xref: /linux/drivers/gpu/drm/drm_edid.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/cec.h>
33 #include <linux/hdmi.h>
34 #include <linux/i2c.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/slab.h>
39 #include <linux/vga_switcheroo.h>
40 
41 #include <drm/drm_displayid.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_edid.h>
44 #include <drm/drm_eld.h>
45 #include <drm/drm_encoder.h>
46 #include <drm/drm_print.h>
47 
48 #include "drm_crtc_internal.h"
49 #include "drm_internal.h"
50 
51 static int oui(u8 first, u8 second, u8 third)
52 {
53 	return (first << 16) | (second << 8) | third;
54 }
55 
56 #define EDID_EST_TIMINGS 16
57 #define EDID_STD_TIMINGS 8
58 #define EDID_DETAILED_TIMINGS 4
59 
60 /*
61  * EDID blocks out in the wild have a variety of bugs, try to collect
62  * them here (note that userspace may work around broken monitors first,
63  * but fixes should make their way here so that the kernel "just works"
64  * on as many displays as possible).
65  */
66 
67 /* First detailed mode wrong, use largest 60Hz mode */
68 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
69 /* Reported 135MHz pixel clock is too high, needs adjustment */
70 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
71 /* Prefer the largest mode at 75 Hz */
72 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
73 /* Detail timing is in cm not mm */
74 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
75 /* Detailed timing descriptors have bogus size values, so just take the
76  * maximum size and use that.
77  */
78 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
79 /* use +hsync +vsync for detailed mode */
80 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
81 /* Force reduced-blanking timings for detailed modes */
82 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
83 /* Force 8bpc */
84 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
85 /* Force 12bpc */
86 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
87 /* Force 6bpc */
88 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
89 /* Force 10bpc */
90 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
91 /* Non desktop display (i.e. HMD) */
92 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
93 /* Cap the DSC target bitrate to 15bpp */
94 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
95 
96 #define MICROSOFT_IEEE_OUI	0xca125c
97 
98 struct detailed_mode_closure {
99 	struct drm_connector *connector;
100 	const struct drm_edid *drm_edid;
101 	bool preferred;
102 	int modes;
103 };
104 
105 #define LEVEL_DMT	0
106 #define LEVEL_GTF	1
107 #define LEVEL_GTF2	2
108 #define LEVEL_CVT	3
109 
110 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
111 { \
112 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
113 					     product_id), \
114 	.quirks = _quirks \
115 }
116 
117 static const struct edid_quirk {
118 	u32 panel_id;
119 	u32 quirks;
120 } edid_quirk_list[] = {
121 	/* Acer AL1706 */
122 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
123 	/* Acer F51 */
124 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
125 
126 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
128 
129 	/* BenQ GW2765 */
130 	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
131 
132 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
134 
135 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
137 
138 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
140 
141 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
143 
144 	/* Belinea 10 15 55 */
145 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
147 
148 	/* Envision Peripherals, Inc. EN-7100e */
149 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150 	/* Envision EN2028 */
151 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
152 
153 	/* Funai Electronics PM36B */
154 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155 				       EDID_QUIRK_DETAILED_IN_CM),
156 
157 	/* LG 27GP950 */
158 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
159 
160 	/* LG 27GN950 */
161 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
162 
163 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
165 
166 	/* LG Philips LCD LP154W01-A5 */
167 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
169 
170 	/* Samsung SyncMaster 205BW.  Note: irony */
171 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172 	/* Samsung SyncMaster 22[5-6]BW */
173 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
175 
176 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
178 
179 	/* ViewSonic VA2026w */
180 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
181 
182 	/* Medion MD 30217 PG */
183 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
184 
185 	/* Lenovo G50 */
186 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
187 
188 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
190 
191 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
193 
194 	/* Valve Index Headset */
195 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
212 
213 	/* HTC Vive and Vive Pro VR Headsets */
214 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
216 
217 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
222 
223 	/* Windows Mixed Reality Headsets */
224 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
230 
231 	/* Sony PlayStation VR Headset */
232 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
233 
234 	/* Sensics VR Headsets */
235 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
236 
237 	/* OSVR HDK and HDK2 VR Headsets */
238 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239 	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
240 };
241 
242 /*
243  * Autogenerated from the DMT spec.
244  * This table is copied from xfree86/modes/xf86EdidModes.c.
245  */
246 static const struct drm_display_mode drm_dmt_modes[] = {
247 	/* 0x01 - 640x350@85Hz */
248 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249 		   736, 832, 0, 350, 382, 385, 445, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 	/* 0x02 - 640x400@85Hz */
252 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253 		   736, 832, 0, 400, 401, 404, 445, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 	/* 0x03 - 720x400@85Hz */
256 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257 		   828, 936, 0, 400, 401, 404, 446, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 0x04 - 640x480@60Hz */
260 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261 		   752, 800, 0, 480, 490, 492, 525, 0,
262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 0x05 - 640x480@72Hz */
264 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265 		   704, 832, 0, 480, 489, 492, 520, 0,
266 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 	/* 0x06 - 640x480@75Hz */
268 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269 		   720, 840, 0, 480, 481, 484, 500, 0,
270 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 	/* 0x07 - 640x480@85Hz */
272 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273 		   752, 832, 0, 480, 481, 484, 509, 0,
274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 0x08 - 800x600@56Hz */
276 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277 		   896, 1024, 0, 600, 601, 603, 625, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 0x09 - 800x600@60Hz */
280 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281 		   968, 1056, 0, 600, 601, 605, 628, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 0x0a - 800x600@72Hz */
284 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285 		   976, 1040, 0, 600, 637, 643, 666, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 	/* 0x0b - 800x600@75Hz */
288 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289 		   896, 1056, 0, 600, 601, 604, 625, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 	/* 0x0c - 800x600@85Hz */
292 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293 		   896, 1048, 0, 600, 601, 604, 631, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 0x0d - 800x600@120Hz RB */
296 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297 		   880, 960, 0, 600, 603, 607, 636, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 	/* 0x0e - 848x480@60Hz */
300 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301 		   976, 1088, 0, 480, 486, 494, 517, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 	/* 0x0f - 1024x768@43Hz, interlace */
304 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305 		   1208, 1264, 0, 768, 768, 776, 817, 0,
306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307 		   DRM_MODE_FLAG_INTERLACE) },
308 	/* 0x10 - 1024x768@60Hz */
309 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310 		   1184, 1344, 0, 768, 771, 777, 806, 0,
311 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 	/* 0x11 - 1024x768@70Hz */
313 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314 		   1184, 1328, 0, 768, 771, 777, 806, 0,
315 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 	/* 0x12 - 1024x768@75Hz */
317 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318 		   1136, 1312, 0, 768, 769, 772, 800, 0,
319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 	/* 0x13 - 1024x768@85Hz */
321 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322 		   1168, 1376, 0, 768, 769, 772, 808, 0,
323 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 	/* 0x14 - 1024x768@120Hz RB */
325 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326 		   1104, 1184, 0, 768, 771, 775, 813, 0,
327 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 	/* 0x15 - 1152x864@75Hz */
329 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330 		   1344, 1600, 0, 864, 865, 868, 900, 0,
331 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 	/* 0x55 - 1280x720@60Hz */
333 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334 		   1430, 1650, 0, 720, 725, 730, 750, 0,
335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 	/* 0x16 - 1280x768@60Hz RB */
337 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338 		   1360, 1440, 0, 768, 771, 778, 790, 0,
339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340 	/* 0x17 - 1280x768@60Hz */
341 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342 		   1472, 1664, 0, 768, 771, 778, 798, 0,
343 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 	/* 0x18 - 1280x768@75Hz */
345 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346 		   1488, 1696, 0, 768, 771, 778, 805, 0,
347 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 	/* 0x19 - 1280x768@85Hz */
349 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350 		   1496, 1712, 0, 768, 771, 778, 809, 0,
351 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 0x1a - 1280x768@120Hz RB */
353 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354 		   1360, 1440, 0, 768, 771, 778, 813, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356 	/* 0x1b - 1280x800@60Hz RB */
357 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358 		   1360, 1440, 0, 800, 803, 809, 823, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 	/* 0x1c - 1280x800@60Hz */
361 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362 		   1480, 1680, 0, 800, 803, 809, 831, 0,
363 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 	/* 0x1d - 1280x800@75Hz */
365 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366 		   1488, 1696, 0, 800, 803, 809, 838, 0,
367 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 	/* 0x1e - 1280x800@85Hz */
369 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370 		   1496, 1712, 0, 800, 803, 809, 843, 0,
371 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 	/* 0x1f - 1280x800@120Hz RB */
373 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374 		   1360, 1440, 0, 800, 803, 809, 847, 0,
375 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 	/* 0x20 - 1280x960@60Hz */
377 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 	/* 0x21 - 1280x960@85Hz */
381 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
383 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 0x22 - 1280x960@120Hz RB */
385 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
387 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 	/* 0x23 - 1280x1024@60Hz */
389 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 	/* 0x24 - 1280x1024@75Hz */
393 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 	/* 0x25 - 1280x1024@85Hz */
397 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 	/* 0x26 - 1280x1024@120Hz RB */
401 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 	/* 0x27 - 1360x768@60Hz */
405 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406 		   1536, 1792, 0, 768, 771, 777, 795, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 	/* 0x28 - 1360x768@120Hz RB */
409 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410 		   1440, 1520, 0, 768, 771, 776, 813, 0,
411 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 	/* 0x51 - 1366x768@60Hz */
413 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414 		   1579, 1792, 0, 768, 771, 774, 798, 0,
415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 	/* 0x56 - 1366x768@60Hz */
417 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418 		   1436, 1500, 0, 768, 769, 772, 800, 0,
419 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 0x29 - 1400x1050@60Hz RB */
421 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 	/* 0x2a - 1400x1050@60Hz */
425 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 0x2b - 1400x1050@75Hz */
429 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 	/* 0x2c - 1400x1050@85Hz */
433 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 	/* 0x2d - 1400x1050@120Hz RB */
437 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 	/* 0x2e - 1440x900@60Hz RB */
441 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442 		   1520, 1600, 0, 900, 903, 909, 926, 0,
443 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 	/* 0x2f - 1440x900@60Hz */
445 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446 		   1672, 1904, 0, 900, 903, 909, 934, 0,
447 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 	/* 0x30 - 1440x900@75Hz */
449 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450 		   1688, 1936, 0, 900, 903, 909, 942, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 0x31 - 1440x900@85Hz */
453 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454 		   1696, 1952, 0, 900, 903, 909, 948, 0,
455 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 	/* 0x32 - 1440x900@120Hz RB */
457 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458 		   1520, 1600, 0, 900, 903, 909, 953, 0,
459 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 	/* 0x53 - 1600x900@60Hz */
461 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 	/* 0x33 - 1600x1200@60Hz */
465 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 	/* 0x34 - 1600x1200@65Hz */
469 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 	/* 0x35 - 1600x1200@70Hz */
473 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 	/* 0x36 - 1600x1200@75Hz */
477 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 	/* 0x37 - 1600x1200@85Hz */
481 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 	/* 0x38 - 1600x1200@120Hz RB */
485 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 	/* 0x39 - 1680x1050@60Hz RB */
489 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 	/* 0x3a - 1680x1050@60Hz */
493 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 	/* 0x3b - 1680x1050@75Hz */
497 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 	/* 0x3c - 1680x1050@85Hz */
501 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 	/* 0x3d - 1680x1050@120Hz RB */
505 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 	/* 0x3e - 1792x1344@60Hz */
509 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512 	/* 0x3f - 1792x1344@75Hz */
513 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 	/* 0x40 - 1792x1344@120Hz RB */
517 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 	/* 0x41 - 1856x1392@60Hz */
521 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 	/* 0x42 - 1856x1392@75Hz */
525 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 	/* 0x43 - 1856x1392@120Hz RB */
529 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 	/* 0x52 - 1920x1080@60Hz */
533 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536 	/* 0x44 - 1920x1200@60Hz RB */
537 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 	/* 0x45 - 1920x1200@60Hz */
541 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 	/* 0x46 - 1920x1200@75Hz */
545 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 	/* 0x47 - 1920x1200@85Hz */
549 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552 	/* 0x48 - 1920x1200@120Hz RB */
553 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 	/* 0x49 - 1920x1440@60Hz */
557 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560 	/* 0x4a - 1920x1440@75Hz */
561 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 	/* 0x4b - 1920x1440@120Hz RB */
565 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568 	/* 0x54 - 2048x1152@60Hz */
569 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 	/* 0x4c - 2560x1600@60Hz RB */
573 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 	/* 0x4d - 2560x1600@60Hz */
577 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 	/* 0x4e - 2560x1600@75Hz */
581 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 	/* 0x4f - 2560x1600@85Hz */
585 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588 	/* 0x50 - 2560x1600@120Hz RB */
589 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592 	/* 0x57 - 4096x2160@60Hz RB */
593 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596 	/* 0x58 - 4096x2160@59.94Hz RB */
597 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
600 };
601 
602 /*
603  * These more or less come from the DMT spec.  The 720x400 modes are
604  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
605  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
606  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
607  * mode.
608  *
609  * The DMT modes have been fact-checked; the rest are mild guesses.
610  */
611 static const struct drm_display_mode edid_est_modes[] = {
612 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613 		   968, 1056, 0, 600, 601, 605, 628, 0,
614 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616 		   896, 1024, 0, 600, 601, 603,  625, 0,
617 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619 		   720, 840, 0, 480, 481, 484, 500, 0,
620 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622 		   704,  832, 0, 480, 489, 492, 520, 0,
623 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625 		   768,  864, 0, 480, 483, 486, 525, 0,
626 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628 		   752, 800, 0, 480, 490, 492, 525, 0,
629 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631 		   846, 900, 0, 400, 421, 423,  449, 0,
632 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634 		   846,  900, 0, 400, 412, 414, 449, 0,
635 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640 		   1136, 1312, 0,  768, 769, 772, 800, 0,
641 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643 		   1184, 1328, 0,  768, 771, 777, 806, 0,
644 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646 		   1184, 1344, 0,  768, 771, 777, 806, 0,
647 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649 		   1208, 1264, 0, 768, 768, 776, 817, 0,
650 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652 		   928, 1152, 0, 624, 625, 628, 667, 0,
653 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655 		   896, 1056, 0, 600, 601, 604,  625, 0,
656 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658 		   976, 1040, 0, 600, 637, 643, 666, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661 		   1344, 1600, 0,  864, 865, 868, 900, 0,
662 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
663 };
664 
665 struct minimode {
666 	short w;
667 	short h;
668 	short r;
669 	short rb;
670 };
671 
672 static const struct minimode est3_modes[] = {
673 	/* byte 6 */
674 	{ 640, 350, 85, 0 },
675 	{ 640, 400, 85, 0 },
676 	{ 720, 400, 85, 0 },
677 	{ 640, 480, 85, 0 },
678 	{ 848, 480, 60, 0 },
679 	{ 800, 600, 85, 0 },
680 	{ 1024, 768, 85, 0 },
681 	{ 1152, 864, 75, 0 },
682 	/* byte 7 */
683 	{ 1280, 768, 60, 1 },
684 	{ 1280, 768, 60, 0 },
685 	{ 1280, 768, 75, 0 },
686 	{ 1280, 768, 85, 0 },
687 	{ 1280, 960, 60, 0 },
688 	{ 1280, 960, 85, 0 },
689 	{ 1280, 1024, 60, 0 },
690 	{ 1280, 1024, 85, 0 },
691 	/* byte 8 */
692 	{ 1360, 768, 60, 0 },
693 	{ 1440, 900, 60, 1 },
694 	{ 1440, 900, 60, 0 },
695 	{ 1440, 900, 75, 0 },
696 	{ 1440, 900, 85, 0 },
697 	{ 1400, 1050, 60, 1 },
698 	{ 1400, 1050, 60, 0 },
699 	{ 1400, 1050, 75, 0 },
700 	/* byte 9 */
701 	{ 1400, 1050, 85, 0 },
702 	{ 1680, 1050, 60, 1 },
703 	{ 1680, 1050, 60, 0 },
704 	{ 1680, 1050, 75, 0 },
705 	{ 1680, 1050, 85, 0 },
706 	{ 1600, 1200, 60, 0 },
707 	{ 1600, 1200, 65, 0 },
708 	{ 1600, 1200, 70, 0 },
709 	/* byte 10 */
710 	{ 1600, 1200, 75, 0 },
711 	{ 1600, 1200, 85, 0 },
712 	{ 1792, 1344, 60, 0 },
713 	{ 1792, 1344, 75, 0 },
714 	{ 1856, 1392, 60, 0 },
715 	{ 1856, 1392, 75, 0 },
716 	{ 1920, 1200, 60, 1 },
717 	{ 1920, 1200, 60, 0 },
718 	/* byte 11 */
719 	{ 1920, 1200, 75, 0 },
720 	{ 1920, 1200, 85, 0 },
721 	{ 1920, 1440, 60, 0 },
722 	{ 1920, 1440, 75, 0 },
723 };
724 
725 static const struct minimode extra_modes[] = {
726 	{ 1024, 576,  60, 0 },
727 	{ 1366, 768,  60, 0 },
728 	{ 1600, 900,  60, 0 },
729 	{ 1680, 945,  60, 0 },
730 	{ 1920, 1080, 60, 0 },
731 	{ 2048, 1152, 60, 0 },
732 	{ 2048, 1536, 60, 0 },
733 };
734 
735 /*
736  * From CEA/CTA-861 spec.
737  *
738  * Do not access directly, instead always use cea_mode_for_vic().
739  */
740 static const struct drm_display_mode edid_cea_modes_1[] = {
741 	/* 1 - 640x480@60Hz 4:3 */
742 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743 		   752, 800, 0, 480, 490, 492, 525, 0,
744 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 	/* 2 - 720x480@60Hz 4:3 */
747 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748 		   798, 858, 0, 480, 489, 495, 525, 0,
749 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 	/* 3 - 720x480@60Hz 16:9 */
752 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753 		   798, 858, 0, 480, 489, 495, 525, 0,
754 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 	/* 4 - 1280x720@60Hz 16:9 */
757 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758 		   1430, 1650, 0, 720, 725, 730, 750, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 	/* 5 - 1920x1080i@60Hz 16:9 */
762 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 		   DRM_MODE_FLAG_INTERLACE),
766 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 	/* 6 - 720(1440)x480i@60Hz 4:3 */
768 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 		   801, 858, 0, 480, 488, 494, 525, 0,
770 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773 	/* 7 - 720(1440)x480i@60Hz 16:9 */
774 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 		   801, 858, 0, 480, 488, 494, 525, 0,
776 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779 	/* 8 - 720(1440)x240@60Hz 4:3 */
780 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 		   801, 858, 0, 240, 244, 247, 262, 0,
782 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 		   DRM_MODE_FLAG_DBLCLK),
784 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785 	/* 9 - 720(1440)x240@60Hz 16:9 */
786 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787 		   801, 858, 0, 240, 244, 247, 262, 0,
788 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 		   DRM_MODE_FLAG_DBLCLK),
790 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 	/* 10 - 2880x480i@60Hz 4:3 */
792 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 		   3204, 3432, 0, 480, 488, 494, 525, 0,
794 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 		   DRM_MODE_FLAG_INTERLACE),
796 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797 	/* 11 - 2880x480i@60Hz 16:9 */
798 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 		   3204, 3432, 0, 480, 488, 494, 525, 0,
800 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801 		   DRM_MODE_FLAG_INTERLACE),
802 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 	/* 12 - 2880x240@60Hz 4:3 */
804 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805 		   3204, 3432, 0, 240, 244, 247, 262, 0,
806 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 	/* 13 - 2880x240@60Hz 16:9 */
809 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810 		   3204, 3432, 0, 240, 244, 247, 262, 0,
811 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 	/* 14 - 1440x480@60Hz 4:3 */
814 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815 		   1596, 1716, 0, 480, 489, 495, 525, 0,
816 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 	/* 15 - 1440x480@60Hz 16:9 */
819 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820 		   1596, 1716, 0, 480, 489, 495, 525, 0,
821 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 	/* 16 - 1920x1080@60Hz 16:9 */
824 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 	/* 17 - 720x576@50Hz 4:3 */
829 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830 		   796, 864, 0, 576, 581, 586, 625, 0,
831 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 	/* 18 - 720x576@50Hz 16:9 */
834 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835 		   796, 864, 0, 576, 581, 586, 625, 0,
836 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 	/* 19 - 1280x720@50Hz 16:9 */
839 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840 		   1760, 1980, 0, 720, 725, 730, 750, 0,
841 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 	/* 20 - 1920x1080i@50Hz 16:9 */
844 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847 		   DRM_MODE_FLAG_INTERLACE),
848 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 21 - 720(1440)x576i@50Hz 4:3 */
850 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 		   795, 864, 0, 576, 580, 586, 625, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855 	/* 22 - 720(1440)x576i@50Hz 16:9 */
856 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 		   795, 864, 0, 576, 580, 586, 625, 0,
858 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 	/* 23 - 720(1440)x288@50Hz 4:3 */
862 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 		   795, 864, 0, 288, 290, 293, 312, 0,
864 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 		   DRM_MODE_FLAG_DBLCLK),
866 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867 	/* 24 - 720(1440)x288@50Hz 16:9 */
868 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869 		   795, 864, 0, 288, 290, 293, 312, 0,
870 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 		   DRM_MODE_FLAG_DBLCLK),
872 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 	/* 25 - 2880x576i@50Hz 4:3 */
874 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 		   3180, 3456, 0, 576, 580, 586, 625, 0,
876 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 		   DRM_MODE_FLAG_INTERLACE),
878 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 	/* 26 - 2880x576i@50Hz 16:9 */
880 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 		   3180, 3456, 0, 576, 580, 586, 625, 0,
882 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 		   DRM_MODE_FLAG_INTERLACE),
884 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 	/* 27 - 2880x288@50Hz 4:3 */
886 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887 		   3180, 3456, 0, 288, 290, 293, 312, 0,
888 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 	/* 28 - 2880x288@50Hz 16:9 */
891 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892 		   3180, 3456, 0, 288, 290, 293, 312, 0,
893 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 	/* 29 - 1440x576@50Hz 4:3 */
896 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897 		   1592, 1728, 0, 576, 581, 586, 625, 0,
898 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900 	/* 30 - 1440x576@50Hz 16:9 */
901 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902 		   1592, 1728, 0, 576, 581, 586, 625, 0,
903 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 	/* 31 - 1920x1080@50Hz 16:9 */
906 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 	/* 32 - 1920x1080@24Hz 16:9 */
911 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 	/* 33 - 1920x1080@25Hz 16:9 */
916 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920 	/* 34 - 1920x1080@30Hz 16:9 */
921 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 	/* 35 - 2880x480@60Hz 4:3 */
926 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927 		   3192, 3432, 0, 480, 489, 495, 525, 0,
928 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930 	/* 36 - 2880x480@60Hz 16:9 */
931 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932 		   3192, 3432, 0, 480, 489, 495, 525, 0,
933 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 	/* 37 - 2880x576@50Hz 4:3 */
936 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937 		   3184, 3456, 0, 576, 581, 586, 625, 0,
938 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 	/* 38 - 2880x576@50Hz 16:9 */
941 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942 		   3184, 3456, 0, 576, 581, 586, 625, 0,
943 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 	/* 39 - 1920x1080i@50Hz 16:9 */
946 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949 		   DRM_MODE_FLAG_INTERLACE),
950 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 	/* 40 - 1920x1080i@100Hz 16:9 */
952 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955 		   DRM_MODE_FLAG_INTERLACE),
956 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957 	/* 41 - 1280x720@100Hz 16:9 */
958 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959 		   1760, 1980, 0, 720, 725, 730, 750, 0,
960 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 	/* 42 - 720x576@100Hz 4:3 */
963 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 		   796, 864, 0, 576, 581, 586, 625, 0,
965 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 	/* 43 - 720x576@100Hz 16:9 */
968 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969 		   796, 864, 0, 576, 581, 586, 625, 0,
970 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 	/* 44 - 720(1440)x576i@100Hz 4:3 */
973 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 		   795, 864, 0, 576, 580, 586, 625, 0,
975 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 	/* 45 - 720(1440)x576i@100Hz 16:9 */
979 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980 		   795, 864, 0, 576, 580, 586, 625, 0,
981 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 	/* 46 - 1920x1080i@120Hz 16:9 */
985 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988 		   DRM_MODE_FLAG_INTERLACE),
989 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 	/* 47 - 1280x720@120Hz 16:9 */
991 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992 		   1430, 1650, 0, 720, 725, 730, 750, 0,
993 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 	/* 48 - 720x480@120Hz 4:3 */
996 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997 		   798, 858, 0, 480, 489, 495, 525, 0,
998 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 	/* 49 - 720x480@120Hz 16:9 */
1001 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002 		   798, 858, 0, 480, 489, 495, 525, 0,
1003 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 		   801, 858, 0, 480, 488, 494, 525, 0,
1008 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013 		   801, 858, 0, 480, 488, 494, 525, 0,
1014 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 	/* 52 - 720x576@200Hz 4:3 */
1018 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019 		   796, 864, 0, 576, 581, 586, 625, 0,
1020 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 	/* 53 - 720x576@200Hz 16:9 */
1023 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024 		   796, 864, 0, 576, 581, 586, 625, 0,
1025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 		   795, 864, 0, 576, 580, 586, 625, 0,
1030 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035 		   795, 864, 0, 576, 580, 586, 625, 0,
1036 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 	/* 56 - 720x480@240Hz 4:3 */
1040 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041 		   798, 858, 0, 480, 489, 495, 525, 0,
1042 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044 	/* 57 - 720x480@240Hz 16:9 */
1045 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046 		   798, 858, 0, 480, 489, 495, 525, 0,
1047 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 		   801, 858, 0, 480, 488, 494, 525, 0,
1052 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057 		   801, 858, 0, 480, 488, 494, 525, 0,
1058 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 	/* 60 - 1280x720@24Hz 16:9 */
1062 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 	/* 61 - 1280x720@25Hz 16:9 */
1067 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071 	/* 62 - 1280x720@30Hz 16:9 */
1072 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076 	/* 63 - 1920x1080@120Hz 16:9 */
1077 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 	/* 64 - 1920x1080@100Hz 16:9 */
1082 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 	/* 65 - 1280x720@24Hz 64:27 */
1087 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 	/* 66 - 1280x720@25Hz 64:27 */
1092 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 	/* 67 - 1280x720@30Hz 64:27 */
1097 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 	/* 68 - 1280x720@50Hz 64:27 */
1102 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 	/* 69 - 1280x720@60Hz 64:27 */
1107 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 	/* 70 - 1280x720@100Hz 64:27 */
1112 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 	/* 71 - 1280x720@120Hz 64:27 */
1117 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 	/* 72 - 1920x1080@24Hz 64:27 */
1122 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 	/* 73 - 1920x1080@25Hz 64:27 */
1127 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 	/* 74 - 1920x1080@30Hz 64:27 */
1132 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 	/* 75 - 1920x1080@50Hz 64:27 */
1137 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 	/* 76 - 1920x1080@60Hz 64:27 */
1142 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 	/* 77 - 1920x1080@100Hz 64:27 */
1147 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 	/* 78 - 1920x1080@120Hz 64:27 */
1152 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 	/* 79 - 1680x720@24Hz 64:27 */
1157 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 	/* 80 - 1680x720@25Hz 64:27 */
1162 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 	/* 81 - 1680x720@30Hz 64:27 */
1167 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 	/* 82 - 1680x720@50Hz 64:27 */
1172 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 	/* 83 - 1680x720@60Hz 64:27 */
1177 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 	/* 84 - 1680x720@100Hz 64:27 */
1182 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 	/* 85 - 1680x720@120Hz 64:27 */
1187 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 	/* 86 - 2560x1080@24Hz 64:27 */
1192 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 	/* 87 - 2560x1080@25Hz 64:27 */
1197 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 	/* 88 - 2560x1080@30Hz 64:27 */
1202 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 	/* 89 - 2560x1080@50Hz 64:27 */
1207 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 	/* 90 - 2560x1080@60Hz 64:27 */
1212 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 	/* 91 - 2560x1080@100Hz 64:27 */
1217 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 	/* 92 - 2560x1080@120Hz 64:27 */
1222 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 	/* 93 - 3840x2160@24Hz 16:9 */
1227 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 	/* 94 - 3840x2160@25Hz 16:9 */
1232 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236 	/* 95 - 3840x2160@30Hz 16:9 */
1237 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241 	/* 96 - 3840x2160@50Hz 16:9 */
1242 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246 	/* 97 - 3840x2160@60Hz 16:9 */
1247 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 	/* 98 - 4096x2160@24Hz 256:135 */
1252 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 	/* 99 - 4096x2160@25Hz 256:135 */
1257 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261 	/* 100 - 4096x2160@30Hz 256:135 */
1262 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266 	/* 101 - 4096x2160@50Hz 256:135 */
1267 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271 	/* 102 - 4096x2160@60Hz 256:135 */
1272 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 	/* 103 - 3840x2160@24Hz 64:27 */
1277 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281 	/* 104 - 3840x2160@25Hz 64:27 */
1282 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286 	/* 105 - 3840x2160@30Hz 64:27 */
1287 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291 	/* 106 - 3840x2160@50Hz 64:27 */
1292 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296 	/* 107 - 3840x2160@60Hz 64:27 */
1297 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 	/* 108 - 1280x720@48Hz 16:9 */
1302 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306 	/* 109 - 1280x720@48Hz 64:27 */
1307 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 	/* 110 - 1680x720@48Hz 64:27 */
1312 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 	/* 111 - 1920x1080@48Hz 16:9 */
1317 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321 	/* 112 - 1920x1080@48Hz 64:27 */
1322 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326 	/* 113 - 2560x1080@48Hz 64:27 */
1327 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 	/* 114 - 3840x2160@48Hz 16:9 */
1332 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336 	/* 115 - 4096x2160@48Hz 256:135 */
1337 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341 	/* 116 - 3840x2160@48Hz 64:27 */
1342 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 	/* 117 - 3840x2160@100Hz 16:9 */
1347 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351 	/* 118 - 3840x2160@120Hz 16:9 */
1352 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 	/* 119 - 3840x2160@100Hz 64:27 */
1357 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361 	/* 120 - 3840x2160@120Hz 64:27 */
1362 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 	/* 121 - 5120x2160@24Hz 64:27 */
1367 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371 	/* 122 - 5120x2160@25Hz 64:27 */
1372 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376 	/* 123 - 5120x2160@30Hz 64:27 */
1377 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 	/* 124 - 5120x2160@48Hz 64:27 */
1382 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 	/* 125 - 5120x2160@50Hz 64:27 */
1387 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 	/* 126 - 5120x2160@60Hz 64:27 */
1392 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 	/* 127 - 5120x2160@100Hz 64:27 */
1397 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401 };
1402 
1403 /*
1404  * From CEA/CTA-861 spec.
