case DRM_EDID_CVT_SUPPORT_FLAG:
3796 		if (closure->drm_edid->edid->revision < 4)
3797 			break;
3798 
3799 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3800 							  closure->drm_edid,
3801 							  timing);
3802 		break;
3803 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3804 	default:
3805 		break;
3806 	}
3807 }
3808 
3809 static int add_inferred_modes(struct drm_connector *connector,
3810 			      const struct drm_edid *drm_edid)
3811 {
3812 	struct detailed_mode_closure closure = {
3813 		.connector = connector,
3814 		.drm_edid = drm_edid,
3815 	};
3816 
3817 	if (drm_edid->edid->revision >= 1)
3818 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3819 
3820 	return closure.modes;
3821 }
3822 
3823 static int
3824 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3825 {
3826 	int i, j, m, modes = 0;
3827 	struct drm_display_mode *mode;
3828 	const u8 *est = ((const u8 *)timing) + 6;
3829 
3830 	for (i = 0; i < 6; i++) {
3831 		for (j = 7; j >= 0; j--) {
3832 			m = (i * 8) + (7 - j);
3833 			if (m >= ARRAY_SIZE(est3_modes))
3834 				break;
3835 			if (est[i] & (1 << j)) {
3836 				mode = drm_mode_find_dmt(connector->dev,
3837 							 est3_modes[m].w,
3838 							 est3_modes[m].h,
3839 							 est3_modes[m].r,
3840 							 est3_modes[m].rb);
3841 				if (mode) {
3842 					drm_mode_probed_add(connector, mode);
3843 					modes++;
3844 				}
3845 			}
3846 		}
3847 	}
3848 
3849 	return modes;
3850 }
3851 
3852 static void
3853 do_established_modes(const struct detailed_timing *timing, void *c)
3854 {
3855 	struct detailed_mode_closure *closure = c;
3856 
3857 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3858 		return;
3859 
3860 	closure->modes += drm_est3_modes(closure->connector, timing);
3861 }
3862 
3863 /*
3864  * Get established modes from EDID and add them. Each EDID block contains a
3865  * bitmap of the supported "established modes" list (defined above). Tease them
3866  * out and add them to the global modes list.
3867  */
3868 static int add_established_modes(struct drm_connector *connector,
3869 				 const struct drm_edid *drm_edid)
3870 {
3871 	struct drm_device *dev = connector->dev;
3872 	const struct edid *edid = drm_edid->edid;
3873 	unsigned long est_bits = edid->established_timings.t1 |
3874 		(edid->established_timings.t2 << 8) |
3875 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3876 	int i, modes = 0;
3877 	struct detailed_mode_closure closure = {
3878 		.connector = connector,
3879 		.drm_edid = drm_edid,
3880 	};
3881 
3882 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3883 		if (est_bits & (1<<i)) {
3884 			struct drm_display_mode *newmode;
3885 
3886 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3887 			if (newmode) {
3888 				drm_mode_probed_add(connector, newmode);
3889 				modes++;
3890 			}
3891 		}
3892 	}
3893 
3894 	if (edid->revision >= 1)
3895 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3896 					    &closure);
3897 
3898 	return modes + closure.modes;
3899 }
3900 
3901 static void
3902 do_standard_modes(const struct detailed_timing *timing, void *c)
3903 {
3904 	struct detailed_mode_closure *closure = c;
3905 	const struct detailed_non_pixel *data = &timing->data.other_data;
3906 	struct drm_connector *connector = closure->connector;
3907 	int i;
3908 
3909 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3910 		return;
3911 
3912 	for (i = 0; i < 6; i++) {
3913 		const struct std_timing *std = &data->data.timings[i];
3914 		struct drm_display_mode *newmode;
3915 
3916 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3917 		if (newmode) {
3918 			drm_mode_probed_add(connector, newmode);
3919 			closure->modes++;
3920 		}
3921 	}
3922 }
3923 
3924 /*
3925  * Get standard modes from EDID and add them. Standard modes can be calculated
3926  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3927  * add them to the list.
3928  */
3929 static int add_standard_modes(struct drm_connector *connector,
3930 			      const struct drm_edid *drm_edid)
3931 {
3932 	int i, modes = 0;
3933 	struct detailed_mode_closure closure = {
3934 		.connector = connector,
3935 		.drm_edid = drm_edid,
3936 	};
3937 
3938 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3939 		struct drm_display_mode *newmode;
3940 
3941 		newmode = drm_mode_std(connector, drm_edid,
3942 				       &drm_edid->edid->standard_timings[i]);
3943 		if (newmode) {
3944 			drm_mode_probed_add(connector, newmode);
3945 			modes++;
3946 		}
3947 	}
3948 
3949 	if (drm_edid->edid->revision >= 1)
3950 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3951 					    &closure);
3952 
3953 	/* XXX should also look for standard codes in VTB blocks */
3954 
3955 	return modes + closure.modes;
3956 }
3957 
3958 static int drm_cvt_modes(struct drm_connector *connector,
3959 			 const struct detailed_timing *timing)
3960 {
3961 	int i, j, modes = 0;
3962 	struct drm_display_mode *newmode;
3963 	struct drm_device *dev = connector->dev;
3964 	const struct cvt_timing *cvt;
3965 	static const int rates[] = { 60, 85, 75, 60, 50 };
3966 	const u8 empty[3] = { 0, 0, 0 };
3967 
3968 	for (i = 0; i < 4; i++) {
3969 		int width, height;
3970 
3971 		cvt = &(timing->data.other_data.data.cvt[i]);
3972 
3973 		if (!memcmp(cvt->code, empty, 3))
3974 			continue;
3975 
3976 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3977 		switch (cvt->code[1] & 0x0c) {
3978 		/* default - because compiler doesn't see that we've enumerated all cases */
3979 		default:
3980 		case 0x00:
3981 			width = height * 4 / 3;
3982 			break;
3983 		case 0x04:
3984 			width = height * 16 / 9;
3985 			break;
3986 		case 0x08:
3987 			width = height * 16 / 10;
3988 			break;
3989 		case 0x0c:
3990 			width = height * 15 / 9;
3991 			break;
3992 		}
3993 
3994 		for (j = 1; j < 5; j++) {
3995 			if (cvt->code[2] & (1 << j)) {
3996 				newmode = drm_cvt_mode(dev, width, height,
3997 						       rates[j], j == 0,
3998 						       false, false);
3999 				if (newmode) {
4000 					drm_mode_probed_add(connector, newmode);
4001 					modes++;
4002 				}
4003 			}
4004 		}
4005 	}
4006 
4007 	return modes;
4008 }
4009 
4010 static void
4011 do_cvt_mode(const struct detailed_timing *timing, void *c)
4012 {
4013 	struct detailed_mode_closure *closure = c;
4014 
4015 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4016 		return;
4017 
4018 	closure->modes += drm_cvt_modes(closure->connector, timing);
4019 }
4020 
4021 static int
4022 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4023 {
4024 	struct detailed_mode_closure closure = {
4025 		.connector = connector,
4026 		.drm_edid = drm_edid,
4027 	};
4028 
4029 	if (drm_edid->edid->revision >= 3)
4030 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4031 
4032 	/* XXX should also look for CVT codes in VTB blocks */
4033 
4034 	return closure.modes;
4035 }
4036 
4037 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4038 					  struct drm_display_mode *mode);
4039 
4040 static void
4041 do_detailed_mode(const struct detailed_timing *timing, void *c)
4042 {
4043 	struct detailed_mode_closure *closure = c;
4044 	struct drm_display_mode *newmode;
4045 
4046 	if (!is_detailed_timing_descriptor(timing))
4047 		return;
4048 
4049 	newmode = drm_mode_detailed(closure->connector,
4050 				    closure->drm_edid, timing);
4051 	if (!newmode)
4052 		return;
4053 
4054 	if (closure->preferred)
4055 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4056 
4057 	/*
4058 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4059 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4060 	 * is just slightly off.
4061 	 */
4062 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4063 
4064 	drm_mode_probed_add(closure->connector, newmode);
4065 	closure->modes++;
4066 	closure->preferred = false;
4067 }
4068 
4069 /*
4070  * add_detailed_modes - Add modes from detailed timings
4071  * @connector: attached connector
4072  * @drm_edid: EDID block to scan
4073  */
4074 static int add_detailed_modes(struct drm_connector *connector,
4075 			      const struct drm_edid *drm_edid)
4076 {
4077 	struct detailed_mode_closure closure = {
4078 		.connector = connector,
4079 		.drm_edid = drm_edid,
4080 	};
4081 
4082 	if (drm_edid->edid->revision >= 4)
4083 		closure.preferred = true; /* first detailed timing is always preferred */
4084 	else
4085 		closure.preferred =
4086 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4087 
4088 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4089 
4090 	return closure.modes;
4091 }
4092 
4093 /* CTA-861-H Table 60 - CTA Tag Codes */
4094 #define CTA_DB_AUDIO			1
4095 #define CTA_DB_VIDEO			2
4096 #define CTA_DB_VENDOR			3
4097 #define CTA_DB_SPEAKER			4
4098 #define CTA_DB_EXTENDED_TAG		7
4099 
4100 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4101 #define CTA_EXT_DB_VIDEO_CAP		0
4102 #define CTA_EXT_DB_VENDOR		1
4103 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4104 #define CTA_EXT_DB_420_VIDEO_DATA	14
4105 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4106 #define CTA_EXT_DB_HF_EEODB		0x78
4107 #define CTA_EXT_DB_HF_SCDB		0x79
4108 
4109 #define EDID_BASIC_AUDIO	(1 << 6)
4110 #define EDID_CEA_YCRCB444	(1 << 5)
4111 #define EDID_CEA_YCRCB422	(1 << 4)
4112 #define EDID_CEA_VCDB_QS	(1 << 6)
4113 
4114 /*
4115  * Search EDID for CEA extension block.
4116  *
4117  * FIXME: Prefer not returning pointers to raw EDID data.
4118  */
4119 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4120 				  int ext_id, int *ext_index)
4121 {
4122 	const u8 *edid_ext = NULL;
4123 	int i;
4124 
4125 	/* No EDID or EDID extensions */
4126 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4127 		return NULL;
4128 
4129 	/* Find CEA extension */
4130 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4131 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4132 		if (edid_block_tag(edid_ext) == ext_id)
4133 			break;
4134 	}
4135 
4136 	if (i >= drm_edid_extension_block_count(drm_edid))
4137 		return NULL;
4138 
4139 	*ext_index = i + 1;
4140 
4141 	return edid_ext;
4142 }
4143 
4144 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4145 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4146 {
4147 	const struct displayid_block *block;
4148 	struct displayid_iter iter;
4149 	int ext_index = 0;
4150 	bool found = false;
4151 
4152 	/* Look for a top level CEA extension block */
4153 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4154 		return true;
4155 
4156 	/* CEA blocks can also be found embedded in a DisplayID block */
4157 	displayid_iter_edid_begin(drm_edid, &iter);
4158 	displayid_iter_for_each(block, &iter) {
4159 		if (block->tag == DATA_BLOCK_CTA) {
4160 			found = true;
4161 			break;
4162 		}
4163 	}
4164 	displayid_iter_end(&iter);
4165 
4166 	return found;
4167 }
4168 
4169 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4170 {
4171 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4172 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4173 
4174 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4175 		return &edid_cea_modes_1[vic - 1];
4176 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4177 		return &edid_cea_modes_193[vic - 193];
4178 	return NULL;
4179 }
4180 
4181 static u8 cea_num_vics(void)
4182 {
4183 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4184 }
4185 
4186 static u8 cea_next_vic(u8 vic)
4187 {
4188 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4189 		vic = 193;
4190 	return vic;
4191 }
4192 
4193 /*
4194  * Calculate the alternate clock for the CEA mode
4195  * (60Hz vs. 59.94Hz etc.)
4196  */
4197 static unsigned int
4198 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4199 {
4200 	unsigned int clock = cea_mode->clock;
4201 
4202 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4203 		return clock;
4204 
4205 	/*
4206 	 * edid_cea_modes contains the 59.94Hz
4207 	 * variant for 240 and 480 line modes,
4208 	 * and the 60Hz variant otherwise.
4209 	 */
4210 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4211 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4212 	else
4213 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4214 
4215 	return clock;
4216 }
4217 
4218 static bool
4219 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4220 {
4221 	/*
4222 	 * For certain VICs the spec allows the vertical
4223 	 * front porch to vary by one or two lines.
4224 	 *
4225 	 * cea_modes[] stores the variant with the shortest
4226 	 * vertical front porch. We can adjust the mode to
4227 	 * get the other variants by simply increasing the
4228 	 * vertical front porch length.
