xref: /linux/drivers/gpu/drm/drm_edid.c (revision ab779466166348eecf17d20f620aa9a47965c934)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/cec.h>
33 #include <linux/hdmi.h>
34 #include <linux/i2c.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/slab.h>
39 #include <linux/vga_switcheroo.h>
40 
41 #include <drm/drm_displayid.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_edid.h>
44 #include <drm/drm_eld.h>
45 #include <drm/drm_encoder.h>
46 #include <drm/drm_print.h>
47 
48 #include "drm_crtc_internal.h"
49 #include "drm_internal.h"
50 
51 static int oui(u8 first, u8 second, u8 third)
52 {
53 	return (first << 16) | (second << 8) | third;
54 }
55 
56 #define EDID_EST_TIMINGS 16
57 #define EDID_STD_TIMINGS 8
58 #define EDID_DETAILED_TIMINGS 4
59 
60 /*
61  * EDID blocks out in the wild have a variety of bugs, try to collect
62  * them here (note that userspace may work around broken monitors first,
63  * but fixes should make their way here so that the kernel "just works"
64  * on as many displays as possible).
65  */
66 
67 /* First detailed mode wrong, use largest 60Hz mode */
68 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
69 /* Reported 135MHz pixel clock is too high, needs adjustment */
70 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
71 /* Prefer the largest mode at 75 Hz */
72 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
73 /* Detail timing is in cm not mm */
74 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
75 /* Detailed timing descriptors have bogus size values, so just take the
76  * maximum size and use that.
77  */
78 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
79 /* use +hsync +vsync for detailed mode */
80 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
81 /* Force reduced-blanking timings for detailed modes */
82 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
83 /* Force 8bpc */
84 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
85 /* Force 12bpc */
86 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
87 /* Force 6bpc */
88 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
89 /* Force 10bpc */
90 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
91 /* Non desktop display (i.e. HMD) */
92 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
93 /* Cap the DSC target bitrate to 15bpp */
94 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
95 
96 #define MICROSOFT_IEEE_OUI	0xca125c
97 
98 struct detailed_mode_closure {
99 	struct drm_connector *connector;
100 	const struct drm_edid *drm_edid;
101 	bool preferred;
102 	int modes;
103 };
104 
105 #define LEVEL_DMT	0
106 #define LEVEL_GTF	1
107 #define LEVEL_GTF2	2
108 #define LEVEL_CVT	3
109 
110 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
111 { \
112 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
113 					     product_id), \
114 	.quirks = _quirks \
115 }
116 
117 static const struct edid_quirk {
118 	u32 panel_id;
119 	u32 quirks;
120 } edid_quirk_list[] = {
121 	/* Acer AL1706 */
122 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
123 	/* Acer F51 */
124 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
125 
126 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
128 
129 	/* BenQ GW2765 */
130 	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
131 
132 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
134 
135 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
137 
138 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
140 
141 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
143 
144 	/* Belinea 10 15 55 */
145 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
147 
148 	/* Envision Peripherals, Inc. EN-7100e */
149 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150 	/* Envision EN2028 */
151 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
152 
153 	/* Funai Electronics PM36B */
154 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155 				       EDID_QUIRK_DETAILED_IN_CM),
156 
157 	/* LG 27GP950 */
158 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
159 
160 	/* LG 27GN950 */
161 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
162 
163 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
165 
166 	/* LG Philips LCD LP154W01-A5 */
167 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
169 
170 	/* Samsung SyncMaster 205BW.  Note: irony */
171 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172 	/* Samsung SyncMaster 22[5-6]BW */
173 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
175 
176 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
178 
179 	/* ViewSonic VA2026w */
180 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
181 
182 	/* Medion MD 30217 PG */
183 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
184 
185 	/* Lenovo G50 */
186 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
187 
188 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
190 
191 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
193 
194 	/* Valve Index Headset */
195 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
212 
213 	/* HTC Vive and Vive Pro VR Headsets */
214 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
216 
217 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
222 
223 	/* Windows Mixed Reality Headsets */
224 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
230 
231 	/* Sony PlayStation VR Headset */
232 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
233 
234 	/* Sensics VR Headsets */
235 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
236 
237 	/* OSVR HDK and HDK2 VR Headsets */
238 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239 	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
240 };
241 
242 /*
243  * Autogenerated from the DMT spec.
244  * This table is copied from xfree86/modes/xf86EdidModes.c.
245  */
246 static const struct drm_display_mode drm_dmt_modes[] = {
247 	/* 0x01 - 640x350@85Hz */
248 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249 		   736, 832, 0, 350, 382, 385, 445, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 	/* 0x02 - 640x400@85Hz */
252 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253 		   736, 832, 0, 400, 401, 404, 445, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 	/* 0x03 - 720x400@85Hz */
256 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257 		   828, 936, 0, 400, 401, 404, 446, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 0x04 - 640x480@60Hz */
260 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261 		   752, 800, 0, 480, 490, 492, 525, 0,
262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 0x05 - 640x480@72Hz */
264 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265 		   704, 832, 0, 480, 489, 492, 520, 0,
266 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 	/* 0x06 - 640x480@75Hz */
268 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269 		   720, 840, 0, 480, 481, 484, 500, 0,
270 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 	/* 0x07 - 640x480@85Hz */
272 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273 		   752, 832, 0, 480, 481, 484, 509, 0,
274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 0x08 - 800x600@56Hz */
276 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277 		   896, 1024, 0, 600, 601, 603, 625, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 0x09 - 800x600@60Hz */
280 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281 		   968, 1056, 0, 600, 601, 605, 628, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 0x0a - 800x600@72Hz */
284 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285 		   976, 1040, 0, 600, 637, 643, 666, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 	/* 0x0b - 800x600@75Hz */
288 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289 		   896, 1056, 0, 600, 601, 604, 625, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 	/* 0x0c - 800x600@85Hz */
292 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293 		   896, 1048, 0, 600, 601, 604, 631, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 0x0d - 800x600@120Hz RB */
296 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297 		   880, 960, 0, 600, 603, 607, 636, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 	/* 0x0e - 848x480@60Hz */
300 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301 		   976, 1088, 0, 480, 486, 494, 517, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 	/* 0x0f - 1024x768@43Hz, interlace */
304 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305 		   1208, 1264, 0, 768, 768, 776, 817, 0,
306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307 		   DRM_MODE_FLAG_INTERLACE) },
308 	/* 0x10 - 1024x768@60Hz */
309 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310 		   1184, 1344, 0, 768, 771, 777, 806, 0,
311 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 	/* 0x11 - 1024x768@70Hz */
313 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314 		   1184, 1328, 0, 768, 771, 777, 806, 0,
315 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 	/* 0x12 - 1024x768@75Hz */
317 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318 		   1136, 1312, 0, 768, 769, 772, 800, 0,
319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 	/* 0x13 - 1024x768@85Hz */
321 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322 		   1168, 1376, 0, 768, 769, 772, 808, 0,
323 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 	/* 0x14 - 1024x768@120Hz RB */
325 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326 		   1104, 1184, 0, 768, 771, 775, 813, 0,
327 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 	/* 0x15 - 1152x864@75Hz */
329 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330 		   1344, 1600, 0, 864, 865, 868, 900, 0,
331 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 	/* 0x55 - 1280x720@60Hz */
333 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334 		   1430, 1650, 0, 720, 725, 730, 750, 0,
335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 	/* 0x16 - 1280x768@60Hz RB */
337 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338 		   1360, 1440, 0, 768, 771, 778, 790, 0,
339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340 	/* 0x17 - 1280x768@60Hz */
341 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342 		   1472, 1664, 0, 768, 771, 778, 798, 0,
343 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 	/* 0x18 - 1280x768@75Hz */
345 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346 		   1488, 1696, 0, 768, 771, 778, 805, 0,
347 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 	/* 0x19 - 1280x768@85Hz */
349 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350 		   1496, 1712, 0, 768, 771, 778, 809, 0,
351 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 0x1a - 1280x768@120Hz RB */
353 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354 		   1360, 1440, 0, 768, 771, 778, 813, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356 	/* 0x1b - 1280x800@60Hz RB */
357 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358 		   1360, 1440, 0, 800, 803, 809, 823, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 	/* 0x1c - 1280x800@60Hz */
361 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362 		   1480, 1680, 0, 800, 803, 809, 831, 0,
363 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 	/* 0x1d - 1280x800@75Hz */
365 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366 		   1488, 1696, 0, 800, 803, 809, 838, 0,
367 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 	/* 0x1e - 1280x800@85Hz */
369 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370 		   1496, 1712, 0, 800, 803, 809, 843, 0,
371 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 	/* 0x1f - 1280x800@120Hz RB */
373 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374 		   1360, 1440, 0, 800, 803, 809, 847, 0,
375 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 	/* 0x20 - 1280x960@60Hz */
377 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 	/* 0x21 - 1280x960@85Hz */
381 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
383 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 0x22 - 1280x960@120Hz RB */
385 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
387 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 	/* 0x23 - 1280x1024@60Hz */
389 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 	/* 0x24 - 1280x1024@75Hz */
393 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 	/* 0x25 - 1280x1024@85Hz */
397 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 	/* 0x26 - 1280x1024@120Hz RB */
401 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 	/* 0x27 - 1360x768@60Hz */
405 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406 		   1536, 1792, 0, 768, 771, 777, 795, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 	/* 0x28 - 1360x768@120Hz RB */
409 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410 		   1440, 1520, 0, 768, 771, 776, 813, 0,
411 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 	/* 0x51 - 1366x768@60Hz */
413 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414 		   1579, 1792, 0, 768, 771, 774, 798, 0,
415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 	/* 0x56 - 1366x768@60Hz */
417 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418 		   1436, 1500, 0, 768, 769, 772, 800, 0,
419 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 0x29 - 1400x1050@60Hz RB */
421 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 	/* 0x2a - 1400x1050@60Hz */
425 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 0x2b - 1400x1050@75Hz */
429 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 	/* 0x2c - 1400x1050@85Hz */
433 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 	/* 0x2d - 1400x1050@120Hz RB */
437 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 	/* 0x2e - 1440x900@60Hz RB */
441 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442 		   1520, 1600, 0, 900, 903, 909, 926, 0,
443 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 	/* 0x2f - 1440x900@60Hz */
445 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446 		   1672, 1904, 0, 900, 903, 909, 934, 0,
447 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 	/* 0x30 - 1440x900@75Hz */
449 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450 		   1688, 1936, 0, 900, 903, 909, 942, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 0x31 - 1440x900@85Hz */
453 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454 		   1696, 1952, 0, 900, 903, 909, 948, 0,
455 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 	/* 0x32 - 1440x900@120Hz RB */
457 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458 		   1520, 1600, 0, 900, 903, 909, 953, 0,
459 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 	/* 0x53 - 1600x900@60Hz */
461 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 	/* 0x33 - 1600x1200@60Hz */
465 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 	/* 0x34 - 1600x1200@65Hz */
469 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 	/* 0x35 - 1600x1200@70Hz */
473 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 	/* 0x36 - 1600x1200@75Hz */
477 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 	/* 0x37 - 1600x1200@85Hz */
481 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 	/* 0x38 - 1600x1200@120Hz RB */
485 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 	/* 0x39 - 1680x1050@60Hz RB */
489 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 	/* 0x3a - 1680x1050@60Hz */
493 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 	/* 0x3b - 1680x1050@75Hz */
497 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 	/* 0x3c - 1680x1050@85Hz */
501 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 	/* 0x3d - 1680x1050@120Hz RB */
505 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 	/* 0x3e - 1792x1344@60Hz */
509 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512 	/* 0x3f - 1792x1344@75Hz */
513 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 	/* 0x40 - 1792x1344@120Hz RB */
517 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 	/* 0x41 - 1856x1392@60Hz */
521 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 	/* 0x42 - 1856x1392@75Hz */
525 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 	/* 0x43 - 1856x1392@120Hz RB */
529 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 	/* 0x52 - 1920x1080@60Hz */
533 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536 	/* 0x44 - 1920x1200@60Hz RB */
537 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 	/* 0x45 - 1920x1200@60Hz */
541 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 	/* 0x46 - 1920x1200@75Hz */
545 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 	/* 0x47 - 1920x1200@85Hz */
549 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552 	/* 0x48 - 1920x1200@120Hz RB */
553 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 	/* 0x49 - 1920x1440@60Hz */
557 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560 	/* 0x4a - 1920x1440@75Hz */
561 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 	/* 0x4b - 1920x1440@120Hz RB */
565 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568 	/* 0x54 - 2048x1152@60Hz */
569 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 	/* 0x4c - 2560x1600@60Hz RB */
573 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 	/* 0x4d - 2560x1600@60Hz */
577 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 	/* 0x4e - 2560x1600@75Hz */
581 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 	/* 0x4f - 2560x1600@85Hz */
585 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588 	/* 0x50 - 2560x1600@120Hz RB */
589 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592 	/* 0x57 - 4096x2160@60Hz RB */
593 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596 	/* 0x58 - 4096x2160@59.94Hz RB */
597 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
600 };
601 
602 /*
603  * These more or less come from the DMT spec.  The 720x400 modes are
604  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
605  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
606  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
607  * mode.
608  *
609  * The DMT modes have been fact-checked; the rest are mild guesses.
610  */
611 static const struct drm_display_mode edid_est_modes[] = {
612 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613 		   968, 1056, 0, 600, 601, 605, 628, 0,
614 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616 		   896, 1024, 0, 600, 601, 603,  625, 0,
617 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619 		   720, 840, 0, 480, 481, 484, 500, 0,
620 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622 		   704,  832, 0, 480, 489, 492, 520, 0,
623 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625 		   768,  864, 0, 480, 483, 486, 525, 0,
626 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628 		   752, 800, 0, 480, 490, 492, 525, 0,
629 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631 		   846, 900, 0, 400, 421, 423,  449, 0,
632 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634 		   846,  900, 0, 400, 412, 414, 449, 0,
635 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640 		   1136, 1312, 0,  768, 769, 772, 800, 0,
641 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643 		   1184, 1328, 0,  768, 771, 777, 806, 0,
644 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646 		   1184, 1344, 0,  768, 771, 777, 806, 0,
647 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649 		   1208, 1264, 0, 768, 768, 776, 817, 0,
650 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652 		   928, 1152, 0, 624, 625, 628, 667, 0,
653 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655 		   896, 1056, 0, 600, 601, 604,  625, 0,
656 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658 		   976, 1040, 0, 600, 637, 643, 666, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661 		   1344, 1600, 0,  864, 865, 868, 900, 0,
662 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
663 };
664 
665 struct minimode {
666 	short w;
667 	short h;
668 	short r;
669 	short rb;
670 };
671 
672 static const struct minimode est3_modes[] = {
673 	/* byte 6 */
674 	{ 640, 350, 85, 0 },
675 	{ 640, 400, 85, 0 },
676 	{ 720, 400, 85, 0 },
677 	{ 640, 480, 85, 0 },
678 	{ 848, 480, 60, 0 },
679 	{ 800, 600, 85, 0 },
680 	{ 1024, 768, 85, 0 },
681 	{ 1152, 864, 75, 0 },
682 	/* byte 7 */
683 	{ 1280, 768, 60, 1 },
684 	{ 1280, 768, 60, 0 },
685 	{ 1280, 768, 75, 0 },
686 	{ 1280, 768, 85, 0 },
687 	{ 1280, 960, 60, 0 },
688 	{ 1280, 960, 85, 0 },
689 	{ 1280, 1024, 60, 0 },
690 	{ 1280, 1024, 85, 0 },
691 	/* byte 8 */
692 	{ 1360, 768, 60, 0 },
693 	{ 1440, 900, 60, 1 },
694 	{ 1440, 900, 60, 0 },
695 	{ 1440, 900, 75, 0 },
696 	{ 1440, 900, 85, 0 },
697 	{ 1400, 1050, 60, 1 },
698 	{ 1400, 1050, 60, 0 },
699 	{ 1400, 1050, 75, 0 },
700 	/* byte 9 */
701 	{ 1400, 1050, 85, 0 },
702 	{ 1680, 1050, 60, 1 },
703 	{ 1680, 1050, 60, 0 },
704 	{ 1680, 1050, 75, 0 },
705 	{ 1680, 1050, 85, 0 },
706 	{ 1600, 1200, 60, 0 },
707 	{ 1600, 1200, 65, 0 },
708 	{ 1600, 1200, 70, 0 },
709 	/* byte 10 */
710 	{ 1600, 1200, 75, 0 },
711 	{ 1600, 1200, 85, 0 },
712 	{ 1792, 1344, 60, 0 },
713 	{ 1792, 1344, 75, 0 },
714 	{ 1856, 1392, 60, 0 },
715 	{ 1856, 1392, 75, 0 },
716 	{ 1920, 1200, 60, 1 },
717 	{ 1920, 1200, 60, 0 },
718 	/* byte 11 */
719 	{ 1920, 1200, 75, 0 },
720 	{ 1920, 1200, 85, 0 },
721 	{ 1920, 1440, 60, 0 },
722 	{ 1920, 1440, 75, 0 },
723 };
724 
725 static const struct minimode extra_modes[] = {
726 	{ 1024, 576,  60, 0 },
727 	{ 1366, 768,  60, 0 },
728 	{ 1600, 900,  60, 0 },
729 	{ 1680, 945,  60, 0 },
730 	{ 1920, 1080, 60, 0 },
731 	{ 2048, 1152, 60, 0 },
732 	{ 2048, 1536, 60, 0 },
733 };
734 
735 /*
736  * From CEA/CTA-861 spec.
737  *
738  * Do not access directly, instead always use cea_mode_for_vic().
739  */
740 static const struct drm_display_mode edid_cea_modes_1[] = {
741 	/* 1 - 640x480@60Hz 4:3 */
742 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743 		   752, 800, 0, 480, 490, 492, 525, 0,
744 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 	/* 2 - 720x480@60Hz 4:3 */
747 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748 		   798, 858, 0, 480, 489, 495, 525, 0,
749 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 	/* 3 - 720x480@60Hz 16:9 */
752 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753 		   798, 858, 0, 480, 489, 495, 525, 0,
754 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 	/* 4 - 1280x720@60Hz 16:9 */
757 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758 		   1430, 1650, 0, 720, 725, 730, 750, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 	/* 5 - 1920x1080i@60Hz 16:9 */
762 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 		   DRM_MODE_FLAG_INTERLACE),
766 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 	/* 6 - 720(1440)x480i@60Hz 4:3 */
768 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 		   801, 858, 0, 480, 488, 494, 525, 0,
770 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773 	/* 7 - 720(1440)x480i@60Hz 16:9 */
774 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 		   801, 858, 0, 480, 488, 494, 525, 0,
776 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779 	/* 8 - 720(1440)x240@60Hz 4:3 */
780 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 		   801, 858, 0, 240, 244, 247, 262, 0,
782 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 		   DRM_MODE_FLAG_DBLCLK),
784 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785 	/* 9 - 720(1440)x240@60Hz 16:9 */
786 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787 		   801, 858, 0, 240, 244, 247, 262, 0,
788 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 		   DRM_MODE_FLAG_DBLCLK),
790 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 	/* 10 - 2880x480i@60Hz 4:3 */
792 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 		   3204, 3432, 0, 480, 488, 494, 525, 0,
794 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 		   DRM_MODE_FLAG_INTERLACE),
796 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797 	/* 11 - 2880x480i@60Hz 16:9 */
798 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 		   3204, 3432, 0, 480, 488, 494, 525, 0,
800 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801 		   DRM_MODE_FLAG_INTERLACE),
802 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 	/* 12 - 2880x240@60Hz 4:3 */
804 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805 		   3204, 3432, 0, 240, 244, 247, 262, 0,
806 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 	/* 13 - 2880x240@60Hz 16:9 */
809 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810 		   3204, 3432, 0, 240, 244, 247, 262, 0,
811 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 	/* 14 - 1440x480@60Hz 4:3 */
814 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815 		   1596, 1716, 0, 480, 489, 495, 525, 0,
816 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 	/* 15 - 1440x480@60Hz 16:9 */
819 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820 		   1596, 1716, 0, 480, 489, 495, 525, 0,
821 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 	/* 16 - 1920x1080@60Hz 16:9 */
824 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 	/* 17 - 720x576@50Hz 4:3 */
829 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830 		   796, 864, 0, 576, 581, 586, 625, 0,
831 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 	/* 18 - 720x576@50Hz 16:9 */
834 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835 		   796, 864, 0, 576, 581, 586, 625, 0,
836 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 	/* 19 - 1280x720@50Hz 16:9 */
839 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840 		   1760, 1980, 0, 720, 725, 730, 750, 0,
841 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 	/* 20 - 1920x1080i@50Hz 16:9 */
844 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847 		   DRM_MODE_FLAG_INTERLACE),
848 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 21 - 720(1440)x576i@50Hz 4:3 */
850 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 		   795, 864, 0, 576, 580, 586, 625, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855 	/* 22 - 720(1440)x576i@50Hz 16:9 */
856 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 		   795, 864, 0, 576, 580, 586, 625, 0,
858 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 	/* 23 - 720(1440)x288@50Hz 4:3 */
862 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 		   795, 864, 0, 288, 290, 293, 312, 0,
864 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 		   DRM_MODE_FLAG_DBLCLK),
866 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867 	/* 24 - 720(1440)x288@50Hz 16:9 */
868 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869 		   795, 864, 0, 288, 290, 293, 312, 0,
870 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 		   DRM_MODE_FLAG_DBLCLK),
872 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 	/* 25 - 2880x576i@50Hz 4:3 */
874 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 		   3180, 3456, 0, 576, 580, 586, 625, 0,
876 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 		   DRM_MODE_FLAG_INTERLACE),
878 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 	/* 26 - 2880x576i@50Hz 16:9 */
880 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 		   3180, 3456, 0, 576, 580, 586, 625, 0,
882 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 		   DRM_MODE_FLAG_INTERLACE),
884 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 	/* 27 - 2880x288@50Hz 4:3 */
886 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887 		   3180, 3456, 0, 288, 290, 293, 312, 0,
888 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 	/* 28 - 2880x288@50Hz 16:9 */
891 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892 		   3180, 3456, 0, 288, 290, 293, 312, 0,
893 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 	/* 29 - 1440x576@50Hz 4:3 */
896 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897 		   1592, 1728, 0, 576, 581, 586, 625, 0,
898 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900 	/* 30 - 1440x576@50Hz 16:9 */
901 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902 		   1592, 1728, 0, 576, 581, 586, 625, 0,
903 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 	/* 31 - 1920x1080@50Hz 16:9 */
906 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 	/* 32 - 1920x1080@24Hz 16:9 */
911 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 	/* 33 - 1920x1080@25Hz 16:9 */
916 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920 	/* 34 - 1920x1080@30Hz 16:9 */
921 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 	/* 35 - 2880x480@60Hz 4:3 */
926 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927 		   3192, 3432, 0, 480, 489, 495, 525, 0,
928 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930 	/* 36 - 2880x480@60Hz 16:9 */
931 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932 		   3192, 3432, 0, 480, 489, 495, 525, 0,
933 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 	/* 37 - 2880x576@50Hz 4:3 */
936 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937 		   3184, 3456, 0, 576, 581, 586, 625, 0,
938 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 	/* 38 - 2880x576@50Hz 16:9 */
941 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942 		   3184, 3456, 0, 576, 581, 586, 625, 0,
943 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 	/* 39 - 1920x1080i@50Hz 16:9 */
946 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949 		   DRM_MODE_FLAG_INTERLACE),
950 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 	/* 40 - 1920x1080i@100Hz 16:9 */
952 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955 		   DRM_MODE_FLAG_INTERLACE),
956 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957 	/* 41 - 1280x720@100Hz 16:9 */
958 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959 		   1760, 1980, 0, 720, 725, 730, 750, 0,
960 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 	/* 42 - 720x576@100Hz 4:3 */
963 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 		   796, 864, 0, 576, 581, 586, 625, 0,
965 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 	/* 43 - 720x576@100Hz 16:9 */
968 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969 		   796, 864, 0, 576, 581, 586, 625, 0,
970 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 	/* 44 - 720(1440)x576i@100Hz 4:3 */
973 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 		   795, 864, 0, 576, 580, 586, 625, 0,
975 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 	/* 45 - 720(1440)x576i@100Hz 16:9 */
979 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980 		   795, 864, 0, 576, 580, 586, 625, 0,
981 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 	/* 46 - 1920x1080i@120Hz 16:9 */
985 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988 		   DRM_MODE_FLAG_INTERLACE),
989 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 	/* 47 - 1280x720@120Hz 16:9 */
991 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992 		   1430, 1650, 0, 720, 725, 730, 750, 0,
993 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 	/* 48 - 720x480@120Hz 4:3 */
996 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997 		   798, 858, 0, 480, 489, 495, 525, 0,
998 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 	/* 49 - 720x480@120Hz 16:9 */
1001 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002 		   798, 858, 0, 480, 489, 495, 525, 0,
1003 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 		   801, 858, 0, 480, 488, 494, 525, 0,
1008 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013 		   801, 858, 0, 480, 488, 494, 525, 0,
1014 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 	/* 52 - 720x576@200Hz 4:3 */
1018 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019 		   796, 864, 0, 576, 581, 586, 625, 0,
1020 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 	/* 53 - 720x576@200Hz 16:9 */
1023 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024 		   796, 864, 0, 576, 581, 586, 625, 0,
1025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 		   795, 864, 0, 576, 580, 586, 625, 0,
1030 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035 		   795, 864, 0, 576, 580, 586, 625, 0,
1036 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 	/* 56 - 720x480@240Hz 4:3 */
1040 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041 		   798, 858, 0, 480, 489, 495, 525, 0,
1042 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044 	/* 57 - 720x480@240Hz 16:9 */
1045 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046 		   798, 858, 0, 480, 489, 495, 525, 0,
1047 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 		   801, 858, 0, 480, 488, 494, 525, 0,
1052 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057 		   801, 858, 0, 480, 488, 494, 525, 0,
1058 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 	/* 60 - 1280x720@24Hz 16:9 */
1062 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 	/* 61 - 1280x720@25Hz 16:9 */
1067 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071 	/* 62 - 1280x720@30Hz 16:9 */
1072 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076 	/* 63 - 1920x1080@120Hz 16:9 */
1077 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 	/* 64 - 1920x1080@100Hz 16:9 */
1082 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 	/* 65 - 1280x720@24Hz 64:27 */
1087 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 	/* 66 - 1280x720@25Hz 64:27 */
1092 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 	/* 67 - 1280x720@30Hz 64:27 */
1097 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 	/* 68 - 1280x720@50Hz 64:27 */
1102 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 	/* 69 - 1280x720@60Hz 64:27 */
1107 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 	/* 70 - 1280x720@100Hz 64:27 */
1112 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 	/* 71 - 1280x720@120Hz 64:27 */
1117 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 	/* 72 - 1920x1080@24Hz 64:27 */
1122 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 	/* 73 - 1920x1080@25Hz 64:27 */
1127 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 	/* 74 - 1920x1080@30Hz 64:27 */
1132 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 	/* 75 - 1920x1080@50Hz 64:27 */
1137 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 	/* 76 - 1920x1080@60Hz 64:27 */
1142 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 	/* 77 - 1920x1080@100Hz 64:27 */
1147 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 	/* 78 - 1920x1080@120Hz 64:27 */
1152 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 	/* 79 - 1680x720@24Hz 64:27 */
1157 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 	/* 80 - 1680x720@25Hz 64:27 */
1162 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 	/* 81 - 1680x720@30Hz 64:27 */
1167 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 	/* 82 - 1680x720@50Hz 64:27 */
1172 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 	/* 83 - 1680x720@60Hz 64:27 */
1177 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 	/* 84 - 1680x720@100Hz 64:27 */
1182 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 	/* 85 - 1680x720@120Hz 64:27 */
1187 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 	/* 86 - 2560x1080@24Hz 64:27 */
1192 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 	/* 87 - 2560x1080@25Hz 64:27 */
1197 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 	/* 88 - 2560x1080@30Hz 64:27 */
1202 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 	/* 89 - 2560x1080@50Hz 64:27 */
1207 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 	/* 90 - 2560x1080@60Hz 64:27 */
1212 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 	/* 91 - 2560x1080@100Hz 64:27 */
1217 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 	/* 92 - 2560x1080@120Hz 64:27 */
1222 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 	/* 93 - 3840x2160@24Hz 16:9 */
1227 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 	/* 94 - 3840x2160@25Hz 16:9 */
1232 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236 	/* 95 - 3840x2160@30Hz 16:9 */
1237 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241 	/* 96 - 3840x2160@50Hz 16:9 */
1242 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246 	/* 97 - 3840x2160@60Hz 16:9 */
1247 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 	/* 98 - 4096x2160@24Hz 256:135 */
1252 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 	/* 99 - 4096x2160@25Hz 256:135 */
1257 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261 	/* 100 - 4096x2160@30Hz 256:135 */
1262 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266 	/* 101 - 4096x2160@50Hz 256:135 */
1267 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271 	/* 102 - 4096x2160@60Hz 256:135 */
1272 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 	/* 103 - 3840x2160@24Hz 64:27 */
1277 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281 	/* 104 - 3840x2160@25Hz 64:27 */
1282 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286 	/* 105 - 3840x2160@30Hz 64:27 */
1287 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291 	/* 106 - 3840x2160@50Hz 64:27 */
1292 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296 	/* 107 - 3840x2160@60Hz 64:27 */
1297 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 	/* 108 - 1280x720@48Hz 16:9 */
1302 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306 	/* 109 - 1280x720@48Hz 64:27 */
1307 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 	/* 110 - 1680x720@48Hz 64:27 */
1312 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 	/* 111 - 1920x1080@48Hz 16:9 */
1317 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321 	/* 112 - 1920x1080@48Hz 64:27 */
1322 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326 	/* 113 - 2560x1080@48Hz 64:27 */
1327 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 	/* 114 - 3840x2160@48Hz 16:9 */
1332 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336 	/* 115 - 4096x2160@48Hz 256:135 */
1337 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341 	/* 116 - 3840x2160@48Hz 64:27 */
1342 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 	/* 117 - 3840x2160@100Hz 16:9 */
1347 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351 	/* 118 - 3840x2160@120Hz 16:9 */
1352 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 	/* 119 - 3840x2160@100Hz 64:27 */
1357 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361 	/* 120 - 3840x2160@120Hz 64:27 */
1362 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 	/* 121 - 5120x2160@24Hz 64:27 */
1367 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371 	/* 122 - 5120x2160@25Hz 64:27 */
1372 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376 	/* 123 - 5120x2160@30Hz 64:27 */
1377 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 	/* 124 - 5120x2160@48Hz 64:27 */
1382 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 	/* 125 - 5120x2160@50Hz 64:27 */
1387 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 	/* 126 - 5120x2160@60Hz 64:27 */
1392 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 	/* 127 - 5120x2160@100Hz 64:27 */
1397 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401 };
1402 
1403 /*
1404  * From CEA/CTA-861 spec.