1405  *
1406  * Do not access directly, instead always use cea_mode_for_vic().
1407  */
1408 static const struct drm_display_mode edid_cea_modes_193[] = {
1409 	/* 193 - 5120x2160@120Hz 64:27 */
1410 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414 	/* 194 - 7680x4320@24Hz 16:9 */
1415 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419 	/* 195 - 7680x4320@25Hz 16:9 */
1420 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424 	/* 196 - 7680x4320@30Hz 16:9 */
1425 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429 	/* 197 - 7680x4320@48Hz 16:9 */
1430 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434 	/* 198 - 7680x4320@50Hz 16:9 */
1435 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 	/* 199 - 7680x4320@60Hz 16:9 */
1440 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 	/* 200 - 7680x4320@100Hz 16:9 */
1445 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 	/* 201 - 7680x4320@120Hz 16:9 */
1450 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 	/* 202 - 7680x4320@24Hz 64:27 */
1455 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459 	/* 203 - 7680x4320@25Hz 64:27 */
1460 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464 	/* 204 - 7680x4320@30Hz 64:27 */
1465 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469 	/* 205 - 7680x4320@48Hz 64:27 */
1470 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474 	/* 206 - 7680x4320@50Hz 64:27 */
1475 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 	/* 207 - 7680x4320@60Hz 64:27 */
1480 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 	/* 208 - 7680x4320@100Hz 64:27 */
1485 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 	/* 209 - 7680x4320@120Hz 64:27 */
1490 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 	/* 210 - 10240x4320@24Hz 64:27 */
1495 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 	/* 211 - 10240x4320@25Hz 64:27 */
1500 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 	/* 212 - 10240x4320@30Hz 64:27 */
1505 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 	/* 213 - 10240x4320@48Hz 64:27 */
1510 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 	/* 214 - 10240x4320@50Hz 64:27 */
1515 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 	/* 215 - 10240x4320@60Hz 64:27 */
1520 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 	/* 216 - 10240x4320@100Hz 64:27 */
1525 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 	/* 217 - 10240x4320@120Hz 64:27 */
1530 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 	/* 218 - 4096x2160@100Hz 256:135 */
1535 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539 	/* 219 - 4096x2160@120Hz 256:135 */
1540 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544 };
1545 
1546 /*
1547  * HDMI 1.4 4k modes. Index using the VIC.
1548  */
1549 static const struct drm_display_mode edid_4k_modes[] = {
1550 	/* 0 - dummy, VICs start at 1 */
1551 	{ },
1552 	/* 1 - 3840x2160@30Hz */
1553 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 		   3840, 4016, 4104, 4400, 0,
1555 		   2160, 2168, 2178, 2250, 0,
1556 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 	/* 2 - 3840x2160@25Hz */
1559 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 		   3840, 4896, 4984, 5280, 0,
1561 		   2160, 2168, 2178, 2250, 0,
1562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 	/* 3 - 3840x2160@24Hz */
1565 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 		   3840, 5116, 5204, 5500, 0,
1567 		   2160, 2168, 2178, 2250, 0,
1568 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570 	/* 4 - 4096x2160@24Hz (SMPTE) */
1571 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572 		   4096, 5116, 5204, 5500, 0,
1573 		   2160, 2168, 2178, 2250, 0,
1574 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576 };
1577 
1578 /*** DDC fetch and block validation ***/
1579 
1580 /*
1581  * The opaque EDID type, internal to drm_edid.c.
1582  */
1583 struct drm_edid {
1584 	/* Size allocated for edid */
1585 	size_t size;
1586 	const struct edid *edid;
1587 };
1588 
1589 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590 
1591 static int edid_hfeeodb_block_count(const struct edid *edid)
1592 {
1593 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594 
1595 	return eeodb ? eeodb + 1 : 0;
1596 }
1597 
1598 static int edid_extension_block_count(const struct edid *edid)
1599 {
1600 	return edid->extensions;
1601 }
1602 
1603 static int edid_block_count(const struct edid *edid)
1604 {
1605 	return edid_extension_block_count(edid) + 1;
1606 }
1607 
1608 static int edid_size_by_blocks(int num_blocks)
1609 {
1610 	return num_blocks * EDID_LENGTH;
1611 }
1612 
1613 static int edid_size(const struct edid *edid)
1614 {
1615 	return edid_size_by_blocks(edid_block_count(edid));
1616 }
1617 
1618 static const void *edid_block_data(const struct edid *edid, int index)
1619 {
1620 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621 
1622 	return edid + index;
1623 }
1624 
1625 static const void *edid_extension_block_data(const struct edid *edid, int index)
1626 {
1627 	return edid_block_data(edid, index + 1);
1628 }
1629 
1630 /* EDID block count indicated in EDID, may exceed allocated size */
1631 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632 {
1633 	int num_blocks;
1634 
1635 	/* Starting point */
1636 	num_blocks = edid_block_count(drm_edid->edid);
1637 
1638 	/* HF-EEODB override */
1639 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640 		int eeodb;
1641 
1642 		/*
1643 		 * Note: HF-EEODB may specify a smaller extension count than the
1644 		 * regular one. Unlike in buffer allocation, here we can use it.
1645 		 */
1646 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647 		if (eeodb)
1648 			num_blocks = eeodb;
1649 	}
1650 
1651 	return num_blocks;
1652 }
1653 
1654 /* EDID block count, limited by allocated size */
1655 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656 {
1657 	/* Limit by allocated size */
1658 	return min(__drm_edid_block_count(drm_edid),
1659 		   (int)drm_edid->size / EDID_LENGTH);
1660 }
1661 
1662 /* EDID extension block count, limited by allocated size */
1663 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664 {
1665 	return drm_edid_block_count(drm_edid) - 1;
1666 }
1667 
1668 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669 {
1670 	return edid_block_data(drm_edid->edid, index);
1671 }
1672 
1673 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674 						 int index)
1675 {
1676 	return edid_extension_block_data(drm_edid->edid, index);
1677 }
1678 
1679 /*
1680  * Initializer helper for legacy interfaces, where we have no choice but to
1681  * trust edid size. Not for general purpose use.
1682  */
1683 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684 						   const struct edid *edid)
1685 {
1686 	if (!edid)
1687 		return NULL;
1688 
1689 	memset(drm_edid, 0, sizeof(*drm_edid));
1690 
1691 	drm_edid->edid = edid;
1692 	drm_edid->size = edid_size(edid);
1693 
1694 	return drm_edid;
1695 }
1696 
1697 /*
1698  * EDID base and extension block iterator.
1699  *
1700  * struct drm_edid_iter iter;
1701  * const u8 *block;
1702  *
1703  * drm_edid_iter_begin(drm_edid, &iter);
1704  * drm_edid_iter_for_each(block, &iter) {
1705  *         // do stuff with block
1706  * }
1707  * drm_edid_iter_end(&iter);
1708  */
1709 struct drm_edid_iter {
1710 	const struct drm_edid *drm_edid;
1711 
1712 	/* Current block index. */
1713 	int index;
1714 };
1715 
1716 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717 				struct drm_edid_iter *iter)
1718 {
1719 	memset(iter, 0, sizeof(*iter));
1720 
1721 	iter->drm_edid = drm_edid;
1722 }
1723 
1724 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725 {
1726 	const void *block = NULL;
1727 
1728 	if (!iter->drm_edid)
1729 		return NULL;
1730 
1731 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733 
1734 	return block;
1735 }
1736 
1737 #define drm_edid_iter_for_each(__block, __iter)			\
1738 	while (((__block) = __drm_edid_iter_next(__iter)))
1739 
1740 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741 {
1742 	memset(iter, 0, sizeof(*iter));
1743 }
1744 
1745 static const u8 edid_header[] = {
1746 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747 };
1748 
1749 static void edid_header_fix(void *edid)
1750 {
1751 	memcpy(edid, edid_header, sizeof(edid_header));
1752 }
1753 
1754 /**
1755  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756  * @_edid: pointer to raw base EDID block
1757  *
1758  * Sanity check the header of the base EDID block.
1759  *
1760  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761  */
1762 int drm_edid_header_is_valid(const void *_edid)
1763 {
1764 	const struct edid *edid = _edid;
1765 	int i, score = 0;
1766 
1767 	for (i = 0; i < sizeof(edid_header); i++) {
1768 		if (edid->header[i] == edid_header[i])
1769 			score++;
1770 	}
1771 
1772 	return score;
1773 }
1774 EXPORT_SYMBOL(drm_edid_header_is_valid);
1775 
1776 static int edid_fixup __read_mostly = 6;
1777 module_param_named(edid_fixup, edid_fixup, int, 0400);
1778 MODULE_PARM_DESC(edid_fixup,
1779 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780 
1781 static int edid_block_compute_checksum(const void *_block)
1782 {
1783 	const u8 *block = _block;
1784 	int i;
1785 	u8 csum = 0, crc = 0;
1786 
1787 	for (i = 0; i < EDID_LENGTH - 1; i++)
1788 		csum += block[i];
1789 
1790 	crc = 0x100 - csum;
1791 
1792 	return crc;
1793 }
1794 
1795 static int edid_block_get_checksum(const void *_block)
1796 {
1797 	const struct edid *block = _block;
1798 
1799 	return block->checksum;
1800 }
1801 
1802 static int edid_block_tag(const void *_block)
1803 {
1804 	const u8 *block = _block;
1805 
1806 	return block[0];
1807 }
1808 
1809 static bool edid_block_is_zero(const void *edid)
1810 {
1811 	return !memchr_inv(edid, 0, EDID_LENGTH);
1812 }
1813 
1814 /**
1815  * drm_edid_are_equal - compare two edid blobs.
1816  * @edid1: pointer to first blob
1817  * @edid2: pointer to second blob
1818  * This helper can be used during probing to determine if
1819  * edid had changed.
1820  */
1821 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822 {
1823 	int edid1_len, edid2_len;
1824 	bool edid1_present = edid1 != NULL;
1825 	bool edid2_present = edid2 != NULL;
1826 
1827 	if (edid1_present != edid2_present)
1828 		return false;
1829 
1830 	if (edid1) {
1831 		edid1_len = edid_size(edid1);
1832 		edid2_len = edid_size(edid2);
1833 
1834 		if (edid1_len != edid2_len)
1835 			return false;
1836 
1837 		if (memcmp(edid1, edid2, edid1_len))
1838 			return false;
1839 	}
1840 
1841 	return true;
1842 }
1843 EXPORT_SYMBOL(drm_edid_are_equal);
1844 
1845 enum edid_block_status {
1846 	EDID_BLOCK_OK = 0,
1847 	EDID_BLOCK_READ_FAIL,
1848 	EDID_BLOCK_NULL,
1849 	EDID_BLOCK_ZERO,
1850 	EDID_BLOCK_HEADER_CORRUPT,
1851 	EDID_BLOCK_HEADER_REPAIR,
1852 	EDID_BLOCK_HEADER_FIXED,
1853 	EDID_BLOCK_CHECKSUM,
1854 	EDID_BLOCK_VERSION,
1855 };
1856 
1857 static enum edid_block_status edid_block_check(const void *_block,
1858 					       bool is_base_block)
1859 {
1860 	const struct edid *block = _block;
1861 
1862 	if (!block)
1863 		return EDID_BLOCK_NULL;
1864 
1865 	if (is_base_block) {
1866 		int score = drm_edid_header_is_valid(block);
1867 
1868 		if (score < clamp(edid_fixup, 0, 8)) {
1869 			if (edid_block_is_zero(block))
1870 				return EDID_BLOCK_ZERO;
1871 			else
1872 				return EDID_BLOCK_HEADER_CORRUPT;
1873 		}
1874 
1875 		if (score < 8)
1876 			return EDID_BLOCK_HEADER_REPAIR;
1877 	}
1878 
1879 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880 		if (edid_block_is_zero(block))
1881 			return EDID_BLOCK_ZERO;
1882 		else
1883 			return EDID_BLOCK_CHECKSUM;
1884 	}
1885 
1886 	if (is_base_block) {
1887 		if (block->version != 1)
1888 			return EDID_BLOCK_VERSION;
1889 	}
1890 
1891 	return EDID_BLOCK_OK;
1892 }
1893 
1894 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895 {
1896 	return status == EDID_BLOCK_OK ||
1897 		status == EDID_BLOCK_HEADER_FIXED ||
1898 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899 }
1900 
1901 static bool edid_block_valid(const void *block, bool base)
1902 {
1903 	return edid_block_status_valid(edid_block_check(block, base),
1904 				       edid_block_tag(block));
1905 }
1906 
1907 static void edid_block_status_print(enum edid_block_status status,
1908 				    const struct edid *block,
1909 				    int block_num)
1910 {
1911 	switch (status) {
1912 	case EDID_BLOCK_OK:
1913 		break;
1914 	case EDID_BLOCK_READ_FAIL:
1915 		pr_debug("EDID block %d read failed\n", block_num);
1916 		break;
1917 	case EDID_BLOCK_NULL:
1918 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919 		break;
1920 	case EDID_BLOCK_ZERO:
1921 		pr_notice("EDID block %d is all zeroes\n", block_num);
1922 		break;
1923 	case EDID_BLOCK_HEADER_CORRUPT:
1924 		pr_notice("EDID has corrupt header\n");
1925 		break;
1926 	case EDID_BLOCK_HEADER_REPAIR:
1927 		pr_debug("EDID corrupt header needs repair\n");
1928 		break;
1929 	case EDID_BLOCK_HEADER_FIXED:
1930 		pr_debug("EDID corrupt header fixed\n");
1931 		break;
1932 	case EDID_BLOCK_CHECKSUM:
1933 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935 				 block_num, edid_block_tag(block),
1936 				 edid_block_compute_checksum(block));
1937 		} else {
1938 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939 				  block_num, edid_block_tag(block),
1940 				  edid_block_compute_checksum(block));
1941 		}
1942 		break;
1943 	case EDID_BLOCK_VERSION:
1944 		pr_notice("EDID has major version %d, instead of 1\n",
1945 			  block->version);
1946 		break;
1947 	default:
1948 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949 		     block_num, status);
1950 		break;
1951 	}
1952 }
1953 
1954 static void edid_block_dump(const char *level, const void *block, int block_num)
1955 {
1956 	enum edid_block_status status;
1957 	char prefix[20];
1958 
1959 	status = edid_block_check(block, block_num == 0);
1960 	if (status == EDID_BLOCK_ZERO)
1961 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964 	else
1965 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966 
1967 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968 		       block, EDID_LENGTH, false);
1969 }
1970 
1971 /**
1972  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973  * @_block: pointer to raw EDID block
1974  * @block_num: type of block to validate (0 for base, extension otherwise)
1975  * @print_bad_edid: if true, dump bad EDID blocks to the console
1976  * @edid_corrupt: if true, the header or checksum is invalid
1977  *
1978  * Validate a base or extension EDID block and optionally dump bad blocks to
1979  * the console.
1980  *
1981  * Return: True if the block is valid, false otherwise.
1982  */
1983 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984 			  bool *edid_corrupt)
1985 {
1986 	struct edid *block = (struct edid *)_block;
1987 	enum edid_block_status status;
1988 	bool is_base_block = block_num == 0;
1989 	bool valid;
1990 
1991 	if (WARN_ON(!block))
1992 		return false;
1993 
1994 	status = edid_block_check(block, is_base_block);
1995 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997 		edid_header_fix(block);
1998 
1999 		/* Retry with fixed header, update status if that worked. */
2000 		status = edid_block_check(block, is_base_block);
2001 		if (status == EDID_BLOCK_OK)
2002 			status = EDID_BLOCK_HEADER_FIXED;
2003 	}
2004 
2005 	if (edid_corrupt) {
2006 		/*
2007 		 * Unknown major version isn't corrupt but we can't use it. Only
2008 		 * the base block can reset edid_corrupt to false.
2009 		 */
2010 		if (is_base_block &&
2011 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012 			*edid_corrupt = false;
2013 		else if (status != EDID_BLOCK_OK)
2014 			*edid_corrupt = true;
2015 	}
2016 
2017 	edid_block_status_print(status, block, block_num);
2018 
2019 	/* Determine whether we can use this block with this status. */
2020 	valid = edid_block_status_valid(status, edid_block_tag(block));
2021 
2022 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023 		pr_notice("Raw EDID:\n");
2024 		edid_block_dump(KERN_NOTICE, block, block_num);
2025 	}
2026 
2027 	return valid;
2028 }
2029 EXPORT_SYMBOL(drm_edid_block_valid);
2030 
2031 /**
2032  * drm_edid_is_valid - sanity check EDID data
2033  * @edid: EDID data
2034  *
2035  * Sanity-check an entire EDID record (including extensions)
2036  *
2037  * Return: True if the EDID data is valid, false otherwise.
2038  */
2039 bool drm_edid_is_valid(struct edid *edid)
2040 {
2041 	int i;
2042 
2043 	if (!edid)
2044 		return false;
2045 
2046 	for (i = 0; i < edid_block_count(edid); i++) {
2047 		void *block = (void *)edid_block_data(edid, i);
2048 
2049 		if (!drm_edid_block_valid(block, i, true, NULL))
2050 			return false;
2051 	}
2052 
2053 	return true;
2054 }
2055 EXPORT_SYMBOL(drm_edid_is_valid);
2056 
2057 /**
2058  * drm_edid_valid - sanity check EDID data
2059  * @drm_edid: EDID data
2060  *
2061  * Sanity check an EDID. Cross check block count against allocated size and
2062  * checksum the blocks.
2063  *
2064  * Return: True if the EDID data is valid, false otherwise.
2065  */
2066 bool drm_edid_valid(const struct drm_edid *drm_edid)
2067 {
2068 	int i;
2069 
2070 	if (!drm_edid)
2071 		return false;
2072 
2073 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074 		return false;
2075 
2076 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 		const void *block = drm_edid_block_data(drm_edid, i);
2078 
2079 		if (!edid_block_valid(block, i == 0))
2080 			return false;
2081 	}
2082 
2083 	return true;
2084 }
2085 EXPORT_SYMBOL(drm_edid_valid);
2086 
2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088 					       size_t *alloc_size)
2089 {
2090 	struct edid *new;
2091 	int i, valid_blocks = 0;
2092 
2093 	/*
2094 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 	 * back to regular extension count here. We don't want to start
2096 	 * modifying the HF-EEODB extension too.
