1 /* 2 * Copyright (c) 2006 Luc Verhaegen (quirks list) 3 * Copyright (c) 2007-2008 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * Copyright 2010 Red Hat, Inc. 6 * 7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from 8 * FB layer. 9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com> 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sub license, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice (including the 19 * next paragraph) shall be included in all copies or substantial portions 20 * of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 28 * DEALINGS IN THE SOFTWARE. 29 */ 30 31 #include <linux/bitfield.h> 32 #include <linux/cec.h> 33 #include <linux/hdmi.h> 34 #include <linux/i2c.h> 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/slab.h> 39 #include <linux/vga_switcheroo.h> 40 41 #include <drm/drm_displayid.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_edid.h> 44 #include <drm/drm_eld.h> 45 #include <drm/drm_encoder.h> 46 #include <drm/drm_print.h> 47 48 #include "drm_crtc_internal.h" 49 #include "drm_internal.h" 50 51 static int oui(u8 first, u8 second, u8 third) 52 { 53 return (first << 16) | (second << 8) | third; 54 } 55 56 #define EDID_EST_TIMINGS 16 57 #define EDID_STD_TIMINGS 8 58 #define EDID_DETAILED_TIMINGS 4 59 60 /* 61 * EDID blocks out in the wild have a variety of bugs, try to collect 62 * them here (note that userspace may work around broken monitors first, 63 * but fixes should make their way here so that the kernel "just works" 64 * on as many displays as possible). 65 */ 66 67 /* First detailed mode wrong, use largest 60Hz mode */ 68 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) 69 /* Reported 135MHz pixel clock is too high, needs adjustment */ 70 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) 71 /* Prefer the largest mode at 75 Hz */ 72 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) 73 /* Detail timing is in cm not mm */ 74 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) 75 /* Detailed timing descriptors have bogus size values, so just take the 76 * maximum size and use that. 77 */ 78 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) 79 /* use +hsync +vsync for detailed mode */ 80 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) 81 /* Force reduced-blanking timings for detailed modes */ 82 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) 83 /* Force 8bpc */ 84 #define EDID_QUIRK_FORCE_8BPC (1 << 8) 85 /* Force 12bpc */ 86 #define EDID_QUIRK_FORCE_12BPC (1 << 9) 87 /* Force 6bpc */ 88 #define EDID_QUIRK_FORCE_6BPC (1 << 10) 89 /* Force 10bpc */ 90 #define EDID_QUIRK_FORCE_10BPC (1 << 11) 91 /* Non desktop display (i.e. HMD) */ 92 #define EDID_QUIRK_NON_DESKTOP (1 << 12) 93 /* Cap the DSC target bitrate to 15bpp */ 94 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13) 95 96 #define MICROSOFT_IEEE_OUI 0xca125c 97 98 struct detailed_mode_closure { 99 struct drm_connector *connector; 100 const struct drm_edid *drm_edid; 101 bool preferred; 102 int modes; 103 }; 104 105 #define LEVEL_DMT 0 106 #define LEVEL_GTF 1 107 #define LEVEL_GTF2 2 108 #define LEVEL_CVT 3 109 110 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \ 111 { \ 112 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \ 113 product_id), \ 114 .quirks = _quirks \ 115 } 116 117 static const struct edid_quirk { 118 u32 panel_id; 119 u32 quirks; 120 } edid_quirk_list[] = { 121 /* Acer AL1706 */ 122 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60), 123 /* Acer F51 */ 124 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60), 125 126 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */ 127 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC), 128 129 /* BenQ GW2765 */ 130 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC), 131 132 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */ 133 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC), 134 135 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */ 136 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC), 137 138 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */ 139 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC), 140 141 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */ 142 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC), 143 144 /* Belinea 10 15 55 */ 145 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60), 146 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60), 147 148 /* Envision Peripherals, Inc. EN-7100e */ 149 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH), 150 /* Envision EN2028 */ 151 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60), 152 153 /* Funai Electronics PM36B */ 154 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 | 155 EDID_QUIRK_DETAILED_IN_CM), 156 157 /* LG 27GP950 */ 158 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP), 159 160 /* LG 27GN950 */ 161 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP), 162 163 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */ 164 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC), 165 166 /* LG Philips LCD LP154W01-A5 */ 167 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), 168 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), 169 170 /* Samsung SyncMaster 205BW. Note: irony */ 171 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP), 172 /* Samsung SyncMaster 22[5-6]BW */ 173 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60), 174 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60), 175 176 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */ 177 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC), 178 179 /* ViewSonic VA2026w */ 180 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING), 181 182 /* Medion MD 30217 PG */ 183 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75), 184 185 /* Lenovo G50 */ 186 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC), 187 188 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ 189 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC), 190 191 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/ 192 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC), 193 194 /* Valve Index Headset */ 195 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP), 196 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP), 197 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP), 198 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP), 199 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP), 200 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP), 201 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP), 202 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP), 203 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP), 204 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP), 205 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP), 206 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP), 207 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP), 208 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP), 209 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP), 210 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP), 211 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP), 212 213 /* HTC Vive and Vive Pro VR Headsets */ 214 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP), 215 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP), 216 217 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */ 218 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP), 219 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP), 220 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP), 221 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP), 222 223 /* Windows Mixed Reality Headsets */ 224 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP), 225 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP), 226 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP), 227 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP), 228 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP), 229 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP), 230 231 /* Sony PlayStation VR Headset */ 232 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP), 233 234 /* Sensics VR Headsets */ 235 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP), 236 237 /* OSVR HDK and HDK2 VR Headsets */ 238 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP), 239 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP), 240 }; 241 242 /* 243 * Autogenerated from the DMT spec. 244 * This table is copied from xfree86/modes/xf86EdidModes.c. 245 */ 246 static const struct drm_display_mode drm_dmt_modes[] = { 247 /* 0x01 - 640x350@85Hz */ 248 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 249 736, 832, 0, 350, 382, 385, 445, 0, 250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 251 /* 0x02 - 640x400@85Hz */ 252 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 253 736, 832, 0, 400, 401, 404, 445, 0, 254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 255 /* 0x03 - 720x400@85Hz */ 256 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 257 828, 936, 0, 400, 401, 404, 446, 0, 258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 259 /* 0x04 - 640x480@60Hz */ 260 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 261 752, 800, 0, 480, 490, 492, 525, 0, 262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 263 /* 0x05 - 640x480@72Hz */ 264 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 265 704, 832, 0, 480, 489, 492, 520, 0, 266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 267 /* 0x06 - 640x480@75Hz */ 268 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 269 720, 840, 0, 480, 481, 484, 500, 0, 270 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 271 /* 0x07 - 640x480@85Hz */ 272 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 273 752, 832, 0, 480, 481, 484, 509, 0, 274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 275 /* 0x08 - 800x600@56Hz */ 276 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 277 896, 1024, 0, 600, 601, 603, 625, 0, 278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 279 /* 0x09 - 800x600@60Hz */ 280 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 281 968, 1056, 0, 600, 601, 605, 628, 0, 282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 283 /* 0x0a - 800x600@72Hz */ 284 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 285 976, 1040, 0, 600, 637, 643, 666, 0, 286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 287 /* 0x0b - 800x600@75Hz */ 288 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 289 896, 1056, 0, 600, 601, 604, 625, 0, 290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 291 /* 0x0c - 800x600@85Hz */ 292 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 293 896, 1048, 0, 600, 601, 604, 631, 0, 294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 295 /* 0x0d - 800x600@120Hz RB */ 296 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 297 880, 960, 0, 600, 603, 607, 636, 0, 298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 299 /* 0x0e - 848x480@60Hz */ 300 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 301 976, 1088, 0, 480, 486, 494, 517, 0, 302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 303 /* 0x0f - 1024x768@43Hz, interlace */ 304 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 305 1208, 1264, 0, 768, 768, 776, 817, 0, 306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 307 DRM_MODE_FLAG_INTERLACE) }, 308 /* 0x10 - 1024x768@60Hz */ 309 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 310 1184, 1344, 0, 768, 771, 777, 806, 0, 311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 312 /* 0x11 - 1024x768@70Hz */ 313 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 314 1184, 1328, 0, 768, 771, 777, 806, 0, 315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 316 /* 0x12 - 1024x768@75Hz */ 317 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 318 1136, 1312, 0, 768, 769, 772, 800, 0, 319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 320 /* 0x13 - 1024x768@85Hz */ 321 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 322 1168, 1376, 0, 768, 769, 772, 808, 0, 323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 324 /* 0x14 - 1024x768@120Hz RB */ 325 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 326 1104, 1184, 0, 768, 771, 775, 813, 0, 327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 328 /* 0x15 - 1152x864@75Hz */ 329 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 330 1344, 1600, 0, 864, 865, 868, 900, 0, 331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 332 /* 0x55 - 1280x720@60Hz */ 333 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 334 1430, 1650, 0, 720, 725, 730, 750, 0, 335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 336 /* 0x16 - 1280x768@60Hz RB */ 337 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 338 1360, 1440, 0, 768, 771, 778, 790, 0, 339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 340 /* 0x17 - 1280x768@60Hz */ 341 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 342 1472, 1664, 0, 768, 771, 778, 798, 0, 343 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 344 /* 0x18 - 1280x768@75Hz */ 345 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 346 1488, 1696, 0, 768, 771, 778, 805, 0, 347 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 348 /* 0x19 - 1280x768@85Hz */ 349 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 350 1496, 1712, 0, 768, 771, 778, 809, 0, 351 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 352 /* 0x1a - 1280x768@120Hz RB */ 353 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 354 1360, 1440, 0, 768, 771, 778, 813, 0, 355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 356 /* 0x1b - 1280x800@60Hz RB */ 357 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 358 1360, 1440, 0, 800, 803, 809, 823, 0, 359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 360 /* 0x1c - 1280x800@60Hz */ 361 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 362 1480, 1680, 0, 800, 803, 809, 831, 0, 363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 364 /* 0x1d - 1280x800@75Hz */ 365 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 366 1488, 1696, 0, 800, 803, 809, 838, 0, 367 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 368 /* 0x1e - 1280x800@85Hz */ 369 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 370 1496, 1712, 0, 800, 803, 809, 843, 0, 371 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 372 /* 0x1f - 1280x800@120Hz RB */ 373 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 374 1360, 1440, 0, 800, 803, 809, 847, 0, 375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 376 /* 0x20 - 1280x960@60Hz */ 377 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 378 1488, 1800, 0, 960, 961, 964, 1000, 0, 379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 380 /* 0x21 - 1280x960@85Hz */ 381 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 382 1504, 1728, 0, 960, 961, 964, 1011, 0, 383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 384 /* 0x22 - 1280x960@120Hz RB */ 385 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 386 1360, 1440, 0, 960, 963, 967, 1017, 0, 387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 388 /* 0x23 - 1280x1024@60Hz */ 389 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 390 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 392 /* 0x24 - 1280x1024@75Hz */ 393 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 394 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 396 /* 0x25 - 1280x1024@85Hz */ 397 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 398 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, 399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 400 /* 0x26 - 1280x1024@120Hz RB */ 401 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 402 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, 403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 404 /* 0x27 - 1360x768@60Hz */ 405 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 406 1536, 1792, 0, 768, 771, 777, 795, 0, 407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 408 /* 0x28 - 1360x768@120Hz RB */ 409 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 410 1440, 1520, 0, 768, 771, 776, 813, 0, 411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 412 /* 0x51 - 1366x768@60Hz */ 413 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436, 414 1579, 1792, 0, 768, 771, 774, 798, 0, 415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 416 /* 0x56 - 1366x768@60Hz */ 417 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380, 418 1436, 1500, 0, 768, 769, 772, 800, 0, 419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 420 /* 0x29 - 1400x1050@60Hz RB */ 421 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 422 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, 423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 424 /* 0x2a - 1400x1050@60Hz */ 425 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 426 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 428 /* 0x2b - 1400x1050@75Hz */ 429 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 430 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, 431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 432 /* 0x2c - 1400x1050@85Hz */ 433 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 434 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, 435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 436 /* 0x2d - 1400x1050@120Hz RB */ 437 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 438 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, 439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 440 /* 0x2e - 1440x900@60Hz RB */ 441 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 442 1520, 1600, 0, 900, 903, 909, 926, 0, 443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 444 /* 0x2f - 1440x900@60Hz */ 445 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 446 1672, 1904, 0, 900, 903, 909, 934, 0, 447 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 448 /* 0x30 - 1440x900@75Hz */ 449 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 450 1688, 1936, 0, 900, 903, 909, 942, 0, 451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 452 /* 0x31 - 1440x900@85Hz */ 453 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 454 1696, 1952, 0, 900, 903, 909, 948, 0, 455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 456 /* 0x32 - 1440x900@120Hz RB */ 457 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 458 1520, 1600, 0, 900, 903, 909, 953, 0, 459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 460 /* 0x53 - 1600x900@60Hz */ 461 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624, 462 1704, 1800, 0, 900, 901, 904, 1000, 0, 463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 464 /* 0x33 - 1600x1200@60Hz */ 465 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 466 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 468 /* 0x34 - 1600x1200@65Hz */ 469 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 470 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 472 /* 0x35 - 1600x1200@70Hz */ 473 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 474 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 476 /* 0x36 - 1600x1200@75Hz */ 477 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 478 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 480 /* 0x37 - 1600x1200@85Hz */ 481 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 482 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 483 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 484 /* 0x38 - 1600x1200@120Hz RB */ 485 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 486 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, 487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 488 /* 0x39 - 1680x1050@60Hz RB */ 489 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 490 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, 491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 492 /* 0x3a - 1680x1050@60Hz */ 493 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 494 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 496 /* 0x3b - 1680x1050@75Hz */ 497 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 498 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, 499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 500 /* 0x3c - 1680x1050@85Hz */ 501 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 502 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, 503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 504 /* 0x3d - 1680x1050@120Hz RB */ 505 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 506 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, 507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 508 /* 0x3e - 1792x1344@60Hz */ 509 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 510 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 512 /* 0x3f - 1792x1344@75Hz */ 513 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 514 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, 515 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 516 /* 0x40 - 1792x1344@120Hz RB */ 517 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 518 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, 519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 520 /* 0x41 - 1856x1392@60Hz */ 521 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 522 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 523 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 524 /* 0x42 - 1856x1392@75Hz */ 525 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 526 2208, 2560, 0, 1392, 1393, 1396, 1500, 0, 527 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 528 /* 0x43 - 1856x1392@120Hz RB */ 529 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 530 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, 531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 532 /* 0x52 - 1920x1080@60Hz */ 533 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 534 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 536 /* 0x44 - 1920x1200@60Hz RB */ 537 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 538 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, 539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 540 /* 0x45 - 1920x1200@60Hz */ 541 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 542 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 544 /* 0x46 - 1920x1200@75Hz */ 545 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 546 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, 547 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 548 /* 0x47 - 1920x1200@85Hz */ 549 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 550 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, 551 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 552 /* 0x48 - 1920x1200@120Hz RB */ 553 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 554 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, 555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 556 /* 0x49 - 1920x1440@60Hz */ 557 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 558 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 560 /* 0x4a - 1920x1440@75Hz */ 561 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 562 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, 563 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 564 /* 0x4b - 1920x1440@120Hz RB */ 565 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 566 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, 567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 568 /* 0x54 - 2048x1152@60Hz */ 569 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074, 570 2154, 2250, 0, 1152, 1153, 1156, 1200, 0, 571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 572 /* 0x4c - 2560x1600@60Hz RB */ 573 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 574 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, 575 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 576 /* 0x4d - 2560x1600@60Hz */ 577 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 578 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 579 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 580 /* 0x4e - 2560x1600@75Hz */ 581 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 582 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, 583 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 584 /* 0x4f - 2560x1600@85Hz */ 585 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 586 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, 587 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 588 /* 0x50 - 2560x1600@120Hz RB */ 589 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 590 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, 591 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 592 /* 0x57 - 4096x2160@60Hz RB */ 593 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104, 594 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 595 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 596 /* 0x58 - 4096x2160@59.94Hz RB */ 597 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104, 598 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 599 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 600 }; 601 602 /* 603 * These more or less come from the DMT spec. The 720x400 modes are 604 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 605 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode 606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT 607 * mode. 608 * 609 * The DMT modes have been fact-checked; the rest are mild guesses. 610 */ 611 static const struct drm_display_mode edid_est_modes[] = { 612 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 613 968, 1056, 0, 600, 601, 605, 628, 0, 614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ 615 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 616 896, 1024, 0, 600, 601, 603, 625, 0, 617 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ 618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 619 720, 840, 0, 480, 481, 484, 500, 0, 620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ 621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 622 704, 832, 0, 480, 489, 492, 520, 0, 623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ 624 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 625 768, 864, 0, 480, 483, 486, 525, 0, 626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ 627 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 628 752, 800, 0, 480, 490, 492, 525, 0, 629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ 630 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 631 846, 900, 0, 400, 421, 423, 449, 0, 632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ 633 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 634 846, 900, 0, 400, 412, 414, 449, 0, 635 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ 636 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 637 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 638 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ 639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 640 1136, 1312, 0, 768, 769, 772, 800, 0, 641 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ 642 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 643 1184, 1328, 0, 768, 771, 777, 806, 0, 644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ 645 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 646 1184, 1344, 0, 768, 771, 777, 806, 0, 647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ 648 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 649 1208, 1264, 0, 768, 768, 776, 817, 0, 650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ 651 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 652 928, 1152, 0, 624, 625, 628, 667, 0, 653 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ 654 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 655 896, 1056, 0, 600, 601, 604, 625, 0, 656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ 657 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 658 976, 1040, 0, 600, 637, 643, 666, 0, 659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ 660 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 661 1344, 1600, 0, 864, 865, 868, 900, 0, 662 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ 663 }; 664 665 struct minimode { 666 short w; 667 short h; 668 short r; 669 short rb; 670 }; 671 672 static const struct minimode est3_modes[] = { 673 /* byte 6 */ 674 { 640, 350, 85, 0 }, 675 { 640, 400, 85, 0 }, 676 { 720, 400, 85, 0 }, 677 { 640, 480, 85, 0 }, 678 { 848, 480, 60, 0 }, 679 { 800, 600, 85, 0 }, 680 { 1024, 768, 85, 0 }, 681 { 1152, 864, 75, 0 }, 682 /* byte 7 */ 683 { 1280, 768, 60, 1 }, 684 { 1280, 768, 60, 0 }, 685 { 1280, 768, 75, 0 }, 686 { 1280, 768, 85, 0 }, 687 { 1280, 960, 60, 0 }, 688 { 1280, 960, 85, 0 }, 689 { 1280, 1024, 60, 0 }, 690 { 1280, 1024, 85, 0 }, 691 /* byte 8 */ 692 { 1360, 768, 60, 0 }, 693 { 1440, 900, 60, 1 }, 694 { 1440, 900, 60, 0 }, 695 { 1440, 900, 75, 0 }, 696 { 1440, 900, 85, 0 }, 697 { 1400, 1050, 60, 1 }, 698 { 1400, 1050, 60, 0 }, 699 { 1400, 1050, 75, 0 }, 700 /* byte 9 */ 701 { 1400, 1050, 85, 0 }, 702 { 1680, 1050, 60, 1 }, 703 { 1680, 1050, 60, 0 }, 704 { 1680, 1050, 75, 0 }, 705 { 1680, 1050, 85, 0 }, 706 { 1600, 1200, 60, 0 }, 707 { 1600, 1200, 65, 0 }, 708 { 1600, 1200, 70, 0 }, 709 /* byte 10 */ 710 { 1600, 1200, 75, 0 }, 711 { 1600, 1200, 85, 0 }, 712 { 1792, 1344, 60, 0 }, 713 { 1792, 1344, 75, 0 }, 714 { 1856, 1392, 60, 0 }, 715 { 1856, 1392, 75, 0 }, 716 { 1920, 1200, 60, 1 }, 717 { 1920, 1200, 60, 0 }, 718 /* byte 11 */ 719 { 1920, 1200, 75, 0 }, 720 { 1920, 1200, 85, 0 }, 721 { 1920, 1440, 60, 0 }, 722 { 1920, 1440, 75, 0 }, 723 }; 724 725 static const struct minimode extra_modes[] = { 726 { 1024, 576, 60, 0 }, 727 { 1366, 768, 60, 0 }, 728 { 1600, 900, 60, 0 }, 729 { 1680, 945, 60, 0 }, 730 { 1920, 1080, 60, 0 }, 731 { 2048, 1152, 60, 0 }, 732 { 2048, 1536, 60, 0 }, 733 }; 734 735 /* 736 * From CEA/CTA-861 spec. 737 * 738 * Do not access directly, instead always use cea_mode_for_vic(). 