4229 	 */
4230 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4231 		     cea_mode_for_vic(9)->vtotal != 262 ||
4232 		     cea_mode_for_vic(12)->vtotal != 262 ||
4233 		     cea_mode_for_vic(13)->vtotal != 262 ||
4234 		     cea_mode_for_vic(23)->vtotal != 312 ||
4235 		     cea_mode_for_vic(24)->vtotal != 312 ||
4236 		     cea_mode_for_vic(27)->vtotal != 312 ||
4237 		     cea_mode_for_vic(28)->vtotal != 312);
4238 
4239 	if (((vic == 8 || vic == 9 ||
4240 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4241 	    ((vic == 23 || vic == 24 ||
4242 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4243 		mode->vsync_start++;
4244 		mode->vsync_end++;
4245 		mode->vtotal++;
4246 
4247 		return true;
4248 	}
4249 
4250 	return false;
4251 }
4252 
4253 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4254 					     unsigned int clock_tolerance)
4255 {
4256 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4257 	u8 vic;
4258 
4259 	if (!to_match->clock)
4260 		return 0;
4261 
4262 	if (to_match->picture_aspect_ratio)
4263 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4264 
4265 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266 		struct drm_display_mode cea_mode;
4267 		unsigned int clock1, clock2;
4268 
4269 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4270 
4271 		/* Check both 60Hz and 59.94Hz */
4272 		clock1 = cea_mode.clock;
4273 		clock2 = cea_mode_alternate_clock(&cea_mode);
4274 
4275 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4276 		    abs(to_match->clock - clock2) > clock_tolerance)
4277 			continue;
4278 
4279 		do {
4280 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4281 				return vic;
4282 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4283 	}
4284 
4285 	return 0;
4286 }
4287 
4288 /**
4289  * drm_match_cea_mode - look for a CEA mode matching given mode
4290  * @to_match: display mode
4291  *
4292  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4293  * mode.
4294  */
4295 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4296 {
4297 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4298 	u8 vic;
4299 
4300 	if (!to_match->clock)
4301 		return 0;
4302 
4303 	if (to_match->picture_aspect_ratio)
4304 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4305 
4306 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4307 		struct drm_display_mode cea_mode;
4308 		unsigned int clock1, clock2;
4309 
4310 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4311 
4312 		/* Check both 60Hz and 59.94Hz */
4313 		clock1 = cea_mode.clock;
4314 		clock2 = cea_mode_alternate_clock(&cea_mode);
4315 
4316 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4317 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4318 			continue;
4319 
4320 		do {
4321 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4322 				return vic;
4323 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4324 	}
4325 
4326 	return 0;
4327 }
4328 EXPORT_SYMBOL(drm_match_cea_mode);
4329 
4330 static bool drm_valid_cea_vic(u8 vic)
4331 {
4332 	return cea_mode_for_vic(vic) != NULL;
4333 }
4334 
4335 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4336 {
4337 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4338 
4339 	if (mode)
4340 		return mode->picture_aspect_ratio;
4341 
4342 	return HDMI_PICTURE_ASPECT_NONE;
4343 }
4344 
4345 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4346 {
4347 	return edid_4k_modes[video_code].picture_aspect_ratio;
4348 }
4349 
4350 /*
4351  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4352  * specific block).
4353  */
4354 static unsigned int
4355 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4356 {
4357 	return cea_mode_alternate_clock(hdmi_mode);
4358 }
4359 
4360 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4361 					      unsigned int clock_tolerance)
4362 {
4363 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4364 	u8 vic;
4365 
4366 	if (!to_match->clock)
4367 		return 0;
4368 
4369 	if (to_match->picture_aspect_ratio)
4370 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4371 
4372 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4373 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4374 		unsigned int clock1, clock2;
4375 
4376 		/* Make sure to also match alternate clocks */
4377 		clock1 = hdmi_mode->clock;
4378 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4379 
4380 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4381 		    abs(to_match->clock - clock2) > clock_tolerance)
4382 			continue;
4383 
4384 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4385 			return vic;
4386 	}
4387 
4388 	return 0;
4389 }
4390 
4391 /*
4392  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4393  * @to_match: display mode
4394  *
4395  * An HDMI mode is one defined in the HDMI vendor specific block.
4396  *
4397  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4398  */
4399 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4400 {
4401 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4402 	u8 vic;
4403 
4404 	if (!to_match->clock)
4405 		return 0;
4406 
4407 	if (to_match->picture_aspect_ratio)
4408 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4409 
4410 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4411 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4412 		unsigned int clock1, clock2;
4413 
4414 		/* Make sure to also match alternate clocks */
4415 		clock1 = hdmi_mode->clock;
4416 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4417 
4418 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4419 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4420 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4421 			return vic;
4422 	}
4423 	return 0;
4424 }
4425 
4426 static bool drm_valid_hdmi_vic(u8 vic)
4427 {
4428 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4429 }
4430 
4431 static int add_alternate_cea_modes(struct drm_connector *connector,
4432 				   const struct drm_edid *drm_edid)
4433 {
4434 	struct drm_device *dev = connector->dev;
4435 	struct drm_display_mode *mode, *tmp;
4436 	LIST_HEAD(list);
4437 	int modes = 0;
4438 
4439 	/* Don't add CTA modes if the CTA extension block is missing */
4440 	if (!drm_edid_has_cta_extension(drm_edid))
4441 		return 0;
4442 
4443 	/*
4444 	 * Go through all probed modes and create a new mode
4445 	 * with the alternate clock for certain CEA modes.
4446 	 */
4447 	list_for_each_entry(mode, &connector->probed_modes, head) {
4448 		const struct drm_display_mode *cea_mode = NULL;
4449 		struct drm_display_mode *newmode;
4450 		u8 vic = drm_match_cea_mode(mode);
4451 		unsigned int clock1, clock2;
4452 
4453 		if (drm_valid_cea_vic(vic)) {
4454 			cea_mode = cea_mode_for_vic(vic);
4455 			clock2 = cea_mode_alternate_clock(cea_mode);
4456 		} else {
4457 			vic = drm_match_hdmi_mode(mode);
4458 			if (drm_valid_hdmi_vic(vic)) {
4459 				cea_mode = &edid_4k_modes[vic];
4460 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4461 			}
4462 		}
4463 
4464 		if (!cea_mode)
4465 			continue;
4466 
4467 		clock1 = cea_mode->clock;
4468 
4469 		if (clock1 == clock2)
4470 			continue;
4471 
4472 		if (mode->clock != clock1 && mode->clock != clock2)
4473 			continue;
4474 
4475 		newmode = drm_mode_duplicate(dev, cea_mode);
4476 		if (!newmode)
4477 			continue;
4478 
4479 		/* Carry over the stereo flags */
4480 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4481 
4482 		/*
4483 		 * The current mode could be either variant. Make
4484 		 * sure to pick the "other" clock for the new mode.
4485 		 */
4486 		if (mode->clock != clock1)
4487 			newmode->clock = clock1;
4488 		else
4489 			newmode->clock = clock2;
4490 
4491 		list_add_tail(&newmode->head, &list);
4492 	}
4493 
4494 	list_for_each_entry_safe(mode, tmp, &list, head) {
4495 		list_del(&mode->head);
4496 		drm_mode_probed_add(connector, mode);
4497 		modes++;
4498 	}
4499 
4500 	return modes;
4501 }
4502 
4503 static u8 svd_to_vic(u8 svd)
4504 {
4505 	/* 0-6 bit vic, 7th bit native mode indicator */
4506 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4507 		return svd & 127;
4508 
4509 	return svd;
4510 }
4511 
4512 /*
4513  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4514  * the EDID, or NULL on errors.
4515  */
4516 static struct drm_display_mode *
4517 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4518 {
4519 	const struct drm_display_info *info = &connector->display_info;
4520 	struct drm_device *dev = connector->dev;
4521 
4522 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4523 		return NULL;
4524 
4525 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4526 }
4527 
4528 /*
4529  * do_y420vdb_modes - Parse YCBCR 420 only modes
4530  * @connector: connector corresponding to the HDMI sink
4531  * @svds: start of the data block of CEA YCBCR 420 VDB
4532  * @len: length of the CEA YCBCR 420 VDB
4533  *
4534  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4535  * which contains modes which can be supported in YCBCR 420
4536  * output format only.
4537  */
4538 static int do_y420vdb_modes(struct drm_connector *connector,
4539 			    const u8 *svds, u8 svds_len)
4540 {
4541 	struct drm_device *dev = connector->dev;
4542 	int modes = 0, i;
4543 
4544 	for (i = 0; i < svds_len; i++) {
4545 		u8 vic = svd_to_vic(svds[i]);
4546 		struct drm_display_mode *newmode;
4547 
4548 		if (!drm_valid_cea_vic(vic))
4549 			continue;
4550 
4551 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4552 		if (!newmode)
4553 			break;
4554 		drm_mode_probed_add(connector, newmode);
4555 		modes++;
4556 	}
4557 
4558 	return modes;
4559 }
4560 
4561 /**
4562  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4563  * @dev: DRM device
4564  * @video_code: CEA VIC of the mode
4565  *
4566  * Creates a new mode matching the specified CEA VIC.
4567  *
4568  * Returns: A new drm_display_mode on success or NULL on failure
4569  */
4570 struct drm_display_mode *
4571 drm_display_mode_from_cea_vic(struct drm_device *dev,
4572 			      u8 video_code)
4573 {
4574 	const struct drm_display_mode *cea_mode;
4575 	struct drm_display_mode *newmode;
4576 
4577 	cea_mode = cea_mode_for_vic(video_code);
4578 	if (!cea_mode)
4579 		return NULL;
4580 
4581 	newmode = drm_mode_duplicate(dev, cea_mode);
4582 	if (!newmode)
4583 		return NULL;
4584 
4585 	return newmode;
4586 }
4587 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4588 
4589 /* Add modes based on VICs parsed in parse_cta_vdb() */
4590 static int add_cta_vdb_modes(struct drm_connector *connector)
4591 {
4592 	const struct drm_display_info *info = &connector->display_info;
4593 	int i, modes = 0;
4594 
4595 	if (!info->vics)
4596 		return 0;
4597 
4598 	for (i = 0; i < info->vics_len; i++) {
4599 		struct drm_display_mode *mode;
4600 
4601 		mode = drm_display_mode_from_vic_index(connector, i);
4602 		if (mode) {
4603 			drm_mode_probed_add(connector, mode);
4604 			modes++;
4605 		}
4606 	}
4607 
4608 	return modes;
4609 }
4610 
4611 struct stereo_mandatory_mode {
4612 	int width, height, vrefresh;
4613 	unsigned int flags;
4614 };
4615 
4616 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4619 	{ 1920, 1080, 50,
4620 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4621 	{ 1920, 1080, 60,
4622 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627 };
4628 
4629 static bool
4630 stereo_match_mandatory(const struct drm_display_mode *mode,
4631 		       const struct stereo_mandatory_mode *stereo_mode)
4632 {
4633 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4634 
4635 	return mode->hdisplay == stereo_mode->width &&
4636 	       mode->vdisplay == stereo_mode->height &&
4637 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4639 }
4640 
4641 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4642 {
4643 	struct drm_device *dev = connector->dev;
4644 	const struct drm_display_mode *mode;
4645 	struct list_head stereo_modes;
4646 	int modes = 0, i;
4647 
4648 	INIT_LIST_HEAD(&stereo_modes);
4649 
4650 	list_for_each_entry(mode, &connector->probed_modes, head) {
4651 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652 			const struct stereo_mandatory_mode *mandatory;
4653 			struct drm_display_mode *new_mode;
4654 
4655 			if (!stereo_match_mandatory(mode,
4656 						    &stereo_mandatory_modes[i]))
4657 				continue;
4658 
4659 			mandatory = &stereo_mandatory_modes[i];
4660 			new_mode = drm_mode_duplicate(dev, mode);
4661 			if (!new_mode)
4662 				continue;
4663 
4664 			new_mode->flags |= mandatory->flags;
4665 			list_add_tail(&new_mode->head, &stereo_modes);
4666 			modes++;
4667 		}
4668 	}
4669 
4670 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4671 
4672 	return modes;
4673 }
4674 
4675 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4676 {
4677 	struct drm_device *dev = connector->dev;
4678 	struct drm_display_mode *newmode;
4679 
4680 	if (!drm_valid_hdmi_vic(vic)) {
4681 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682 			connector->base.id, connector->name, vic);
4683 		return 0;
4684 	}
4685 
4686 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687 	if (!newmode)
4688 		return 0;
4689 
4690 	drm_mode_probed_add(connector, newmode);
4691 
4692 	return 1;
4693 }
4694 
4695 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696 			       int vic_index)
4697 {
4698 	struct drm_display_mode *newmode;
4699 	int modes = 0;
4700 
4701 	if (structure & (1 << 0)) {
4702 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4703 		if (newmode) {
4704 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4705 			drm_mode_probed_add(connector, newmode);
4706 			modes++;
4707 		}
4708 	}
4709 	if (structure & (1 << 6)) {
4710 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4711 		if (newmode) {
4712 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4713 			drm_mode_probed_add(connector, newmode);
4714 			modes++;
4715 		}
4716 	}
4717 	if (structure & (1 << 8)) {
4718 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4719 		if (newmode) {
4720 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4721 			drm_mode_probed_add(connector, newmode);
4722 			modes++;
4723 		}
4724 	}
4725 
4726 	return modes;
4727 }
4728 
4729 static bool hdmi_vsdb_latency_present(const u8 *db)
4730 {
4731 	return db[8] & BIT(7);
4732 }
4733 
4734 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4735 {
4736 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4737 }
4738 
4739 static int hdmi_vsdb_latency_length(const u8 *db)
4740 {
4741 	if (hdmi_vsdb_i_latency_present(db))
4742 		return 4;
4743 	else if (hdmi_vsdb_latency_present(db))
4744 		return 2;
4745 	else
4746 		return 0;
4747 }
4748 
4749 /*
4750  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4751  * @connector: connector corresponding to the HDMI sink
4752  * @db: start of the CEA vendor specific block
4753  * @len: length of the CEA block payload, ie. one can access up to db[len]
4754  *
4755  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4756  * also adds the stereo 3d modes when applicable.