2097 	 */
2098 	for (i = 0; i < edid_block_count(edid); i++) {
2099 		const void *src_block = edid_block_data(edid, i);
2100 
2101 		if (edid_block_valid(src_block, i == 0)) {
2102 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103 
2104 			memmove(dst_block, src_block, EDID_LENGTH);
2105 			valid_blocks++;
2106 		}
2107 	}
2108 
2109 	/* We already trusted the base block to be valid here... */
2110 	if (WARN_ON(!valid_blocks)) {
2111 		kfree(edid);
2112 		return NULL;
2113 	}
2114 
2115 	edid->extensions = valid_blocks - 1;
2116 	edid->checksum = edid_block_compute_checksum(edid);
2117 
2118 	*alloc_size = edid_size_by_blocks(valid_blocks);
2119 
2120 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121 	if (!new)
2122 		kfree(edid);
2123 
2124 	return new;
2125 }
2126 
2127 #define DDC_SEGMENT_ADDR 0x30
2128 /**
2129  * drm_do_probe_ddc_edid() - get EDID information via I2C
2130  * @data: I2C device adapter
2131  * @buf: EDID data buffer to be filled
2132  * @block: 128 byte EDID block to start fetching from
2133  * @len: EDID data buffer length to fetch
2134  *
2135  * Try to fetch EDID information by calling I2C driver functions.
2136  *
2137  * Return: 0 on success or -1 on failure.
2138  */
2139 static int
2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141 {
2142 	struct i2c_adapter *adapter = data;
2143 	unsigned char start = block * EDID_LENGTH;
2144 	unsigned char segment = block >> 1;
2145 	unsigned char xfers = segment ? 3 : 2;
2146 	int ret, retries = 5;
2147 
2148 	/*
2149 	 * The core I2C driver will automatically retry the transfer if the
2150 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 	 * are susceptible to errors under a heavily loaded machine and
2152 	 * generate spurious NAKs and timeouts. Retrying the transfer
2153 	 * of the individual block a few times seems to overcome this.
2154 	 */
2155 	do {
2156 		struct i2c_msg msgs[] = {
2157 			{
2158 				.addr	= DDC_SEGMENT_ADDR,
2159 				.flags	= 0,
2160 				.len	= 1,
2161 				.buf	= &segment,
2162 			}, {
2163 				.addr	= DDC_ADDR,
2164 				.flags	= 0,
2165 				.len	= 1,
2166 				.buf	= &start,
2167 			}, {
2168 				.addr	= DDC_ADDR,
2169 				.flags	= I2C_M_RD,
2170 				.len	= len,
2171 				.buf	= buf,
2172 			}
2173 		};
2174 
2175 		/*
2176 		 * Avoid sending the segment addr to not upset non-compliant
2177 		 * DDC monitors.
2178 		 */
2179 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180 
2181 		if (ret == -ENXIO) {
2182 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183 					adapter->name);
2184 			break;
2185 		}
2186 	} while (ret != xfers && --retries);
2187 
2188 	return ret == xfers ? 0 : -1;
2189 }
2190 
2191 static void connector_bad_edid(struct drm_connector *connector,
2192 			       const struct edid *edid, int num_blocks)
2193 {
2194 	int i;
2195 	u8 last_block;
2196 
2197 	/*
2198 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 	 * of 0x7e in the EDID of the _index_ of the last block in the
2201 	 * combined chunk of memory.
2202 	 */
2203 	last_block = edid->extensions;
2204 
2205 	/* Calculate real checksum for the last edid extension block data */
2206 	if (last_block < num_blocks)
2207 		connector->real_edid_checksum =
2208 			edid_block_compute_checksum(edid + last_block);
2209 
2210 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211 		return;
2212 
2213 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 		    connector->base.id, connector->name);
2215 	for (i = 0; i < num_blocks; i++)
2216 		edid_block_dump(KERN_DEBUG, edid + i, i);
2217 }
2218 
2219 /* Get override or firmware EDID */
2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221 {
2222 	const struct drm_edid *override = NULL;
2223 
2224 	mutex_lock(&connector->edid_override_mutex);
2225 
2226 	if (connector->edid_override)
2227 		override = drm_edid_dup(connector->edid_override);
2228 
2229 	mutex_unlock(&connector->edid_override_mutex);
2230 
2231 	if (!override)
2232 		override = drm_edid_load_firmware(connector);
2233 
2234 	return IS_ERR(override) ? NULL : override;
2235 }
2236 
2237 /* For debugfs edid_override implementation */
2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239 {
2240 	const struct drm_edid *drm_edid;
2241 
2242 	mutex_lock(&connector->edid_override_mutex);
2243 
2244 	drm_edid = connector->edid_override;
2245 	if (drm_edid)
2246 		seq_write(m, drm_edid->edid, drm_edid->size);
2247 
2248 	mutex_unlock(&connector->edid_override_mutex);
2249 
2250 	return 0;
2251 }
2252 
2253 /* For debugfs edid_override implementation */
2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255 			  size_t size)
2256 {
2257 	const struct drm_edid *drm_edid;
2258 
2259 	drm_edid = drm_edid_alloc(edid, size);
2260 	if (!drm_edid_valid(drm_edid)) {
2261 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 			    connector->base.id, connector->name);
2263 		drm_edid_free(drm_edid);
2264 		return -EINVAL;
2265 	}
2266 
2267 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 		    connector->base.id, connector->name);
2269 
2270 	mutex_lock(&connector->edid_override_mutex);
2271 
2272 	drm_edid_free(connector->edid_override);
2273 	connector->edid_override = drm_edid;
2274 
2275 	mutex_unlock(&connector->edid_override_mutex);
2276 
2277 	return 0;
2278 }
2279 
2280 /* For debugfs edid_override implementation */
2281 int drm_edid_override_reset(struct drm_connector *connector)
2282 {
2283 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 		    connector->base.id, connector->name);
2285 
2286 	mutex_lock(&connector->edid_override_mutex);
2287 
2288 	drm_edid_free(connector->edid_override);
2289 	connector->edid_override = NULL;
2290 
2291 	mutex_unlock(&connector->edid_override_mutex);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * drm_edid_override_connector_update - add modes from override/firmware EDID
2298  * @connector: connector we're probing
2299  *
2300  * Add modes from the override/firmware EDID, if available. Only to be used from
2301  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302  * failed during drm_get_edid() and caused the override/firmware EDID to be
2303  * skipped.
2304  *
2305  * Return: The number of modes added or 0 if we couldn't find any.
2306  */
2307 int drm_edid_override_connector_update(struct drm_connector *connector)
2308 {
2309 	const struct drm_edid *override;
2310 	int num_modes = 0;
2311 
2312 	override = drm_edid_override_get(connector);
2313 	if (override) {
2314 		if (drm_edid_connector_update(connector, override) == 0)
2315 			num_modes = drm_edid_connector_add_modes(connector);
2316 
2317 		drm_edid_free(override);
2318 
2319 		drm_dbg_kms(connector->dev,
2320 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321 			    connector->base.id, connector->name, num_modes);
2322 	}
2323 
2324 	return num_modes;
2325 }
2326 EXPORT_SYMBOL(drm_edid_override_connector_update);
2327 
2328 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329 
2330 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331 					      read_block_fn read_block,
2332 					      void *context)
2333 {
2334 	enum edid_block_status status;
2335 	bool is_base_block = block_num == 0;
2336 	int try;
2337 
2338 	for (try = 0; try < 4; try++) {
2339 		if (read_block(context, block, block_num, EDID_LENGTH))
2340 			return EDID_BLOCK_READ_FAIL;
2341 
2342 		status = edid_block_check(block, is_base_block);
2343 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344 			edid_header_fix(block);
2345 
2346 			/* Retry with fixed header, update status if that worked. */
2347 			status = edid_block_check(block, is_base_block);
2348 			if (status == EDID_BLOCK_OK)
2349 				status = EDID_BLOCK_HEADER_FIXED;
2350 		}
2351 
2352 		if (edid_block_status_valid(status, edid_block_tag(block)))
2353 			break;
2354 
2355 		/* Fail early for unrepairable base block all zeros. */
2356 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357 			break;
2358 	}
2359 
2360 	return status;
2361 }
2362 
2363 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364 				     read_block_fn read_block, void *context,
2365 				     size_t *size)
2366 {
2367 	enum edid_block_status status;
2368 	int i, num_blocks, invalid_blocks = 0;
2369 	const struct drm_edid *override;
2370 	struct edid *edid, *new;
2371 	size_t alloc_size = EDID_LENGTH;
2372 
2373 	override = drm_edid_override_get(connector);
2374 	if (override) {
2375 		alloc_size = override->size;
2376 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377 		drm_edid_free(override);
2378 		if (!edid)
2379 			return NULL;
2380 		goto ok;
2381 	}
2382 
2383 	edid = kmalloc(alloc_size, GFP_KERNEL);
2384 	if (!edid)
2385 		return NULL;
2386 
2387 	status = edid_block_read(edid, 0, read_block, context);
2388 
2389 	edid_block_status_print(status, edid, 0);
2390 
2391 	if (status == EDID_BLOCK_READ_FAIL)
2392 		goto fail;
2393 
2394 	/* FIXME: Clarify what a corrupt EDID actually means. */
2395 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396 		connector->edid_corrupt = false;
2397 	else
2398 		connector->edid_corrupt = true;
2399 
2400 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401 		if (status == EDID_BLOCK_ZERO)
2402 			connector->null_edid_counter++;
2403 
2404 		connector_bad_edid(connector, edid, 1);
2405 		goto fail;
2406 	}
2407 
2408 	if (!edid_extension_block_count(edid))
2409 		goto ok;
2410 
2411 	alloc_size = edid_size(edid);
2412 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413 	if (!new)
2414 		goto fail;
2415 	edid = new;
2416 
2417 	num_blocks = edid_block_count(edid);
2418 	for (i = 1; i < num_blocks; i++) {
2419 		void *block = (void *)edid_block_data(edid, i);
2420 
2421 		status = edid_block_read(block, i, read_block, context);
2422 
2423 		edid_block_status_print(status, block, i);
2424 
2425 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426 			if (status == EDID_BLOCK_READ_FAIL)
2427 				goto fail;
2428 			invalid_blocks++;
2429 		} else if (i == 1) {
2430 			/*
2431 			 * If the first EDID extension is a CTA extension, and
2432 			 * the first Data Block is HF-EEODB, override the
2433 			 * extension block count.
2434 			 *
2435 			 * Note: HF-EEODB could specify a smaller extension
2436 			 * count too, but we can't risk allocating a smaller
2437 			 * amount.
2438 			 */
2439 			int eeodb = edid_hfeeodb_block_count(edid);
2440 
2441 			if (eeodb > num_blocks) {
2442 				num_blocks = eeodb;
2443 				alloc_size = edid_size_by_blocks(num_blocks);
2444 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445 				if (!new)
2446 					goto fail;
2447 				edid = new;
2448 			}
2449 		}
2450 	}
2451 
2452 	if (invalid_blocks) {
2453 		connector_bad_edid(connector, edid, num_blocks);
2454 
2455 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456 	}
2457 
2458 ok:
2459 	if (size)
2460 		*size = alloc_size;
2461 
2462 	return edid;
2463 
2464 fail:
2465 	kfree(edid);
2466 	return NULL;
2467 }
2468 
2469 /**
2470  * drm_do_get_edid - get EDID data using a custom EDID block read function
2471  * @connector: connector we're probing
2472  * @read_block: EDID block read function
2473  * @context: private data passed to the block read function
2474  *
2475  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476  * exposes a different interface to read EDID blocks this function can be used
2477  * to get EDID data using a custom block read function.
2478  *
2479  * As in the general case the DDC bus is accessible by the kernel at the I2C
2480  * level, drivers must make all reasonable efforts to expose it as an I2C
2481  * adapter and use drm_get_edid() instead of abusing this function.
2482  *
2483  * The EDID may be overridden using debugfs override_edid or firmware EDID
2484  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485  * order. Having either of them bypasses actual EDID reads.
2486  *
2487  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488  */
2489 struct edid *drm_do_get_edid(struct drm_connector *connector,
2490 			     read_block_fn read_block,
2491 			     void *context)
2492 {
2493 	return _drm_do_get_edid(connector, read_block, context, NULL);
2494 }
2495 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2496 
2497 /**
2498  * drm_edid_raw - Get a pointer to the raw EDID data.
2499  * @drm_edid: drm_edid container
2500  *
2501  * Get a pointer to the raw EDID data.
2502  *
2503  * This is for transition only. Avoid using this like the plague.
2504  *
2505  * Return: Pointer to raw EDID data.
2506  */
2507 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508 {
2509 	if (!drm_edid || !drm_edid->size)
2510 		return NULL;
2511 
2512 	/*
2513 	 * Do not return pointers where relying on EDID extension count would
2514 	 * lead to buffer overflow.
2515 	 */
2516 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517 		return NULL;
2518 
2519 	return drm_edid->edid;
2520 }
2521 EXPORT_SYMBOL(drm_edid_raw);
2522 
2523 /* Allocate struct drm_edid container *without* duplicating the edid data */
2524 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525 {
2526 	struct drm_edid *drm_edid;
2527 
2528 	if (!edid || !size || size < EDID_LENGTH)
2529 		return NULL;
2530 
2531 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532 	if (drm_edid) {
2533 		drm_edid->edid = edid;
2534 		drm_edid->size = size;
2535 	}
2536 
2537 	return drm_edid;
2538 }
2539 
2540 /**
2541  * drm_edid_alloc - Allocate a new drm_edid container
2542  * @edid: Pointer to raw EDID data
2543  * @size: Size of memory allocated for EDID
2544  *
2545  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546  * the actual size that has been allocated for the data. There is no validation
2547  * of the raw EDID data against the size, but at least the EDID base block must
2548  * fit in the buffer.
2549  *
2550  * The returned pointer must be freed using drm_edid_free().
2551  *
2552  * Return: drm_edid container, or NULL on errors
2553  */
2554 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555 {
2556 	const struct drm_edid *drm_edid;
2557 
2558 	if (!edid || !size || size < EDID_LENGTH)
2559 		return NULL;
2560 
2561 	edid = kmemdup(edid, size, GFP_KERNEL);
2562 	if (!edid)
2563 		return NULL;
2564 
2565 	drm_edid = _drm_edid_alloc(edid, size);
2566 	if (!drm_edid)
2567 		kfree(edid);
2568 
2569 	return drm_edid;
2570 }
2571 EXPORT_SYMBOL(drm_edid_alloc);
2572 
2573 /**
2574  * drm_edid_dup - Duplicate a drm_edid container
2575  * @drm_edid: EDID to duplicate
2576  *
2577  * The returned pointer must be freed using drm_edid_free().
2578  *
2579  * Returns: drm_edid container copy, or NULL on errors
2580  */
2581 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582 {
2583 	if (!drm_edid)
2584 		return NULL;
2585 
2586 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587 }
2588 EXPORT_SYMBOL(drm_edid_dup);
2589 
2590 /**
2591  * drm_edid_free - Free the drm_edid container
2592  * @drm_edid: EDID to free
2593  */
2594 void drm_edid_free(const struct drm_edid *drm_edid)
2595 {
2596 	if (!drm_edid)
2597 		return;
2598 
2599 	kfree(drm_edid->edid);
2600 	kfree(drm_edid);
2601 }
2602 EXPORT_SYMBOL(drm_edid_free);
2603 
2604 /**
2605  * drm_probe_ddc() - probe DDC presence
2606  * @adapter: I2C adapter to probe
2607  *
2608  * Return: True on success, false on failure.
2609  */
2610 bool
2611 drm_probe_ddc(struct i2c_adapter *adapter)
2612 {
2613 	unsigned char out;
2614 
2615 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616 }
2617 EXPORT_SYMBOL(drm_probe_ddc);
2618 
2619 /**
2620  * drm_get_edid - get EDID data, if available
2621  * @connector: connector we're probing
2622  * @adapter: I2C adapter to use for DDC
2623  *
2624  * Poke the given I2C channel to grab EDID data if possible.  If found,
2625  * attach it to the connector.
2626  *
2627  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628  */
2629 struct edid *drm_get_edid(struct drm_connector *connector,
2630 			  struct i2c_adapter *adapter)
2631 {
2632 	struct edid *edid;
2633 
2634 	if (connector->force == DRM_FORCE_OFF)
2635 		return NULL;
2636 
2637 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638 		return NULL;
2639 
2640 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641 	drm_connector_update_edid_property(connector, edid);
2642 	return edid;
2643 }
2644 EXPORT_SYMBOL(drm_get_edid);
2645 
2646 /**
2647  * drm_edid_read_custom - Read EDID data using given EDID block read function
2648  * @connector: Connector to use
2649  * @read_block: EDID block read function
2650  * @context: Private data passed to the block read function
2651  *
2652  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653  * exposes a different interface to read EDID blocks this function can be used
2654  * to get EDID data using a custom block read function.
2655  *
2656  * As in the general case the DDC bus is accessible by the kernel at the I2C
2657  * level, drivers must make all reasonable efforts to expose it as an I2C
2658  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659  * this function.
2660  *
2661  * The EDID may be overridden using debugfs override_edid or firmware EDID
2662  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663  * order. Having either of them bypasses actual EDID reads.
2664  *
2665  * The returned pointer must be freed using drm_edid_free().
2666  *
2667  * Return: Pointer to EDID, or NULL if probe/read failed.
2668  */
2669 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670 					    read_block_fn read_block,
2671 					    void *context)
2672 {
2673 	const struct drm_edid *drm_edid;
2674 	struct edid *edid;
2675 	size_t size = 0;
2676 
2677 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2678 	if (!edid)
2679 		return NULL;
2680 
2681 	/* Sanity check for now */
2682 	drm_WARN_ON(connector->dev, !size);
2683 
2684 	drm_edid = _drm_edid_alloc(edid, size);
2685 	if (!drm_edid)
2686 		kfree(edid);
2687 
2688 	return drm_edid;
2689 }
2690 EXPORT_SYMBOL(drm_edid_read_custom);
2691 
2692 /**
2693  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694  * @connector: Connector to use
2695  * @adapter: I2C adapter to use for DDC
2696  *
2697  * Read EDID using the given I2C adapter.
2698  *
2699  * The EDID may be overridden using debugfs override_edid or firmware EDID
2700  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701  * order. Having either of them bypasses actual EDID reads.
2702  *
2703  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704  * using drm_edid_read() instead of this function.
2705  *
2706  * The returned pointer must be freed using drm_edid_free().
2707  *
2708  * Return: Pointer to EDID, or NULL if probe/read failed.
2709  */
2710 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711 					 struct i2c_adapter *adapter)
2712 {
2713 	const struct drm_edid *drm_edid;
2714 
2715 	if (connector->force == DRM_FORCE_OFF)
2716 		return NULL;
2717 
2718 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719 		return NULL;
2720 
2721 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722 
2723 	/* Note: Do *not* call connector updates here. */
2724 
2725 	return drm_edid;
2726 }
2727 EXPORT_SYMBOL(drm_edid_read_ddc);
2728 
2729 /**
2730  * drm_edid_read - Read EDID data using connector's I2C adapter
2731  * @connector: Connector to use
2732  *
2733  * Read EDID using the connector's I2C adapter.
2734  *
2735  * The EDID may be overridden using debugfs override_edid or firmware EDID
2736  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737  * order. Having either of them bypasses actual EDID reads.
2738  *
2739  * The returned pointer must be freed using drm_edid_free().
2740  *
2741  * Return: Pointer to EDID, or NULL if probe/read failed.
2742  */
2743 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744 {
2745 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2746 		return NULL;
2747 
2748 	return drm_edid_read_ddc(connector, connector->ddc);
2749 }
2750 EXPORT_SYMBOL(drm_edid_read);
2751 
2752 static u32 edid_extract_panel_id(const struct edid *edid)
2753 {
2754 	/*
2755 	 * We represent the ID as a 32-bit number so it can easily be compared
2756 	 * with "==".
2757 	 *
2758 	 * NOTE that we deal with endianness differently for the top half
2759 	 * of this ID than for the bottom half. The bottom half (the product
2760 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762 	 * gets stored as big endian because that makes
2763 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764 	 * to write (it's easier to extract the ASCII). It doesn't really
2765 	 * matter, though, as long as the number here is unique.
2766 	 */
2767 	return (u32)edid->mfg_id[0] << 24   |
2768 	       (u32)edid->mfg_id[1] << 16   |
2769 	       (u32)EDID_PRODUCT_ID(edid);
2770 }
2771 
2772 /**
2773  * drm_edid_get_panel_id - Get a panel's ID through DDC
2774  * @adapter: I2C adapter to use for DDC
2775  *
2776  * This function reads the first block of the EDID of a panel and (assuming
2777  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779  * supposed to be different for each different modem of panel.
2780  *
2781  * This function is intended to be used during early probing on devices where
2782  * more than one panel might be present. Because of its intended use it must
2783  * assume that the EDID of the panel is correct, at least as far as the ID
2784  * is concerned (in other words, we don't process any overrides here).
2785  *
2786  * NOTE: it's expected that this function and drm_do_get_edid() will both
2787  * be read the EDID, but there is no caching between them. Since we're only
2788  * reading the first block, hopefully this extra overhead won't be too big.
2789  *
2790  * Return: A 32-bit ID that should be different for each make/model of panel.
2791  *         See the functions drm_edid_encode_panel_id() and
2792  *         drm_edid_decode_panel_id() for some details on the structure of this
2793  *         ID.
2794  */
2795 
2796 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797 {
2798 	enum edid_block_status status;
2799 	void *base_block;
2800 	u32 panel_id = 0;
2801 
2802 	/*
2803 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2804 	 * the EDID then we'll just return 0.
2805 	 */
2806 
2807 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808 	if (!base_block)
2809 		return 0;
2810 
2811 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812 
2813 	edid_block_status_print(status, base_block, 0);
2814 
2815 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816 		panel_id = edid_extract_panel_id(base_block);
2817 	else
2818 		edid_block_dump(KERN_NOTICE, base_block, 0);
2819 
2820 	kfree(base_block);
2821 
2822 	return panel_id;
2823 }
2824 EXPORT_SYMBOL(drm_edid_get_panel_id);
2825 
2826 /**
2827  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828  * @connector: connector we're probing
2829  * @adapter: I2C adapter to use for DDC
2830  *
2831  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833  * switch DDC to the GPU which is retrieving EDID.
2834  *
2835  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836  */
2837 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838 				     struct i2c_adapter *adapter)
2839 {
2840 	struct drm_device *dev = connector->dev;
2841 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2842 	struct edid *edid;
2843 
2844 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845 		return NULL;
2846 
2847 	vga_switcheroo_lock_ddc(pdev);
2848 	edid = drm_get_edid(connector, adapter);
2849 	vga_switcheroo_unlock_ddc(pdev);
2850 
2851 	return edid;
2852 }
2853 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854 
2855 /**
2856  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857  * @connector: connector we're probing
2858  * @adapter: I2C adapter to use for DDC
2859  *
2860  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862  * temporarily switch DDC to the GPU which is retrieving EDID.
2863  *
2864  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865  */
2866 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867 						struct i2c_adapter *adapter)
2868 {
2869 	struct drm_device *dev = connector->dev;
2870 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2871 	const struct drm_edid *drm_edid;
2872 
2873 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874 		return NULL;
2875 
2876 	vga_switcheroo_lock_ddc(pdev);
2877 	drm_edid = drm_edid_read_ddc(connector, adapter);
2878 	vga_switcheroo_unlock_ddc(pdev);
2879 
2880 	return drm_edid;
2881 }
2882 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883 
2884 /**
2885  * drm_edid_duplicate - duplicate an EDID and the extensions
2886  * @edid: EDID to duplicate
2887  *
2888  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889  */
2890 struct edid *drm_edid_duplicate(const struct edid *edid)
2891 {
2892 	if (!edid)
2893 		return NULL;
2894 
2895 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896 }
2897 EXPORT_SYMBOL(drm_edid_duplicate);
2898 
2899 /*** EDID parsing ***/
2900 
2901 /**
2902  * edid_get_quirks - return quirk flags for a given EDID
2903  * @drm_edid: EDID to process
2904  *
2905  * This tells subsequent routines what fixes they need to apply.
2906  */
2907 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908 {
2909 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910 	const struct edid_quirk *quirk;
2911 	int i;
2912 
2913 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914 		quirk = &edid_quirk_list[i];
2915 		if (quirk->panel_id == panel_id)
2916 			return quirk->quirks;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
2922 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924 
2925 /*
2926  * Walk the mode list for connector, clearing the preferred status on existing
2927  * modes and setting it anew for the right mode ala quirks.