739 */ 740 static const struct drm_display_mode edid_cea_modes_1[] = { 741 /* 1 - 640x480@60Hz 4:3 */ 742 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 743 752, 800, 0, 480, 490, 492, 525, 0, 744 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 745 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 746 /* 2 - 720x480@60Hz 4:3 */ 747 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 748 798, 858, 0, 480, 489, 495, 525, 0, 749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 750 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 751 /* 3 - 720x480@60Hz 16:9 */ 752 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 753 798, 858, 0, 480, 489, 495, 525, 0, 754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 755 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 756 /* 4 - 1280x720@60Hz 16:9 */ 757 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 758 1430, 1650, 0, 720, 725, 730, 750, 0, 759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 761 /* 5 - 1920x1080i@60Hz 16:9 */ 762 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 763 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 765 DRM_MODE_FLAG_INTERLACE), 766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 767 /* 6 - 720(1440)x480i@60Hz 4:3 */ 768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 769 801, 858, 0, 480, 488, 494, 525, 0, 770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 773 /* 7 - 720(1440)x480i@60Hz 16:9 */ 774 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 775 801, 858, 0, 480, 488, 494, 525, 0, 776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 777 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 779 /* 8 - 720(1440)x240@60Hz 4:3 */ 780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 781 801, 858, 0, 240, 244, 247, 262, 0, 782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 783 DRM_MODE_FLAG_DBLCLK), 784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 785 /* 9 - 720(1440)x240@60Hz 16:9 */ 786 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 787 801, 858, 0, 240, 244, 247, 262, 0, 788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 789 DRM_MODE_FLAG_DBLCLK), 790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 791 /* 10 - 2880x480i@60Hz 4:3 */ 792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 793 3204, 3432, 0, 480, 488, 494, 525, 0, 794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 795 DRM_MODE_FLAG_INTERLACE), 796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 797 /* 11 - 2880x480i@60Hz 16:9 */ 798 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 799 3204, 3432, 0, 480, 488, 494, 525, 0, 800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 801 DRM_MODE_FLAG_INTERLACE), 802 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 803 /* 12 - 2880x240@60Hz 4:3 */ 804 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 805 3204, 3432, 0, 240, 244, 247, 262, 0, 806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 807 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 808 /* 13 - 2880x240@60Hz 16:9 */ 809 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 810 3204, 3432, 0, 240, 244, 247, 262, 0, 811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 812 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 813 /* 14 - 1440x480@60Hz 4:3 */ 814 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 815 1596, 1716, 0, 480, 489, 495, 525, 0, 816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 817 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 818 /* 15 - 1440x480@60Hz 16:9 */ 819 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 820 1596, 1716, 0, 480, 489, 495, 525, 0, 821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 822 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 823 /* 16 - 1920x1080@60Hz 16:9 */ 824 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 825 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 827 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 828 /* 17 - 720x576@50Hz 4:3 */ 829 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 830 796, 864, 0, 576, 581, 586, 625, 0, 831 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 832 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 833 /* 18 - 720x576@50Hz 16:9 */ 834 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 835 796, 864, 0, 576, 581, 586, 625, 0, 836 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 837 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 838 /* 19 - 1280x720@50Hz 16:9 */ 839 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 840 1760, 1980, 0, 720, 725, 730, 750, 0, 841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 843 /* 20 - 1920x1080i@50Hz 16:9 */ 844 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 845 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 846 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 847 DRM_MODE_FLAG_INTERLACE), 848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 849 /* 21 - 720(1440)x576i@50Hz 4:3 */ 850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 851 795, 864, 0, 576, 580, 586, 625, 0, 852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 855 /* 22 - 720(1440)x576i@50Hz 16:9 */ 856 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 857 795, 864, 0, 576, 580, 586, 625, 0, 858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 859 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 861 /* 23 - 720(1440)x288@50Hz 4:3 */ 862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 863 795, 864, 0, 288, 290, 293, 312, 0, 864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 865 DRM_MODE_FLAG_DBLCLK), 866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 867 /* 24 - 720(1440)x288@50Hz 16:9 */ 868 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 869 795, 864, 0, 288, 290, 293, 312, 0, 870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 871 DRM_MODE_FLAG_DBLCLK), 872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 873 /* 25 - 2880x576i@50Hz 4:3 */ 874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 875 3180, 3456, 0, 576, 580, 586, 625, 0, 876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 877 DRM_MODE_FLAG_INTERLACE), 878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 879 /* 26 - 2880x576i@50Hz 16:9 */ 880 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 881 3180, 3456, 0, 576, 580, 586, 625, 0, 882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 883 DRM_MODE_FLAG_INTERLACE), 884 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 885 /* 27 - 2880x288@50Hz 4:3 */ 886 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 887 3180, 3456, 0, 288, 290, 293, 312, 0, 888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 889 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 890 /* 28 - 2880x288@50Hz 16:9 */ 891 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 892 3180, 3456, 0, 288, 290, 293, 312, 0, 893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 894 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 895 /* 29 - 1440x576@50Hz 4:3 */ 896 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 897 1592, 1728, 0, 576, 581, 586, 625, 0, 898 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 899 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 900 /* 30 - 1440x576@50Hz 16:9 */ 901 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 902 1592, 1728, 0, 576, 581, 586, 625, 0, 903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 904 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 905 /* 31 - 1920x1080@50Hz 16:9 */ 906 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 907 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 908 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 909 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 910 /* 32 - 1920x1080@24Hz 16:9 */ 911 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 912 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 914 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 915 /* 33 - 1920x1080@25Hz 16:9 */ 916 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 917 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 918 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 919 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 920 /* 34 - 1920x1080@30Hz 16:9 */ 921 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 922 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 923 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 924 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 925 /* 35 - 2880x480@60Hz 4:3 */ 926 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 927 3192, 3432, 0, 480, 489, 495, 525, 0, 928 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 929 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 930 /* 36 - 2880x480@60Hz 16:9 */ 931 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 932 3192, 3432, 0, 480, 489, 495, 525, 0, 933 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 934 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 935 /* 37 - 2880x576@50Hz 4:3 */ 936 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 937 3184, 3456, 0, 576, 581, 586, 625, 0, 938 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 939 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 940 /* 38 - 2880x576@50Hz 16:9 */ 941 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 942 3184, 3456, 0, 576, 581, 586, 625, 0, 943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 945 /* 39 - 1920x1080i@50Hz 16:9 */ 946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 947 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, 948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | 949 DRM_MODE_FLAG_INTERLACE), 950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 951 /* 40 - 1920x1080i@100Hz 16:9 */ 952 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 953 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 955 DRM_MODE_FLAG_INTERLACE), 956 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 957 /* 41 - 1280x720@100Hz 16:9 */ 958 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 959 1760, 1980, 0, 720, 725, 730, 750, 0, 960 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 961 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 962 /* 42 - 720x576@100Hz 4:3 */ 963 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 964 796, 864, 0, 576, 581, 586, 625, 0, 965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 966 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 967 /* 43 - 720x576@100Hz 16:9 */ 968 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 969 796, 864, 0, 576, 581, 586, 625, 0, 970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 972 /* 44 - 720(1440)x576i@100Hz 4:3 */ 973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 974 795, 864, 0, 576, 580, 586, 625, 0, 975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 978 /* 45 - 720(1440)x576i@100Hz 16:9 */ 979 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 980 795, 864, 0, 576, 580, 586, 625, 0, 981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 984 /* 46 - 1920x1080i@120Hz 16:9 */ 985 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 986 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 988 DRM_MODE_FLAG_INTERLACE), 989 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 990 /* 47 - 1280x720@120Hz 16:9 */ 991 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 992 1430, 1650, 0, 720, 725, 730, 750, 0, 993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 994 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 995 /* 48 - 720x480@120Hz 4:3 */ 996 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 997 798, 858, 0, 480, 489, 495, 525, 0, 998 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 999 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1000 /* 49 - 720x480@120Hz 16:9 */ 1001 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 1002 798, 858, 0, 480, 489, 495, 525, 0, 1003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1005 /* 50 - 720(1440)x480i@120Hz 4:3 */ 1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 1007 801, 858, 0, 480, 488, 494, 525, 0, 1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1011 /* 51 - 720(1440)x480i@120Hz 16:9 */ 1012 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 1013 801, 858, 0, 480, 488, 494, 525, 0, 1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1015 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1016 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1017 /* 52 - 720x576@200Hz 4:3 */ 1018 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 1019 796, 864, 0, 576, 581, 586, 625, 0, 1020 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1021 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1022 /* 53 - 720x576@200Hz 16:9 */ 1023 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 1024 796, 864, 0, 576, 581, 586, 625, 0, 1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1027 /* 54 - 720(1440)x576i@200Hz 4:3 */ 1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 1029 795, 864, 0, 576, 580, 586, 625, 0, 1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1033 /* 55 - 720(1440)x576i@200Hz 16:9 */ 1034 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 1035 795, 864, 0, 576, 580, 586, 625, 0, 1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1037 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1038 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1039 /* 56 - 720x480@240Hz 4:3 */ 1040 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1041 798, 858, 0, 480, 489, 495, 525, 0, 1042 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1043 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1044 /* 57 - 720x480@240Hz 16:9 */ 1045 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1046 798, 858, 0, 480, 489, 495, 525, 0, 1047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1049 /* 58 - 720(1440)x480i@240Hz 4:3 */ 1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1051 801, 858, 0, 480, 488, 494, 525, 0, 1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1055 /* 59 - 720(1440)x480i@240Hz 16:9 */ 1056 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1057 801, 858, 0, 480, 488, 494, 525, 0, 1058 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1059 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1060 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1061 /* 60 - 1280x720@24Hz 16:9 */ 1062 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1063 3080, 3300, 0, 720, 725, 730, 750, 0, 1064 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1065 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1066 /* 61 - 1280x720@25Hz 16:9 */ 1067 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1068 3740, 3960, 0, 720, 725, 730, 750, 0, 1069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1070 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1071 /* 62 - 1280x720@30Hz 16:9 */ 1072 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1073 3080, 3300, 0, 720, 725, 730, 750, 0, 1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1075 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1076 /* 63 - 1920x1080@120Hz 16:9 */ 1077 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1078 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1080 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1081 /* 64 - 1920x1080@100Hz 16:9 */ 1082 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1083 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1084 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1085 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1086 /* 65 - 1280x720@24Hz 64:27 */ 1087 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1088 3080, 3300, 0, 720, 725, 730, 750, 0, 1089 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1090 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1091 /* 66 - 1280x720@25Hz 64:27 */ 1092 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1093 3740, 3960, 0, 720, 725, 730, 750, 0, 1094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1095 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1096 /* 67 - 1280x720@30Hz 64:27 */ 1097 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1098 3080, 3300, 0, 720, 725, 730, 750, 0, 1099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1100 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1101 /* 68 - 1280x720@50Hz 64:27 */ 1102 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1103 1760, 1980, 0, 720, 725, 730, 750, 0, 1104 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1105 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1106 /* 69 - 1280x720@60Hz 64:27 */ 1107 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1108 1430, 1650, 0, 720, 725, 730, 750, 0, 1109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1110 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1111 /* 70 - 1280x720@100Hz 64:27 */ 1112 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1113 1760, 1980, 0, 720, 725, 730, 750, 0, 1114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1115 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1116 /* 71 - 1280x720@120Hz 64:27 */ 1117 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1118 1430, 1650, 0, 720, 725, 730, 750, 0, 1119 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1120 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1121 /* 72 - 1920x1080@24Hz 64:27 */ 1122 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 1123 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1124 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1125 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1126 /* 73 - 1920x1080@25Hz 64:27 */ 1127 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 1128 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1130 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1131 /* 74 - 1920x1080@30Hz 64:27 */ 1132 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 1133 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1135 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1136 /* 75 - 1920x1080@50Hz 64:27 */ 1137 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 1138 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1140 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1141 /* 76 - 1920x1080@60Hz 64:27 */ 1142 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 1143 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1144 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1145 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1146 /* 77 - 1920x1080@100Hz 64:27 */ 1147 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1148 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1150 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1151 /* 78 - 1920x1080@120Hz 64:27 */ 1152 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1153 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1155 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1156 /* 79 - 1680x720@24Hz 64:27 */ 1157 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040, 1158 3080, 3300, 0, 720, 725, 730, 750, 0, 1159 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1160 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1161 /* 80 - 1680x720@25Hz 64:27 */ 1162 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908, 1163 2948, 3168, 0, 720, 725, 730, 750, 0, 1164 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1165 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1166 /* 81 - 1680x720@30Hz 64:27 */ 1167 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380, 1168 2420, 2640, 0, 720, 725, 730, 750, 0, 1169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1170 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1171 /* 82 - 1680x720@50Hz 64:27 */ 1172 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940, 1173 1980, 2200, 0, 720, 725, 730, 750, 0, 1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1175 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1176 /* 83 - 1680x720@60Hz 64:27 */ 1177 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940, 1178 1980, 2200, 0, 720, 725, 730, 750, 0, 1179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1180 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1181 /* 84 - 1680x720@100Hz 64:27 */ 1182 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740, 1183 1780, 2000, 0, 720, 725, 730, 825, 0, 1184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1185 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1186 /* 85 - 1680x720@120Hz 64:27 */ 1187 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740, 1188 1780, 2000, 0, 720, 725, 730, 825, 0, 1189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1190 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1191 /* 86 - 2560x1080@24Hz 64:27 */ 1192 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558, 1193 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, 1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1195 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1196 /* 87 - 2560x1080@25Hz 64:27 */ 1197 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008, 1198 3052, 3200, 0, 1080, 1084, 1089, 1125, 0, 1199 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1200 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1201 /* 88 - 2560x1080@30Hz 64:27 */ 1202 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328, 1203 3372, 3520, 0, 1080, 1084, 1089, 1125, 0, 1204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1205 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1206 /* 89 - 2560x1080@50Hz 64:27 */ 1207 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108, 1208 3152, 3300, 0, 1080, 1084, 1089, 1125, 0, 1209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1210 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1211 /* 90 - 2560x1080@60Hz 64:27 */ 1212 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808, 1213 2852, 3000, 0, 1080, 1084, 1089, 1100, 0, 1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1215 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1216 /* 91 - 2560x1080@100Hz 64:27 */ 1217 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778, 1218 2822, 2970, 0, 1080, 1084, 1089, 1250, 0, 1219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1220 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1221 /* 92 - 2560x1080@120Hz 64:27 */ 1222 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108, 1223 3152, 3300, 0, 1080, 1084, 1089, 1250, 0, 1224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1225 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1226 /* 93 - 3840x2160@24Hz 16:9 */ 1227 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1228 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1230 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1231 /* 94 - 3840x2160@25Hz 16:9 */ 1232 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1233 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1235 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1236 /* 95 - 3840x2160@30Hz 16:9 */ 1237 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1238 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1240 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1241 /* 96 - 3840x2160@50Hz 16:9 */ 1242 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1243 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1245 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1246 /* 97 - 3840x2160@60Hz 16:9 */ 1247 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1248 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1250 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1251 /* 98 - 4096x2160@24Hz 256:135 */ 1252 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 1253 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1255 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1256 /* 99 - 4096x2160@25Hz 256:135 */ 1257 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064, 1258 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1260 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1261 /* 100 - 4096x2160@30Hz 256:135 */ 1262 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184, 1263 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1265 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1266 /* 101 - 4096x2160@50Hz 256:135 */ 1267 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064, 1268 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1270 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1271 /* 102 - 4096x2160@60Hz 256:135 */ 1272 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184, 1273 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1275 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1276 /* 103 - 3840x2160@24Hz 64:27 */ 1277 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1278 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1280 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1281 /* 104 - 3840x2160@25Hz 64:27 */ 1282 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1283 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1285 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1286 /* 105 - 3840x2160@30Hz 64:27 */ 1287 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1288 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1290 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1291 /* 106 - 3840x2160@50Hz 64:27 */ 1292 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1293 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1295 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1296 /* 107 - 3840x2160@60Hz 64:27 */ 1297 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1298 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1300 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1301 /* 108 - 1280x720@48Hz 16:9 */ 1302 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 1303 2280, 2500, 0, 720, 725, 730, 750, 0, 1304 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1305 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1306 /* 109 - 1280x720@48Hz 64:27 */ 1307 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 1308 2280, 2500, 0, 720, 725, 730, 750, 0, 1309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1310 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1311 /* 110 - 1680x720@48Hz 64:27 */ 1312 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490, 1313 2530, 2750, 0, 720, 725, 730, 750, 0, 1314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1315 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1316 /* 111 - 1920x1080@48Hz 16:9 */ 1317 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 1318 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1320 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1321 /* 112 - 1920x1080@48Hz 64:27 */ 1322 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 1323 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1325 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1326 /* 113 - 2560x1080@48Hz 64:27 */ 1327 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558, 1328 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, 1329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1330 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1331 /* 114 - 3840x2160@48Hz 16:9 */ 1332 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 1333 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1335 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1336 /* 115 - 4096x2160@48Hz 256:135 */ 1337 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116, 1338 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1340 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1341 /* 116 - 3840x2160@48Hz 64:27 */ 1342 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 1343 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1344 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1345 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1346 /* 117 - 3840x2160@100Hz 16:9 */ 1347 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 1348 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1350 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1351 /* 118 - 3840x2160@120Hz 16:9 */ 1352 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 1353 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1355 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1356 /* 119 - 3840x2160@100Hz 64:27 */ 1357 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 1358 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1360 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1361 /* 120 - 3840x2160@120Hz 64:27 */ 1362 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 1363 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1365 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1366 /* 121 - 5120x2160@24Hz 64:27 */ 1367 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116, 1368 7204, 7500, 0, 2160, 2168, 2178, 2200, 0, 1369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1370 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1371 /* 122 - 5120x2160@25Hz 64:27 */ 1372 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816, 1373 6904, 7200, 0, 2160, 2168, 2178, 2200, 0, 1374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1375 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1376 /* 123 - 5120x2160@30Hz 64:27 */ 1377 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784, 1378 5872, 6000, 0, 2160, 2168, 2178, 2200, 0, 1379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1380 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1381 /* 124 - 5120x2160@48Hz 64:27 */ 1382 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866, 1383 5954, 6250, 0, 2160, 2168, 2178, 2475, 0, 1384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1385 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1386 /* 125 - 5120x2160@50Hz 64:27 */ 1387 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216, 1388 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, 1389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1390 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1391 /* 126 - 5120x2160@60Hz 64:27 */ 1392 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284, 1393 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, 1394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1395 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1396 /* 127 - 5120x2160@100Hz 64:27 */ 1397 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216, 1398 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, 1399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1400 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1401 }; 1402 1403 /* 1404 * From CEA/CTA-861 spec. 1405 * 1406 * Do not access directly, instead always use cea_mode_for_vic(). 