4757  */
4758 static int
4759 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4760 {
4761 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4762 	u8 vic_len, hdmi_3d_len = 0;
4763 	u16 mask;
4764 	u16 structure_all;
4765 
4766 	if (len < 8)
4767 		goto out;
4768 
4769 	/* no HDMI_Video_Present */
4770 	if (!(db[8] & (1 << 5)))
4771 		goto out;
4772 
4773 	offset += hdmi_vsdb_latency_length(db);
4774 
4775 	/* the declared length is not long enough for the 2 first bytes
4776 	 * of additional video format capabilities */
4777 	if (len < (8 + offset + 2))
4778 		goto out;
4779 
4780 	/* 3D_Present */
4781 	offset++;
4782 	if (db[8 + offset] & (1 << 7)) {
4783 		modes += add_hdmi_mandatory_stereo_modes(connector);
4784 
4785 		/* 3D_Multi_present */
4786 		multi_present = (db[8 + offset] & 0x60) >> 5;
4787 	}
4788 
4789 	offset++;
4790 	vic_len = db[8 + offset] >> 5;
4791 	hdmi_3d_len = db[8 + offset] & 0x1f;
4792 
4793 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4794 		u8 vic;
4795 
4796 		vic = db[9 + offset + i];
4797 		modes += add_hdmi_mode(connector, vic);
4798 	}
4799 	offset += 1 + vic_len;
4800 
4801 	if (multi_present == 1)
4802 		multi_len = 2;
4803 	else if (multi_present == 2)
4804 		multi_len = 4;
4805 	else
4806 		multi_len = 0;
4807 
4808 	if (len < (8 + offset + hdmi_3d_len - 1))
4809 		goto out;
4810 
4811 	if (hdmi_3d_len < multi_len)
4812 		goto out;
4813 
4814 	if (multi_present == 1 || multi_present == 2) {
4815 		/* 3D_Structure_ALL */
4816 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4817 
4818 		/* check if 3D_MASK is present */
4819 		if (multi_present == 2)
4820 			mask = (db[10 + offset] << 8) | db[11 + offset];
4821 		else
4822 			mask = 0xffff;
4823 
4824 		for (i = 0; i < 16; i++) {
4825 			if (mask & (1 << i))
4826 				modes += add_3d_struct_modes(connector,
4827 							     structure_all, i);
4828 		}
4829 	}
4830 
4831 	offset += multi_len;
4832 
4833 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4834 		int vic_index;
4835 		struct drm_display_mode *newmode = NULL;
4836 		unsigned int newflag = 0;
4837 		bool detail_present;
4838 
4839 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4840 
4841 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4842 			break;
4843 
4844 		/* 2D_VIC_order_X */
4845 		vic_index = db[8 + offset + i] >> 4;
4846 
4847 		/* 3D_Structure_X */
4848 		switch (db[8 + offset + i] & 0x0f) {
4849 		case 0:
4850 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4851 			break;
4852 		case 6:
4853 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4854 			break;
4855 		case 8:
4856 			/* 3D_Detail_X */
4857 			if ((db[9 + offset + i] >> 4) == 1)
4858 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4859 			break;
4860 		}
4861 
4862 		if (newflag != 0) {
4863 			newmode = drm_display_mode_from_vic_index(connector,
4864 								  vic_index);
4865 
4866 			if (newmode) {
4867 				newmode->flags |= newflag;
4868 				drm_mode_probed_add(connector, newmode);
4869 				modes++;
4870 			}
4871 		}
4872 
4873 		if (detail_present)
4874 			i++;
4875 	}
4876 
4877 out:
4878 	return modes;
4879 }
4880 
4881 static int
4882 cea_revision(const u8 *cea)
4883 {
4884 	/*
4885 	 * FIXME is this correct for the DispID variant?
4886 	 * The DispID spec doesn't really specify whether
4887 	 * this is the revision of the CEA extension or
4888 	 * the DispID CEA data block. And the only value
4889 	 * given as an example is 0.
4890 	 */
4891 	return cea[1];
4892 }
4893 
4894 /*
4895  * CTA Data Block iterator.
4896  *
4897  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4898  * CTA Data Blocks.
4899  *
4900  * struct cea_db *db:
4901  * struct cea_db_iter iter;
4902  *
4903  * cea_db_iter_edid_begin(edid, &iter);
4904  * cea_db_iter_for_each(db, &iter) {
4905  *         // do stuff with db
4906  * }
4907  * cea_db_iter_end(&iter);
4908  */
4909 struct cea_db_iter {
4910 	struct drm_edid_iter edid_iter;
4911 	struct displayid_iter displayid_iter;
4912 
4913 	/* Current Data Block Collection. */
4914 	const u8 *collection;
4915 
4916 	/* Current Data Block index in current collection. */
4917 	int index;
4918 
4919 	/* End index in current collection. */
4920 	int end;
4921 };
4922 
4923 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4924 struct cea_db {
4925 	u8 tag_length;
4926 	u8 data[];
4927 } __packed;
4928 
4929 static int cea_db_tag(const struct cea_db *db)
4930 {
4931 	return db->tag_length >> 5;
4932 }
4933 
4934 static int cea_db_payload_len(const void *_db)
4935 {
4936 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4937 	const struct cea_db *db = _db;
4938 
4939 	return db->tag_length & 0x1f;
4940 }
4941 
4942 static const void *cea_db_data(const struct cea_db *db)
4943 {
4944 	return db->data;
4945 }
4946 
4947 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4948 {
4949 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950 		cea_db_payload_len(db) >= 1 &&
4951 		db->data[0] == tag;
4952 }
4953 
4954 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4955 {
4956 	const u8 *data = cea_db_data(db);
4957 
4958 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4959 		cea_db_payload_len(db) >= 3 &&
4960 		oui(data[2], data[1], data[0]) == vendor_oui;
4961 }
4962 
4963 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964 				   struct cea_db_iter *iter)
4965 {
4966 	memset(iter, 0, sizeof(*iter));
4967 
4968 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4970 }
4971 
4972 static const struct cea_db *
4973 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4974 {
4975 	const struct cea_db *db;
4976 
4977 	if (!iter->collection)
4978 		return NULL;
4979 
4980 	db = (const struct cea_db *)&iter->collection[iter->index];
4981 
4982 	if (iter->index + sizeof(*db) <= iter->end &&
4983 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4984 		return db;
4985 
4986 	return NULL;
4987 }
4988 
4989 /*
4990  * References:
4991  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4992  */
4993 static int cea_db_collection_size(const u8 *cta)
4994 {
4995 	u8 d = cta[2];
4996 
4997 	if (d < 4 || d > 127)
4998 		return 0;
4999 
5000 	return d - 4;
5001 }
5002 
5003 /*
5004  * References:
5005  * - VESA E-EDID v1.4
5006  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5007  */
5008 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009 {
5010 	const u8 *ext;
5011 
5012 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5013 		int size;
5014 
5015 		/* Only support CTA Extension revision 3+ */
5016 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5017 			continue;
5018 
5019 		size = cea_db_collection_size(ext);
5020 		if (!size)
5021 			continue;
5022 
5023 		iter->index = 4;
5024 		iter->end = iter->index + size;
5025 
5026 		return ext;
5027 	}
5028 
5029 	return NULL;
5030 }
5031 
5032 /*
5033  * References:
5034  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5036  *
5037  * Note that the above do not specify any connection between DisplayID Data
5038  * Block revision and CTA Extension versions.
5039  */
5040 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5041 {
5042 	const struct displayid_block *block;
5043 
5044 	displayid_iter_for_each(block, &iter->displayid_iter) {
5045 		if (block->tag != DATA_BLOCK_CTA)
5046 			continue;
5047 
5048 		/*
5049 		 * The displayid iterator has already verified the block bounds
5050 		 * in displayid_iter_block().
5051 		 */
5052 		iter->index = sizeof(*block);
5053 		iter->end = iter->index + block->num_bytes;
5054 
5055 		return block;
5056 	}
5057 
5058 	return NULL;
5059 }
5060 
5061 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5062 {
5063 	const struct cea_db *db;
5064 
5065 	if (iter->collection) {
5066 		/* Current collection should always be valid. */
5067 		db = __cea_db_iter_current_block(iter);
5068 		if (WARN_ON(!db)) {
5069 			iter->collection = NULL;
5070 			return NULL;
5071 		}
5072 
5073 		/* Next block in CTA Data Block Collection */
5074 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5075 
5076 		db = __cea_db_iter_current_block(iter);
5077 		if (db)
5078 			return db;
5079 	}
5080 
5081 	for (;;) {
5082 		/*
5083 		 * Find the next CTA Data Block Collection. First iterate all
5084 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5085 		 *
5086 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087 		 * Extension, it's recommended that DisplayID extensions are
5088 		 * exposed after all of the CTA Extensions.
5089 		 */
5090 		iter->collection = __cea_db_iter_edid_next(iter);
5091 		if (!iter->collection)
5092 			iter->collection = __cea_db_iter_displayid_next(iter);
5093 
5094 		if (!iter->collection)
5095 			return NULL;
5096 
5097 		db = __cea_db_iter_current_block(iter);
5098 		if (db)
5099 			return db;
5100 	}
5101 }
5102 
5103 #define cea_db_iter_for_each(__db, __iter) \
5104 	while (((__db) = __cea_db_iter_next(__iter)))
5105 
5106 static void cea_db_iter_end(struct cea_db_iter *iter)
5107 {
5108 	displayid_iter_end(&iter->displayid_iter);
5109 	drm_edid_iter_end(&iter->edid_iter);
5110 
5111 	memset(iter, 0, sizeof(*iter));
5112 }
5113 
5114 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5115 {
5116 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117 		cea_db_payload_len(db) >= 5;
5118 }
5119 
5120 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5121 {
5122 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123 		cea_db_payload_len(db) >= 7;
5124 }
5125 
5126 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5127 {
5128 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129 		cea_db_payload_len(db) >= 2;
5130 }
5131 
5132 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5133 {
5134 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135 		cea_db_payload_len(db) == 21;
5136 }
5137 
5138 static bool cea_db_is_vcdb(const struct cea_db *db)
5139 {
5140 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141 		cea_db_payload_len(db) == 2;
5142 }
5143 
5144 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5145 {
5146 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147 		cea_db_payload_len(db) >= 7;
5148 }
5149 
5150 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5151 {
5152 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5153 }
5154 
5155 static bool cea_db_is_y420vdb(const struct cea_db *db)
5156 {
5157 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5158 }
5159 
5160 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5161 {
5162 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163 		cea_db_payload_len(db) >= 3;
5164 }
5165 
5166 /*
5167  * Get the HF-EEODB override extension block count from EDID.
5168  *
5169  * The passed in EDID may be partially read, as long as it has at least two
5170  * blocks (base block and one extension block) if EDID extension count is > 0.
5171  *
5172  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174  * iterators instead.
5175  *
5176  * References:
5177  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5178  */
5179 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180 {
5181 	const u8 *cta;
5182 
5183 	/* No extensions according to base block, no HF-EEODB. */
5184 	if (!edid_extension_block_count(edid))
5185 		return 0;
5186 
5187 	/* HF-EEODB is always in the first EDID extension block only */
5188 	cta = edid_extension_block_data(edid, 0);
5189 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5190 		return 0;
5191 
5192 	/* Need to have the data block collection, and at least 3 bytes. */
5193 	if (cea_db_collection_size(cta) < 3)
5194 		return 0;
5195 
5196 	/*
5197 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199 	 * through 6 of Block 1 of the E-EDID.