1405  *
1406  * Do not access directly, instead always use cea_mode_for_vic().
1407  */
1408 static const struct drm_display_mode edid_cea_modes_193[] = {
1409 	/* 193 - 5120x2160@120Hz 64:27 */
1410 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414 	/* 194 - 7680x4320@24Hz 16:9 */
1415 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419 	/* 195 - 7680x4320@25Hz 16:9 */
1420 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424 	/* 196 - 7680x4320@30Hz 16:9 */
1425 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429 	/* 197 - 7680x4320@48Hz 16:9 */
1430 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434 	/* 198 - 7680x4320@50Hz 16:9 */
1435 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 	/* 199 - 7680x4320@60Hz 16:9 */
1440 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 	/* 200 - 7680x4320@100Hz 16:9 */
1445 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 	/* 201 - 7680x4320@120Hz 16:9 */
1450 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 	/* 202 - 7680x4320@24Hz 64:27 */
1455 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459 	/* 203 - 7680x4320@25Hz 64:27 */
1460 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464 	/* 204 - 7680x4320@30Hz 64:27 */
1465 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469 	/* 205 - 7680x4320@48Hz 64:27 */
1470 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474 	/* 206 - 7680x4320@50Hz 64:27 */
1475 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 	/* 207 - 7680x4320@60Hz 64:27 */
1480 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 	/* 208 - 7680x4320@100Hz 64:27 */
1485 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 	/* 209 - 7680x4320@120Hz 64:27 */
1490 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 	/* 210 - 10240x4320@24Hz 64:27 */
1495 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 	/* 211 - 10240x4320@25Hz 64:27 */
1500 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 	/* 212 - 10240x4320@30Hz 64:27 */
1505 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 	/* 213 - 10240x4320@48Hz 64:27 */
1510 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 	/* 214 - 10240x4320@50Hz 64:27 */
1515 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 	/* 215 - 10240x4320@60Hz 64:27 */
1520 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 	/* 216 - 10240x4320@100Hz 64:27 */
1525 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 	/* 217 - 10240x4320@120Hz 64:27 */
1530 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 	/* 218 - 4096x2160@100Hz 256:135 */
1535 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539 	/* 219 - 4096x2160@120Hz 256:135 */
1540 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544 };
1545 
1546 /*
1547  * HDMI 1.4 4k modes. Index using the VIC.
1548  */
1549 static const struct drm_display_mode edid_4k_modes[] = {
1550 	/* 0 - dummy, VICs start at 1 */
1551 	{ },
1552 	/* 1 - 3840x2160@30Hz */
1553 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 		   3840, 4016, 4104, 4400, 0,
1555 		   2160, 2168, 2178, 2250, 0,
1556 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 	/* 2 - 3840x2160@25Hz */
1559 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 		   3840, 4896, 4984, 5280, 0,
1561 		   2160, 2168, 2178, 2250, 0,
1562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 	/* 3 - 3840x2160@24Hz */
1565 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 		   3840, 5116, 5204, 5500, 0,
1567 		   2160, 2168, 2178, 2250, 0,
1568 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570 	/* 4 - 4096x2160@24Hz (SMPTE) */
1571 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572 		   4096, 5116, 5204, 5500, 0,
1573 		   2160, 2168, 2178, 2250, 0,
1574 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576 };
1577 
1578 /*** DDC fetch and block validation ***/
1579 
1580 /*
1581  * The opaque EDID type, internal to drm_edid.c.
1582  */
1583 struct drm_edid {
1584 	/* Size allocated for edid */
1585 	size_t size;
1586 	const struct edid *edid;
1587 };
1588 
1589 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590 
1591 static int edid_hfeeodb_block_count(const struct edid *edid)
1592 {
1593 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594 
1595 	return eeodb ? eeodb + 1 : 0;
1596 }
1597 
1598 static int edid_extension_block_count(const struct edid *edid)
1599 {
1600 	return edid->extensions;
1601 }
1602 
1603 static int edid_block_count(const struct edid *edid)
1604 {
1605 	return edid_extension_block_count(edid) + 1;
1606 }
1607 
1608 static int edid_size_by_blocks(int num_blocks)
1609 {
1610 	return num_blocks * EDID_LENGTH;
1611 }
1612 
1613 static int edid_size(const struct edid *edid)
1614 {
1615 	return edid_size_by_blocks(edid_block_count(edid));
1616 }
1617 
1618 static const void *edid_block_data(const struct edid *edid, int index)
1619 {
1620 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621 
1622 	return edid + index;
1623 }
1624 
1625 static const void *edid_extension_block_data(const struct edid *edid, int index)
1626 {
1627 	return edid_block_data(edid, index + 1);
1628 }
1629 
1630 /* EDID block count indicated in EDID, may exceed allocated size */
1631 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632 {
1633 	int num_blocks;
1634 
1635 	/* Starting point */
1636 	num_blocks = edid_block_count(drm_edid->edid);
1637 
1638 	/* HF-EEODB override */
1639 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640 		int eeodb;
1641 
1642 		/*
1643 		 * Note: HF-EEODB may specify a smaller extension count than the
1644 		 * regular one. Unlike in buffer allocation, here we can use it.
1645 		 */
1646 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647 		if (eeodb)
1648 			num_blocks = eeodb;
1649 	}
1650 
1651 	return num_blocks;
1652 }
1653 
1654 /* EDID block count, limited by allocated size */
1655 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656 {
1657 	/* Limit by allocated size */
1658 	return min(__drm_edid_block_count(drm_edid),
1659 		   (int)drm_edid->size / EDID_LENGTH);
1660 }
1661 
1662 /* EDID extension block count, limited by allocated size */
1663 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664 {
1665 	return drm_edid_block_count(drm_edid) - 1;
1666 }
1667 
1668 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669 {
1670 	return edid_block_data(drm_edid->edid, index);
1671 }
1672 
1673 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674 						 int index)
1675 {
1676 	return edid_extension_block_data(drm_edid->edid, index);
1677 }
1678 
1679 /*
1680  * Initializer helper for legacy interfaces, where we have no choice but to
1681  * trust edid size. Not for general purpose use.
1682  */
1683 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684 						   const struct edid *edid)
1685 {
1686 	if (!edid)
1687 		return NULL;
1688 
1689 	memset(drm_edid, 0, sizeof(*drm_edid));
1690 
1691 	drm_edid->edid = edid;
1692 	drm_edid->size = edid_size(edid);
1693 
1694 	return drm_edid;
1695 }
1696 
1697 /*
1698  * EDID base and extension block iterator.
1699  *
1700  * struct drm_edid_iter iter;
1701  * const u8 *block;
1702  *
1703  * drm_edid_iter_begin(drm_edid, &iter);
1704  * drm_edid_iter_for_each(block, &iter) {
1705  *         // do stuff with block
1706  * }
1707  * drm_edid_iter_end(&iter);
1708  */
1709 struct drm_edid_iter {
1710 	const struct drm_edid *drm_edid;
1711 
1712 	/* Current block index. */
1713 	int index;
1714 };
1715 
1716 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717 				struct drm_edid_iter *iter)
1718 {
1719 	memset(iter, 0, sizeof(*iter));
1720 
1721 	iter->drm_edid = drm_edid;
1722 }
1723 
1724 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725 {
1726 	const void *block = NULL;
1727 
1728 	if (!iter->drm_edid)
1729 		return NULL;
1730 
1731 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733 
1734 	return block;
1735 }
1736 
1737 #define drm_edid_iter_for_each(__block, __iter)			\
1738 	while (((__block) = __drm_edid_iter_next(__iter)))
1739 
1740 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741 {
1742 	memset(iter, 0, sizeof(*iter));
1743 }
1744 
1745 static const u8 edid_header[] = {
1746 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747 };
1748 
1749 static void edid_header_fix(void *edid)
1750 {
1751 	memcpy(edid, edid_header, sizeof(edid_header));
1752 }
1753 
1754 /**
1755  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756  * @_edid: pointer to raw base EDID block
1757  *
1758  * Sanity check the header of the base EDID block.
1759  *
1760  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761  */
1762 int drm_edid_header_is_valid(const void *_edid)
1763 {
1764 	const struct edid *edid = _edid;
1765 	int i, score = 0;
1766 
1767 	for (i = 0; i < sizeof(edid_header); i++) {
1768 		if (edid->header[i] == edid_header[i])
1769 			score++;
1770 	}
1771 
1772 	return score;
1773 }
1774 EXPORT_SYMBOL(drm_edid_header_is_valid);
1775 
1776 static int edid_fixup __read_mostly = 6;
1777 module_param_named(edid_fixup, edid_fixup, int, 0400);
1778 MODULE_PARM_DESC(edid_fixup,
1779 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780 
1781 static int edid_block_compute_checksum(const void *_block)
1782 {
1783 	const u8 *block = _block;
1784 	int i;
1785 	u8 csum = 0, crc = 0;
1786 
1787 	for (i = 0; i < EDID_LENGTH - 1; i++)
1788 		csum += block[i];
1789 
1790 	crc = 0x100 - csum;
1791 
1792 	return crc;
1793 }
1794 
1795 static int edid_block_get_checksum(const void *_block)
1796 {
1797 	const struct edid *block = _block;
1798 
1799 	return block->checksum;
1800 }
1801 
1802 static int edid_block_tag(const void *_block)
1803 {
1804 	const u8 *block = _block;
1805 
1806 	return block[0];
1807 }
1808 
1809 static bool edid_block_is_zero(const void *edid)
1810 {
1811 	return !memchr_inv(edid, 0, EDID_LENGTH);
1812 }
1813 
1814 /**
1815  * drm_edid_are_equal - compare two edid blobs.
1816  * @edid1: pointer to first blob
1817  * @edid2: pointer to second blob
1818  * This helper can be used during probing to determine if
1819  * edid had changed.
1820  */
1821 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822 {
1823 	int edid1_len, edid2_len;
1824 	bool edid1_present = edid1 != NULL;
1825 	bool edid2_present = edid2 != NULL;
1826 
1827 	if (edid1_present != edid2_present)
1828 		return false;
1829 
1830 	if (edid1) {
1831 		edid1_len = edid_size(edid1);
1832 		edid2_len = edid_size(edid2);
1833 
1834 		if (edid1_len != edid2_len)
1835 			return false;
1836 
1837 		if (memcmp(edid1, edid2, edid1_len))
1838 			return false;
1839 	}
1840 
1841 	return true;
1842 }
1843 EXPORT_SYMBOL(drm_edid_are_equal);
1844 
1845 enum edid_block_status {
1846 	EDID_BLOCK_OK = 0,
1847 	EDID_BLOCK_READ_FAIL,
1848 	EDID_BLOCK_NULL,
1849 	EDID_BLOCK_ZERO,
1850 	EDID_BLOCK_HEADER_CORRUPT,
1851 	EDID_BLOCK_HEADER_REPAIR,
1852 	EDID_BLOCK_HEADER_FIXED,
1853 	EDID_BLOCK_CHECKSUM,
1854 	EDID_BLOCK_VERSION,
1855 };
1856 
1857 static enum edid_block_status edid_block_check(const void *_block,
1858 					       bool is_base_block)
1859 {
1860 	const struct edid *block = _block;
1861 
1862 	if (!block)
1863 		return EDID_BLOCK_NULL;
1864 
1865 	if (is_base_block) {
1866 		int score = drm_edid_header_is_valid(block);
1867 
1868 		if (score < clamp(edid_fixup, 0, 8)) {
1869 			if (edid_block_is_zero(block))
1870 				return EDID_BLOCK_ZERO;
1871 			else
1872 				return EDID_BLOCK_HEADER_CORRUPT;
1873 		}
1874 
1875 		if (score < 8)
1876 			return EDID_BLOCK_HEADER_REPAIR;
1877 	}
1878 
1879 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880 		if (edid_block_is_zero(block))
1881 			return EDID_BLOCK_ZERO;
1882 		else
1883 			return EDID_BLOCK_CHECKSUM;
1884 	}
1885 
1886 	if (is_base_block) {
1887 		if (block->version != 1)
1888 			return EDID_BLOCK_VERSION;
1889 	}
1890 
1891 	return EDID_BLOCK_OK;
1892 }
1893 
1894 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895 {
1896 	return status == EDID_BLOCK_OK ||
1897 		status == EDID_BLOCK_HEADER_FIXED ||
1898 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899 }
1900 
1901 static bool edid_block_valid(const void *block, bool base)
1902 {
1903 	return edid_block_status_valid(edid_block_check(block, base),
1904 				       edid_block_tag(block));
1905 }
1906 
1907 static void edid_block_status_print(enum edid_block_status status,
1908 				    const struct edid *block,
1909 				    int block_num)
1910 {
1911 	switch (status) {
1912 	case EDID_BLOCK_OK:
1913 		break;
1914 	case EDID_BLOCK_READ_FAIL:
1915 		pr_debug("EDID block %d read failed\n", block_num);
1916 		break;
1917 	case EDID_BLOCK_NULL:
1918 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919 		break;
1920 	case EDID_BLOCK_ZERO:
1921 		pr_notice("EDID block %d is all zeroes\n", block_num);
1922 		break;
1923 	case EDID_BLOCK_HEADER_CORRUPT:
1924 		pr_notice("EDID has corrupt header\n");
1925 		break;
1926 	case EDID_BLOCK_HEADER_REPAIR:
1927 		pr_debug("EDID corrupt header needs repair\n");
1928 		break;
1929 	case EDID_BLOCK_HEADER_FIXED:
1930 		pr_debug("EDID corrupt header fixed\n");
1931 		break;
1932 	case EDID_BLOCK_CHECKSUM:
1933 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935 				 block_num, edid_block_tag(block),
1936 				 edid_block_compute_checksum(block));
1937 		} else {
1938 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939 				  block_num, edid_block_tag(block),
1940 				  edid_block_compute_checksum(block));
1941 		}
1942 		break;
1943 	case EDID_BLOCK_VERSION:
1944 		pr_notice("EDID has major version %d, instead of 1\n",
1945 			  block->version);
1946 		break;
1947 	default:
1948 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949 		     block_num, status);
1950 		break;
1951 	}
1952 }
1953 
1954 static void edid_block_dump(const char *level, const void *block, int block_num)
1955 {
1956 	enum edid_block_status status;
1957 	char prefix[20];
1958 
1959 	status = edid_block_check(block, block_num == 0);
1960 	if (status == EDID_BLOCK_ZERO)
1961 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964 	else
1965 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966 
1967 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968 		       block, EDID_LENGTH, false);
1969 }
1970 
1971 /**
1972  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973  * @_block: pointer to raw EDID block
1974  * @block_num: type of block to validate (0 for base, extension otherwise)
1975  * @print_bad_edid: if true, dump bad EDID blocks to the console
1976  * @edid_corrupt: if true, the header or checksum is invalid
1977  *
1978  * Validate a base or extension EDID block and optionally dump bad blocks to
1979  * the console.
1980  *
1981  * Return: True if the block is valid, false otherwise.
1982  */
1983 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984 			  bool *edid_corrupt)
1985 {
1986 	struct edid *block = (struct edid *)_block;
1987 	enum edid_block_status status;
1988 	bool is_base_block = block_num == 0;
1989 	bool valid;
1990 
1991 	if (WARN_ON(!block))
1992 		return false;
1993 
1994 	status = edid_block_check(block, is_base_block);
1995 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997 		edid_header_fix(block);
1998 
1999 		/* Retry with fixed header, update status if that worked. */
2000 		status = edid_block_check(block, is_base_block);
2001 		if (status == EDID_BLOCK_OK)
2002 			status = EDID_BLOCK_HEADER_FIXED;
2003 	}
2004 
2005 	if (edid_corrupt) {
2006 		/*
2007 		 * Unknown major version isn't corrupt but we can't use it. Only
2008 		 * the base block can reset edid_corrupt to false.
2009 		 */
2010 		if (is_base_block &&
2011 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012 			*edid_corrupt = false;
2013 		else if (status != EDID_BLOCK_OK)
2014 			*edid_corrupt = true;
2015 	}
2016 
2017 	edid_block_status_print(status, block, block_num);
2018 
2019 	/* Determine whether we can use this block with this status. */
2020 	valid = edid_block_status_valid(status, edid_block_tag(block));
2021 
2022 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023 		pr_notice("Raw EDID:\n");
2024 		edid_block_dump(KERN_NOTICE, block, block_num);
2025 	}
2026 
2027 	return valid;
2028 }
2029 EXPORT_SYMBOL(drm_edid_block_valid);
2030 
2031 /**
2032  * drm_edid_is_valid - sanity check EDID data
2033  * @edid: EDID data
2034  *
2035  * Sanity-check an entire EDID record (including extensions)
2036  *
2037  * Return: True if the EDID data is valid, false otherwise.
2038  */
2039 bool drm_edid_is_valid(struct edid *edid)
2040 {
2041 	int i;
2042 
2043 	if (!edid)
2044 		return false;
2045 
2046 	for (i = 0; i < edid_block_count(edid); i++) {
2047 		void *block = (void *)edid_block_data(edid, i);
2048 
2049 		if (!drm_edid_block_valid(block, i, true, NULL))
2050 			return false;
2051 	}
2052 
2053 	return true;
2054 }
2055 EXPORT_SYMBOL(drm_edid_is_valid);
2056 
2057 /**
2058  * drm_edid_valid - sanity check EDID data
2059  * @drm_edid: EDID data
2060  *
2061  * Sanity check an EDID. Cross check block count against allocated size and
2062  * checksum the blocks.
2063  *
2064  * Return: True if the EDID data is valid, false otherwise.
2065  */
2066 bool drm_edid_valid(const struct drm_edid *drm_edid)
2067 {
2068 	int i;
2069 
2070 	if (!drm_edid)
2071 		return false;
2072 
2073 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074 		return false;
2075 
2076 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 		const void *block = drm_edid_block_data(drm_edid, i);
2078 
2079 		if (!edid_block_valid(block, i == 0))
2080 			return false;
2081 	}
2082 
2083 	return true;
2084 }
2085 EXPORT_SYMBOL(drm_edid_valid);
2086 
2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088 					       size_t *alloc_size)
2089 {
2090 	struct edid *new;
2091 	int i, valid_blocks = 0;
2092 
2093 	/*
2094 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 	 * back to regular extension count here. We don't want to start
2096 	 * modifying the HF-EEODB extension too.
2097 	 */
2098 	for (i = 0; i < edid_block_count(edid); i++) {
2099 		const void *src_block = edid_block_data(edid, i);
2100 
2101 		if (edid_block_valid(src_block, i == 0)) {
2102 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103 
2104 			memmove(dst_block, src_block, EDID_LENGTH);
2105 			valid_blocks++;
2106 		}
2107 	}
2108 
2109 	/* We already trusted the base block to be valid here... */
2110 	if (WARN_ON(!valid_blocks)) {
2111 		kfree(edid);
2112 		return NULL;
2113 	}
2114 
2115 	edid->extensions = valid_blocks - 1;
2116 	edid->checksum = edid_block_compute_checksum(edid);
2117 
2118 	*alloc_size = edid_size_by_blocks(valid_blocks);
2119 
2120 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121 	if (!new)
2122 		kfree(edid);
2123 
2124 	return new;
2125 }
2126 
2127 #define DDC_SEGMENT_ADDR 0x30
2128 /**
2129  * drm_do_probe_ddc_edid() - get EDID information via I2C
2130  * @data: I2C device adapter
2131  * @buf: EDID data buffer to be filled
2132  * @block: 128 byte EDID block to start fetching from
2133  * @len: EDID data buffer length to fetch
2134  *
2135  * Try to fetch EDID information by calling I2C driver functions.