2928  */
2929 static void edid_fixup_preferred(struct drm_connector *connector)
2930 {
2931 	const struct drm_display_info *info = &connector->display_info;
2932 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933 	int target_refresh = 0;
2934 	int cur_vrefresh, preferred_vrefresh;
2935 
2936 	if (list_empty(&connector->probed_modes))
2937 		return;
2938 
2939 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940 		target_refresh = 60;
2941 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942 		target_refresh = 75;
2943 
2944 	preferred_mode = list_first_entry(&connector->probed_modes,
2945 					  struct drm_display_mode, head);
2946 
2947 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949 
2950 		if (cur_mode == preferred_mode)
2951 			continue;
2952 
2953 		/* Largest mode is preferred */
2954 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955 			preferred_mode = cur_mode;
2956 
2957 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959 		/* At a given size, try to get closest to target refresh */
2960 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963 			preferred_mode = cur_mode;
2964 		}
2965 	}
2966 
2967 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968 }
2969 
2970 static bool
2971 mode_is_rb(const struct drm_display_mode *mode)
2972 {
2973 	return (mode->htotal - mode->hdisplay == 160) &&
2974 	       (mode->hsync_end - mode->hdisplay == 80) &&
2975 	       (mode->hsync_end - mode->hsync_start == 32) &&
2976 	       (mode->vsync_start - mode->vdisplay == 3);
2977 }
2978 
2979 /*
2980  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981  * @dev: Device to duplicate against
2982  * @hsize: Mode width
2983  * @vsize: Mode height
2984  * @fresh: Mode refresh rate
2985  * @rb: Mode reduced-blanking-ness
2986  *
2987  * Walk the DMT mode list looking for a match for the given parameters.
2988  *
2989  * Return: A newly allocated copy of the mode, or NULL if not found.
2990  */
2991 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992 					   int hsize, int vsize, int fresh,
2993 					   bool rb)
2994 {
2995 	int i;
2996 
2997 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999 
3000 		if (hsize != ptr->hdisplay)
3001 			continue;
3002 		if (vsize != ptr->vdisplay)
3003 			continue;
3004 		if (fresh != drm_mode_vrefresh(ptr))
3005 			continue;
3006 		if (rb != mode_is_rb(ptr))
3007 			continue;
3008 
3009 		return drm_mode_duplicate(dev, ptr);
3010 	}
3011 
3012 	return NULL;
3013 }
3014 EXPORT_SYMBOL(drm_mode_find_dmt);
3015 
3016 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017 {
3018 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021 
3022 	return descriptor->pixel_clock == 0 &&
3023 		descriptor->data.other_data.pad1 == 0 &&
3024 		descriptor->data.other_data.type == type;
3025 }
3026 
3027 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028 {
3029 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030 
3031 	return descriptor->pixel_clock != 0;
3032 }
3033 
3034 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035 
3036 static void
3037 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038 {
3039 	int i, n;
3040 	u8 d = ext[0x02];
3041 	const u8 *det_base = ext + d;
3042 
3043 	if (d < 4 || d > 127)
3044 		return;
3045 
3046 	n = (127 - d) / 18;
3047 	for (i = 0; i < n; i++)
3048 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049 }
3050 
3051 static void
3052 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053 {
3054 	unsigned int i, n = min((int)ext[0x02], 6);
3055 	const u8 *det_base = ext + 5;
3056 
3057 	if (ext[0x01] != 1)
3058 		return; /* unknown version */
3059 
3060 	for (i = 0; i < n; i++)
3061 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062 }
3063 
3064 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065 					detailed_cb *cb, void *closure)
3066 {
3067 	struct drm_edid_iter edid_iter;
3068 	const u8 *ext;
3069 	int i;
3070 
3071 	if (!drm_edid)
3072 		return;
3073 
3074 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075 		cb(&drm_edid->edid->detailed_timings[i], closure);
3076 
3077 	drm_edid_iter_begin(drm_edid, &edid_iter);
3078 	drm_edid_iter_for_each(ext, &edid_iter) {
3079 		switch (*ext) {
3080 		case CEA_EXT:
3081 			cea_for_each_detailed_block(ext, cb, closure);
3082 			break;
3083 		case VTB_EXT:
3084 			vtb_for_each_detailed_block(ext, cb, closure);
3085 			break;
3086 		default:
3087 			break;
3088 		}
3089 	}
3090 	drm_edid_iter_end(&edid_iter);
3091 }
3092 
3093 static void
3094 is_rb(const struct detailed_timing *descriptor, void *data)
3095 {
3096 	bool *res = data;
3097 
3098 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099 		return;
3100 
3101 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103 
3104 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106 		*res = true;
3107 }
3108 
3109 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3110 static bool
3111 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112 {
3113 	if (drm_edid->edid->revision >= 4) {
3114 		bool ret = false;
3115 
3116 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117 		return ret;
3118 	}
3119 
3120 	return drm_edid_is_digital(drm_edid);
3121 }
3122 
3123 static void
3124 find_gtf2(const struct detailed_timing *descriptor, void *data)
3125 {
3126 	const struct detailed_timing **res = data;
3127 
3128 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129 		return;
3130 
3131 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132 
3133 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134 		*res = descriptor;
3135 }
3136 
3137 /* Secondary GTF curve kicks in above some break frequency */
3138 static int
3139 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140 {
3141 	const struct detailed_timing *descriptor = NULL;
3142 
3143 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144 
3145 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146 
3147 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148 }
3149 
3150 static int
3151 drm_gtf2_2c(const struct drm_edid *drm_edid)
3152 {
3153 	const struct detailed_timing *descriptor = NULL;
3154 
3155 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156 
3157 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158 
3159 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160 }
3161 
3162 static int
3163 drm_gtf2_m(const struct drm_edid *drm_edid)
3164 {
3165 	const struct detailed_timing *descriptor = NULL;
3166 
3167 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168 
3169 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170 
3171 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172 }
3173 
3174 static int
3175 drm_gtf2_k(const struct drm_edid *drm_edid)
3176 {
3177 	const struct detailed_timing *descriptor = NULL;
3178 
3179 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180 
3181 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182 
3183 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184 }
3185 
3186 static int
3187 drm_gtf2_2j(const struct drm_edid *drm_edid)
3188 {
3189 	const struct detailed_timing *descriptor = NULL;
3190 
3191 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192 
3193 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194 
3195 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196 }
3197 
3198 static void
3199 get_timing_level(const struct detailed_timing *descriptor, void *data)
3200 {
3201 	int *res = data;
3202 
3203 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204 		return;
3205 
3206 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207 
3208 	switch (descriptor->data.other_data.data.range.flags) {
3209 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210 		*res = LEVEL_GTF;
3211 		break;
3212 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213 		*res = LEVEL_GTF2;
3214 		break;
3215 	case DRM_EDID_CVT_SUPPORT_FLAG:
3216 		*res = LEVEL_CVT;
3217 		break;
3218 	default:
3219 		break;
3220 	}
3221 }
3222 
3223 /* Get standard timing level (CVT/GTF/DMT). */
3224 static int standard_timing_level(const struct drm_edid *drm_edid)
3225 {
3226 	const struct edid *edid = drm_edid->edid;
3227 
3228 	if (edid->revision >= 4) {
3229 		/*
3230 		 * If the range descriptor doesn't
3231 		 * indicate otherwise default to CVT
3232 		 */
3233 		int ret = LEVEL_CVT;
3234 
3235 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236 
3237 		return ret;
3238 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239 		return LEVEL_GTF2;
3240 	} else if (edid->revision >= 2) {
3241 		return LEVEL_GTF;
3242 	} else {
3243 		return LEVEL_DMT;
3244 	}
3245 }
3246 
3247 /*
3248  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3249  * monitors fill with ascii space (0x20) instead.
3250  */
3251 static int
3252 bad_std_timing(u8 a, u8 b)
3253 {
3254 	return (a == 0x00 && b == 0x00) ||
3255 	       (a == 0x01 && b == 0x01) ||
3256 	       (a == 0x20 && b == 0x20);
3257 }
3258 
3259 static int drm_mode_hsync(const struct drm_display_mode *mode)
3260 {
3261 	if (mode->htotal <= 0)
3262 		return 0;
3263 
3264 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265 }
3266 
3267 static struct drm_display_mode *
3268 drm_gtf2_mode(struct drm_device *dev,
3269 	      const struct drm_edid *drm_edid,
3270 	      int hsize, int vsize, int vrefresh_rate)
3271 {
3272 	struct drm_display_mode *mode;
3273 
3274 	/*
3275 	 * This is potentially wrong if there's ever a monitor with
3276 	 * more than one ranges section, each claiming a different
3277 	 * secondary GTF curve.  Please don't do that.
3278 	 */
3279 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280 	if (!mode)
3281 		return NULL;
3282 
3283 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284 		drm_mode_destroy(dev, mode);
3285 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286 					    vrefresh_rate, 0, 0,
3287 					    drm_gtf2_m(drm_edid),
3288 					    drm_gtf2_2c(drm_edid),
3289 					    drm_gtf2_k(drm_edid),
3290 					    drm_gtf2_2j(drm_edid));
3291 	}
3292 
3293 	return mode;
3294 }
3295 
3296 /*
3297  * Take the standard timing params (in this case width, aspect, and refresh)
3298  * and convert them into a real mode using CVT/GTF/DMT.
3299  */
3300 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301 					     const struct drm_edid *drm_edid,
3302 					     const struct std_timing *t)
3303 {
3304 	struct drm_device *dev = connector->dev;
3305 	struct drm_display_mode *m, *mode = NULL;
3306 	int hsize, vsize;
3307 	int vrefresh_rate;
3308 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309 		>> EDID_TIMING_ASPECT_SHIFT;
3310 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311 		>> EDID_TIMING_VFREQ_SHIFT;
3312 	int timing_level = standard_timing_level(drm_edid);
3313 
3314 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315 		return NULL;
3316 
3317 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318 	hsize = t->hsize * 8 + 248;
3319 	/* vrefresh_rate = vfreq + 60 */
3320 	vrefresh_rate = vfreq + 60;
3321 	/* the vdisplay is calculated based on the aspect ratio */
3322 	if (aspect_ratio == 0) {
3323 		if (drm_edid->edid->revision < 3)
3324 			vsize = hsize;
3325 		else
3326 			vsize = (hsize * 10) / 16;
3327 	} else if (aspect_ratio == 1)
3328 		vsize = (hsize * 3) / 4;
3329 	else if (aspect_ratio == 2)
3330 		vsize = (hsize * 4) / 5;
3331 	else
3332 		vsize = (hsize * 9) / 16;
3333 
3334 	/* HDTV hack, part 1 */
3335 	if (vrefresh_rate == 60 &&
3336 	    ((hsize == 1360 && vsize == 765) ||
3337 	     (hsize == 1368 && vsize == 769))) {
3338 		hsize = 1366;
3339 		vsize = 768;
3340 	}
3341 
3342 	/*
3343 	 * If this connector already has a mode for this size and refresh
3344 	 * rate (because it came from detailed or CVT info), use that
3345 	 * instead.  This way we don't have to guess at interlace or
3346 	 * reduced blanking.
3347 	 */
3348 	list_for_each_entry(m, &connector->probed_modes, head)
3349 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350 		    drm_mode_vrefresh(m) == vrefresh_rate)
3351 			return NULL;
3352 
3353 	/* HDTV hack, part 2 */
3354 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356 				    false);
3357 		if (!mode)
3358 			return NULL;
3359 		mode->hdisplay = 1366;
3360 		mode->hsync_start = mode->hsync_start - 1;
3361 		mode->hsync_end = mode->hsync_end - 1;
3362 		return mode;
3363 	}
3364 
3365 	/* check whether it can be found in default mode table */
3366 	if (drm_monitor_supports_rb(drm_edid)) {
3367 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368 					 true);
3369 		if (mode)
3370 			return mode;
3371 	}
3372 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373 	if (mode)
3374 		return mode;
3375 
3376 	/* okay, generate it */
3377 	switch (timing_level) {
3378 	case LEVEL_DMT:
3379 		break;
3380 	case LEVEL_GTF:
3381 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382 		break;
3383 	case LEVEL_GTF2:
3384 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3385 		break;
3386 	case LEVEL_CVT:
3387 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388 				    false);
3389 		break;
3390 	}
3391 	return mode;
3392 }
3393 
3394 /*
3395  * EDID is delightfully ambiguous about how interlaced modes are to be
3396  * encoded.  Our internal representation is of frame height, but some
3397  * HDTV detailed timings are encoded as field height.
3398  *
3399  * The format list here is from CEA, in frame size.  Technically we
3400  * should be checking refresh rate too.  Whatever.
3401  */
3402 static void
3403 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404 			    const struct detailed_pixel_timing *pt)
3405 {
3406 	int i;
3407 	static const struct {
3408 		int w, h;
3409 	} cea_interlaced[] = {
3410 		{ 1920, 1080 },
3411 		{  720,  480 },
3412 		{ 1440,  480 },
3413 		{ 2880,  480 },
3414 		{  720,  576 },
3415 		{ 1440,  576 },
3416 		{ 2880,  576 },
3417 	};
3418 
3419 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420 		return;
3421 
3422 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3424 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425 			mode->vdisplay *= 2;
3426 			mode->vsync_start *= 2;
3427 			mode->vsync_end *= 2;
3428 			mode->vtotal *= 2;
3429 			mode->vtotal |= 1;
3430 		}
3431 	}
3432 
3433 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434 }
3435 
3436 /*
3437  * Create a new mode from an EDID detailed timing section. An EDID detailed
3438  * timing block contains enough info for us to create and return a new struct
3439  * drm_display_mode.
3440  */
3441 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442 						  const struct drm_edid *drm_edid,
3443 						  const struct detailed_timing *timing)
3444 {
3445 	const struct drm_display_info *info = &connector->display_info;
3446 	struct drm_device *dev = connector->dev;
3447 	struct drm_display_mode *mode;
3448 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457 
3458 	/* ignore tiny modes */
3459 	if (hactive < 64 || vactive < 64)
3460 		return NULL;
3461 
3462 	if (pt->misc & DRM_EDID_PT_STEREO) {
3463 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464 			    connector->base.id, connector->name);
3465 		return NULL;
3466 	}
3467 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469 			    connector->base.id, connector->name);
3470 	}
3471 
3472 	/* it is incorrect if hsync/vsync width is zero */
3473 	if (!hsync_pulse_width || !vsync_pulse_width) {
3474 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475 			    connector->base.id, connector->name);
3476 		return NULL;
3477 	}
3478 
3479 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481 		if (!mode)
3482 			return NULL;
3483 
3484 		goto set_size;
3485 	}
3486 
3487 	mode = drm_mode_create(dev);
3488 	if (!mode)
3489 		return NULL;
3490 
3491 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492 		mode->clock = 1088 * 10;
3493 	else
3494 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495 
3496 	mode->hdisplay = hactive;
3497 	mode->hsync_start = mode->hdisplay + hsync_offset;
3498 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499 	mode->htotal = mode->hdisplay + hblank;
3500 
3501 	mode->vdisplay = vactive;
3502 	mode->vsync_start = mode->vdisplay + vsync_offset;
3503 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504 	mode->vtotal = mode->vdisplay + vblank;
3505 
3506 	/* Some EDIDs have bogus h/vsync_end values */
3507 	if (mode->hsync_end > mode->htotal) {
3508 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509 			    connector->base.id, connector->name,
3510 			    mode->hsync_end, mode->htotal);
3511 		mode->hsync_end = mode->htotal;
3512 	}
3513 	if (mode->vsync_end > mode->vtotal) {
3514 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515 			    connector->base.id, connector->name,
3516 			    mode->vsync_end, mode->vtotal);
3517 		mode->vsync_end = mode->vtotal;
3518 	}
3519 
3520 	drm_mode_do_interlace_quirk(mode, pt);
3521 
3522 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524 	} else {
3525 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529 	}
3530 
3531 set_size:
3532 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534 
3535 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536 		mode->width_mm *= 10;
3537 		mode->height_mm *= 10;
3538 	}
3539 
3540 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541 		mode->width_mm = drm_edid->edid->width_cm * 10;
3542 		mode->height_mm = drm_edid->edid->height_cm * 10;
3543 	}
3544 
3545 	mode->type = DRM_MODE_TYPE_DRIVER;
3546 	drm_mode_set_name(mode);
3547 
3548 	return mode;
3549 }
3550 
3551 static bool
3552 mode_in_hsync_range(const struct drm_display_mode *mode,
3553 		    const struct edid *edid, const u8 *t)
3554 {
3555 	int hsync, hmin, hmax;
3556 
3557 	hmin = t[7];
3558 	if (edid->revision >= 4)
3559 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3560 	hmax = t[8];
3561 	if (edid->revision >= 4)
3562 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3563 	hsync = drm_mode_hsync(mode);
3564 
3565 	return (hsync <= hmax && hsync >= hmin);
3566 }
3567 
3568 static bool
3569 mode_in_vsync_range(const struct drm_display_mode *mode,
3570 		    const struct edid *edid, const u8 *t)
3571 {
3572 	int vsync, vmin, vmax;
3573 
3574 	vmin = t[5];
3575 	if (edid->revision >= 4)
3576 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3577 	vmax = t[6];
3578 	if (edid->revision >= 4)
3579 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3580 	vsync = drm_mode_vrefresh(mode);
3581 
3582 	return (vsync <= vmax && vsync >= vmin);
3583 }
3584 
3585 static u32
3586 range_pixel_clock(const struct edid *edid, const u8 *t)
3587 {
3588 	/* unspecified */
3589 	if (t[9] == 0 || t[9] == 255)
3590 		return 0;
3591 
3592 	/* 1.4 with CVT support gives us real precision, yay */
3593 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595 
3596 	/* 1.3 is pathetic, so fuzz up a bit */
3597 	return t[9] * 10000 + 5001;
3598 }
3599 
3600 static bool mode_in_range(const struct drm_display_mode *mode,
3601 			  const struct drm_edid *drm_edid,
3602 			  const struct detailed_timing *timing)
3603 {
3604 	const struct edid *edid = drm_edid->edid;
3605 	u32 max_clock;
3606 	const u8 *t = (const u8 *)timing;
3607 
3608 	if (!mode_in_hsync_range(mode, edid, t))
3609 		return false;
3610 
3611 	if (!mode_in_vsync_range(mode, edid, t))
3612 		return false;
3613 
3614 	if ((max_clock = range_pixel_clock(edid, t)))
3615 		if (mode->clock > max_clock)
3616 			return false;
3617 
3618 	/* 1.4 max horizontal check */
3619 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3620 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3621 			return false;
3622 
3623 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3624 		return false;
3625 
3626 	return true;
3627 }
3628 
3629 static bool valid_inferred_mode(const struct drm_connector *connector,
3630 				const struct drm_display_mode *mode)
3631 {
3632 	const struct drm_display_mode *m;
3633 	bool ok = false;
3634 
3635 	list_for_each_entry(m, &connector->probed_modes, head) {
3636 		if (mode->hdisplay == m->hdisplay &&
3637 		    mode->vdisplay == m->vdisplay &&
3638 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3639 			return false; /* duplicated */
3640 		if (mode->hdisplay <= m->hdisplay &&
3641 		    mode->vdisplay <= m->vdisplay)
3642 			ok = true;
3643 	}
3644 	return ok;
3645 }
3646 
3647 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3648 				   const struct drm_edid *drm_edid,
3649 				   const struct detailed_timing *timing)
3650 {
3651 	int i, modes = 0;
3652 	struct drm_display_mode *newmode;
3653 	struct drm_device *dev = connector->dev;
3654 
3655 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3656 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3657 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3658 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3659 			if (newmode) {
3660 				drm_mode_probed_add(connector, newmode);
3661 				modes++;
3662 			}
3663 		}
3664 	}
3665 
3666 	return modes;
3667 }
3668 
3669 /* fix up 1366x768 mode from 1368x768;
3670  * GFT/CVT can't express 1366 width which isn't dividable by 8
3671  */
3672 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3673 {
3674 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3675 		mode->hdisplay = 1366;
3676 		mode->hsync_start--;
3677 		mode->hsync_end--;
3678 		drm_mode_set_name(mode);
3679 	}
3680 }
3681 
3682 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3683 				   const struct drm_edid *drm_edid,
3684 				   const struct detailed_timing *timing)
3685 {
3686 	int i, modes = 0;
3687 	struct drm_display_mode *newmode;
3688 	struct drm_device *dev = connector->dev;
3689 
3690 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3691 		const struct minimode *m = &extra_modes[i];
3692 
3693 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3694 		if (!newmode)
3695 			return modes;
3696 
3697 		drm_mode_fixup_1366x768(newmode);
3698 		if (!mode_in_range(newmode, drm_edid, timing) ||
3699 		    !valid_inferred_mode(connector, newmode)) {
3700 			drm_mode_destroy(dev, newmode);
3701 			continue;
3702 		}
3703 
3704 		drm_mode_probed_add(connector, newmode);
3705 		modes++;
3706 	}
3707 
3708 	return modes;
3709 }
3710 
3711 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3712 				    const struct drm_edid *drm_edid,
3713 				    const struct detailed_timing *timing)
3714 {
3715 	int i, modes = 0;
3716 	struct drm_display_mode *newmode;
3717 	struct drm_device *dev = connector->dev;
3718 
3719 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3720 		const struct minimode *m = &extra_modes[i];
3721 
3722 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3723 		if (!newmode)
3724 			return modes;
3725 
3726 		drm_mode_fixup_1366x768(newmode);
3727 		if (!mode_in_range(newmode, drm_edid, timing) ||
3728 		    !valid_inferred_mode(connector, newmode)) {
3729 			drm_mode_destroy(dev, newmode);
3730 			continue;
3731 		}
3732 
3733 		drm_mode_probed_add(connector, newmode);
3734 		modes++;
3735 	}
3736 
3737 	return modes;
3738 }
3739 
3740 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3741 				   const struct drm_edid *drm_edid,
3742 				   const struct detailed_timing *timing)
3743 {
3744 	int i, modes = 0;
3745 	struct drm_display_mode *newmode;
3746 	struct drm_device *dev = connector->dev;
3747 	bool rb = drm_monitor_supports_rb(drm_edid);
3748 
3749 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3750 		const struct minimode *m = &extra_modes[i];
3751 
3752 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3753 		if (!newmode)
3754 			return modes;
3755 
3756 		drm_mode_fixup_1366x768(newmode);
3757 		if (!mode_in_range(newmode, drm_edid, timing) ||
3758 		    !valid_inferred_mode(connector, newmode)) {
3759 			drm_mode_destroy(dev, newmode);
3760 			continue;
3761 		}
3762 
3763 		drm_mode_probed_add(connector, newmode);
3764 		modes++;
3765 	}
3766 
3767 	return modes;
3768 }
3769 
3770 static void
3771 do_inferred_modes(const struct detailed_timing *timing, void *c)
3772 {
3773 	struct detailed_mode_closure *closure = c;
3774 	const struct detailed_non_pixel *data = &timing->data.other_data;
3775 	const struct detailed_data_monitor_range *range = &data->data.range;
3776 
3777 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3778 		return;
3779 
3780 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3781 						  closure->drm_edid,
3782 						  timing);
3783 
3784 	if (closure->drm_edid->edid->revision < 2)
3785 		return; /* GTF not defined yet */
3786 
3787 	switch (range->flags) {
3788 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3789 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3790 							   closure->drm_edid,
3791 							   timing);
3792 		break;
3793 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3794 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3795 							  closure->drm_edid,
3796 							  timing);
3797 		break;
3798 	case DRM_EDID_CVT_SUPPORT_FLAG:
3799 		if (closure->drm_edid->edid->revision < 4)
3800 			break;
3801 
3802 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3803 							  closure->drm_edid,
3804 							  timing);
3805 		break;
3806 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3807 	default:
3808 		break;
3809 	}
3810 }
3811 
3812 static int add_inferred_modes(struct drm_connector *connector,
3813 			      const struct drm_edid *drm_edid)
3814 {
3815 	struct detailed_mode_closure closure = {
3816 		.connector = connector,
3817 		.drm_edid = drm_edid,
3818 	};
3819 
3820 	if (drm_edid->edid->revision >= 1)
3821 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3822 
3823 	return closure.modes;
3824 }
3825 
3826 static int
3827 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3828 {
3829 	int i, j, m, modes = 0;
3830 	struct drm_display_mode *mode;
3831 	const u8 *est = ((const u8 *)timing) + 6;
3832 
3833 	for (i = 0; i < 6; i++) {
3834 		for (j = 7; j >= 0; j--) {
3835 			m = (i * 8) + (7 - j);
3836 			if (m >= ARRAY_SIZE(est3_modes))
3837 				break;
3838 			if (est[i] & (1 << j)) {
3839 				mode = drm_mode_find_dmt(connector->dev,
3840 							 est3_modes[m].w,
3841 							 est3_modes[m].h,
3842 							 est3_modes[m].r,
3843 							 est3_modes[m].rb);
3844 				if (mode) {
3845 					drm_mode_probed_add(connector, mode);
3846 					modes++;
3847 				}
3848 			}
3849 		}
3850 	}
3851 
3852 	return modes;
3853 }
3854 
3855 static void
3856 do_established_modes(const struct detailed_timing *timing, void *c)
3857 {
3858 	struct detailed_mode_closure *closure = c;
3859 
3860 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3861 		return;
3862 
3863 	closure->modes += drm_est3_modes(closure->connector, timing);
3864 }
3865 
3866 /*
3867  * Get established modes from EDID and add them. Each EDID block contains a
3868  * bitmap of the supported "established modes" list (defined above). Tease them
3869  * out and add them to the global modes list.