1407 */ 1408 static const struct drm_display_mode edid_cea_modes_193[] = { 1409 /* 193 - 5120x2160@120Hz 64:27 */ 1410 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284, 1411 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, 1412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1413 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1414 /* 194 - 7680x4320@24Hz 16:9 */ 1415 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 1416 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1418 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1419 /* 195 - 7680x4320@25Hz 16:9 */ 1420 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 1421 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1422 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1423 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1424 /* 196 - 7680x4320@30Hz 16:9 */ 1425 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 1426 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1428 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1429 /* 197 - 7680x4320@48Hz 16:9 */ 1430 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 1431 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1433 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1434 /* 198 - 7680x4320@50Hz 16:9 */ 1435 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 1436 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1438 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1439 /* 199 - 7680x4320@60Hz 16:9 */ 1440 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 1441 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1443 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1444 /* 200 - 7680x4320@100Hz 16:9 */ 1445 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 1446 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, 1447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1448 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1449 /* 201 - 7680x4320@120Hz 16:9 */ 1450 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 1451 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, 1452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1453 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1454 /* 202 - 7680x4320@24Hz 64:27 */ 1455 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 1456 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1458 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1459 /* 203 - 7680x4320@25Hz 64:27 */ 1460 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 1461 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1462 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1463 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1464 /* 204 - 7680x4320@30Hz 64:27 */ 1465 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 1466 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1468 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1469 /* 205 - 7680x4320@48Hz 64:27 */ 1470 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 1471 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1473 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1474 /* 206 - 7680x4320@50Hz 64:27 */ 1475 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 1476 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1478 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1479 /* 207 - 7680x4320@60Hz 64:27 */ 1480 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 1481 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1483 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1484 /* 208 - 7680x4320@100Hz 64:27 */ 1485 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 1486 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, 1487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1488 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1489 /* 209 - 7680x4320@120Hz 64:27 */ 1490 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 1491 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, 1492 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1493 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1494 /* 210 - 10240x4320@24Hz 64:27 */ 1495 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732, 1496 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, 1497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1498 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1499 /* 211 - 10240x4320@25Hz 64:27 */ 1500 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732, 1501 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, 1502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1503 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1504 /* 212 - 10240x4320@30Hz 64:27 */ 1505 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528, 1506 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1508 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1509 /* 213 - 10240x4320@48Hz 64:27 */ 1510 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732, 1511 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, 1512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1513 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1514 /* 214 - 10240x4320@50Hz 64:27 */ 1515 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732, 1516 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, 1517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1518 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1519 /* 215 - 10240x4320@60Hz 64:27 */ 1520 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528, 1521 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1522 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1523 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1524 /* 216 - 10240x4320@100Hz 64:27 */ 1525 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432, 1526 12608, 13200, 0, 4320, 4336, 4356, 4500, 0, 1527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1528 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1529 /* 217 - 10240x4320@120Hz 64:27 */ 1530 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528, 1531 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1533 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1534 /* 218 - 4096x2160@100Hz 256:135 */ 1535 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896, 1536 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1538 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1539 /* 219 - 4096x2160@120Hz 256:135 */ 1540 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184, 1541 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1542 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1543 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1544 }; 1545 1546 /* 1547 * HDMI 1.4 4k modes. Index using the VIC. 1548 */ 1549 static const struct drm_display_mode edid_4k_modes[] = { 1550 /* 0 - dummy, VICs start at 1 */ 1551 { }, 1552 /* 1 - 3840x2160@30Hz */ 1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1554 3840, 4016, 4104, 4400, 0, 1555 2160, 2168, 2178, 2250, 0, 1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1558 /* 2 - 3840x2160@25Hz */ 1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1560 3840, 4896, 4984, 5280, 0, 1561 2160, 2168, 2178, 2250, 0, 1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1564 /* 3 - 3840x2160@24Hz */ 1565 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1566 3840, 5116, 5204, 5500, 0, 1567 2160, 2168, 2178, 2250, 0, 1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1570 /* 4 - 4096x2160@24Hz (SMPTE) */ 1571 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 1572 4096, 5116, 5204, 5500, 0, 1573 2160, 2168, 2178, 2250, 0, 1574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1575 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1576 }; 1577 1578 /*** DDC fetch and block validation ***/ 1579 1580 /* 1581 * The opaque EDID type, internal to drm_edid.c. 1582 */ 1583 struct drm_edid { 1584 /* Size allocated for edid */ 1585 size_t size; 1586 const struct edid *edid; 1587 }; 1588 1589 static int edid_hfeeodb_extension_block_count(const struct edid *edid); 1590 1591 static int edid_hfeeodb_block_count(const struct edid *edid) 1592 { 1593 int eeodb = edid_hfeeodb_extension_block_count(edid); 1594 1595 return eeodb ? eeodb + 1 : 0; 1596 } 1597 1598 static int edid_extension_block_count(const struct edid *edid) 1599 { 1600 return edid->extensions; 1601 } 1602 1603 static int edid_block_count(const struct edid *edid) 1604 { 1605 return edid_extension_block_count(edid) + 1; 1606 } 1607 1608 static int edid_size_by_blocks(int num_blocks) 1609 { 1610 return num_blocks * EDID_LENGTH; 1611 } 1612 1613 static int edid_size(const struct edid *edid) 1614 { 1615 return edid_size_by_blocks(edid_block_count(edid)); 1616 } 1617 1618 static const void *edid_block_data(const struct edid *edid, int index) 1619 { 1620 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH); 1621 1622 return edid + index; 1623 } 1624 1625 static const void *edid_extension_block_data(const struct edid *edid, int index) 1626 { 1627 return edid_block_data(edid, index + 1); 1628 } 1629 1630 /* EDID block count indicated in EDID, may exceed allocated size */ 1631 static int __drm_edid_block_count(const struct drm_edid *drm_edid) 1632 { 1633 int num_blocks; 1634 1635 /* Starting point */ 1636 num_blocks = edid_block_count(drm_edid->edid); 1637 1638 /* HF-EEODB override */ 1639 if (drm_edid->size >= edid_size_by_blocks(2)) { 1640 int eeodb; 1641 1642 /* 1643 * Note: HF-EEODB may specify a smaller extension count than the 1644 * regular one. Unlike in buffer allocation, here we can use it. 1645 */ 1646 eeodb = edid_hfeeodb_block_count(drm_edid->edid); 1647 if (eeodb) 1648 num_blocks = eeodb; 1649 } 1650 1651 return num_blocks; 1652 } 1653 1654 /* EDID block count, limited by allocated size */ 1655 static int drm_edid_block_count(const struct drm_edid *drm_edid) 1656 { 1657 /* Limit by allocated size */ 1658 return min(__drm_edid_block_count(drm_edid), 1659 (int)drm_edid->size / EDID_LENGTH); 1660 } 1661 1662 /* EDID extension block count, limited by allocated size */ 1663 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid) 1664 { 1665 return drm_edid_block_count(drm_edid) - 1; 1666 } 1667 1668 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index) 1669 { 1670 return edid_block_data(drm_edid->edid, index); 1671 } 1672 1673 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid, 1674 int index) 1675 { 1676 return edid_extension_block_data(drm_edid->edid, index); 1677 } 1678 1679 /* 1680 * Initializer helper for legacy interfaces, where we have no choice but to 1681 * trust edid size. Not for general purpose use. 1682 */ 1683 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid, 1684 const struct edid *edid) 1685 { 1686 if (!edid) 1687 return NULL; 1688 1689 memset(drm_edid, 0, sizeof(*drm_edid)); 1690 1691 drm_edid->edid = edid; 1692 drm_edid->size = edid_size(edid); 1693 1694 return drm_edid; 1695 } 1696 1697 /* 1698 * EDID base and extension block iterator. 1699 * 1700 * struct drm_edid_iter iter; 1701 * const u8 *block; 1702 * 1703 * drm_edid_iter_begin(drm_edid, &iter); 1704 * drm_edid_iter_for_each(block, &iter) { 1705 * // do stuff with block 1706 * } 1707 * drm_edid_iter_end(&iter); 1708 */ 1709 struct drm_edid_iter { 1710 const struct drm_edid *drm_edid; 1711 1712 /* Current block index. */ 1713 int index; 1714 }; 1715 1716 static void drm_edid_iter_begin(const struct drm_edid *drm_edid, 1717 struct drm_edid_iter *iter) 1718 { 1719 memset(iter, 0, sizeof(*iter)); 1720 1721 iter->drm_edid = drm_edid; 1722 } 1723 1724 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter) 1725 { 1726 const void *block = NULL; 1727 1728 if (!iter->drm_edid) 1729 return NULL; 1730 1731 if (iter->index < drm_edid_block_count(iter->drm_edid)) 1732 block = drm_edid_block_data(iter->drm_edid, iter->index++); 1733 1734 return block; 1735 } 1736 1737 #define drm_edid_iter_for_each(__block, __iter) \ 1738 while (((__block) = __drm_edid_iter_next(__iter))) 1739 1740 static void drm_edid_iter_end(struct drm_edid_iter *iter) 1741 { 1742 memset(iter, 0, sizeof(*iter)); 1743 } 1744 1745 static const u8 edid_header[] = { 1746 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 1747 }; 1748 1749 static void edid_header_fix(void *edid) 1750 { 1751 memcpy(edid, edid_header, sizeof(edid_header)); 1752 } 1753 1754 /** 1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block 1756 * @_edid: pointer to raw base EDID block 1757 * 1758 * Sanity check the header of the base EDID block. 1759 * 1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong. 1761 */ 1762 int drm_edid_header_is_valid(const void *_edid) 1763 { 1764 const struct edid *edid = _edid; 1765 int i, score = 0; 1766 1767 for (i = 0; i < sizeof(edid_header); i++) { 1768 if (edid->header[i] == edid_header[i]) 1769 score++; 1770 } 1771 1772 return score; 1773 } 1774 EXPORT_SYMBOL(drm_edid_header_is_valid); 1775 1776 static int edid_fixup __read_mostly = 6; 1777 module_param_named(edid_fixup, edid_fixup, int, 0400); 1778 MODULE_PARM_DESC(edid_fixup, 1779 "Minimum number of valid EDID header bytes (0-8, default 6)"); 1780 1781 static int edid_block_compute_checksum(const void *_block) 1782 { 1783 const u8 *block = _block; 1784 int i; 1785 u8 csum = 0, crc = 0; 1786 1787 for (i = 0; i < EDID_LENGTH - 1; i++) 1788 csum += block[i]; 1789 1790 crc = 0x100 - csum; 1791 1792 return crc; 1793 } 1794 1795 static int edid_block_get_checksum(const void *_block) 1796 { 1797 const struct edid *block = _block; 1798 1799 return block->checksum; 1800 } 1801 1802 static int edid_block_tag(const void *_block) 1803 { 1804 const u8 *block = _block; 1805 1806 return block[0]; 1807 } 1808 1809 static bool edid_block_is_zero(const void *edid) 1810 { 1811 return !memchr_inv(edid, 0, EDID_LENGTH); 1812 } 1813 1814 /** 1815 * drm_edid_are_equal - compare two edid blobs. 1816 * @edid1: pointer to first blob 1817 * @edid2: pointer to second blob 1818 * This helper can be used during probing to determine if 1819 * edid had changed. 1820 */ 1821 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2) 1822 { 1823 int edid1_len, edid2_len; 1824 bool edid1_present = edid1 != NULL; 1825 bool edid2_present = edid2 != NULL; 1826 1827 if (edid1_present != edid2_present) 1828 return false; 1829 1830 if (edid1) { 1831 edid1_len = edid_size(edid1); 1832 edid2_len = edid_size(edid2); 1833 1834 if (edid1_len != edid2_len) 1835 return false; 1836 1837 if (memcmp(edid1, edid2, edid1_len)) 1838 return false; 1839 } 1840 1841 return true; 1842 } 1843 EXPORT_SYMBOL(drm_edid_are_equal); 1844 1845 enum edid_block_status { 1846 EDID_BLOCK_OK = 0, 1847 EDID_BLOCK_READ_FAIL, 1848 EDID_BLOCK_NULL, 1849 EDID_BLOCK_ZERO, 1850 EDID_BLOCK_HEADER_CORRUPT, 1851 EDID_BLOCK_HEADER_REPAIR, 1852 EDID_BLOCK_HEADER_FIXED, 1853 EDID_BLOCK_CHECKSUM, 1854 EDID_BLOCK_VERSION, 1855 }; 1856 1857 static enum edid_block_status edid_block_check(const void *_block, 1858 bool is_base_block) 1859 { 1860 const struct edid *block = _block; 1861 1862 if (!block) 1863 return EDID_BLOCK_NULL; 1864 1865 if (is_base_block) { 1866 int score = drm_edid_header_is_valid(block); 1867 1868 if (score < clamp(edid_fixup, 0, 8)) { 1869 if (edid_block_is_zero(block)) 1870 return EDID_BLOCK_ZERO; 1871 else 1872 return EDID_BLOCK_HEADER_CORRUPT; 1873 } 1874 1875 if (score < 8) 1876 return EDID_BLOCK_HEADER_REPAIR; 1877 } 1878 1879 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) { 1880 if (edid_block_is_zero(block)) 1881 return EDID_BLOCK_ZERO; 1882 else 1883 return EDID_BLOCK_CHECKSUM; 1884 } 1885 1886 if (is_base_block) { 1887 if (block->version != 1) 1888 return EDID_BLOCK_VERSION; 1889 } 1890 1891 return EDID_BLOCK_OK; 1892 } 1893 1894 static bool edid_block_status_valid(enum edid_block_status status, int tag) 1895 { 1896 return status == EDID_BLOCK_OK || 1897 status == EDID_BLOCK_HEADER_FIXED || 1898 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT); 1899 } 1900 1901 static bool edid_block_valid(const void *block, bool base) 1902 { 1903 return edid_block_status_valid(edid_block_check(block, base), 1904 edid_block_tag(block)); 1905 } 1906 1907 static void edid_block_status_print(enum edid_block_status status, 1908 const struct edid *block, 1909 int block_num) 1910 { 1911 switch (status) { 1912 case EDID_BLOCK_OK: 1913 break; 1914 case EDID_BLOCK_READ_FAIL: 1915 pr_debug("EDID block %d read failed\n", block_num); 1916 break; 1917 case EDID_BLOCK_NULL: 1918 pr_debug("EDID block %d pointer is NULL\n", block_num); 1919 break; 1920 case EDID_BLOCK_ZERO: 1921 pr_notice("EDID block %d is all zeroes\n", block_num); 1922 break; 1923 case EDID_BLOCK_HEADER_CORRUPT: 1924 pr_notice("EDID has corrupt header\n"); 1925 break; 1926 case EDID_BLOCK_HEADER_REPAIR: 1927 pr_debug("EDID corrupt header needs repair\n"); 1928 break; 1929 case EDID_BLOCK_HEADER_FIXED: 1930 pr_debug("EDID corrupt header fixed\n"); 1931 break; 1932 case EDID_BLOCK_CHECKSUM: 1933 if (edid_block_status_valid(status, edid_block_tag(block))) { 1934 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n", 1935 block_num, edid_block_tag(block), 1936 edid_block_compute_checksum(block)); 1937 } else { 1938 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n", 1939 block_num, edid_block_tag(block), 1940 edid_block_compute_checksum(block)); 1941 } 1942 break; 1943 case EDID_BLOCK_VERSION: 1944 pr_notice("EDID has major version %d, instead of 1\n", 1945 block->version); 1946 break; 1947 default: 1948 WARN(1, "EDID block %d unknown edid block status code %d\n", 1949 block_num, status); 1950 break; 1951 } 1952 } 1953 1954 static void edid_block_dump(const char *level, const void *block, int block_num) 1955 { 1956 enum edid_block_status status; 1957 char prefix[20]; 1958 1959 status = edid_block_check(block, block_num == 0); 1960 if (status == EDID_BLOCK_ZERO) 1961 sprintf(prefix, "\t[%02x] ZERO ", block_num); 1962 else if (!edid_block_status_valid(status, edid_block_tag(block))) 1963 sprintf(prefix, "\t[%02x] BAD ", block_num); 1964 else 1965 sprintf(prefix, "\t[%02x] GOOD ", block_num); 1966 1967 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1, 1968 block, EDID_LENGTH, false); 1969 } 1970 1971 /** 1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension) 1973 * @_block: pointer to raw EDID block 1974 * @block_num: type of block to validate (0 for base, extension otherwise) 1975 * @print_bad_edid: if true, dump bad EDID blocks to the console 1976 * @edid_corrupt: if true, the header or checksum is invalid 1977 * 1978 * Validate a base or extension EDID block and optionally dump bad blocks to 1979 * the console. 1980 * 1981 * Return: True if the block is valid, false otherwise. 1982 */ 1983 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid, 1984 bool *edid_corrupt) 1985 { 1986 struct edid *block = (struct edid *)_block; 1987 enum edid_block_status status; 1988 bool is_base_block = block_num == 0; 1989 bool valid; 1990 1991 if (WARN_ON(!block)) 1992 return false; 1993 1994 status = edid_block_check(block, is_base_block); 1995 if (status == EDID_BLOCK_HEADER_REPAIR) { 1996 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n"); 1997 edid_header_fix(block); 1998 1999 /* Retry with fixed header, update status if that worked. */ 2000 status = edid_block_check(block, is_base_block); 2001 if (status == EDID_BLOCK_OK) 2002 status = EDID_BLOCK_HEADER_FIXED; 2003 } 2004 2005 if (edid_corrupt) { 2006 /* 2007 * Unknown major version isn't corrupt but we can't use it. Only 2008 * the base block can reset edid_corrupt to false. 2009 */ 2010 if (is_base_block && 2011 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)) 2012 *edid_corrupt = false; 2013 else if (status != EDID_BLOCK_OK) 2014 *edid_corrupt = true; 2015 } 2016 2017 edid_block_status_print(status, block, block_num); 2018 2019 /* Determine whether we can use this block with this status. */ 2020 valid = edid_block_status_valid(status, edid_block_tag(block)); 2021 2022 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) { 2023 pr_notice("Raw EDID:\n"); 2024 edid_block_dump(KERN_NOTICE, block, block_num); 2025 } 2026 2027 return valid; 2028 } 2029 EXPORT_SYMBOL(drm_edid_block_valid); 2030 2031 /** 2032 * drm_edid_is_valid - sanity check EDID data 2033 * @edid: EDID data 2034 * 2035 * Sanity-check an entire EDID record (including extensions) 2036 * 2037 * Return: True if the EDID data is valid, false otherwise. 2038 */ 2039 bool drm_edid_is_valid(struct edid *edid) 2040 { 2041 int i; 2042 2043 if (!edid) 2044 return false; 2045 2046 for (i = 0; i < edid_block_count(edid); i++) { 2047 void *block = (void *)edid_block_data(edid, i); 2048 2049 if (!drm_edid_block_valid(block, i, true, NULL)) 2050 return false; 2051 } 2052 2053 return true; 2054 } 2055 EXPORT_SYMBOL(drm_edid_is_valid); 2056 2057 /** 2058 * drm_edid_valid - sanity check EDID data 2059 * @drm_edid: EDID data 2060 * 2061 * Sanity check an EDID. Cross check block count against allocated size and 2062 * checksum the blocks. 2063 * 2064 * Return: True if the EDID data is valid, false otherwise. 2065 */ 2066 bool drm_edid_valid(const struct drm_edid *drm_edid) 2067 { 2068 int i; 2069 2070 if (!drm_edid) 2071 return false; 2072 2073 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size) 2074 return false; 2075 2076 for (i = 0; i < drm_edid_block_count(drm_edid); i++) { 2077 const void *block = drm_edid_block_data(drm_edid, i); 2078 2079 if (!edid_block_valid(block, i == 0)) 2080 return false; 2081 } 2082 2083 return true; 2084 } 2085 EXPORT_SYMBOL(drm_edid_valid); 2086 2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid, 2088 size_t *alloc_size) 2089 { 2090 struct edid *new; 2091 int i, valid_blocks = 0; 2092 2093 /* 2094 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert 2095 * back to regular extension count here. We don't want to start 2096 * modifying the HF-EEODB extension too. 2097 */ 2098 for (i = 0; i < edid_block_count(edid); i++) { 2099 const void *src_block = edid_block_data(edid, i); 2100 2101 if (edid_block_valid(src_block, i == 0)) { 2102 void *dst_block = (void *)edid_block_data(edid, valid_blocks); 2103 2104 memmove(dst_block, src_block, EDID_LENGTH); 2105 valid_blocks++; 2106 } 2107 } 2108 2109 /* We already trusted the base block to be valid here... */ 2110 if (WARN_ON(!valid_blocks)) { 2111 kfree(edid); 2112 return NULL; 2113 } 2114 2115 edid->extensions = valid_blocks - 1; 2116 edid->checksum = edid_block_compute_checksum(edid); 2117 2118 *alloc_size = edid_size_by_blocks(valid_blocks); 2119 2120 new = krealloc(edid, *alloc_size, GFP_KERNEL); 2121 if (!new) 2122 kfree(edid); 2123 2124 return new; 2125 } 2126 2127 #define DDC_SEGMENT_ADDR 0x30 2128 /** 2129 * drm_do_probe_ddc_edid() - get EDID information via I2C 2130 * @data: I2C device adapter 2131 * @buf: EDID data buffer to be filled 2132 * @block: 128 byte EDID block to start fetching from 2133 * @len: EDID data buffer length to fetch 2134 * 2135 * Try to fetch EDID information by calling I2C driver functions. 2136 * 2137 * Return: 0 on success or -1 on failure. 2138 */ 2139 static int 2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len) 2141 { 2142 struct i2c_adapter *adapter = data; 2143 unsigned char start = block * EDID_LENGTH; 2144 unsigned char segment = block >> 1; 2145 unsigned char xfers = segment ? 3 : 2; 2146 int ret, retries = 5; 2147 2148 /* 2149 * The core I2C driver will automatically retry the transfer if the 2150 * adapter reports EAGAIN. However, we find that bit-banging transfers 2151 * are susceptible to errors under a heavily loaded machine and 2152 * generate spurious NAKs and timeouts. Retrying the transfer 2153 * of the individual block a few times seems to overcome this. 2154 */ 2155 do { 2156 struct i2c_msg msgs[] = { 2157 { 2158 .addr = DDC_SEGMENT_ADDR, 2159 .flags = 0, 2160 .len = 1, 2161 .buf = &segment, 2162 }, { 2163 .addr = DDC_ADDR, 2164 .flags = 0, 2165 .len = 1, 2166 .buf = &start, 2167 }, { 2168 .addr = DDC_ADDR, 2169 .flags = I2C_M_RD, 2170 .len = len, 2171 .buf = buf, 2172 } 2173 }; 2174 2175 /* 2176 * Avoid sending the segment addr to not upset non-compliant 2177 * DDC monitors. 2178 */ 2179 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); 2180 2181 if (ret == -ENXIO) { 2182 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", 2183 adapter->name); 2184 break; 2185 } 2186 } while (ret != xfers && --retries); 2187 2188 return ret == xfers ? 0 : -1; 2189 } 2190 2191 static void connector_bad_edid(struct drm_connector *connector, 2192 const struct edid *edid, int num_blocks) 2193 { 2194 int i; 2195 u8 last_block; 2196 2197 /* 2198 * 0x7e in the EDID is the number of extension blocks. The EDID 2199 * is 1 (base block) + num_ext_blocks big. That means we can think 2200 * of 0x7e in the EDID of the _index_ of the last block in the 2201 * combined chunk of memory. 2202 */ 2203 last_block = edid->extensions; 2204 2205 /* Calculate real checksum for the last edid extension block data */ 2206 if (last_block < num_blocks) 2207 connector->real_edid_checksum = 2208 edid_block_compute_checksum(edid + last_block); 2209 2210 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS)) 2211 return; 2212 2213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n", 2214 connector->base.id, connector->name); 2215 for (i = 0; i < num_blocks; i++) 2216 edid_block_dump(KERN_DEBUG, edid + i, i); 2217 } 2218 2219 /* Get override or firmware EDID */ 2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector) 2221 { 2222 const struct drm_edid *override = NULL; 2223 2224 mutex_lock(&connector->edid_override_mutex); 2225 2226 if (connector->edid_override) 2227 override = drm_edid_dup(connector->edid_override); 2228 2229 mutex_unlock(&connector->edid_override_mutex); 2230 2231 if (!override) 2232 override = drm_edid_load_firmware(connector); 2233 2234 return IS_ERR(override) ? NULL : override; 2235 } 2236 2237 /* For debugfs edid_override implementation */ 2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m) 2239 { 2240 const struct drm_edid *drm_edid; 2241 2242 mutex_lock(&connector->edid_override_mutex); 2243 2244 drm_edid = connector->edid_override; 2245 if (drm_edid) 2246 seq_write(m, drm_edid->edid, drm_edid->size); 2247 2248 mutex_unlock(&connector->edid_override_mutex); 2249 2250 return 0; 2251 } 2252 2253 /* For debugfs edid_override implementation */ 2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid, 2255 size_t size) 2256 { 2257 const struct drm_edid *drm_edid; 2258 2259 drm_edid = drm_edid_alloc(edid, size); 2260 if (!drm_edid_valid(drm_edid)) { 2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n", 2262 connector->base.id, connector->name); 2263 drm_edid_free(drm_edid); 2264 return -EINVAL; 2265 } 2266 2267 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n", 2268 connector->base.id, connector->name); 2269 2270 mutex_lock(&connector->edid_override_mutex); 2271 2272 drm_edid_free(connector->edid_override); 2273 connector->edid_override = drm_edid; 2274 2275 mutex_unlock(&connector->edid_override_mutex); 2276 2277 return 0; 2278 } 2279 2280 /* For debugfs edid_override implementation */ 2281 int drm_edid_override_reset(struct drm_connector *connector) 2282 { 2283 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n", 2284 connector->base.id, connector->name); 2285 2286 mutex_lock(&connector->edid_override_mutex); 2287 2288 drm_edid_free(connector->edid_override); 2289 connector->edid_override = NULL; 2290 2291 mutex_unlock(&connector->edid_override_mutex); 2292 2293 return 0; 2294 } 2295 2296 /** 2297 * drm_edid_override_connector_update - add modes from override/firmware EDID 2298 * @connector: connector we're probing 2299 * 2300 * Add modes from the override/firmware EDID, if available. Only to be used from 2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe 2302 * failed during drm_get_edid() and caused the override/firmware EDID to be 2303 * skipped. 