5200 	 */
5201 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5202 		return 0;
5203 
5204 	return cta[4 + 2];
5205 }
5206 
5207 /*
5208  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5209  *
5210  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5211  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5212  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5213  * support YCBCR420 output too.
5214  */
5215 static void parse_cta_y420cmdb(struct drm_connector *connector,
5216 			       const struct cea_db *db, u64 *y420cmdb_map)
5217 {
5218 	struct drm_display_info *info = &connector->display_info;
5219 	int i, map_len = cea_db_payload_len(db) - 1;
5220 	const u8 *data = cea_db_data(db) + 1;
5221 	u64 map = 0;
5222 
5223 	if (map_len == 0) {
5224 		/* All CEA modes support ycbcr420 sampling also.*/
5225 		map = U64_MAX;
5226 		goto out;
5227 	}
5228 
5229 	/*
5230 	 * This map indicates which of the existing CEA block modes
5231 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5232 	 * set, first mode from VDB can support YCBCR420 output too.
5233 	 * We will parse and keep this map, before parsing VDB itself
5234 	 * to avoid going through the same block again and again.
5235 	 *
5236 	 * Spec is not clear about max possible size of this block.
5237 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5238 	 * address 8 CEA modes, in this way this map can address
5239 	 * 8*8 = first 64 SVDs.
5240 	 */
5241 	if (WARN_ON_ONCE(map_len > 8))
5242 		map_len = 8;
5243 
5244 	for (i = 0; i < map_len; i++)
5245 		map |= (u64)data[i] << (8 * i);
5246 
5247 out:
5248 	if (map)
5249 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5250 
5251 	*y420cmdb_map = map;
5252 }
5253 
5254 static int add_cea_modes(struct drm_connector *connector,
5255 			 const struct drm_edid *drm_edid)
5256 {
5257 	const struct cea_db *db;
5258 	struct cea_db_iter iter;
5259 	int modes;
5260 
5261 	/* CTA VDB block VICs parsed earlier */
5262 	modes = add_cta_vdb_modes(connector);
5263 
5264 	cea_db_iter_edid_begin(drm_edid, &iter);
5265 	cea_db_iter_for_each(db, &iter) {
5266 		if (cea_db_is_hdmi_vsdb(db)) {
5267 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5268 						    cea_db_payload_len(db));
5269 		} else if (cea_db_is_y420vdb(db)) {
5270 			const u8 *vdb420 = cea_db_data(db) + 1;
5271 
5272 			/* Add 4:2:0(only) modes present in EDID */
5273 			modes += do_y420vdb_modes(connector, vdb420,
5274 						  cea_db_payload_len(db) - 1);
5275 		}
5276 	}
5277 	cea_db_iter_end(&iter);
5278 
5279 	return modes;
5280 }
5281 
5282 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5283 					  struct drm_display_mode *mode)
5284 {
5285 	const struct drm_display_mode *cea_mode;
5286 	int clock1, clock2, clock;
5287 	u8 vic;
5288 	const char *type;
5289 
5290 	/*
5291 	 * allow 5kHz clock difference either way to account for
5292 	 * the 10kHz clock resolution limit of detailed timings.
5293 	 */
5294 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5295 	if (drm_valid_cea_vic(vic)) {
5296 		type = "CEA";
5297 		cea_mode = cea_mode_for_vic(vic);
5298 		clock1 = cea_mode->clock;
5299 		clock2 = cea_mode_alternate_clock(cea_mode);
5300 	} else {
5301 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5302 		if (drm_valid_hdmi_vic(vic)) {
5303 			type = "HDMI";
5304 			cea_mode = &edid_4k_modes[vic];
5305 			clock1 = cea_mode->clock;
5306 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5307 		} else {
5308 			return;
5309 		}
5310 	}
5311 
5312 	/* pick whichever is closest */
5313 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5314 		clock = clock1;
5315 	else
5316 		clock = clock2;
5317 
5318 	if (mode->clock == clock)
5319 		return;
5320 
5321 	drm_dbg_kms(connector->dev,
5322 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5323 		    connector->base.id, connector->name,
5324 		    type, vic, mode->clock, clock);
5325 	mode->clock = clock;
5326 }
5327 
5328 static void drm_calculate_luminance_range(struct drm_connector *connector)
5329 {
5330 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5331 	struct drm_luminance_range_info *luminance_range =
5332 		&connector->display_info.luminance_range;
5333 	static const u8 pre_computed_values[] = {
5334 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5335 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5336 	};
5337 	u32 max_avg, min_cll, max, min, q, r;
5338 
5339 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5340 		return;
5341 
5342 	max_avg = hdr_metadata->max_fall;
5343 	min_cll = hdr_metadata->min_cll;
5344 
5345 	/*
5346 	 * From the specification (CTA-861-G), for calculating the maximum
5347 	 * luminance we need to use:
5348 	 *	Luminance = 50*2**(CV/32)
5349 	 * Where CV is a one-byte value.
5350 	 * For calculating this expression we may need float point precision;
5351 	 * to avoid this complexity level, we take advantage that CV is divided
5352 	 * by a constant. From the Euclids division algorithm, we know that CV
5353 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5354 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5355 	 * need to pre-compute the value of r/32. For pre-computing the values
5356 	 * We just used the following Ruby line:
5357 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5358 	 * The results of the above expressions can be verified at
5359 	 * pre_computed_values.
5360 	 */
5361 	q = max_avg >> 5;
5362 	r = max_avg % 32;
5363 	max = (1 << q) * pre_computed_values[r];
5364 
5365 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5366 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5367 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5368 
5369 	luminance_range->min_luminance = min;
5370 	luminance_range->max_luminance = max;
5371 }
5372 
5373 static uint8_t eotf_supported(const u8 *edid_ext)
5374 {
5375 	return edid_ext[2] &
5376 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5377 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5378 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5379 		 BIT(HDMI_EOTF_BT_2100_HLG));
5380 }
5381 
5382 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5383 {
5384 	return edid_ext[3] &
5385 		BIT(HDMI_STATIC_METADATA_TYPE1);
5386 }
5387 
5388 static void
5389 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5390 {
5391 	u16 len;
5392 
5393 	len = cea_db_payload_len(db);
5394 
5395 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5396 						eotf_supported(db);
5397 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5398 						hdr_metadata_type(db);
5399 
5400 	if (len >= 4)
5401 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5402 	if (len >= 5)
5403 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5404 	if (len >= 6) {
5405 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5406 
5407 		/* Calculate only when all values are available */
5408 		drm_calculate_luminance_range(connector);
5409 	}
5410 }
5411 
5412 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5413 static void
5414 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5415 {
5416 	u8 len = cea_db_payload_len(db);
5417 
5418 	if (len >= 6 && (db[6] & (1 << 7)))
5419 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5420 
5421 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5422 		connector->latency_present[0] = true;
5423 		connector->video_latency[0] = db[9];
5424 		connector->audio_latency[0] = db[10];
5425 	}
5426 
5427 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5428 		connector->latency_present[1] = true;
5429 		connector->video_latency[1] = db[11];
5430 		connector->audio_latency[1] = db[12];
5431 	}
5432 
5433 	drm_dbg_kms(connector->dev,
5434 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5435 		    connector->base.id, connector->name,
5436 		    connector->latency_present[0], connector->latency_present[1],
5437 		    connector->video_latency[0], connector->video_latency[1],
5438 		    connector->audio_latency[0], connector->audio_latency[1]);
5439 }
5440 
5441 static void
5442 monitor_name(const struct detailed_timing *timing, void *data)
5443 {
5444 	const char **res = data;
5445 
5446 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5447 		return;
5448 
5449 	*res = timing->data.other_data.data.str.str;
5450 }
5451 
5452 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5453 {
5454 	const char *edid_name = NULL;
5455 	int mnl;
5456 
5457 	if (!drm_edid || !name)
5458 		return 0;
5459 
5460 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5461 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5462 		if (edid_name[mnl] == 0x0a)
5463 			break;
5464 
5465 		name[mnl] = edid_name[mnl];
5466 	}
5467 
5468 	return mnl;
5469 }
5470 
5471 /**
5472  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5473  * @edid: monitor EDID information
5474  * @name: pointer to a character array to hold the name of the monitor
5475  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5476  *
5477  */
5478 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5479 {
5480 	int name_length = 0;
5481 
5482 	if (bufsize <= 0)
5483 		return;
5484 
5485 	if (edid) {
5486 		char buf[13];
5487 		struct drm_edid drm_edid = {
5488 			.edid = edid,
5489 			.size = edid_size(edid),
5490 		};
5491 
5492 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5493 		memcpy(name, buf, name_length);
5494 	}
5495 
5496 	name[name_length] = '\0';
5497 }
5498 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5499 
5500 static void clear_eld(struct drm_connector *connector)
5501 {
5502 	memset(connector->eld, 0, sizeof(connector->eld));
5503 
5504 	connector->latency_present[0] = false;
5505 	connector->latency_present[1] = false;
5506 	connector->video_latency[0] = 0;
5507 	connector->audio_latency[0] = 0;
5508 	connector->video_latency[1] = 0;
5509 	connector->audio_latency[1] = 0;
5510 }
5511 
5512 /*
5513  * drm_edid_to_eld - build ELD from EDID
5514  * @connector: connector corresponding to the HDMI/DP sink
5515  * @drm_edid: EDID to parse
5516  *
5517  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5518  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5519  */
5520 static void drm_edid_to_eld(struct drm_connector *connector,
5521 			    const struct drm_edid *drm_edid)
5522 {
5523 	const struct drm_display_info *info = &connector->display_info;
5524 	const struct cea_db *db;
5525 	struct cea_db_iter iter;
5526 	uint8_t *eld = connector->eld;
5527 	int total_sad_count = 0;
5528 	int mnl;
5529 
5530 	if (!drm_edid)
5531 		return;
5532 
5533 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5534 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5535 		    connector->base.id, connector->name,
5536 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5537 
5538 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5539 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5540 
5541 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5542 
5543 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5544 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5545 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5546 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5547 
5548 	cea_db_iter_edid_begin(drm_edid, &iter);
5549 	cea_db_iter_for_each(db, &iter) {
5550 		const u8 *data = cea_db_data(db);
5551 		int len = cea_db_payload_len(db);
5552 		int sad_count;
5553 
5554 		switch (cea_db_tag(db)) {
5555 		case CTA_DB_AUDIO:
5556 			/* Audio Data Block, contains SADs */
5557 			sad_count = min(len / 3, 15 - total_sad_count);
5558 			if (sad_count >= 1)
5559 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5560 				       data, sad_count * 3);
5561 			total_sad_count += sad_count;
5562 			break;
5563 		case CTA_DB_SPEAKER:
5564 			/* Speaker Allocation Data Block */
5565 			if (len >= 1)
5566 				eld[DRM_ELD_SPEAKER] = data[0];
5567 			break;
5568 		case CTA_DB_VENDOR:
5569 			/* HDMI Vendor-Specific Data Block */
5570 			if (cea_db_is_hdmi_vsdb(db))
5571 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5572 			break;
5573 		default:
5574 			break;
5575 		}
5576 	}
5577 	cea_db_iter_end(&iter);
5578 
5579 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5580 
5581 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5582 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5583 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5584 	else
5585 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5586 
5587 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5588 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5589 
5590 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5591 		    connector->base.id, connector->name,
5592 		    drm_eld_size(eld), total_sad_count);
5593 }
5594 
5595 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5596 			    struct cea_sad **sads)
5597 {
5598 	const struct cea_db *db;
5599 	struct cea_db_iter iter;
5600 	int count = 0;
5601 
5602 	cea_db_iter_edid_begin(drm_edid, &iter);
5603 	cea_db_iter_for_each(db, &iter) {
5604 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5605 			int j;
5606 
5607 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5608 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5609 			if (!*sads)
5610 				return -ENOMEM;
5611 			for (j = 0; j < count; j++) {
5612 				const u8 *sad = &db->data[j * 3];
5613 
5614 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
5615 				(*sads)[j].channels = sad[0] & 0x7;
5616 				(*sads)[j].freq = sad[1] & 0x7F;
5617 				(*sads)[j].byte2 = sad[2];
5618 			}
5619 			break;
5620 		}
5621 	}
5622 	cea_db_iter_end(&iter);
5623 
5624 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5625 
5626 	return count;
5627 }
5628 
5629 /**
5630  * drm_edid_to_sad - extracts SADs from EDID
5631  * @edid: EDID to parse
5632  * @sads: pointer that will be set to the extracted SADs
5633  *
5634  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5635  *
5636  * Note: The returned pointer needs to be freed using kfree().
5637  *
5638  * Return: The number of found SADs or negative number on error.