2136  *
2137  * Return: 0 on success or -1 on failure.
2138  */
2139 static int
2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141 {
2142 	struct i2c_adapter *adapter = data;
2143 	unsigned char start = block * EDID_LENGTH;
2144 	unsigned char segment = block >> 1;
2145 	unsigned char xfers = segment ? 3 : 2;
2146 	int ret, retries = 5;
2147 
2148 	/*
2149 	 * The core I2C driver will automatically retry the transfer if the
2150 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 	 * are susceptible to errors under a heavily loaded machine and
2152 	 * generate spurious NAKs and timeouts. Retrying the transfer
2153 	 * of the individual block a few times seems to overcome this.
2154 	 */
2155 	do {
2156 		struct i2c_msg msgs[] = {
2157 			{
2158 				.addr	= DDC_SEGMENT_ADDR,
2159 				.flags	= 0,
2160 				.len	= 1,
2161 				.buf	= &segment,
2162 			}, {
2163 				.addr	= DDC_ADDR,
2164 				.flags	= 0,
2165 				.len	= 1,
2166 				.buf	= &start,
2167 			}, {
2168 				.addr	= DDC_ADDR,
2169 				.flags	= I2C_M_RD,
2170 				.len	= len,
2171 				.buf	= buf,
2172 			}
2173 		};
2174 
2175 		/*
2176 		 * Avoid sending the segment addr to not upset non-compliant
2177 		 * DDC monitors.
2178 		 */
2179 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180 
2181 		if (ret == -ENXIO) {
2182 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183 					adapter->name);
2184 			break;
2185 		}
2186 	} while (ret != xfers && --retries);
2187 
2188 	return ret == xfers ? 0 : -1;
2189 }
2190 
2191 static void connector_bad_edid(struct drm_connector *connector,
2192 			       const struct edid *edid, int num_blocks)
2193 {
2194 	int i;
2195 	u8 last_block;
2196 
2197 	/*
2198 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 	 * of 0x7e in the EDID of the _index_ of the last block in the
2201 	 * combined chunk of memory.
2202 	 */
2203 	last_block = edid->extensions;
2204 
2205 	/* Calculate real checksum for the last edid extension block data */
2206 	if (last_block < num_blocks)
2207 		connector->real_edid_checksum =
2208 			edid_block_compute_checksum(edid + last_block);
2209 
2210 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211 		return;
2212 
2213 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 		    connector->base.id, connector->name);
2215 	for (i = 0; i < num_blocks; i++)
2216 		edid_block_dump(KERN_DEBUG, edid + i, i);
2217 }
2218 
2219 /* Get override or firmware EDID */
2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221 {
2222 	const struct drm_edid *override = NULL;
2223 
2224 	mutex_lock(&connector->edid_override_mutex);
2225 
2226 	if (connector->edid_override)
2227 		override = drm_edid_dup(connector->edid_override);
2228 
2229 	mutex_unlock(&connector->edid_override_mutex);
2230 
2231 	if (!override)
2232 		override = drm_edid_load_firmware(connector);
2233 
2234 	return IS_ERR(override) ? NULL : override;
2235 }
2236 
2237 /* For debugfs edid_override implementation */
2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239 {
2240 	const struct drm_edid *drm_edid;
2241 
2242 	mutex_lock(&connector->edid_override_mutex);
2243 
2244 	drm_edid = connector->edid_override;
2245 	if (drm_edid)
2246 		seq_write(m, drm_edid->edid, drm_edid->size);
2247 
2248 	mutex_unlock(&connector->edid_override_mutex);
2249 
2250 	return 0;
2251 }
2252 
2253 /* For debugfs edid_override implementation */
2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255 			  size_t size)
2256 {
2257 	const struct drm_edid *drm_edid;
2258 
2259 	drm_edid = drm_edid_alloc(edid, size);
2260 	if (!drm_edid_valid(drm_edid)) {
2261 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 			    connector->base.id, connector->name);
2263 		drm_edid_free(drm_edid);
2264 		return -EINVAL;
2265 	}
2266 
2267 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 		    connector->base.id, connector->name);
2269 
2270 	mutex_lock(&connector->edid_override_mutex);
2271 
2272 	drm_edid_free(connector->edid_override);
2273 	connector->edid_override = drm_edid;
2274 
2275 	mutex_unlock(&connector->edid_override_mutex);
2276 
2277 	return 0;
2278 }
2279 
2280 /* For debugfs edid_override implementation */
2281 int drm_edid_override_reset(struct drm_connector *connector)
2282 {
2283 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 		    connector->base.id, connector->name);
2285 
2286 	mutex_lock(&connector->edid_override_mutex);
2287 
2288 	drm_edid_free(connector->edid_override);
2289 	connector->edid_override = NULL;
2290 
2291 	mutex_unlock(&connector->edid_override_mutex);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * drm_edid_override_connector_update - add modes from override/firmware EDID
2298  * @connector: connector we're probing
2299  *
2300  * Add modes from the override/firmware EDID, if available. Only to be used from
2301  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302  * failed during drm_get_edid() and caused the override/firmware EDID to be
2303  * skipped.
2304  *
2305  * Return: The number of modes added or 0 if we couldn't find any.
2306  */
2307 int drm_edid_override_connector_update(struct drm_connector *connector)
2308 {
2309 	const struct drm_edid *override;
2310 	int num_modes = 0;
2311 
2312 	override = drm_edid_override_get(connector);
2313 	if (override) {
2314 		num_modes = drm_edid_connector_update(connector, override);
2315 
2316 		drm_edid_free(override);
2317 
2318 		drm_dbg_kms(connector->dev,
2319 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2320 			    connector->base.id, connector->name, num_modes);
2321 	}
2322 
2323 	return num_modes;
2324 }
2325 EXPORT_SYMBOL(drm_edid_override_connector_update);
2326 
2327 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2328 
2329 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2330 					      read_block_fn read_block,
2331 					      void *context)
2332 {
2333 	enum edid_block_status status;
2334 	bool is_base_block = block_num == 0;
2335 	int try;
2336 
2337 	for (try = 0; try < 4; try++) {
2338 		if (read_block(context, block, block_num, EDID_LENGTH))
2339 			return EDID_BLOCK_READ_FAIL;
2340 
2341 		status = edid_block_check(block, is_base_block);
2342 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2343 			edid_header_fix(block);
2344 
2345 			/* Retry with fixed header, update status if that worked. */
2346 			status = edid_block_check(block, is_base_block);
2347 			if (status == EDID_BLOCK_OK)
2348 				status = EDID_BLOCK_HEADER_FIXED;
2349 		}
2350 
2351 		if (edid_block_status_valid(status, edid_block_tag(block)))
2352 			break;
2353 
2354 		/* Fail early for unrepairable base block all zeros. */
2355 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2356 			break;
2357 	}
2358 
2359 	return status;
2360 }
2361 
2362 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2363 				     read_block_fn read_block, void *context,
2364 				     size_t *size)
2365 {
2366 	enum edid_block_status status;
2367 	int i, num_blocks, invalid_blocks = 0;
2368 	const struct drm_edid *override;
2369 	struct edid *edid, *new;
2370 	size_t alloc_size = EDID_LENGTH;
2371 
2372 	override = drm_edid_override_get(connector);
2373 	if (override) {
2374 		alloc_size = override->size;
2375 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2376 		drm_edid_free(override);
2377 		if (!edid)
2378 			return NULL;
2379 		goto ok;
2380 	}
2381 
2382 	edid = kmalloc(alloc_size, GFP_KERNEL);
2383 	if (!edid)
2384 		return NULL;
2385 
2386 	status = edid_block_read(edid, 0, read_block, context);
2387 
2388 	edid_block_status_print(status, edid, 0);
2389 
2390 	if (status == EDID_BLOCK_READ_FAIL)
2391 		goto fail;
2392 
2393 	/* FIXME: Clarify what a corrupt EDID actually means. */
2394 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2395 		connector->edid_corrupt = false;
2396 	else
2397 		connector->edid_corrupt = true;
2398 
2399 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2400 		if (status == EDID_BLOCK_ZERO)
2401 			connector->null_edid_counter++;
2402 
2403 		connector_bad_edid(connector, edid, 1);
2404 		goto fail;
2405 	}
2406 
2407 	if (!edid_extension_block_count(edid))
2408 		goto ok;
2409 
2410 	alloc_size = edid_size(edid);
2411 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2412 	if (!new)
2413 		goto fail;
2414 	edid = new;
2415 
2416 	num_blocks = edid_block_count(edid);
2417 	for (i = 1; i < num_blocks; i++) {
2418 		void *block = (void *)edid_block_data(edid, i);
2419 
2420 		status = edid_block_read(block, i, read_block, context);
2421 
2422 		edid_block_status_print(status, block, i);
2423 
2424 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2425 			if (status == EDID_BLOCK_READ_FAIL)
2426 				goto fail;
2427 			invalid_blocks++;
2428 		} else if (i == 1) {
2429 			/*
2430 			 * If the first EDID extension is a CTA extension, and
2431 			 * the first Data Block is HF-EEODB, override the
2432 			 * extension block count.
2433 			 *
2434 			 * Note: HF-EEODB could specify a smaller extension
2435 			 * count too, but we can't risk allocating a smaller
2436 			 * amount.
2437 			 */
2438 			int eeodb = edid_hfeeodb_block_count(edid);
2439 
2440 			if (eeodb > num_blocks) {
2441 				num_blocks = eeodb;
2442 				alloc_size = edid_size_by_blocks(num_blocks);
2443 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2444 				if (!new)
2445 					goto fail;
2446 				edid = new;
2447 			}
2448 		}
2449 	}
2450 
2451 	if (invalid_blocks) {
2452 		connector_bad_edid(connector, edid, num_blocks);
2453 
2454 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2455 	}
2456 
2457 ok:
2458 	if (size)
2459 		*size = alloc_size;
2460 
2461 	return edid;
2462 
2463 fail:
2464 	kfree(edid);
2465 	return NULL;
2466 }
2467 
2468 /**
2469  * drm_do_get_edid - get EDID data using a custom EDID block read function
2470  * @connector: connector we're probing
2471  * @read_block: EDID block read function
2472  * @context: private data passed to the block read function
2473  *
2474  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2475  * exposes a different interface to read EDID blocks this function can be used
2476  * to get EDID data using a custom block read function.
2477  *
2478  * As in the general case the DDC bus is accessible by the kernel at the I2C
2479  * level, drivers must make all reasonable efforts to expose it as an I2C
2480  * adapter and use drm_get_edid() instead of abusing this function.
2481  *
2482  * The EDID may be overridden using debugfs override_edid or firmware EDID
2483  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2484  * order. Having either of them bypasses actual EDID reads.
2485  *
2486  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2487  */
2488 struct edid *drm_do_get_edid(struct drm_connector *connector,
2489 			     read_block_fn read_block,
2490 			     void *context)
2491 {
2492 	return _drm_do_get_edid(connector, read_block, context, NULL);
2493 }
2494 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2495 
2496 /**
2497  * drm_edid_raw - Get a pointer to the raw EDID data.
2498  * @drm_edid: drm_edid container
2499  *
2500  * Get a pointer to the raw EDID data.
2501  *
2502  * This is for transition only. Avoid using this like the plague.
2503  *
2504  * Return: Pointer to raw EDID data.
2505  */
2506 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2507 {
2508 	if (!drm_edid || !drm_edid->size)
2509 		return NULL;
2510 
2511 	/*
2512 	 * Do not return pointers where relying on EDID extension count would
2513 	 * lead to buffer overflow.
2514 	 */
2515 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2516 		return NULL;
2517 
2518 	return drm_edid->edid;
2519 }
2520 EXPORT_SYMBOL(drm_edid_raw);
2521 
2522 /* Allocate struct drm_edid container *without* duplicating the edid data */
2523 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2524 {
2525 	struct drm_edid *drm_edid;
2526 
2527 	if (!edid || !size || size < EDID_LENGTH)
2528 		return NULL;
2529 
2530 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2531 	if (drm_edid) {
2532 		drm_edid->edid = edid;
2533 		drm_edid->size = size;
2534 	}
2535 
2536 	return drm_edid;
2537 }
2538 
2539 /**
2540  * drm_edid_alloc - Allocate a new drm_edid container
2541  * @edid: Pointer to raw EDID data
2542  * @size: Size of memory allocated for EDID
2543  *
2544  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2545  * the actual size that has been allocated for the data. There is no validation
2546  * of the raw EDID data against the size, but at least the EDID base block must
2547  * fit in the buffer.
2548  *
2549  * The returned pointer must be freed using drm_edid_free().
2550  *
2551  * Return: drm_edid container, or NULL on errors
2552  */
2553 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2554 {
2555 	const struct drm_edid *drm_edid;
2556 
2557 	if (!edid || !size || size < EDID_LENGTH)
2558 		return NULL;
2559 
2560 	edid = kmemdup(edid, size, GFP_KERNEL);
2561 	if (!edid)
2562 		return NULL;
2563 
2564 	drm_edid = _drm_edid_alloc(edid, size);
2565 	if (!drm_edid)
2566 		kfree(edid);
2567 
2568 	return drm_edid;
2569 }
2570 EXPORT_SYMBOL(drm_edid_alloc);
2571 
2572 /**
2573  * drm_edid_dup - Duplicate a drm_edid container
2574  * @drm_edid: EDID to duplicate
2575  *
2576  * The returned pointer must be freed using drm_edid_free().
2577  *
2578  * Returns: drm_edid container copy, or NULL on errors
2579  */
2580 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2581 {
2582 	if (!drm_edid)
2583 		return NULL;
2584 
2585 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2586 }
2587 EXPORT_SYMBOL(drm_edid_dup);
2588 
2589 /**
2590  * drm_edid_free - Free the drm_edid container
2591  * @drm_edid: EDID to free
2592  */
2593 void drm_edid_free(const struct drm_edid *drm_edid)
2594 {
2595 	if (!drm_edid)
2596 		return;
2597 
2598 	kfree(drm_edid->edid);
2599 	kfree(drm_edid);
2600 }
2601 EXPORT_SYMBOL(drm_edid_free);
2602 
2603 /**
2604  * drm_probe_ddc() - probe DDC presence
2605  * @adapter: I2C adapter to probe
2606  *
2607  * Return: True on success, false on failure.
2608  */
2609 bool
2610 drm_probe_ddc(struct i2c_adapter *adapter)
2611 {
2612 	unsigned char out;
2613 
2614 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2615 }
2616 EXPORT_SYMBOL(drm_probe_ddc);
2617 
2618 /**
2619  * drm_get_edid - get EDID data, if available
2620  * @connector: connector we're probing
2621  * @adapter: I2C adapter to use for DDC
2622  *
2623  * Poke the given I2C channel to grab EDID data if possible.  If found,
2624  * attach it to the connector.
2625  *
2626  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2627  */
2628 struct edid *drm_get_edid(struct drm_connector *connector,
2629 			  struct i2c_adapter *adapter)
2630 {
2631 	struct edid *edid;
2632 
2633 	if (connector->force == DRM_FORCE_OFF)
2634 		return NULL;
2635 
2636 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2637 		return NULL;
2638 
2639 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2640 	drm_connector_update_edid_property(connector, edid);
2641 	return edid;
2642 }
2643 EXPORT_SYMBOL(drm_get_edid);
2644 
2645 /**
2646  * drm_edid_read_custom - Read EDID data using given EDID block read function
2647  * @connector: Connector to use
2648  * @read_block: EDID block read function
2649  * @context: Private data passed to the block read function
2650  *
2651  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2652  * exposes a different interface to read EDID blocks this function can be used
2653  * to get EDID data using a custom block read function.
2654  *
2655  * As in the general case the DDC bus is accessible by the kernel at the I2C
2656  * level, drivers must make all reasonable efforts to expose it as an I2C
2657  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2658  * this function.
2659  *
2660  * The EDID may be overridden using debugfs override_edid or firmware EDID
2661  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2662  * order. Having either of them bypasses actual EDID reads.
2663  *
2664  * The returned pointer must be freed using drm_edid_free().
2665  *
2666  * Return: Pointer to EDID, or NULL if probe/read failed.
2667  */
2668 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2669 					    read_block_fn read_block,
2670 					    void *context)
2671 {
2672 	const struct drm_edid *drm_edid;
2673 	struct edid *edid;
2674 	size_t size = 0;
2675 
2676 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2677 	if (!edid)
2678 		return NULL;
2679 
2680 	/* Sanity check for now */
2681 	drm_WARN_ON(connector->dev, !size);
2682 
2683 	drm_edid = _drm_edid_alloc(edid, size);
2684 	if (!drm_edid)
2685 		kfree(edid);
2686 
2687 	return drm_edid;
2688 }
2689 EXPORT_SYMBOL(drm_edid_read_custom);
2690 
2691 /**
2692  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2693  * @connector: Connector to use
2694  * @adapter: I2C adapter to use for DDC
2695  *
2696  * Read EDID using the given I2C adapter.
2697  *
2698  * The EDID may be overridden using debugfs override_edid or firmware EDID
2699  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2700  * order. Having either of them bypasses actual EDID reads.
2701  *
2702  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2703  * using drm_edid_read() instead of this function.
2704  *
2705  * The returned pointer must be freed using drm_edid_free().
2706  *
2707  * Return: Pointer to EDID, or NULL if probe/read failed.
2708  */
2709 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2710 					 struct i2c_adapter *adapter)
2711 {
2712 	const struct drm_edid *drm_edid;
2713 
2714 	if (connector->force == DRM_FORCE_OFF)
2715 		return NULL;
2716 
2717 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2718 		return NULL;
2719 
2720 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2721 
2722 	/* Note: Do *not* call connector updates here. */
2723 
2724 	return drm_edid;
2725 }
2726 EXPORT_SYMBOL(drm_edid_read_ddc);
2727 
2728 /**
2729  * drm_edid_read - Read EDID data using connector's I2C adapter
2730  * @connector: Connector to use
2731  *
2732  * Read EDID using the connector's I2C adapter.
2733  *
2734  * The EDID may be overridden using debugfs override_edid or firmware EDID
2735  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2736  * order. Having either of them bypasses actual EDID reads.
2737  *
2738  * The returned pointer must be freed using drm_edid_free().
2739  *
2740  * Return: Pointer to EDID, or NULL if probe/read failed.
2741  */
2742 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2743 {
2744 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2745 		return NULL;
2746 
2747 	return drm_edid_read_ddc(connector, connector->ddc);
2748 }
2749 EXPORT_SYMBOL(drm_edid_read);
2750 
2751 static u32 edid_extract_panel_id(const struct edid *edid)
2752 {
2753 	/*
2754 	 * We represent the ID as a 32-bit number so it can easily be compared
2755 	 * with "==".
2756 	 *
2757 	 * NOTE that we deal with endianness differently for the top half
2758 	 * of this ID than for the bottom half. The bottom half (the product
2759 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2760 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2761 	 * gets stored as big endian because that makes
2762 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2763 	 * to write (it's easier to extract the ASCII). It doesn't really
2764 	 * matter, though, as long as the number here is unique.
2765 	 */
2766 	return (u32)edid->mfg_id[0] << 24   |
2767 	       (u32)edid->mfg_id[1] << 16   |
2768 	       (u32)EDID_PRODUCT_ID(edid);
2769 }
2770 
2771 /**
2772  * drm_edid_get_panel_id - Get a panel's ID through DDC
2773  * @adapter: I2C adapter to use for DDC
2774  *
2775  * This function reads the first block of the EDID of a panel and (assuming
2776  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2777  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2778  * supposed to be different for each different modem of panel.
2779  *
2780  * This function is intended to be used during early probing on devices where
2781  * more than one panel might be present. Because of its intended use it must
2782  * assume that the EDID of the panel is correct, at least as far as the ID
2783  * is concerned (in other words, we don't process any overrides here).
2784  *
2785  * NOTE: it's expected that this function and drm_do_get_edid() will both
2786  * be read the EDID, but there is no caching between them. Since we're only
2787  * reading the first block, hopefully this extra overhead won't be too big.
2788  *
2789  * Return: A 32-bit ID that should be different for each make/model of panel.
2790  *         See the functions drm_edid_encode_panel_id() and
2791  *         drm_edid_decode_panel_id() for some details on the structure of this
2792  *         ID.
2793  */
2794 
2795 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2796 {
2797 	enum edid_block_status status;
2798 	void *base_block;
2799 	u32 panel_id = 0;
2800 
2801 	/*
2802 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2803 	 * the EDID then we'll just return 0.
2804 	 */
2805 
2806 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2807 	if (!base_block)
2808 		return 0;
2809 
2810 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2811 
2812 	edid_block_status_print(status, base_block, 0);
2813 
2814 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2815 		panel_id = edid_extract_panel_id(base_block);
2816 	else
2817 		edid_block_dump(KERN_NOTICE, base_block, 0);
2818 
2819 	kfree(base_block);
2820 
2821 	return panel_id;
2822 }
2823 EXPORT_SYMBOL(drm_edid_get_panel_id);
2824 
2825 /**
2826  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2827  * @connector: connector we're probing
2828  * @adapter: I2C adapter to use for DDC
2829  *
2830  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2831  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2832  * switch DDC to the GPU which is retrieving EDID.
2833  *
2834  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2835  */
2836 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2837 				     struct i2c_adapter *adapter)
2838 {
2839 	struct drm_device *dev = connector->dev;
2840 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2841 	struct edid *edid;
2842 
2843 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2844 		return NULL;
2845 
2846 	vga_switcheroo_lock_ddc(pdev);
2847 	edid = drm_get_edid(connector, adapter);
2848 	vga_switcheroo_unlock_ddc(pdev);
2849 
2850 	return edid;
2851 }
2852 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2853 
2854 /**
2855  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2856  * @connector: connector we're probing
2857  * @adapter: I2C adapter to use for DDC
2858  *
2859  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2860  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2861  * temporarily switch DDC to the GPU which is retrieving EDID.
2862  *
2863  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2864  */
2865 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2866 						struct i2c_adapter *adapter)
2867 {
2868 	struct drm_device *dev = connector->dev;
2869 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2870 	const struct drm_edid *drm_edid;
2871 
2872 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2873 		return NULL;
2874 
2875 	vga_switcheroo_lock_ddc(pdev);
2876 	drm_edid = drm_edid_read_ddc(connector, adapter);
2877 	vga_switcheroo_unlock_ddc(pdev);
2878 
2879 	return drm_edid;
2880 }
2881 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2882 
2883 /**
2884  * drm_edid_duplicate - duplicate an EDID and the extensions
2885  * @edid: EDID to duplicate
2886  *
2887  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2888  */
2889 struct edid *drm_edid_duplicate(const struct edid *edid)
2890 {
2891 	if (!edid)
2892 		return NULL;
2893 
2894 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2895 }
2896 EXPORT_SYMBOL(drm_edid_duplicate);
2897 
2898 /*** EDID parsing ***/
2899 
2900 /**
2901  * edid_get_quirks - return quirk flags for a given EDID
2902  * @drm_edid: EDID to process
2903  *
2904  * This tells subsequent routines what fixes they need to apply.
2905  */
2906 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2907 {
2908 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2909 	const struct edid_quirk *quirk;
2910 	int i;
2911 
2912 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2913 		quirk = &edid_quirk_list[i];
2914 		if (quirk->panel_id == panel_id)
2915 			return quirk->quirks;
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2922 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2923 
2924 /*
2925  * Walk the mode list for connector, clearing the preferred status on existing
2926  * modes and setting it anew for the right mode ala quirks.
2927  */
2928 static void edid_fixup_preferred(struct drm_connector *connector)
2929 {
2930 	const struct drm_display_info *info = &connector->display_info;
2931 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2932 	int target_refresh = 0;
2933 	int cur_vrefresh, preferred_vrefresh;
2934 
2935 	if (list_empty(&connector->probed_modes))
2936 		return;
2937 
2938 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2939 		target_refresh = 60;
2940 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2941 		target_refresh = 75;
2942 
2943 	preferred_mode = list_first_entry(&connector->probed_modes,
2944 					  struct drm_display_mode, head);
2945 
2946 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2947 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2948 
2949 		if (cur_mode == preferred_mode)
2950 			continue;
2951 
2952 		/* Largest mode is preferred */
2953 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2954 			preferred_mode = cur_mode;
2955 
2956 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2957 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2958 		/* At a given size, try to get closest to target refresh */
2959 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2960 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2961 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2962 			preferred_mode = cur_mode;
2963 		}
2964 	}
2965 
2966 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2967 }
2968 
2969 static bool
2970 mode_is_rb(const struct drm_display_mode *mode)
2971 {
2972 	return (mode->htotal - mode->hdisplay == 160) &&
2973 	       (mode->hsync_end - mode->hdisplay == 80) &&
2974 	       (mode->hsync_end - mode->hsync_start == 32) &&
2975 	       (mode->vsync_start - mode->vdisplay == 3);
2976 }
2977 
2978 /*
2979  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2980  * @dev: Device to duplicate against
2981  * @hsize: Mode width
2982  * @vsize: Mode height
2983  * @fresh: Mode refresh rate
2984  * @rb: Mode reduced-blanking-ness
2985  *
2986  * Walk the DMT mode list looking for a match for the given parameters.