2304 * 2305 * Return: The number of modes added or 0 if we couldn't find any. 2306 */ 2307 int drm_edid_override_connector_update(struct drm_connector *connector) 2308 { 2309 const struct drm_edid *override; 2310 int num_modes = 0; 2311 2312 override = drm_edid_override_get(connector); 2313 if (override) { 2314 if (drm_edid_connector_update(connector, override) == 0) 2315 num_modes = drm_edid_connector_add_modes(connector); 2316 2317 drm_edid_free(override); 2318 2319 drm_dbg_kms(connector->dev, 2320 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n", 2321 connector->base.id, connector->name, num_modes); 2322 } 2323 2324 return num_modes; 2325 } 2326 EXPORT_SYMBOL(drm_edid_override_connector_update); 2327 2328 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len); 2329 2330 static enum edid_block_status edid_block_read(void *block, unsigned int block_num, 2331 read_block_fn read_block, 2332 void *context) 2333 { 2334 enum edid_block_status status; 2335 bool is_base_block = block_num == 0; 2336 int try; 2337 2338 for (try = 0; try < 4; try++) { 2339 if (read_block(context, block, block_num, EDID_LENGTH)) 2340 return EDID_BLOCK_READ_FAIL; 2341 2342 status = edid_block_check(block, is_base_block); 2343 if (status == EDID_BLOCK_HEADER_REPAIR) { 2344 edid_header_fix(block); 2345 2346 /* Retry with fixed header, update status if that worked. */ 2347 status = edid_block_check(block, is_base_block); 2348 if (status == EDID_BLOCK_OK) 2349 status = EDID_BLOCK_HEADER_FIXED; 2350 } 2351 2352 if (edid_block_status_valid(status, edid_block_tag(block))) 2353 break; 2354 2355 /* Fail early for unrepairable base block all zeros. */ 2356 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO) 2357 break; 2358 } 2359 2360 return status; 2361 } 2362 2363 static struct edid *_drm_do_get_edid(struct drm_connector *connector, 2364 read_block_fn read_block, void *context, 2365 size_t *size) 2366 { 2367 enum edid_block_status status; 2368 int i, num_blocks, invalid_blocks = 0; 2369 const struct drm_edid *override; 2370 struct edid *edid, *new; 2371 size_t alloc_size = EDID_LENGTH; 2372 2373 override = drm_edid_override_get(connector); 2374 if (override) { 2375 alloc_size = override->size; 2376 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL); 2377 drm_edid_free(override); 2378 if (!edid) 2379 return NULL; 2380 goto ok; 2381 } 2382 2383 edid = kmalloc(alloc_size, GFP_KERNEL); 2384 if (!edid) 2385 return NULL; 2386 2387 status = edid_block_read(edid, 0, read_block, context); 2388 2389 edid_block_status_print(status, edid, 0); 2390 2391 if (status == EDID_BLOCK_READ_FAIL) 2392 goto fail; 2393 2394 /* FIXME: Clarify what a corrupt EDID actually means. */ 2395 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION) 2396 connector->edid_corrupt = false; 2397 else 2398 connector->edid_corrupt = true; 2399 2400 if (!edid_block_status_valid(status, edid_block_tag(edid))) { 2401 if (status == EDID_BLOCK_ZERO) 2402 connector->null_edid_counter++; 2403 2404 connector_bad_edid(connector, edid, 1); 2405 goto fail; 2406 } 2407 2408 if (!edid_extension_block_count(edid)) 2409 goto ok; 2410 2411 alloc_size = edid_size(edid); 2412 new = krealloc(edid, alloc_size, GFP_KERNEL); 2413 if (!new) 2414 goto fail; 2415 edid = new; 2416 2417 num_blocks = edid_block_count(edid); 2418 for (i = 1; i < num_blocks; i++) { 2419 void *block = (void *)edid_block_data(edid, i); 2420 2421 status = edid_block_read(block, i, read_block, context); 2422 2423 edid_block_status_print(status, block, i); 2424 2425 if (!edid_block_status_valid(status, edid_block_tag(block))) { 2426 if (status == EDID_BLOCK_READ_FAIL) 2427 goto fail; 2428 invalid_blocks++; 2429 } else if (i == 1) { 2430 /* 2431 * If the first EDID extension is a CTA extension, and 2432 * the first Data Block is HF-EEODB, override the 2433 * extension block count. 2434 * 2435 * Note: HF-EEODB could specify a smaller extension 2436 * count too, but we can't risk allocating a smaller 2437 * amount. 2438 */ 2439 int eeodb = edid_hfeeodb_block_count(edid); 2440 2441 if (eeodb > num_blocks) { 2442 num_blocks = eeodb; 2443 alloc_size = edid_size_by_blocks(num_blocks); 2444 new = krealloc(edid, alloc_size, GFP_KERNEL); 2445 if (!new) 2446 goto fail; 2447 edid = new; 2448 } 2449 } 2450 } 2451 2452 if (invalid_blocks) { 2453 connector_bad_edid(connector, edid, num_blocks); 2454 2455 edid = edid_filter_invalid_blocks(edid, &alloc_size); 2456 } 2457 2458 ok: 2459 if (size) 2460 *size = alloc_size; 2461 2462 return edid; 2463 2464 fail: 2465 kfree(edid); 2466 return NULL; 2467 } 2468 2469 /** 2470 * drm_do_get_edid - get EDID data using a custom EDID block read function 2471 * @connector: connector we're probing 2472 * @read_block: EDID block read function 2473 * @context: private data passed to the block read function 2474 * 2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that 2476 * exposes a different interface to read EDID blocks this function can be used 2477 * to get EDID data using a custom block read function. 2478 * 2479 * As in the general case the DDC bus is accessible by the kernel at the I2C 2480 * level, drivers must make all reasonable efforts to expose it as an I2C 2481 * adapter and use drm_get_edid() instead of abusing this function. 2482 * 2483 * The EDID may be overridden using debugfs override_edid or firmware EDID 2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2485 * order. Having either of them bypasses actual EDID reads. 2486 * 2487 * Return: Pointer to valid EDID or NULL if we couldn't find any. 2488 */ 2489 struct edid *drm_do_get_edid(struct drm_connector *connector, 2490 read_block_fn read_block, 2491 void *context) 2492 { 2493 return _drm_do_get_edid(connector, read_block, context, NULL); 2494 } 2495 EXPORT_SYMBOL_GPL(drm_do_get_edid); 2496 2497 /** 2498 * drm_edid_raw - Get a pointer to the raw EDID data. 2499 * @drm_edid: drm_edid container 2500 * 2501 * Get a pointer to the raw EDID data. 2502 * 2503 * This is for transition only. Avoid using this like the plague. 2504 * 2505 * Return: Pointer to raw EDID data. 2506 */ 2507 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid) 2508 { 2509 if (!drm_edid || !drm_edid->size) 2510 return NULL; 2511 2512 /* 2513 * Do not return pointers where relying on EDID extension count would 2514 * lead to buffer overflow. 2515 */ 2516 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size)) 2517 return NULL; 2518 2519 return drm_edid->edid; 2520 } 2521 EXPORT_SYMBOL(drm_edid_raw); 2522 2523 /* Allocate struct drm_edid container *without* duplicating the edid data */ 2524 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size) 2525 { 2526 struct drm_edid *drm_edid; 2527 2528 if (!edid || !size || size < EDID_LENGTH) 2529 return NULL; 2530 2531 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL); 2532 if (drm_edid) { 2533 drm_edid->edid = edid; 2534 drm_edid->size = size; 2535 } 2536 2537 return drm_edid; 2538 } 2539 2540 /** 2541 * drm_edid_alloc - Allocate a new drm_edid container 2542 * @edid: Pointer to raw EDID data 2543 * @size: Size of memory allocated for EDID 2544 * 2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass 2546 * the actual size that has been allocated for the data. There is no validation 2547 * of the raw EDID data against the size, but at least the EDID base block must 2548 * fit in the buffer. 2549 * 2550 * The returned pointer must be freed using drm_edid_free(). 2551 * 2552 * Return: drm_edid container, or NULL on errors 2553 */ 2554 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size) 2555 { 2556 const struct drm_edid *drm_edid; 2557 2558 if (!edid || !size || size < EDID_LENGTH) 2559 return NULL; 2560 2561 edid = kmemdup(edid, size, GFP_KERNEL); 2562 if (!edid) 2563 return NULL; 2564 2565 drm_edid = _drm_edid_alloc(edid, size); 2566 if (!drm_edid) 2567 kfree(edid); 2568 2569 return drm_edid; 2570 } 2571 EXPORT_SYMBOL(drm_edid_alloc); 2572 2573 /** 2574 * drm_edid_dup - Duplicate a drm_edid container 2575 * @drm_edid: EDID to duplicate 2576 * 2577 * The returned pointer must be freed using drm_edid_free(). 2578 * 2579 * Returns: drm_edid container copy, or NULL on errors 2580 */ 2581 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid) 2582 { 2583 if (!drm_edid) 2584 return NULL; 2585 2586 return drm_edid_alloc(drm_edid->edid, drm_edid->size); 2587 } 2588 EXPORT_SYMBOL(drm_edid_dup); 2589 2590 /** 2591 * drm_edid_free - Free the drm_edid container 2592 * @drm_edid: EDID to free 2593 */ 2594 void drm_edid_free(const struct drm_edid *drm_edid) 2595 { 2596 if (!drm_edid) 2597 return; 2598 2599 kfree(drm_edid->edid); 2600 kfree(drm_edid); 2601 } 2602 EXPORT_SYMBOL(drm_edid_free); 2603 2604 /** 2605 * drm_probe_ddc() - probe DDC presence 2606 * @adapter: I2C adapter to probe 2607 * 2608 * Return: True on success, false on failure. 2609 */ 2610 bool 2611 drm_probe_ddc(struct i2c_adapter *adapter) 2612 { 2613 unsigned char out; 2614 2615 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); 2616 } 2617 EXPORT_SYMBOL(drm_probe_ddc); 2618 2619 /** 2620 * drm_get_edid - get EDID data, if available 2621 * @connector: connector we're probing 2622 * @adapter: I2C adapter to use for DDC 2623 * 2624 * Poke the given I2C channel to grab EDID data if possible. If found, 2625 * attach it to the connector. 2626 * 2627 * Return: Pointer to valid EDID or NULL if we couldn't find any. 2628 */ 2629 struct edid *drm_get_edid(struct drm_connector *connector, 2630 struct i2c_adapter *adapter) 2631 { 2632 struct edid *edid; 2633 2634 if (connector->force == DRM_FORCE_OFF) 2635 return NULL; 2636 2637 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 2638 return NULL; 2639 2640 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL); 2641 drm_connector_update_edid_property(connector, edid); 2642 return edid; 2643 } 2644 EXPORT_SYMBOL(drm_get_edid); 2645 2646 /** 2647 * drm_edid_read_custom - Read EDID data using given EDID block read function 2648 * @connector: Connector to use 2649 * @read_block: EDID block read function 2650 * @context: Private data passed to the block read function 2651 * 2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that 2653 * exposes a different interface to read EDID blocks this function can be used 2654 * to get EDID data using a custom block read function. 2655 * 2656 * As in the general case the DDC bus is accessible by the kernel at the I2C 2657 * level, drivers must make all reasonable efforts to expose it as an I2C 2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing 2659 * this function. 2660 * 2661 * The EDID may be overridden using debugfs override_edid or firmware EDID 2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2663 * order. Having either of them bypasses actual EDID reads. 2664 * 2665 * The returned pointer must be freed using drm_edid_free(). 2666 * 2667 * Return: Pointer to EDID, or NULL if probe/read failed. 2668 */ 2669 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector, 2670 read_block_fn read_block, 2671 void *context) 2672 { 2673 const struct drm_edid *drm_edid; 2674 struct edid *edid; 2675 size_t size = 0; 2676 2677 edid = _drm_do_get_edid(connector, read_block, context, &size); 2678 if (!edid) 2679 return NULL; 2680 2681 /* Sanity check for now */ 2682 drm_WARN_ON(connector->dev, !size); 2683 2684 drm_edid = _drm_edid_alloc(edid, size); 2685 if (!drm_edid) 2686 kfree(edid); 2687 2688 return drm_edid; 2689 } 2690 EXPORT_SYMBOL(drm_edid_read_custom); 2691 2692 /** 2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter 2694 * @connector: Connector to use 2695 * @adapter: I2C adapter to use for DDC 2696 * 2697 * Read EDID using the given I2C adapter. 2698 * 2699 * The EDID may be overridden using debugfs override_edid or firmware EDID 2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2701 * order. Having either of them bypasses actual EDID reads. 2702 * 2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and 2704 * using drm_edid_read() instead of this function. 2705 * 2706 * The returned pointer must be freed using drm_edid_free(). 2707 * 2708 * Return: Pointer to EDID, or NULL if probe/read failed. 2709 */ 2710 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector, 2711 struct i2c_adapter *adapter) 2712 { 2713 const struct drm_edid *drm_edid; 2714 2715 if (connector->force == DRM_FORCE_OFF) 2716 return NULL; 2717 2718 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 2719 return NULL; 2720 2721 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter); 2722 2723 /* Note: Do *not* call connector updates here. */ 2724 2725 return drm_edid; 2726 } 2727 EXPORT_SYMBOL(drm_edid_read_ddc); 2728 2729 /** 2730 * drm_edid_read - Read EDID data using connector's I2C adapter 2731 * @connector: Connector to use 2732 * 2733 * Read EDID using the connector's I2C adapter. 2734 * 2735 * The EDID may be overridden using debugfs override_edid or firmware EDID 2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2737 * order. Having either of them bypasses actual EDID reads. 2738 * 2739 * The returned pointer must be freed using drm_edid_free(). 2740 * 2741 * Return: Pointer to EDID, or NULL if probe/read failed. 2742 */ 2743 const struct drm_edid *drm_edid_read(struct drm_connector *connector) 2744 { 2745 if (drm_WARN_ON(connector->dev, !connector->ddc)) 2746 return NULL; 2747 2748 return drm_edid_read_ddc(connector, connector->ddc); 2749 } 2750 EXPORT_SYMBOL(drm_edid_read); 2751 2752 static u32 edid_extract_panel_id(const struct edid *edid) 2753 { 2754 /* 2755 * We represent the ID as a 32-bit number so it can easily be compared 2756 * with "==". 2757 * 2758 * NOTE that we deal with endianness differently for the top half 2759 * of this ID than for the bottom half. The bottom half (the product 2760 * id) gets decoded as little endian by the EDID_PRODUCT_ID because 2761 * that's how everyone seems to interpret it. The top half (the mfg_id) 2762 * gets stored as big endian because that makes 2763 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier 2764 * to write (it's easier to extract the ASCII). It doesn't really 2765 * matter, though, as long as the number here is unique. 2766 */ 2767 return (u32)edid->mfg_id[0] << 24 | 2768 (u32)edid->mfg_id[1] << 16 | 2769 (u32)EDID_PRODUCT_ID(edid); 2770 } 2771 2772 /** 2773 * drm_edid_get_panel_id - Get a panel's ID through DDC 2774 * @adapter: I2C adapter to use for DDC 2775 * 2776 * This function reads the first block of the EDID of a panel and (assuming 2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value 2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's 2779 * supposed to be different for each different modem of panel. 2780 * 2781 * This function is intended to be used during early probing on devices where 2782 * more than one panel might be present. Because of its intended use it must 2783 * assume that the EDID of the panel is correct, at least as far as the ID 2784 * is concerned (in other words, we don't process any overrides here). 2785 * 2786 * NOTE: it's expected that this function and drm_do_get_edid() will both 2787 * be read the EDID, but there is no caching between them. Since we're only 2788 * reading the first block, hopefully this extra overhead won't be too big. 2789 * 2790 * Return: A 32-bit ID that should be different for each make/model of panel. 2791 * See the functions drm_edid_encode_panel_id() and 2792 * drm_edid_decode_panel_id() for some details on the structure of this 2793 * ID. 2794 */ 2795 2796 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter) 2797 { 2798 enum edid_block_status status; 2799 void *base_block; 2800 u32 panel_id = 0; 2801 2802 /* 2803 * There are no manufacturer IDs of 0, so if there is a problem reading 2804 * the EDID then we'll just return 0. 2805 */ 2806 2807 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL); 2808 if (!base_block) 2809 return 0; 2810 2811 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter); 2812 2813 edid_block_status_print(status, base_block, 0); 2814 2815 if (edid_block_status_valid(status, edid_block_tag(base_block))) 2816 panel_id = edid_extract_panel_id(base_block); 2817 else 2818 edid_block_dump(KERN_NOTICE, base_block, 0); 2819 2820 kfree(base_block); 2821 2822 return panel_id; 2823 } 2824 EXPORT_SYMBOL(drm_edid_get_panel_id); 2825 2826 /** 2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output 2828 * @connector: connector we're probing 2829 * @adapter: I2C adapter to use for DDC 2830 * 2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of 2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily 2833 * switch DDC to the GPU which is retrieving EDID. 2834 * 2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 2836 */ 2837 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector, 2838 struct i2c_adapter *adapter) 2839 { 2840 struct drm_device *dev = connector->dev; 2841 struct pci_dev *pdev = to_pci_dev(dev->dev); 2842 struct edid *edid; 2843 2844 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) 2845 return NULL; 2846 2847 vga_switcheroo_lock_ddc(pdev); 2848 edid = drm_get_edid(connector, adapter); 2849 vga_switcheroo_unlock_ddc(pdev); 2850 2851 return edid; 2852 } 2853 EXPORT_SYMBOL(drm_get_edid_switcheroo); 2854 2855 /** 2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output 2857 * @connector: connector we're probing 2858 * @adapter: I2C adapter to use for DDC 2859 * 2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set 2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to 2862 * temporarily switch DDC to the GPU which is retrieving EDID. 2863 * 2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 2865 */ 2866 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector, 2867 struct i2c_adapter *adapter) 2868 { 2869 struct drm_device *dev = connector->dev; 2870 struct pci_dev *pdev = to_pci_dev(dev->dev); 2871 const struct drm_edid *drm_edid; 2872 2873 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) 2874 return NULL; 2875 2876 vga_switcheroo_lock_ddc(pdev); 2877 drm_edid = drm_edid_read_ddc(connector, adapter); 2878 vga_switcheroo_unlock_ddc(pdev); 2879 2880 return drm_edid; 2881 } 2882 EXPORT_SYMBOL(drm_edid_read_switcheroo); 2883 2884 /** 2885 * drm_edid_duplicate - duplicate an EDID and the extensions 2886 * @edid: EDID to duplicate 2887 * 2888 * Return: Pointer to duplicated EDID or NULL on allocation failure. 2889 */ 2890 struct edid *drm_edid_duplicate(const struct edid *edid) 2891 { 2892 if (!edid) 2893 return NULL; 2894 2895 return kmemdup(edid, edid_size(edid), GFP_KERNEL); 2896 } 2897 EXPORT_SYMBOL(drm_edid_duplicate); 2898 2899 /*** EDID parsing ***/ 2900 2901 /** 2902 * edid_get_quirks - return quirk flags for a given EDID 2903 * @drm_edid: EDID to process 2904 * 2905 * This tells subsequent routines what fixes they need to apply. 2906 */ 2907 static u32 edid_get_quirks(const struct drm_edid *drm_edid) 2908 { 2909 u32 panel_id = edid_extract_panel_id(drm_edid->edid); 2910 const struct edid_quirk *quirk; 2911 int i; 2912 2913 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { 2914 quirk = &edid_quirk_list[i]; 2915 if (quirk->panel_id == panel_id) 2916 return quirk->quirks; 2917 } 2918 2919 return 0; 2920 } 2921 2922 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) 2923 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) 2924 2925 /* 2926 * Walk the mode list for connector, clearing the preferred status on existing 2927 * modes and setting it anew for the right mode ala quirks. 2928 */ 2929 static void edid_fixup_preferred(struct drm_connector *connector) 2930 { 2931 const struct drm_display_info *info = &connector->display_info; 2932 struct drm_display_mode *t, *cur_mode, *preferred_mode; 2933 int target_refresh = 0; 2934 int cur_vrefresh, preferred_vrefresh; 2935 2936 if (list_empty(&connector->probed_modes)) 2937 return; 2938 2939 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60) 2940 target_refresh = 60; 2941 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75) 2942 target_refresh = 75; 2943 2944 preferred_mode = list_first_entry(&connector->probed_modes, 2945 struct drm_display_mode, head); 2946 2947 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { 2948 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; 2949 2950 if (cur_mode == preferred_mode) 2951 continue; 2952 2953 /* Largest mode is preferred */ 2954 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) 2955 preferred_mode = cur_mode; 2956 2957 cur_vrefresh = drm_mode_vrefresh(cur_mode); 2958 preferred_vrefresh = drm_mode_vrefresh(preferred_mode); 2959 /* At a given size, try to get closest to target refresh */ 2960 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && 2961 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < 2962 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { 2963 preferred_mode = cur_mode; 2964 } 2965 } 2966 2967 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; 2968 } 2969 2970 static bool 2971 mode_is_rb(const struct drm_display_mode *mode) 2972 { 2973 return (mode->htotal - mode->hdisplay == 160) && 2974 (mode->hsync_end - mode->hdisplay == 80) && 2975 (mode->hsync_end - mode->hsync_start == 32) && 2976 (mode->vsync_start - mode->vdisplay == 3); 2977 } 2978 2979 /* 2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT 2981 * @dev: Device to duplicate against 2982 * @hsize: Mode width 2983 * @vsize: Mode height 2984 * @fresh: Mode refresh rate 2985 * @rb: Mode reduced-blanking-ness 2986 * 2987 * Walk the DMT mode list looking for a match for the given parameters. 2988 * 2989 * Return: A newly allocated copy of the mode, or NULL if not found. 2990 */ 2991 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, 2992 int hsize, int vsize, int fresh, 2993 bool rb) 2994 { 2995 int i; 2996 2997 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 2998 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 2999 3000 if (hsize != ptr->hdisplay) 3001 continue; 3002 if (vsize != ptr->vdisplay) 3003 continue; 3004 if (fresh != drm_mode_vrefresh(ptr)) 3005 continue; 3006 if (rb != mode_is_rb(ptr)) 3007 continue; 3008 3009 return drm_mode_duplicate(dev, ptr); 3010 } 3011 3012 return NULL; 3013 } 3014 EXPORT_SYMBOL(drm_mode_find_dmt); 3015 3016 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type) 3017 { 3018 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); 3019 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2); 3020 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3); 3021 3022 return descriptor->pixel_clock == 0 && 3023 descriptor->data.other_data.pad1 == 0 && 3024 descriptor->data.other_data.type == type; 3025 } 3026 3027 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor) 3028 { 3029 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); 3030 3031 return descriptor->pixel_clock != 0; 3032 } 3033 3034 typedef void detailed_cb(const struct detailed_timing *timing, void *closure); 3035 3036 static void 3037 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) 3038 { 3039 int i, n; 3040 u8 d = ext[0x02]; 3041 const u8 *det_base = ext + d; 3042 3043 if (d < 4 || d > 127) 3044 return; 3045 3046 n = (127 - d) / 18; 3047 for (i = 0; i < n; i++) 3048 cb((const struct detailed_timing *)(det_base + 18 * i), closure); 3049 } 3050 3051 static void 3052 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) 3053 { 3054 unsigned int i, n = min((int)ext[0x02], 6); 3055 const u8 *det_base = ext + 5; 3056 3057 if (ext[0x01] != 1) 3058 return; /* unknown version */ 3059 3060 for (i = 0; i < n; i++) 3061 cb((const struct detailed_timing *)(det_base + 18 * i), closure); 3062 } 3063 3064 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid, 3065 detailed_cb *cb, void *closure) 3066 { 3067 struct drm_edid_iter edid_iter; 3068 const u8 *ext; 3069 int i; 3070 3071 if (!drm_edid) 3072 return; 3073 3074 for (i = 0; i < EDID_DETAILED_TIMINGS; i++) 3075 cb(&drm_edid->edid->detailed_timings[i], closure); 3076 3077 drm_edid_iter_begin(drm_edid, &edid_iter); 3078 drm_edid_iter_for_each(ext, &edid_iter) { 3079 switch (*ext) { 3080 case CEA_EXT: 3081 cea_for_each_detailed_block(ext, cb, closure); 3082 break; 3083 case VTB_EXT: 3084 vtb_for_each_detailed_block(ext, cb, closure); 3085 break; 3086 default: 3087 break; 3088 } 3089 } 3090 drm_edid_iter_end(&edid_iter); 3091 } 3092 3093 static void 3094 is_rb(const struct detailed_timing *descriptor, void *data) 3095 { 3096 bool *res = data; 3097 3098 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3099 return; 3100 3101 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3102 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15); 3103 3104 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG && 3105 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING) 3106 *res = true; 3107 } 3108 3109 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ 3110 static bool 3111 drm_monitor_supports_rb(const struct drm_edid *drm_edid) 3112 { 3113 if (drm_edid->edid->revision >= 4) { 3114 bool ret = false; 3115 3116 drm_for_each_detailed_block(drm_edid, is_rb, &ret); 3117 return ret; 3118 } 3119 3120 return drm_edid_is_digital(drm_edid); 3121 } 3122 3123 static void 3124 find_gtf2(const struct detailed_timing *descriptor, void *data) 3125 { 3126 const struct detailed_timing **res = data; 3127 3128 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3129 return; 3130 3131 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3132 3133 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG) 3134 *res = descriptor; 3135 } 3136 3137 /* Secondary GTF curve kicks in above some break frequency */ 3138 static int 3139 drm_gtf2_hbreak(const struct drm_edid *drm_edid) 3140 { 3141 const struct detailed_timing *descriptor = NULL; 3142 3143 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3144 3145 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12); 3146 3147 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0; 3148 } 3149 3150 static int 3151 drm_gtf2_2c(const struct drm_edid *drm_edid) 3152 { 3153 const struct detailed_timing *descriptor = NULL; 3154 3155 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3156 3157 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13); 3158 3159 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0; 3160 } 3161 3162 static int 3163 drm_gtf2_m(const struct drm_edid *drm_edid) 3164 { 3165 const struct detailed_timing *descriptor = NULL; 3166 3167 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3168 3169 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14); 3170 3171 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0; 3172 } 3173 3174 static int 3175 drm_gtf2_k(const struct drm_edid *drm_edid) 3176 { 3177 const struct detailed_timing *descriptor = NULL; 3178 3179 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3180 3181 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16); 3182 3183 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0; 3184 } 3185 3186 static int 3187 drm_gtf2_2j(const struct drm_edid *drm_edid) 3188 { 3189 const struct detailed_timing *descriptor = NULL; 3190 3191 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3192 3193 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17); 3194 3195 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0; 3196 } 3197 3198 static void 3199 get_timing_level(const struct detailed_timing *descriptor, void *data) 3200 { 3201 int *res = data; 3202 3203 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3204 return; 3205 3206 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3207 3208 switch (descriptor->data.other_data.data.range.flags) { 3209 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: 3210 *res = LEVEL_GTF; 3211 break; 3212 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: 3213 *res = LEVEL_GTF2; 3214 break; 3215 case DRM_EDID_CVT_SUPPORT_FLAG: 3216 *res = LEVEL_CVT; 3217 break; 3218 default: 3219 break; 3220 } 3221 } 3222 3223 /* Get standard timing level (CVT/GTF/DMT). */ 3224 static int standard_timing_level(const struct drm_edid *drm_edid) 3225 { 3226 const struct edid *edid = drm_edid->edid; 3227 3228 if (edid->revision >= 4) { 3229 /* 3230 * If the range descriptor doesn't 3231 * indicate otherwise default to CVT 3232 */ 3233 int ret = LEVEL_CVT; 3234 3235 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret); 3236 3237 return ret; 3238 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) { 3239 return LEVEL_GTF2; 3240 } else if (edid->revision >= 2) { 3241 return LEVEL_GTF; 3242 } else { 3243 return LEVEL_DMT; 3244 } 3245 } 3246 3247 /* 3248 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old 3249 * monitors fill with ascii space (0x20) instead. 3250 */ 3251 static int 3252 bad_std_timing(u8 a, u8 b) 3253 { 3254 return (a == 0x00 && b == 0x00) || 3255 (a == 0x01 && b == 0x01) || 3256 (a == 0x20 && b == 0x20); 3257 } 3258 3259 static int drm_mode_hsync(const struct drm_display_mode *mode) 3260 { 3261 if (mode->htotal <= 0) 3262 return 0; 3263 3264 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal); 3265 } 3266 3267 static struct drm_display_mode * 3268 drm_gtf2_mode(struct drm_device *dev, 3269 const struct drm_edid *drm_edid, 3270 int hsize, int vsize, int vrefresh_rate) 3271 { 3272 struct drm_display_mode *mode; 3273 3274 /* 3275 * This is potentially wrong if there's ever a monitor with 3276 * more than one ranges section, each claiming a different 3277 * secondary GTF curve. Please don't do that. 3278 */ 3279 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 3280 if (!mode) 3281 return NULL; 3282 3283 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) { 3284 drm_mode_destroy(dev, mode); 3285 mode = drm_gtf_mode_complex(dev, hsize, vsize, 3286 vrefresh_rate, 0, 0, 3287 drm_gtf2_m(drm_edid), 3288 drm_gtf2_2c(drm_edid), 3289 drm_gtf2_k(drm_edid), 3290 drm_gtf2_2j(drm_edid)); 3291 } 3292 3293 return mode; 3294 } 3295 3296 /* 3297 * Take the standard timing params (in this case width, aspect, and refresh) 3298 * and convert them into a real mode using CVT/GTF/DMT. 3299 */ 3300 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector, 3301 const struct drm_edid *drm_edid, 3302 const struct std_timing *t) 3303 { 3304 struct drm_device *dev = connector->dev; 3305 struct drm_display_mode *m, *mode = NULL; 3306 int hsize, vsize; 3307 int vrefresh_rate; 3308 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) 3309 >> EDID_TIMING_ASPECT_SHIFT; 3310 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) 3311 >> EDID_TIMING_VFREQ_SHIFT; 3312 int timing_level = standard_timing_level(drm_edid); 3313 3314 if (bad_std_timing(t->hsize, t->vfreq_aspect)) 3315 return NULL; 3316 3317 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ 3318 hsize = t->hsize * 8 + 248; 3319 /* vrefresh_rate = vfreq + 60 */ 3320 vrefresh_rate = vfreq + 60; 3321 /* the vdisplay is calculated based on the aspect ratio */ 3322 if (aspect_ratio == 0) { 3323 if (drm_edid->edid->revision < 3) 3324 vsize = hsize; 3325 else 3326 vsize = (hsize * 10) / 16; 3327 } else if (aspect_ratio == 1) 3328 vsize = (hsize * 3) / 4; 3329 else if (aspect_ratio == 2) 3330 vsize = (hsize * 4) / 5; 3331 else 3332 vsize = (hsize * 9) / 16; 3333 3334 /* HDTV hack, part 1 */ 3335 if (vrefresh_rate == 60 && 3336 ((hsize == 1360 && vsize == 765) || 3337 (hsize == 1368 && vsize == 769))) { 3338 hsize = 1366; 3339 vsize = 768; 3340 } 3341 3342 /* 3343 * If this connector already has a mode for this size and refresh 3344 * rate (because it came from detailed or CVT info), use that 3345 * instead. This way we don't have to guess at interlace or 3346 * reduced blanking. 