5639  */
5640 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5641 {
5642 	struct drm_edid drm_edid;
5643 
5644 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5645 }
5646 EXPORT_SYMBOL(drm_edid_to_sad);
5647 
5648 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5649 					   u8 **sadb)
5650 {
5651 	const struct cea_db *db;
5652 	struct cea_db_iter iter;
5653 	int count = 0;
5654 
5655 	cea_db_iter_edid_begin(drm_edid, &iter);
5656 	cea_db_iter_for_each(db, &iter) {
5657 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5658 		    cea_db_payload_len(db) == 3) {
5659 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5660 					GFP_KERNEL);
5661 			if (!*sadb)
5662 				return -ENOMEM;
5663 			count = cea_db_payload_len(db);
5664 			break;
5665 		}
5666 	}
5667 	cea_db_iter_end(&iter);
5668 
5669 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5670 
5671 	return count;
5672 }
5673 
5674 /**
5675  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5676  * @edid: EDID to parse
5677  * @sadb: pointer to the speaker block
5678  *
5679  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5680  *
5681  * Note: The returned pointer needs to be freed using kfree().
5682  *
5683  * Return: The number of found Speaker Allocation Blocks or negative number on
5684  * error.
5685  */
5686 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5687 {
5688 	struct drm_edid drm_edid;
5689 
5690 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5691 					       sadb);
5692 }
5693 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5694 
5695 /**
5696  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5697  * @connector: connector associated with the HDMI/DP sink
5698  * @mode: the display mode
5699  *
5700  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5701  * the sink doesn't support audio or video.
5702  */
5703 int drm_av_sync_delay(struct drm_connector *connector,
5704 		      const struct drm_display_mode *mode)
5705 {
5706 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5707 	int a, v;
5708 
5709 	if (!connector->latency_present[0])
5710 		return 0;
5711 	if (!connector->latency_present[1])
5712 		i = 0;
5713 
5714 	a = connector->audio_latency[i];
5715 	v = connector->video_latency[i];
5716 
5717 	/*
5718 	 * HDMI/DP sink doesn't support audio or video?
5719 	 */
5720 	if (a == 255 || v == 255)
5721 		return 0;
5722 
5723 	/*
5724 	 * Convert raw EDID values to millisecond.
5725 	 * Treat unknown latency as 0ms.
5726 	 */
5727 	if (a)
5728 		a = min(2 * (a - 1), 500);
5729 	if (v)
5730 		v = min(2 * (v - 1), 500);
5731 
5732 	return max(v - a, 0);
5733 }
5734 EXPORT_SYMBOL(drm_av_sync_delay);
5735 
5736 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5737 {
5738 	const struct cea_db *db;
5739 	struct cea_db_iter iter;
5740 	bool hdmi = false;
5741 
5742 	/*
5743 	 * Because HDMI identifier is in Vendor Specific Block,
5744 	 * search it from all data blocks of CEA extension.
5745 	 */
5746 	cea_db_iter_edid_begin(drm_edid, &iter);
5747 	cea_db_iter_for_each(db, &iter) {
5748 		if (cea_db_is_hdmi_vsdb(db)) {
5749 			hdmi = true;
5750 			break;
5751 		}
5752 	}
5753 	cea_db_iter_end(&iter);
5754 
5755 	return hdmi;
5756 }
5757 
5758 /**
5759  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5760  * @edid: monitor EDID information
5761  *
5762  * Parse the CEA extension according to CEA-861-B.
5763  *
5764  * Drivers that have added the modes parsed from EDID to drm_display_info
5765  * should use &drm_display_info.is_hdmi instead of calling this function.
5766  *
5767  * Return: True if the monitor is HDMI, false if not or unknown.
5768  */
5769 bool drm_detect_hdmi_monitor(const struct edid *edid)
5770 {
5771 	struct drm_edid drm_edid;
5772 
5773 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5774 }
5775 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5776 
5777 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5778 {
5779 	struct drm_edid_iter edid_iter;
5780 	const struct cea_db *db;
5781 	struct cea_db_iter iter;
5782 	const u8 *edid_ext;
5783 	bool has_audio = false;
5784 
5785 	drm_edid_iter_begin(drm_edid, &edid_iter);
5786 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5787 		if (edid_ext[0] == CEA_EXT) {
5788 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5789 			if (has_audio)
5790 				break;
5791 		}
5792 	}
5793 	drm_edid_iter_end(&edid_iter);
5794 
5795 	if (has_audio) {
5796 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5797 		goto end;
5798 	}
5799 
5800 	cea_db_iter_edid_begin(drm_edid, &iter);
5801 	cea_db_iter_for_each(db, &iter) {
5802 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5803 			const u8 *data = cea_db_data(db);
5804 			int i;
5805 
5806 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5807 				DRM_DEBUG_KMS("CEA audio format %d\n",
5808 					      (data[i] >> 3) & 0xf);
5809 			has_audio = true;
5810 			break;
5811 		}
5812 	}
5813 	cea_db_iter_end(&iter);
5814 
5815 end:
5816 	return has_audio;
5817 }
5818 
5819 /**
5820  * drm_detect_monitor_audio - check monitor audio capability
5821  * @edid: EDID block to scan
5822  *
5823  * Monitor should have CEA extension block.
5824  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5825  * audio' only. If there is any audio extension block and supported
5826  * audio format, assume at least 'basic audio' support, even if 'basic
5827  * audio' is not defined in EDID.
5828  *
5829  * Return: True if the monitor supports audio, false otherwise.
5830  */
5831 bool drm_detect_monitor_audio(const struct edid *edid)
5832 {
5833 	struct drm_edid drm_edid;
5834 
5835 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5836 }
5837 EXPORT_SYMBOL(drm_detect_monitor_audio);
5838 
5839 
5840 /**
5841  * drm_default_rgb_quant_range - default RGB quantization range
5842  * @mode: display mode
5843  *
5844  * Determine the default RGB quantization range for the mode,
5845  * as specified in CEA-861.
5846  *
5847  * Return: The default RGB quantization range for the mode
5848  */
5849 enum hdmi_quantization_range
5850 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5851 {
5852 	/* All CEA modes other than VIC 1 use limited quantization range. */
5853 	return drm_match_cea_mode(mode) > 1 ?
5854 		HDMI_QUANTIZATION_RANGE_LIMITED :
5855 		HDMI_QUANTIZATION_RANGE_FULL;
5856 }
5857 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5858 
5859 /* CTA-861 Video Data Block (CTA VDB) */
5860 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5861 {
5862 	struct drm_display_info *info = &connector->display_info;
5863 	int i, vic_index, len = cea_db_payload_len(db);
5864 	const u8 *svds = cea_db_data(db);
5865 	u8 *vics;
5866 
5867 	if (!len)
5868 		return;
5869 
5870 	/* Gracefully handle multiple VDBs, however unlikely that is */
5871 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5872 	if (!vics)
5873 		return;
5874 
5875 	vic_index = info->vics_len;
5876 	info->vics_len += len;
5877 	info->vics = vics;
5878 
5879 	for (i = 0; i < len; i++) {
5880 		u8 vic = svd_to_vic(svds[i]);
5881 
5882 		if (!drm_valid_cea_vic(vic))
5883 			vic = 0;
5884 
5885 		info->vics[vic_index++] = vic;
5886 	}
5887 }
5888 
5889 /*
5890  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5891  *
5892  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5893  * using the VICs themselves.
5894  */
5895 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5896 {
5897 	struct drm_display_info *info = &connector->display_info;
5898 	struct drm_hdmi_info *hdmi = &info->hdmi;
5899 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5900 
5901 	for (i = 0; i < len; i++) {
5902 		u8 vic = info->vics[i];
5903 
5904 		if (vic && y420cmdb_map & BIT_ULL(i))
5905 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5906 	}
5907 }
5908 
5909 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5910 {
5911 	const struct drm_display_info *info = &connector->display_info;
5912 	int i;
5913 
5914 	if (!vic || !info->vics)
5915 		return false;
5916 
5917 	for (i = 0; i < info->vics_len; i++) {
5918 		if (info->vics[i] == vic)
5919 			return true;
5920 	}
5921 
5922 	return false;
5923 }
5924 
5925 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5926 static void parse_cta_y420vdb(struct drm_connector *connector,
5927 			      const struct cea_db *db)
5928 {
5929 	struct drm_display_info *info = &connector->display_info;
5930 	struct drm_hdmi_info *hdmi = &info->hdmi;
5931 	const u8 *svds = cea_db_data(db) + 1;
5932 	int i;
5933 
5934 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5935 		u8 vic = svd_to_vic(svds[i]);
5936 
5937 		if (!drm_valid_cea_vic(vic))
5938 			continue;
5939 
5940 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5941 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5942 	}
5943 }
5944 
5945 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5946 {
5947 	struct drm_display_info *info = &connector->display_info;
5948 
5949 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5950 		    connector->base.id, connector->name, db[2]);
5951 
5952 	if (db[2] & EDID_CEA_VCDB_QS)
5953 		info->rgb_quant_range_selectable = true;
5954 }
5955 
5956 static
5957 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5958 {
5959 	switch (max_frl_rate) {
5960 	case 1:
5961 		*max_lanes = 3;
5962 		*max_rate_per_lane = 3;
5963 		break;
5964 	case 2:
5965 		*max_lanes = 3;
5966 		*max_rate_per_lane = 6;
5967 		break;
5968 	case 3:
5969 		*max_lanes = 4;
5970 		*max_rate_per_lane = 6;
5971 		break;
5972 	case 4:
5973 		*max_lanes = 4;
5974 		*max_rate_per_lane = 8;
5975 		break;
5976 	case 5:
5977 		*max_lanes = 4;
5978 		*max_rate_per_lane = 10;
5979 		break;
5980 	case 6:
5981 		*max_lanes = 4;
5982 		*max_rate_per_lane = 12;
5983 		break;
5984 	case 0:
5985 	default:
5986 		*max_lanes = 0;
5987 		*max_rate_per_lane = 0;
5988 	}
5989 }
5990 
5991 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5992 					       const u8 *db)
5993 {
5994 	u8 dc_mask;
5995 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5996 
5997 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5998 	hdmi->y420_dc_modes = dc_mask;
5999 }
6000 
6001 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6002 			       const u8 *hf_scds)
6003 {
6004 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6005 
6006 	if (!hdmi_dsc->v_1p2)
6007 		return;
6008 
6009 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6010 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6011 
6012 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6013 		hdmi_dsc->bpc_supported = 16;
6014 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6015 		hdmi_dsc->bpc_supported = 12;
6016 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6017 		hdmi_dsc->bpc_supported = 10;
6018 	else
6019 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6020 		hdmi_dsc->bpc_supported = 8;
6021 
6022 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6023 		u8 dsc_max_slices;
6024 		u8 dsc_max_frl_rate;
6025 
6026 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6027 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6028 				     &hdmi_dsc->max_frl_rate_per_lane);
6029 
6030 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6031 
6032 		switch (dsc_max_slices) {
6033 		case 1:
6034 			hdmi_dsc->max_slices = 1;
6035 			hdmi_dsc->clk_per_slice = 340;
6036 			break;
6037 		case 2:
6038 			hdmi_dsc->max_slices = 2;
6039 			hdmi_dsc->clk_per_slice = 340;
6040 			break;
6041 		case 3:
6042 			hdmi_dsc->max_slices = 4;
6043 			hdmi_dsc->clk_per_slice = 340;
6044 			break;
6045 		case 4:
6046 			hdmi_dsc->max_slices = 8;
6047 			hdmi_dsc->clk_per_slice = 340;
6048 			break;
6049 		case 5:
6050 			hdmi_dsc->max_slices = 8;
6051 			hdmi_dsc->clk_per_slice = 400;
6052 			break;
6053 		case 6:
6054 			hdmi_dsc->max_slices = 12;
6055 			hdmi_dsc->clk_per_slice = 400;
6056 			break;
6057 		case 7:
6058 			hdmi_dsc->max_slices = 16;
6059 			hdmi_dsc->clk_per_slice = 400;
6060 			break;
6061 		case 0:
6062 		default:
6063 			hdmi_dsc->max_slices = 0;
6064 			hdmi_dsc->clk_per_slice = 0;
6065 		}
6066 	}
6067 
6068 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6069 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6070 }
6071 
6072 /* Sink Capability Data Structure */
6073 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6074 				      const u8 *hf_scds)
6075 {
6076 	struct drm_display_info *info = &connector->display_info;
6077 	struct drm_hdmi_info *hdmi = &info->hdmi;
6078 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6079 	int max_tmds_clock = 0;
6080 	u8 max_frl_rate = 0;
6081 	bool dsc_support = false;
6082 
6083 	info->has_hdmi_infoframe = true;
6084 
6085 	if (hf_scds[6] & 0x80) {
6086 		hdmi->scdc.supported = true;
6087 		if (hf_scds[6] & 0x40)
6088 			hdmi->scdc.read_request = true;
6089 	}
6090 
6091 	/*
6092 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6093 	 * And as per the spec, three factors confirm this:
6094 	 * * Availability of a HF-VSDB block in EDID (check)
6095 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6096 	 * * SCDC support available (let's check)
6097 	 * Lets check it out.