2987  *
2988  * Return: A newly allocated copy of the mode, or NULL if not found.
2989  */
2990 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2991 					   int hsize, int vsize, int fresh,
2992 					   bool rb)
2993 {
2994 	int i;
2995 
2996 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2997 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2998 
2999 		if (hsize != ptr->hdisplay)
3000 			continue;
3001 		if (vsize != ptr->vdisplay)
3002 			continue;
3003 		if (fresh != drm_mode_vrefresh(ptr))
3004 			continue;
3005 		if (rb != mode_is_rb(ptr))
3006 			continue;
3007 
3008 		return drm_mode_duplicate(dev, ptr);
3009 	}
3010 
3011 	return NULL;
3012 }
3013 EXPORT_SYMBOL(drm_mode_find_dmt);
3014 
3015 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3016 {
3017 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3018 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3019 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3020 
3021 	return descriptor->pixel_clock == 0 &&
3022 		descriptor->data.other_data.pad1 == 0 &&
3023 		descriptor->data.other_data.type == type;
3024 }
3025 
3026 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3027 {
3028 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3029 
3030 	return descriptor->pixel_clock != 0;
3031 }
3032 
3033 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3034 
3035 static void
3036 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3037 {
3038 	int i, n;
3039 	u8 d = ext[0x02];
3040 	const u8 *det_base = ext + d;
3041 
3042 	if (d < 4 || d > 127)
3043 		return;
3044 
3045 	n = (127 - d) / 18;
3046 	for (i = 0; i < n; i++)
3047 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3048 }
3049 
3050 static void
3051 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3052 {
3053 	unsigned int i, n = min((int)ext[0x02], 6);
3054 	const u8 *det_base = ext + 5;
3055 
3056 	if (ext[0x01] != 1)
3057 		return; /* unknown version */
3058 
3059 	for (i = 0; i < n; i++)
3060 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3061 }
3062 
3063 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3064 					detailed_cb *cb, void *closure)
3065 {
3066 	struct drm_edid_iter edid_iter;
3067 	const u8 *ext;
3068 	int i;
3069 
3070 	if (!drm_edid)
3071 		return;
3072 
3073 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3074 		cb(&drm_edid->edid->detailed_timings[i], closure);
3075 
3076 	drm_edid_iter_begin(drm_edid, &edid_iter);
3077 	drm_edid_iter_for_each(ext, &edid_iter) {
3078 		switch (*ext) {
3079 		case CEA_EXT:
3080 			cea_for_each_detailed_block(ext, cb, closure);
3081 			break;
3082 		case VTB_EXT:
3083 			vtb_for_each_detailed_block(ext, cb, closure);
3084 			break;
3085 		default:
3086 			break;
3087 		}
3088 	}
3089 	drm_edid_iter_end(&edid_iter);
3090 }
3091 
3092 static void
3093 is_rb(const struct detailed_timing *descriptor, void *data)
3094 {
3095 	bool *res = data;
3096 
3097 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3098 		return;
3099 
3100 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3101 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3102 
3103 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3104 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3105 		*res = true;
3106 }
3107 
3108 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3109 static bool
3110 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3111 {
3112 	if (drm_edid->edid->revision >= 4) {
3113 		bool ret = false;
3114 
3115 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3116 		return ret;
3117 	}
3118 
3119 	return drm_edid_is_digital(drm_edid);
3120 }
3121 
3122 static void
3123 find_gtf2(const struct detailed_timing *descriptor, void *data)
3124 {
3125 	const struct detailed_timing **res = data;
3126 
3127 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3128 		return;
3129 
3130 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3131 
3132 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3133 		*res = descriptor;
3134 }
3135 
3136 /* Secondary GTF curve kicks in above some break frequency */
3137 static int
3138 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3139 {
3140 	const struct detailed_timing *descriptor = NULL;
3141 
3142 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3143 
3144 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3145 
3146 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3147 }
3148 
3149 static int
3150 drm_gtf2_2c(const struct drm_edid *drm_edid)
3151 {
3152 	const struct detailed_timing *descriptor = NULL;
3153 
3154 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3155 
3156 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3157 
3158 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3159 }
3160 
3161 static int
3162 drm_gtf2_m(const struct drm_edid *drm_edid)
3163 {
3164 	const struct detailed_timing *descriptor = NULL;
3165 
3166 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3167 
3168 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3169 
3170 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3171 }
3172 
3173 static int
3174 drm_gtf2_k(const struct drm_edid *drm_edid)
3175 {
3176 	const struct detailed_timing *descriptor = NULL;
3177 
3178 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3179 
3180 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3181 
3182 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3183 }
3184 
3185 static int
3186 drm_gtf2_2j(const struct drm_edid *drm_edid)
3187 {
3188 	const struct detailed_timing *descriptor = NULL;
3189 
3190 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3191 
3192 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3193 
3194 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3195 }
3196 
3197 static void
3198 get_timing_level(const struct detailed_timing *descriptor, void *data)
3199 {
3200 	int *res = data;
3201 
3202 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3203 		return;
3204 
3205 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3206 
3207 	switch (descriptor->data.other_data.data.range.flags) {
3208 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3209 		*res = LEVEL_GTF;
3210 		break;
3211 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3212 		*res = LEVEL_GTF2;
3213 		break;
3214 	case DRM_EDID_CVT_SUPPORT_FLAG:
3215 		*res = LEVEL_CVT;
3216 		break;
3217 	default:
3218 		break;
3219 	}
3220 }
3221 
3222 /* Get standard timing level (CVT/GTF/DMT). */
3223 static int standard_timing_level(const struct drm_edid *drm_edid)
3224 {
3225 	const struct edid *edid = drm_edid->edid;
3226 
3227 	if (edid->revision >= 4) {
3228 		/*
3229 		 * If the range descriptor doesn't
3230 		 * indicate otherwise default to CVT
3231 		 */
3232 		int ret = LEVEL_CVT;
3233 
3234 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3235 
3236 		return ret;
3237 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3238 		return LEVEL_GTF2;
3239 	} else if (edid->revision >= 2) {
3240 		return LEVEL_GTF;
3241 	} else {
3242 		return LEVEL_DMT;
3243 	}
3244 }
3245 
3246 /*
3247  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3248  * monitors fill with ascii space (0x20) instead.
3249  */
3250 static int
3251 bad_std_timing(u8 a, u8 b)
3252 {
3253 	return (a == 0x00 && b == 0x00) ||
3254 	       (a == 0x01 && b == 0x01) ||
3255 	       (a == 0x20 && b == 0x20);
3256 }
3257 
3258 static int drm_mode_hsync(const struct drm_display_mode *mode)
3259 {
3260 	if (mode->htotal <= 0)
3261 		return 0;
3262 
3263 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3264 }
3265 
3266 static struct drm_display_mode *
3267 drm_gtf2_mode(struct drm_device *dev,
3268 	      const struct drm_edid *drm_edid,
3269 	      int hsize, int vsize, int vrefresh_rate)
3270 {
3271 	struct drm_display_mode *mode;
3272 
3273 	/*
3274 	 * This is potentially wrong if there's ever a monitor with
3275 	 * more than one ranges section, each claiming a different
3276 	 * secondary GTF curve.  Please don't do that.
3277 	 */
3278 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3279 	if (!mode)
3280 		return NULL;
3281 
3282 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3283 		drm_mode_destroy(dev, mode);
3284 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3285 					    vrefresh_rate, 0, 0,
3286 					    drm_gtf2_m(drm_edid),
3287 					    drm_gtf2_2c(drm_edid),
3288 					    drm_gtf2_k(drm_edid),
3289 					    drm_gtf2_2j(drm_edid));
3290 	}
3291 
3292 	return mode;
3293 }
3294 
3295 /*
3296  * Take the standard timing params (in this case width, aspect, and refresh)
3297  * and convert them into a real mode using CVT/GTF/DMT.
3298  */
3299 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3300 					     const struct drm_edid *drm_edid,
3301 					     const struct std_timing *t)
3302 {
3303 	struct drm_device *dev = connector->dev;
3304 	struct drm_display_mode *m, *mode = NULL;
3305 	int hsize, vsize;
3306 	int vrefresh_rate;
3307 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3308 		>> EDID_TIMING_ASPECT_SHIFT;
3309 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3310 		>> EDID_TIMING_VFREQ_SHIFT;
3311 	int timing_level = standard_timing_level(drm_edid);
3312 
3313 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3314 		return NULL;
3315 
3316 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3317 	hsize = t->hsize * 8 + 248;
3318 	/* vrefresh_rate = vfreq + 60 */
3319 	vrefresh_rate = vfreq + 60;
3320 	/* the vdisplay is calculated based on the aspect ratio */
3321 	if (aspect_ratio == 0) {
3322 		if (drm_edid->edid->revision < 3)
3323 			vsize = hsize;
3324 		else
3325 			vsize = (hsize * 10) / 16;
3326 	} else if (aspect_ratio == 1)
3327 		vsize = (hsize * 3) / 4;
3328 	else if (aspect_ratio == 2)
3329 		vsize = (hsize * 4) / 5;
3330 	else
3331 		vsize = (hsize * 9) / 16;
3332 
3333 	/* HDTV hack, part 1 */
3334 	if (vrefresh_rate == 60 &&
3335 	    ((hsize == 1360 && vsize == 765) ||
3336 	     (hsize == 1368 && vsize == 769))) {
3337 		hsize = 1366;
3338 		vsize = 768;
3339 	}
3340 
3341 	/*
3342 	 * If this connector already has a mode for this size and refresh
3343 	 * rate (because it came from detailed or CVT info), use that
3344 	 * instead.  This way we don't have to guess at interlace or
3345 	 * reduced blanking.
3346 	 */
3347 	list_for_each_entry(m, &connector->probed_modes, head)
3348 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3349 		    drm_mode_vrefresh(m) == vrefresh_rate)
3350 			return NULL;
3351 
3352 	/* HDTV hack, part 2 */
3353 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3354 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3355 				    false);
3356 		if (!mode)
3357 			return NULL;
3358 		mode->hdisplay = 1366;
3359 		mode->hsync_start = mode->hsync_start - 1;
3360 		mode->hsync_end = mode->hsync_end - 1;
3361 		return mode;
3362 	}
3363 
3364 	/* check whether it can be found in default mode table */
3365 	if (drm_monitor_supports_rb(drm_edid)) {
3366 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3367 					 true);
3368 		if (mode)
3369 			return mode;
3370 	}
3371 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3372 	if (mode)
3373 		return mode;
3374 
3375 	/* okay, generate it */
3376 	switch (timing_level) {
3377 	case LEVEL_DMT:
3378 		break;
3379 	case LEVEL_GTF:
3380 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3381 		break;
3382 	case LEVEL_GTF2:
3383 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3384 		break;
3385 	case LEVEL_CVT:
3386 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3387 				    false);
3388 		break;
3389 	}
3390 	return mode;
3391 }
3392 
3393 /*
3394  * EDID is delightfully ambiguous about how interlaced modes are to be
3395  * encoded.  Our internal representation is of frame height, but some
3396  * HDTV detailed timings are encoded as field height.
3397  *
3398  * The format list here is from CEA, in frame size.  Technically we
3399  * should be checking refresh rate too.  Whatever.
3400  */
3401 static void
3402 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3403 			    const struct detailed_pixel_timing *pt)
3404 {
3405 	int i;
3406 	static const struct {
3407 		int w, h;
3408 	} cea_interlaced[] = {
3409 		{ 1920, 1080 },
3410 		{  720,  480 },
3411 		{ 1440,  480 },
3412 		{ 2880,  480 },
3413 		{  720,  576 },
3414 		{ 1440,  576 },
3415 		{ 2880,  576 },
3416 	};
3417 
3418 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3419 		return;
3420 
3421 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3422 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3423 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3424 			mode->vdisplay *= 2;
3425 			mode->vsync_start *= 2;
3426 			mode->vsync_end *= 2;
3427 			mode->vtotal *= 2;
3428 			mode->vtotal |= 1;
3429 		}
3430 	}
3431 
3432 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3433 }
3434 
3435 /*
3436  * Create a new mode from an EDID detailed timing section. An EDID detailed
3437  * timing block contains enough info for us to create and return a new struct
3438  * drm_display_mode.
3439  */
3440 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3441 						  const struct drm_edid *drm_edid,
3442 						  const struct detailed_timing *timing)
3443 {
3444 	const struct drm_display_info *info = &connector->display_info;
3445 	struct drm_device *dev = connector->dev;
3446 	struct drm_display_mode *mode;
3447 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3448 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3449 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3450 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3451 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3452 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3453 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3454 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3455 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3456 
3457 	/* ignore tiny modes */
3458 	if (hactive < 64 || vactive < 64)
3459 		return NULL;
3460 
3461 	if (pt->misc & DRM_EDID_PT_STEREO) {
3462 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3463 			    connector->base.id, connector->name);
3464 		return NULL;
3465 	}
3466 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3467 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3468 			    connector->base.id, connector->name);
3469 	}
3470 
3471 	/* it is incorrect if hsync/vsync width is zero */
3472 	if (!hsync_pulse_width || !vsync_pulse_width) {
3473 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3474 			    connector->base.id, connector->name);
3475 		return NULL;
3476 	}
3477 
3478 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3479 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3480 		if (!mode)
3481 			return NULL;
3482 
3483 		goto set_size;
3484 	}
3485 
3486 	mode = drm_mode_create(dev);
3487 	if (!mode)
3488 		return NULL;
3489 
3490 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3491 		mode->clock = 1088 * 10;
3492 	else
3493 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3494 
3495 	mode->hdisplay = hactive;
3496 	mode->hsync_start = mode->hdisplay + hsync_offset;
3497 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3498 	mode->htotal = mode->hdisplay + hblank;
3499 
3500 	mode->vdisplay = vactive;
3501 	mode->vsync_start = mode->vdisplay + vsync_offset;
3502 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3503 	mode->vtotal = mode->vdisplay + vblank;
3504 
3505 	/* Some EDIDs have bogus h/vsync_end values */
3506 	if (mode->hsync_end > mode->htotal) {
3507 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3508 			    connector->base.id, connector->name,
3509 			    mode->hsync_end, mode->htotal);
3510 		mode->hsync_end = mode->htotal;
3511 	}
3512 	if (mode->vsync_end > mode->vtotal) {
3513 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3514 			    connector->base.id, connector->name,
3515 			    mode->vsync_end, mode->vtotal);
3516 		mode->vsync_end = mode->vtotal;
3517 	}
3518 
3519 	drm_mode_do_interlace_quirk(mode, pt);
3520 
3521 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3522 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3523 	} else {
3524 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3525 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3526 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3527 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3528 	}
3529 
3530 set_size:
3531 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3532 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3533 
3534 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3535 		mode->width_mm *= 10;
3536 		mode->height_mm *= 10;
3537 	}
3538 
3539 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3540 		mode->width_mm = drm_edid->edid->width_cm * 10;
3541 		mode->height_mm = drm_edid->edid->height_cm * 10;
3542 	}
3543 
3544 	mode->type = DRM_MODE_TYPE_DRIVER;
3545 	drm_mode_set_name(mode);
3546 
3547 	return mode;
3548 }
3549 
3550 static bool
3551 mode_in_hsync_range(const struct drm_display_mode *mode,
3552 		    const struct edid *edid, const u8 *t)
3553 {
3554 	int hsync, hmin, hmax;
3555 
3556 	hmin = t[7];
3557 	if (edid->revision >= 4)
3558 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3559 	hmax = t[8];
3560 	if (edid->revision >= 4)
3561 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3562 	hsync = drm_mode_hsync(mode);
3563 
3564 	return (hsync <= hmax && hsync >= hmin);
3565 }
3566 
3567 static bool
3568 mode_in_vsync_range(const struct drm_display_mode *mode,
3569 		    const struct edid *edid, const u8 *t)
3570 {
3571 	int vsync, vmin, vmax;
3572 
3573 	vmin = t[5];
3574 	if (edid->revision >= 4)
3575 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3576 	vmax = t[6];
3577 	if (edid->revision >= 4)
3578 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3579 	vsync = drm_mode_vrefresh(mode);
3580 
3581 	return (vsync <= vmax && vsync >= vmin);
3582 }
3583 
3584 static u32
3585 range_pixel_clock(const struct edid *edid, const u8 *t)
3586 {
3587 	/* unspecified */
3588 	if (t[9] == 0 || t[9] == 255)
3589 		return 0;
3590 
3591 	/* 1.4 with CVT support gives us real precision, yay */
3592 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3593 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3594 
3595 	/* 1.3 is pathetic, so fuzz up a bit */
3596 	return t[9] * 10000 + 5001;
3597 }
3598 
3599 static bool mode_in_range(const struct drm_display_mode *mode,
3600 			  const struct drm_edid *drm_edid,
3601 			  const struct detailed_timing *timing)
3602 {
3603 	const struct edid *edid = drm_edid->edid;
3604 	u32 max_clock;
3605 	const u8 *t = (const u8 *)timing;
3606 
3607 	if (!mode_in_hsync_range(mode, edid, t))
3608 		return false;
3609 
3610 	if (!mode_in_vsync_range(mode, edid, t))
3611 		return false;
3612 
3613 	if ((max_clock = range_pixel_clock(edid, t)))
3614 		if (mode->clock > max_clock)
3615 			return false;
3616 
3617 	/* 1.4 max horizontal check */
3618 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3619 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3620 			return false;
3621 
3622 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3623 		return false;
3624 
3625 	return true;
3626 }
3627 
3628 static bool valid_inferred_mode(const struct drm_connector *connector,
3629 				const struct drm_display_mode *mode)
3630 {
3631 	const struct drm_display_mode *m;
3632 	bool ok = false;
3633 
3634 	list_for_each_entry(m, &connector->probed_modes, head) {
3635 		if (mode->hdisplay == m->hdisplay &&
3636 		    mode->vdisplay == m->vdisplay &&
3637 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3638 			return false; /* duplicated */
3639 		if (mode->hdisplay <= m->hdisplay &&
3640 		    mode->vdisplay <= m->vdisplay)
3641 			ok = true;
3642 	}
3643 	return ok;
3644 }
3645 
3646 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3647 				   const struct drm_edid *drm_edid,
3648 				   const struct detailed_timing *timing)
3649 {
3650 	int i, modes = 0;
3651 	struct drm_display_mode *newmode;
3652 	struct drm_device *dev = connector->dev;
3653 
3654 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3655 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3656 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3657 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3658 			if (newmode) {
3659 				drm_mode_probed_add(connector, newmode);
3660 				modes++;
3661 			}
3662 		}
3663 	}
3664 
3665 	return modes;
3666 }
3667 
3668 /* fix up 1366x768 mode from 1368x768;
3669  * GFT/CVT can't express 1366 width which isn't dividable by 8
3670  */
3671 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3672 {
3673 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3674 		mode->hdisplay = 1366;
3675 		mode->hsync_start--;
3676 		mode->hsync_end--;
3677 		drm_mode_set_name(mode);
3678 	}
3679 }
3680 
3681 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3682 				   const struct drm_edid *drm_edid,
3683 				   const struct detailed_timing *timing)
3684 {
3685 	int i, modes = 0;
3686 	struct drm_display_mode *newmode;
3687 	struct drm_device *dev = connector->dev;
3688 
3689 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3690 		const struct minimode *m = &extra_modes[i];
3691 
3692 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3693 		if (!newmode)
3694 			return modes;
3695 
3696 		drm_mode_fixup_1366x768(newmode);
3697 		if (!mode_in_range(newmode, drm_edid, timing) ||
3698 		    !valid_inferred_mode(connector, newmode)) {
3699 			drm_mode_destroy(dev, newmode);
3700 			continue;
3701 		}
3702 
3703 		drm_mode_probed_add(connector, newmode);
3704 		modes++;
3705 	}
3706 
3707 	return modes;
3708 }
3709 
3710 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3711 				    const struct drm_edid *drm_edid,
3712 				    const struct detailed_timing *timing)
3713 {
3714 	int i, modes = 0;
3715 	struct drm_display_mode *newmode;
3716 	struct drm_device *dev = connector->dev;
3717 
3718 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3719 		const struct minimode *m = &extra_modes[i];
3720 
3721 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3722 		if (!newmode)
3723 			return modes;
3724 
3725 		drm_mode_fixup_1366x768(newmode);
3726 		if (!mode_in_range(newmode, drm_edid, timing) ||
3727 		    !valid_inferred_mode(connector, newmode)) {
3728 			drm_mode_destroy(dev, newmode);
3729 			continue;
3730 		}
3731 
3732 		drm_mode_probed_add(connector, newmode);
3733 		modes++;
3734 	}
3735 
3736 	return modes;
3737 }
3738 
3739 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3740 				   const struct drm_edid *drm_edid,
3741 				   const struct detailed_timing *timing)
3742 {
3743 	int i, modes = 0;
3744 	struct drm_display_mode *newmode;
3745 	struct drm_device *dev = connector->dev;
3746 	bool rb = drm_monitor_supports_rb(drm_edid);
3747 
3748 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3749 		const struct minimode *m = &extra_modes[i];
3750 
3751 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3752 		if (!newmode)
3753 			return modes;
3754 
3755 		drm_mode_fixup_1366x768(newmode);
3756 		if (!mode_in_range(newmode, drm_edid, timing) ||
3757 		    !valid_inferred_mode(connector, newmode)) {
3758 			drm_mode_destroy(dev, newmode);
3759 			continue;
3760 		}
3761 
3762 		drm_mode_probed_add(connector, newmode);
3763 		modes++;
3764 	}
3765 
3766 	return modes;
3767 }
3768 
3769 static void
3770 do_inferred_modes(const struct detailed_timing *timing, void *c)
3771 {
3772 	struct detailed_mode_closure *closure = c;
3773 	const struct detailed_non_pixel *data = &timing->data.other_data;
3774 	const struct detailed_data_monitor_range *range = &data->data.range;
3775 
3776 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3777 		return;
3778 
3779 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3780 						  closure->drm_edid,
3781 						  timing);
3782 
3783 	if (closure->drm_edid->edid->revision < 2)
3784 		return; /* GTF not defined yet */
3785 
3786 	switch (range->flags) {
3787 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3788 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3789 							   closure->drm_edid,
3790 							   timing);
3791 		break;
3792 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3793 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3794 							  closure->drm_edid,
3795 							  timing);
3796 		break;
3797 	case DRM_EDID_CVT_SUPPORT_FLAG:
3798 		if (closure->drm_edid->edid->revision < 4)
3799 			break;
3800 
3801 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3802 							  closure->drm_edid,
3803 							  timing);
3804 		break;
3805 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3806 	default:
3807 		break;
3808 	}
3809 }
3810 
3811 static int add_inferred_modes(struct drm_connector *connector,
3812 			      const struct drm_edid *drm_edid)
3813 {
3814 	struct detailed_mode_closure closure = {
3815 		.connector = connector,
3816 		.drm_edid = drm_edid,
3817 	};
3818 
3819 	if (drm_edid->edid->revision >= 1)
3820 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3821 
3822 	return closure.modes;
3823 }
3824 
3825 static int
3826 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3827 {
3828 	int i, j, m, modes = 0;
3829 	struct drm_display_mode *mode;
3830 	const u8 *est = ((const u8 *)timing) + 6;
3831 
3832 	for (i = 0; i < 6; i++) {
3833 		for (j = 7; j >= 0; j--) {
3834 			m = (i * 8) + (7 - j);
3835 			if (m >= ARRAY_SIZE(est3_modes))
3836 				break;
3837 			if (est[i] & (1 << j)) {
3838 				mode = drm_mode_find_dmt(connector->dev,
3839 							 est3_modes[m].w,
3840 							 est3_modes[m].h,
3841 							 est3_modes[m].r,
3842 							 est3_modes[m].rb);
3843 				if (mode) {
3844 					drm_mode_probed_add(connector, mode);
3845 					modes++;
3846 				}
3847 			}
3848 		}
3849 	}
3850 
3851 	return modes;
3852 }
3853 
3854 static void
3855 do_established_modes(const struct detailed_timing *timing, void *c)
3856 {
3857 	struct detailed_mode_closure *closure = c;
3858 
3859 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3860 		return;
3861 
3862 	closure->modes += drm_est3_modes(closure->connector, timing);
3863 }
3864 
3865 /*
3866  * Get established modes from EDID and add them. Each EDID block contains a
3867  * bitmap of the supported "established modes" list (defined above). Tease them
3868  * out and add them to the global modes list.