3347 */ 3348 list_for_each_entry(m, &connector->probed_modes, head) 3349 if (m->hdisplay == hsize && m->vdisplay == vsize && 3350 drm_mode_vrefresh(m) == vrefresh_rate) 3351 return NULL; 3352 3353 /* HDTV hack, part 2 */ 3354 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { 3355 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, 3356 false); 3357 if (!mode) 3358 return NULL; 3359 mode->hdisplay = 1366; 3360 mode->hsync_start = mode->hsync_start - 1; 3361 mode->hsync_end = mode->hsync_end - 1; 3362 return mode; 3363 } 3364 3365 /* check whether it can be found in default mode table */ 3366 if (drm_monitor_supports_rb(drm_edid)) { 3367 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, 3368 true); 3369 if (mode) 3370 return mode; 3371 } 3372 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); 3373 if (mode) 3374 return mode; 3375 3376 /* okay, generate it */ 3377 switch (timing_level) { 3378 case LEVEL_DMT: 3379 break; 3380 case LEVEL_GTF: 3381 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 3382 break; 3383 case LEVEL_GTF2: 3384 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate); 3385 break; 3386 case LEVEL_CVT: 3387 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, 3388 false); 3389 break; 3390 } 3391 return mode; 3392 } 3393 3394 /* 3395 * EDID is delightfully ambiguous about how interlaced modes are to be 3396 * encoded. Our internal representation is of frame height, but some 3397 * HDTV detailed timings are encoded as field height. 3398 * 3399 * The format list here is from CEA, in frame size. Technically we 3400 * should be checking refresh rate too. Whatever. 3401 */ 3402 static void 3403 drm_mode_do_interlace_quirk(struct drm_display_mode *mode, 3404 const struct detailed_pixel_timing *pt) 3405 { 3406 int i; 3407 static const struct { 3408 int w, h; 3409 } cea_interlaced[] = { 3410 { 1920, 1080 }, 3411 { 720, 480 }, 3412 { 1440, 480 }, 3413 { 2880, 480 }, 3414 { 720, 576 }, 3415 { 1440, 576 }, 3416 { 2880, 576 }, 3417 }; 3418 3419 if (!(pt->misc & DRM_EDID_PT_INTERLACED)) 3420 return; 3421 3422 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { 3423 if ((mode->hdisplay == cea_interlaced[i].w) && 3424 (mode->vdisplay == cea_interlaced[i].h / 2)) { 3425 mode->vdisplay *= 2; 3426 mode->vsync_start *= 2; 3427 mode->vsync_end *= 2; 3428 mode->vtotal *= 2; 3429 mode->vtotal |= 1; 3430 } 3431 } 3432 3433 mode->flags |= DRM_MODE_FLAG_INTERLACE; 3434 } 3435 3436 /* 3437 * Create a new mode from an EDID detailed timing section. An EDID detailed 3438 * timing block contains enough info for us to create and return a new struct 3439 * drm_display_mode. 3440 */ 3441 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector, 3442 const struct drm_edid *drm_edid, 3443 const struct detailed_timing *timing) 3444 { 3445 const struct drm_display_info *info = &connector->display_info; 3446 struct drm_device *dev = connector->dev; 3447 struct drm_display_mode *mode; 3448 const struct detailed_pixel_timing *pt = &timing->data.pixel_data; 3449 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; 3450 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; 3451 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; 3452 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; 3453 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; 3454 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; 3455 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; 3456 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); 3457 3458 /* ignore tiny modes */ 3459 if (hactive < 64 || vactive < 64) 3460 return NULL; 3461 3462 if (pt->misc & DRM_EDID_PT_STEREO) { 3463 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n", 3464 connector->base.id, connector->name); 3465 return NULL; 3466 } 3467 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { 3468 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n", 3469 connector->base.id, connector->name); 3470 } 3471 3472 /* it is incorrect if hsync/vsync width is zero */ 3473 if (!hsync_pulse_width || !vsync_pulse_width) { 3474 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n", 3475 connector->base.id, connector->name); 3476 return NULL; 3477 } 3478 3479 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { 3480 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); 3481 if (!mode) 3482 return NULL; 3483 3484 goto set_size; 3485 } 3486 3487 mode = drm_mode_create(dev); 3488 if (!mode) 3489 return NULL; 3490 3491 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) 3492 mode->clock = 1088 * 10; 3493 else 3494 mode->clock = le16_to_cpu(timing->pixel_clock) * 10; 3495 3496 mode->hdisplay = hactive; 3497 mode->hsync_start = mode->hdisplay + hsync_offset; 3498 mode->hsync_end = mode->hsync_start + hsync_pulse_width; 3499 mode->htotal = mode->hdisplay + hblank; 3500 3501 mode->vdisplay = vactive; 3502 mode->vsync_start = mode->vdisplay + vsync_offset; 3503 mode->vsync_end = mode->vsync_start + vsync_pulse_width; 3504 mode->vtotal = mode->vdisplay + vblank; 3505 3506 /* Some EDIDs have bogus h/vsync_end values */ 3507 if (mode->hsync_end > mode->htotal) { 3508 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n", 3509 connector->base.id, connector->name, 3510 mode->hsync_end, mode->htotal); 3511 mode->hsync_end = mode->htotal; 3512 } 3513 if (mode->vsync_end > mode->vtotal) { 3514 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n", 3515 connector->base.id, connector->name, 3516 mode->vsync_end, mode->vtotal); 3517 mode->vsync_end = mode->vtotal; 3518 } 3519 3520 drm_mode_do_interlace_quirk(mode, pt); 3521 3522 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) { 3523 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC; 3524 } else { 3525 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? 3526 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 3527 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? 3528 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 3529 } 3530 3531 set_size: 3532 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; 3533 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; 3534 3535 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) { 3536 mode->width_mm *= 10; 3537 mode->height_mm *= 10; 3538 } 3539 3540 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { 3541 mode->width_mm = drm_edid->edid->width_cm * 10; 3542 mode->height_mm = drm_edid->edid->height_cm * 10; 3543 } 3544 3545 mode->type = DRM_MODE_TYPE_DRIVER; 3546 drm_mode_set_name(mode); 3547 3548 return mode; 3549 } 3550 3551 static bool 3552 mode_in_hsync_range(const struct drm_display_mode *mode, 3553 const struct edid *edid, const u8 *t) 3554 { 3555 int hsync, hmin, hmax; 3556 3557 hmin = t[7]; 3558 if (edid->revision >= 4) 3559 hmin += ((t[4] & 0x04) ? 255 : 0); 3560 hmax = t[8]; 3561 if (edid->revision >= 4) 3562 hmax += ((t[4] & 0x08) ? 255 : 0); 3563 hsync = drm_mode_hsync(mode); 3564 3565 return (hsync <= hmax && hsync >= hmin); 3566 } 3567 3568 static bool 3569 mode_in_vsync_range(const struct drm_display_mode *mode, 3570 const struct edid *edid, const u8 *t) 3571 { 3572 int vsync, vmin, vmax; 3573 3574 vmin = t[5]; 3575 if (edid->revision >= 4) 3576 vmin += ((t[4] & 0x01) ? 255 : 0); 3577 vmax = t[6]; 3578 if (edid->revision >= 4) 3579 vmax += ((t[4] & 0x02) ? 255 : 0); 3580 vsync = drm_mode_vrefresh(mode); 3581 3582 return (vsync <= vmax && vsync >= vmin); 3583 } 3584 3585 static u32 3586 range_pixel_clock(const struct edid *edid, const u8 *t) 3587 { 3588 /* unspecified */ 3589 if (t[9] == 0 || t[9] == 255) 3590 return 0; 3591 3592 /* 1.4 with CVT support gives us real precision, yay */ 3593 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) 3594 return (t[9] * 10000) - ((t[12] >> 2) * 250); 3595 3596 /* 1.3 is pathetic, so fuzz up a bit */ 3597 return t[9] * 10000 + 5001; 3598 } 3599 3600 static bool mode_in_range(const struct drm_display_mode *mode, 3601 const struct drm_edid *drm_edid, 3602 const struct detailed_timing *timing) 3603 { 3604 const struct edid *edid = drm_edid->edid; 3605 u32 max_clock; 3606 const u8 *t = (const u8 *)timing; 3607 3608 if (!mode_in_hsync_range(mode, edid, t)) 3609 return false; 3610 3611 if (!mode_in_vsync_range(mode, edid, t)) 3612 return false; 3613 3614 if ((max_clock = range_pixel_clock(edid, t))) 3615 if (mode->clock > max_clock) 3616 return false; 3617 3618 /* 1.4 max horizontal check */ 3619 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) 3620 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) 3621 return false; 3622 3623 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid)) 3624 return false; 3625 3626 return true; 3627 } 3628 3629 static bool valid_inferred_mode(const struct drm_connector *connector, 3630 const struct drm_display_mode *mode) 3631 { 3632 const struct drm_display_mode *m; 3633 bool ok = false; 3634 3635 list_for_each_entry(m, &connector->probed_modes, head) { 3636 if (mode->hdisplay == m->hdisplay && 3637 mode->vdisplay == m->vdisplay && 3638 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) 3639 return false; /* duplicated */ 3640 if (mode->hdisplay <= m->hdisplay && 3641 mode->vdisplay <= m->vdisplay) 3642 ok = true; 3643 } 3644 return ok; 3645 } 3646 3647 static int drm_dmt_modes_for_range(struct drm_connector *connector, 3648 const struct drm_edid *drm_edid, 3649 const struct detailed_timing *timing) 3650 { 3651 int i, modes = 0; 3652 struct drm_display_mode *newmode; 3653 struct drm_device *dev = connector->dev; 3654 3655 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 3656 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) && 3657 valid_inferred_mode(connector, drm_dmt_modes + i)) { 3658 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); 3659 if (newmode) { 3660 drm_mode_probed_add(connector, newmode); 3661 modes++; 3662 } 3663 } 3664 } 3665 3666 return modes; 3667 } 3668 3669 /* fix up 1366x768 mode from 1368x768; 3670 * GFT/CVT can't express 1366 width which isn't dividable by 8 3671 */ 3672 void drm_mode_fixup_1366x768(struct drm_display_mode *mode) 3673 { 3674 if (mode->hdisplay == 1368 && mode->vdisplay == 768) { 3675 mode->hdisplay = 1366; 3676 mode->hsync_start--; 3677 mode->hsync_end--; 3678 drm_mode_set_name(mode); 3679 } 3680 } 3681 3682 static int drm_gtf_modes_for_range(struct drm_connector *connector, 3683 const struct drm_edid *drm_edid, 3684 const struct detailed_timing *timing) 3685 { 3686 int i, modes = 0; 3687 struct drm_display_mode *newmode; 3688 struct drm_device *dev = connector->dev; 3689 3690 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3691 const struct minimode *m = &extra_modes[i]; 3692 3693 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); 3694 if (!newmode) 3695 return modes; 3696 3697 drm_mode_fixup_1366x768(newmode); 3698 if (!mode_in_range(newmode, drm_edid, timing) || 3699 !valid_inferred_mode(connector, newmode)) { 3700 drm_mode_destroy(dev, newmode); 3701 continue; 3702 } 3703 3704 drm_mode_probed_add(connector, newmode); 3705 modes++; 3706 } 3707 3708 return modes; 3709 } 3710 3711 static int drm_gtf2_modes_for_range(struct drm_connector *connector, 3712 const struct drm_edid *drm_edid, 3713 const struct detailed_timing *timing) 3714 { 3715 int i, modes = 0; 3716 struct drm_display_mode *newmode; 3717 struct drm_device *dev = connector->dev; 3718 3719 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3720 const struct minimode *m = &extra_modes[i]; 3721 3722 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r); 3723 if (!newmode) 3724 return modes; 3725 3726 drm_mode_fixup_1366x768(newmode); 3727 if (!mode_in_range(newmode, drm_edid, timing) || 3728 !valid_inferred_mode(connector, newmode)) { 3729 drm_mode_destroy(dev, newmode); 3730 continue; 3731 } 3732 3733 drm_mode_probed_add(connector, newmode); 3734 modes++; 3735 } 3736 3737 return modes; 3738 } 3739 3740 static int drm_cvt_modes_for_range(struct drm_connector *connector, 3741 const struct drm_edid *drm_edid, 3742 const struct detailed_timing *timing) 3743 { 3744 int i, modes = 0; 3745 struct drm_display_mode *newmode; 3746 struct drm_device *dev = connector->dev; 3747 bool rb = drm_monitor_supports_rb(drm_edid); 3748 3749 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3750 const struct minimode *m = &extra_modes[i]; 3751 3752 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); 3753 if (!newmode) 3754 return modes; 3755 3756 drm_mode_fixup_1366x768(newmode); 3757 if (!mode_in_range(newmode, drm_edid, timing) || 3758 !valid_inferred_mode(connector, newmode)) { 3759 drm_mode_destroy(dev, newmode); 3760 continue; 3761 } 3762 3763 drm_mode_probed_add(connector, newmode); 3764 modes++; 3765 } 3766 3767 return modes; 3768 } 3769 3770 static void 3771 do_inferred_modes(const struct detailed_timing *timing, void *c) 3772 { 3773 struct detailed_mode_closure *closure = c; 3774 const struct detailed_non_pixel *data = &timing->data.other_data; 3775 const struct detailed_data_monitor_range *range = &data->data.range; 3776 3777 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) 3778 return; 3779 3780 closure->modes += drm_dmt_modes_for_range(closure->connector, 3781 closure->drm_edid, 3782 timing); 3783 3784 if (closure->drm_edid->edid->revision < 2) 3785 return; /* GTF not defined yet */ 3786 3787 switch (range->flags) { 3788 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: 3789 closure->modes += drm_gtf2_modes_for_range(closure->connector, 3790 closure->drm_edid, 3791 timing); 3792 break; 3793 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: 3794 closure->modes += drm_gtf_modes_for_range(closure->connector, 3795 closure->drm_edid, 3796 timing); 3797 break; 3798 case DRM_EDID_CVT_SUPPORT_FLAG: 3799 if (closure->drm_edid->edid->revision < 4) 3800 break; 3801 3802 closure->modes += drm_cvt_modes_for_range(closure->connector, 3803 closure->drm_edid, 3804 timing); 3805 break; 3806 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG: 3807 default: 3808 break; 3809 } 3810 } 3811 3812 static int add_inferred_modes(struct drm_connector *connector, 3813 const struct drm_edid *drm_edid) 3814 { 3815 struct detailed_mode_closure closure = { 3816 .connector = connector, 3817 .drm_edid = drm_edid, 3818 }; 3819 3820 if (drm_edid->edid->revision >= 1) 3821 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure); 3822 3823 return closure.modes; 3824 } 3825 3826 static int 3827 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing) 3828 { 3829 int i, j, m, modes = 0; 3830 struct drm_display_mode *mode; 3831 const u8 *est = ((const u8 *)timing) + 6; 3832 3833 for (i = 0; i < 6; i++) { 3834 for (j = 7; j >= 0; j--) { 3835 m = (i * 8) + (7 - j); 3836 if (m >= ARRAY_SIZE(est3_modes)) 3837 break; 3838 if (est[i] & (1 << j)) { 3839 mode = drm_mode_find_dmt(connector->dev, 3840 est3_modes[m].w, 3841 est3_modes[m].h, 3842 est3_modes[m].r, 3843 est3_modes[m].rb); 3844 if (mode) { 3845 drm_mode_probed_add(connector, mode); 3846 modes++; 3847 } 3848 } 3849 } 3850 } 3851 3852 return modes; 3853 } 3854 3855 static void 3856 do_established_modes(const struct detailed_timing *timing, void *c) 3857 { 3858 struct detailed_mode_closure *closure = c; 3859 3860 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS)) 3861 return; 3862 3863 closure->modes += drm_est3_modes(closure->connector, timing); 3864 } 3865 3866 /* 3867 * Get established modes from EDID and add them. Each EDID block contains a 3868 * bitmap of the supported "established modes" list (defined above). Tease them 3869 * out and add them to the global modes list. 3870 */ 3871 static int add_established_modes(struct drm_connector *connector, 3872 const struct drm_edid *drm_edid) 3873 { 3874 struct drm_device *dev = connector->dev; 3875 const struct edid *edid = drm_edid->edid; 3876 unsigned long est_bits = edid->established_timings.t1 | 3877 (edid->established_timings.t2 << 8) | 3878 ((edid->established_timings.mfg_rsvd & 0x80) << 9); 3879 int i, modes = 0; 3880 struct detailed_mode_closure closure = { 3881 .connector = connector, 3882 .drm_edid = drm_edid, 3883 }; 3884 3885 for (i = 0; i <= EDID_EST_TIMINGS; i++) { 3886 if (est_bits & (1<<i)) { 3887 struct drm_display_mode *newmode; 3888 3889 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]); 3890 if (newmode) { 3891 drm_mode_probed_add(connector, newmode); 3892 modes++; 3893 } 3894 } 3895 } 3896 3897 if (edid->revision >= 1) 3898 drm_for_each_detailed_block(drm_edid, do_established_modes, 3899 &closure); 3900 3901 return modes + closure.modes; 3902 } 3903 3904 static void 3905 do_standard_modes(const struct detailed_timing *timing, void *c) 3906 { 3907 struct detailed_mode_closure *closure = c; 3908 const struct detailed_non_pixel *data = &timing->data.other_data; 3909 struct drm_connector *connector = closure->connector; 3910 int i; 3911 3912 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES)) 3913 return; 3914 3915 for (i = 0; i < 6; i++) { 3916 const struct std_timing *std = &data->data.timings[i]; 3917 struct drm_display_mode *newmode; 3918 3919 newmode = drm_mode_std(connector, closure->drm_edid, std); 3920 if (newmode) { 3921 drm_mode_probed_add(connector, newmode); 3922 closure->modes++; 3923 } 3924 } 3925 } 3926 3927 /* 3928 * Get standard modes from EDID and add them. Standard modes can be calculated 3929 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and 3930 * add them to the list. 3931 */ 3932 static int add_standard_modes(struct drm_connector *connector, 3933 const struct drm_edid *drm_edid) 3934 { 3935 int i, modes = 0; 3936 struct detailed_mode_closure closure = { 3937 .connector = connector, 3938 .drm_edid = drm_edid, 3939 }; 3940 3941 for (i = 0; i < EDID_STD_TIMINGS; i++) { 3942 struct drm_display_mode *newmode; 3943 3944 newmode = drm_mode_std(connector, drm_edid, 3945 &drm_edid->edid->standard_timings[i]); 3946 if (newmode) { 3947 drm_mode_probed_add(connector, newmode); 3948 modes++; 3949 } 3950 } 3951 3952 if (drm_edid->edid->revision >= 1) 3953 drm_for_each_detailed_block(drm_edid, do_standard_modes, 3954 &closure); 3955 3956 /* XXX should also look for standard codes in VTB blocks */ 3957 3958 return modes + closure.modes; 3959 } 3960 3961 static int drm_cvt_modes(struct drm_connector *connector, 3962 const struct detailed_timing *timing) 3963 { 3964 int i, j, modes = 0; 3965 struct drm_display_mode *newmode; 3966 struct drm_device *dev = connector->dev; 3967 const struct cvt_timing *cvt; 3968 static const int rates[] = { 60, 85, 75, 60, 50 }; 3969 const u8 empty[3] = { 0, 0, 0 }; 3970 3971 for (i = 0; i < 4; i++) { 3972 int width, height; 3973 3974 cvt = &(timing->data.other_data.data.cvt[i]); 3975 3976 if (!memcmp(cvt->code, empty, 3)) 3977 continue; 3978 3979 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; 3980 switch (cvt->code[1] & 0x0c) { 3981 /* default - because compiler doesn't see that we've enumerated all cases */ 3982 default: 3983 case 0x00: 3984 width = height * 4 / 3; 3985 break; 3986 case 0x04: 3987 width = height * 16 / 9; 3988 break; 3989 case 0x08: 3990 width = height * 16 / 10; 3991 break; 3992 case 0x0c: 3993 width = height * 15 / 9; 3994 break; 3995 } 3996 3997 for (j = 1; j < 5; j++) { 3998 if (cvt->code[2] & (1 << j)) { 3999 newmode = drm_cvt_mode(dev, width, height, 4000 rates[j], j == 0, 4001 false, false); 4002 if (newmode) { 4003 drm_mode_probed_add(connector, newmode); 4004 modes++; 4005 } 4006 } 4007 } 4008 } 4009 4010 return modes; 4011 } 4012 4013 static void 4014 do_cvt_mode(const struct detailed_timing *timing, void *c) 4015 { 4016 struct detailed_mode_closure *closure = c; 4017 4018 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE)) 4019 return; 4020 4021 closure->modes += drm_cvt_modes(closure->connector, timing); 4022 } 4023 4024 static int 4025 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) 4026 { 4027 struct detailed_mode_closure closure = { 4028 .connector = connector, 4029 .drm_edid = drm_edid, 4030 }; 4031 4032 if (drm_edid->edid->revision >= 3) 4033 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure); 4034 4035 /* XXX should also look for CVT codes in VTB blocks */ 4036 4037 return closure.modes; 4038 } 4039 4040 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, 4041 struct drm_display_mode *mode); 4042 4043 static void 4044 do_detailed_mode(const struct detailed_timing *timing, void *c) 4045 { 4046 struct detailed_mode_closure *closure = c; 4047 struct drm_display_mode *newmode; 4048 4049 if (!is_detailed_timing_descriptor(timing)) 4050 return; 4051 4052 newmode = drm_mode_detailed(closure->connector, 4053 closure->drm_edid, timing); 4054 if (!newmode) 4055 return; 4056 4057 if (closure->preferred) 4058 newmode->type |= DRM_MODE_TYPE_PREFERRED; 4059 4060 /* 4061 * Detailed modes are limited to 10kHz pixel clock resolution, 4062 * so fix up anything that looks like CEA/HDMI mode, but the clock 4063 * is just slightly off. 4064 */ 4065 fixup_detailed_cea_mode_clock(closure->connector, newmode); 4066 4067 drm_mode_probed_add(closure->connector, newmode); 4068 closure->modes++; 4069 closure->preferred = false; 4070 } 4071 4072 /* 4073 * add_detailed_modes - Add modes from detailed timings 4074 * @connector: attached connector 4075 * @drm_edid: EDID block to scan 4076 */ 4077 static int add_detailed_modes(struct drm_connector *connector, 4078 const struct drm_edid *drm_edid) 4079 { 4080 struct detailed_mode_closure closure = { 4081 .connector = connector, 4082 .drm_edid = drm_edid, 4083 }; 4084 4085 if (drm_edid->edid->revision >= 4) 4086 closure.preferred = true; /* first detailed timing is always preferred */ 4087 else 4088 closure.preferred = 4089 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING; 4090 4091 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure); 4092 4093 return closure.modes; 4094 } 4095 4096 /* CTA-861-H Table 60 - CTA Tag Codes */ 4097 #define CTA_DB_AUDIO 1 4098 #define CTA_DB_VIDEO 2 4099 #define CTA_DB_VENDOR 3 4100 #define CTA_DB_SPEAKER 4 4101 #define CTA_DB_EXTENDED_TAG 7 4102 4103 /* CTA-861-H Table 62 - CTA Extended Tag Codes */ 4104 #define CTA_EXT_DB_VIDEO_CAP 0 4105 #define CTA_EXT_DB_VENDOR 1 4106 #define CTA_EXT_DB_HDR_STATIC_METADATA 6 4107 #define CTA_EXT_DB_420_VIDEO_DATA 14 4108 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15 4109 #define CTA_EXT_DB_HF_EEODB 0x78 4110 #define CTA_EXT_DB_HF_SCDB 0x79 4111 4112 #define EDID_BASIC_AUDIO (1 << 6) 4113 #define EDID_CEA_YCRCB444 (1 << 5) 4114 #define EDID_CEA_YCRCB422 (1 << 4) 4115 #define EDID_CEA_VCDB_QS (1 << 6) 4116 4117 /* 4118 * Search EDID for CEA extension block. 4119 * 4120 * FIXME: Prefer not returning pointers to raw EDID data. 4121 */ 4122 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid, 4123 int ext_id, int *ext_index) 4124 { 4125 const u8 *edid_ext = NULL; 4126 int i; 4127 4128 /* No EDID or EDID extensions */ 4129 if (!drm_edid || !drm_edid_extension_block_count(drm_edid)) 4130 return NULL; 4131 4132 /* Find CEA extension */ 4133 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) { 4134 edid_ext = drm_edid_extension_block_data(drm_edid, i); 4135 if (edid_block_tag(edid_ext) == ext_id) 4136 break; 4137 } 4138 4139 if (i >= drm_edid_extension_block_count(drm_edid)) 4140 return NULL; 4141 4142 *ext_index = i + 1; 4143 4144 return edid_ext; 4145 } 4146 4147 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */ 4148 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid) 4149 { 4150 const struct displayid_block *block; 4151 struct displayid_iter iter; 4152 int ext_index = 0; 4153 bool found = false; 4154 4155 /* Look for a top level CEA extension block */ 4156 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index)) 4157 return true; 4158 4159 /* CEA blocks can also be found embedded in a DisplayID block */ 4160 displayid_iter_edid_begin(drm_edid, &iter); 4161 displayid_iter_for_each(block, &iter) { 4162 if (block->tag == DATA_BLOCK_CTA) { 4163 found = true; 4164 break; 4165 } 4166 } 4167 displayid_iter_end(&iter); 4168 4169 return found; 4170 } 4171 4172 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic) 4173 { 4174 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127); 4175 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219); 4176 4177 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1)) 4178 return &edid_cea_modes_1[vic - 1]; 4179 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193)) 4180 return &edid_cea_modes_193[vic - 193]; 4181 return NULL; 4182 } 4183 4184 static u8 cea_num_vics(void) 4185 { 4186 return 193 + ARRAY_SIZE(edid_cea_modes_193); 4187 } 4188 4189 static u8 cea_next_vic(u8 vic) 4190 { 4191 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1)) 4192 vic = 193; 4193 return vic; 4194 } 4195 4196 /* 4197 * Calculate the alternate clock for the CEA mode 4198 * (60Hz vs. 59.94Hz etc.) 4199 */ 4200 static unsigned int 4201 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) 4202 { 4203 unsigned int clock = cea_mode->clock; 4204 4205 if (drm_mode_vrefresh(cea_mode) % 6 != 0) 4206 return clock; 4207 4208 /* 4209 * edid_cea_modes contains the 59.94Hz 4210 * variant for 240 and 480 line modes, 4211 * and the 60Hz variant otherwise. 4212 */ 4213 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) 4214 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000); 4215 else 4216 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001); 4217 4218 return clock; 4219 } 4220 4221 static bool 4222 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode) 4223 { 4224 /* 4225 * For certain VICs the spec allows the vertical 4226 * front porch to vary by one or two lines. 4227 * 4228 * cea_modes[] stores the variant with the shortest 4229 * vertical front porch. We can adjust the mode to 4230 * get the other variants by simply increasing the 4231 * vertical front porch length. 4232 */ 4233 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 || 4234 cea_mode_for_vic(9)->vtotal != 262 || 4235 cea_mode_for_vic(12)->vtotal != 262 || 4236 cea_mode_for_vic(13)->vtotal != 262 || 4237 cea_mode_for_vic(23)->vtotal != 312 || 4238 cea_mode_for_vic(24)->vtotal != 312 || 4239 cea_mode_for_vic(27)->vtotal != 312 || 4240 cea_mode_for_vic(28)->vtotal != 312); 4241 4242 if (((vic == 8 || vic == 9 || 4243 vic == 12 || vic == 13) && mode->vtotal < 263) || 4244 ((vic == 23 || vic == 24 || 4245 vic == 27 || vic == 28) && mode->vtotal < 314)) { 4246 mode->vsync_start++; 4247 mode->vsync_end++; 4248 mode->vtotal++; 4249 4250 return true; 4251 } 4252 4253 return false; 4254 } 4255 4256 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match, 4257 unsigned int clock_tolerance) 4258 { 4259 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4260 u8 vic; 4261 4262 if (!to_match->clock) 4263 return 0; 4264 4265 if (to_match->picture_aspect_ratio) 4266 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4267 4268 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { 4269 struct drm_display_mode cea_mode; 4270 unsigned int clock1, clock2; 4271 4272 drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); 4273 4274 /* Check both 60Hz and 59.94Hz */ 4275 clock1 = cea_mode.clock; 4276 clock2 = cea_mode_alternate_clock(&cea_mode); 4277 4278 if (abs(to_match->clock - clock1) > clock_tolerance && 4279 abs(to_match->clock - clock2) > clock_tolerance) 4280 continue; 4281 4282 do { 4283 if (drm_mode_match(to_match, &cea_mode, match_flags)) 4284 return vic; 4285 } while (cea_mode_alternate_timings(vic, &cea_mode)); 4286 } 4287 4288 return 0; 4289 } 4290 4291 /** 4292 * drm_match_cea_mode - look for a CEA mode matching given mode 4293 * @to_match: display mode 4294 * 4295 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 4296 * mode. 4297 */ 4298 u8 drm_match_cea_mode(const struct drm_display_mode *to_match) 4299 { 4300 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4301 u8 vic; 4302 4303 if (!to_match->clock) 4304 return 0; 4305 4306 if (to_match->picture_aspect_ratio) 4307 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4308 4309 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { 4310 struct drm_display_mode cea_mode; 4311 unsigned int clock1, clock2; 4312 4313 drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); 4314 4315 /* Check both 60Hz and 59.94Hz */ 4316 clock1 = cea_mode.clock; 4317 clock2 = cea_mode_alternate_clock(&cea_mode); 4318 4319 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) && 4320 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2)) 4321 continue; 4322 4323 do { 4324 if (drm_mode_match(to_match, &cea_mode, match_flags)) 4325 return vic; 4326 } while (cea_mode_alternate_timings(vic, &cea_mode)); 4327 } 4328 4329 return 0; 4330 } 4331 EXPORT_SYMBOL(drm_match_cea_mode); 4332 4333 static bool drm_valid_cea_vic(u8 vic) 4334 { 4335 return cea_mode_for_vic(vic) != NULL; 4336 } 4337 4338 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code) 4339 { 4340 const struct drm_display_mode *mode = cea_mode_for_vic(video_code); 4341 4342 if (mode) 4343 return mode->picture_aspect_ratio; 4344 4345 return HDMI_PICTURE_ASPECT_NONE; 4346 } 4347 4348 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code) 4349 { 4350 return edid_4k_modes[video_code].picture_aspect_ratio; 4351 } 4352 4353 /* 4354 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor 4355 * specific block). 4356 */ 4357 static unsigned int 4358 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) 4359 { 4360 return cea_mode_alternate_clock(hdmi_mode); 4361 } 4362 4363 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match, 4364 unsigned int clock_tolerance) 4365 { 4366 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4367 u8 vic; 4368 4369 if (!to_match->clock) 4370 return 0; 4371 4372 if (to_match->picture_aspect_ratio) 4373 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4374 4375 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 4376 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 4377 unsigned int clock1, clock2; 4378 4379 /* Make sure to also match alternate clocks */ 4380 clock1 = hdmi_mode->clock; 4381 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 4382 4383 if (abs(to_match->clock - clock1) > clock_tolerance && 4384 abs(to_match->clock - clock2) > clock_tolerance) 4385 continue; 4386 4387 if (drm_mode_match(to_match, hdmi_mode, match_flags)) 4388 return vic; 4389 } 4390 4391 return 0; 4392 } 4393 4394 /* 4395 * drm_match_hdmi_mode - look for a HDMI mode matching given mode 4396 * @to_match: display mode 4397 * 4398 * An HDMI mode is one defined in the HDMI vendor specific block. 