3870  */
3871 static int add_established_modes(struct drm_connector *connector,
3872 				 const struct drm_edid *drm_edid)
3873 {
3874 	struct drm_device *dev = connector->dev;
3875 	const struct edid *edid = drm_edid->edid;
3876 	unsigned long est_bits = edid->established_timings.t1 |
3877 		(edid->established_timings.t2 << 8) |
3878 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3879 	int i, modes = 0;
3880 	struct detailed_mode_closure closure = {
3881 		.connector = connector,
3882 		.drm_edid = drm_edid,
3883 	};
3884 
3885 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3886 		if (est_bits & (1<<i)) {
3887 			struct drm_display_mode *newmode;
3888 
3889 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3890 			if (newmode) {
3891 				drm_mode_probed_add(connector, newmode);
3892 				modes++;
3893 			}
3894 		}
3895 	}
3896 
3897 	if (edid->revision >= 1)
3898 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3899 					    &closure);
3900 
3901 	return modes + closure.modes;
3902 }
3903 
3904 static void
3905 do_standard_modes(const struct detailed_timing *timing, void *c)
3906 {
3907 	struct detailed_mode_closure *closure = c;
3908 	const struct detailed_non_pixel *data = &timing->data.other_data;
3909 	struct drm_connector *connector = closure->connector;
3910 	int i;
3911 
3912 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3913 		return;
3914 
3915 	for (i = 0; i < 6; i++) {
3916 		const struct std_timing *std = &data->data.timings[i];
3917 		struct drm_display_mode *newmode;
3918 
3919 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3920 		if (newmode) {
3921 			drm_mode_probed_add(connector, newmode);
3922 			closure->modes++;
3923 		}
3924 	}
3925 }
3926 
3927 /*
3928  * Get standard modes from EDID and add them. Standard modes can be calculated
3929  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3930  * add them to the list.
3931  */
3932 static int add_standard_modes(struct drm_connector *connector,
3933 			      const struct drm_edid *drm_edid)
3934 {
3935 	int i, modes = 0;
3936 	struct detailed_mode_closure closure = {
3937 		.connector = connector,
3938 		.drm_edid = drm_edid,
3939 	};
3940 
3941 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3942 		struct drm_display_mode *newmode;
3943 
3944 		newmode = drm_mode_std(connector, drm_edid,
3945 				       &drm_edid->edid->standard_timings[i]);
3946 		if (newmode) {
3947 			drm_mode_probed_add(connector, newmode);
3948 			modes++;
3949 		}
3950 	}
3951 
3952 	if (drm_edid->edid->revision >= 1)
3953 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3954 					    &closure);
3955 
3956 	/* XXX should also look for standard codes in VTB blocks */
3957 
3958 	return modes + closure.modes;
3959 }
3960 
3961 static int drm_cvt_modes(struct drm_connector *connector,
3962 			 const struct detailed_timing *timing)
3963 {
3964 	int i, j, modes = 0;
3965 	struct drm_display_mode *newmode;
3966 	struct drm_device *dev = connector->dev;
3967 	const struct cvt_timing *cvt;
3968 	static const int rates[] = { 60, 85, 75, 60, 50 };
3969 	const u8 empty[3] = { 0, 0, 0 };
3970 
3971 	for (i = 0; i < 4; i++) {
3972 		int width, height;
3973 
3974 		cvt = &(timing->data.other_data.data.cvt[i]);
3975 
3976 		if (!memcmp(cvt->code, empty, 3))
3977 			continue;
3978 
3979 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3980 		switch (cvt->code[1] & 0x0c) {
3981 		/* default - because compiler doesn't see that we've enumerated all cases */
3982 		default:
3983 		case 0x00:
3984 			width = height * 4 / 3;
3985 			break;
3986 		case 0x04:
3987 			width = height * 16 / 9;
3988 			break;
3989 		case 0x08:
3990 			width = height * 16 / 10;
3991 			break;
3992 		case 0x0c:
3993 			width = height * 15 / 9;
3994 			break;
3995 		}
3996 
3997 		for (j = 1; j < 5; j++) {
3998 			if (cvt->code[2] & (1 << j)) {
3999 				newmode = drm_cvt_mode(dev, width, height,
4000 						       rates[j], j == 0,
4001 						       false, false);
4002 				if (newmode) {
4003 					drm_mode_probed_add(connector, newmode);
4004 					modes++;
4005 				}
4006 			}
4007 		}
4008 	}
4009 
4010 	return modes;
4011 }
4012 
4013 static void
4014 do_cvt_mode(const struct detailed_timing *timing, void *c)
4015 {
4016 	struct detailed_mode_closure *closure = c;
4017 
4018 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4019 		return;
4020 
4021 	closure->modes += drm_cvt_modes(closure->connector, timing);
4022 }
4023 
4024 static int
4025 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4026 {
4027 	struct detailed_mode_closure closure = {
4028 		.connector = connector,
4029 		.drm_edid = drm_edid,
4030 	};
4031 
4032 	if (drm_edid->edid->revision >= 3)
4033 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4034 
4035 	/* XXX should also look for CVT codes in VTB blocks */
4036 
4037 	return closure.modes;
4038 }
4039 
4040 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4041 					  struct drm_display_mode *mode);
4042 
4043 static void
4044 do_detailed_mode(const struct detailed_timing *timing, void *c)
4045 {
4046 	struct detailed_mode_closure *closure = c;
4047 	struct drm_display_mode *newmode;
4048 
4049 	if (!is_detailed_timing_descriptor(timing))
4050 		return;
4051 
4052 	newmode = drm_mode_detailed(closure->connector,
4053 				    closure->drm_edid, timing);
4054 	if (!newmode)
4055 		return;
4056 
4057 	if (closure->preferred)
4058 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4059 
4060 	/*
4061 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4062 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4063 	 * is just slightly off.
4064 	 */
4065 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4066 
4067 	drm_mode_probed_add(closure->connector, newmode);
4068 	closure->modes++;
4069 	closure->preferred = false;
4070 }
4071 
4072 /*
4073  * add_detailed_modes - Add modes from detailed timings
4074  * @connector: attached connector
4075  * @drm_edid: EDID block to scan
4076  */
4077 static int add_detailed_modes(struct drm_connector *connector,
4078 			      const struct drm_edid *drm_edid)
4079 {
4080 	struct detailed_mode_closure closure = {
4081 		.connector = connector,
4082 		.drm_edid = drm_edid,
4083 	};
4084 
4085 	if (drm_edid->edid->revision >= 4)
4086 		closure.preferred = true; /* first detailed timing is always preferred */
4087 	else
4088 		closure.preferred =
4089 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4090 
4091 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4092 
4093 	return closure.modes;
4094 }
4095 
4096 /* CTA-861-H Table 60 - CTA Tag Codes */
4097 #define CTA_DB_AUDIO			1
4098 #define CTA_DB_VIDEO			2
4099 #define CTA_DB_VENDOR			3
4100 #define CTA_DB_SPEAKER			4
4101 #define CTA_DB_EXTENDED_TAG		7
4102 
4103 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4104 #define CTA_EXT_DB_VIDEO_CAP		0
4105 #define CTA_EXT_DB_VENDOR		1
4106 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4107 #define CTA_EXT_DB_420_VIDEO_DATA	14
4108 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4109 #define CTA_EXT_DB_HF_EEODB		0x78
4110 #define CTA_EXT_DB_HF_SCDB		0x79
4111 
4112 #define EDID_BASIC_AUDIO	(1 << 6)
4113 #define EDID_CEA_YCRCB444	(1 << 5)
4114 #define EDID_CEA_YCRCB422	(1 << 4)
4115 #define EDID_CEA_VCDB_QS	(1 << 6)
4116 
4117 /*
4118  * Search EDID for CEA extension block.
4119  *
4120  * FIXME: Prefer not returning pointers to raw EDID data.
4121  */
4122 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4123 				  int ext_id, int *ext_index)
4124 {
4125 	const u8 *edid_ext = NULL;
4126 	int i;
4127 
4128 	/* No EDID or EDID extensions */
4129 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4130 		return NULL;
4131 
4132 	/* Find CEA extension */
4133 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4134 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4135 		if (edid_block_tag(edid_ext) == ext_id)
4136 			break;
4137 	}
4138 
4139 	if (i >= drm_edid_extension_block_count(drm_edid))
4140 		return NULL;
4141 
4142 	*ext_index = i + 1;
4143 
4144 	return edid_ext;
4145 }
4146 
4147 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4148 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4149 {
4150 	const struct displayid_block *block;
4151 	struct displayid_iter iter;
4152 	int ext_index = 0;
4153 	bool found = false;
4154 
4155 	/* Look for a top level CEA extension block */
4156 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4157 		return true;
4158 
4159 	/* CEA blocks can also be found embedded in a DisplayID block */
4160 	displayid_iter_edid_begin(drm_edid, &iter);
4161 	displayid_iter_for_each(block, &iter) {
4162 		if (block->tag == DATA_BLOCK_CTA) {
4163 			found = true;
4164 			break;
4165 		}
4166 	}
4167 	displayid_iter_end(&iter);
4168 
4169 	return found;
4170 }
4171 
4172 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4173 {
4174 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4175 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4176 
4177 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4178 		return &edid_cea_modes_1[vic - 1];
4179 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4180 		return &edid_cea_modes_193[vic - 193];
4181 	return NULL;
4182 }
4183 
4184 static u8 cea_num_vics(void)
4185 {
4186 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4187 }
4188 
4189 static u8 cea_next_vic(u8 vic)
4190 {
4191 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4192 		vic = 193;
4193 	return vic;
4194 }
4195 
4196 /*
4197  * Calculate the alternate clock for the CEA mode
4198  * (60Hz vs. 59.94Hz etc.)
4199  */
4200 static unsigned int
4201 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4202 {
4203 	unsigned int clock = cea_mode->clock;
4204 
4205 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4206 		return clock;
4207 
4208 	/*
4209 	 * edid_cea_modes contains the 59.94Hz
4210 	 * variant for 240 and 480 line modes,
4211 	 * and the 60Hz variant otherwise.
4212 	 */
4213 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4214 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4215 	else
4216 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4217 
4218 	return clock;
4219 }
4220 
4221 static bool
4222 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4223 {
4224 	/*
4225 	 * For certain VICs the spec allows the vertical
4226 	 * front porch to vary by one or two lines.
4227 	 *
4228 	 * cea_modes[] stores the variant with the shortest
4229 	 * vertical front porch. We can adjust the mode to
4230 	 * get the other variants by simply increasing the
4231 	 * vertical front porch length.
4232 	 */
4233 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4234 		     cea_mode_for_vic(9)->vtotal != 262 ||
4235 		     cea_mode_for_vic(12)->vtotal != 262 ||
4236 		     cea_mode_for_vic(13)->vtotal != 262 ||
4237 		     cea_mode_for_vic(23)->vtotal != 312 ||
4238 		     cea_mode_for_vic(24)->vtotal != 312 ||
4239 		     cea_mode_for_vic(27)->vtotal != 312 ||
4240 		     cea_mode_for_vic(28)->vtotal != 312);
4241 
4242 	if (((vic == 8 || vic == 9 ||
4243 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4244 	    ((vic == 23 || vic == 24 ||
4245 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4246 		mode->vsync_start++;
4247 		mode->vsync_end++;
4248 		mode->vtotal++;
4249 
4250 		return true;
4251 	}
4252 
4253 	return false;
4254 }
4255 
4256 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4257 					     unsigned int clock_tolerance)
4258 {
4259 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4260 	u8 vic;
4261 
4262 	if (!to_match->clock)
4263 		return 0;
4264 
4265 	if (to_match->picture_aspect_ratio)
4266 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4267 
4268 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4269 		struct drm_display_mode cea_mode;
4270 		unsigned int clock1, clock2;
4271 
4272 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4273 
4274 		/* Check both 60Hz and 59.94Hz */
4275 		clock1 = cea_mode.clock;
4276 		clock2 = cea_mode_alternate_clock(&cea_mode);
4277 
4278 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4279 		    abs(to_match->clock - clock2) > clock_tolerance)
4280 			continue;
4281 
4282 		do {
4283 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4284 				return vic;
4285 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4286 	}
4287 
4288 	return 0;
4289 }
4290 
4291 /**
4292  * drm_match_cea_mode - look for a CEA mode matching given mode
4293  * @to_match: display mode
4294  *
4295  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4296  * mode.
4297  */
4298 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4299 {
4300 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4301 	u8 vic;
4302 
4303 	if (!to_match->clock)
4304 		return 0;
4305 
4306 	if (to_match->picture_aspect_ratio)
4307 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4308 
4309 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4310 		struct drm_display_mode cea_mode;
4311 		unsigned int clock1, clock2;
4312 
4313 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4314 
4315 		/* Check both 60Hz and 59.94Hz */
4316 		clock1 = cea_mode.clock;
4317 		clock2 = cea_mode_alternate_clock(&cea_mode);
4318 
4319 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4320 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4321 			continue;
4322 
4323 		do {
4324 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4325 				return vic;
4326 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4327 	}
4328 
4329 	return 0;
4330 }
4331 EXPORT_SYMBOL(drm_match_cea_mode);
4332 
4333 static bool drm_valid_cea_vic(u8 vic)
4334 {
4335 	return cea_mode_for_vic(vic) != NULL;
4336 }
4337 
4338 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4339 {
4340 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4341 
4342 	if (mode)
4343 		return mode->picture_aspect_ratio;
4344 
4345 	return HDMI_PICTURE_ASPECT_NONE;
4346 }
4347 
4348 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4349 {
4350 	return edid_4k_modes[video_code].picture_aspect_ratio;
4351 }
4352 
4353 /*
4354  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4355  * specific block).
4356  */
4357 static unsigned int
4358 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4359 {
4360 	return cea_mode_alternate_clock(hdmi_mode);
4361 }
4362 
4363 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4364 					      unsigned int clock_tolerance)
4365 {
4366 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4367 	u8 vic;
4368 
4369 	if (!to_match->clock)
4370 		return 0;
4371 
4372 	if (to_match->picture_aspect_ratio)
4373 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4374 
4375 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4376 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4377 		unsigned int clock1, clock2;
4378 
4379 		/* Make sure to also match alternate clocks */
4380 		clock1 = hdmi_mode->clock;
4381 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4382 
4383 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4384 		    abs(to_match->clock - clock2) > clock_tolerance)
4385 			continue;
4386 
4387 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4388 			return vic;
4389 	}
4390 
4391 	return 0;
4392 }
4393 
4394 /*
4395  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4396  * @to_match: display mode
4397  *
4398  * An HDMI mode is one defined in the HDMI vendor specific block.
4399  *
4400  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4401  */
4402 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4403 {
4404 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4405 	u8 vic;
4406 
4407 	if (!to_match->clock)
4408 		return 0;
4409 
4410 	if (to_match->picture_aspect_ratio)
4411 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4412 
4413 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4414 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4415 		unsigned int clock1, clock2;
4416 
4417 		/* Make sure to also match alternate clocks */
4418 		clock1 = hdmi_mode->clock;
4419 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4420 
4421 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4422 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4423 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4424 			return vic;
4425 	}
4426 	return 0;
4427 }
4428 
4429 static bool drm_valid_hdmi_vic(u8 vic)
4430 {
4431 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4432 }
4433 
4434 static int add_alternate_cea_modes(struct drm_connector *connector,
4435 				   const struct drm_edid *drm_edid)
4436 {
4437 	struct drm_device *dev = connector->dev;
4438 	struct drm_display_mode *mode, *tmp;
4439 	LIST_HEAD(list);
4440 	int modes = 0;
4441 
4442 	/* Don't add CTA modes if the CTA extension block is missing */
4443 	if (!drm_edid_has_cta_extension(drm_edid))
4444 		return 0;
4445 
4446 	/*
4447 	 * Go through all probed modes and create a new mode
4448 	 * with the alternate clock for certain CEA modes.
4449 	 */
4450 	list_for_each_entry(mode, &connector->probed_modes, head) {
4451 		const struct drm_display_mode *cea_mode = NULL;
4452 		struct drm_display_mode *newmode;
4453 		u8 vic = drm_match_cea_mode(mode);
4454 		unsigned int clock1, clock2;
4455 
4456 		if (drm_valid_cea_vic(vic)) {
4457 			cea_mode = cea_mode_for_vic(vic);
4458 			clock2 = cea_mode_alternate_clock(cea_mode);
4459 		} else {
4460 			vic = drm_match_hdmi_mode(mode);
4461 			if (drm_valid_hdmi_vic(vic)) {
4462 				cea_mode = &edid_4k_modes[vic];
4463 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4464 			}
4465 		}
4466 
4467 		if (!cea_mode)
4468 			continue;
4469 
4470 		clock1 = cea_mode->clock;
4471 
4472 		if (clock1 == clock2)
4473 			continue;
4474 
4475 		if (mode->clock != clock1 && mode->clock != clock2)
4476 			continue;
4477 
4478 		newmode = drm_mode_duplicate(dev, cea_mode);
4479 		if (!newmode)
4480 			continue;
4481 
4482 		/* Carry over the stereo flags */
4483 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4484 
4485 		/*
4486 		 * The current mode could be either variant. Make
4487 		 * sure to pick the "other" clock for the new mode.
4488 		 */
4489 		if (mode->clock != clock1)
4490 			newmode->clock = clock1;
4491 		else
4492 			newmode->clock = clock2;
4493 
4494 		list_add_tail(&newmode->head, &list);
4495 	}
4496 
4497 	list_for_each_entry_safe(mode, tmp, &list, head) {
4498 		list_del(&mode->head);
4499 		drm_mode_probed_add(connector, mode);
4500 		modes++;
4501 	}
4502 
4503 	return modes;
4504 }
4505 
4506 static u8 svd_to_vic(u8 svd)
4507 {
4508 	/* 0-6 bit vic, 7th bit native mode indicator */
4509 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4510 		return svd & 127;
4511 
4512 	return svd;
4513 }
4514 
4515 /*
4516  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4517  * the EDID, or NULL on errors.
4518  */
4519 static struct drm_display_mode *
4520 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4521 {
4522 	const struct drm_display_info *info = &connector->display_info;
4523 	struct drm_device *dev = connector->dev;
4524 
4525 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4526 		return NULL;
4527 
4528 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4529 }
4530 
4531 /*
4532  * do_y420vdb_modes - Parse YCBCR 420 only modes
4533  * @connector: connector corresponding to the HDMI sink
4534  * @svds: start of the data block of CEA YCBCR 420 VDB
4535  * @len: length of the CEA YCBCR 420 VDB
4536  *
4537  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4538  * which contains modes which can be supported in YCBCR 420
4539  * output format only.
4540  */
4541 static int do_y420vdb_modes(struct drm_connector *connector,
4542 			    const u8 *svds, u8 svds_len)
4543 {
4544 	struct drm_device *dev = connector->dev;
4545 	int modes = 0, i;
4546 
4547 	for (i = 0; i < svds_len; i++) {
4548 		u8 vic = svd_to_vic(svds[i]);
4549 		struct drm_display_mode *newmode;
4550 
4551 		if (!drm_valid_cea_vic(vic))
4552 			continue;
4553 
4554 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4555 		if (!newmode)
4556 			break;
4557 		drm_mode_probed_add(connector, newmode);
4558 		modes++;
4559 	}
4560 
4561 	return modes;
4562 }
4563 
4564 /**
4565  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4566  * @dev: DRM device
4567  * @video_code: CEA VIC of the mode
4568  *
4569  * Creates a new mode matching the specified CEA VIC.
4570  *
4571  * Returns: A new drm_display_mode on success or NULL on failure
4572  */
4573 struct drm_display_mode *
4574 drm_display_mode_from_cea_vic(struct drm_device *dev,
4575 			      u8 video_code)
4576 {
4577 	const struct drm_display_mode *cea_mode;
4578 	struct drm_display_mode *newmode;
4579 
4580 	cea_mode = cea_mode_for_vic(video_code);
4581 	if (!cea_mode)
4582 		return NULL;
4583 
4584 	newmode = drm_mode_duplicate(dev, cea_mode);
4585 	if (!newmode)
4586 		return NULL;
4587 
4588 	return newmode;
4589 }
4590 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4591 
4592 /* Add modes based on VICs parsed in parse_cta_vdb() */
4593 static int add_cta_vdb_modes(struct drm_connector *connector)
4594 {
4595 	const struct drm_display_info *info = &connector->display_info;
4596 	int i, modes = 0;
4597 
4598 	if (!info->vics)
4599 		return 0;
4600 
4601 	for (i = 0; i < info->vics_len; i++) {
4602 		struct drm_display_mode *mode;
4603 
4604 		mode = drm_display_mode_from_vic_index(connector, i);
4605 		if (mode) {
4606 			drm_mode_probed_add(connector, mode);
4607 			modes++;
4608 		}
4609 	}
4610 
4611 	return modes;
4612 }
4613 
4614 struct stereo_mandatory_mode {
4615 	int width, height, vrefresh;
4616 	unsigned int flags;
4617 };
4618 
4619 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4620 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4621 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4622 	{ 1920, 1080, 50,
4623 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4624 	{ 1920, 1080, 60,
4625 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4626 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4627 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4628 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4629 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4630 };
4631 
4632 static bool
4633 stereo_match_mandatory(const struct drm_display_mode *mode,
4634 		       const struct stereo_mandatory_mode *stereo_mode)
4635 {
4636 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4637 
4638 	return mode->hdisplay == stereo_mode->width &&
4639 	       mode->vdisplay == stereo_mode->height &&
4640 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4641 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4642 }
4643 
4644 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4645 {
4646 	struct drm_device *dev = connector->dev;
4647 	const struct drm_display_mode *mode;
4648 	struct list_head stereo_modes;
4649 	int modes = 0, i;
4650 
4651 	INIT_LIST_HEAD(&stereo_modes);
4652 
4653 	list_for_each_entry(mode, &connector->probed_modes, head) {
4654 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4655 			const struct stereo_mandatory_mode *mandatory;
4656 			struct drm_display_mode *new_mode;
4657 
4658 			if (!stereo_match_mandatory(mode,
4659 						    &stereo_mandatory_modes[i]))
4660 				continue;
4661 
4662 			mandatory = &stereo_mandatory_modes[i];
4663 			new_mode = drm_mode_duplicate(dev, mode);
4664 			if (!new_mode)
4665 				continue;
4666 
4667 			new_mode->flags |= mandatory->flags;
4668 			list_add_tail(&new_mode->head, &stereo_modes);
4669 			modes++;
4670 		}
4671 	}
4672 
4673 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4674 
4675 	return modes;
4676 }
4677 
4678 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4679 {
4680 	struct drm_device *dev = connector->dev;
4681 	struct drm_display_mode *newmode;
4682 
4683 	if (!drm_valid_hdmi_vic(vic)) {
4684 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4685 			connector->base.id, connector->name, vic);
4686 		return 0;
4687 	}
4688 
4689 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4690 	if (!newmode)
4691 		return 0;
4692 
4693 	drm_mode_probed_add(connector, newmode);
4694 
4695 	return 1;
4696 }
4697 
4698 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4699 			       int vic_index)
4700 {
4701 	struct drm_display_mode *newmode;
4702 	int modes = 0;
4703 
4704 	if (structure & (1 << 0)) {
4705 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4706 		if (newmode) {
4707 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4708 			drm_mode_probed_add(connector, newmode);
4709 			modes++;
4710 		}
4711 	}
4712 	if (structure & (1 << 6)) {
4713 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4714 		if (newmode) {
4715 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4716 			drm_mode_probed_add(connector, newmode);
4717 			modes++;
4718 		}
4719 	}
4720 	if (structure & (1 << 8)) {
4721 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4722 		if (newmode) {
4723 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4724 			drm_mode_probed_add(connector, newmode);
4725 			modes++;
4726 		}
4727 	}
4728 
4729 	return modes;
4730 }
4731 
4732 static bool hdmi_vsdb_latency_present(const u8 *db)
4733 {
4734 	return db[8] & BIT(7);
4735 }
4736 
4737 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4738 {
4739 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4740 }
4741 
4742 static int hdmi_vsdb_latency_length(const u8 *db)
4743 {
4744 	if (hdmi_vsdb_i_latency_present(db))
4745 		return 4;
4746 	else if (hdmi_vsdb_latency_present(db))
4747 		return 2;
4748 	else
4749 		return 0;
4750 }
4751 
4752 /*
4753  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4754  * @connector: connector corresponding to the HDMI sink
4755  * @db: start of the CEA vendor specific block
4756  * @len: length of the CEA block payload, ie. one can access up to db[len]
4757  *
4758  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4759  * also adds the stereo 3d modes when applicable.