6098 	 */
6099 
6100 	if (hf_scds[5]) {
6101 		struct drm_scdc *scdc = &hdmi->scdc;
6102 
6103 		/* max clock is 5000 KHz times block value */
6104 		max_tmds_clock = hf_scds[5] * 5000;
6105 
6106 		if (max_tmds_clock > 340000) {
6107 			info->max_tmds_clock = max_tmds_clock;
6108 		}
6109 
6110 		if (scdc->supported) {
6111 			scdc->scrambling.supported = true;
6112 
6113 			/* Few sinks support scrambling for clocks < 340M */
6114 			if ((hf_scds[6] & 0x8))
6115 				scdc->scrambling.low_rates = true;
6116 		}
6117 	}
6118 
6119 	if (hf_scds[7]) {
6120 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6121 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6122 				     &hdmi->max_frl_rate_per_lane);
6123 	}
6124 
6125 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6126 
6127 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6128 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6129 		dsc_support = true;
6130 	}
6131 
6132 	drm_dbg_kms(connector->dev,
6133 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6134 		    connector->base.id, connector->name,
6135 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6136 }
6137 
6138 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6139 					   const u8 *hdmi)
6140 {
6141 	struct drm_display_info *info = &connector->display_info;
6142 	unsigned int dc_bpc = 0;
6143 
6144 	/* HDMI supports at least 8 bpc */
6145 	info->bpc = 8;
6146 
6147 	if (cea_db_payload_len(hdmi) < 6)
6148 		return;
6149 
6150 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6151 		dc_bpc = 10;
6152 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6153 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6154 			    connector->base.id, connector->name);
6155 	}
6156 
6157 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6158 		dc_bpc = 12;
6159 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6160 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6161 			    connector->base.id, connector->name);
6162 	}
6163 
6164 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6165 		dc_bpc = 16;
6166 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6167 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6168 			    connector->base.id, connector->name);
6169 	}
6170 
6171 	if (dc_bpc == 0) {
6172 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6173 			    connector->base.id, connector->name);
6174 		return;
6175 	}
6176 
6177 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6178 		    connector->base.id, connector->name, dc_bpc);
6179 	info->bpc = dc_bpc;
6180 
6181 	/* YCRCB444 is optional according to spec. */
6182 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6183 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6184 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6185 			    connector->base.id, connector->name);
6186 	}
6187 
6188 	/*
6189 	 * Spec says that if any deep color mode is supported at all,
6190 	 * then deep color 36 bit must be supported.
6191 	 */
6192 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6193 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6194 			    connector->base.id, connector->name);
6195 	}
6196 }
6197 
6198 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6199 static void
6200 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6201 {
6202 	struct drm_display_info *info = &connector->display_info;
6203 	u8 len = cea_db_payload_len(db);
6204 
6205 	info->is_hdmi = true;
6206 
6207 	info->source_physical_address = (db[4] << 8) | db[5];
6208 
6209 	if (len >= 6)
6210 		info->dvi_dual = db[6] & 1;
6211 	if (len >= 7)
6212 		info->max_tmds_clock = db[7] * 5000;
6213 
6214 	/*
6215 	 * Try to infer whether the sink supports HDMI infoframes.
6216 	 *
6217 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6218 	 * supports infoframes if HDMI_Video_present is set.
6219 	 */
6220 	if (len >= 8 && db[8] & BIT(5))
6221 		info->has_hdmi_infoframe = true;
6222 
6223 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6224 		    connector->base.id, connector->name,
6225 		    info->dvi_dual, info->max_tmds_clock);
6226 
6227 	drm_parse_hdmi_deep_color_info(connector, db);
6228 }
6229 
6230 /*
6231  * See EDID extension for head-mounted and specialized monitors, specified at:
6232  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6233  */
6234 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6235 				     const u8 *db)
6236 {
6237 	struct drm_display_info *info = &connector->display_info;
6238 	u8 version = db[4];
6239 	bool desktop_usage = db[5] & BIT(6);
6240 
6241 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6242 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6243 		info->non_desktop = true;
6244 
6245 	drm_dbg_kms(connector->dev,
6246 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6247 		    connector->base.id, connector->name, version, db[5]);
6248 }
6249 
6250 static void drm_parse_cea_ext(struct drm_connector *connector,
6251 			      const struct drm_edid *drm_edid)
6252 {
6253 	struct drm_display_info *info = &connector->display_info;
6254 	struct drm_edid_iter edid_iter;
6255 	const struct cea_db *db;
6256 	struct cea_db_iter iter;
6257 	const u8 *edid_ext;
6258 	u64 y420cmdb_map = 0;
6259 
6260 	drm_edid_iter_begin(drm_edid, &edid_iter);
6261 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6262 		if (edid_ext[0] != CEA_EXT)
6263 			continue;
6264 
6265 		if (!info->cea_rev)
6266 			info->cea_rev = edid_ext[1];
6267 
6268 		if (info->cea_rev != edid_ext[1])
6269 			drm_dbg_kms(connector->dev,
6270 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6271 				    connector->base.id, connector->name,
6272 				    info->cea_rev, edid_ext[1]);
6273 
6274 		/* The existence of a CTA extension should imply RGB support */
6275 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6276 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6277 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6278 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6279 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6280 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6281 			info->has_audio = true;
6282 
6283 	}
6284 	drm_edid_iter_end(&edid_iter);
6285 
6286 	cea_db_iter_edid_begin(drm_edid, &iter);
6287 	cea_db_iter_for_each(db, &iter) {
6288 		/* FIXME: convert parsers to use struct cea_db */
6289 		const u8 *data = (const u8 *)db;
6290 
6291 		if (cea_db_is_hdmi_vsdb(db))
6292 			drm_parse_hdmi_vsdb_video(connector, data);
6293 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6294 			 cea_db_is_hdmi_forum_scdb(db))
6295 			drm_parse_hdmi_forum_scds(connector, data);
6296 		else if (cea_db_is_microsoft_vsdb(db))
6297 			drm_parse_microsoft_vsdb(connector, data);
6298 		else if (cea_db_is_y420cmdb(db))
6299 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6300 		else if (cea_db_is_y420vdb(db))
6301 			parse_cta_y420vdb(connector, db);
6302 		else if (cea_db_is_vcdb(db))
6303 			drm_parse_vcdb(connector, data);
6304 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6305 			drm_parse_hdr_metadata_block(connector, data);
6306 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6307 			parse_cta_vdb(connector, db);
6308 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6309 			info->has_audio = true;
6310 	}
6311 	cea_db_iter_end(&iter);
6312 
6313 	if (y420cmdb_map)
6314 		update_cta_y420cmdb(connector, y420cmdb_map);
6315 }
6316 
6317 static
6318 void get_monitor_range(const struct detailed_timing *timing, void *c)
6319 {
6320 	struct detailed_mode_closure *closure = c;
6321 	struct drm_display_info *info = &closure->connector->display_info;
6322 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6323 	const struct detailed_non_pixel *data = &timing->data.other_data;
6324 	const struct detailed_data_monitor_range *range = &data->data.range;
6325 	const struct edid *edid = closure->drm_edid->edid;
6326 
6327 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6328 		return;
6329 
6330 	/*
6331 	 * These limits are used to determine the VRR refresh
6332 	 * rate range. Only the "range limits only" variant
6333 	 * of the range descriptor seems to guarantee that
6334 	 * any and all timings are accepted by the sink, as
6335 	 * opposed to just timings conforming to the indicated
6336 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6337 	 * range descriptor are not accepted here.
6338 	 */
6339 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6340 		return;
6341 
6342 	monitor_range->min_vfreq = range->min_vfreq;
6343 	monitor_range->max_vfreq = range->max_vfreq;
6344 
6345 	if (edid->revision >= 4) {
6346 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6347 			monitor_range->min_vfreq += 255;
6348 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6349 			monitor_range->max_vfreq += 255;
6350 	}
6351 }
6352 
6353 static void drm_get_monitor_range(struct drm_connector *connector,
6354 				  const struct drm_edid *drm_edid)
6355 {
6356 	const struct drm_display_info *info = &connector->display_info;
6357 	struct detailed_mode_closure closure = {
6358 		.connector = connector,
6359 		.drm_edid = drm_edid,
6360 	};
6361 
6362 	if (drm_edid->edid->revision < 4)
6363 		return;
6364 
6365 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6366 		return;
6367 
6368 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6369 
6370 	drm_dbg_kms(connector->dev,
6371 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6372 		    connector->base.id, connector->name,
6373 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6374 }
6375 
6376 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6377 				    const struct displayid_block *block)
6378 {
6379 	struct displayid_vesa_vendor_specific_block *vesa =
6380 		(struct displayid_vesa_vendor_specific_block *)block;
6381 	struct drm_display_info *info = &connector->display_info;
6382 
6383 	if (block->num_bytes < 3) {
6384 		drm_dbg_kms(connector->dev,
6385 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6386 			    connector->base.id, connector->name, block->num_bytes);
6387 		return;
6388 	}
6389 
6390 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6391 		return;
6392 
6393 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6394 		drm_dbg_kms(connector->dev,
6395 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6396 			    connector->base.id, connector->name);
6397 		return;
6398 	}
6399 
6400 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6401 	default:
6402 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6403 			    connector->base.id, connector->name);
6404 		fallthrough;
6405 	case 0:
6406 		info->mso_stream_count = 0;
6407 		break;
6408 	case 1:
6409 		info->mso_stream_count = 2; /* 2 or 4 links */
6410 		break;
6411 	case 2:
6412 		info->mso_stream_count = 4; /* 4 links */
6413 		break;
6414 	}
6415 
6416 	if (!info->mso_stream_count) {
6417 		info->mso_pixel_overlap = 0;
6418 		return;
6419 	}
6420 
6421 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6422 	if (info->mso_pixel_overlap > 8) {
6423 		drm_dbg_kms(connector->dev,
6424 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6425 			    connector->base.id, connector->name,
6426 			    info->mso_pixel_overlap);
6427 		info->mso_pixel_overlap = 8;
6428 	}
6429 
6430 	drm_dbg_kms(connector->dev,
6431 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6432 		    connector->base.id, connector->name,
6433 		    info->mso_stream_count, info->mso_pixel_overlap);
6434 }
6435 
6436 static void drm_update_mso(struct drm_connector *connector,
6437 			   const struct drm_edid *drm_edid)
6438 {
6439 	const struct displayid_block *block;
6440 	struct displayid_iter iter;
6441 
6442 	displayid_iter_edid_begin(drm_edid, &iter);
6443 	displayid_iter_for_each(block, &iter) {
6444 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6445 			drm_parse_vesa_mso_data(connector, block);
6446 	}
6447 	displayid_iter_end(&iter);
6448 }
6449 
6450 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6451  * all of the values which would have been set from EDID
6452  */
6453 static void drm_reset_display_info(struct drm_connector *connector)
6454 {
6455 	struct drm_display_info *info = &connector->display_info;
6456 
6457 	info->width_mm = 0;
6458 	info->height_mm = 0;
6459 
6460 	info->bpc = 0;
6461 	info->color_formats = 0;
6462 	info->cea_rev = 0;
6463 	info->max_tmds_clock = 0;
6464 	info->dvi_dual = false;
6465 	info->is_hdmi = false;
6466 	info->has_audio = false;
6467 	info->has_hdmi_infoframe = false;
6468 	info->rgb_quant_range_selectable = false;
6469 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6470 
6471 	info->edid_hdmi_rgb444_dc_modes = 0;
6472 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6473 
6474 	info->non_desktop = 0;
6475 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6476 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6477 
6478 	info->mso_stream_count = 0;
6479 	info->mso_pixel_overlap = 0;
6480 	info->max_dsc_bpp = 0;
6481 
6482 	kfree(info->vics);
6483 	info->vics = NULL;
6484 	info->vics_len = 0;
6485 
6486 	info->quirks = 0;
6487 
6488 	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6489 }
6490 
6491 static void update_displayid_info(struct drm_connector *connector,
6492 				  const struct drm_edid *drm_edid)
6493 {
6494 	struct drm_display_info *info = &connector->display_info;
6495 	const struct displayid_block *block;
6496 	struct displayid_iter iter;
6497 
6498 	displayid_iter_edid_begin(drm_edid, &iter);
6499 	displayid_iter_for_each(block, &iter) {
6500 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6501 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6502 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6503 			info->non_desktop = true;
6504 
6505 		/*
6506 		 * We're only interested in the base section here, no need to
6507 		 * iterate further.