4399 * 4400 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. 4401 */ 4402 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) 4403 { 4404 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4405 u8 vic; 4406 4407 if (!to_match->clock) 4408 return 0; 4409 4410 if (to_match->picture_aspect_ratio) 4411 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4412 4413 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 4414 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 4415 unsigned int clock1, clock2; 4416 4417 /* Make sure to also match alternate clocks */ 4418 clock1 = hdmi_mode->clock; 4419 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 4420 4421 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || 4422 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && 4423 drm_mode_match(to_match, hdmi_mode, match_flags)) 4424 return vic; 4425 } 4426 return 0; 4427 } 4428 4429 static bool drm_valid_hdmi_vic(u8 vic) 4430 { 4431 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes); 4432 } 4433 4434 static int add_alternate_cea_modes(struct drm_connector *connector, 4435 const struct drm_edid *drm_edid) 4436 { 4437 struct drm_device *dev = connector->dev; 4438 struct drm_display_mode *mode, *tmp; 4439 LIST_HEAD(list); 4440 int modes = 0; 4441 4442 /* Don't add CTA modes if the CTA extension block is missing */ 4443 if (!drm_edid_has_cta_extension(drm_edid)) 4444 return 0; 4445 4446 /* 4447 * Go through all probed modes and create a new mode 4448 * with the alternate clock for certain CEA modes. 4449 */ 4450 list_for_each_entry(mode, &connector->probed_modes, head) { 4451 const struct drm_display_mode *cea_mode = NULL; 4452 struct drm_display_mode *newmode; 4453 u8 vic = drm_match_cea_mode(mode); 4454 unsigned int clock1, clock2; 4455 4456 if (drm_valid_cea_vic(vic)) { 4457 cea_mode = cea_mode_for_vic(vic); 4458 clock2 = cea_mode_alternate_clock(cea_mode); 4459 } else { 4460 vic = drm_match_hdmi_mode(mode); 4461 if (drm_valid_hdmi_vic(vic)) { 4462 cea_mode = &edid_4k_modes[vic]; 4463 clock2 = hdmi_mode_alternate_clock(cea_mode); 4464 } 4465 } 4466 4467 if (!cea_mode) 4468 continue; 4469 4470 clock1 = cea_mode->clock; 4471 4472 if (clock1 == clock2) 4473 continue; 4474 4475 if (mode->clock != clock1 && mode->clock != clock2) 4476 continue; 4477 4478 newmode = drm_mode_duplicate(dev, cea_mode); 4479 if (!newmode) 4480 continue; 4481 4482 /* Carry over the stereo flags */ 4483 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; 4484 4485 /* 4486 * The current mode could be either variant. Make 4487 * sure to pick the "other" clock for the new mode. 4488 */ 4489 if (mode->clock != clock1) 4490 newmode->clock = clock1; 4491 else 4492 newmode->clock = clock2; 4493 4494 list_add_tail(&newmode->head, &list); 4495 } 4496 4497 list_for_each_entry_safe(mode, tmp, &list, head) { 4498 list_del(&mode->head); 4499 drm_mode_probed_add(connector, mode); 4500 modes++; 4501 } 4502 4503 return modes; 4504 } 4505 4506 static u8 svd_to_vic(u8 svd) 4507 { 4508 /* 0-6 bit vic, 7th bit native mode indicator */ 4509 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192)) 4510 return svd & 127; 4511 4512 return svd; 4513 } 4514 4515 /* 4516 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in 4517 * the EDID, or NULL on errors. 4518 */ 4519 static struct drm_display_mode * 4520 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index) 4521 { 4522 const struct drm_display_info *info = &connector->display_info; 4523 struct drm_device *dev = connector->dev; 4524 4525 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index]) 4526 return NULL; 4527 4528 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]); 4529 } 4530 4531 /* 4532 * do_y420vdb_modes - Parse YCBCR 420 only modes 4533 * @connector: connector corresponding to the HDMI sink 4534 * @svds: start of the data block of CEA YCBCR 420 VDB 4535 * @len: length of the CEA YCBCR 420 VDB 4536 * 4537 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB) 4538 * which contains modes which can be supported in YCBCR 420 4539 * output format only. 4540 */ 4541 static int do_y420vdb_modes(struct drm_connector *connector, 4542 const u8 *svds, u8 svds_len) 4543 { 4544 struct drm_device *dev = connector->dev; 4545 int modes = 0, i; 4546 4547 for (i = 0; i < svds_len; i++) { 4548 u8 vic = svd_to_vic(svds[i]); 4549 struct drm_display_mode *newmode; 4550 4551 if (!drm_valid_cea_vic(vic)) 4552 continue; 4553 4554 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic)); 4555 if (!newmode) 4556 break; 4557 drm_mode_probed_add(connector, newmode); 4558 modes++; 4559 } 4560 4561 return modes; 4562 } 4563 4564 /** 4565 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC 4566 * @dev: DRM device 4567 * @video_code: CEA VIC of the mode 4568 * 4569 * Creates a new mode matching the specified CEA VIC. 4570 * 4571 * Returns: A new drm_display_mode on success or NULL on failure 4572 */ 4573 struct drm_display_mode * 4574 drm_display_mode_from_cea_vic(struct drm_device *dev, 4575 u8 video_code) 4576 { 4577 const struct drm_display_mode *cea_mode; 4578 struct drm_display_mode *newmode; 4579 4580 cea_mode = cea_mode_for_vic(video_code); 4581 if (!cea_mode) 4582 return NULL; 4583 4584 newmode = drm_mode_duplicate(dev, cea_mode); 4585 if (!newmode) 4586 return NULL; 4587 4588 return newmode; 4589 } 4590 EXPORT_SYMBOL(drm_display_mode_from_cea_vic); 4591 4592 /* Add modes based on VICs parsed in parse_cta_vdb() */ 4593 static int add_cta_vdb_modes(struct drm_connector *connector) 4594 { 4595 const struct drm_display_info *info = &connector->display_info; 4596 int i, modes = 0; 4597 4598 if (!info->vics) 4599 return 0; 4600 4601 for (i = 0; i < info->vics_len; i++) { 4602 struct drm_display_mode *mode; 4603 4604 mode = drm_display_mode_from_vic_index(connector, i); 4605 if (mode) { 4606 drm_mode_probed_add(connector, mode); 4607 modes++; 4608 } 4609 } 4610 4611 return modes; 4612 } 4613 4614 struct stereo_mandatory_mode { 4615 int width, height, vrefresh; 4616 unsigned int flags; 4617 }; 4618 4619 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { 4620 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4621 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, 4622 { 1920, 1080, 50, 4623 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 4624 { 1920, 1080, 60, 4625 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 4626 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4627 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, 4628 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4629 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } 4630 }; 4631 4632 static bool 4633 stereo_match_mandatory(const struct drm_display_mode *mode, 4634 const struct stereo_mandatory_mode *stereo_mode) 4635 { 4636 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 4637 4638 return mode->hdisplay == stereo_mode->width && 4639 mode->vdisplay == stereo_mode->height && 4640 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && 4641 drm_mode_vrefresh(mode) == stereo_mode->vrefresh; 4642 } 4643 4644 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) 4645 { 4646 struct drm_device *dev = connector->dev; 4647 const struct drm_display_mode *mode; 4648 struct list_head stereo_modes; 4649 int modes = 0, i; 4650 4651 INIT_LIST_HEAD(&stereo_modes); 4652 4653 list_for_each_entry(mode, &connector->probed_modes, head) { 4654 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { 4655 const struct stereo_mandatory_mode *mandatory; 4656 struct drm_display_mode *new_mode; 4657 4658 if (!stereo_match_mandatory(mode, 4659 &stereo_mandatory_modes[i])) 4660 continue; 4661 4662 mandatory = &stereo_mandatory_modes[i]; 4663 new_mode = drm_mode_duplicate(dev, mode); 4664 if (!new_mode) 4665 continue; 4666 4667 new_mode->flags |= mandatory->flags; 4668 list_add_tail(&new_mode->head, &stereo_modes); 4669 modes++; 4670 } 4671 } 4672 4673 list_splice_tail(&stereo_modes, &connector->probed_modes); 4674 4675 return modes; 4676 } 4677 4678 static int add_hdmi_mode(struct drm_connector *connector, u8 vic) 4679 { 4680 struct drm_device *dev = connector->dev; 4681 struct drm_display_mode *newmode; 4682 4683 if (!drm_valid_hdmi_vic(vic)) { 4684 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n", 4685 connector->base.id, connector->name, vic); 4686 return 0; 4687 } 4688 4689 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); 4690 if (!newmode) 4691 return 0; 4692 4693 drm_mode_probed_add(connector, newmode); 4694 4695 return 1; 4696 } 4697 4698 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, 4699 int vic_index) 4700 { 4701 struct drm_display_mode *newmode; 4702 int modes = 0; 4703 4704 if (structure & (1 << 0)) { 4705 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4706 if (newmode) { 4707 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; 4708 drm_mode_probed_add(connector, newmode); 4709 modes++; 4710 } 4711 } 4712 if (structure & (1 << 6)) { 4713 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4714 if (newmode) { 4715 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 4716 drm_mode_probed_add(connector, newmode); 4717 modes++; 4718 } 4719 } 4720 if (structure & (1 << 8)) { 4721 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4722 if (newmode) { 4723 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 4724 drm_mode_probed_add(connector, newmode); 4725 modes++; 4726 } 4727 } 4728 4729 return modes; 4730 } 4731 4732 static bool hdmi_vsdb_latency_present(const u8 *db) 4733 { 4734 return db[8] & BIT(7); 4735 } 4736 4737 static bool hdmi_vsdb_i_latency_present(const u8 *db) 4738 { 4739 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6); 4740 } 4741 4742 static int hdmi_vsdb_latency_length(const u8 *db) 4743 { 4744 if (hdmi_vsdb_i_latency_present(db)) 4745 return 4; 4746 else if (hdmi_vsdb_latency_present(db)) 4747 return 2; 4748 else 4749 return 0; 4750 } 4751 4752 /* 4753 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block 4754 * @connector: connector corresponding to the HDMI sink 4755 * @db: start of the CEA vendor specific block 4756 * @len: length of the CEA block payload, ie. one can access up to db[len] 4757 * 4758 * Parses the HDMI VSDB looking for modes to add to @connector. This function 4759 * also adds the stereo 3d modes when applicable. 4760 */ 4761 static int 4762 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len) 4763 { 4764 int modes = 0, offset = 0, i, multi_present = 0, multi_len; 4765 u8 vic_len, hdmi_3d_len = 0; 4766 u16 mask; 4767 u16 structure_all; 4768 4769 if (len < 8) 4770 goto out; 4771 4772 /* no HDMI_Video_Present */ 4773 if (!(db[8] & (1 << 5))) 4774 goto out; 4775 4776 offset += hdmi_vsdb_latency_length(db); 4777 4778 /* the declared length is not long enough for the 2 first bytes 4779 * of additional video format capabilities */ 4780 if (len < (8 + offset + 2)) 4781 goto out; 4782 4783 /* 3D_Present */ 4784 offset++; 4785 if (db[8 + offset] & (1 << 7)) { 4786 modes += add_hdmi_mandatory_stereo_modes(connector); 4787 4788 /* 3D_Multi_present */ 4789 multi_present = (db[8 + offset] & 0x60) >> 5; 4790 } 4791 4792 offset++; 4793 vic_len = db[8 + offset] >> 5; 4794 hdmi_3d_len = db[8 + offset] & 0x1f; 4795 4796 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { 4797 u8 vic; 4798 4799 vic = db[9 + offset + i]; 4800 modes += add_hdmi_mode(connector, vic); 4801 } 4802 offset += 1 + vic_len; 4803 4804 if (multi_present == 1) 4805 multi_len = 2; 4806 else if (multi_present == 2) 4807 multi_len = 4; 4808 else 4809 multi_len = 0; 4810 4811 if (len < (8 + offset + hdmi_3d_len - 1)) 4812 goto out; 4813 4814 if (hdmi_3d_len < multi_len) 4815 goto out; 4816 4817 if (multi_present == 1 || multi_present == 2) { 4818 /* 3D_Structure_ALL */ 4819 structure_all = (db[8 + offset] << 8) | db[9 + offset]; 4820 4821 /* check if 3D_MASK is present */ 4822 if (multi_present == 2) 4823 mask = (db[10 + offset] << 8) | db[11 + offset]; 4824 else 4825 mask = 0xffff; 4826 4827 for (i = 0; i < 16; i++) { 4828 if (mask & (1 << i)) 4829 modes += add_3d_struct_modes(connector, 4830 structure_all, i); 4831 } 4832 } 4833 4834 offset += multi_len; 4835 4836 for (i = 0; i < (hdmi_3d_len - multi_len); i++) { 4837 int vic_index; 4838 struct drm_display_mode *newmode = NULL; 4839 unsigned int newflag = 0; 4840 bool detail_present; 4841 4842 detail_present = ((db[8 + offset + i] & 0x0f) > 7); 4843 4844 if (detail_present && (i + 1 == hdmi_3d_len - multi_len)) 4845 break; 4846 4847 /* 2D_VIC_order_X */ 4848 vic_index = db[8 + offset + i] >> 4; 4849 4850 /* 3D_Structure_X */ 4851 switch (db[8 + offset + i] & 0x0f) { 4852 case 0: 4853 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING; 4854 break; 4855 case 6: 4856 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 4857 break; 4858 case 8: 4859 /* 3D_Detail_X */ 4860 if ((db[9 + offset + i] >> 4) == 1) 4861 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 4862 break; 4863 } 4864 4865 if (newflag != 0) { 4866 newmode = drm_display_mode_from_vic_index(connector, 4867 vic_index); 4868 4869 if (newmode) { 4870 newmode->flags |= newflag; 4871 drm_mode_probed_add(connector, newmode); 4872 modes++; 4873 } 4874 } 4875 4876 if (detail_present) 4877 i++; 4878 } 4879 4880 out: 4881 return modes; 4882 } 4883 4884 static int 4885 cea_revision(const u8 *cea) 4886 { 4887 /* 4888 * FIXME is this correct for the DispID variant? 4889 * The DispID spec doesn't really specify whether 4890 * this is the revision of the CEA extension or 4891 * the DispID CEA data block. And the only value 4892 * given as an example is 0. 4893 */ 4894 return cea[1]; 4895 } 4896 4897 /* 4898 * CTA Data Block iterator. 4899 * 4900 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID 4901 * CTA Data Blocks. 4902 * 4903 * struct cea_db *db: 4904 * struct cea_db_iter iter; 4905 * 4906 * cea_db_iter_edid_begin(edid, &iter); 4907 * cea_db_iter_for_each(db, &iter) { 4908 * // do stuff with db 4909 * } 4910 * cea_db_iter_end(&iter); 4911 */ 4912 struct cea_db_iter { 4913 struct drm_edid_iter edid_iter; 4914 struct displayid_iter displayid_iter; 4915 4916 /* Current Data Block Collection. */ 4917 const u8 *collection; 4918 4919 /* Current Data Block index in current collection. */ 4920 int index; 4921 4922 /* End index in current collection. */ 4923 int end; 4924 }; 4925 4926 /* CTA-861-H section 7.4 CTA Data BLock Collection */ 4927 struct cea_db { 4928 u8 tag_length; 4929 u8 data[]; 4930 } __packed; 4931 4932 static int cea_db_tag(const struct cea_db *db) 4933 { 4934 return db->tag_length >> 5; 4935 } 4936 4937 static int cea_db_payload_len(const void *_db) 4938 { 4939 /* FIXME: Transition to passing struct cea_db * everywhere. */ 4940 const struct cea_db *db = _db; 4941 4942 return db->tag_length & 0x1f; 4943 } 4944 4945 static const void *cea_db_data(const struct cea_db *db) 4946 { 4947 return db->data; 4948 } 4949 4950 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag) 4951 { 4952 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG && 4953 cea_db_payload_len(db) >= 1 && 4954 db->data[0] == tag; 4955 } 4956 4957 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui) 4958 { 4959 const u8 *data = cea_db_data(db); 4960 4961 return cea_db_tag(db) == CTA_DB_VENDOR && 4962 cea_db_payload_len(db) >= 3 && 4963 oui(data[2], data[1], data[0]) == vendor_oui; 4964 } 4965 4966 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid, 4967 struct cea_db_iter *iter) 4968 { 4969 memset(iter, 0, sizeof(*iter)); 4970 4971 drm_edid_iter_begin(drm_edid, &iter->edid_iter); 4972 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter); 4973 } 4974 4975 static const struct cea_db * 4976 __cea_db_iter_current_block(const struct cea_db_iter *iter) 4977 { 4978 const struct cea_db *db; 4979 4980 if (!iter->collection) 4981 return NULL; 4982 4983 db = (const struct cea_db *)&iter->collection[iter->index]; 4984 4985 if (iter->index + sizeof(*db) <= iter->end && 4986 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end) 4987 return db; 4988 4989 return NULL; 4990 } 4991 4992 /* 4993 * References: 4994 * - CTA-861-H section 7.3.3 CTA Extension Version 3 4995 */ 4996 static int cea_db_collection_size(const u8 *cta) 4997 { 4998 u8 d = cta[2]; 4999 5000 if (d < 4 || d > 127) 5001 return 0; 5002 5003 return d - 4; 5004 } 5005 5006 /* 5007 * References: 5008 * - VESA E-EDID v1.4 5009 * - CTA-861-H section 7.3.3 CTA Extension Version 3 5010 */ 5011 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter) 5012 { 5013 const u8 *ext; 5014 5015 drm_edid_iter_for_each(ext, &iter->edid_iter) { 5016 int size; 5017 5018 /* Only support CTA Extension revision 3+ */ 5019 if (ext[0] != CEA_EXT || cea_revision(ext) < 3) 5020 continue; 5021 5022 size = cea_db_collection_size(ext); 5023 if (!size) 5024 continue; 5025 5026 iter->index = 4; 5027 iter->end = iter->index + size; 5028 5029 return ext; 5030 } 5031 5032 return NULL; 5033 } 5034 5035 /* 5036 * References: 5037 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block 5038 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block 5039 * 5040 * Note that the above do not specify any connection between DisplayID Data 5041 * Block revision and CTA Extension versions. 5042 */ 5043 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter) 5044 { 5045 const struct displayid_block *block; 5046 5047 displayid_iter_for_each(block, &iter->displayid_iter) { 5048 if (block->tag != DATA_BLOCK_CTA) 5049 continue; 5050 5051 /* 5052 * The displayid iterator has already verified the block bounds 5053 * in displayid_iter_block(). 5054 */ 5055 iter->index = sizeof(*block); 5056 iter->end = iter->index + block->num_bytes; 5057 5058 return block; 5059 } 5060 5061 return NULL; 5062 } 5063 5064 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter) 5065 { 5066 const struct cea_db *db; 5067 5068 if (iter->collection) { 5069 /* Current collection should always be valid. */ 5070 db = __cea_db_iter_current_block(iter); 5071 if (WARN_ON(!db)) { 5072 iter->collection = NULL; 5073 return NULL; 5074 } 5075 5076 /* Next block in CTA Data Block Collection */ 5077 iter->index += sizeof(*db) + cea_db_payload_len(db); 5078 5079 db = __cea_db_iter_current_block(iter); 5080 if (db) 5081 return db; 5082 } 5083 5084 for (;;) { 5085 /* 5086 * Find the next CTA Data Block Collection. First iterate all 5087 * the EDID CTA Extensions, then all the DisplayID CTA blocks. 5088 * 5089 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID 5090 * Extension, it's recommended that DisplayID extensions are 5091 * exposed after all of the CTA Extensions. 5092 */ 5093 iter->collection = __cea_db_iter_edid_next(iter); 5094 if (!iter->collection) 5095 iter->collection = __cea_db_iter_displayid_next(iter); 5096 5097 if (!iter->collection) 5098 return NULL; 5099 5100 db = __cea_db_iter_current_block(iter); 5101 if (db) 5102 return db; 5103 } 5104 } 5105 5106 #define cea_db_iter_for_each(__db, __iter) \ 5107 while (((__db) = __cea_db_iter_next(__iter))) 5108 5109 static void cea_db_iter_end(struct cea_db_iter *iter) 5110 { 5111 displayid_iter_end(&iter->displayid_iter); 5112 drm_edid_iter_end(&iter->edid_iter); 5113 5114 memset(iter, 0, sizeof(*iter)); 5115 } 5116 5117 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db) 5118 { 5119 return cea_db_is_vendor(db, HDMI_IEEE_OUI) && 5120 cea_db_payload_len(db) >= 5; 5121 } 5122 5123 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db) 5124 { 5125 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) && 5126 cea_db_payload_len(db) >= 7; 5127 } 5128 5129 static bool cea_db_is_hdmi_forum_eeodb(const void *db) 5130 { 5131 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) && 5132 cea_db_payload_len(db) >= 2; 5133 } 5134 5135 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db) 5136 { 5137 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) && 5138 cea_db_payload_len(db) == 21; 5139 } 5140 5141 static bool cea_db_is_vcdb(const struct cea_db *db) 5142 { 5143 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) && 5144 cea_db_payload_len(db) == 2; 5145 } 5146 5147 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db) 5148 { 5149 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) && 5150 cea_db_payload_len(db) >= 7; 5151 } 5152 5153 static bool cea_db_is_y420cmdb(const struct cea_db *db) 5154 { 5155 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP); 5156 } 5157 5158 static bool cea_db_is_y420vdb(const struct cea_db *db) 5159 { 5160 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA); 5161 } 5162 5163 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db) 5164 { 5165 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) && 5166 cea_db_payload_len(db) >= 3; 5167 } 5168 5169 /* 5170 * Get the HF-EEODB override extension block count from EDID. 5171 * 5172 * The passed in EDID may be partially read, as long as it has at least two 5173 * blocks (base block and one extension block) if EDID extension count is > 0. 5174 * 5175 * Note that this is *not* how you should parse CTA Data Blocks in general; this 5176 * is only to handle partially read EDIDs. Normally, use the CTA Data Block 5177 * iterators instead. 5178 * 5179 * References: 5180 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block 5181 */ 5182 static int edid_hfeeodb_extension_block_count(const struct edid *edid) 5183 { 5184 const u8 *cta; 5185 5186 /* No extensions according to base block, no HF-EEODB. */ 5187 if (!edid_extension_block_count(edid)) 5188 return 0; 5189 5190 /* HF-EEODB is always in the first EDID extension block only */ 5191 cta = edid_extension_block_data(edid, 0); 5192 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3) 5193 return 0; 5194 5195 /* Need to have the data block collection, and at least 3 bytes. */ 5196 if (cea_db_collection_size(cta) < 3) 5197 return 0; 5198 5199 /* 5200 * Sinks that include the HF-EEODB in their E-EDID shall include one and 5201 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4 5202 * through 6 of Block 1 of the E-EDID. 5203 */ 5204 if (!cea_db_is_hdmi_forum_eeodb(&cta[4])) 5205 return 0; 5206 5207 return cta[4 + 2]; 5208 } 5209 5210 /* 5211 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB) 5212 * 5213 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB, 5214 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444 5215 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can 5216 * support YCBCR420 output too. 5217 */ 5218 static void parse_cta_y420cmdb(struct drm_connector *connector, 5219 const struct cea_db *db, u64 *y420cmdb_map) 5220 { 5221 struct drm_display_info *info = &connector->display_info; 5222 int i, map_len = cea_db_payload_len(db) - 1; 5223 const u8 *data = cea_db_data(db) + 1; 5224 u64 map = 0; 5225 5226 if (map_len == 0) { 5227 /* All CEA modes support ycbcr420 sampling also.*/ 5228 map = U64_MAX; 5229 goto out; 5230 } 5231 5232 /* 5233 * This map indicates which of the existing CEA block modes 5234 * from VDB can support YCBCR420 output too. So if bit=0 is 5235 * set, first mode from VDB can support YCBCR420 output too. 5236 * We will parse and keep this map, before parsing VDB itself 5237 * to avoid going through the same block again and again. 5238 * 5239 * Spec is not clear about max possible size of this block. 5240 * Clamping max bitmap block size at 8 bytes. Every byte can 5241 * address 8 CEA modes, in this way this map can address 5242 * 8*8 = first 64 SVDs. 5243 */ 5244 if (WARN_ON_ONCE(map_len > 8)) 5245 map_len = 8; 5246 5247 for (i = 0; i < map_len; i++) 5248 map |= (u64)data[i] << (8 * i); 5249 5250 out: 5251 if (map) 5252 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; 5253 5254 *y420cmdb_map = map; 5255 } 5256 5257 static int add_cea_modes(struct drm_connector *connector, 5258 const struct drm_edid *drm_edid) 5259 { 5260 const struct cea_db *db; 5261 struct cea_db_iter iter; 5262 int modes; 5263 5264 /* CTA VDB block VICs parsed earlier */ 5265 modes = add_cta_vdb_modes(connector); 5266 5267 cea_db_iter_edid_begin(drm_edid, &iter); 5268 cea_db_iter_for_each(db, &iter) { 5269 if (cea_db_is_hdmi_vsdb(db)) { 5270 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db, 5271 cea_db_payload_len(db)); 5272 } else if (cea_db_is_y420vdb(db)) { 5273 const u8 *vdb420 = cea_db_data(db) + 1; 5274 5275 /* Add 4:2:0(only) modes present in EDID */ 5276 modes += do_y420vdb_modes(connector, vdb420, 5277 cea_db_payload_len(db) - 1); 5278 } 5279 } 5280 cea_db_iter_end(&iter); 5281 5282 return modes; 5283 } 5284 5285 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, 5286 struct drm_display_mode *mode) 5287 { 5288 const struct drm_display_mode *cea_mode; 5289 int clock1, clock2, clock; 5290 u8 vic; 5291 const char *type; 5292 5293 /* 5294 * allow 5kHz clock difference either way to account for 5295 * the 10kHz clock resolution limit of detailed timings. 5296 */ 5297 vic = drm_match_cea_mode_clock_tolerance(mode, 5); 5298 if (drm_valid_cea_vic(vic)) { 5299 type = "CEA"; 5300 cea_mode = cea_mode_for_vic(vic); 5301 clock1 = cea_mode->clock; 5302 clock2 = cea_mode_alternate_clock(cea_mode); 5303 } else { 5304 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5); 5305 if (drm_valid_hdmi_vic(vic)) { 5306 type = "HDMI"; 5307 cea_mode = &edid_4k_modes[vic]; 5308 clock1 = cea_mode->clock; 5309 clock2 = hdmi_mode_alternate_clock(cea_mode); 5310 } else { 5311 return; 5312 } 5313 } 5314 5315 /* pick whichever is closest */ 5316 if (abs(mode->clock - clock1) < abs(mode->clock - clock2)) 5317 clock = clock1; 5318 else 5319 clock = clock2; 5320 5321 if (mode->clock == clock) 5322 return; 5323 5324 drm_dbg_kms(connector->dev, 5325 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n", 5326 connector->base.id, connector->name, 5327 type, vic, mode->clock, clock); 5328 mode->clock = clock; 5329 } 5330 5331 static void drm_calculate_luminance_range(struct drm_connector *connector) 5332 { 5333 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1; 5334 struct drm_luminance_range_info *luminance_range = 5335 &connector->display_info.luminance_range; 5336 static const u8 pre_computed_values[] = { 5337 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 5338 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98 5339 }; 5340 u32 max_avg, min_cll, max, min, q, r; 5341 5342 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1))) 5343 return; 5344 5345 max_avg = hdr_metadata->max_fall; 5346 min_cll = hdr_metadata->min_cll; 5347 5348 /* 5349 * From the specification (CTA-861-G), for calculating the maximum 5350 * luminance we need to use: 5351 * Luminance = 50*2**(CV/32) 5352 * Where CV is a one-byte value. 5353 * For calculating this expression we may need float point precision; 5354 * to avoid this complexity level, we take advantage that CV is divided 5355 * by a constant. From the Euclids division algorithm, we know that CV 5356 * can be written as: CV = 32*q + r. Next, we replace CV in the 5357 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just 5358 * need to pre-compute the value of r/32. For pre-computing the values 5359 * We just used the following Ruby line: 5360 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round} 5361 * The results of the above expressions can be verified at 5362 * pre_computed_values. 5363 */ 5364 q = max_avg >> 5; 5365 r = max_avg % 32; 5366 max = (1 << q) * pre_computed_values[r]; 5367 5368 /* min luminance: maxLum * (CV/255)^2 / 100 */ 5369 q = DIV_ROUND_CLOSEST(min_cll, 255); 5370 min = max * DIV_ROUND_CLOSEST((q * q), 100); 5371 5372 luminance_range->min_luminance = min; 5373 luminance_range->max_luminance = max; 5374 } 5375 5376 static uint8_t eotf_supported(const u8 *edid_ext) 5377 { 5378 return edid_ext[2] & 5379 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) | 5380 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) | 5381 BIT(HDMI_EOTF_SMPTE_ST2084) | 5382 BIT(HDMI_EOTF_BT_2100_HLG)); 5383 } 5384 5385 static uint8_t hdr_metadata_type(const u8 *edid_ext) 5386 { 5387 return edid_ext[3] & 5388 BIT(HDMI_STATIC_METADATA_TYPE1); 5389 } 5390 5391 static void 5392 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db) 5393 { 5394 u16 len; 5395 5396 len = cea_db_payload_len(db); 5397 5398 connector->hdr_sink_metadata.hdmi_type1.eotf = 5399 eotf_supported(db); 5400 connector->hdr_sink_metadata.hdmi_type1.metadata_type = 5401 hdr_metadata_type(db); 5402 5403 if (len >= 4) 5404 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4]; 5405 if (len >= 5) 5406 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5]; 5407 if (len >= 6) { 5408 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6]; 5409 5410 /* Calculate only when all values are available */ 5411 drm_calculate_luminance_range(connector); 5412 } 5413 } 5414 5415 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ 5416 static void 5417 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db) 5418 { 5419 u8 len = cea_db_payload_len(db); 5420 5421 if (len >= 6 && (db[6] & (1 << 7))) 5422 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI; 5423 5424 if (len >= 10 && hdmi_vsdb_latency_present(db)) { 5425 connector->latency_present[0] = true; 5426 connector->video_latency[0] = db[9]; 5427 connector->audio_latency[0] = db[10]; 5428 } 5429 5430 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) { 5431 connector->latency_present[1] = true; 5432 connector->video_latency[1] = db[11]; 5433 connector->audio_latency[1] = db[12]; 5434 } 5435 5436 drm_dbg_kms(connector->dev, 5437 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n", 5438 connector->base.id, connector->name, 5439 connector->latency_present[0], connector->latency_present[1], 5440 connector->video_latency[0], connector->video_latency[1], 5441 connector->audio_latency[0], connector->audio_latency[1]); 5442 } 5443 5444 static void 5445 monitor_name(const struct detailed_timing *timing, void *data) 5446 { 5447 const char **res = data; 5448 5449 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME)) 5450 return; 5451 5452 *res = timing->data.other_data.data.str.str; 5453 } 5454 5455 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13]) 5456 { 5457 const char *edid_name = NULL; 5458 int mnl; 5459 5460 if (!drm_edid || !name) 5461 return 0; 5462 5463 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name); 5464 for (mnl = 0; edid_name && mnl < 13; mnl++) { 5465 if (edid_name[mnl] == 0x0a) 5466 break; 5467 5468 name[mnl] = edid_name[mnl]; 5469 } 5470 5471 return mnl; 5472 } 5473 5474 /** 5475 * drm_edid_get_monitor_name - fetch the monitor name from the edid 5476 * @edid: monitor EDID information 5477 * @name: pointer to a character array to hold the name of the monitor 5478 * @bufsize: The size of the name buffer (should be at least 14 chars.) 