4760  */
4761 static int
4762 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4763 {
4764 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4765 	u8 vic_len, hdmi_3d_len = 0;
4766 	u16 mask;
4767 	u16 structure_all;
4768 
4769 	if (len < 8)
4770 		goto out;
4771 
4772 	/* no HDMI_Video_Present */
4773 	if (!(db[8] & (1 << 5)))
4774 		goto out;
4775 
4776 	offset += hdmi_vsdb_latency_length(db);
4777 
4778 	/* the declared length is not long enough for the 2 first bytes
4779 	 * of additional video format capabilities */
4780 	if (len < (8 + offset + 2))
4781 		goto out;
4782 
4783 	/* 3D_Present */
4784 	offset++;
4785 	if (db[8 + offset] & (1 << 7)) {
4786 		modes += add_hdmi_mandatory_stereo_modes(connector);
4787 
4788 		/* 3D_Multi_present */
4789 		multi_present = (db[8 + offset] & 0x60) >> 5;
4790 	}
4791 
4792 	offset++;
4793 	vic_len = db[8 + offset] >> 5;
4794 	hdmi_3d_len = db[8 + offset] & 0x1f;
4795 
4796 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4797 		u8 vic;
4798 
4799 		vic = db[9 + offset + i];
4800 		modes += add_hdmi_mode(connector, vic);
4801 	}
4802 	offset += 1 + vic_len;
4803 
4804 	if (multi_present == 1)
4805 		multi_len = 2;
4806 	else if (multi_present == 2)
4807 		multi_len = 4;
4808 	else
4809 		multi_len = 0;
4810 
4811 	if (len < (8 + offset + hdmi_3d_len - 1))
4812 		goto out;
4813 
4814 	if (hdmi_3d_len < multi_len)
4815 		goto out;
4816 
4817 	if (multi_present == 1 || multi_present == 2) {
4818 		/* 3D_Structure_ALL */
4819 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4820 
4821 		/* check if 3D_MASK is present */
4822 		if (multi_present == 2)
4823 			mask = (db[10 + offset] << 8) | db[11 + offset];
4824 		else
4825 			mask = 0xffff;
4826 
4827 		for (i = 0; i < 16; i++) {
4828 			if (mask & (1 << i))
4829 				modes += add_3d_struct_modes(connector,
4830 							     structure_all, i);
4831 		}
4832 	}
4833 
4834 	offset += multi_len;
4835 
4836 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4837 		int vic_index;
4838 		struct drm_display_mode *newmode = NULL;
4839 		unsigned int newflag = 0;
4840 		bool detail_present;
4841 
4842 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4843 
4844 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4845 			break;
4846 
4847 		/* 2D_VIC_order_X */
4848 		vic_index = db[8 + offset + i] >> 4;
4849 
4850 		/* 3D_Structure_X */
4851 		switch (db[8 + offset + i] & 0x0f) {
4852 		case 0:
4853 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4854 			break;
4855 		case 6:
4856 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4857 			break;
4858 		case 8:
4859 			/* 3D_Detail_X */
4860 			if ((db[9 + offset + i] >> 4) == 1)
4861 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4862 			break;
4863 		}
4864 
4865 		if (newflag != 0) {
4866 			newmode = drm_display_mode_from_vic_index(connector,
4867 								  vic_index);
4868 
4869 			if (newmode) {
4870 				newmode->flags |= newflag;
4871 				drm_mode_probed_add(connector, newmode);
4872 				modes++;
4873 			}
4874 		}
4875 
4876 		if (detail_present)
4877 			i++;
4878 	}
4879 
4880 out:
4881 	return modes;
4882 }
4883 
4884 static int
4885 cea_revision(const u8 *cea)
4886 {
4887 	/*
4888 	 * FIXME is this correct for the DispID variant?
4889 	 * The DispID spec doesn't really specify whether
4890 	 * this is the revision of the CEA extension or
4891 	 * the DispID CEA data block. And the only value
4892 	 * given as an example is 0.
4893 	 */
4894 	return cea[1];
4895 }
4896 
4897 /*
4898  * CTA Data Block iterator.
4899  *
4900  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4901  * CTA Data Blocks.
4902  *
4903  * struct cea_db *db:
4904  * struct cea_db_iter iter;
4905  *
4906  * cea_db_iter_edid_begin(edid, &iter);
4907  * cea_db_iter_for_each(db, &iter) {
4908  *         // do stuff with db
4909  * }
4910  * cea_db_iter_end(&iter);
4911  */
4912 struct cea_db_iter {
4913 	struct drm_edid_iter edid_iter;
4914 	struct displayid_iter displayid_iter;
4915 
4916 	/* Current Data Block Collection. */
4917 	const u8 *collection;
4918 
4919 	/* Current Data Block index in current collection. */
4920 	int index;
4921 
4922 	/* End index in current collection. */
4923 	int end;
4924 };
4925 
4926 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4927 struct cea_db {
4928 	u8 tag_length;
4929 	u8 data[];
4930 } __packed;
4931 
4932 static int cea_db_tag(const struct cea_db *db)
4933 {
4934 	return db->tag_length >> 5;
4935 }
4936 
4937 static int cea_db_payload_len(const void *_db)
4938 {
4939 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4940 	const struct cea_db *db = _db;
4941 
4942 	return db->tag_length & 0x1f;
4943 }
4944 
4945 static const void *cea_db_data(const struct cea_db *db)
4946 {
4947 	return db->data;
4948 }
4949 
4950 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4951 {
4952 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4953 		cea_db_payload_len(db) >= 1 &&
4954 		db->data[0] == tag;
4955 }
4956 
4957 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4958 {
4959 	const u8 *data = cea_db_data(db);
4960 
4961 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4962 		cea_db_payload_len(db) >= 3 &&
4963 		oui(data[2], data[1], data[0]) == vendor_oui;
4964 }
4965 
4966 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4967 				   struct cea_db_iter *iter)
4968 {
4969 	memset(iter, 0, sizeof(*iter));
4970 
4971 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4972 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4973 }
4974 
4975 static const struct cea_db *
4976 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4977 {
4978 	const struct cea_db *db;
4979 
4980 	if (!iter->collection)
4981 		return NULL;
4982 
4983 	db = (const struct cea_db *)&iter->collection[iter->index];
4984 
4985 	if (iter->index + sizeof(*db) <= iter->end &&
4986 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4987 		return db;
4988 
4989 	return NULL;
4990 }
4991 
4992 /*
4993  * References:
4994  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4995  */
4996 static int cea_db_collection_size(const u8 *cta)
4997 {
4998 	u8 d = cta[2];
4999 
5000 	if (d < 4 || d > 127)
5001 		return 0;
5002 
5003 	return d - 4;
5004 }
5005 
5006 /*
5007  * References:
5008  * - VESA E-EDID v1.4
5009  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5010  */
5011 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5012 {
5013 	const u8 *ext;
5014 
5015 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5016 		int size;
5017 
5018 		/* Only support CTA Extension revision 3+ */
5019 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5020 			continue;
5021 
5022 		size = cea_db_collection_size(ext);
5023 		if (!size)
5024 			continue;
5025 
5026 		iter->index = 4;
5027 		iter->end = iter->index + size;
5028 
5029 		return ext;
5030 	}
5031 
5032 	return NULL;
5033 }
5034 
5035 /*
5036  * References:
5037  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5038  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5039  *
5040  * Note that the above do not specify any connection between DisplayID Data
5041  * Block revision and CTA Extension versions.
5042  */
5043 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5044 {
5045 	const struct displayid_block *block;
5046 
5047 	displayid_iter_for_each(block, &iter->displayid_iter) {
5048 		if (block->tag != DATA_BLOCK_CTA)
5049 			continue;
5050 
5051 		/*
5052 		 * The displayid iterator has already verified the block bounds
5053 		 * in displayid_iter_block().
5054 		 */
5055 		iter->index = sizeof(*block);
5056 		iter->end = iter->index + block->num_bytes;
5057 
5058 		return block;
5059 	}
5060 
5061 	return NULL;
5062 }
5063 
5064 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5065 {
5066 	const struct cea_db *db;
5067 
5068 	if (iter->collection) {
5069 		/* Current collection should always be valid. */
5070 		db = __cea_db_iter_current_block(iter);
5071 		if (WARN_ON(!db)) {
5072 			iter->collection = NULL;
5073 			return NULL;
5074 		}
5075 
5076 		/* Next block in CTA Data Block Collection */
5077 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5078 
5079 		db = __cea_db_iter_current_block(iter);
5080 		if (db)
5081 			return db;
5082 	}
5083 
5084 	for (;;) {
5085 		/*
5086 		 * Find the next CTA Data Block Collection. First iterate all
5087 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5088 		 *
5089 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5090 		 * Extension, it's recommended that DisplayID extensions are
5091 		 * exposed after all of the CTA Extensions.
5092 		 */
5093 		iter->collection = __cea_db_iter_edid_next(iter);
5094 		if (!iter->collection)
5095 			iter->collection = __cea_db_iter_displayid_next(iter);
5096 
5097 		if (!iter->collection)
5098 			return NULL;
5099 
5100 		db = __cea_db_iter_current_block(iter);
5101 		if (db)
5102 			return db;
5103 	}
5104 }
5105 
5106 #define cea_db_iter_for_each(__db, __iter) \
5107 	while (((__db) = __cea_db_iter_next(__iter)))
5108 
5109 static void cea_db_iter_end(struct cea_db_iter *iter)
5110 {
5111 	displayid_iter_end(&iter->displayid_iter);
5112 	drm_edid_iter_end(&iter->edid_iter);
5113 
5114 	memset(iter, 0, sizeof(*iter));
5115 }
5116 
5117 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5118 {
5119 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5120 		cea_db_payload_len(db) >= 5;
5121 }
5122 
5123 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5124 {
5125 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5126 		cea_db_payload_len(db) >= 7;
5127 }
5128 
5129 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5130 {
5131 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5132 		cea_db_payload_len(db) >= 2;
5133 }
5134 
5135 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5136 {
5137 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5138 		cea_db_payload_len(db) == 21;
5139 }
5140 
5141 static bool cea_db_is_vcdb(const struct cea_db *db)
5142 {
5143 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5144 		cea_db_payload_len(db) == 2;
5145 }
5146 
5147 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5148 {
5149 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5150 		cea_db_payload_len(db) >= 7;
5151 }
5152 
5153 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5154 {
5155 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5156 }
5157 
5158 static bool cea_db_is_y420vdb(const struct cea_db *db)
5159 {
5160 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5161 }
5162 
5163 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5164 {
5165 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5166 		cea_db_payload_len(db) >= 3;
5167 }
5168 
5169 /*
5170  * Get the HF-EEODB override extension block count from EDID.
5171  *
5172  * The passed in EDID may be partially read, as long as it has at least two
5173  * blocks (base block and one extension block) if EDID extension count is > 0.
5174  *
5175  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5176  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5177  * iterators instead.
5178  *
5179  * References:
5180  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5181  */
5182 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5183 {
5184 	const u8 *cta;
5185 
5186 	/* No extensions according to base block, no HF-EEODB. */
5187 	if (!edid_extension_block_count(edid))
5188 		return 0;
5189 
5190 	/* HF-EEODB is always in the first EDID extension block only */
5191 	cta = edid_extension_block_data(edid, 0);
5192 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5193 		return 0;
5194 
5195 	/* Need to have the data block collection, and at least 3 bytes. */
5196 	if (cea_db_collection_size(cta) < 3)
5197 		return 0;
5198 
5199 	/*
5200 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5201 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5202 	 * through 6 of Block 1 of the E-EDID.
5203 	 */
5204 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5205 		return 0;
5206 
5207 	return cta[4 + 2];
5208 }
5209 
5210 /*
5211  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5212  *
5213  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5214  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5215  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5216  * support YCBCR420 output too.
5217  */
5218 static void parse_cta_y420cmdb(struct drm_connector *connector,
5219 			       const struct cea_db *db, u64 *y420cmdb_map)
5220 {
5221 	struct drm_display_info *info = &connector->display_info;
5222 	int i, map_len = cea_db_payload_len(db) - 1;
5223 	const u8 *data = cea_db_data(db) + 1;
5224 	u64 map = 0;
5225 
5226 	if (map_len == 0) {
5227 		/* All CEA modes support ycbcr420 sampling also.*/
5228 		map = U64_MAX;
5229 		goto out;
5230 	}
5231 
5232 	/*
5233 	 * This map indicates which of the existing CEA block modes
5234 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5235 	 * set, first mode from VDB can support YCBCR420 output too.
5236 	 * We will parse and keep this map, before parsing VDB itself
5237 	 * to avoid going through the same block again and again.
5238 	 *
5239 	 * Spec is not clear about max possible size of this block.
5240 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5241 	 * address 8 CEA modes, in this way this map can address
5242 	 * 8*8 = first 64 SVDs.
5243 	 */
5244 	if (WARN_ON_ONCE(map_len > 8))
5245 		map_len = 8;
5246 
5247 	for (i = 0; i < map_len; i++)
5248 		map |= (u64)data[i] << (8 * i);
5249 
5250 out:
5251 	if (map)
5252 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5253 
5254 	*y420cmdb_map = map;
5255 }
5256 
5257 static int add_cea_modes(struct drm_connector *connector,
5258 			 const struct drm_edid *drm_edid)
5259 {
5260 	const struct cea_db *db;
5261 	struct cea_db_iter iter;
5262 	int modes;
5263 
5264 	/* CTA VDB block VICs parsed earlier */
5265 	modes = add_cta_vdb_modes(connector);
5266 
5267 	cea_db_iter_edid_begin(drm_edid, &iter);
5268 	cea_db_iter_for_each(db, &iter) {
5269 		if (cea_db_is_hdmi_vsdb(db)) {
5270 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5271 						    cea_db_payload_len(db));
5272 		} else if (cea_db_is_y420vdb(db)) {
5273 			const u8 *vdb420 = cea_db_data(db) + 1;
5274 
5275 			/* Add 4:2:0(only) modes present in EDID */
5276 			modes += do_y420vdb_modes(connector, vdb420,
5277 						  cea_db_payload_len(db) - 1);
5278 		}
5279 	}
5280 	cea_db_iter_end(&iter);
5281 
5282 	return modes;
5283 }
5284 
5285 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5286 					  struct drm_display_mode *mode)
5287 {
5288 	const struct drm_display_mode *cea_mode;
5289 	int clock1, clock2, clock;
5290 	u8 vic;
5291 	const char *type;
5292 
5293 	/*
5294 	 * allow 5kHz clock difference either way to account for
5295 	 * the 10kHz clock resolution limit of detailed timings.
5296 	 */
5297 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5298 	if (drm_valid_cea_vic(vic)) {
5299 		type = "CEA";
5300 		cea_mode = cea_mode_for_vic(vic);
5301 		clock1 = cea_mode->clock;
5302 		clock2 = cea_mode_alternate_clock(cea_mode);
5303 	} else {
5304 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5305 		if (drm_valid_hdmi_vic(vic)) {
5306 			type = "HDMI";
5307 			cea_mode = &edid_4k_modes[vic];
5308 			clock1 = cea_mode->clock;
5309 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5310 		} else {
5311 			return;
5312 		}
5313 	}
5314 
5315 	/* pick whichever is closest */
5316 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5317 		clock = clock1;
5318 	else
5319 		clock = clock2;
5320 
5321 	if (mode->clock == clock)
5322 		return;
5323 
5324 	drm_dbg_kms(connector->dev,
5325 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5326 		    connector->base.id, connector->name,
5327 		    type, vic, mode->clock, clock);
5328 	mode->clock = clock;
5329 }
5330 
5331 static void drm_calculate_luminance_range(struct drm_connector *connector)
5332 {
5333 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5334 	struct drm_luminance_range_info *luminance_range =
5335 		&connector->display_info.luminance_range;
5336 	static const u8 pre_computed_values[] = {
5337 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5338 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5339 	};
5340 	u32 max_avg, min_cll, max, min, q, r;
5341 
5342 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5343 		return;
5344 
5345 	max_avg = hdr_metadata->max_fall;
5346 	min_cll = hdr_metadata->min_cll;
5347 
5348 	/*
5349 	 * From the specification (CTA-861-G), for calculating the maximum
5350 	 * luminance we need to use:
5351 	 *	Luminance = 50*2**(CV/32)
5352 	 * Where CV is a one-byte value.
5353 	 * For calculating this expression we may need float point precision;
5354 	 * to avoid this complexity level, we take advantage that CV is divided
5355 	 * by a constant. From the Euclids division algorithm, we know that CV
5356 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5357 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5358 	 * need to pre-compute the value of r/32. For pre-computing the values
5359 	 * We just used the following Ruby line:
5360 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5361 	 * The results of the above expressions can be verified at
5362 	 * pre_computed_values.
5363 	 */
5364 	q = max_avg >> 5;
5365 	r = max_avg % 32;
5366 	max = (1 << q) * pre_computed_values[r];
5367 
5368 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5369 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5370 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5371 
5372 	luminance_range->min_luminance = min;
5373 	luminance_range->max_luminance = max;
5374 }
5375 
5376 static uint8_t eotf_supported(const u8 *edid_ext)
5377 {
5378 	return edid_ext[2] &
5379 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5380 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5381 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5382 		 BIT(HDMI_EOTF_BT_2100_HLG));
5383 }
5384 
5385 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5386 {
5387 	return edid_ext[3] &
5388 		BIT(HDMI_STATIC_METADATA_TYPE1);
5389 }
5390 
5391 static void
5392 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5393 {
5394 	u16 len;
5395 
5396 	len = cea_db_payload_len(db);
5397 
5398 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5399 						eotf_supported(db);
5400 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5401 						hdr_metadata_type(db);
5402 
5403 	if (len >= 4)
5404 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5405 	if (len >= 5)
5406 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5407 	if (len >= 6) {
5408 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5409 
5410 		/* Calculate only when all values are available */
5411 		drm_calculate_luminance_range(connector);
5412 	}
5413 }
5414 
5415 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5416 static void
5417 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5418 {
5419 	u8 len = cea_db_payload_len(db);
5420 
5421 	if (len >= 6 && (db[6] & (1 << 7)))
5422 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5423 
5424 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5425 		connector->latency_present[0] = true;
5426 		connector->video_latency[0] = db[9];
5427 		connector->audio_latency[0] = db[10];
5428 	}
5429 
5430 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5431 		connector->latency_present[1] = true;
5432 		connector->video_latency[1] = db[11];
5433 		connector->audio_latency[1] = db[12];
5434 	}
5435 
5436 	drm_dbg_kms(connector->dev,
5437 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5438 		    connector->base.id, connector->name,
5439 		    connector->latency_present[0], connector->latency_present[1],
5440 		    connector->video_latency[0], connector->video_latency[1],
5441 		    connector->audio_latency[0], connector->audio_latency[1]);
5442 }
5443 
5444 static void
5445 monitor_name(const struct detailed_timing *timing, void *data)
5446 {
5447 	const char **res = data;
5448 
5449 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5450 		return;
5451 
5452 	*res = timing->data.other_data.data.str.str;
5453 }
5454 
5455 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5456 {
5457 	const char *edid_name = NULL;
5458 	int mnl;
5459 
5460 	if (!drm_edid || !name)
5461 		return 0;
5462 
5463 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5464 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5465 		if (edid_name[mnl] == 0x0a)
5466 			break;
5467 
5468 		name[mnl] = edid_name[mnl];
5469 	}
5470 
5471 	return mnl;
5472 }
5473 
5474 /**
5475  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5476  * @edid: monitor EDID information
5477  * @name: pointer to a character array to hold the name of the monitor
5478  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5479  *
5480  */
5481 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5482 {
5483 	int name_length = 0;
5484 
5485 	if (bufsize <= 0)
5486 		return;
5487 
5488 	if (edid) {
5489 		char buf[13];
5490 		struct drm_edid drm_edid = {
5491 			.edid = edid,
5492 			.size = edid_size(edid),
5493 		};
5494 
5495 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5496 		memcpy(name, buf, name_length);
5497 	}
5498 
5499 	name[name_length] = '\0';
5500 }
5501 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5502 
5503 static void clear_eld(struct drm_connector *connector)
5504 {
5505 	memset(connector->eld, 0, sizeof(connector->eld));
5506 
5507 	connector->latency_present[0] = false;
5508 	connector->latency_present[1] = false;
5509 	connector->video_latency[0] = 0;
5510 	connector->audio_latency[0] = 0;
5511 	connector->video_latency[1] = 0;
5512 	connector->audio_latency[1] = 0;
5513 }
5514 
5515 /*
5516  * Get 3-byte SAD buffer from struct cea_sad.
5517  */
5518 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5519 {
5520 	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5521 	sad[1] = cta_sad->freq;
5522 	sad[2] = cta_sad->byte2;
5523 }
5524 
5525 /*
5526  * Set struct cea_sad from 3-byte SAD buffer.
5527  */
5528 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5529 {
5530 	cta_sad->format = (sad[0] & 0x78) >> 3;
5531 	cta_sad->channels = sad[0] & 0x07;
5532 	cta_sad->freq = sad[1] & 0x7f;
5533 	cta_sad->byte2 = sad[2];
5534 }
5535 
5536 /*
5537  * drm_edid_to_eld - build ELD from EDID
5538  * @connector: connector corresponding to the HDMI/DP sink
5539  * @drm_edid: EDID to parse
5540  *
5541  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5542  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5543  */
5544 static void drm_edid_to_eld(struct drm_connector *connector,
5545 			    const struct drm_edid *drm_edid)
5546 {
5547 	const struct drm_display_info *info = &connector->display_info;
5548 	const struct cea_db *db;
5549 	struct cea_db_iter iter;
5550 	uint8_t *eld = connector->eld;
5551 	int total_sad_count = 0;
5552 	int mnl;
5553 
5554 	if (!drm_edid)
5555 		return;
5556 
5557 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5558 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5559 		    connector->base.id, connector->name,
5560 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5561 
5562 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5563 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5564 
5565 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5566 
5567 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5568 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5569 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5570 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5571 
5572 	cea_db_iter_edid_begin(drm_edid, &iter);
5573 	cea_db_iter_for_each(db, &iter) {
5574 		const u8 *data = cea_db_data(db);
5575 		int len = cea_db_payload_len(db);
5576 		int sad_count;
5577 
5578 		switch (cea_db_tag(db)) {
5579 		case CTA_DB_AUDIO:
5580 			/* Audio Data Block, contains SADs */
5581 			sad_count = min(len / 3, 15 - total_sad_count);
5582 			if (sad_count >= 1)
5583 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5584 				       data, sad_count * 3);
5585 			total_sad_count += sad_count;
5586 			break;
5587 		case CTA_DB_SPEAKER:
5588 			/* Speaker Allocation Data Block */
5589 			if (len >= 1)
5590 				eld[DRM_ELD_SPEAKER] = data[0];
5591 			break;
5592 		case CTA_DB_VENDOR:
5593 			/* HDMI Vendor-Specific Data Block */
5594 			if (cea_db_is_hdmi_vsdb(db))
5595 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5596 			break;
5597 		default:
5598 			break;
5599 		}
5600 	}
5601 	cea_db_iter_end(&iter);
5602 
5603 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5604 
5605 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5606 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5607 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5608 	else
5609 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5610 
5611 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5612 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5613 
5614 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5615 		    connector->base.id, connector->name,
5616 		    drm_eld_size(eld), total_sad_count);
5617 }
5618 
5619 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5620 			    struct cea_sad **psads)
5621 {
5622 	const struct cea_db *db;
5623 	struct cea_db_iter iter;
5624 	int count = 0;
5625 
5626 	cea_db_iter_edid_begin(drm_edid, &iter);
5627 	cea_db_iter_for_each(db, &iter) {
5628 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5629 			struct cea_sad *sads;
5630 			int i;
5631 
5632 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5633 			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5634 			*psads = sads;
5635 			if (!sads)
5636 				return -ENOMEM;
5637 			for (i = 0; i < count; i++)
5638 				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5639 			break;
5640 		}
5641 	}
5642 	cea_db_iter_end(&iter);
5643 
5644 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5645 
5646 	return count;
5647 }
5648 
5649 /**
5650  * drm_edid_to_sad - extracts SADs from EDID
5651  * @edid: EDID to parse
5652  * @sads: pointer that will be set to the extracted SADs
5653  *
5654  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5655  *
5656  * Note: The returned pointer needs to be freed using kfree().
5657  *
5658  * Return: The number of found SADs or negative number on error.