3869  */
3870 static int add_established_modes(struct drm_connector *connector,
3871 				 const struct drm_edid *drm_edid)
3872 {
3873 	struct drm_device *dev = connector->dev;
3874 	const struct edid *edid = drm_edid->edid;
3875 	unsigned long est_bits = edid->established_timings.t1 |
3876 		(edid->established_timings.t2 << 8) |
3877 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3878 	int i, modes = 0;
3879 	struct detailed_mode_closure closure = {
3880 		.connector = connector,
3881 		.drm_edid = drm_edid,
3882 	};
3883 
3884 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3885 		if (est_bits & (1<<i)) {
3886 			struct drm_display_mode *newmode;
3887 
3888 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3889 			if (newmode) {
3890 				drm_mode_probed_add(connector, newmode);
3891 				modes++;
3892 			}
3893 		}
3894 	}
3895 
3896 	if (edid->revision >= 1)
3897 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3898 					    &closure);
3899 
3900 	return modes + closure.modes;
3901 }
3902 
3903 static void
3904 do_standard_modes(const struct detailed_timing *timing, void *c)
3905 {
3906 	struct detailed_mode_closure *closure = c;
3907 	const struct detailed_non_pixel *data = &timing->data.other_data;
3908 	struct drm_connector *connector = closure->connector;
3909 	int i;
3910 
3911 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3912 		return;
3913 
3914 	for (i = 0; i < 6; i++) {
3915 		const struct std_timing *std = &data->data.timings[i];
3916 		struct drm_display_mode *newmode;
3917 
3918 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3919 		if (newmode) {
3920 			drm_mode_probed_add(connector, newmode);
3921 			closure->modes++;
3922 		}
3923 	}
3924 }
3925 
3926 /*
3927  * Get standard modes from EDID and add them. Standard modes can be calculated
3928  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3929  * add them to the list.
3930  */
3931 static int add_standard_modes(struct drm_connector *connector,
3932 			      const struct drm_edid *drm_edid)
3933 {
3934 	int i, modes = 0;
3935 	struct detailed_mode_closure closure = {
3936 		.connector = connector,
3937 		.drm_edid = drm_edid,
3938 	};
3939 
3940 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3941 		struct drm_display_mode *newmode;
3942 
3943 		newmode = drm_mode_std(connector, drm_edid,
3944 				       &drm_edid->edid->standard_timings[i]);
3945 		if (newmode) {
3946 			drm_mode_probed_add(connector, newmode);
3947 			modes++;
3948 		}
3949 	}
3950 
3951 	if (drm_edid->edid->revision >= 1)
3952 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3953 					    &closure);
3954 
3955 	/* XXX should also look for standard codes in VTB blocks */
3956 
3957 	return modes + closure.modes;
3958 }
3959 
3960 static int drm_cvt_modes(struct drm_connector *connector,
3961 			 const struct detailed_timing *timing)
3962 {
3963 	int i, j, modes = 0;
3964 	struct drm_display_mode *newmode;
3965 	struct drm_device *dev = connector->dev;
3966 	const struct cvt_timing *cvt;
3967 	static const int rates[] = { 60, 85, 75, 60, 50 };
3968 	const u8 empty[3] = { 0, 0, 0 };
3969 
3970 	for (i = 0; i < 4; i++) {
3971 		int width, height;
3972 
3973 		cvt = &(timing->data.other_data.data.cvt[i]);
3974 
3975 		if (!memcmp(cvt->code, empty, 3))
3976 			continue;
3977 
3978 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3979 		switch (cvt->code[1] & 0x0c) {
3980 		/* default - because compiler doesn't see that we've enumerated all cases */
3981 		default:
3982 		case 0x00:
3983 			width = height * 4 / 3;
3984 			break;
3985 		case 0x04:
3986 			width = height * 16 / 9;
3987 			break;
3988 		case 0x08:
3989 			width = height * 16 / 10;
3990 			break;
3991 		case 0x0c:
3992 			width = height * 15 / 9;
3993 			break;
3994 		}
3995 
3996 		for (j = 1; j < 5; j++) {
3997 			if (cvt->code[2] & (1 << j)) {
3998 				newmode = drm_cvt_mode(dev, width, height,
3999 						       rates[j], j == 0,
4000 						       false, false);
4001 				if (newmode) {
4002 					drm_mode_probed_add(connector, newmode);
4003 					modes++;
4004 				}
4005 			}
4006 		}
4007 	}
4008 
4009 	return modes;
4010 }
4011 
4012 static void
4013 do_cvt_mode(const struct detailed_timing *timing, void *c)
4014 {
4015 	struct detailed_mode_closure *closure = c;
4016 
4017 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4018 		return;
4019 
4020 	closure->modes += drm_cvt_modes(closure->connector, timing);
4021 }
4022 
4023 static int
4024 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4025 {
4026 	struct detailed_mode_closure closure = {
4027 		.connector = connector,
4028 		.drm_edid = drm_edid,
4029 	};
4030 
4031 	if (drm_edid->edid->revision >= 3)
4032 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4033 
4034 	/* XXX should also look for CVT codes in VTB blocks */
4035 
4036 	return closure.modes;
4037 }
4038 
4039 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4040 					  struct drm_display_mode *mode);
4041 
4042 static void
4043 do_detailed_mode(const struct detailed_timing *timing, void *c)
4044 {
4045 	struct detailed_mode_closure *closure = c;
4046 	struct drm_display_mode *newmode;
4047 
4048 	if (!is_detailed_timing_descriptor(timing))
4049 		return;
4050 
4051 	newmode = drm_mode_detailed(closure->connector,
4052 				    closure->drm_edid, timing);
4053 	if (!newmode)
4054 		return;
4055 
4056 	if (closure->preferred)
4057 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4058 
4059 	/*
4060 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4061 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4062 	 * is just slightly off.
4063 	 */
4064 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4065 
4066 	drm_mode_probed_add(closure->connector, newmode);
4067 	closure->modes++;
4068 	closure->preferred = false;
4069 }
4070 
4071 /*
4072  * add_detailed_modes - Add modes from detailed timings
4073  * @connector: attached connector
4074  * @drm_edid: EDID block to scan
4075  */
4076 static int add_detailed_modes(struct drm_connector *connector,
4077 			      const struct drm_edid *drm_edid)
4078 {
4079 	struct detailed_mode_closure closure = {
4080 		.connector = connector,
4081 		.drm_edid = drm_edid,
4082 	};
4083 
4084 	if (drm_edid->edid->revision >= 4)
4085 		closure.preferred = true; /* first detailed timing is always preferred */
4086 	else
4087 		closure.preferred =
4088 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4089 
4090 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4091 
4092 	return closure.modes;
4093 }
4094 
4095 /* CTA-861-H Table 60 - CTA Tag Codes */
4096 #define CTA_DB_AUDIO			1
4097 #define CTA_DB_VIDEO			2
4098 #define CTA_DB_VENDOR			3
4099 #define CTA_DB_SPEAKER			4
4100 #define CTA_DB_EXTENDED_TAG		7
4101 
4102 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4103 #define CTA_EXT_DB_VIDEO_CAP		0
4104 #define CTA_EXT_DB_VENDOR		1
4105 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4106 #define CTA_EXT_DB_420_VIDEO_DATA	14
4107 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4108 #define CTA_EXT_DB_HF_EEODB		0x78
4109 #define CTA_EXT_DB_HF_SCDB		0x79
4110 
4111 #define EDID_BASIC_AUDIO	(1 << 6)
4112 #define EDID_CEA_YCRCB444	(1 << 5)
4113 #define EDID_CEA_YCRCB422	(1 << 4)
4114 #define EDID_CEA_VCDB_QS	(1 << 6)
4115 
4116 /*
4117  * Search EDID for CEA extension block.
4118  *
4119  * FIXME: Prefer not returning pointers to raw EDID data.
4120  */
4121 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4122 				  int ext_id, int *ext_index)
4123 {
4124 	const u8 *edid_ext = NULL;
4125 	int i;
4126 
4127 	/* No EDID or EDID extensions */
4128 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4129 		return NULL;
4130 
4131 	/* Find CEA extension */
4132 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4133 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4134 		if (edid_block_tag(edid_ext) == ext_id)
4135 			break;
4136 	}
4137 
4138 	if (i >= drm_edid_extension_block_count(drm_edid))
4139 		return NULL;
4140 
4141 	*ext_index = i + 1;
4142 
4143 	return edid_ext;
4144 }
4145 
4146 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4147 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4148 {
4149 	const struct displayid_block *block;
4150 	struct displayid_iter iter;
4151 	int ext_index = 0;
4152 	bool found = false;
4153 
4154 	/* Look for a top level CEA extension block */
4155 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4156 		return true;
4157 
4158 	/* CEA blocks can also be found embedded in a DisplayID block */
4159 	displayid_iter_edid_begin(drm_edid, &iter);
4160 	displayid_iter_for_each(block, &iter) {
4161 		if (block->tag == DATA_BLOCK_CTA) {
4162 			found = true;
4163 			break;
4164 		}
4165 	}
4166 	displayid_iter_end(&iter);
4167 
4168 	return found;
4169 }
4170 
4171 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4172 {
4173 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4174 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4175 
4176 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4177 		return &edid_cea_modes_1[vic - 1];
4178 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4179 		return &edid_cea_modes_193[vic - 193];
4180 	return NULL;
4181 }
4182 
4183 static u8 cea_num_vics(void)
4184 {
4185 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4186 }
4187 
4188 static u8 cea_next_vic(u8 vic)
4189 {
4190 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4191 		vic = 193;
4192 	return vic;
4193 }
4194 
4195 /*
4196  * Calculate the alternate clock for the CEA mode
4197  * (60Hz vs. 59.94Hz etc.)
4198  */
4199 static unsigned int
4200 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4201 {
4202 	unsigned int clock = cea_mode->clock;
4203 
4204 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4205 		return clock;
4206 
4207 	/*
4208 	 * edid_cea_modes contains the 59.94Hz
4209 	 * variant for 240 and 480 line modes,
4210 	 * and the 60Hz variant otherwise.
4211 	 */
4212 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4213 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4214 	else
4215 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4216 
4217 	return clock;
4218 }
4219 
4220 static bool
4221 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4222 {
4223 	/*
4224 	 * For certain VICs the spec allows the vertical
4225 	 * front porch to vary by one or two lines.
4226 	 *
4227 	 * cea_modes[] stores the variant with the shortest
4228 	 * vertical front porch. We can adjust the mode to
4229 	 * get the other variants by simply increasing the
4230 	 * vertical front porch length.
4231 	 */
4232 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4233 		     cea_mode_for_vic(9)->vtotal != 262 ||
4234 		     cea_mode_for_vic(12)->vtotal != 262 ||
4235 		     cea_mode_for_vic(13)->vtotal != 262 ||
4236 		     cea_mode_for_vic(23)->vtotal != 312 ||
4237 		     cea_mode_for_vic(24)->vtotal != 312 ||
4238 		     cea_mode_for_vic(27)->vtotal != 312 ||
4239 		     cea_mode_for_vic(28)->vtotal != 312);
4240 
4241 	if (((vic == 8 || vic == 9 ||
4242 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4243 	    ((vic == 23 || vic == 24 ||
4244 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4245 		mode->vsync_start++;
4246 		mode->vsync_end++;
4247 		mode->vtotal++;
4248 
4249 		return true;
4250 	}
4251 
4252 	return false;
4253 }
4254 
4255 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4256 					     unsigned int clock_tolerance)
4257 {
4258 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4259 	u8 vic;
4260 
4261 	if (!to_match->clock)
4262 		return 0;
4263 
4264 	if (to_match->picture_aspect_ratio)
4265 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4266 
4267 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4268 		struct drm_display_mode cea_mode;
4269 		unsigned int clock1, clock2;
4270 
4271 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4272 
4273 		/* Check both 60Hz and 59.94Hz */
4274 		clock1 = cea_mode.clock;
4275 		clock2 = cea_mode_alternate_clock(&cea_mode);
4276 
4277 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4278 		    abs(to_match->clock - clock2) > clock_tolerance)
4279 			continue;
4280 
4281 		do {
4282 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4283 				return vic;
4284 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4285 	}
4286 
4287 	return 0;
4288 }
4289 
4290 /**
4291  * drm_match_cea_mode - look for a CEA mode matching given mode
4292  * @to_match: display mode
4293  *
4294  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4295  * mode.
4296  */
4297 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4298 {
4299 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4300 	u8 vic;
4301 
4302 	if (!to_match->clock)
4303 		return 0;
4304 
4305 	if (to_match->picture_aspect_ratio)
4306 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4307 
4308 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4309 		struct drm_display_mode cea_mode;
4310 		unsigned int clock1, clock2;
4311 
4312 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4313 
4314 		/* Check both 60Hz and 59.94Hz */
4315 		clock1 = cea_mode.clock;
4316 		clock2 = cea_mode_alternate_clock(&cea_mode);
4317 
4318 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4319 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4320 			continue;
4321 
4322 		do {
4323 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4324 				return vic;
4325 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4326 	}
4327 
4328 	return 0;
4329 }
4330 EXPORT_SYMBOL(drm_match_cea_mode);
4331 
4332 static bool drm_valid_cea_vic(u8 vic)
4333 {
4334 	return cea_mode_for_vic(vic) != NULL;
4335 }
4336 
4337 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4338 {
4339 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4340 
4341 	if (mode)
4342 		return mode->picture_aspect_ratio;
4343 
4344 	return HDMI_PICTURE_ASPECT_NONE;
4345 }
4346 
4347 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4348 {
4349 	return edid_4k_modes[video_code].picture_aspect_ratio;
4350 }
4351 
4352 /*
4353  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4354  * specific block).
4355  */
4356 static unsigned int
4357 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4358 {
4359 	return cea_mode_alternate_clock(hdmi_mode);
4360 }
4361 
4362 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4363 					      unsigned int clock_tolerance)
4364 {
4365 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4366 	u8 vic;
4367 
4368 	if (!to_match->clock)
4369 		return 0;
4370 
4371 	if (to_match->picture_aspect_ratio)
4372 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4373 
4374 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4375 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4376 		unsigned int clock1, clock2;
4377 
4378 		/* Make sure to also match alternate clocks */
4379 		clock1 = hdmi_mode->clock;
4380 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4381 
4382 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4383 		    abs(to_match->clock - clock2) > clock_tolerance)
4384 			continue;
4385 
4386 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4387 			return vic;
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 /*
4394  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4395  * @to_match: display mode
4396  *
4397  * An HDMI mode is one defined in the HDMI vendor specific block.
4398  *
4399  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4400  */
4401 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4402 {
4403 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4404 	u8 vic;
4405 
4406 	if (!to_match->clock)
4407 		return 0;
4408 
4409 	if (to_match->picture_aspect_ratio)
4410 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4411 
4412 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4413 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4414 		unsigned int clock1, clock2;
4415 
4416 		/* Make sure to also match alternate clocks */
4417 		clock1 = hdmi_mode->clock;
4418 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4419 
4420 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4421 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4422 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4423 			return vic;
4424 	}
4425 	return 0;
4426 }
4427 
4428 static bool drm_valid_hdmi_vic(u8 vic)
4429 {
4430 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4431 }
4432 
4433 static int add_alternate_cea_modes(struct drm_connector *connector,
4434 				   const struct drm_edid *drm_edid)
4435 {
4436 	struct drm_device *dev = connector->dev;
4437 	struct drm_display_mode *mode, *tmp;
4438 	LIST_HEAD(list);
4439 	int modes = 0;
4440 
4441 	/* Don't add CTA modes if the CTA extension block is missing */
4442 	if (!drm_edid_has_cta_extension(drm_edid))
4443 		return 0;
4444 
4445 	/*
4446 	 * Go through all probed modes and create a new mode
4447 	 * with the alternate clock for certain CEA modes.
4448 	 */
4449 	list_for_each_entry(mode, &connector->probed_modes, head) {
4450 		const struct drm_display_mode *cea_mode = NULL;
4451 		struct drm_display_mode *newmode;
4452 		u8 vic = drm_match_cea_mode(mode);
4453 		unsigned int clock1, clock2;
4454 
4455 		if (drm_valid_cea_vic(vic)) {
4456 			cea_mode = cea_mode_for_vic(vic);
4457 			clock2 = cea_mode_alternate_clock(cea_mode);
4458 		} else {
4459 			vic = drm_match_hdmi_mode(mode);
4460 			if (drm_valid_hdmi_vic(vic)) {
4461 				cea_mode = &edid_4k_modes[vic];
4462 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4463 			}
4464 		}
4465 
4466 		if (!cea_mode)
4467 			continue;
4468 
4469 		clock1 = cea_mode->clock;
4470 
4471 		if (clock1 == clock2)
4472 			continue;
4473 
4474 		if (mode->clock != clock1 && mode->clock != clock2)
4475 			continue;
4476 
4477 		newmode = drm_mode_duplicate(dev, cea_mode);
4478 		if (!newmode)
4479 			continue;
4480 
4481 		/* Carry over the stereo flags */
4482 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4483 
4484 		/*
4485 		 * The current mode could be either variant. Make
4486 		 * sure to pick the "other" clock for the new mode.
4487 		 */
4488 		if (mode->clock != clock1)
4489 			newmode->clock = clock1;
4490 		else
4491 			newmode->clock = clock2;
4492 
4493 		list_add_tail(&newmode->head, &list);
4494 	}
4495 
4496 	list_for_each_entry_safe(mode, tmp, &list, head) {
4497 		list_del(&mode->head);
4498 		drm_mode_probed_add(connector, mode);
4499 		modes++;
4500 	}
4501 
4502 	return modes;
4503 }
4504 
4505 static u8 svd_to_vic(u8 svd)
4506 {
4507 	/* 0-6 bit vic, 7th bit native mode indicator */
4508 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4509 		return svd & 127;
4510 
4511 	return svd;
4512 }
4513 
4514 /*
4515  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4516  * the EDID, or NULL on errors.
4517  */
4518 static struct drm_display_mode *
4519 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4520 {
4521 	const struct drm_display_info *info = &connector->display_info;
4522 	struct drm_device *dev = connector->dev;
4523 
4524 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4525 		return NULL;
4526 
4527 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4528 }
4529 
4530 /*
4531  * do_y420vdb_modes - Parse YCBCR 420 only modes
4532  * @connector: connector corresponding to the HDMI sink
4533  * @svds: start of the data block of CEA YCBCR 420 VDB
4534  * @len: length of the CEA YCBCR 420 VDB
4535  *
4536  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4537  * which contains modes which can be supported in YCBCR 420
4538  * output format only.
4539  */
4540 static int do_y420vdb_modes(struct drm_connector *connector,
4541 			    const u8 *svds, u8 svds_len)
4542 {
4543 	struct drm_device *dev = connector->dev;
4544 	int modes = 0, i;
4545 
4546 	for (i = 0; i < svds_len; i++) {
4547 		u8 vic = svd_to_vic(svds[i]);
4548 		struct drm_display_mode *newmode;
4549 
4550 		if (!drm_valid_cea_vic(vic))
4551 			continue;
4552 
4553 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4554 		if (!newmode)
4555 			break;
4556 		drm_mode_probed_add(connector, newmode);
4557 		modes++;
4558 	}
4559 
4560 	return modes;
4561 }
4562 
4563 /**
4564  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4565  * @dev: DRM device
4566  * @video_code: CEA VIC of the mode
4567  *
4568  * Creates a new mode matching the specified CEA VIC.
4569  *
4570  * Returns: A new drm_display_mode on success or NULL on failure
4571  */
4572 struct drm_display_mode *
4573 drm_display_mode_from_cea_vic(struct drm_device *dev,
4574 			      u8 video_code)
4575 {
4576 	const struct drm_display_mode *cea_mode;
4577 	struct drm_display_mode *newmode;
4578 
4579 	cea_mode = cea_mode_for_vic(video_code);
4580 	if (!cea_mode)
4581 		return NULL;
4582 
4583 	newmode = drm_mode_duplicate(dev, cea_mode);
4584 	if (!newmode)
4585 		return NULL;
4586 
4587 	return newmode;
4588 }
4589 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4590 
4591 /* Add modes based on VICs parsed in parse_cta_vdb() */
4592 static int add_cta_vdb_modes(struct drm_connector *connector)
4593 {
4594 	const struct drm_display_info *info = &connector->display_info;
4595 	int i, modes = 0;
4596 
4597 	if (!info->vics)
4598 		return 0;
4599 
4600 	for (i = 0; i < info->vics_len; i++) {
4601 		struct drm_display_mode *mode;
4602 
4603 		mode = drm_display_mode_from_vic_index(connector, i);
4604 		if (mode) {
4605 			drm_mode_probed_add(connector, mode);
4606 			modes++;
4607 		}
4608 	}
4609 
4610 	return modes;
4611 }
4612 
4613 struct stereo_mandatory_mode {
4614 	int width, height, vrefresh;
4615 	unsigned int flags;
4616 };
4617 
4618 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4619 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4620 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4621 	{ 1920, 1080, 50,
4622 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623 	{ 1920, 1080, 60,
4624 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4625 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4627 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4628 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4629 };
4630 
4631 static bool
4632 stereo_match_mandatory(const struct drm_display_mode *mode,
4633 		       const struct stereo_mandatory_mode *stereo_mode)
4634 {
4635 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4636 
4637 	return mode->hdisplay == stereo_mode->width &&
4638 	       mode->vdisplay == stereo_mode->height &&
4639 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4640 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4641 }
4642 
4643 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4644 {
4645 	struct drm_device *dev = connector->dev;
4646 	const struct drm_display_mode *mode;
4647 	struct list_head stereo_modes;
4648 	int modes = 0, i;
4649 
4650 	INIT_LIST_HEAD(&stereo_modes);
4651 
4652 	list_for_each_entry(mode, &connector->probed_modes, head) {
4653 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4654 			const struct stereo_mandatory_mode *mandatory;
4655 			struct drm_display_mode *new_mode;
4656 
4657 			if (!stereo_match_mandatory(mode,
4658 						    &stereo_mandatory_modes[i]))
4659 				continue;
4660 
4661 			mandatory = &stereo_mandatory_modes[i];
4662 			new_mode = drm_mode_duplicate(dev, mode);
4663 			if (!new_mode)
4664 				continue;
4665 
4666 			new_mode->flags |= mandatory->flags;
4667 			list_add_tail(&new_mode->head, &stereo_modes);
4668 			modes++;
4669 		}
4670 	}
4671 
4672 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4673 
4674 	return modes;
4675 }
4676 
4677 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4678 {
4679 	struct drm_device *dev = connector->dev;
4680 	struct drm_display_mode *newmode;
4681 
4682 	if (!drm_valid_hdmi_vic(vic)) {
4683 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4684 			connector->base.id, connector->name, vic);
4685 		return 0;
4686 	}
4687 
4688 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4689 	if (!newmode)
4690 		return 0;
4691 
4692 	drm_mode_probed_add(connector, newmode);
4693 
4694 	return 1;
4695 }
4696 
4697 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4698 			       int vic_index)
4699 {
4700 	struct drm_display_mode *newmode;
4701 	int modes = 0;
4702 
4703 	if (structure & (1 << 0)) {
4704 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4705 		if (newmode) {
4706 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4707 			drm_mode_probed_add(connector, newmode);
4708 			modes++;
4709 		}
4710 	}
4711 	if (structure & (1 << 6)) {
4712 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4713 		if (newmode) {
4714 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4715 			drm_mode_probed_add(connector, newmode);
4716 			modes++;
4717 		}
4718 	}
4719 	if (structure & (1 << 8)) {
4720 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4721 		if (newmode) {
4722 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4723 			drm_mode_probed_add(connector, newmode);
4724 			modes++;
4725 		}
4726 	}
4727 
4728 	return modes;
4729 }
4730 
4731 static bool hdmi_vsdb_latency_present(const u8 *db)
4732 {
4733 	return db[8] & BIT(7);
4734 }
4735 
4736 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4737 {
4738 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4739 }
4740 
4741 static int hdmi_vsdb_latency_length(const u8 *db)
4742 {
4743 	if (hdmi_vsdb_i_latency_present(db))
4744 		return 4;
4745 	else if (hdmi_vsdb_latency_present(db))
4746 		return 2;
4747 	else
4748 		return 0;
4749 }
4750 
4751 /*
4752  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4753  * @connector: connector corresponding to the HDMI sink
4754  * @db: start of the CEA vendor specific block
4755  * @len: length of the CEA block payload, ie. one can access up to db[len]
4756  *
4757  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4758  * also adds the stereo 3d modes when applicable.