5479 * 5480 */ 5481 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize) 5482 { 5483 int name_length = 0; 5484 5485 if (bufsize <= 0) 5486 return; 5487 5488 if (edid) { 5489 char buf[13]; 5490 struct drm_edid drm_edid = { 5491 .edid = edid, 5492 .size = edid_size(edid), 5493 }; 5494 5495 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1); 5496 memcpy(name, buf, name_length); 5497 } 5498 5499 name[name_length] = '\0'; 5500 } 5501 EXPORT_SYMBOL(drm_edid_get_monitor_name); 5502 5503 static void clear_eld(struct drm_connector *connector) 5504 { 5505 memset(connector->eld, 0, sizeof(connector->eld)); 5506 5507 connector->latency_present[0] = false; 5508 connector->latency_present[1] = false; 5509 connector->video_latency[0] = 0; 5510 connector->audio_latency[0] = 0; 5511 connector->video_latency[1] = 0; 5512 connector->audio_latency[1] = 0; 5513 } 5514 5515 /* 5516 * Get 3-byte SAD buffer from struct cea_sad. 5517 */ 5518 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad) 5519 { 5520 sad[0] = cta_sad->format << 3 | cta_sad->channels; 5521 sad[1] = cta_sad->freq; 5522 sad[2] = cta_sad->byte2; 5523 } 5524 5525 /* 5526 * Set struct cea_sad from 3-byte SAD buffer. 5527 */ 5528 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad) 5529 { 5530 cta_sad->format = (sad[0] & 0x78) >> 3; 5531 cta_sad->channels = sad[0] & 0x07; 5532 cta_sad->freq = sad[1] & 0x7f; 5533 cta_sad->byte2 = sad[2]; 5534 } 5535 5536 /* 5537 * drm_edid_to_eld - build ELD from EDID 5538 * @connector: connector corresponding to the HDMI/DP sink 5539 * @drm_edid: EDID to parse 5540 * 5541 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The 5542 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in. 5543 */ 5544 static void drm_edid_to_eld(struct drm_connector *connector, 5545 const struct drm_edid *drm_edid) 5546 { 5547 const struct drm_display_info *info = &connector->display_info; 5548 const struct cea_db *db; 5549 struct cea_db_iter iter; 5550 uint8_t *eld = connector->eld; 5551 int total_sad_count = 0; 5552 int mnl; 5553 5554 if (!drm_edid) 5555 return; 5556 5557 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]); 5558 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n", 5559 connector->base.id, connector->name, 5560 &eld[DRM_ELD_MONITOR_NAME_STRING]); 5561 5562 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT; 5563 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl; 5564 5565 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D; 5566 5567 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0]; 5568 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1]; 5569 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0]; 5570 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1]; 5571 5572 cea_db_iter_edid_begin(drm_edid, &iter); 5573 cea_db_iter_for_each(db, &iter) { 5574 const u8 *data = cea_db_data(db); 5575 int len = cea_db_payload_len(db); 5576 int sad_count; 5577 5578 switch (cea_db_tag(db)) { 5579 case CTA_DB_AUDIO: 5580 /* Audio Data Block, contains SADs */ 5581 sad_count = min(len / 3, 15 - total_sad_count); 5582 if (sad_count >= 1) 5583 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)], 5584 data, sad_count * 3); 5585 total_sad_count += sad_count; 5586 break; 5587 case CTA_DB_SPEAKER: 5588 /* Speaker Allocation Data Block */ 5589 if (len >= 1) 5590 eld[DRM_ELD_SPEAKER] = data[0]; 5591 break; 5592 case CTA_DB_VENDOR: 5593 /* HDMI Vendor-Specific Data Block */ 5594 if (cea_db_is_hdmi_vsdb(db)) 5595 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db); 5596 break; 5597 default: 5598 break; 5599 } 5600 } 5601 cea_db_iter_end(&iter); 5602 5603 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT; 5604 5605 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || 5606 connector->connector_type == DRM_MODE_CONNECTOR_eDP) 5607 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP; 5608 else 5609 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI; 5610 5611 eld[DRM_ELD_BASELINE_ELD_LEN] = 5612 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4); 5613 5614 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n", 5615 connector->base.id, connector->name, 5616 drm_eld_size(eld), total_sad_count); 5617 } 5618 5619 static int _drm_edid_to_sad(const struct drm_edid *drm_edid, 5620 struct cea_sad **psads) 5621 { 5622 const struct cea_db *db; 5623 struct cea_db_iter iter; 5624 int count = 0; 5625 5626 cea_db_iter_edid_begin(drm_edid, &iter); 5627 cea_db_iter_for_each(db, &iter) { 5628 if (cea_db_tag(db) == CTA_DB_AUDIO) { 5629 struct cea_sad *sads; 5630 int i; 5631 5632 count = cea_db_payload_len(db) / 3; /* SAD is 3B */ 5633 sads = kcalloc(count, sizeof(*sads), GFP_KERNEL); 5634 *psads = sads; 5635 if (!sads) 5636 return -ENOMEM; 5637 for (i = 0; i < count; i++) 5638 drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]); 5639 break; 5640 } 5641 } 5642 cea_db_iter_end(&iter); 5643 5644 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count); 5645 5646 return count; 5647 } 5648 5649 /** 5650 * drm_edid_to_sad - extracts SADs from EDID 5651 * @edid: EDID to parse 5652 * @sads: pointer that will be set to the extracted SADs 5653 * 5654 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. 5655 * 5656 * Note: The returned pointer needs to be freed using kfree(). 5657 * 5658 * Return: The number of found SADs or negative number on error. 5659 */ 5660 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads) 5661 { 5662 struct drm_edid drm_edid; 5663 5664 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads); 5665 } 5666 EXPORT_SYMBOL(drm_edid_to_sad); 5667 5668 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid, 5669 u8 **sadb) 5670 { 5671 const struct cea_db *db; 5672 struct cea_db_iter iter; 5673 int count = 0; 5674 5675 cea_db_iter_edid_begin(drm_edid, &iter); 5676 cea_db_iter_for_each(db, &iter) { 5677 if (cea_db_tag(db) == CTA_DB_SPEAKER && 5678 cea_db_payload_len(db) == 3) { 5679 *sadb = kmemdup(db->data, cea_db_payload_len(db), 5680 GFP_KERNEL); 5681 if (!*sadb) 5682 return -ENOMEM; 5683 count = cea_db_payload_len(db); 5684 break; 5685 } 5686 } 5687 cea_db_iter_end(&iter); 5688 5689 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count); 5690 5691 return count; 5692 } 5693 5694 /** 5695 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID 5696 * @edid: EDID to parse 5697 * @sadb: pointer to the speaker block 5698 * 5699 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. 5700 * 5701 * Note: The returned pointer needs to be freed using kfree(). 5702 * 5703 * Return: The number of found Speaker Allocation Blocks or negative number on 5704 * error. 5705 */ 5706 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb) 5707 { 5708 struct drm_edid drm_edid; 5709 5710 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid), 5711 sadb); 5712 } 5713 EXPORT_SYMBOL(drm_edid_to_speaker_allocation); 5714 5715 /** 5716 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay 5717 * @connector: connector associated with the HDMI/DP sink 5718 * @mode: the display mode 5719 * 5720 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if 5721 * the sink doesn't support audio or video. 5722 */ 5723 int drm_av_sync_delay(struct drm_connector *connector, 5724 const struct drm_display_mode *mode) 5725 { 5726 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); 5727 int a, v; 5728 5729 if (!connector->latency_present[0]) 5730 return 0; 5731 if (!connector->latency_present[1]) 5732 i = 0; 5733 5734 a = connector->audio_latency[i]; 5735 v = connector->video_latency[i]; 5736 5737 /* 5738 * HDMI/DP sink doesn't support audio or video? 5739 */ 5740 if (a == 255 || v == 255) 5741 return 0; 5742 5743 /* 5744 * Convert raw EDID values to millisecond. 5745 * Treat unknown latency as 0ms. 5746 */ 5747 if (a) 5748 a = min(2 * (a - 1), 500); 5749 if (v) 5750 v = min(2 * (v - 1), 500); 5751 5752 return max(v - a, 0); 5753 } 5754 EXPORT_SYMBOL(drm_av_sync_delay); 5755 5756 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid) 5757 { 5758 const struct cea_db *db; 5759 struct cea_db_iter iter; 5760 bool hdmi = false; 5761 5762 /* 5763 * Because HDMI identifier is in Vendor Specific Block, 5764 * search it from all data blocks of CEA extension. 5765 */ 5766 cea_db_iter_edid_begin(drm_edid, &iter); 5767 cea_db_iter_for_each(db, &iter) { 5768 if (cea_db_is_hdmi_vsdb(db)) { 5769 hdmi = true; 5770 break; 5771 } 5772 } 5773 cea_db_iter_end(&iter); 5774 5775 return hdmi; 5776 } 5777 5778 /** 5779 * drm_detect_hdmi_monitor - detect whether monitor is HDMI 5780 * @edid: monitor EDID information 5781 * 5782 * Parse the CEA extension according to CEA-861-B. 5783 * 5784 * Drivers that have added the modes parsed from EDID to drm_display_info 5785 * should use &drm_display_info.is_hdmi instead of calling this function. 5786 * 5787 * Return: True if the monitor is HDMI, false if not or unknown. 5788 */ 5789 bool drm_detect_hdmi_monitor(const struct edid *edid) 5790 { 5791 struct drm_edid drm_edid; 5792 5793 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid)); 5794 } 5795 EXPORT_SYMBOL(drm_detect_hdmi_monitor); 5796 5797 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid) 5798 { 5799 struct drm_edid_iter edid_iter; 5800 const struct cea_db *db; 5801 struct cea_db_iter iter; 5802 const u8 *edid_ext; 5803 bool has_audio = false; 5804 5805 drm_edid_iter_begin(drm_edid, &edid_iter); 5806 drm_edid_iter_for_each(edid_ext, &edid_iter) { 5807 if (edid_ext[0] == CEA_EXT) { 5808 has_audio = edid_ext[3] & EDID_BASIC_AUDIO; 5809 if (has_audio) 5810 break; 5811 } 5812 } 5813 drm_edid_iter_end(&edid_iter); 5814 5815 if (has_audio) { 5816 DRM_DEBUG_KMS("Monitor has basic audio support\n"); 5817 goto end; 5818 } 5819 5820 cea_db_iter_edid_begin(drm_edid, &iter); 5821 cea_db_iter_for_each(db, &iter) { 5822 if (cea_db_tag(db) == CTA_DB_AUDIO) { 5823 const u8 *data = cea_db_data(db); 5824 int i; 5825 5826 for (i = 0; i < cea_db_payload_len(db); i += 3) 5827 DRM_DEBUG_KMS("CEA audio format %d\n", 5828 (data[i] >> 3) & 0xf); 5829 has_audio = true; 5830 break; 5831 } 5832 } 5833 cea_db_iter_end(&iter); 5834 5835 end: 5836 return has_audio; 5837 } 5838 5839 /** 5840 * drm_detect_monitor_audio - check monitor audio capability 5841 * @edid: EDID block to scan 5842 * 5843 * Monitor should have CEA extension block. 5844 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic 5845 * audio' only. If there is any audio extension block and supported 5846 * audio format, assume at least 'basic audio' support, even if 'basic 5847 * audio' is not defined in EDID. 5848 * 5849 * Return: True if the monitor supports audio, false otherwise. 5850 */ 5851 bool drm_detect_monitor_audio(const struct edid *edid) 5852 { 5853 struct drm_edid drm_edid; 5854 5855 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid)); 5856 } 5857 EXPORT_SYMBOL(drm_detect_monitor_audio); 5858 5859 5860 /** 5861 * drm_default_rgb_quant_range - default RGB quantization range 5862 * @mode: display mode 5863 * 5864 * Determine the default RGB quantization range for the mode, 5865 * as specified in CEA-861. 5866 * 5867 * Return: The default RGB quantization range for the mode 5868 */ 5869 enum hdmi_quantization_range 5870 drm_default_rgb_quant_range(const struct drm_display_mode *mode) 5871 { 5872 /* All CEA modes other than VIC 1 use limited quantization range. */ 5873 return drm_match_cea_mode(mode) > 1 ? 5874 HDMI_QUANTIZATION_RANGE_LIMITED : 5875 HDMI_QUANTIZATION_RANGE_FULL; 5876 } 5877 EXPORT_SYMBOL(drm_default_rgb_quant_range); 5878 5879 /* CTA-861 Video Data Block (CTA VDB) */ 5880 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db) 5881 { 5882 struct drm_display_info *info = &connector->display_info; 5883 int i, vic_index, len = cea_db_payload_len(db); 5884 const u8 *svds = cea_db_data(db); 5885 u8 *vics; 5886 5887 if (!len) 5888 return; 5889 5890 /* Gracefully handle multiple VDBs, however unlikely that is */ 5891 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL); 5892 if (!vics) 5893 return; 5894 5895 vic_index = info->vics_len; 5896 info->vics_len += len; 5897 info->vics = vics; 5898 5899 for (i = 0; i < len; i++) { 5900 u8 vic = svd_to_vic(svds[i]); 5901 5902 if (!drm_valid_cea_vic(vic)) 5903 vic = 0; 5904 5905 info->vics[vic_index++] = vic; 5906 } 5907 } 5908 5909 /* 5910 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB. 5911 * 5912 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed 5913 * using the VICs themselves. 5914 */ 5915 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map) 5916 { 5917 struct drm_display_info *info = &connector->display_info; 5918 struct drm_hdmi_info *hdmi = &info->hdmi; 5919 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map)); 5920 5921 for (i = 0; i < len; i++) { 5922 u8 vic = info->vics[i]; 5923 5924 if (vic && y420cmdb_map & BIT_ULL(i)) 5925 bitmap_set(hdmi->y420_cmdb_modes, vic, 1); 5926 } 5927 } 5928 5929 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic) 5930 { 5931 const struct drm_display_info *info = &connector->display_info; 5932 int i; 5933 5934 if (!vic || !info->vics) 5935 return false; 5936 5937 for (i = 0; i < info->vics_len; i++) { 5938 if (info->vics[i] == vic) 5939 return true; 5940 } 5941 5942 return false; 5943 } 5944 5945 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */ 5946 static void parse_cta_y420vdb(struct drm_connector *connector, 5947 const struct cea_db *db) 5948 { 5949 struct drm_display_info *info = &connector->display_info; 5950 struct drm_hdmi_info *hdmi = &info->hdmi; 5951 const u8 *svds = cea_db_data(db) + 1; 5952 int i; 5953 5954 for (i = 0; i < cea_db_payload_len(db) - 1; i++) { 5955 u8 vic = svd_to_vic(svds[i]); 5956 5957 if (!drm_valid_cea_vic(vic)) 5958 continue; 5959 5960 bitmap_set(hdmi->y420_vdb_modes, vic, 1); 5961 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; 5962 } 5963 } 5964 5965 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db) 5966 { 5967 struct drm_display_info *info = &connector->display_info; 5968 5969 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n", 5970 connector->base.id, connector->name, db[2]); 5971 5972 if (db[2] & EDID_CEA_VCDB_QS) 5973 info->rgb_quant_range_selectable = true; 5974 } 5975 5976 static 5977 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane) 5978 { 5979 switch (max_frl_rate) { 5980 case 1: 5981 *max_lanes = 3; 5982 *max_rate_per_lane = 3; 5983 break; 5984 case 2: 5985 *max_lanes = 3; 5986 *max_rate_per_lane = 6; 5987 break; 5988 case 3: 5989 *max_lanes = 4; 5990 *max_rate_per_lane = 6; 5991 break; 5992 case 4: 5993 *max_lanes = 4; 5994 *max_rate_per_lane = 8; 5995 break; 5996 case 5: 5997 *max_lanes = 4; 5998 *max_rate_per_lane = 10; 5999 break; 6000 case 6: 6001 *max_lanes = 4; 6002 *max_rate_per_lane = 12; 6003 break; 6004 case 0: 6005 default: 6006 *max_lanes = 0; 6007 *max_rate_per_lane = 0; 6008 } 6009 } 6010 6011 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector, 6012 const u8 *db) 6013 { 6014 u8 dc_mask; 6015 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 6016 6017 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK; 6018 hdmi->y420_dc_modes = dc_mask; 6019 } 6020 6021 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc, 6022 const u8 *hf_scds) 6023 { 6024 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2; 6025 6026 if (!hdmi_dsc->v_1p2) 6027 return; 6028 6029 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420; 6030 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP; 6031 6032 if (hf_scds[11] & DRM_EDID_DSC_16BPC) 6033 hdmi_dsc->bpc_supported = 16; 6034 else if (hf_scds[11] & DRM_EDID_DSC_12BPC) 6035 hdmi_dsc->bpc_supported = 12; 6036 else if (hf_scds[11] & DRM_EDID_DSC_10BPC) 6037 hdmi_dsc->bpc_supported = 10; 6038 else 6039 /* Supports min 8 BPC if DSC 1.2 is supported*/ 6040 hdmi_dsc->bpc_supported = 8; 6041 6042 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) { 6043 u8 dsc_max_slices; 6044 u8 dsc_max_frl_rate; 6045 6046 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4; 6047 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes, 6048 &hdmi_dsc->max_frl_rate_per_lane); 6049 6050 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES; 6051 6052 switch (dsc_max_slices) { 6053 case 1: 6054 hdmi_dsc->max_slices = 1; 6055 hdmi_dsc->clk_per_slice = 340; 6056 break; 6057 case 2: 6058 hdmi_dsc->max_slices = 2; 6059 hdmi_dsc->clk_per_slice = 340; 6060 break; 6061 case 3: 6062 hdmi_dsc->max_slices = 4; 6063 hdmi_dsc->clk_per_slice = 340; 6064 break; 6065 case 4: 6066 hdmi_dsc->max_slices = 8; 6067 hdmi_dsc->clk_per_slice = 340; 6068 break; 6069 case 5: 6070 hdmi_dsc->max_slices = 8; 6071 hdmi_dsc->clk_per_slice = 400; 6072 break; 6073 case 6: 6074 hdmi_dsc->max_slices = 12; 6075 hdmi_dsc->clk_per_slice = 400; 6076 break; 6077 case 7: 6078 hdmi_dsc->max_slices = 16; 6079 hdmi_dsc->clk_per_slice = 400; 6080 break; 6081 case 0: 6082 default: 6083 hdmi_dsc->max_slices = 0; 6084 hdmi_dsc->clk_per_slice = 0; 6085 } 6086 } 6087 6088 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13]) 6089 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES; 6090 } 6091 6092 /* Sink Capability Data Structure */ 6093 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector, 6094 const u8 *hf_scds) 6095 { 6096 struct drm_display_info *info = &connector->display_info; 6097 struct drm_hdmi_info *hdmi = &info->hdmi; 6098 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap; 6099 int max_tmds_clock = 0; 6100 u8 max_frl_rate = 0; 6101 bool dsc_support = false; 6102 6103 info->has_hdmi_infoframe = true; 6104 6105 if (hf_scds[6] & 0x80) { 6106 hdmi->scdc.supported = true; 6107 if (hf_scds[6] & 0x40) 6108 hdmi->scdc.read_request = true; 6109 } 6110 6111 /* 6112 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz. 6113 * And as per the spec, three factors confirm this: 6114 * * Availability of a HF-VSDB block in EDID (check) 6115 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check) 6116 * * SCDC support available (let's check) 6117 * Lets check it out. 6118 */ 6119 6120 if (hf_scds[5]) { 6121 struct drm_scdc *scdc = &hdmi->scdc; 6122 6123 /* max clock is 5000 KHz times block value */ 6124 max_tmds_clock = hf_scds[5] * 5000; 6125 6126 if (max_tmds_clock > 340000) { 6127 info->max_tmds_clock = max_tmds_clock; 6128 } 6129 6130 if (scdc->supported) { 6131 scdc->scrambling.supported = true; 6132 6133 /* Few sinks support scrambling for clocks < 340M */ 6134 if ((hf_scds[6] & 0x8)) 6135 scdc->scrambling.low_rates = true; 6136 } 6137 } 6138 6139 if (hf_scds[7]) { 6140 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4; 6141 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes, 6142 &hdmi->max_frl_rate_per_lane); 6143 } 6144 6145 drm_parse_ycbcr420_deep_color_info(connector, hf_scds); 6146 6147 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) { 6148 drm_parse_dsc_info(hdmi_dsc, hf_scds); 6149 dsc_support = true; 6150 } 6151 6152 drm_dbg_kms(connector->dev, 6153 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n", 6154 connector->base.id, connector->name, 6155 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support)); 6156 } 6157 6158 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector, 6159 const u8 *hdmi) 6160 { 6161 struct drm_display_info *info = &connector->display_info; 6162 unsigned int dc_bpc = 0; 6163 6164 /* HDMI supports at least 8 bpc */ 6165 info->bpc = 8; 6166 6167 if (cea_db_payload_len(hdmi) < 6) 6168 return; 6169 6170 if (hdmi[6] & DRM_EDID_HDMI_DC_30) { 6171 dc_bpc = 10; 6172 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30; 6173 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n", 6174 connector->base.id, connector->name); 6175 } 6176 6177 if (hdmi[6] & DRM_EDID_HDMI_DC_36) { 6178 dc_bpc = 12; 6179 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36; 6180 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n", 6181 connector->base.id, connector->name); 6182 } 6183 6184 if (hdmi[6] & DRM_EDID_HDMI_DC_48) { 6185 dc_bpc = 16; 6186 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48; 6187 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n", 6188 connector->base.id, connector->name); 6189 } 6190 6191 if (dc_bpc == 0) { 6192 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n", 6193 connector->base.id, connector->name); 6194 return; 6195 } 6196 6197 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n", 6198 connector->base.id, connector->name, dc_bpc); 6199 info->bpc = dc_bpc; 6200 6201 /* YCRCB444 is optional according to spec. */ 6202 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) { 6203 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes; 6204 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n", 6205 connector->base.id, connector->name); 6206 } 6207 6208 /* 6209 * Spec says that if any deep color mode is supported at all, 6210 * then deep color 36 bit must be supported. 6211 */ 6212 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) { 6213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n", 6214 connector->base.id, connector->name); 6215 } 6216 } 6217 6218 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ 6219 static void 6220 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db) 6221 { 6222 struct drm_display_info *info = &connector->display_info; 6223 u8 len = cea_db_payload_len(db); 6224 6225 info->is_hdmi = true; 6226 6227 info->source_physical_address = (db[4] << 8) | db[5]; 6228 6229 if (len >= 6) 6230 info->dvi_dual = db[6] & 1; 6231 if (len >= 7) 6232 info->max_tmds_clock = db[7] * 5000; 6233 6234 /* 6235 * Try to infer whether the sink supports HDMI infoframes. 6236 * 6237 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink 6238 * supports infoframes if HDMI_Video_present is set. 6239 */ 6240 if (len >= 8 && db[8] & BIT(5)) 6241 info->has_hdmi_infoframe = true; 6242 6243 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n", 6244 connector->base.id, connector->name, 6245 info->dvi_dual, info->max_tmds_clock); 6246 6247 drm_parse_hdmi_deep_color_info(connector, db); 6248 } 6249 6250 /* 6251 * See EDID extension for head-mounted and specialized monitors, specified at: 6252 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension 6253 */ 6254 static void drm_parse_microsoft_vsdb(struct drm_connector *connector, 6255 const u8 *db) 6256 { 6257 struct drm_display_info *info = &connector->display_info; 6258 u8 version = db[4]; 6259 bool desktop_usage = db[5] & BIT(6); 6260 6261 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */ 6262 if (version == 1 || version == 2 || (version == 3 && !desktop_usage)) 6263 info->non_desktop = true; 6264 6265 drm_dbg_kms(connector->dev, 6266 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n", 6267 connector->base.id, connector->name, version, db[5]); 6268 } 6269 6270 static void drm_parse_cea_ext(struct drm_connector *connector, 6271 const struct drm_edid *drm_edid) 6272 { 6273 struct drm_display_info *info = &connector->display_info; 6274 struct drm_edid_iter edid_iter; 6275 const struct cea_db *db; 6276 struct cea_db_iter iter; 6277 const u8 *edid_ext; 6278 u64 y420cmdb_map = 0; 6279 6280 drm_edid_iter_begin(drm_edid, &edid_iter); 6281 drm_edid_iter_for_each(edid_ext, &edid_iter) { 6282 if (edid_ext[0] != CEA_EXT) 6283 continue; 6284 6285 if (!info->cea_rev) 6286 info->cea_rev = edid_ext[1]; 6287 6288 if (info->cea_rev != edid_ext[1]) 6289 drm_dbg_kms(connector->dev, 6290 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n", 6291 connector->base.id, connector->name, 6292 info->cea_rev, edid_ext[1]); 6293 6294 /* The existence of a CTA extension should imply RGB support */ 6295 info->color_formats = DRM_COLOR_FORMAT_RGB444; 6296 if (edid_ext[3] & EDID_CEA_YCRCB444) 6297 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; 6298 if (edid_ext[3] & EDID_CEA_YCRCB422) 6299 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; 6300 if (edid_ext[3] & EDID_BASIC_AUDIO) 6301 info->has_audio = true; 6302 6303 } 6304 drm_edid_iter_end(&edid_iter); 6305 6306 cea_db_iter_edid_begin(drm_edid, &iter); 6307 cea_db_iter_for_each(db, &iter) { 6308 /* FIXME: convert parsers to use struct cea_db */ 6309 const u8 *data = (const u8 *)db; 6310 6311 if (cea_db_is_hdmi_vsdb(db)) 6312 drm_parse_hdmi_vsdb_video(connector, data); 6313 else if (cea_db_is_hdmi_forum_vsdb(db) || 6314 cea_db_is_hdmi_forum_scdb(db)) 6315 drm_parse_hdmi_forum_scds(connector, data); 6316 else if (cea_db_is_microsoft_vsdb(db)) 6317 drm_parse_microsoft_vsdb(connector, data); 6318 else if (cea_db_is_y420cmdb(db)) 6319 parse_cta_y420cmdb(connector, db, &y420cmdb_map); 6320 else if (cea_db_is_y420vdb(db)) 6321 parse_cta_y420vdb(connector, db); 6322 else if (cea_db_is_vcdb(db)) 6323 drm_parse_vcdb(connector, data); 6324 else if (cea_db_is_hdmi_hdr_metadata_block(db)) 6325 drm_parse_hdr_metadata_block(connector, data); 6326 else if (cea_db_tag(db) == CTA_DB_VIDEO) 6327 parse_cta_vdb(connector, db); 6328 else if (cea_db_tag(db) == CTA_DB_AUDIO) 6329 info->has_audio = true; 6330 } 6331 cea_db_iter_end(&iter); 6332 6333 if (y420cmdb_map) 6334 update_cta_y420cmdb(connector, y420cmdb_map); 6335 } 6336 6337 static 6338 void get_monitor_range(const struct detailed_timing *timing, void *c) 6339 { 6340 struct detailed_mode_closure *closure = c; 6341 struct drm_display_info *info = &closure->connector->display_info; 6342 struct drm_monitor_range_info *monitor_range = &info->monitor_range; 6343 const struct detailed_non_pixel *data = &timing->data.other_data; 6344 const struct detailed_data_monitor_range *range = &data->data.range; 6345 const struct edid *edid = closure->drm_edid->edid; 6346 6347 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) 6348 return; 6349 6350 /* 6351 * These limits are used to determine the VRR refresh 6352 * rate range. Only the "range limits only" variant 6353 * of the range descriptor seems to guarantee that 6354 * any and all timings are accepted by the sink, as 6355 * opposed to just timings conforming to the indicated 6356 * formula (GTF/GTF2/CVT). Thus other variants of the 6357 * range descriptor are not accepted here. 6358 */ 6359 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG) 6360 return; 6361 6362 monitor_range->min_vfreq = range->min_vfreq; 6363 monitor_range->max_vfreq = range->max_vfreq; 6364 6365 if (edid->revision >= 4) { 6366 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ) 6367 monitor_range->min_vfreq += 255; 6368 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ) 6369 monitor_range->max_vfreq += 255; 6370 } 6371 } 6372 6373 static void drm_get_monitor_range(struct drm_connector *connector, 6374 const struct drm_edid *drm_edid) 6375 { 6376 const struct drm_display_info *info = &connector->display_info; 6377 struct detailed_mode_closure closure = { 6378 .connector = connector, 6379 .drm_edid = drm_edid, 6380 }; 6381 6382 if (drm_edid->edid->revision < 4) 6383 return; 6384 6385 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)) 6386 return; 6387 6388 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure); 6389 6390 drm_dbg_kms(connector->dev, 6391 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n", 6392 connector->base.id, connector->name, 6393 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq); 6394 } 6395 6396 static void drm_parse_vesa_mso_data(struct drm_connector *connector, 6397 const struct displayid_block *block) 6398 { 6399 struct displayid_vesa_vendor_specific_block *vesa = 6400 (struct displayid_vesa_vendor_specific_block *)block; 6401 struct drm_display_info *info = &connector->display_info; 6402 6403 if (block->num_bytes < 3) { 6404 drm_dbg_kms(connector->dev, 6405 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n", 6406 connector->base.id, connector->name, block->num_bytes); 6407 return; 6408 } 6409 6410 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI) 6411 return; 6412 6413 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) { 6414 drm_dbg_kms(connector->dev, 6415 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n", 6416 connector->base.id, connector->name); 6417 return; 6418 } 6419 6420 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) { 6421 default: 6422 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n", 6423 connector->base.id, connector->name); 6424 fallthrough; 6425 case 0: 6426 info->mso_stream_count = 0; 6427 break; 6428 case 1: 6429 info->mso_stream_count = 2; /* 2 or 4 links */ 6430 break; 6431 case 2: 6432 info->mso_stream_count = 4; /* 4 links */ 6433 break; 6434 } 6435 6436 if (!info->mso_stream_count) { 6437 info->mso_pixel_overlap = 0; 6438 return; 6439 } 6440 6441 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso); 6442 if (info->mso_pixel_overlap > 8) { 6443 drm_dbg_kms(connector->dev, 6444 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n", 6445 connector->base.id, connector->name, 6446 info->mso_pixel_overlap); 6447 info->mso_pixel_overlap = 8; 6448 } 6449 6450 drm_dbg_kms(connector->dev, 6451 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n", 6452 connector->base.id, connector->name, 6453 info->mso_stream_count, info->mso_pixel_overlap); 6454 } 6455 6456 static void drm_update_mso(struct drm_connector *connector, 6457 const struct drm_edid *drm_edid) 6458 { 6459 const struct displayid_block *block; 6460 struct displayid_iter iter; 6461 6462 displayid_iter_edid_begin(drm_edid, &iter); 6463 displayid_iter_for_each(block, &iter) { 6464 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC) 6465 drm_parse_vesa_mso_data(connector, block); 6466 } 6467 displayid_iter_end(&iter); 6468 } 6469 6470 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset 6471 * all of the values which would have been set from EDID 6472 */ 6473 static void drm_reset_display_info(struct drm_connector *connector) 6474 { 6475 struct drm_display_info *info = &connector->display_info; 6476 6477 info->width_mm = 0; 6478 info->height_mm = 0; 6479 6480 info->bpc = 0; 6481 info->color_formats = 0; 6482 info->cea_rev = 0; 6483 info->max_tmds_clock = 0; 6484 info->dvi_dual = false; 6485 info->is_hdmi = false; 6486 info->has_audio = false; 6487 info->has_hdmi_infoframe = false; 6488 info->rgb_quant_range_selectable = false; 6489 memset(&info->hdmi, 0, sizeof(info->hdmi)); 6490 6491 info->edid_hdmi_rgb444_dc_modes = 0; 6492 info->edid_hdmi_ycbcr444_dc_modes = 0; 6493 6494 info->non_desktop = 0; 6495 memset(&info->monitor_range, 0, sizeof(info->monitor_range)); 6496 memset(&info->luminance_range, 0, sizeof(info->luminance_range)); 6497 6498 info->mso_stream_count = 0; 6499 info->mso_pixel_overlap = 0; 6500 info->max_dsc_bpp = 0; 6501 6502 kfree(info->vics); 6503 info->vics = NULL; 6504 info->vics_len = 0; 6505 6506 info->quirks = 0; 6507 6508 info->source_physical_address = CEC_PHYS_ADDR_INVALID; 6509 } 6510 6511 static void update_displayid_info(struct drm_connector *connector, 6512 const struct drm_edid *drm_edid) 6513 { 6514 struct drm_display_info *info = &connector->display_info; 6515 const struct displayid_block *block; 6516 struct displayid_iter iter; 6517 6518 displayid_iter_edid_begin(drm_edid, &iter); 6519 displayid_iter_for_each(block, &iter) { 6520 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 && 6521 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR || 6522 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR)) 6523 info->non_desktop = true; 6524 6525 /* 6526 * We're only interested in the base section here, no need to 6527 * iterate further. 