5659  */
5660 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5661 {
5662 	struct drm_edid drm_edid;
5663 
5664 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5665 }
5666 EXPORT_SYMBOL(drm_edid_to_sad);
5667 
5668 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5669 					   u8 **sadb)
5670 {
5671 	const struct cea_db *db;
5672 	struct cea_db_iter iter;
5673 	int count = 0;
5674 
5675 	cea_db_iter_edid_begin(drm_edid, &iter);
5676 	cea_db_iter_for_each(db, &iter) {
5677 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5678 		    cea_db_payload_len(db) == 3) {
5679 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5680 					GFP_KERNEL);
5681 			if (!*sadb)
5682 				return -ENOMEM;
5683 			count = cea_db_payload_len(db);
5684 			break;
5685 		}
5686 	}
5687 	cea_db_iter_end(&iter);
5688 
5689 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5690 
5691 	return count;
5692 }
5693 
5694 /**
5695  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5696  * @edid: EDID to parse
5697  * @sadb: pointer to the speaker block
5698  *
5699  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5700  *
5701  * Note: The returned pointer needs to be freed using kfree().
5702  *
5703  * Return: The number of found Speaker Allocation Blocks or negative number on
5704  * error.
5705  */
5706 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5707 {
5708 	struct drm_edid drm_edid;
5709 
5710 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5711 					       sadb);
5712 }
5713 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5714 
5715 /**
5716  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5717  * @connector: connector associated with the HDMI/DP sink
5718  * @mode: the display mode
5719  *
5720  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5721  * the sink doesn't support audio or video.
5722  */
5723 int drm_av_sync_delay(struct drm_connector *connector,
5724 		      const struct drm_display_mode *mode)
5725 {
5726 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5727 	int a, v;
5728 
5729 	if (!connector->latency_present[0])
5730 		return 0;
5731 	if (!connector->latency_present[1])
5732 		i = 0;
5733 
5734 	a = connector->audio_latency[i];
5735 	v = connector->video_latency[i];
5736 
5737 	/*
5738 	 * HDMI/DP sink doesn't support audio or video?
5739 	 */
5740 	if (a == 255 || v == 255)
5741 		return 0;
5742 
5743 	/*
5744 	 * Convert raw EDID values to millisecond.
5745 	 * Treat unknown latency as 0ms.
5746 	 */
5747 	if (a)
5748 		a = min(2 * (a - 1), 500);
5749 	if (v)
5750 		v = min(2 * (v - 1), 500);
5751 
5752 	return max(v - a, 0);
5753 }
5754 EXPORT_SYMBOL(drm_av_sync_delay);
5755 
5756 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5757 {
5758 	const struct cea_db *db;
5759 	struct cea_db_iter iter;
5760 	bool hdmi = false;
5761 
5762 	/*
5763 	 * Because HDMI identifier is in Vendor Specific Block,
5764 	 * search it from all data blocks of CEA extension.
5765 	 */
5766 	cea_db_iter_edid_begin(drm_edid, &iter);
5767 	cea_db_iter_for_each(db, &iter) {
5768 		if (cea_db_is_hdmi_vsdb(db)) {
5769 			hdmi = true;
5770 			break;
5771 		}
5772 	}
5773 	cea_db_iter_end(&iter);
5774 
5775 	return hdmi;
5776 }
5777 
5778 /**
5779  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5780  * @edid: monitor EDID information
5781  *
5782  * Parse the CEA extension according to CEA-861-B.
5783  *
5784  * Drivers that have added the modes parsed from EDID to drm_display_info
5785  * should use &drm_display_info.is_hdmi instead of calling this function.
5786  *
5787  * Return: True if the monitor is HDMI, false if not or unknown.
5788  */
5789 bool drm_detect_hdmi_monitor(const struct edid *edid)
5790 {
5791 	struct drm_edid drm_edid;
5792 
5793 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5794 }
5795 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5796 
5797 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5798 {
5799 	struct drm_edid_iter edid_iter;
5800 	const struct cea_db *db;
5801 	struct cea_db_iter iter;
5802 	const u8 *edid_ext;
5803 	bool has_audio = false;
5804 
5805 	drm_edid_iter_begin(drm_edid, &edid_iter);
5806 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5807 		if (edid_ext[0] == CEA_EXT) {
5808 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5809 			if (has_audio)
5810 				break;
5811 		}
5812 	}
5813 	drm_edid_iter_end(&edid_iter);
5814 
5815 	if (has_audio) {
5816 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5817 		goto end;
5818 	}
5819 
5820 	cea_db_iter_edid_begin(drm_edid, &iter);
5821 	cea_db_iter_for_each(db, &iter) {
5822 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5823 			const u8 *data = cea_db_data(db);
5824 			int i;
5825 
5826 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5827 				DRM_DEBUG_KMS("CEA audio format %d\n",
5828 					      (data[i] >> 3) & 0xf);
5829 			has_audio = true;
5830 			break;
5831 		}
5832 	}
5833 	cea_db_iter_end(&iter);
5834 
5835 end:
5836 	return has_audio;
5837 }
5838 
5839 /**
5840  * drm_detect_monitor_audio - check monitor audio capability
5841  * @edid: EDID block to scan
5842  *
5843  * Monitor should have CEA extension block.
5844  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5845  * audio' only. If there is any audio extension block and supported
5846  * audio format, assume at least 'basic audio' support, even if 'basic
5847  * audio' is not defined in EDID.
5848  *
5849  * Return: True if the monitor supports audio, false otherwise.
5850  */
5851 bool drm_detect_monitor_audio(const struct edid *edid)
5852 {
5853 	struct drm_edid drm_edid;
5854 
5855 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5856 }
5857 EXPORT_SYMBOL(drm_detect_monitor_audio);
5858 
5859 
5860 /**
5861  * drm_default_rgb_quant_range - default RGB quantization range
5862  * @mode: display mode
5863  *
5864  * Determine the default RGB quantization range for the mode,
5865  * as specified in CEA-861.
5866  *
5867  * Return: The default RGB quantization range for the mode
5868  */
5869 enum hdmi_quantization_range
5870 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5871 {
5872 	/* All CEA modes other than VIC 1 use limited quantization range. */
5873 	return drm_match_cea_mode(mode) > 1 ?
5874 		HDMI_QUANTIZATION_RANGE_LIMITED :
5875 		HDMI_QUANTIZATION_RANGE_FULL;
5876 }
5877 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5878 
5879 /* CTA-861 Video Data Block (CTA VDB) */
5880 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5881 {
5882 	struct drm_display_info *info = &connector->display_info;
5883 	int i, vic_index, len = cea_db_payload_len(db);
5884 	const u8 *svds = cea_db_data(db);
5885 	u8 *vics;
5886 
5887 	if (!len)
5888 		return;
5889 
5890 	/* Gracefully handle multiple VDBs, however unlikely that is */
5891 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5892 	if (!vics)
5893 		return;
5894 
5895 	vic_index = info->vics_len;
5896 	info->vics_len += len;
5897 	info->vics = vics;
5898 
5899 	for (i = 0; i < len; i++) {
5900 		u8 vic = svd_to_vic(svds[i]);
5901 
5902 		if (!drm_valid_cea_vic(vic))
5903 			vic = 0;
5904 
5905 		info->vics[vic_index++] = vic;
5906 	}
5907 }
5908 
5909 /*
5910  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5911  *
5912  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5913  * using the VICs themselves.
5914  */
5915 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5916 {
5917 	struct drm_display_info *info = &connector->display_info;
5918 	struct drm_hdmi_info *hdmi = &info->hdmi;
5919 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5920 
5921 	for (i = 0; i < len; i++) {
5922 		u8 vic = info->vics[i];
5923 
5924 		if (vic && y420cmdb_map & BIT_ULL(i))
5925 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5926 	}
5927 }
5928 
5929 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5930 {
5931 	const struct drm_display_info *info = &connector->display_info;
5932 	int i;
5933 
5934 	if (!vic || !info->vics)
5935 		return false;
5936 
5937 	for (i = 0; i < info->vics_len; i++) {
5938 		if (info->vics[i] == vic)
5939 			return true;
5940 	}
5941 
5942 	return false;
5943 }
5944 
5945 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5946 static void parse_cta_y420vdb(struct drm_connector *connector,
5947 			      const struct cea_db *db)
5948 {
5949 	struct drm_display_info *info = &connector->display_info;
5950 	struct drm_hdmi_info *hdmi = &info->hdmi;
5951 	const u8 *svds = cea_db_data(db) + 1;
5952 	int i;
5953 
5954 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5955 		u8 vic = svd_to_vic(svds[i]);
5956 
5957 		if (!drm_valid_cea_vic(vic))
5958 			continue;
5959 
5960 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5961 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5962 	}
5963 }
5964 
5965 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5966 {
5967 	struct drm_display_info *info = &connector->display_info;
5968 
5969 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5970 		    connector->base.id, connector->name, db[2]);
5971 
5972 	if (db[2] & EDID_CEA_VCDB_QS)
5973 		info->rgb_quant_range_selectable = true;
5974 }
5975 
5976 static
5977 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5978 {
5979 	switch (max_frl_rate) {
5980 	case 1:
5981 		*max_lanes = 3;
5982 		*max_rate_per_lane = 3;
5983 		break;
5984 	case 2:
5985 		*max_lanes = 3;
5986 		*max_rate_per_lane = 6;
5987 		break;
5988 	case 3:
5989 		*max_lanes = 4;
5990 		*max_rate_per_lane = 6;
5991 		break;
5992 	case 4:
5993 		*max_lanes = 4;
5994 		*max_rate_per_lane = 8;
5995 		break;
5996 	case 5:
5997 		*max_lanes = 4;
5998 		*max_rate_per_lane = 10;
5999 		break;
6000 	case 6:
6001 		*max_lanes = 4;
6002 		*max_rate_per_lane = 12;
6003 		break;
6004 	case 0:
6005 	default:
6006 		*max_lanes = 0;
6007 		*max_rate_per_lane = 0;
6008 	}
6009 }
6010 
6011 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6012 					       const u8 *db)
6013 {
6014 	u8 dc_mask;
6015 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6016 
6017 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6018 	hdmi->y420_dc_modes = dc_mask;
6019 }
6020 
6021 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6022 			       const u8 *hf_scds)
6023 {
6024 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6025 
6026 	if (!hdmi_dsc->v_1p2)
6027 		return;
6028 
6029 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6030 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6031 
6032 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6033 		hdmi_dsc->bpc_supported = 16;
6034 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6035 		hdmi_dsc->bpc_supported = 12;
6036 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6037 		hdmi_dsc->bpc_supported = 10;
6038 	else
6039 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6040 		hdmi_dsc->bpc_supported = 8;
6041 
6042 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6043 		u8 dsc_max_slices;
6044 		u8 dsc_max_frl_rate;
6045 
6046 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6047 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6048 				     &hdmi_dsc->max_frl_rate_per_lane);
6049 
6050 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6051 
6052 		switch (dsc_max_slices) {
6053 		case 1:
6054 			hdmi_dsc->max_slices = 1;
6055 			hdmi_dsc->clk_per_slice = 340;
6056 			break;
6057 		case 2:
6058 			hdmi_dsc->max_slices = 2;
6059 			hdmi_dsc->clk_per_slice = 340;
6060 			break;
6061 		case 3:
6062 			hdmi_dsc->max_slices = 4;
6063 			hdmi_dsc->clk_per_slice = 340;
6064 			break;
6065 		case 4:
6066 			hdmi_dsc->max_slices = 8;
6067 			hdmi_dsc->clk_per_slice = 340;
6068 			break;
6069 		case 5:
6070 			hdmi_dsc->max_slices = 8;
6071 			hdmi_dsc->clk_per_slice = 400;
6072 			break;
6073 		case 6:
6074 			hdmi_dsc->max_slices = 12;
6075 			hdmi_dsc->clk_per_slice = 400;
6076 			break;
6077 		case 7:
6078 			hdmi_dsc->max_slices = 16;
6079 			hdmi_dsc->clk_per_slice = 400;
6080 			break;
6081 		case 0:
6082 		default:
6083 			hdmi_dsc->max_slices = 0;
6084 			hdmi_dsc->clk_per_slice = 0;
6085 		}
6086 	}
6087 
6088 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6089 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6090 }
6091 
6092 /* Sink Capability Data Structure */
6093 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6094 				      const u8 *hf_scds)
6095 {
6096 	struct drm_display_info *info = &connector->display_info;
6097 	struct drm_hdmi_info *hdmi = &info->hdmi;
6098 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6099 	int max_tmds_clock = 0;
6100 	u8 max_frl_rate = 0;
6101 	bool dsc_support = false;
6102 
6103 	info->has_hdmi_infoframe = true;
6104 
6105 	if (hf_scds[6] & 0x80) {
6106 		hdmi->scdc.supported = true;
6107 		if (hf_scds[6] & 0x40)
6108 			hdmi->scdc.read_request = true;
6109 	}
6110 
6111 	/*
6112 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6113 	 * And as per the spec, three factors confirm this:
6114 	 * * Availability of a HF-VSDB block in EDID (check)
6115 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6116 	 * * SCDC support available (let's check)
6117 	 * Lets check it out.
6118 	 */
6119 
6120 	if (hf_scds[5]) {
6121 		struct drm_scdc *scdc = &hdmi->scdc;
6122 
6123 		/* max clock is 5000 KHz times block value */
6124 		max_tmds_clock = hf_scds[5] * 5000;
6125 
6126 		if (max_tmds_clock > 340000) {
6127 			info->max_tmds_clock = max_tmds_clock;
6128 		}
6129 
6130 		if (scdc->supported) {
6131 			scdc->scrambling.supported = true;
6132 
6133 			/* Few sinks support scrambling for clocks < 340M */
6134 			if ((hf_scds[6] & 0x8))
6135 				scdc->scrambling.low_rates = true;
6136 		}
6137 	}
6138 
6139 	if (hf_scds[7]) {
6140 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6141 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6142 				     &hdmi->max_frl_rate_per_lane);
6143 	}
6144 
6145 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6146 
6147 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6148 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6149 		dsc_support = true;
6150 	}
6151 
6152 	drm_dbg_kms(connector->dev,
6153 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6154 		    connector->base.id, connector->name,
6155 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6156 }
6157 
6158 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6159 					   const u8 *hdmi)
6160 {
6161 	struct drm_display_info *info = &connector->display_info;
6162 	unsigned int dc_bpc = 0;
6163 
6164 	/* HDMI supports at least 8 bpc */
6165 	info->bpc = 8;
6166 
6167 	if (cea_db_payload_len(hdmi) < 6)
6168 		return;
6169 
6170 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6171 		dc_bpc = 10;
6172 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6173 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6174 			    connector->base.id, connector->name);
6175 	}
6176 
6177 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6178 		dc_bpc = 12;
6179 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6180 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6181 			    connector->base.id, connector->name);
6182 	}
6183 
6184 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6185 		dc_bpc = 16;
6186 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6187 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6188 			    connector->base.id, connector->name);
6189 	}
6190 
6191 	if (dc_bpc == 0) {
6192 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6193 			    connector->base.id, connector->name);
6194 		return;
6195 	}
6196 
6197 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6198 		    connector->base.id, connector->name, dc_bpc);
6199 	info->bpc = dc_bpc;
6200 
6201 	/* YCRCB444 is optional according to spec. */
6202 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6203 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6204 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6205 			    connector->base.id, connector->name);
6206 	}
6207 
6208 	/*
6209 	 * Spec says that if any deep color mode is supported at all,
6210 	 * then deep color 36 bit must be supported.
6211 	 */
6212 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6213 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6214 			    connector->base.id, connector->name);
6215 	}
6216 }
6217 
6218 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6219 static void
6220 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6221 {
6222 	struct drm_display_info *info = &connector->display_info;
6223 	u8 len = cea_db_payload_len(db);
6224 
6225 	info->is_hdmi = true;
6226 
6227 	info->source_physical_address = (db[4] << 8) | db[5];
6228 
6229 	if (len >= 6)
6230 		info->dvi_dual = db[6] & 1;
6231 	if (len >= 7)
6232 		info->max_tmds_clock = db[7] * 5000;
6233 
6234 	/*
6235 	 * Try to infer whether the sink supports HDMI infoframes.
6236 	 *
6237 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6238 	 * supports infoframes if HDMI_Video_present is set.
6239 	 */
6240 	if (len >= 8 && db[8] & BIT(5))
6241 		info->has_hdmi_infoframe = true;
6242 
6243 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6244 		    connector->base.id, connector->name,
6245 		    info->dvi_dual, info->max_tmds_clock);
6246 
6247 	drm_parse_hdmi_deep_color_info(connector, db);
6248 }
6249 
6250 /*
6251  * See EDID extension for head-mounted and specialized monitors, specified at:
6252  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6253  */
6254 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6255 				     const u8 *db)
6256 {
6257 	struct drm_display_info *info = &connector->display_info;
6258 	u8 version = db[4];
6259 	bool desktop_usage = db[5] & BIT(6);
6260 
6261 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6262 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6263 		info->non_desktop = true;
6264 
6265 	drm_dbg_kms(connector->dev,
6266 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6267 		    connector->base.id, connector->name, version, db[5]);
6268 }
6269 
6270 static void drm_parse_cea_ext(struct drm_connector *connector,
6271 			      const struct drm_edid *drm_edid)
6272 {
6273 	struct drm_display_info *info = &connector->display_info;
6274 	struct drm_edid_iter edid_iter;
6275 	const struct cea_db *db;
6276 	struct cea_db_iter iter;
6277 	const u8 *edid_ext;
6278 	u64 y420cmdb_map = 0;
6279 
6280 	drm_edid_iter_begin(drm_edid, &edid_iter);
6281 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6282 		if (edid_ext[0] != CEA_EXT)
6283 			continue;
6284 
6285 		if (!info->cea_rev)
6286 			info->cea_rev = edid_ext[1];
6287 
6288 		if (info->cea_rev != edid_ext[1])
6289 			drm_dbg_kms(connector->dev,
6290 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6291 				    connector->base.id, connector->name,
6292 				    info->cea_rev, edid_ext[1]);
6293 
6294 		/* The existence of a CTA extension should imply RGB support */
6295 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6296 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6297 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6298 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6299 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6300 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6301 			info->has_audio = true;
6302 
6303 	}
6304 	drm_edid_iter_end(&edid_iter);
6305 
6306 	cea_db_iter_edid_begin(drm_edid, &iter);
6307 	cea_db_iter_for_each(db, &iter) {
6308 		/* FIXME: convert parsers to use struct cea_db */
6309 		const u8 *data = (const u8 *)db;
6310 
6311 		if (cea_db_is_hdmi_vsdb(db))
6312 			drm_parse_hdmi_vsdb_video(connector, data);
6313 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6314 			 cea_db_is_hdmi_forum_scdb(db))
6315 			drm_parse_hdmi_forum_scds(connector, data);
6316 		else if (cea_db_is_microsoft_vsdb(db))
6317 			drm_parse_microsoft_vsdb(connector, data);
6318 		else if (cea_db_is_y420cmdb(db))
6319 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6320 		else if (cea_db_is_y420vdb(db))
6321 			parse_cta_y420vdb(connector, db);
6322 		else if (cea_db_is_vcdb(db))
6323 			drm_parse_vcdb(connector, data);
6324 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6325 			drm_parse_hdr_metadata_block(connector, data);
6326 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6327 			parse_cta_vdb(connector, db);
6328 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6329 			info->has_audio = true;
6330 	}
6331 	cea_db_iter_end(&iter);
6332 
6333 	if (y420cmdb_map)
6334 		update_cta_y420cmdb(connector, y420cmdb_map);
6335 }
6336 
6337 static
6338 void get_monitor_range(const struct detailed_timing *timing, void *c)
6339 {
6340 	struct detailed_mode_closure *closure = c;
6341 	struct drm_display_info *info = &closure->connector->display_info;
6342 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6343 	const struct detailed_non_pixel *data = &timing->data.other_data;
6344 	const struct detailed_data_monitor_range *range = &data->data.range;
6345 	const struct edid *edid = closure->drm_edid->edid;
6346 
6347 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6348 		return;
6349 
6350 	/*
6351 	 * These limits are used to determine the VRR refresh
6352 	 * rate range. Only the "range limits only" variant
6353 	 * of the range descriptor seems to guarantee that
6354 	 * any and all timings are accepted by the sink, as
6355 	 * opposed to just timings conforming to the indicated
6356 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6357 	 * range descriptor are not accepted here.
6358 	 */
6359 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6360 		return;
6361 
6362 	monitor_range->min_vfreq = range->min_vfreq;
6363 	monitor_range->max_vfreq = range->max_vfreq;
6364 
6365 	if (edid->revision >= 4) {
6366 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6367 			monitor_range->min_vfreq += 255;
6368 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6369 			monitor_range->max_vfreq += 255;
6370 	}
6371 }
6372 
6373 static void drm_get_monitor_range(struct drm_connector *connector,
6374 				  const struct drm_edid *drm_edid)
6375 {
6376 	const struct drm_display_info *info = &connector->display_info;
6377 	struct detailed_mode_closure closure = {
6378 		.connector = connector,
6379 		.drm_edid = drm_edid,
6380 	};
6381 
6382 	if (drm_edid->edid->revision < 4)
6383 		return;
6384 
6385 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6386 		return;
6387 
6388 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6389 
6390 	drm_dbg_kms(connector->dev,
6391 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6392 		    connector->base.id, connector->name,
6393 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6394 }
6395 
6396 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6397 				    const struct displayid_block *block)
6398 {
6399 	struct displayid_vesa_vendor_specific_block *vesa =
6400 		(struct displayid_vesa_vendor_specific_block *)block;
6401 	struct drm_display_info *info = &connector->display_info;
6402 
6403 	if (block->num_bytes < 3) {
6404 		drm_dbg_kms(connector->dev,
6405 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6406 			    connector->base.id, connector->name, block->num_bytes);
6407 		return;
6408 	}
6409 
6410 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6411 		return;
6412 
6413 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6414 		drm_dbg_kms(connector->dev,
6415 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6416 			    connector->base.id, connector->name);
6417 		return;
6418 	}
6419 
6420 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6421 	default:
6422 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6423 			    connector->base.id, connector->name);
6424 		fallthrough;
6425 	case 0:
6426 		info->mso_stream_count = 0;
6427 		break;
6428 	case 1:
6429 		info->mso_stream_count = 2; /* 2 or 4 links */
6430 		break;
6431 	case 2:
6432 		info->mso_stream_count = 4; /* 4 links */
6433 		break;
6434 	}
6435 
6436 	if (!info->mso_stream_count) {
6437 		info->mso_pixel_overlap = 0;
6438 		return;
6439 	}
6440 
6441 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6442 	if (info->mso_pixel_overlap > 8) {
6443 		drm_dbg_kms(connector->dev,
6444 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6445 			    connector->base.id, connector->name,
6446 			    info->mso_pixel_overlap);
6447 		info->mso_pixel_overlap = 8;
6448 	}
6449 
6450 	drm_dbg_kms(connector->dev,
6451 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6452 		    connector->base.id, connector->name,
6453 		    info->mso_stream_count, info->mso_pixel_overlap);
6454 }
6455 
6456 static void drm_update_mso(struct drm_connector *connector,
6457 			   const struct drm_edid *drm_edid)
6458 {
6459 	const struct displayid_block *block;
6460 	struct displayid_iter iter;
6461 
6462 	displayid_iter_edid_begin(drm_edid, &iter);
6463 	displayid_iter_for_each(block, &iter) {
6464 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6465 			drm_parse_vesa_mso_data(connector, block);
6466 	}
6467 	displayid_iter_end(&iter);
6468 }
6469 
6470 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6471  * all of the values which would have been set from EDID
6472  */
6473 static void drm_reset_display_info(struct drm_connector *connector)
6474 {
6475 	struct drm_display_info *info = &connector->display_info;
6476 
6477 	info->width_mm = 0;
6478 	info->height_mm = 0;
6479 
6480 	info->bpc = 0;
6481 	info->color_formats = 0;
6482 	info->cea_rev = 0;
6483 	info->max_tmds_clock = 0;
6484 	info->dvi_dual = false;
6485 	info->is_hdmi = false;
6486 	info->has_audio = false;
6487 	info->has_hdmi_infoframe = false;
6488 	info->rgb_quant_range_selectable = false;
6489 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6490 
6491 	info->edid_hdmi_rgb444_dc_modes = 0;
6492 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6493 
6494 	info->non_desktop = 0;
6495 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6496 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6497 
6498 	info->mso_stream_count = 0;
6499 	info->mso_pixel_overlap = 0;
6500 	info->max_dsc_bpp = 0;
6501 
6502 	kfree(info->vics);
6503 	info->vics = NULL;
6504 	info->vics_len = 0;
6505 
6506 	info->quirks = 0;
6507 
6508 	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6509 }
6510 
6511 static void update_displayid_info(struct drm_connector *connector,
6512 				  const struct drm_edid *drm_edid)
6513 {
6514 	struct drm_display_info *info = &connector->display_info;
6515 	const struct displayid_block *block;
6516 	struct displayid_iter iter;
6517 
6518 	displayid_iter_edid_begin(drm_edid, &iter);
6519 	displayid_iter_for_each(block, &iter) {
6520 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6521 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6522 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6523 			info->non_desktop = true;
6524 
6525 		/*
6526 		 * We're only interested in the base section here, no need to
6527 		 * iterate further.