4759  */
4760 static int
4761 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4762 {
4763 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4764 	u8 vic_len, hdmi_3d_len = 0;
4765 	u16 mask;
4766 	u16 structure_all;
4767 
4768 	if (len < 8)
4769 		goto out;
4770 
4771 	/* no HDMI_Video_Present */
4772 	if (!(db[8] & (1 << 5)))
4773 		goto out;
4774 
4775 	offset += hdmi_vsdb_latency_length(db);
4776 
4777 	/* the declared length is not long enough for the 2 first bytes
4778 	 * of additional video format capabilities */
4779 	if (len < (8 + offset + 2))
4780 		goto out;
4781 
4782 	/* 3D_Present */
4783 	offset++;
4784 	if (db[8 + offset] & (1 << 7)) {
4785 		modes += add_hdmi_mandatory_stereo_modes(connector);
4786 
4787 		/* 3D_Multi_present */
4788 		multi_present = (db[8 + offset] & 0x60) >> 5;
4789 	}
4790 
4791 	offset++;
4792 	vic_len = db[8 + offset] >> 5;
4793 	hdmi_3d_len = db[8 + offset] & 0x1f;
4794 
4795 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4796 		u8 vic;
4797 
4798 		vic = db[9 + offset + i];
4799 		modes += add_hdmi_mode(connector, vic);
4800 	}
4801 	offset += 1 + vic_len;
4802 
4803 	if (multi_present == 1)
4804 		multi_len = 2;
4805 	else if (multi_present == 2)
4806 		multi_len = 4;
4807 	else
4808 		multi_len = 0;
4809 
4810 	if (len < (8 + offset + hdmi_3d_len - 1))
4811 		goto out;
4812 
4813 	if (hdmi_3d_len < multi_len)
4814 		goto out;
4815 
4816 	if (multi_present == 1 || multi_present == 2) {
4817 		/* 3D_Structure_ALL */
4818 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4819 
4820 		/* check if 3D_MASK is present */
4821 		if (multi_present == 2)
4822 			mask = (db[10 + offset] << 8) | db[11 + offset];
4823 		else
4824 			mask = 0xffff;
4825 
4826 		for (i = 0; i < 16; i++) {
4827 			if (mask & (1 << i))
4828 				modes += add_3d_struct_modes(connector,
4829 							     structure_all, i);
4830 		}
4831 	}
4832 
4833 	offset += multi_len;
4834 
4835 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4836 		int vic_index;
4837 		struct drm_display_mode *newmode = NULL;
4838 		unsigned int newflag = 0;
4839 		bool detail_present;
4840 
4841 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4842 
4843 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4844 			break;
4845 
4846 		/* 2D_VIC_order_X */
4847 		vic_index = db[8 + offset + i] >> 4;
4848 
4849 		/* 3D_Structure_X */
4850 		switch (db[8 + offset + i] & 0x0f) {
4851 		case 0:
4852 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4853 			break;
4854 		case 6:
4855 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4856 			break;
4857 		case 8:
4858 			/* 3D_Detail_X */
4859 			if ((db[9 + offset + i] >> 4) == 1)
4860 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4861 			break;
4862 		}
4863 
4864 		if (newflag != 0) {
4865 			newmode = drm_display_mode_from_vic_index(connector,
4866 								  vic_index);
4867 
4868 			if (newmode) {
4869 				newmode->flags |= newflag;
4870 				drm_mode_probed_add(connector, newmode);
4871 				modes++;
4872 			}
4873 		}
4874 
4875 		if (detail_present)
4876 			i++;
4877 	}
4878 
4879 out:
4880 	return modes;
4881 }
4882 
4883 static int
4884 cea_revision(const u8 *cea)
4885 {
4886 	/*
4887 	 * FIXME is this correct for the DispID variant?
4888 	 * The DispID spec doesn't really specify whether
4889 	 * this is the revision of the CEA extension or
4890 	 * the DispID CEA data block. And the only value
4891 	 * given as an example is 0.
4892 	 */
4893 	return cea[1];
4894 }
4895 
4896 /*
4897  * CTA Data Block iterator.
4898  *
4899  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4900  * CTA Data Blocks.
4901  *
4902  * struct cea_db *db:
4903  * struct cea_db_iter iter;
4904  *
4905  * cea_db_iter_edid_begin(edid, &iter);
4906  * cea_db_iter_for_each(db, &iter) {
4907  *         // do stuff with db
4908  * }
4909  * cea_db_iter_end(&iter);
4910  */
4911 struct cea_db_iter {
4912 	struct drm_edid_iter edid_iter;
4913 	struct displayid_iter displayid_iter;
4914 
4915 	/* Current Data Block Collection. */
4916 	const u8 *collection;
4917 
4918 	/* Current Data Block index in current collection. */
4919 	int index;
4920 
4921 	/* End index in current collection. */
4922 	int end;
4923 };
4924 
4925 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4926 struct cea_db {
4927 	u8 tag_length;
4928 	u8 data[];
4929 } __packed;
4930 
4931 static int cea_db_tag(const struct cea_db *db)
4932 {
4933 	return db->tag_length >> 5;
4934 }
4935 
4936 static int cea_db_payload_len(const void *_db)
4937 {
4938 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4939 	const struct cea_db *db = _db;
4940 
4941 	return db->tag_length & 0x1f;
4942 }
4943 
4944 static const void *cea_db_data(const struct cea_db *db)
4945 {
4946 	return db->data;
4947 }
4948 
4949 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4950 {
4951 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4952 		cea_db_payload_len(db) >= 1 &&
4953 		db->data[0] == tag;
4954 }
4955 
4956 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4957 {
4958 	const u8 *data = cea_db_data(db);
4959 
4960 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4961 		cea_db_payload_len(db) >= 3 &&
4962 		oui(data[2], data[1], data[0]) == vendor_oui;
4963 }
4964 
4965 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4966 				   struct cea_db_iter *iter)
4967 {
4968 	memset(iter, 0, sizeof(*iter));
4969 
4970 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4971 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4972 }
4973 
4974 static const struct cea_db *
4975 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4976 {
4977 	const struct cea_db *db;
4978 
4979 	if (!iter->collection)
4980 		return NULL;
4981 
4982 	db = (const struct cea_db *)&iter->collection[iter->index];
4983 
4984 	if (iter->index + sizeof(*db) <= iter->end &&
4985 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4986 		return db;
4987 
4988 	return NULL;
4989 }
4990 
4991 /*
4992  * References:
4993  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4994  */
4995 static int cea_db_collection_size(const u8 *cta)
4996 {
4997 	u8 d = cta[2];
4998 
4999 	if (d < 4 || d > 127)
5000 		return 0;
5001 
5002 	return d - 4;
5003 }
5004 
5005 /*
5006  * References:
5007  * - VESA E-EDID v1.4
5008  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5009  */
5010 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5011 {
5012 	const u8 *ext;
5013 
5014 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5015 		int size;
5016 
5017 		/* Only support CTA Extension revision 3+ */
5018 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5019 			continue;
5020 
5021 		size = cea_db_collection_size(ext);
5022 		if (!size)
5023 			continue;
5024 
5025 		iter->index = 4;
5026 		iter->end = iter->index + size;
5027 
5028 		return ext;
5029 	}
5030 
5031 	return NULL;
5032 }
5033 
5034 /*
5035  * References:
5036  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5037  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5038  *
5039  * Note that the above do not specify any connection between DisplayID Data
5040  * Block revision and CTA Extension versions.
5041  */
5042 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5043 {
5044 	const struct displayid_block *block;
5045 
5046 	displayid_iter_for_each(block, &iter->displayid_iter) {
5047 		if (block->tag != DATA_BLOCK_CTA)
5048 			continue;
5049 
5050 		/*
5051 		 * The displayid iterator has already verified the block bounds
5052 		 * in displayid_iter_block().
5053 		 */
5054 		iter->index = sizeof(*block);
5055 		iter->end = iter->index + block->num_bytes;
5056 
5057 		return block;
5058 	}
5059 
5060 	return NULL;
5061 }
5062 
5063 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5064 {
5065 	const struct cea_db *db;
5066 
5067 	if (iter->collection) {
5068 		/* Current collection should always be valid. */
5069 		db = __cea_db_iter_current_block(iter);
5070 		if (WARN_ON(!db)) {
5071 			iter->collection = NULL;
5072 			return NULL;
5073 		}
5074 
5075 		/* Next block in CTA Data Block Collection */
5076 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5077 
5078 		db = __cea_db_iter_current_block(iter);
5079 		if (db)
5080 			return db;
5081 	}
5082 
5083 	for (;;) {
5084 		/*
5085 		 * Find the next CTA Data Block Collection. First iterate all
5086 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5087 		 *
5088 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5089 		 * Extension, it's recommended that DisplayID extensions are
5090 		 * exposed after all of the CTA Extensions.
5091 		 */
5092 		iter->collection = __cea_db_iter_edid_next(iter);
5093 		if (!iter->collection)
5094 			iter->collection = __cea_db_iter_displayid_next(iter);
5095 
5096 		if (!iter->collection)
5097 			return NULL;
5098 
5099 		db = __cea_db_iter_current_block(iter);
5100 		if (db)
5101 			return db;
5102 	}
5103 }
5104 
5105 #define cea_db_iter_for_each(__db, __iter) \
5106 	while (((__db) = __cea_db_iter_next(__iter)))
5107 
5108 static void cea_db_iter_end(struct cea_db_iter *iter)
5109 {
5110 	displayid_iter_end(&iter->displayid_iter);
5111 	drm_edid_iter_end(&iter->edid_iter);
5112 
5113 	memset(iter, 0, sizeof(*iter));
5114 }
5115 
5116 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5117 {
5118 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5119 		cea_db_payload_len(db) >= 5;
5120 }
5121 
5122 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5123 {
5124 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5125 		cea_db_payload_len(db) >= 7;
5126 }
5127 
5128 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5129 {
5130 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5131 		cea_db_payload_len(db) >= 2;
5132 }
5133 
5134 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5135 {
5136 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5137 		cea_db_payload_len(db) == 21;
5138 }
5139 
5140 static bool cea_db_is_vcdb(const struct cea_db *db)
5141 {
5142 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5143 		cea_db_payload_len(db) == 2;
5144 }
5145 
5146 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5147 {
5148 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5149 		cea_db_payload_len(db) >= 7;
5150 }
5151 
5152 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5153 {
5154 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5155 }
5156 
5157 static bool cea_db_is_y420vdb(const struct cea_db *db)
5158 {
5159 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5160 }
5161 
5162 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5163 {
5164 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5165 		cea_db_payload_len(db) >= 3;
5166 }
5167 
5168 /*
5169  * Get the HF-EEODB override extension block count from EDID.
5170  *
5171  * The passed in EDID may be partially read, as long as it has at least two
5172  * blocks (base block and one extension block) if EDID extension count is > 0.
5173  *
5174  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5175  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5176  * iterators instead.
5177  *
5178  * References:
5179  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5180  */
5181 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5182 {
5183 	const u8 *cta;
5184 
5185 	/* No extensions according to base block, no HF-EEODB. */
5186 	if (!edid_extension_block_count(edid))
5187 		return 0;
5188 
5189 	/* HF-EEODB is always in the first EDID extension block only */
5190 	cta = edid_extension_block_data(edid, 0);
5191 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5192 		return 0;
5193 
5194 	/* Need to have the data block collection, and at least 3 bytes. */
5195 	if (cea_db_collection_size(cta) < 3)
5196 		return 0;
5197 
5198 	/*
5199 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5200 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5201 	 * through 6 of Block 1 of the E-EDID.
5202 	 */
5203 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5204 		return 0;
5205 
5206 	return cta[4 + 2];
5207 }
5208 
5209 /*
5210  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5211  *
5212  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5213  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5214  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5215  * support YCBCR420 output too.
5216  */
5217 static void parse_cta_y420cmdb(struct drm_connector *connector,
5218 			       const struct cea_db *db, u64 *y420cmdb_map)
5219 {
5220 	struct drm_display_info *info = &connector->display_info;
5221 	int i, map_len = cea_db_payload_len(db) - 1;
5222 	const u8 *data = cea_db_data(db) + 1;
5223 	u64 map = 0;
5224 
5225 	if (map_len == 0) {
5226 		/* All CEA modes support ycbcr420 sampling also.*/
5227 		map = U64_MAX;
5228 		goto out;
5229 	}
5230 
5231 	/*
5232 	 * This map indicates which of the existing CEA block modes
5233 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5234 	 * set, first mode from VDB can support YCBCR420 output too.
5235 	 * We will parse and keep this map, before parsing VDB itself
5236 	 * to avoid going through the same block again and again.
5237 	 *
5238 	 * Spec is not clear about max possible size of this block.
5239 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5240 	 * address 8 CEA modes, in this way this map can address
5241 	 * 8*8 = first 64 SVDs.
5242 	 */
5243 	if (WARN_ON_ONCE(map_len > 8))
5244 		map_len = 8;
5245 
5246 	for (i = 0; i < map_len; i++)
5247 		map |= (u64)data[i] << (8 * i);
5248 
5249 out:
5250 	if (map)
5251 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5252 
5253 	*y420cmdb_map = map;
5254 }
5255 
5256 static int add_cea_modes(struct drm_connector *connector,
5257 			 const struct drm_edid *drm_edid)
5258 {
5259 	const struct cea_db *db;
5260 	struct cea_db_iter iter;
5261 	int modes;
5262 
5263 	/* CTA VDB block VICs parsed earlier */
5264 	modes = add_cta_vdb_modes(connector);
5265 
5266 	cea_db_iter_edid_begin(drm_edid, &iter);
5267 	cea_db_iter_for_each(db, &iter) {
5268 		if (cea_db_is_hdmi_vsdb(db)) {
5269 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5270 						    cea_db_payload_len(db));
5271 		} else if (cea_db_is_y420vdb(db)) {
5272 			const u8 *vdb420 = cea_db_data(db) + 1;
5273 
5274 			/* Add 4:2:0(only) modes present in EDID */
5275 			modes += do_y420vdb_modes(connector, vdb420,
5276 						  cea_db_payload_len(db) - 1);
5277 		}
5278 	}
5279 	cea_db_iter_end(&iter);
5280 
5281 	return modes;
5282 }
5283 
5284 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5285 					  struct drm_display_mode *mode)
5286 {
5287 	const struct drm_display_mode *cea_mode;
5288 	int clock1, clock2, clock;
5289 	u8 vic;
5290 	const char *type;
5291 
5292 	/*
5293 	 * allow 5kHz clock difference either way to account for
5294 	 * the 10kHz clock resolution limit of detailed timings.
5295 	 */
5296 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5297 	if (drm_valid_cea_vic(vic)) {
5298 		type = "CEA";
5299 		cea_mode = cea_mode_for_vic(vic);
5300 		clock1 = cea_mode->clock;
5301 		clock2 = cea_mode_alternate_clock(cea_mode);
5302 	} else {
5303 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5304 		if (drm_valid_hdmi_vic(vic)) {
5305 			type = "HDMI";
5306 			cea_mode = &edid_4k_modes[vic];
5307 			clock1 = cea_mode->clock;
5308 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5309 		} else {
5310 			return;
5311 		}
5312 	}
5313 
5314 	/* pick whichever is closest */
5315 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5316 		clock = clock1;
5317 	else
5318 		clock = clock2;
5319 
5320 	if (mode->clock == clock)
5321 		return;
5322 
5323 	drm_dbg_kms(connector->dev,
5324 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5325 		    connector->base.id, connector->name,
5326 		    type, vic, mode->clock, clock);
5327 	mode->clock = clock;
5328 }
5329 
5330 static void drm_calculate_luminance_range(struct drm_connector *connector)
5331 {
5332 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5333 	struct drm_luminance_range_info *luminance_range =
5334 		&connector->display_info.luminance_range;
5335 	static const u8 pre_computed_values[] = {
5336 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5337 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5338 	};
5339 	u32 max_avg, min_cll, max, min, q, r;
5340 
5341 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5342 		return;
5343 
5344 	max_avg = hdr_metadata->max_fall;
5345 	min_cll = hdr_metadata->min_cll;
5346 
5347 	/*
5348 	 * From the specification (CTA-861-G), for calculating the maximum
5349 	 * luminance we need to use:
5350 	 *	Luminance = 50*2**(CV/32)
5351 	 * Where CV is a one-byte value.
5352 	 * For calculating this expression we may need float point precision;
5353 	 * to avoid this complexity level, we take advantage that CV is divided
5354 	 * by a constant. From the Euclids division algorithm, we know that CV
5355 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5356 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5357 	 * need to pre-compute the value of r/32. For pre-computing the values
5358 	 * We just used the following Ruby line:
5359 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5360 	 * The results of the above expressions can be verified at
5361 	 * pre_computed_values.
5362 	 */
5363 	q = max_avg >> 5;
5364 	r = max_avg % 32;
5365 	max = (1 << q) * pre_computed_values[r];
5366 
5367 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5368 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5369 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5370 
5371 	luminance_range->min_luminance = min;
5372 	luminance_range->max_luminance = max;
5373 }
5374 
5375 static uint8_t eotf_supported(const u8 *edid_ext)
5376 {
5377 	return edid_ext[2] &
5378 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5379 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5380 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5381 		 BIT(HDMI_EOTF_BT_2100_HLG));
5382 }
5383 
5384 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5385 {
5386 	return edid_ext[3] &
5387 		BIT(HDMI_STATIC_METADATA_TYPE1);
5388 }
5389 
5390 static void
5391 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5392 {
5393 	u16 len;
5394 
5395 	len = cea_db_payload_len(db);
5396 
5397 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5398 						eotf_supported(db);
5399 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5400 						hdr_metadata_type(db);
5401 
5402 	if (len >= 4)
5403 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5404 	if (len >= 5)
5405 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5406 	if (len >= 6) {
5407 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5408 
5409 		/* Calculate only when all values are available */
5410 		drm_calculate_luminance_range(connector);
5411 	}
5412 }
5413 
5414 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5415 static void
5416 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5417 {
5418 	u8 len = cea_db_payload_len(db);
5419 
5420 	if (len >= 6 && (db[6] & (1 << 7)))
5421 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5422 
5423 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5424 		connector->latency_present[0] = true;
5425 		connector->video_latency[0] = db[9];
5426 		connector->audio_latency[0] = db[10];
5427 	}
5428 
5429 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5430 		connector->latency_present[1] = true;
5431 		connector->video_latency[1] = db[11];
5432 		connector->audio_latency[1] = db[12];
5433 	}
5434 
5435 	drm_dbg_kms(connector->dev,
5436 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5437 		    connector->base.id, connector->name,
5438 		    connector->latency_present[0], connector->latency_present[1],
5439 		    connector->video_latency[0], connector->video_latency[1],
5440 		    connector->audio_latency[0], connector->audio_latency[1]);
5441 }
5442 
5443 static void
5444 monitor_name(const struct detailed_timing *timing, void *data)
5445 {
5446 	const char **res = data;
5447 
5448 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5449 		return;
5450 
5451 	*res = timing->data.other_data.data.str.str;
5452 }
5453 
5454 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5455 {
5456 	const char *edid_name = NULL;
5457 	int mnl;
5458 
5459 	if (!drm_edid || !name)
5460 		return 0;
5461 
5462 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5463 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5464 		if (edid_name[mnl] == 0x0a)
5465 			break;
5466 
5467 		name[mnl] = edid_name[mnl];
5468 	}
5469 
5470 	return mnl;
5471 }
5472 
5473 /**
5474  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5475  * @edid: monitor EDID information
5476  * @name: pointer to a character array to hold the name of the monitor
5477  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5478  *
5479  */
5480 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5481 {
5482 	int name_length = 0;
5483 
5484 	if (bufsize <= 0)
5485 		return;
5486 
5487 	if (edid) {
5488 		char buf[13];
5489 		struct drm_edid drm_edid = {
5490 			.edid = edid,
5491 			.size = edid_size(edid),
5492 		};
5493 
5494 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5495 		memcpy(name, buf, name_length);
5496 	}
5497 
5498 	name[name_length] = '\0';
5499 }
5500 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5501 
5502 static void clear_eld(struct drm_connector *connector)
5503 {
5504 	memset(connector->eld, 0, sizeof(connector->eld));
5505 
5506 	connector->latency_present[0] = false;
5507 	connector->latency_present[1] = false;
5508 	connector->video_latency[0] = 0;
5509 	connector->audio_latency[0] = 0;
5510 	connector->video_latency[1] = 0;
5511 	connector->audio_latency[1] = 0;
5512 }
5513 
5514 /*
5515  * Get 3-byte SAD buffer from struct cea_sad.
5516  */
5517 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5518 {
5519 	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5520 	sad[1] = cta_sad->freq;
5521 	sad[2] = cta_sad->byte2;
5522 }
5523 
5524 /*
5525  * Set struct cea_sad from 3-byte SAD buffer.
5526  */
5527 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5528 {
5529 	cta_sad->format = (sad[0] & 0x78) >> 3;
5530 	cta_sad->channels = sad[0] & 0x07;
5531 	cta_sad->freq = sad[1] & 0x7f;
5532 	cta_sad->byte2 = sad[2];
5533 }
5534 
5535 /*
5536  * drm_edid_to_eld - build ELD from EDID
5537  * @connector: connector corresponding to the HDMI/DP sink
5538  * @drm_edid: EDID to parse
5539  *
5540  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5541  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5542  */
5543 static void drm_edid_to_eld(struct drm_connector *connector,
5544 			    const struct drm_edid *drm_edid)
5545 {
5546 	const struct drm_display_info *info = &connector->display_info;
5547 	const struct cea_db *db;
5548 	struct cea_db_iter iter;
5549 	uint8_t *eld = connector->eld;
5550 	int total_sad_count = 0;
5551 	int mnl;
5552 
5553 	if (!drm_edid)
5554 		return;
5555 
5556 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5557 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5558 		    connector->base.id, connector->name,
5559 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5560 
5561 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5562 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5563 
5564 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5565 
5566 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5567 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5568 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5569 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5570 
5571 	cea_db_iter_edid_begin(drm_edid, &iter);
5572 	cea_db_iter_for_each(db, &iter) {
5573 		const u8 *data = cea_db_data(db);
5574 		int len = cea_db_payload_len(db);
5575 		int sad_count;
5576 
5577 		switch (cea_db_tag(db)) {
5578 		case CTA_DB_AUDIO:
5579 			/* Audio Data Block, contains SADs */
5580 			sad_count = min(len / 3, 15 - total_sad_count);
5581 			if (sad_count >= 1)
5582 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5583 				       data, sad_count * 3);
5584 			total_sad_count += sad_count;
5585 			break;
5586 		case CTA_DB_SPEAKER:
5587 			/* Speaker Allocation Data Block */
5588 			if (len >= 1)
5589 				eld[DRM_ELD_SPEAKER] = data[0];
5590 			break;
5591 		case CTA_DB_VENDOR:
5592 			/* HDMI Vendor-Specific Data Block */
5593 			if (cea_db_is_hdmi_vsdb(db))
5594 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5595 			break;
5596 		default:
5597 			break;
5598 		}
5599 	}
5600 	cea_db_iter_end(&iter);
5601 
5602 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5603 
5604 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5605 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5606 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5607 	else
5608 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5609 
5610 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5611 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5612 
5613 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5614 		    connector->base.id, connector->name,
5615 		    drm_eld_size(eld), total_sad_count);
5616 }
5617 
5618 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5619 			    struct cea_sad **psads)
5620 {
5621 	const struct cea_db *db;
5622 	struct cea_db_iter iter;
5623 	int count = 0;
5624 
5625 	cea_db_iter_edid_begin(drm_edid, &iter);
5626 	cea_db_iter_for_each(db, &iter) {
5627 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5628 			struct cea_sad *sads;
5629 			int i;
5630 
5631 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5632 			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5633 			*psads = sads;
5634 			if (!sads)
5635 				return -ENOMEM;
5636 			for (i = 0; i < count; i++)
5637 				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5638 			break;
5639 		}
5640 	}
5641 	cea_db_iter_end(&iter);
5642 
5643 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5644 
5645 	return count;
5646 }
5647 
5648 /**
5649  * drm_edid_to_sad - extracts SADs from EDID
5650  * @edid: EDID to parse
5651  * @sads: pointer that will be set to the extracted SADs
5652  *
5653  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5654  *
5655  * Note: The returned pointer needs to be freed using kfree().
5656  *
5657  * Return: The number of found SADs or negative number on error.
5658  */
5659 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5660 {
5661 	struct drm_edid drm_edid;
5662 
5663 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5664 }
5665 EXPORT_SYMBOL(drm_edid_to_sad);
5666 
5667 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5668 					   u8 **sadb)
5669 {
5670 	const struct cea_db *db;
5671 	struct cea_db_iter iter;
5672 	int count = 0;
5673 
5674 	cea_db_iter_edid_begin(drm_edid, &iter);
5675 	cea_db_iter_for_each(db, &iter) {
5676 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5677 		    cea_db_payload_len(db) == 3) {
5678 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5679 					GFP_KERNEL);
5680 			if (!*sadb)
5681 				return -ENOMEM;
5682 			count = cea_db_payload_len(db);
5683 			break;
5684 		}
5685 	}
5686 	cea_db_iter_end(&iter);
5687 
5688 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5689 
5690 	return count;
5691 }
5692 
5693 /**
5694  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5695  * @edid: EDID to parse
5696  * @sadb: pointer to the speaker block
5697  *
5698  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5699  *
5700  * Note: The returned pointer needs to be freed using kfree().