6528 */ 6529 break; 6530 } 6531 displayid_iter_end(&iter); 6532 } 6533 6534 static void update_display_info(struct drm_connector *connector, 6535 const struct drm_edid *drm_edid) 6536 { 6537 struct drm_display_info *info = &connector->display_info; 6538 const struct edid *edid; 6539 6540 drm_reset_display_info(connector); 6541 clear_eld(connector); 6542 6543 if (!drm_edid) 6544 return; 6545 6546 edid = drm_edid->edid; 6547 6548 info->quirks = edid_get_quirks(drm_edid); 6549 6550 info->width_mm = edid->width_cm * 10; 6551 info->height_mm = edid->height_cm * 10; 6552 6553 drm_get_monitor_range(connector, drm_edid); 6554 6555 if (edid->revision < 3) 6556 goto out; 6557 6558 if (!drm_edid_is_digital(drm_edid)) 6559 goto out; 6560 6561 info->color_formats |= DRM_COLOR_FORMAT_RGB444; 6562 drm_parse_cea_ext(connector, drm_edid); 6563 6564 update_displayid_info(connector, drm_edid); 6565 6566 /* 6567 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3? 6568 * 6569 * For such displays, the DFP spec 1.0, section 3.10 "EDID support" 6570 * tells us to assume 8 bpc color depth if the EDID doesn't have 6571 * extensions which tell otherwise. 6572 */ 6573 if (info->bpc == 0 && edid->revision == 3 && 6574 edid->input & DRM_EDID_DIGITAL_DFP_1_X) { 6575 info->bpc = 8; 6576 drm_dbg_kms(connector->dev, 6577 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n", 6578 connector->base.id, connector->name, info->bpc); 6579 } 6580 6581 /* Only defined for 1.4 with digital displays */ 6582 if (edid->revision < 4) 6583 goto out; 6584 6585 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { 6586 case DRM_EDID_DIGITAL_DEPTH_6: 6587 info->bpc = 6; 6588 break; 6589 case DRM_EDID_DIGITAL_DEPTH_8: 6590 info->bpc = 8; 6591 break; 6592 case DRM_EDID_DIGITAL_DEPTH_10: 6593 info->bpc = 10; 6594 break; 6595 case DRM_EDID_DIGITAL_DEPTH_12: 6596 info->bpc = 12; 6597 break; 6598 case DRM_EDID_DIGITAL_DEPTH_14: 6599 info->bpc = 14; 6600 break; 6601 case DRM_EDID_DIGITAL_DEPTH_16: 6602 info->bpc = 16; 6603 break; 6604 case DRM_EDID_DIGITAL_DEPTH_UNDEF: 6605 default: 6606 info->bpc = 0; 6607 break; 6608 } 6609 6610 drm_dbg_kms(connector->dev, 6611 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n", 6612 connector->base.id, connector->name, info->bpc); 6613 6614 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) 6615 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; 6616 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) 6617 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; 6618 6619 drm_update_mso(connector, drm_edid); 6620 6621 out: 6622 if (info->quirks & EDID_QUIRK_NON_DESKTOP) { 6623 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n", 6624 connector->base.id, connector->name, 6625 info->non_desktop ? " (redundant quirk)" : ""); 6626 info->non_desktop = true; 6627 } 6628 6629 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP) 6630 info->max_dsc_bpp = 15; 6631 6632 if (info->quirks & EDID_QUIRK_FORCE_6BPC) 6633 info->bpc = 6; 6634 6635 if (info->quirks & EDID_QUIRK_FORCE_8BPC) 6636 info->bpc = 8; 6637 6638 if (info->quirks & EDID_QUIRK_FORCE_10BPC) 6639 info->bpc = 10; 6640 6641 if (info->quirks & EDID_QUIRK_FORCE_12BPC) 6642 info->bpc = 12; 6643 6644 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */ 6645 drm_edid_to_eld(connector, drm_edid); 6646 } 6647 6648 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev, 6649 struct displayid_detailed_timings_1 *timings, 6650 bool type_7) 6651 { 6652 struct drm_display_mode *mode; 6653 unsigned pixel_clock = (timings->pixel_clock[0] | 6654 (timings->pixel_clock[1] << 8) | 6655 (timings->pixel_clock[2] << 16)) + 1; 6656 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1; 6657 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1; 6658 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1; 6659 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1; 6660 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1; 6661 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1; 6662 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1; 6663 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1; 6664 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1; 6665 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1; 6666 6667 mode = drm_mode_create(dev); 6668 if (!mode) 6669 return NULL; 6670 6671 /* resolution is kHz for type VII, and 10 kHz for type I */ 6672 mode->clock = type_7 ? pixel_clock : pixel_clock * 10; 6673 mode->hdisplay = hactive; 6674 mode->hsync_start = mode->hdisplay + hsync; 6675 mode->hsync_end = mode->hsync_start + hsync_width; 6676 mode->htotal = mode->hdisplay + hblank; 6677 6678 mode->vdisplay = vactive; 6679 mode->vsync_start = mode->vdisplay + vsync; 6680 mode->vsync_end = mode->vsync_start + vsync_width; 6681 mode->vtotal = mode->vdisplay + vblank; 6682 6683 mode->flags = 0; 6684 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 6685 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 6686 mode->type = DRM_MODE_TYPE_DRIVER; 6687 6688 if (timings->flags & 0x80) 6689 mode->type |= DRM_MODE_TYPE_PREFERRED; 6690 drm_mode_set_name(mode); 6691 6692 return mode; 6693 } 6694 6695 static int add_displayid_detailed_1_modes(struct drm_connector *connector, 6696 const struct displayid_block *block) 6697 { 6698 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block; 6699 int i; 6700 int num_timings; 6701 struct drm_display_mode *newmode; 6702 int num_modes = 0; 6703 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING; 6704 /* blocks must be multiple of 20 bytes length */ 6705 if (block->num_bytes % 20) 6706 return 0; 6707 6708 num_timings = block->num_bytes / 20; 6709 for (i = 0; i < num_timings; i++) { 6710 struct displayid_detailed_timings_1 *timings = &det->timings[i]; 6711 6712 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7); 6713 if (!newmode) 6714 continue; 6715 6716 drm_mode_probed_add(connector, newmode); 6717 num_modes++; 6718 } 6719 return num_modes; 6720 } 6721 6722 static int add_displayid_detailed_modes(struct drm_connector *connector, 6723 const struct drm_edid *drm_edid) 6724 { 6725 const struct displayid_block *block; 6726 struct displayid_iter iter; 6727 int num_modes = 0; 6728 6729 displayid_iter_edid_begin(drm_edid, &iter); 6730 displayid_iter_for_each(block, &iter) { 6731 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING || 6732 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING) 6733 num_modes += add_displayid_detailed_1_modes(connector, block); 6734 } 6735 displayid_iter_end(&iter); 6736 6737 return num_modes; 6738 } 6739 6740 static int _drm_edid_connector_add_modes(struct drm_connector *connector, 6741 const struct drm_edid *drm_edid) 6742 { 6743 const struct drm_display_info *info = &connector->display_info; 6744 int num_modes = 0; 6745 6746 if (!drm_edid) 6747 return 0; 6748 6749 /* 6750 * EDID spec says modes should be preferred in this order: 6751 * - preferred detailed mode 6752 * - other detailed modes from base block 6753 * - detailed modes from extension blocks 6754 * - CVT 3-byte code modes 6755 * - standard timing codes 6756 * - established timing codes 6757 * - modes inferred from GTF or CVT range information 6758 * 6759 * We get this pretty much right. 6760 * 6761 * XXX order for additional mode types in extension blocks? 6762 */ 6763 num_modes += add_detailed_modes(connector, drm_edid); 6764 num_modes += add_cvt_modes(connector, drm_edid); 6765 num_modes += add_standard_modes(connector, drm_edid); 6766 num_modes += add_established_modes(connector, drm_edid); 6767 num_modes += add_cea_modes(connector, drm_edid); 6768 num_modes += add_alternate_cea_modes(connector, drm_edid); 6769 num_modes += add_displayid_detailed_modes(connector, drm_edid); 6770 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ) 6771 num_modes += add_inferred_modes(connector, drm_edid); 6772 6773 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) 6774 edid_fixup_preferred(connector); 6775 6776 return num_modes; 6777 } 6778 6779 static void _drm_update_tile_info(struct drm_connector *connector, 6780 const struct drm_edid *drm_edid); 6781 6782 static int _drm_edid_connector_property_update(struct drm_connector *connector, 6783 const struct drm_edid *drm_edid) 6784 { 6785 struct drm_device *dev = connector->dev; 6786 int ret; 6787 6788 if (connector->edid_blob_ptr) { 6789 const struct edid *old_edid = connector->edid_blob_ptr->data; 6790 6791 if (old_edid) { 6792 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) { 6793 connector->epoch_counter++; 6794 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n", 6795 connector->base.id, connector->name, 6796 connector->epoch_counter); 6797 } 6798 } 6799 } 6800 6801 ret = drm_property_replace_global_blob(dev, 6802 &connector->edid_blob_ptr, 6803 drm_edid ? drm_edid->size : 0, 6804 drm_edid ? drm_edid->edid : NULL, 6805 &connector->base, 6806 dev->mode_config.edid_property); 6807 if (ret) { 6808 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n", 6809 connector->base.id, connector->name, ret); 6810 goto out; 6811 } 6812 6813 ret = drm_object_property_set_value(&connector->base, 6814 dev->mode_config.non_desktop_property, 6815 connector->display_info.non_desktop); 6816 if (ret) { 6817 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n", 6818 connector->base.id, connector->name, ret); 6819 goto out; 6820 } 6821 6822 ret = drm_connector_set_tile_property(connector); 6823 if (ret) { 6824 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n", 6825 connector->base.id, connector->name, ret); 6826 goto out; 6827 } 6828 6829 out: 6830 return ret; 6831 } 6832 6833 /** 6834 * drm_edid_connector_update - Update connector information from EDID 6835 * @connector: Connector 6836 * @drm_edid: EDID 6837 * 6838 * Update the connector display info, ELD, HDR metadata, relevant properties, 6839 * etc. from the passed in EDID. 6840 * 6841 * If EDID is NULL, reset the information. 6842 * 6843 * Must be called before calling drm_edid_connector_add_modes(). 6844 * 6845 * Return: 0 on success, negative error on errors. 6846 */ 6847 int drm_edid_connector_update(struct drm_connector *connector, 6848 const struct drm_edid *drm_edid) 6849 { 6850 update_display_info(connector, drm_edid); 6851 6852 _drm_update_tile_info(connector, drm_edid); 6853 6854 return _drm_edid_connector_property_update(connector, drm_edid); 6855 } 6856 EXPORT_SYMBOL(drm_edid_connector_update); 6857 6858 /** 6859 * drm_edid_connector_add_modes - Update probed modes from the EDID property 6860 * @connector: Connector 6861 * 6862 * Add the modes from the previously updated EDID property to the connector 6863 * probed modes list. 6864 * 6865 * drm_edid_connector_update() must have been called before this to update the 6866 * EDID property. 6867 * 6868 * Return: The number of modes added, or 0 if we couldn't find any. 6869 */ 6870 int drm_edid_connector_add_modes(struct drm_connector *connector) 6871 { 6872 const struct drm_edid *drm_edid = NULL; 6873 int count; 6874 6875 if (connector->edid_blob_ptr) 6876 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data, 6877 connector->edid_blob_ptr->length); 6878 6879 count = _drm_edid_connector_add_modes(connector, drm_edid); 6880 6881 drm_edid_free(drm_edid); 6882 6883 return count; 6884 } 6885 EXPORT_SYMBOL(drm_edid_connector_add_modes); 6886 6887 /** 6888 * drm_connector_update_edid_property - update the edid property of a connector 6889 * @connector: drm connector 6890 * @edid: new value of the edid property 6891 * 6892 * This function creates a new blob modeset object and assigns its id to the 6893 * connector's edid property. 6894 * Since we also parse tile information from EDID's displayID block, we also 6895 * set the connector's tile property here. See drm_connector_set_tile_property() 6896 * for more details. 6897 * 6898 * This function is deprecated. Use drm_edid_connector_update() instead. 6899 * 6900 * Returns: 6901 * Zero on success, negative errno on failure. 6902 */ 6903 int drm_connector_update_edid_property(struct drm_connector *connector, 6904 const struct edid *edid) 6905 { 6906 struct drm_edid drm_edid; 6907 6908 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid)); 6909 } 6910 EXPORT_SYMBOL(drm_connector_update_edid_property); 6911 6912 /** 6913 * drm_add_edid_modes - add modes from EDID data, if available 6914 * @connector: connector we're probing 6915 * @edid: EDID data 6916 * 6917 * Add the specified modes to the connector's mode list. Also fills out the 6918 * &drm_display_info structure and ELD in @connector with any information which 6919 * can be derived from the edid. 6920 * 6921 * This function is deprecated. Use drm_edid_connector_add_modes() instead. 6922 * 6923 * Return: The number of modes added or 0 if we couldn't find any. 6924 */ 6925 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) 6926 { 6927 struct drm_edid _drm_edid; 6928 const struct drm_edid *drm_edid; 6929 6930 if (edid && !drm_edid_is_valid(edid)) { 6931 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n", 6932 connector->base.id, connector->name); 6933 edid = NULL; 6934 } 6935 6936 drm_edid = drm_edid_legacy_init(&_drm_edid, edid); 6937 6938 update_display_info(connector, drm_edid); 6939 6940 return _drm_edid_connector_add_modes(connector, drm_edid); 6941 } 6942 EXPORT_SYMBOL(drm_add_edid_modes); 6943 6944 /** 6945 * drm_add_modes_noedid - add modes for the connectors without EDID 6946 * @connector: connector we're probing 6947 * @hdisplay: the horizontal display limit 6948 * @vdisplay: the vertical display limit 6949 * 6950 * Add the specified modes to the connector's mode list. Only when the 6951 * hdisplay/vdisplay is not beyond the given limit, it will be added. 6952 * 6953 * Return: The number of modes added or 0 if we couldn't find any. 6954 */ 6955 int drm_add_modes_noedid(struct drm_connector *connector, 6956 int hdisplay, int vdisplay) 6957 { 6958 int i, count, num_modes = 0; 6959 struct drm_display_mode *mode; 6960 struct drm_device *dev = connector->dev; 6961 6962 count = ARRAY_SIZE(drm_dmt_modes); 6963 if (hdisplay < 0) 6964 hdisplay = 0; 6965 if (vdisplay < 0) 6966 vdisplay = 0; 6967 6968 for (i = 0; i < count; i++) { 6969 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 6970 6971 if (hdisplay && vdisplay) { 6972 /* 6973 * Only when two are valid, they will be used to check 6974 * whether the mode should be added to the mode list of 6975 * the connector. 6976 */ 6977 if (ptr->hdisplay > hdisplay || 6978 ptr->vdisplay > vdisplay) 6979 continue; 6980 } 6981 if (drm_mode_vrefresh(ptr) > 61) 6982 continue; 6983 mode = drm_mode_duplicate(dev, ptr); 6984 if (mode) { 6985 drm_mode_probed_add(connector, mode); 6986 num_modes++; 6987 } 6988 } 6989 return num_modes; 6990 } 6991 EXPORT_SYMBOL(drm_add_modes_noedid); 6992 6993 /** 6994 * drm_set_preferred_mode - Sets the preferred mode of a connector 6995 * @connector: connector whose mode list should be processed 6996 * @hpref: horizontal resolution of preferred mode 6997 * @vpref: vertical resolution of preferred mode 6998 * 6999 * Marks a mode as preferred if it matches the resolution specified by @hpref 7000 * and @vpref. 7001 */ 7002 void drm_set_preferred_mode(struct drm_connector *connector, 7003 int hpref, int vpref) 7004 { 7005 struct drm_display_mode *mode; 7006 7007 list_for_each_entry(mode, &connector->probed_modes, head) { 7008 if (mode->hdisplay == hpref && 7009 mode->vdisplay == vpref) 7010 mode->type |= DRM_MODE_TYPE_PREFERRED; 7011 } 7012 } 7013 EXPORT_SYMBOL(drm_set_preferred_mode); 7014 7015 static bool is_hdmi2_sink(const struct drm_connector *connector) 7016 { 7017 /* 7018 * FIXME: sil-sii8620 doesn't have a connector around when 7019 * we need one, so we have to be prepared for a NULL connector. 7020 */ 7021 if (!connector) 7022 return true; 7023 7024 return connector->display_info.hdmi.scdc.supported || 7025 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420; 7026 } 7027 7028 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector, 7029 const struct drm_display_mode *mode) 7030 { 7031 bool has_hdmi_infoframe = connector ? 7032 connector->display_info.has_hdmi_infoframe : false; 7033 7034 if (!has_hdmi_infoframe) 7035 return 0; 7036 7037 /* No HDMI VIC when signalling 3D video format */ 7038 if (mode->flags & DRM_MODE_FLAG_3D_MASK) 7039 return 0; 7040 7041 return drm_match_hdmi_mode(mode); 7042 } 7043 7044 static u8 drm_mode_cea_vic(const struct drm_connector *connector, 7045 const struct drm_display_mode *mode) 7046 { 7047 /* 7048 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes 7049 * we should send its VIC in vendor infoframes, else send the 7050 * VIC in AVI infoframes. Lets check if this mode is present in 7051 * HDMI 1.4b 4K modes 7052 */ 7053 if (drm_mode_hdmi_vic(connector, mode)) 7054 return 0; 7055 7056 return drm_match_cea_mode(mode); 7057 } 7058 7059 /* 7060 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that 7061 * conform to HDMI 1.4. 7062 * 7063 * HDMI 1.4 (CTA-861-D) VIC range: [1..64] 7064 * HDMI 2.0 (CTA-861-F) VIC range: [1..107] 7065 * 7066 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI 7067 * version. 7068 */ 7069 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic) 7070 { 7071 if (!is_hdmi2_sink(connector) && vic > 64 && 7072 !cta_vdb_has_vic(connector, vic)) 7073 return 0; 7074 7075 return vic; 7076 } 7077 7078 /** 7079 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with 7080 * data from a DRM display mode 7081 * @frame: HDMI AVI infoframe 7082 * @connector: the connector 7083 * @mode: DRM display mode 7084 * 7085 * Return: 0 on success or a negative error code on failure. 7086 */ 7087 int 7088 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, 7089 const struct drm_connector *connector, 7090 const struct drm_display_mode *mode) 7091 { 7092 enum hdmi_picture_aspect picture_aspect; 7093 u8 vic, hdmi_vic; 7094 7095 if (!frame || !mode) 7096 return -EINVAL; 7097 7098 hdmi_avi_infoframe_init(frame); 7099 7100 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 7101 frame->pixel_repeat = 1; 7102 7103 vic = drm_mode_cea_vic(connector, mode); 7104 hdmi_vic = drm_mode_hdmi_vic(connector, mode); 7105 7106 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; 7107 7108 /* 7109 * As some drivers don't support atomic, we can't use connector state. 7110 * So just initialize the frame with default values, just the same way 7111 * as it's done with other properties here. 7112 */ 7113 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS; 7114 frame->itc = 0; 7115 7116 /* 7117 * Populate picture aspect ratio from either 7118 * user input (if specified) or from the CEA/HDMI mode lists. 7119 */ 7120 picture_aspect = mode->picture_aspect_ratio; 7121 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) { 7122 if (vic) 7123 picture_aspect = drm_get_cea_aspect_ratio(vic); 7124 else if (hdmi_vic) 7125 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic); 7126 } 7127 7128 /* 7129 * The infoframe can't convey anything but none, 4:3 7130 * and 16:9, so if the user has asked for anything else 7131 * we can only satisfy it by specifying the right VIC. 7132 */ 7133 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) { 7134 if (vic) { 7135 if (picture_aspect != drm_get_cea_aspect_ratio(vic)) 7136 return -EINVAL; 7137 } else if (hdmi_vic) { 7138 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic)) 7139 return -EINVAL; 7140 } else { 7141 return -EINVAL; 7142 } 7143 7144 picture_aspect = HDMI_PICTURE_ASPECT_NONE; 7145 } 7146 7147 frame->video_code = vic_for_avi_infoframe(connector, vic); 7148 frame->picture_aspect = picture_aspect; 7149 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; 7150 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN; 7151 7152 return 0; 7153 } 7154 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); 7155 7156 /** 7157 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe 7158 * quantization range information 7159 * @frame: HDMI AVI infoframe 7160 * @connector: the connector 7161 * @mode: DRM display mode 7162 * @rgb_quant_range: RGB quantization range (Q) 7163 */ 7164 void 7165 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame, 7166 const struct drm_connector *connector, 7167 const struct drm_display_mode *mode, 7168 enum hdmi_quantization_range rgb_quant_range) 7169 { 7170 const struct drm_display_info *info = &connector->display_info; 7171 7172 /* 7173 * CEA-861: 7174 * "A Source shall not send a non-zero Q value that does not correspond 7175 * to the default RGB Quantization Range for the transmitted Picture 7176 * unless the Sink indicates support for the Q bit in a Video 7177 * Capabilities Data Block." 7178 * 7179 * HDMI 2.0 recommends sending non-zero Q when it does match the 7180 * default RGB quantization range for the mode, even when QS=0. 7181 */ 7182 if (info->rgb_quant_range_selectable || 7183 rgb_quant_range == drm_default_rgb_quant_range(mode)) 7184 frame->quantization_range = rgb_quant_range; 7185 else 7186 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 7187 7188 /* 7189 * CEA-861-F: 7190 * "When transmitting any RGB colorimetry, the Source should set the 7191 * YQ-field to match the RGB Quantization Range being transmitted 7192 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB, 7193 * set YQ=1) and the Sink shall ignore the YQ-field." 7194 * 7195 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused 7196 * by non-zero YQ when receiving RGB. There doesn't seem to be any 7197 * good way to tell which version of CEA-861 the sink supports, so 7198 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based 7199 * on CEA-861-F. 7200 */ 7201 if (!is_hdmi2_sink(connector) || 7202 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) 7203 frame->ycc_quantization_range = 7204 HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 7205 else 7206 frame->ycc_quantization_range = 7207 HDMI_YCC_QUANTIZATION_RANGE_FULL; 7208 } 7209 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range); 7210 7211 static enum hdmi_3d_structure 7212 s3d_structure_from_display_mode(const struct drm_display_mode *mode) 7213 { 7214 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; 7215 7216 switch (layout) { 7217 case DRM_MODE_FLAG_3D_FRAME_PACKING: 7218 return HDMI_3D_STRUCTURE_FRAME_PACKING; 7219 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: 7220 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; 7221 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: 7222 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; 7223 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: 7224 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; 7225 case DRM_MODE_FLAG_3D_L_DEPTH: 7226 return HDMI_3D_STRUCTURE_L_DEPTH; 7227 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: 7228 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; 7229 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: 7230 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; 7231 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: 7232 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; 7233 default: 7234 return HDMI_3D_STRUCTURE_INVALID; 7235 } 7236 } 7237 7238 /** 7239 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with 7240 * data from a DRM display mode 7241 * @frame: HDMI vendor infoframe 7242 * @connector: the connector 7243 * @mode: DRM display mode 7244 * 7245 * Note that there's is a need to send HDMI vendor infoframes only when using a 7246 * 4k or stereoscopic 3D mode. So when giving any other mode as input this 7247 * function will return -EINVAL, error that can be safely ignored. 7248 * 7249 * Return: 0 on success or a negative error code on failure. 7250 */ 7251 int 7252 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, 7253 const struct drm_connector *connector, 7254 const struct drm_display_mode *mode) 7255 { 7256 /* 7257 * FIXME: sil-sii8620 doesn't have a connector around when 7258 * we need one, so we have to be prepared for a NULL connector. 7259 */ 7260 bool has_hdmi_infoframe = connector ? 7261 connector->display_info.has_hdmi_infoframe : false; 7262 int err; 7263 7264 if (!frame || !mode) 7265 return -EINVAL; 7266 7267 if (!has_hdmi_infoframe) 7268 return -EINVAL; 7269 7270 err = hdmi_vendor_infoframe_init(frame); 7271 if (err < 0) 7272 return err; 7273 7274 /* 7275 * Even if it's not absolutely necessary to send the infoframe 7276 * (ie.vic==0 and s3d_struct==0) we will still send it if we 7277 * know that the sink can handle it. This is based on a 7278 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks 7279 * have trouble realizing that they should switch from 3D to 2D 7280 * mode if the source simply stops sending the infoframe when 7281 * it wants to switch from 3D to 2D. 7282 */ 7283 frame->vic = drm_mode_hdmi_vic(connector, mode); 7284 frame->s3d_struct = s3d_structure_from_display_mode(mode); 7285 7286 return 0; 7287 } 7288 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); 7289 7290 static void drm_parse_tiled_block(struct drm_connector *connector, 7291 const struct displayid_block *block) 7292 { 7293 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block; 7294 u16 w, h; 7295 u8 tile_v_loc, tile_h_loc; 7296 u8 num_v_tile, num_h_tile; 7297 struct drm_tile_group *tg; 7298 7299 w = tile->tile_size[0] | tile->tile_size[1] << 8; 7300 h = tile->tile_size[2] | tile->tile_size[3] << 8; 7301 7302 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30); 7303 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30); 7304 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4); 7305 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4); 7306 7307 connector->has_tile = true; 7308 if (tile->tile_cap & 0x80) 7309 connector->tile_is_single_monitor = true; 7310 7311 connector->num_h_tile = num_h_tile + 1; 7312 connector->num_v_tile = num_v_tile + 1; 7313 connector->tile_h_loc = tile_h_loc; 7314 connector->tile_v_loc = tile_v_loc; 7315 connector->tile_h_size = w + 1; 7316 connector->tile_v_size = h + 1; 7317 7318 drm_dbg_kms(connector->dev, 7319 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c", 7320 connector->base.id, connector->name, 7321 tile->tile_cap, 7322 connector->tile_h_size, connector->tile_v_size, 7323 connector->num_h_tile, connector->num_v_tile, 7324 connector->tile_h_loc, connector->tile_v_loc, 7325 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]); 7326 7327 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id); 7328 if (!tg) 7329 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id); 7330 if (!tg) 7331 return; 7332 7333 if (connector->tile_group != tg) { 7334 /* if we haven't got a pointer, 7335 take the reference, drop ref to old tile group */ 7336 if (connector->tile_group) 7337 drm_mode_put_tile_group(connector->dev, connector->tile_group); 7338 connector->tile_group = tg; 7339 } else { 7340 /* if same tile group, then release the ref we just took. */ 7341 drm_mode_put_tile_group(connector->dev, tg); 7342 } 7343 } 7344 7345 static bool displayid_is_tiled_block(const struct displayid_iter *iter, 7346 const struct displayid_block *block) 7347 { 7348 return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 && 7349 block->tag == DATA_BLOCK_TILED_DISPLAY) || 7350 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 && 7351 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY); 7352 } 7353 7354 static void _drm_update_tile_info(struct drm_connector *connector, 7355 const struct drm_edid *drm_edid) 7356 { 7357 const struct displayid_block *block; 7358 struct displayid_iter iter; 7359 7360 connector->has_tile = false; 7361 7362 displayid_iter_edid_begin(drm_edid, &iter); 7363 displayid_iter_for_each(block, &iter) { 7364 if (displayid_is_tiled_block(&iter, block)) 7365 drm_parse_tiled_block(connector, block); 7366 } 7367 displayid_iter_end(&iter); 7368 7369 if (!connector->has_tile && connector->tile_group) { 7370 drm_mode_put_tile_group(connector->dev, connector->tile_group); 7371 connector->tile_group = NULL; 7372 } 7373 } 7374 7375 /** 7376 * drm_edid_is_digital - is digital? 7377 * @drm_edid: The EDID 7378 * 7379 * Return true if input is digital. 7380 */ 7381 bool drm_edid_is_digital(const struct drm_edid *drm_edid) 7382 { 7383 return drm_edid && drm_edid->edid && 7384 drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL; 7385 } 7386 EXPORT_SYMBOL(drm_edid_is_digital); 7387