6508 		 */
6509 		break;
6510 	}
6511 	displayid_iter_end(&iter);
6512 }
6513 
6514 static void update_display_info(struct drm_connector *connector,
6515 				const struct drm_edid *drm_edid)
6516 {
6517 	struct drm_display_info *info = &connector->display_info;
6518 	const struct edid *edid;
6519 
6520 	drm_reset_display_info(connector);
6521 	clear_eld(connector);
6522 
6523 	if (!drm_edid)
6524 		return;
6525 
6526 	edid = drm_edid->edid;
6527 
6528 	info->quirks = edid_get_quirks(drm_edid);
6529 
6530 	info->width_mm = edid->width_cm * 10;
6531 	info->height_mm = edid->height_cm * 10;
6532 
6533 	drm_get_monitor_range(connector, drm_edid);
6534 
6535 	if (edid->revision < 3)
6536 		goto out;
6537 
6538 	if (!drm_edid_is_digital(drm_edid))
6539 		goto out;
6540 
6541 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6542 	drm_parse_cea_ext(connector, drm_edid);
6543 
6544 	update_displayid_info(connector, drm_edid);
6545 
6546 	/*
6547 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6548 	 *
6549 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6550 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6551 	 * extensions which tell otherwise.
6552 	 */
6553 	if (info->bpc == 0 && edid->revision == 3 &&
6554 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6555 		info->bpc = 8;
6556 		drm_dbg_kms(connector->dev,
6557 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6558 			    connector->base.id, connector->name, info->bpc);
6559 	}
6560 
6561 	/* Only defined for 1.4 with digital displays */
6562 	if (edid->revision < 4)
6563 		goto out;
6564 
6565 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6566 	case DRM_EDID_DIGITAL_DEPTH_6:
6567 		info->bpc = 6;
6568 		break;
6569 	case DRM_EDID_DIGITAL_DEPTH_8:
6570 		info->bpc = 8;
6571 		break;
6572 	case DRM_EDID_DIGITAL_DEPTH_10:
6573 		info->bpc = 10;
6574 		break;
6575 	case DRM_EDID_DIGITAL_DEPTH_12:
6576 		info->bpc = 12;
6577 		break;
6578 	case DRM_EDID_DIGITAL_DEPTH_14:
6579 		info->bpc = 14;
6580 		break;
6581 	case DRM_EDID_DIGITAL_DEPTH_16:
6582 		info->bpc = 16;
6583 		break;
6584 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6585 	default:
6586 		info->bpc = 0;
6587 		break;
6588 	}
6589 
6590 	drm_dbg_kms(connector->dev,
6591 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6592 		    connector->base.id, connector->name, info->bpc);
6593 
6594 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6595 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6596 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6597 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6598 
6599 	drm_update_mso(connector, drm_edid);
6600 
6601 out:
6602 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6603 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6604 			    connector->base.id, connector->name,
6605 			    info->non_desktop ? " (redundant quirk)" : "");
6606 		info->non_desktop = true;
6607 	}
6608 
6609 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6610 		info->max_dsc_bpp = 15;
6611 
6612 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6613 		info->bpc = 6;
6614 
6615 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6616 		info->bpc = 8;
6617 
6618 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6619 		info->bpc = 10;
6620 
6621 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6622 		info->bpc = 12;
6623 
6624 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6625 	drm_edid_to_eld(connector, drm_edid);
6626 }
6627 
6628 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6629 							    struct displayid_detailed_timings_1 *timings,
6630 							    bool type_7)
6631 {
6632 	struct drm_display_mode *mode;
6633 	unsigned pixel_clock = (timings->pixel_clock[0] |
6634 				(timings->pixel_clock[1] << 8) |
6635 				(timings->pixel_clock[2] << 16)) + 1;
6636 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6637 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6638 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6639 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6640 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6641 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6642 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6643 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6644 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6645 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6646 
6647 	mode = drm_mode_create(dev);
6648 	if (!mode)
6649 		return NULL;
6650 
6651 	/* resolution is kHz for type VII, and 10 kHz for type I */
6652 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6653 	mode->hdisplay = hactive;
6654 	mode->hsync_start = mode->hdisplay + hsync;
6655 	mode->hsync_end = mode->hsync_start + hsync_width;
6656 	mode->htotal = mode->hdisplay + hblank;
6657 
6658 	mode->vdisplay = vactive;
6659 	mode->vsync_start = mode->vdisplay + vsync;
6660 	mode->vsync_end = mode->vsync_start + vsync_width;
6661 	mode->vtotal = mode->vdisplay + vblank;
6662 
6663 	mode->flags = 0;
6664 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6665 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6666 	mode->type = DRM_MODE_TYPE_DRIVER;
6667 
6668 	if (timings->flags & 0x80)
6669 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6670 	drm_mode_set_name(mode);
6671 
6672 	return mode;
6673 }
6674 
6675 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6676 					  const struct displayid_block *block)
6677 {
6678 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6679 	int i;
6680 	int num_timings;
6681 	struct drm_display_mode *newmode;
6682 	int num_modes = 0;
6683 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6684 	/* blocks must be multiple of 20 bytes length */
6685 	if (block->num_bytes % 20)
6686 		return 0;
6687 
6688 	num_timings = block->num_bytes / 20;
6689 	for (i = 0; i < num_timings; i++) {
6690 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6691 
6692 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6693 		if (!newmode)
6694 			continue;
6695 
6696 		drm_mode_probed_add(connector, newmode);
6697 		num_modes++;
6698 	}
6699 	return num_modes;
6700 }
6701 
6702 static int add_displayid_detailed_modes(struct drm_connector *connector,
6703 					const struct drm_edid *drm_edid)
6704 {
6705 	const struct displayid_block *block;
6706 	struct displayid_iter iter;
6707 	int num_modes = 0;
6708 
6709 	displayid_iter_edid_begin(drm_edid, &iter);
6710 	displayid_iter_for_each(block, &iter) {
6711 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6712 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6713 			num_modes += add_displayid_detailed_1_modes(connector, block);
6714 	}
6715 	displayid_iter_end(&iter);
6716 
6717 	return num_modes;
6718 }
6719 
6720 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6721 					 const struct drm_edid *drm_edid)
6722 {
6723 	const struct drm_display_info *info = &connector->display_info;
6724 	int num_modes = 0;
6725 
6726 	if (!drm_edid)
6727 		return 0;
6728 
6729 	/*
6730 	 * EDID spec says modes should be preferred in this order:
6731 	 * - preferred detailed mode
6732 	 * - other detailed modes from base block
6733 	 * - detailed modes from extension blocks
6734 	 * - CVT 3-byte code modes
6735 	 * - standard timing codes
6736 	 * - established timing codes
6737 	 * - modes inferred from GTF or CVT range information
6738 	 *
6739 	 * We get this pretty much right.
6740 	 *
6741 	 * XXX order for additional mode types in extension blocks?
6742 	 */
6743 	num_modes += add_detailed_modes(connector, drm_edid);
6744 	num_modes += add_cvt_modes(connector, drm_edid);
6745 	num_modes += add_standard_modes(connector, drm_edid);
6746 	num_modes += add_established_modes(connector, drm_edid);
6747 	num_modes += add_cea_modes(connector, drm_edid);
6748 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6749 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6750 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6751 		num_modes += add_inferred_modes(connector, drm_edid);
6752 
6753 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6754 		edid_fixup_preferred(connector);
6755 
6756 	return num_modes;
6757 }
6758 
6759 static void _drm_update_tile_info(struct drm_connector *connector,
6760 				  const struct drm_edid *drm_edid);
6761 
6762 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6763 					       const struct drm_edid *drm_edid)
6764 {
6765 	struct drm_device *dev = connector->dev;
6766 	int ret;
6767 
6768 	if (connector->edid_blob_ptr) {
6769 		const struct edid *old_edid = connector->edid_blob_ptr->data;
6770 
6771 		if (old_edid) {
6772 			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6773 				connector->epoch_counter++;
6774 				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6775 					    connector->base.id, connector->name,
6776 					    connector->epoch_counter);
6777 			}
6778 		}
6779 	}
6780 
6781 	ret = drm_property_replace_global_blob(dev,
6782 					       &connector->edid_blob_ptr,
6783 					       drm_edid ? drm_edid->size : 0,
6784 					       drm_edid ? drm_edid->edid : NULL,
6785 					       &connector->base,
6786 					       dev->mode_config.edid_property);
6787 	if (ret) {
6788 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6789 			    connector->base.id, connector->name, ret);
6790 		goto out;
6791 	}
6792 
6793 	ret = drm_object_property_set_value(&connector->base,
6794 					    dev->mode_config.non_desktop_property,
6795 					    connector->display_info.non_desktop);
6796 	if (ret) {
6797 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6798 			    connector->base.id, connector->name, ret);
6799 		goto out;
6800 	}
6801 
6802 	ret = drm_connector_set_tile_property(connector);
6803 	if (ret) {
6804 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6805 			    connector->base.id, connector->name, ret);
6806 		goto out;
6807 	}
6808 
6809 out:
6810 	return ret;
6811 }
6812 
6813 /**
6814  * drm_edid_connector_update - Update connector information from EDID
6815  * @connector: Connector
6816  * @drm_edid: EDID
6817  *
6818  * Update the connector display info, ELD, HDR metadata, relevant properties,
6819  * etc. from the passed in EDID.
6820  *
6821  * If EDID is NULL, reset the information.
6822  *
6823  * Must be called before calling drm_edid_connector_add_modes().
6824  *
6825  * Return: 0 on success, negative error on errors.
6826  */
6827 int drm_edid_connector_update(struct drm_connector *connector,
6828 			      const struct drm_edid *drm_edid)
6829 {
6830 	update_display_info(connector, drm_edid);
6831 
6832 	_drm_update_tile_info(connector, drm_edid);
6833 
6834 	return _drm_edid_connector_property_update(connector, drm_edid);
6835 }
6836 EXPORT_SYMBOL(drm_edid_connector_update);
6837 
6838 /**
6839  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6840  * @connector: Connector
6841  *
6842  * Add the modes from the previously updated EDID property to the connector
6843  * probed modes list.
6844  *
6845  * drm_edid_connector_update() must have been called before this to update the
6846  * EDID property.
6847  *
6848  * Return: The number of modes added, or 0 if we couldn't find any.
6849  */
6850 int drm_edid_connector_add_modes(struct drm_connector *connector)
6851 {
6852 	const struct drm_edid *drm_edid = NULL;
6853 	int count;
6854 
6855 	if (connector->edid_blob_ptr)
6856 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6857 					  connector->edid_blob_ptr->length);
6858 
6859 	count = _drm_edid_connector_add_modes(connector, drm_edid);
6860 
6861 	drm_edid_free(drm_edid);
6862 
6863 	return count;
6864 }
6865 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6866 
6867 /**
6868  * drm_connector_update_edid_property - update the edid property of a connector
6869  * @connector: drm connector
6870  * @edid: new value of the edid property
6871  *
6872  * This function creates a new blob modeset object and assigns its id to the
6873  * connector's edid property.
6874  * Since we also parse tile information from EDID's displayID block, we also
6875  * set the connector's tile property here. See drm_connector_set_tile_property()
6876  * for more details.
6877  *
6878  * This function is deprecated. Use drm_edid_connector_update() instead.
6879  *
6880  * Returns:
6881  * Zero on success, negative errno on failure.
6882  */
6883 int drm_connector_update_edid_property(struct drm_connector *connector,
6884 				       const struct edid *edid)
6885 {
6886 	struct drm_edid drm_edid;
6887 
6888 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6889 }
6890 EXPORT_SYMBOL(drm_connector_update_edid_property);
6891 
6892 /**
6893  * drm_add_edid_modes - add modes from EDID data, if available
6894  * @connector: connector we're probing
6895  * @edid: EDID data
6896  *
6897  * Add the specified modes to the connector's mode list. Also fills out the
6898  * &drm_display_info structure and ELD in @connector with any information which
6899  * can be derived from the edid.
6900  *
6901  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6902  *
6903  * Return: The number of modes added or 0 if we couldn't find any.
6904  */
6905 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6906 {
6907 	struct drm_edid _drm_edid;
6908 	const struct drm_edid *drm_edid;
6909 
6910 	if (edid && !drm_edid_is_valid(edid)) {
6911 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6912 			 connector->base.id, connector->name);
6913 		edid = NULL;
6914 	}
6915 
6916 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6917 
6918 	update_display_info(connector, drm_edid);
6919 
6920 	return _drm_edid_connector_add_modes(connector, drm_edid);
6921 }
6922 EXPORT_SYMBOL(drm_add_edid_modes);
6923 
6924 /**
6925  * drm_add_modes_noedid - add modes for the connectors without EDID
6926  * @connector: connector we're probing
6927  * @hdisplay: the horizontal display limit
6928  * @vdisplay: the vertical display limit
6929  *
6930  * Add the specified modes to the connector's mode list. Only when the
6931  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6932  *
6933  * Return: The number of modes added or 0 if we couldn't find any.