5701  *
5702  * Return: The number of found Speaker Allocation Blocks or negative number on
5703  * error.
5704  */
5705 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5706 {
5707 	struct drm_edid drm_edid;
5708 
5709 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5710 					       sadb);
5711 }
5712 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5713 
5714 /**
5715  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5716  * @connector: connector associated with the HDMI/DP sink
5717  * @mode: the display mode
5718  *
5719  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5720  * the sink doesn't support audio or video.
5721  */
5722 int drm_av_sync_delay(struct drm_connector *connector,
5723 		      const struct drm_display_mode *mode)
5724 {
5725 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5726 	int a, v;
5727 
5728 	if (!connector->latency_present[0])
5729 		return 0;
5730 	if (!connector->latency_present[1])
5731 		i = 0;
5732 
5733 	a = connector->audio_latency[i];
5734 	v = connector->video_latency[i];
5735 
5736 	/*
5737 	 * HDMI/DP sink doesn't support audio or video?
5738 	 */
5739 	if (a == 255 || v == 255)
5740 		return 0;
5741 
5742 	/*
5743 	 * Convert raw EDID values to millisecond.
5744 	 * Treat unknown latency as 0ms.
5745 	 */
5746 	if (a)
5747 		a = min(2 * (a - 1), 500);
5748 	if (v)
5749 		v = min(2 * (v - 1), 500);
5750 
5751 	return max(v - a, 0);
5752 }
5753 EXPORT_SYMBOL(drm_av_sync_delay);
5754 
5755 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5756 {
5757 	const struct cea_db *db;
5758 	struct cea_db_iter iter;
5759 	bool hdmi = false;
5760 
5761 	/*
5762 	 * Because HDMI identifier is in Vendor Specific Block,
5763 	 * search it from all data blocks of CEA extension.
5764 	 */
5765 	cea_db_iter_edid_begin(drm_edid, &iter);
5766 	cea_db_iter_for_each(db, &iter) {
5767 		if (cea_db_is_hdmi_vsdb(db)) {
5768 			hdmi = true;
5769 			break;
5770 		}
5771 	}
5772 	cea_db_iter_end(&iter);
5773 
5774 	return hdmi;
5775 }
5776 
5777 /**
5778  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5779  * @edid: monitor EDID information
5780  *
5781  * Parse the CEA extension according to CEA-861-B.
5782  *
5783  * Drivers that have added the modes parsed from EDID to drm_display_info
5784  * should use &drm_display_info.is_hdmi instead of calling this function.
5785  *
5786  * Return: True if the monitor is HDMI, false if not or unknown.
5787  */
5788 bool drm_detect_hdmi_monitor(const struct edid *edid)
5789 {
5790 	struct drm_edid drm_edid;
5791 
5792 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5793 }
5794 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5795 
5796 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5797 {
5798 	struct drm_edid_iter edid_iter;
5799 	const struct cea_db *db;
5800 	struct cea_db_iter iter;
5801 	const u8 *edid_ext;
5802 	bool has_audio = false;
5803 
5804 	drm_edid_iter_begin(drm_edid, &edid_iter);
5805 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5806 		if (edid_ext[0] == CEA_EXT) {
5807 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5808 			if (has_audio)
5809 				break;
5810 		}
5811 	}
5812 	drm_edid_iter_end(&edid_iter);
5813 
5814 	if (has_audio) {
5815 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5816 		goto end;
5817 	}
5818 
5819 	cea_db_iter_edid_begin(drm_edid, &iter);
5820 	cea_db_iter_for_each(db, &iter) {
5821 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5822 			const u8 *data = cea_db_data(db);
5823 			int i;
5824 
5825 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5826 				DRM_DEBUG_KMS("CEA audio format %d\n",
5827 					      (data[i] >> 3) & 0xf);
5828 			has_audio = true;
5829 			break;
5830 		}
5831 	}
5832 	cea_db_iter_end(&iter);
5833 
5834 end:
5835 	return has_audio;
5836 }
5837 
5838 /**
5839  * drm_detect_monitor_audio - check monitor audio capability
5840  * @edid: EDID block to scan
5841  *
5842  * Monitor should have CEA extension block.
5843  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5844  * audio' only. If there is any audio extension block and supported
5845  * audio format, assume at least 'basic audio' support, even if 'basic
5846  * audio' is not defined in EDID.
5847  *
5848  * Return: True if the monitor supports audio, false otherwise.
5849  */
5850 bool drm_detect_monitor_audio(const struct edid *edid)
5851 {
5852 	struct drm_edid drm_edid;
5853 
5854 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5855 }
5856 EXPORT_SYMBOL(drm_detect_monitor_audio);
5857 
5858 
5859 /**
5860  * drm_default_rgb_quant_range - default RGB quantization range
5861  * @mode: display mode
5862  *
5863  * Determine the default RGB quantization range for the mode,
5864  * as specified in CEA-861.
5865  *
5866  * Return: The default RGB quantization range for the mode
5867  */
5868 enum hdmi_quantization_range
5869 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5870 {
5871 	/* All CEA modes other than VIC 1 use limited quantization range. */
5872 	return drm_match_cea_mode(mode) > 1 ?
5873 		HDMI_QUANTIZATION_RANGE_LIMITED :
5874 		HDMI_QUANTIZATION_RANGE_FULL;
5875 }
5876 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5877 
5878 /* CTA-861 Video Data Block (CTA VDB) */
5879 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5880 {
5881 	struct drm_display_info *info = &connector->display_info;
5882 	int i, vic_index, len = cea_db_payload_len(db);
5883 	const u8 *svds = cea_db_data(db);
5884 	u8 *vics;
5885 
5886 	if (!len)
5887 		return;
5888 
5889 	/* Gracefully handle multiple VDBs, however unlikely that is */
5890 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5891 	if (!vics)
5892 		return;
5893 
5894 	vic_index = info->vics_len;
5895 	info->vics_len += len;
5896 	info->vics = vics;
5897 
5898 	for (i = 0; i < len; i++) {
5899 		u8 vic = svd_to_vic(svds[i]);
5900 
5901 		if (!drm_valid_cea_vic(vic))
5902 			vic = 0;
5903 
5904 		info->vics[vic_index++] = vic;
5905 	}
5906 }
5907 
5908 /*
5909  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5910  *
5911  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5912  * using the VICs themselves.
5913  */
5914 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5915 {
5916 	struct drm_display_info *info = &connector->display_info;
5917 	struct drm_hdmi_info *hdmi = &info->hdmi;
5918 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5919 
5920 	for (i = 0; i < len; i++) {
5921 		u8 vic = info->vics[i];
5922 
5923 		if (vic && y420cmdb_map & BIT_ULL(i))
5924 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5925 	}
5926 }
5927 
5928 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5929 {
5930 	const struct drm_display_info *info = &connector->display_info;
5931 	int i;
5932 
5933 	if (!vic || !info->vics)
5934 		return false;
5935 
5936 	for (i = 0; i < info->vics_len; i++) {
5937 		if (info->vics[i] == vic)
5938 			return true;
5939 	}
5940 
5941 	return false;
5942 }
5943 
5944 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5945 static void parse_cta_y420vdb(struct drm_connector *connector,
5946 			      const struct cea_db *db)
5947 {
5948 	struct drm_display_info *info = &connector->display_info;
5949 	struct drm_hdmi_info *hdmi = &info->hdmi;
5950 	const u8 *svds = cea_db_data(db) + 1;
5951 	int i;
5952 
5953 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5954 		u8 vic = svd_to_vic(svds[i]);
5955 
5956 		if (!drm_valid_cea_vic(vic))
5957 			continue;
5958 
5959 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5960 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5961 	}
5962 }
5963 
5964 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5965 {
5966 	struct drm_display_info *info = &connector->display_info;
5967 
5968 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5969 		    connector->base.id, connector->name, db[2]);
5970 
5971 	if (db[2] & EDID_CEA_VCDB_QS)
5972 		info->rgb_quant_range_selectable = true;
5973 }
5974 
5975 static
5976 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5977 {
5978 	switch (max_frl_rate) {
5979 	case 1:
5980 		*max_lanes = 3;
5981 		*max_rate_per_lane = 3;
5982 		break;
5983 	case 2:
5984 		*max_lanes = 3;
5985 		*max_rate_per_lane = 6;
5986 		break;
5987 	case 3:
5988 		*max_lanes = 4;
5989 		*max_rate_per_lane = 6;
5990 		break;
5991 	case 4:
5992 		*max_lanes = 4;
5993 		*max_rate_per_lane = 8;
5994 		break;
5995 	case 5:
5996 		*max_lanes = 4;
5997 		*max_rate_per_lane = 10;
5998 		break;
5999 	case 6:
6000 		*max_lanes = 4;
6001 		*max_rate_per_lane = 12;
6002 		break;
6003 	case 0:
6004 	default:
6005 		*max_lanes = 0;
6006 		*max_rate_per_lane = 0;
6007 	}
6008 }
6009 
6010 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6011 					       const u8 *db)
6012 {
6013 	u8 dc_mask;
6014 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6015 
6016 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6017 	hdmi->y420_dc_modes = dc_mask;
6018 }
6019 
6020 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6021 			       const u8 *hf_scds)
6022 {
6023 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6024 
6025 	if (!hdmi_dsc->v_1p2)
6026 		return;
6027 
6028 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6029 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6030 
6031 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6032 		hdmi_dsc->bpc_supported = 16;
6033 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6034 		hdmi_dsc->bpc_supported = 12;
6035 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6036 		hdmi_dsc->bpc_supported = 10;
6037 	else
6038 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6039 		hdmi_dsc->bpc_supported = 8;
6040 
6041 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6042 		u8 dsc_max_slices;
6043 		u8 dsc_max_frl_rate;
6044 
6045 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6046 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6047 				     &hdmi_dsc->max_frl_rate_per_lane);
6048 
6049 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6050 
6051 		switch (dsc_max_slices) {
6052 		case 1:
6053 			hdmi_dsc->max_slices = 1;
6054 			hdmi_dsc->clk_per_slice = 340;
6055 			break;
6056 		case 2:
6057 			hdmi_dsc->max_slices = 2;
6058 			hdmi_dsc->clk_per_slice = 340;
6059 			break;
6060 		case 3:
6061 			hdmi_dsc->max_slices = 4;
6062 			hdmi_dsc->clk_per_slice = 340;
6063 			break;
6064 		case 4:
6065 			hdmi_dsc->max_slices = 8;
6066 			hdmi_dsc->clk_per_slice = 340;
6067 			break;
6068 		case 5:
6069 			hdmi_dsc->max_slices = 8;
6070 			hdmi_dsc->clk_per_slice = 400;
6071 			break;
6072 		case 6:
6073 			hdmi_dsc->max_slices = 12;
6074 			hdmi_dsc->clk_per_slice = 400;
6075 			break;
6076 		case 7:
6077 			hdmi_dsc->max_slices = 16;
6078 			hdmi_dsc->clk_per_slice = 400;
6079 			break;
6080 		case 0:
6081 		default:
6082 			hdmi_dsc->max_slices = 0;
6083 			hdmi_dsc->clk_per_slice = 0;
6084 		}
6085 	}
6086 
6087 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6088 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6089 }
6090 
6091 /* Sink Capability Data Structure */
6092 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6093 				      const u8 *hf_scds)
6094 {
6095 	struct drm_display_info *info = &connector->display_info;
6096 	struct drm_hdmi_info *hdmi = &info->hdmi;
6097 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6098 	int max_tmds_clock = 0;
6099 	u8 max_frl_rate = 0;
6100 	bool dsc_support = false;
6101 
6102 	info->has_hdmi_infoframe = true;
6103 
6104 	if (hf_scds[6] & 0x80) {
6105 		hdmi->scdc.supported = true;
6106 		if (hf_scds[6] & 0x40)
6107 			hdmi->scdc.read_request = true;
6108 	}
6109 
6110 	/*
6111 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6112 	 * And as per the spec, three factors confirm this:
6113 	 * * Availability of a HF-VSDB block in EDID (check)
6114 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6115 	 * * SCDC support available (let's check)
6116 	 * Lets check it out.
6117 	 */
6118 
6119 	if (hf_scds[5]) {
6120 		struct drm_scdc *scdc = &hdmi->scdc;
6121 
6122 		/* max clock is 5000 KHz times block value */
6123 		max_tmds_clock = hf_scds[5] * 5000;
6124 
6125 		if (max_tmds_clock > 340000) {
6126 			info->max_tmds_clock = max_tmds_clock;
6127 		}
6128 
6129 		if (scdc->supported) {
6130 			scdc->scrambling.supported = true;
6131 
6132 			/* Few sinks support scrambling for clocks < 340M */
6133 			if ((hf_scds[6] & 0x8))
6134 				scdc->scrambling.low_rates = true;
6135 		}
6136 	}
6137 
6138 	if (hf_scds[7]) {
6139 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6140 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6141 				     &hdmi->max_frl_rate_per_lane);
6142 	}
6143 
6144 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6145 
6146 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6147 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6148 		dsc_support = true;
6149 	}
6150 
6151 	drm_dbg_kms(connector->dev,
6152 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6153 		    connector->base.id, connector->name,
6154 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6155 }
6156 
6157 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6158 					   const u8 *hdmi)
6159 {
6160 	struct drm_display_info *info = &connector->display_info;
6161 	unsigned int dc_bpc = 0;
6162 
6163 	/* HDMI supports at least 8 bpc */
6164 	info->bpc = 8;
6165 
6166 	if (cea_db_payload_len(hdmi) < 6)
6167 		return;
6168 
6169 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6170 		dc_bpc = 10;
6171 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6172 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6173 			    connector->base.id, connector->name);
6174 	}
6175 
6176 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6177 		dc_bpc = 12;
6178 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6179 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6180 			    connector->base.id, connector->name);
6181 	}
6182 
6183 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6184 		dc_bpc = 16;
6185 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6186 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6187 			    connector->base.id, connector->name);
6188 	}
6189 
6190 	if (dc_bpc == 0) {
6191 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6192 			    connector->base.id, connector->name);
6193 		return;
6194 	}
6195 
6196 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6197 		    connector->base.id, connector->name, dc_bpc);
6198 	info->bpc = dc_bpc;
6199 
6200 	/* YCRCB444 is optional according to spec. */
6201 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6202 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6203 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6204 			    connector->base.id, connector->name);
6205 	}
6206 
6207 	/*
6208 	 * Spec says that if any deep color mode is supported at all,
6209 	 * then deep color 36 bit must be supported.
6210 	 */
6211 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6212 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6213 			    connector->base.id, connector->name);
6214 	}
6215 }
6216 
6217 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6218 static void
6219 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6220 {
6221 	struct drm_display_info *info = &connector->display_info;
6222 	u8 len = cea_db_payload_len(db);
6223 
6224 	info->is_hdmi = true;
6225 
6226 	info->source_physical_address = (db[4] << 8) | db[5];
6227 
6228 	if (len >= 6)
6229 		info->dvi_dual = db[6] & 1;
6230 	if (len >= 7)
6231 		info->max_tmds_clock = db[7] * 5000;
6232 
6233 	/*
6234 	 * Try to infer whether the sink supports HDMI infoframes.
6235 	 *
6236 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6237 	 * supports infoframes if HDMI_Video_present is set.
6238 	 */
6239 	if (len >= 8 && db[8] & BIT(5))
6240 		info->has_hdmi_infoframe = true;
6241 
6242 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6243 		    connector->base.id, connector->name,
6244 		    info->dvi_dual, info->max_tmds_clock);
6245 
6246 	drm_parse_hdmi_deep_color_info(connector, db);
6247 }
6248 
6249 /*
6250  * See EDID extension for head-mounted and specialized monitors, specified at:
6251  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6252  */
6253 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6254 				     const u8 *db)
6255 {
6256 	struct drm_display_info *info = &connector->display_info;
6257 	u8 version = db[4];
6258 	bool desktop_usage = db[5] & BIT(6);
6259 
6260 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6261 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6262 		info->non_desktop = true;
6263 
6264 	drm_dbg_kms(connector->dev,
6265 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6266 		    connector->base.id, connector->name, version, db[5]);
6267 }
6268 
6269 static void drm_parse_cea_ext(struct drm_connector *connector,
6270 			      const struct drm_edid *drm_edid)
6271 {
6272 	struct drm_display_info *info = &connector->display_info;
6273 	struct drm_edid_iter edid_iter;
6274 	const struct cea_db *db;
6275 	struct cea_db_iter iter;
6276 	const u8 *edid_ext;
6277 	u64 y420cmdb_map = 0;
6278 
6279 	drm_edid_iter_begin(drm_edid, &edid_iter);
6280 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6281 		if (edid_ext[0] != CEA_EXT)
6282 			continue;
6283 
6284 		if (!info->cea_rev)
6285 			info->cea_rev = edid_ext[1];
6286 
6287 		if (info->cea_rev != edid_ext[1])
6288 			drm_dbg_kms(connector->dev,
6289 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6290 				    connector->base.id, connector->name,
6291 				    info->cea_rev, edid_ext[1]);
6292 
6293 		/* The existence of a CTA extension should imply RGB support */
6294 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6295 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6296 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6297 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6298 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6299 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6300 			info->has_audio = true;
6301 
6302 	}
6303 	drm_edid_iter_end(&edid_iter);
6304 
6305 	cea_db_iter_edid_begin(drm_edid, &iter);
6306 	cea_db_iter_for_each(db, &iter) {
6307 		/* FIXME: convert parsers to use struct cea_db */
6308 		const u8 *data = (const u8 *)db;
6309 
6310 		if (cea_db_is_hdmi_vsdb(db))
6311 			drm_parse_hdmi_vsdb_video(connector, data);
6312 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6313 			 cea_db_is_hdmi_forum_scdb(db))
6314 			drm_parse_hdmi_forum_scds(connector, data);
6315 		else if (cea_db_is_microsoft_vsdb(db))
6316 			drm_parse_microsoft_vsdb(connector, data);
6317 		else if (cea_db_is_y420cmdb(db))
6318 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6319 		else if (cea_db_is_y420vdb(db))
6320 			parse_cta_y420vdb(connector, db);
6321 		else if (cea_db_is_vcdb(db))
6322 			drm_parse_vcdb(connector, data);
6323 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6324 			drm_parse_hdr_metadata_block(connector, data);
6325 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6326 			parse_cta_vdb(connector, db);
6327 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6328 			info->has_audio = true;
6329 	}
6330 	cea_db_iter_end(&iter);
6331 
6332 	if (y420cmdb_map)
6333 		update_cta_y420cmdb(connector, y420cmdb_map);
6334 }
6335 
6336 static
6337 void get_monitor_range(const struct detailed_timing *timing, void *c)
6338 {
6339 	struct detailed_mode_closure *closure = c;
6340 	struct drm_display_info *info = &closure->connector->display_info;
6341 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6342 	const struct detailed_non_pixel *data = &timing->data.other_data;
6343 	const struct detailed_data_monitor_range *range = &data->data.range;
6344 	const struct edid *edid = closure->drm_edid->edid;
6345 
6346 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6347 		return;
6348 
6349 	/*
6350 	 * These limits are used to determine the VRR refresh
6351 	 * rate range. Only the "range limits only" variant
6352 	 * of the range descriptor seems to guarantee that
6353 	 * any and all timings are accepted by the sink, as
6354 	 * opposed to just timings conforming to the indicated
6355 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6356 	 * range descriptor are not accepted here.
6357 	 */
6358 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6359 		return;
6360 
6361 	monitor_range->min_vfreq = range->min_vfreq;
6362 	monitor_range->max_vfreq = range->max_vfreq;
6363 
6364 	if (edid->revision >= 4) {
6365 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6366 			monitor_range->min_vfreq += 255;
6367 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6368 			monitor_range->max_vfreq += 255;
6369 	}
6370 }
6371 
6372 static void drm_get_monitor_range(struct drm_connector *connector,
6373 				  const struct drm_edid *drm_edid)
6374 {
6375 	const struct drm_display_info *info = &connector->display_info;
6376 	struct detailed_mode_closure closure = {
6377 		.connector = connector,
6378 		.drm_edid = drm_edid,
6379 	};
6380 
6381 	if (drm_edid->edid->revision < 4)
6382 		return;
6383 
6384 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6385 		return;
6386 
6387 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6388 
6389 	drm_dbg_kms(connector->dev,
6390 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6391 		    connector->base.id, connector->name,
6392 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6393 }
6394 
6395 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6396 				    const struct displayid_block *block)
6397 {
6398 	struct displayid_vesa_vendor_specific_block *vesa =
6399 		(struct displayid_vesa_vendor_specific_block *)block;
6400 	struct drm_display_info *info = &connector->display_info;
6401 
6402 	if (block->num_bytes < 3) {
6403 		drm_dbg_kms(connector->dev,
6404 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6405 			    connector->base.id, connector->name, block->num_bytes);
6406 		return;
6407 	}
6408 
6409 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6410 		return;
6411 
6412 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6413 		drm_dbg_kms(connector->dev,
6414 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6415 			    connector->base.id, connector->name);
6416 		return;
6417 	}
6418 
6419 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6420 	default:
6421 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6422 			    connector->base.id, connector->name);
6423 		fallthrough;
6424 	case 0:
6425 		info->mso_stream_count = 0;
6426 		break;
6427 	case 1:
6428 		info->mso_stream_count = 2; /* 2 or 4 links */
6429 		break;
6430 	case 2:
6431 		info->mso_stream_count = 4; /* 4 links */
6432 		break;
6433 	}
6434 
6435 	if (!info->mso_stream_count) {
6436 		info->mso_pixel_overlap = 0;
6437 		return;
6438 	}
6439 
6440 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6441 	if (info->mso_pixel_overlap > 8) {
6442 		drm_dbg_kms(connector->dev,
6443 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6444 			    connector->base.id, connector->name,
6445 			    info->mso_pixel_overlap);
6446 		info->mso_pixel_overlap = 8;
6447 	}
6448 
6449 	drm_dbg_kms(connector->dev,
6450 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6451 		    connector->base.id, connector->name,
6452 		    info->mso_stream_count, info->mso_pixel_overlap);
6453 }
6454 
6455 static void drm_update_mso(struct drm_connector *connector,
6456 			   const struct drm_edid *drm_edid)
6457 {
6458 	const struct displayid_block *block;
6459 	struct displayid_iter iter;
6460 
6461 	displayid_iter_edid_begin(drm_edid, &iter);
6462 	displayid_iter_for_each(block, &iter) {
6463 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6464 			drm_parse_vesa_mso_data(connector, block);
6465 	}
6466 	displayid_iter_end(&iter);
6467 }
6468 
6469 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6470  * all of the values which would have been set from EDID
6471  */
6472 static void drm_reset_display_info(struct drm_connector *connector)
6473 {
6474 	struct drm_display_info *info = &connector->display_info;
6475 
6476 	info->width_mm = 0;
6477 	info->height_mm = 0;
6478 
6479 	info->bpc = 0;
6480 	info->color_formats = 0;
6481 	info->cea_rev = 0;
6482 	info->max_tmds_clock = 0;
6483 	info->dvi_dual = false;
6484 	info->is_hdmi = false;
6485 	info->has_audio = false;
6486 	info->has_hdmi_infoframe = false;
6487 	info->rgb_quant_range_selectable = false;
6488 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6489 
6490 	info->edid_hdmi_rgb444_dc_modes = 0;
6491 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6492 
6493 	info->non_desktop = 0;
6494 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6495 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6496 
6497 	info->mso_stream_count = 0;
6498 	info->mso_pixel_overlap = 0;
6499 	info->max_dsc_bpp = 0;
6500 
6501 	kfree(info->vics);
6502 	info->vics = NULL;
6503 	info->vics_len = 0;
6504 
6505 	info->quirks = 0;
6506 
6507 	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6508 }
6509 
6510 static void update_displayid_info(struct drm_connector *connector,
6511 				  const struct drm_edid *drm_edid)
6512 {
6513 	struct drm_display_info *info = &connector->display_info;
6514 	const struct displayid_block *block;
6515 	struct displayid_iter iter;
6516 
6517 	displayid_iter_edid_begin(drm_edid, &iter);
6518 	displayid_iter_for_each(block, &iter) {
6519 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6520 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6521 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6522 			info->non_desktop = true;
6523 
6524 		/*
6525 		 * We're only interested in the base section here, no need to
6526 		 * iterate further.