6934  */
6935 int drm_add_modes_noedid(struct drm_connector *connector,
6936 			int hdisplay, int vdisplay)
6937 {
6938 	int i, count, num_modes = 0;
6939 	struct drm_display_mode *mode;
6940 	struct drm_device *dev = connector->dev;
6941 
6942 	count = ARRAY_SIZE(drm_dmt_modes);
6943 	if (hdisplay < 0)
6944 		hdisplay = 0;
6945 	if (vdisplay < 0)
6946 		vdisplay = 0;
6947 
6948 	for (i = 0; i < count; i++) {
6949 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6950 
6951 		if (hdisplay && vdisplay) {
6952 			/*
6953 			 * Only when two are valid, they will be used to check
6954 			 * whether the mode should be added to the mode list of
6955 			 * the connector.
6956 			 */
6957 			if (ptr->hdisplay > hdisplay ||
6958 					ptr->vdisplay > vdisplay)
6959 				continue;
6960 		}
6961 		if (drm_mode_vrefresh(ptr) > 61)
6962 			continue;
6963 		mode = drm_mode_duplicate(dev, ptr);
6964 		if (mode) {
6965 			drm_mode_probed_add(connector, mode);
6966 			num_modes++;
6967 		}
6968 	}
6969 	return num_modes;
6970 }
6971 EXPORT_SYMBOL(drm_add_modes_noedid);
6972 
6973 /**
6974  * drm_set_preferred_mode - Sets the preferred mode of a connector
6975  * @connector: connector whose mode list should be processed
6976  * @hpref: horizontal resolution of preferred mode
6977  * @vpref: vertical resolution of preferred mode
6978  *
6979  * Marks a mode as preferred if it matches the resolution specified by @hpref
6980  * and @vpref.
6981  */
6982 void drm_set_preferred_mode(struct drm_connector *connector,
6983 			   int hpref, int vpref)
6984 {
6985 	struct drm_display_mode *mode;
6986 
6987 	list_for_each_entry(mode, &connector->probed_modes, head) {
6988 		if (mode->hdisplay == hpref &&
6989 		    mode->vdisplay == vpref)
6990 			mode->type |= DRM_MODE_TYPE_PREFERRED;
6991 	}
6992 }
6993 EXPORT_SYMBOL(drm_set_preferred_mode);
6994 
6995 static bool is_hdmi2_sink(const struct drm_connector *connector)
6996 {
6997 	/*
6998 	 * FIXME: sil-sii8620 doesn't have a connector around when
6999 	 * we need one, so we have to be prepared for a NULL connector.
7000 	 */
7001 	if (!connector)
7002 		return true;
7003 
7004 	return connector->display_info.hdmi.scdc.supported ||
7005 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7006 }
7007 
7008 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7009 			    const struct drm_display_mode *mode)
7010 {
7011 	bool has_hdmi_infoframe = connector ?
7012 		connector->display_info.has_hdmi_infoframe : false;
7013 
7014 	if (!has_hdmi_infoframe)
7015 		return 0;
7016 
7017 	/* No HDMI VIC when signalling 3D video format */
7018 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7019 		return 0;
7020 
7021 	return drm_match_hdmi_mode(mode);
7022 }
7023 
7024 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7025 			   const struct drm_display_mode *mode)
7026 {
7027 	/*
7028 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7029 	 * we should send its VIC in vendor infoframes, else send the
7030 	 * VIC in AVI infoframes. Lets check if this mode is present in
7031 	 * HDMI 1.4b 4K modes
7032 	 */
7033 	if (drm_mode_hdmi_vic(connector, mode))
7034 		return 0;
7035 
7036 	return drm_match_cea_mode(mode);
7037 }
7038 
7039 /*
7040  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7041  * conform to HDMI 1.4.
7042  *
7043  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7044  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7045  *
7046  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7047  * version.
7048  */
7049 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7050 {
7051 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7052 	    !cta_vdb_has_vic(connector, vic))
7053 		return 0;
7054 
7055 	return vic;
7056 }
7057 
7058 /**
7059  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7060  *                                              data from a DRM display mode
7061  * @frame: HDMI AVI infoframe
7062  * @connector: the connector
7063  * @mode: DRM display mode
7064  *
7065  * Return: 0 on success or a negative error code on failure.
7066  */
7067 int
7068 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7069 					 const struct drm_connector *connector,
7070 					 const struct drm_display_mode *mode)
7071 {
7072 	enum hdmi_picture_aspect picture_aspect;
7073 	u8 vic, hdmi_vic;
7074 
7075 	if (!frame || !mode)
7076 		return -EINVAL;
7077 
7078 	hdmi_avi_infoframe_init(frame);
7079 
7080 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7081 		frame->pixel_repeat = 1;
7082 
7083 	vic = drm_mode_cea_vic(connector, mode);
7084 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7085 
7086 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7087 
7088 	/*
7089 	 * As some drivers don't support atomic, we can't use connector state.
7090 	 * So just initialize the frame with default values, just the same way
7091 	 * as it's done with other properties here.
7092 	 */
7093 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7094 	frame->itc = 0;
7095 
7096 	/*
7097 	 * Populate picture aspect ratio from either
7098 	 * user input (if specified) or from the CEA/HDMI mode lists.
7099 	 */
7100 	picture_aspect = mode->picture_aspect_ratio;
7101 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7102 		if (vic)
7103 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7104 		else if (hdmi_vic)
7105 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7106 	}
7107 
7108 	/*
7109 	 * The infoframe can't convey anything but none, 4:3
7110 	 * and 16:9, so if the user has asked for anything else
7111 	 * we can only satisfy it by specifying the right VIC.
7112 	 */
7113 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7114 		if (vic) {
7115 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7116 				return -EINVAL;
7117 		} else if (hdmi_vic) {
7118 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7119 				return -EINVAL;
7120 		} else {
7121 			return -EINVAL;
7122 		}
7123 
7124 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7125 	}
7126 
7127 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7128 	frame->picture_aspect = picture_aspect;
7129 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7130 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7131 
7132 	return 0;
7133 }
7134 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7135 
7136 /**
7137  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7138  *                                        quantization range information
7139  * @frame: HDMI AVI infoframe
7140  * @connector: the connector
7141  * @mode: DRM display mode
7142  * @rgb_quant_range: RGB quantization range (Q)
7143  */
7144 void
7145 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7146 				   const struct drm_connector *connector,
7147 				   const struct drm_display_mode *mode,
7148 				   enum hdmi_quantization_range rgb_quant_range)
7149 {
7150 	const struct drm_display_info *info = &connector->display_info;
7151 
7152 	/*
7153 	 * CEA-861:
7154 	 * "A Source shall not send a non-zero Q value that does not correspond
7155 	 *  to the default RGB Quantization Range for the transmitted Picture
7156 	 *  unless the Sink indicates support for the Q bit in a Video
7157 	 *  Capabilities Data Block."
7158 	 *
7159 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7160 	 * default RGB quantization range for the mode, even when QS=0.
7161 	 */
7162 	if (info->rgb_quant_range_selectable ||
7163 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7164 		frame->quantization_range = rgb_quant_range;
7165 	else
7166 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7167 
7168 	/*
7169 	 * CEA-861-F:
7170 	 * "When transmitting any RGB colorimetry, the Source should set the
7171 	 *  YQ-field to match the RGB Quantization Range being transmitted
7172 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7173 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7174 	 *
7175 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7176 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7177 	 * good way to tell which version of CEA-861 the sink supports, so
7178 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7179 	 * on CEA-861-F.
7180 	 */
7181 	if (!is_hdmi2_sink(connector) ||
7182 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7183 		frame->ycc_quantization_range =
7184 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7185 	else
7186 		frame->ycc_quantization_range =
7187 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7188 }
7189 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7190 
7191 static enum hdmi_3d_structure
7192 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7193 {
7194 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7195 
7196 	switch (layout) {
7197 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7198 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7199 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7200 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7201 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7202 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7203 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7204 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7205 	case DRM_MODE_FLAG_3D_L_DEPTH:
7206 		return HDMI_3D_STRUCTURE_L_DEPTH;
7207 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7208 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7209 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7210 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7211 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7212 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7213 	default:
7214 		return HDMI_3D_STRUCTURE_INVALID;
7215 	}
7216 }
7217 
7218 /**
7219  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7220  * data from a DRM display mode
7221  * @frame: HDMI vendor infoframe
7222  * @connector: the connector
7223  * @mode: DRM display mode
7224  *
7225  * Note that there's is a need to send HDMI vendor infoframes only when using a
7226  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7227  * function will return -EINVAL, error that can be safely ignored.
7228  *
7229  * Return: 0 on success or a negative error code on failure.
7230  */
7231 int
7232 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7233 					    const struct drm_connector *connector,
7234 					    const struct drm_display_mode *mode)
7235 {
7236 	/*
7237 	 * FIXME: sil-sii8620 doesn't have a connector around when
7238 	 * we need one, so we have to be prepared for a NULL connector.
7239 	 */
7240 	bool has_hdmi_infoframe = connector ?
7241 		connector->display_info.has_hdmi_infoframe : false;
7242 	int err;
7243 
7244 	if (!frame || !mode)
7245 		return -EINVAL;
7246 
7247 	if (!has_hdmi_infoframe)
7248 		return -EINVAL;
7249 
7250 	err = hdmi_vendor_infoframe_init(frame);
7251 	if (err < 0)
7252 		return err;
7253 
7254 	/*
7255 	 * Even if it's not absolutely necessary to send the infoframe
7256 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7257 	 * know that the sink can handle it. This is based on a
7258 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7259 	 * have trouble realizing that they should switch from 3D to 2D
7260 	 * mode if the source simply stops sending the infoframe when
7261 	 * it wants to switch from 3D to 2D.
7262 	 */
7263 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7264 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7265 
7266 	return 0;
7267 }
7268 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7269 
7270 static void drm_parse_tiled_block(struct drm_connector *connector,
7271 				  const struct displayid_block *block)
7272 {
7273 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7274 	u16 w, h;
7275 	u8 tile_v_loc, tile_h_loc;
7276 	u8 num_v_tile, num_h_tile;
7277 	struct drm_tile_group *tg;
7278 
7279 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7280 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7281 
7282 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7283 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7284 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7285 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7286 
7287 	connector->has_tile = true;
7288 	if (tile->tile_cap & 0x80)
7289 		connector->tile_is_single_monitor = true;
7290 
7291 	connector->num_h_tile = num_h_tile + 1;
7292 	connector->num_v_tile = num_v_tile + 1;
7293 	connector->tile_h_loc = tile_h_loc;
7294 	connector->tile_v_loc = tile_v_loc;
7295 	connector->tile_h_size = w + 1;
7296 	connector->tile_v_size = h + 1;
7297 
7298 	drm_dbg_kms(connector->dev,
7299 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7300 		    connector->base.id, connector->name,
7301 		    tile->tile_cap,
7302 		    connector->tile_h_size, connector->tile_v_size,
7303 		    connector->num_h_tile, connector->num_v_tile,
7304 		    connector->tile_h_loc, connector->tile_v_loc,
7305 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7306 
7307 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7308 	if (!tg)
7309 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7310 	if (!tg)
7311 		return;
7312 
7313 	if (connector->tile_group != tg) {
7314 		/* if we haven't got a pointer,
7315 		   take the reference, drop ref to old tile group */
7316 		if (connector->tile_group)
7317 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7318 		connector->tile_group = tg;
7319 	} else {
7320 		/* if same tile group, then release the ref we just took. */
7321 		drm_mode_put_tile_group(connector->dev, tg);
7322 	}
7323 }
7324 
7325 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7326 				     const struct displayid_block *block)
7327 {
7328 	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7329 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7330 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7331 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7332 }
7333 
7334 static void _drm_update_tile_info(struct drm_connector *connector,
7335 				  const struct drm_edid *drm_edid)
7336 {
7337 	const struct displayid_block *block;
7338 	struct displayid_iter iter;
7339 
7340 	connector->has_tile = false;
7341 
7342 	displayid_iter_edid_begin(drm_edid, &iter);
7343 	displayid_iter_for_each(block, &iter) {
7344 		if (displayid_is_tiled_block(&iter, block))
7345 			drm_parse_tiled_block(connector, block);
7346 	}
7347 	displayid_iter_end(&iter);
7348 
7349 	if (!connector->has_tile && connector->tile_group) {
7350 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7351 		connector->tile_group = NULL;
7352 	}
7353 }
7354 
7355 /**
7356  * drm_edid_is_digital - is digital?
7357  * @drm_edid: The EDID
7358  *
7359  * Return true if input is digital.
7360  */
7361 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7362 {
7363 	return drm_edid && drm_edid->edid &&
7364 		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7365 }
7366 EXPORT_SYMBOL(drm_edid_is_digital);
7367