6527 		 */
6528 		break;
6529 	}
6530 	displayid_iter_end(&iter);
6531 }
6532 
6533 static void update_display_info(struct drm_connector *connector,
6534 				const struct drm_edid *drm_edid)
6535 {
6536 	struct drm_display_info *info = &connector->display_info;
6537 	const struct edid *edid;
6538 
6539 	drm_reset_display_info(connector);
6540 	clear_eld(connector);
6541 
6542 	if (!drm_edid)
6543 		return;
6544 
6545 	edid = drm_edid->edid;
6546 
6547 	info->quirks = edid_get_quirks(drm_edid);
6548 
6549 	info->width_mm = edid->width_cm * 10;
6550 	info->height_mm = edid->height_cm * 10;
6551 
6552 	drm_get_monitor_range(connector, drm_edid);
6553 
6554 	if (edid->revision < 3)
6555 		goto out;
6556 
6557 	if (!drm_edid_is_digital(drm_edid))
6558 		goto out;
6559 
6560 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6561 	drm_parse_cea_ext(connector, drm_edid);
6562 
6563 	update_displayid_info(connector, drm_edid);
6564 
6565 	/*
6566 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6567 	 *
6568 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6569 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6570 	 * extensions which tell otherwise.
6571 	 */
6572 	if (info->bpc == 0 && edid->revision == 3 &&
6573 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6574 		info->bpc = 8;
6575 		drm_dbg_kms(connector->dev,
6576 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6577 			    connector->base.id, connector->name, info->bpc);
6578 	}
6579 
6580 	/* Only defined for 1.4 with digital displays */
6581 	if (edid->revision < 4)
6582 		goto out;
6583 
6584 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6585 	case DRM_EDID_DIGITAL_DEPTH_6:
6586 		info->bpc = 6;
6587 		break;
6588 	case DRM_EDID_DIGITAL_DEPTH_8:
6589 		info->bpc = 8;
6590 		break;
6591 	case DRM_EDID_DIGITAL_DEPTH_10:
6592 		info->bpc = 10;
6593 		break;
6594 	case DRM_EDID_DIGITAL_DEPTH_12:
6595 		info->bpc = 12;
6596 		break;
6597 	case DRM_EDID_DIGITAL_DEPTH_14:
6598 		info->bpc = 14;
6599 		break;
6600 	case DRM_EDID_DIGITAL_DEPTH_16:
6601 		info->bpc = 16;
6602 		break;
6603 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6604 	default:
6605 		info->bpc = 0;
6606 		break;
6607 	}
6608 
6609 	drm_dbg_kms(connector->dev,
6610 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6611 		    connector->base.id, connector->name, info->bpc);
6612 
6613 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6614 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6615 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6616 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6617 
6618 	drm_update_mso(connector, drm_edid);
6619 
6620 out:
6621 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6622 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6623 			    connector->base.id, connector->name,
6624 			    info->non_desktop ? " (redundant quirk)" : "");
6625 		info->non_desktop = true;
6626 	}
6627 
6628 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6629 		info->max_dsc_bpp = 15;
6630 
6631 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6632 		info->bpc = 6;
6633 
6634 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6635 		info->bpc = 8;
6636 
6637 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6638 		info->bpc = 10;
6639 
6640 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6641 		info->bpc = 12;
6642 
6643 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6644 	drm_edid_to_eld(connector, drm_edid);
6645 }
6646 
6647 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6648 							    struct displayid_detailed_timings_1 *timings,
6649 							    bool type_7)
6650 {
6651 	struct drm_display_mode *mode;
6652 	unsigned pixel_clock = (timings->pixel_clock[0] |
6653 				(timings->pixel_clock[1] << 8) |
6654 				(timings->pixel_clock[2] << 16)) + 1;
6655 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6656 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6657 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6658 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6659 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6660 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6661 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6662 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6663 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6664 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6665 
6666 	mode = drm_mode_create(dev);
6667 	if (!mode)
6668 		return NULL;
6669 
6670 	/* resolution is kHz for type VII, and 10 kHz for type I */
6671 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6672 	mode->hdisplay = hactive;
6673 	mode->hsync_start = mode->hdisplay + hsync;
6674 	mode->hsync_end = mode->hsync_start + hsync_width;
6675 	mode->htotal = mode->hdisplay + hblank;
6676 
6677 	mode->vdisplay = vactive;
6678 	mode->vsync_start = mode->vdisplay + vsync;
6679 	mode->vsync_end = mode->vsync_start + vsync_width;
6680 	mode->vtotal = mode->vdisplay + vblank;
6681 
6682 	mode->flags = 0;
6683 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6684 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6685 	mode->type = DRM_MODE_TYPE_DRIVER;
6686 
6687 	if (timings->flags & 0x80)
6688 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6689 	drm_mode_set_name(mode);
6690 
6691 	return mode;
6692 }
6693 
6694 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6695 					  const struct displayid_block *block)
6696 {
6697 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6698 	int i;
6699 	int num_timings;
6700 	struct drm_display_mode *newmode;
6701 	int num_modes = 0;
6702 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6703 	/* blocks must be multiple of 20 bytes length */
6704 	if (block->num_bytes % 20)
6705 		return 0;
6706 
6707 	num_timings = block->num_bytes / 20;
6708 	for (i = 0; i < num_timings; i++) {
6709 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6710 
6711 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6712 		if (!newmode)
6713 			continue;
6714 
6715 		drm_mode_probed_add(connector, newmode);
6716 		num_modes++;
6717 	}
6718 	return num_modes;
6719 }
6720 
6721 static int add_displayid_detailed_modes(struct drm_connector *connector,
6722 					const struct drm_edid *drm_edid)
6723 {
6724 	const struct displayid_block *block;
6725 	struct displayid_iter iter;
6726 	int num_modes = 0;
6727 
6728 	displayid_iter_edid_begin(drm_edid, &iter);
6729 	displayid_iter_for_each(block, &iter) {
6730 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6731 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6732 			num_modes += add_displayid_detailed_1_modes(connector, block);
6733 	}
6734 	displayid_iter_end(&iter);
6735 
6736 	return num_modes;
6737 }
6738 
6739 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6740 					 const struct drm_edid *drm_edid)
6741 {
6742 	const struct drm_display_info *info = &connector->display_info;
6743 	int num_modes = 0;
6744 
6745 	if (!drm_edid)
6746 		return 0;
6747 
6748 	/*
6749 	 * EDID spec says modes should be preferred in this order:
6750 	 * - preferred detailed mode
6751 	 * - other detailed modes from base block
6752 	 * - detailed modes from extension blocks
6753 	 * - CVT 3-byte code modes
6754 	 * - standard timing codes
6755 	 * - established timing codes
6756 	 * - modes inferred from GTF or CVT range information
6757 	 *
6758 	 * We get this pretty much right.
6759 	 *
6760 	 * XXX order for additional mode types in extension blocks?
6761 	 */
6762 	num_modes += add_detailed_modes(connector, drm_edid);
6763 	num_modes += add_cvt_modes(connector, drm_edid);
6764 	num_modes += add_standard_modes(connector, drm_edid);
6765 	num_modes += add_established_modes(connector, drm_edid);
6766 	num_modes += add_cea_modes(connector, drm_edid);
6767 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6768 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6769 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6770 		num_modes += add_inferred_modes(connector, drm_edid);
6771 
6772 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6773 		edid_fixup_preferred(connector);
6774 
6775 	return num_modes;
6776 }
6777 
6778 static void _drm_update_tile_info(struct drm_connector *connector,
6779 				  const struct drm_edid *drm_edid);
6780 
6781 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6782 					       const struct drm_edid *drm_edid)
6783 {
6784 	struct drm_device *dev = connector->dev;
6785 	int ret;
6786 
6787 	if (connector->edid_blob_ptr) {
6788 		const struct edid *old_edid = connector->edid_blob_ptr->data;
6789 
6790 		if (old_edid) {
6791 			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6792 				connector->epoch_counter++;
6793 				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6794 					    connector->base.id, connector->name,
6795 					    connector->epoch_counter);
6796 			}
6797 		}
6798 	}
6799 
6800 	ret = drm_property_replace_global_blob(dev,
6801 					       &connector->edid_blob_ptr,
6802 					       drm_edid ? drm_edid->size : 0,
6803 					       drm_edid ? drm_edid->edid : NULL,
6804 					       &connector->base,
6805 					       dev->mode_config.edid_property);
6806 	if (ret) {
6807 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6808 			    connector->base.id, connector->name, ret);
6809 		goto out;
6810 	}
6811 
6812 	ret = drm_object_property_set_value(&connector->base,
6813 					    dev->mode_config.non_desktop_property,
6814 					    connector->display_info.non_desktop);
6815 	if (ret) {
6816 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6817 			    connector->base.id, connector->name, ret);
6818 		goto out;
6819 	}
6820 
6821 	ret = drm_connector_set_tile_property(connector);
6822 	if (ret) {
6823 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6824 			    connector->base.id, connector->name, ret);
6825 		goto out;
6826 	}
6827 
6828 out:
6829 	return ret;
6830 }
6831 
6832 /**
6833  * drm_edid_connector_update - Update connector information from EDID
6834  * @connector: Connector
6835  * @drm_edid: EDID
6836  *
6837  * Update the connector display info, ELD, HDR metadata, relevant properties,
6838  * etc. from the passed in EDID.
6839  *
6840  * If EDID is NULL, reset the information.
6841  *
6842  * Must be called before calling drm_edid_connector_add_modes().
6843  *
6844  * Return: 0 on success, negative error on errors.
6845  */
6846 int drm_edid_connector_update(struct drm_connector *connector,
6847 			      const struct drm_edid *drm_edid)
6848 {
6849 	update_display_info(connector, drm_edid);
6850 
6851 	_drm_update_tile_info(connector, drm_edid);
6852 
6853 	return _drm_edid_connector_property_update(connector, drm_edid);
6854 }
6855 EXPORT_SYMBOL(drm_edid_connector_update);
6856 
6857 /**
6858  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6859  * @connector: Connector
6860  *
6861  * Add the modes from the previously updated EDID property to the connector
6862  * probed modes list.
6863  *
6864  * drm_edid_connector_update() must have been called before this to update the
6865  * EDID property.
6866  *
6867  * Return: The number of modes added, or 0 if we couldn't find any.
6868  */
6869 int drm_edid_connector_add_modes(struct drm_connector *connector)
6870 {
6871 	const struct drm_edid *drm_edid = NULL;
6872 	int count;
6873 
6874 	if (connector->edid_blob_ptr)
6875 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6876 					  connector->edid_blob_ptr->length);
6877 
6878 	count = _drm_edid_connector_add_modes(connector, drm_edid);
6879 
6880 	drm_edid_free(drm_edid);
6881 
6882 	return count;
6883 }
6884 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6885 
6886 /**
6887  * drm_connector_update_edid_property - update the edid property of a connector
6888  * @connector: drm connector
6889  * @edid: new value of the edid property
6890  *
6891  * This function creates a new blob modeset object and assigns its id to the
6892  * connector's edid property.
6893  * Since we also parse tile information from EDID's displayID block, we also
6894  * set the connector's tile property here. See drm_connector_set_tile_property()
6895  * for more details.
6896  *
6897  * This function is deprecated. Use drm_edid_connector_update() instead.
6898  *
6899  * Returns:
6900  * Zero on success, negative errno on failure.
6901  */
6902 int drm_connector_update_edid_property(struct drm_connector *connector,
6903 				       const struct edid *edid)
6904 {
6905 	struct drm_edid drm_edid;
6906 
6907 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6908 }
6909 EXPORT_SYMBOL(drm_connector_update_edid_property);
6910 
6911 /**
6912  * drm_add_edid_modes - add modes from EDID data, if available
6913  * @connector: connector we're probing
6914  * @edid: EDID data
6915  *
6916  * Add the specified modes to the connector's mode list. Also fills out the
6917  * &drm_display_info structure and ELD in @connector with any information which
6918  * can be derived from the edid.
6919  *
6920  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6921  *
6922  * Return: The number of modes added or 0 if we couldn't find any.
6923  */
6924 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6925 {
6926 	struct drm_edid _drm_edid;
6927 	const struct drm_edid *drm_edid;
6928 
6929 	if (edid && !drm_edid_is_valid(edid)) {
6930 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6931 			 connector->base.id, connector->name);
6932 		edid = NULL;
6933 	}
6934 
6935 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6936 
6937 	update_display_info(connector, drm_edid);
6938 
6939 	return _drm_edid_connector_add_modes(connector, drm_edid);
6940 }
6941 EXPORT_SYMBOL(drm_add_edid_modes);
6942 
6943 /**
6944  * drm_add_modes_noedid - add modes for the connectors without EDID
6945  * @connector: connector we're probing
6946  * @hdisplay: the horizontal display limit
6947  * @vdisplay: the vertical display limit
6948  *
6949  * Add the specified modes to the connector's mode list. Only when the
6950  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6951  *
6952  * Return: The number of modes added or 0 if we couldn't find any.
6953  */
6954 int drm_add_modes_noedid(struct drm_connector *connector,
6955 			int hdisplay, int vdisplay)
6956 {
6957 	int i, count, num_modes = 0;
6958 	struct drm_display_mode *mode;
6959 	struct drm_device *dev = connector->dev;
6960 
6961 	count = ARRAY_SIZE(drm_dmt_modes);
6962 	if (hdisplay < 0)
6963 		hdisplay = 0;
6964 	if (vdisplay < 0)
6965 		vdisplay = 0;
6966 
6967 	for (i = 0; i < count; i++) {
6968 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6969 
6970 		if (hdisplay && vdisplay) {
6971 			/*
6972 			 * Only when two are valid, they will be used to check
6973 			 * whether the mode should be added to the mode list of
6974 			 * the connector.
6975 			 */
6976 			if (ptr->hdisplay > hdisplay ||
6977 					ptr->vdisplay > vdisplay)
6978 				continue;
6979 		}
6980 		if (drm_mode_vrefresh(ptr) > 61)
6981 			continue;
6982 		mode = drm_mode_duplicate(dev, ptr);
6983 		if (mode) {
6984 			drm_mode_probed_add(connector, mode);
6985 			num_modes++;
6986 		}
6987 	}
6988 	return num_modes;
6989 }
6990 EXPORT_SYMBOL(drm_add_modes_noedid);
6991 
6992 /**
6993  * drm_set_preferred_mode - Sets the preferred mode of a connector
6994  * @connector: connector whose mode list should be processed
6995  * @hpref: horizontal resolution of preferred mode
6996  * @vpref: vertical resolution of preferred mode
6997  *
6998  * Marks a mode as preferred if it matches the resolution specified by @hpref
6999  * and @vpref.
7000  */
7001 void drm_set_preferred_mode(struct drm_connector *connector,
7002 			   int hpref, int vpref)
7003 {
7004 	struct drm_display_mode *mode;
7005 
7006 	list_for_each_entry(mode, &connector->probed_modes, head) {
7007 		if (mode->hdisplay == hpref &&
7008 		    mode->vdisplay == vpref)
7009 			mode->type |= DRM_MODE_TYPE_PREFERRED;
7010 	}
7011 }
7012 EXPORT_SYMBOL(drm_set_preferred_mode);
7013 
7014 static bool is_hdmi2_sink(const struct drm_connector *connector)
7015 {
7016 	/*
7017 	 * FIXME: sil-sii8620 doesn't have a connector around when
7018 	 * we need one, so we have to be prepared for a NULL connector.
7019 	 */
7020 	if (!connector)
7021 		return true;
7022 
7023 	return connector->display_info.hdmi.scdc.supported ||
7024 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7025 }
7026 
7027 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7028 			    const struct drm_display_mode *mode)
7029 {
7030 	bool has_hdmi_infoframe = connector ?
7031 		connector->display_info.has_hdmi_infoframe : false;
7032 
7033 	if (!has_hdmi_infoframe)
7034 		return 0;
7035 
7036 	/* No HDMI VIC when signalling 3D video format */
7037 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7038 		return 0;
7039 
7040 	return drm_match_hdmi_mode(mode);
7041 }
7042 
7043 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7044 			   const struct drm_display_mode *mode)
7045 {
7046 	/*
7047 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7048 	 * we should send its VIC in vendor infoframes, else send the
7049 	 * VIC in AVI infoframes. Lets check if this mode is present in
7050 	 * HDMI 1.4b 4K modes
7051 	 */
7052 	if (drm_mode_hdmi_vic(connector, mode))
7053 		return 0;
7054 
7055 	return drm_match_cea_mode(mode);
7056 }
7057 
7058 /*
7059  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7060  * conform to HDMI 1.4.
7061  *
7062  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7063  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7064  *
7065  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7066  * version.
7067  */
7068 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7069 {
7070 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7071 	    !cta_vdb_has_vic(connector, vic))
7072 		return 0;
7073 
7074 	return vic;
7075 }
7076 
7077 /**
7078  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7079  *                                              data from a DRM display mode
7080  * @frame: HDMI AVI infoframe
7081  * @connector: the connector
7082  * @mode: DRM display mode
7083  *
7084  * Return: 0 on success or a negative error code on failure.
7085  */
7086 int
7087 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7088 					 const struct drm_connector *connector,
7089 					 const struct drm_display_mode *mode)
7090 {
7091 	enum hdmi_picture_aspect picture_aspect;
7092 	u8 vic, hdmi_vic;
7093 
7094 	if (!frame || !mode)
7095 		return -EINVAL;
7096 
7097 	hdmi_avi_infoframe_init(frame);
7098 
7099 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7100 		frame->pixel_repeat = 1;
7101 
7102 	vic = drm_mode_cea_vic(connector, mode);
7103 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7104 
7105 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7106 
7107 	/*
7108 	 * As some drivers don't support atomic, we can't use connector state.
7109 	 * So just initialize the frame with default values, just the same way
7110 	 * as it's done with other properties here.
7111 	 */
7112 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7113 	frame->itc = 0;
7114 
7115 	/*
7116 	 * Populate picture aspect ratio from either
7117 	 * user input (if specified) or from the CEA/HDMI mode lists.
7118 	 */
7119 	picture_aspect = mode->picture_aspect_ratio;
7120 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7121 		if (vic)
7122 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7123 		else if (hdmi_vic)
7124 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7125 	}
7126 
7127 	/*
7128 	 * The infoframe can't convey anything but none, 4:3
7129 	 * and 16:9, so if the user has asked for anything else
7130 	 * we can only satisfy it by specifying the right VIC.
7131 	 */
7132 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7133 		if (vic) {
7134 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7135 				return -EINVAL;
7136 		} else if (hdmi_vic) {
7137 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7138 				return -EINVAL;
7139 		} else {
7140 			return -EINVAL;
7141 		}
7142 
7143 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7144 	}
7145 
7146 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7147 	frame->picture_aspect = picture_aspect;
7148 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7149 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7150 
7151 	return 0;
7152 }
7153 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7154 
7155 /**
7156  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7157  *                                        quantization range information
7158  * @frame: HDMI AVI infoframe
7159  * @connector: the connector
7160  * @mode: DRM display mode
7161  * @rgb_quant_range: RGB quantization range (Q)
7162  */
7163 void
7164 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7165 				   const struct drm_connector *connector,
7166 				   const struct drm_display_mode *mode,
7167 				   enum hdmi_quantization_range rgb_quant_range)
7168 {
7169 	const struct drm_display_info *info = &connector->display_info;
7170 
7171 	/*
7172 	 * CEA-861:
7173 	 * "A Source shall not send a non-zero Q value that does not correspond
7174 	 *  to the default RGB Quantization Range for the transmitted Picture
7175 	 *  unless the Sink indicates support for the Q bit in a Video
7176 	 *  Capabilities Data Block."
7177 	 *
7178 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7179 	 * default RGB quantization range for the mode, even when QS=0.
7180 	 */
7181 	if (info->rgb_quant_range_selectable ||
7182 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7183 		frame->quantization_range = rgb_quant_range;
7184 	else
7185 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7186 
7187 	/*
7188 	 * CEA-861-F:
7189 	 * "When transmitting any RGB colorimetry, the Source should set the
7190 	 *  YQ-field to match the RGB Quantization Range being transmitted
7191 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7192 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7193 	 *
7194 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7195 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7196 	 * good way to tell which version of CEA-861 the sink supports, so
7197 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7198 	 * on CEA-861-F.
7199 	 */
7200 	if (!is_hdmi2_sink(connector) ||
7201 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7202 		frame->ycc_quantization_range =
7203 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7204 	else
7205 		frame->ycc_quantization_range =
7206 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7207 }
7208 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7209 
7210 static enum hdmi_3d_structure
7211 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7212 {
7213 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7214 
7215 	switch (layout) {
7216 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7217 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7218 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7219 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7220 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7221 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7222 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7223 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7224 	case DRM_MODE_FLAG_3D_L_DEPTH:
7225 		return HDMI_3D_STRUCTURE_L_DEPTH;
7226 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7227 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7228 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7229 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7230 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7231 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7232 	default:
7233 		return HDMI_3D_STRUCTURE_INVALID;
7234 	}
7235 }
7236 
7237 /**
7238  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7239  * data from a DRM display mode
7240  * @frame: HDMI vendor infoframe
7241  * @connector: the connector
7242  * @mode: DRM display mode
7243  *
7244  * Note that there's is a need to send HDMI vendor infoframes only when using a
7245  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7246  * function will return -EINVAL, error that can be safely ignored.
7247  *
7248  * Return: 0 on success or a negative error code on failure.
7249  */
7250 int
7251 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7252 					    const struct drm_connector *connector,
7253 					    const struct drm_display_mode *mode)
7254 {
7255 	/*
7256 	 * FIXME: sil-sii8620 doesn't have a connector around when
7257 	 * we need one, so we have to be prepared for a NULL connector.
7258 	 */
7259 	bool has_hdmi_infoframe = connector ?
7260 		connector->display_info.has_hdmi_infoframe : false;
7261 	int err;
7262 
7263 	if (!frame || !mode)
7264 		return -EINVAL;
7265 
7266 	if (!has_hdmi_infoframe)
7267 		return -EINVAL;
7268 
7269 	err = hdmi_vendor_infoframe_init(frame);
7270 	if (err < 0)
7271 		return err;
7272 
7273 	/*
7274 	 * Even if it's not absolutely necessary to send the infoframe
7275 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7276 	 * know that the sink can handle it. This is based on a
7277 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7278 	 * have trouble realizing that they should switch from 3D to 2D
7279 	 * mode if the source simply stops sending the infoframe when
7280 	 * it wants to switch from 3D to 2D.
7281 	 */
7282 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7283 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7284 
7285 	return 0;
7286 }
7287 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7288 
7289 static void drm_parse_tiled_block(struct drm_connector *connector,
7290 				  const struct displayid_block *block)
7291 {
7292 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7293 	u16 w, h;
7294 	u8 tile_v_loc, tile_h_loc;
7295 	u8 num_v_tile, num_h_tile;
7296 	struct drm_tile_group *tg;
7297 
7298 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7299 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7300 
7301 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7302 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7303 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7304 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7305 
7306 	connector->has_tile = true;
7307 	if (tile->tile_cap & 0x80)
7308 		connector->tile_is_single_monitor = true;
7309 
7310 	connector->num_h_tile = num_h_tile + 1;
7311 	connector->num_v_tile = num_v_tile + 1;
7312 	connector->tile_h_loc = tile_h_loc;
7313 	connector->tile_v_loc = tile_v_loc;
7314 	connector->tile_h_size = w + 1;
7315 	connector->tile_v_size = h + 1;
7316 
7317 	drm_dbg_kms(connector->dev,
7318 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7319 		    connector->base.id, connector->name,
7320 		    tile->tile_cap,
7321 		    connector->tile_h_size, connector->tile_v_size,
7322 		    connector->num_h_tile, connector->num_v_tile,
7323 		    connector->tile_h_loc, connector->tile_v_loc,
7324 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7325 
7326 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7327 	if (!tg)
7328 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7329 	if (!tg)
7330 		return;
7331 
7332 	if (connector->tile_group != tg) {
7333 		/* if we haven't got a pointer,
7334 		   take the reference, drop ref to old tile group */
7335 		if (connector->tile_group)
7336 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7337 		connector->tile_group = tg;
7338 	} else {
7339 		/* if same tile group, then release the ref we just took. */
7340 		drm_mode_put_tile_group(connector->dev, tg);
7341 	}
7342 }
7343 
7344 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7345 				     const struct displayid_block *block)
7346 {
7347 	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7348 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7349 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7350 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7351 }
7352 
7353 static void _drm_update_tile_info(struct drm_connector *connector,
7354 				  const struct drm_edid *drm_edid)
7355 {
7356 	const struct displayid_block *block;
7357 	struct displayid_iter iter;
7358 
7359 	connector->has_tile = false;
7360 
7361 	displayid_iter_edid_begin(drm_edid, &iter);
7362 	displayid_iter_for_each(block, &iter) {
7363 		if (displayid_is_tiled_block(&iter, block))
7364 			drm_parse_tiled_block(connector, block);
7365 	}
7366 	displayid_iter_end(&iter);
7367 
7368 	if (!connector->has_tile && connector->tile_group) {
7369 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7370 		connector->tile_group = NULL;
7371 	}
7372 }
7373 
7374 /**
7375  * drm_edid_is_digital - is digital?
7376  * @drm_edid: The EDID
7377  *
7378  * Return true if input is digital.
7379  */
7380 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7381 {
7382 	return drm_edid && drm_edid->edid &&
7383 		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7384 }
7385 EXPORT_SYMBOL(drm_edid_is_digital);
7386