6528 		 */
6529 		break;
6530 	}
6531 	displayid_iter_end(&iter);
6532 }
6533 
6534 static void update_display_info(struct drm_connector *connector,
6535 				const struct drm_edid *drm_edid)
6536 {
6537 	struct drm_display_info *info = &connector->display_info;
6538 	const struct edid *edid;
6539 
6540 	drm_reset_display_info(connector);
6541 	clear_eld(connector);
6542 
6543 	if (!drm_edid)
6544 		return;
6545 
6546 	edid = drm_edid->edid;
6547 
6548 	info->quirks = edid_get_quirks(drm_edid);
6549 
6550 	info->width_mm = edid->width_cm * 10;
6551 	info->height_mm = edid->height_cm * 10;
6552 
6553 	drm_get_monitor_range(connector, drm_edid);
6554 
6555 	if (edid->revision < 3)
6556 		goto out;
6557 
6558 	if (!drm_edid_is_digital(drm_edid))
6559 		goto out;
6560 
6561 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6562 	drm_parse_cea_ext(connector, drm_edid);
6563 
6564 	update_displayid_info(connector, drm_edid);
6565 
6566 	/*
6567 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6568 	 *
6569 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6570 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6571 	 * extensions which tell otherwise.
6572 	 */
6573 	if (info->bpc == 0 && edid->revision == 3 &&
6574 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6575 		info->bpc = 8;
6576 		drm_dbg_kms(connector->dev,
6577 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6578 			    connector->base.id, connector->name, info->bpc);
6579 	}
6580 
6581 	/* Only defined for 1.4 with digital displays */
6582 	if (edid->revision < 4)
6583 		goto out;
6584 
6585 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6586 	case DRM_EDID_DIGITAL_DEPTH_6:
6587 		info->bpc = 6;
6588 		break;
6589 	case DRM_EDID_DIGITAL_DEPTH_8:
6590 		info->bpc = 8;
6591 		break;
6592 	case DRM_EDID_DIGITAL_DEPTH_10:
6593 		info->bpc = 10;
6594 		break;
6595 	case DRM_EDID_DIGITAL_DEPTH_12:
6596 		info->bpc = 12;
6597 		break;
6598 	case DRM_EDID_DIGITAL_DEPTH_14:
6599 		info->bpc = 14;
6600 		break;
6601 	case DRM_EDID_DIGITAL_DEPTH_16:
6602 		info->bpc = 16;
6603 		break;
6604 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6605 	default:
6606 		info->bpc = 0;
6607 		break;
6608 	}
6609 
6610 	drm_dbg_kms(connector->dev,
6611 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6612 		    connector->base.id, connector->name, info->bpc);
6613 
6614 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6615 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6616 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6617 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6618 
6619 	drm_update_mso(connector, drm_edid);
6620 
6621 out:
6622 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6623 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6624 			    connector->base.id, connector->name,
6625 			    info->non_desktop ? " (redundant quirk)" : "");
6626 		info->non_desktop = true;
6627 	}
6628 
6629 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6630 		info->max_dsc_bpp = 15;
6631 
6632 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6633 		info->bpc = 6;
6634 
6635 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6636 		info->bpc = 8;
6637 
6638 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6639 		info->bpc = 10;
6640 
6641 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6642 		info->bpc = 12;
6643 
6644 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6645 	drm_edid_to_eld(connector, drm_edid);
6646 }
6647 
6648 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6649 							    struct displayid_detailed_timings_1 *timings,
6650 							    bool type_7)
6651 {
6652 	struct drm_display_mode *mode;
6653 	unsigned pixel_clock = (timings->pixel_clock[0] |
6654 				(timings->pixel_clock[1] << 8) |
6655 				(timings->pixel_clock[2] << 16)) + 1;
6656 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6657 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6658 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6659 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6660 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6661 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6662 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6663 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6664 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6665 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6666 
6667 	mode = drm_mode_create(dev);
6668 	if (!mode)
6669 		return NULL;
6670 
6671 	/* resolution is kHz for type VII, and 10 kHz for type I */
6672 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6673 	mode->hdisplay = hactive;
6674 	mode->hsync_start = mode->hdisplay + hsync;
6675 	mode->hsync_end = mode->hsync_start + hsync_width;
6676 	mode->htotal = mode->hdisplay + hblank;
6677 
6678 	mode->vdisplay = vactive;
6679 	mode->vsync_start = mode->vdisplay + vsync;
6680 	mode->vsync_end = mode->vsync_start + vsync_width;
6681 	mode->vtotal = mode->vdisplay + vblank;
6682 
6683 	mode->flags = 0;
6684 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6685 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6686 	mode->type = DRM_MODE_TYPE_DRIVER;
6687 
6688 	if (timings->flags & 0x80)
6689 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6690 	drm_mode_set_name(mode);
6691 
6692 	return mode;
6693 }
6694 
6695 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6696 					  const struct displayid_block *block)
6697 {
6698 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6699 	int i;
6700 	int num_timings;
6701 	struct drm_display_mode *newmode;
6702 	int num_modes = 0;
6703 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6704 	/* blocks must be multiple of 20 bytes length */
6705 	if (block->num_bytes % 20)
6706 		return 0;
6707 
6708 	num_timings = block->num_bytes / 20;
6709 	for (i = 0; i < num_timings; i++) {
6710 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6711 
6712 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6713 		if (!newmode)
6714 			continue;
6715 
6716 		drm_mode_probed_add(connector, newmode);
6717 		num_modes++;
6718 	}
6719 	return num_modes;
6720 }
6721 
6722 static int add_displayid_detailed_modes(struct drm_connector *connector,
6723 					const struct drm_edid *drm_edid)
6724 {
6725 	const struct displayid_block *block;
6726 	struct displayid_iter iter;
6727 	int num_modes = 0;
6728 
6729 	displayid_iter_edid_begin(drm_edid, &iter);
6730 	displayid_iter_for_each(block, &iter) {
6731 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6732 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6733 			num_modes += add_displayid_detailed_1_modes(connector, block);
6734 	}
6735 	displayid_iter_end(&iter);
6736 
6737 	return num_modes;
6738 }
6739 
6740 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6741 					 const struct drm_edid *drm_edid)
6742 {
6743 	const struct drm_display_info *info = &connector->display_info;
6744 	int num_modes = 0;
6745 
6746 	if (!drm_edid)
6747 		return 0;
6748 
6749 	/*
6750 	 * EDID spec says modes should be preferred in this order:
6751 	 * - preferred detailed mode
6752 	 * - other detailed modes from base block
6753 	 * - detailed modes from extension blocks
6754 	 * - CVT 3-byte code modes
6755 	 * - standard timing codes
6756 	 * - established timing codes
6757 	 * - modes inferred from GTF or CVT range information
6758 	 *
6759 	 * We get this pretty much right.
6760 	 *
6761 	 * XXX order for additional mode types in extension blocks?
6762 	 */
6763 	num_modes += add_detailed_modes(connector, drm_edid);
6764 	num_modes += add_cvt_modes(connector, drm_edid);
6765 	num_modes += add_standard_modes(connector, drm_edid);
6766 	num_modes += add_established_modes(connector, drm_edid);
6767 	num_modes += add_cea_modes(connector, drm_edid);
6768 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6769 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6770 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6771 		num_modes += add_inferred_modes(connector, drm_edid);
6772 
6773 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6774 		edid_fixup_preferred(connector);
6775 
6776 	return num_modes;
6777 }
6778 
6779 static void _drm_update_tile_info(struct drm_connector *connector,
6780 				  const struct drm_edid *drm_edid);
6781 
6782 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6783 					       const struct drm_edid *drm_edid)
6784 {
6785 	struct drm_device *dev = connector->dev;
6786 	int ret;
6787 
6788 	if (connector->edid_blob_ptr) {
6789 		const struct edid *old_edid = connector->edid_blob_ptr->data;
6790 
6791 		if (old_edid) {
6792 			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6793 				connector->epoch_counter++;
6794 				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6795 					    connector->base.id, connector->name,
6796 					    connector->epoch_counter);
6797 			}
6798 		}
6799 	}
6800 
6801 	ret = drm_property_replace_global_blob(dev,
6802 					       &connector->edid_blob_ptr,
6803 					       drm_edid ? drm_edid->size : 0,
6804 					       drm_edid ? drm_edid->edid : NULL,
6805 					       &connector->base,
6806 					       dev->mode_config.edid_property);
6807 	if (ret) {
6808 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6809 			    connector->base.id, connector->name, ret);
6810 		goto out;
6811 	}
6812 
6813 	ret = drm_object_property_set_value(&connector->base,
6814 					    dev->mode_config.non_desktop_property,
6815 					    connector->display_info.non_desktop);
6816 	if (ret) {
6817 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6818 			    connector->base.id, connector->name, ret);
6819 		goto out;
6820 	}
6821 
6822 	ret = drm_connector_set_tile_property(connector);
6823 	if (ret) {
6824 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6825 			    connector->base.id, connector->name, ret);
6826 		goto out;
6827 	}
6828 
6829 out:
6830 	return ret;
6831 }
6832 
6833 /**
6834  * drm_edid_connector_update - Update connector information from EDID
6835  * @connector: Connector
6836  * @drm_edid: EDID
6837  *
6838  * Update the connector display info, ELD, HDR metadata, relevant properties,
6839  * etc. from the passed in EDID.
6840  *
6841  * If EDID is NULL, reset the information.
6842  *
6843  * Must be called before calling drm_edid_connector_add_modes().
6844  *
6845  * Return: 0 on success, negative error on errors.
6846  */
6847 int drm_edid_connector_update(struct drm_connector *connector,
6848 			      const struct drm_edid *drm_edid)
6849 {
6850 	update_display_info(connector, drm_edid);
6851 
6852 	_drm_update_tile_info(connector, drm_edid);
6853 
6854 	return _drm_edid_connector_property_update(connector, drm_edid);
6855 }
6856 EXPORT_SYMBOL(drm_edid_connector_update);
6857 
6858 /**
6859  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6860  * @connector: Connector
6861  *
6862  * Add the modes from the previously updated EDID property to the connector
6863  * probed modes list.
6864  *
6865  * drm_edid_connector_update() must have been called before this to update the
6866  * EDID property.
6867  *
6868  * Return: The number of modes added, or 0 if we couldn't find any.
6869  */
6870 int drm_edid_connector_add_modes(struct drm_connector *connector)
6871 {
6872 	const struct drm_edid *drm_edid = NULL;
6873 	int count;
6874 
6875 	if (connector->edid_blob_ptr)
6876 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6877 					  connector->edid_blob_ptr->length);
6878 
6879 	count = _drm_edid_connector_add_modes(connector, drm_edid);
6880 
6881 	drm_edid_free(drm_edid);
6882 
6883 	return count;
6884 }
6885 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6886 
6887 /**
6888  * drm_connector_update_edid_property - update the edid property of a connector
6889  * @connector: drm connector
6890  * @edid: new value of the edid property
6891  *
6892  * This function creates a new blob modeset object and assigns its id to the
6893  * connector's edid property.
6894  * Since we also parse tile information from EDID's displayID block, we also
6895  * set the connector's tile property here. See drm_connector_set_tile_property()
6896  * for more details.
6897  *
6898  * This function is deprecated. Use drm_edid_connector_update() instead.
6899  *
6900  * Returns:
6901  * Zero on success, negative errno on failure.
6902  */
6903 int drm_connector_update_edid_property(struct drm_connector *connector,
6904 				       const struct edid *edid)
6905 {
6906 	struct drm_edid drm_edid;
6907 
6908 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6909 }
6910 EXPORT_SYMBOL(drm_connector_update_edid_property);
6911 
6912 /**
6913  * drm_add_edid_modes - add modes from EDID data, if available
6914  * @connector: connector we're probing
6915  * @edid: EDID data
6916  *
6917  * Add the specified modes to the connector's mode list. Also fills out the
6918  * &drm_display_info structure and ELD in @connector with any information which
6919  * can be derived from the edid.
6920  *
6921  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6922  *
6923  * Return: The number of modes added or 0 if we couldn't find any.
6924  */
6925 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6926 {
6927 	struct drm_edid _drm_edid;
6928 	const struct drm_edid *drm_edid;
6929 
6930 	if (edid && !drm_edid_is_valid(edid)) {
6931 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6932 			 connector->base.id, connector->name);
6933 		edid = NULL;
6934 	}
6935 
6936 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6937 
6938 	update_display_info(connector, drm_edid);
6939 
6940 	return _drm_edid_connector_add_modes(connector, drm_edid);
6941 }
6942 EXPORT_SYMBOL(drm_add_edid_modes);
6943 
6944 /**
6945  * drm_add_modes_noedid - add modes for the connectors without EDID
6946  * @connector: connector we're probing
6947  * @hdisplay: the horizontal display limit
6948  * @vdisplay: the vertical display limit
6949  *
6950  * Add the specified modes to the connector's mode list. Only when the
6951  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6952  *
6953  * Return: The number of modes added or 0 if we couldn't find any.
6954  */
6955 int drm_add_modes_noedid(struct drm_connector *connector,
6956 			int hdisplay, int vdisplay)
6957 {
6958 	int i, count, num_modes = 0;
6959 	struct drm_display_mode *mode;
6960 	struct drm_device *dev = connector->dev;
6961 
6962 	count = ARRAY_SIZE(drm_dmt_modes);
6963 	if (hdisplay < 0)
6964 		hdisplay = 0;
6965 	if (vdisplay < 0)
6966 		vdisplay = 0;
6967 
6968 	for (i = 0; i < count; i++) {
6969 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6970 
6971 		if (hdisplay && vdisplay) {
6972 			/*
6973 			 * Only when two are valid, they will be used to check
6974 			 * whether the mode should be added to the mode list of
6975 			 * the connector.
6976 			 */
6977 			if (ptr->hdisplay > hdisplay ||
6978 					ptr->vdisplay > vdisplay)
6979 				continue;
6980 		}
6981 		if (drm_mode_vrefresh(ptr) > 61)
6982 			continue;
6983 		mode = drm_mode_duplicate(dev, ptr);
6984 		if (mode) {
6985 			drm_mode_probed_add(connector, mode);
6986 			num_modes++;
6987 		}
6988 	}
6989 	return num_modes;
6990 }
6991 EXPORT_SYMBOL(drm_add_modes_noedid);
6992 
6993 /**
6994  * drm_set_preferred_mode - Sets the preferred mode of a connector
6995  * @connector: connector whose mode list should be processed
6996  * @hpref: horizontal resolution of preferred mode
6997  * @vpref: vertical resolution of preferred mode
6998  *
6999  * Marks a mode as preferred if it matches the resolution specified by @hpref
7000  * and @vpref.
7001  */
7002 void drm_set_preferred_mode(struct drm_connector *connector,
7003 			   int hpref, int vpref)
7004 {
7005 	struct drm_display_mode *mode;
7006 
7007 	list_for_each_entry(mode, &connector->probed_modes, head) {
7008 		if (mode->hdisplay == hpref &&
7009 		    mode->vdisplay == vpref)
7010 			mode->type |= DRM_MODE_TYPE_PREFERRED;
7011 	}
7012 }
7013 EXPORT_SYMBOL(drm_set_preferred_mode);
7014 
7015 static bool is_hdmi2_sink(const struct drm_connector *connector)
7016 {
7017 	/*
7018 	 * FIXME: sil-sii8620 doesn't have a connector around when
7019 	 * we need one, so we have to be prepared for a NULL connector.
7020 	 */
7021 	if (!connector)
7022 		return true;
7023 
7024 	return connector->display_info.hdmi.scdc.supported ||
7025 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7026 }
7027 
7028 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7029 			    const struct drm_display_mode *mode)
7030 {
7031 	bool has_hdmi_infoframe = connector ?
7032 		connector->display_info.has_hdmi_infoframe : false;
7033 
7034 	if (!has_hdmi_infoframe)
7035 		return 0;
7036 
7037 	/* No HDMI VIC when signalling 3D video format */
7038 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7039 		return 0;
7040 
7041 	return drm_match_hdmi_mode(mode);
7042 }
7043 
7044 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7045 			   const struct drm_display_mode *mode)
7046 {
7047 	/*
7048 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7049 	 * we should send its VIC in vendor infoframes, else send the
7050 	 * VIC in AVI infoframes. Lets check if this mode is present in
7051 	 * HDMI 1.4b 4K modes
7052 	 */
7053 	if (drm_mode_hdmi_vic(connector, mode))
7054 		return 0;
7055 
7056 	return drm_match_cea_mode(mode);
7057 }
7058 
7059 /*
7060  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7061  * conform to HDMI 1.4.
7062  *
7063  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7064  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7065  *
7066  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7067  * version.
7068  */
7069 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7070 {
7071 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7072 	    !cta_vdb_has_vic(connector, vic))
7073 		return 0;
7074 
7075 	return vic;
7076 }
7077 
7078 /**
7079  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7080  *                                              data from a DRM display mode
7081  * @frame: HDMI AVI infoframe
7082  * @connector: the connector
7083  * @mode: DRM display mode
7084  *
7085  * Return: 0 on success or a negative error code on failure.
7086  */
7087 int
7088 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7089 					 const struct drm_connector *connector,
7090 					 const struct drm_display_mode *mode)
7091 {
7092 	enum hdmi_picture_aspect picture_aspect;
7093 	u8 vic, hdmi_vic;
7094 
7095 	if (!frame || !mode)
7096 		return -EINVAL;
7097 
7098 	hdmi_avi_infoframe_init(frame);
7099 
7100 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7101 		frame->pixel_repeat = 1;
7102 
7103 	vic = drm_mode_cea_vic(connector, mode);
7104 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7105 
7106 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7107 
7108 	/*
7109 	 * As some drivers don't support atomic, we can't use connector state.
7110 	 * So just initialize the frame with default values, just the same way
7111 	 * as it's done with other properties here.
7112 	 */
7113 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7114 	frame->itc = 0;
7115 
7116 	/*
7117 	 * Populate picture aspect ratio from either
7118 	 * user input (if specified) or from the CEA/HDMI mode lists.
7119 	 */
7120 	picture_aspect = mode->picture_aspect_ratio;
7121 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7122 		if (vic)
7123 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7124 		else if (hdmi_vic)
7125 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7126 	}
7127 
7128 	/*
7129 	 * The infoframe can't convey anything but none, 4:3
7130 	 * and 16:9, so if the user has asked for anything else
7131 	 * we can only satisfy it by specifying the right VIC.
7132 	 */
7133 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7134 		if (vic) {
7135 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7136 				return -EINVAL;
7137 		} else if (hdmi_vic) {
7138 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7139 				return -EINVAL;
7140 		} else {
7141 			return -EINVAL;
7142 		}
7143 
7144 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7145 	}
7146 
7147 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7148 	frame->picture_aspect = picture_aspect;
7149 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7150 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7151 
7152 	return 0;
7153 }
7154 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7155 
7156 /**
7157  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7158  *                                        quantization range information
7159  * @frame: HDMI AVI infoframe
7160  * @connector: the connector
7161  * @mode: DRM display mode
7162  * @rgb_quant_range: RGB quantization range (Q)
7163  */
7164 void
7165 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7166 				   const struct drm_connector *connector,
7167 				   const struct drm_display_mode *mode,
7168 				   enum hdmi_quantization_range rgb_quant_range)
7169 {
7170 	const struct drm_display_info *info = &connector->display_info;
7171 
7172 	/*
7173 	 * CEA-861:
7174 	 * "A Source shall not send a non-zero Q value that does not correspond
7175 	 *  to the default RGB Quantization Range for the transmitted Picture
7176 	 *  unless the Sink indicates support for the Q bit in a Video
7177 	 *  Capabilities Data Block."
7178 	 *
7179 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7180 	 * default RGB quantization range for the mode, even when QS=0.
7181 	 */
7182 	if (info->rgb_quant_range_selectable ||
7183 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7184 		frame->quantization_range = rgb_quant_range;
7185 	else
7186 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7187 
7188 	/*
7189 	 * CEA-861-F:
7190 	 * "When transmitting any RGB colorimetry, the Source should set the
7191 	 *  YQ-field to match the RGB Quantization Range being transmitted
7192 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7193 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7194 	 *
7195 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7196 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7197 	 * good way to tell which version of CEA-861 the sink supports, so
7198 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7199 	 * on CEA-861-F.
7200 	 */
7201 	if (!is_hdmi2_sink(connector) ||
7202 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7203 		frame->ycc_quantization_range =
7204 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7205 	else
7206 		frame->ycc_quantization_range =
7207 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7208 }
7209 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7210 
7211 static enum hdmi_3d_structure
7212 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7213 {
7214 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7215 
7216 	switch (layout) {
7217 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7218 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7219 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7220 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7221 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7222 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7223 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7224 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7225 	case DRM_MODE_FLAG_3D_L_DEPTH:
7226 		return HDMI_3D_STRUCTURE_L_DEPTH;
7227 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7228 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7229 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7230 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7231 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7232 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7233 	default:
7234 		return HDMI_3D_STRUCTURE_INVALID;
7235 	}
7236 }
7237 
7238 /**
7239  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7240  * data from a DRM display mode
7241  * @frame: HDMI vendor infoframe
7242  * @connector: the connector
7243  * @mode: DRM display mode
7244  *
7245  * Note that there's is a need to send HDMI vendor infoframes only when using a
7246  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7247  * function will return -EINVAL, error that can be safely ignored.
7248  *
7249  * Return: 0 on success or a negative error code on failure.
7250  */
7251 int
7252 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7253 					    const struct drm_connector *connector,
7254 					    const struct drm_display_mode *mode)
7255 {
7256 	/*
7257 	 * FIXME: sil-sii8620 doesn't have a connector around when
7258 	 * we need one, so we have to be prepared for a NULL connector.
7259 	 */
7260 	bool has_hdmi_infoframe = connector ?
7261 		connector->display_info.has_hdmi_infoframe : false;
7262 	int err;
7263 
7264 	if (!frame || !mode)
7265 		return -EINVAL;
7266 
7267 	if (!has_hdmi_infoframe)
7268 		return -EINVAL;
7269 
7270 	err = hdmi_vendor_infoframe_init(frame);
7271 	if (err < 0)
7272 		return err;
7273 
7274 	/*
7275 	 * Even if it's not absolutely necessary to send the infoframe
7276 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7277 	 * know that the sink can handle it. This is based on a
7278 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7279 	 * have trouble realizing that they should switch from 3D to 2D
7280 	 * mode if the source simply stops sending the infoframe when
7281 	 * it wants to switch from 3D to 2D.
7282 	 */
7283 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7284 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7285 
7286 	return 0;
7287 }
7288 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7289 
7290 static void drm_parse_tiled_block(struct drm_connector *connector,
7291 				  const struct displayid_block *block)
7292 {
7293 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7294 	u16 w, h;
7295 	u8 tile_v_loc, tile_h_loc;
7296 	u8 num_v_tile, num_h_tile;
7297 	struct drm_tile_group *tg;
7298 
7299 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7300 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7301 
7302 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7303 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7304 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7305 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7306 
7307 	connector->has_tile = true;
7308 	if (tile->tile_cap & 0x80)
7309 		connector->tile_is_single_monitor = true;
7310 
7311 	connector->num_h_tile = num_h_tile + 1;
7312 	connector->num_v_tile = num_v_tile + 1;
7313 	connector->tile_h_loc = tile_h_loc;
7314 	connector->tile_v_loc = tile_v_loc;
7315 	connector->tile_h_size = w + 1;
7316 	connector->tile_v_size = h + 1;
7317 
7318 	drm_dbg_kms(connector->dev,
7319 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7320 		    connector->base.id, connector->name,
7321 		    tile->tile_cap,
7322 		    connector->tile_h_size, connector->tile_v_size,
7323 		    connector->num_h_tile, connector->num_v_tile,
7324 		    connector->tile_h_loc, connector->tile_v_loc,
7325 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7326 
7327 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7328 	if (!tg)
7329 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7330 	if (!tg)
7331 		return;
7332 
7333 	if (connector->tile_group != tg) {
7334 		/* if we haven't got a pointer,
7335 		   take the reference, drop ref to old tile group */
7336 		if (connector->tile_group)
7337 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7338 		connector->tile_group = tg;
7339 	} else {
7340 		/* if same tile group, then release the ref we just took. */
7341 		drm_mode_put_tile_group(connector->dev, tg);
7342 	}
7343 }
7344 
7345 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7346 				     const struct displayid_block *block)
7347 {
7348 	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7349 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7350 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7351 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7352 }
7353 
7354 static void _drm_update_tile_info(struct drm_connector *connector,
7355 				  const struct drm_edid *drm_edid)
7356 {
7357 	const struct displayid_block *block;
7358 	struct displayid_iter iter;
7359 
7360 	connector->has_tile = false;
7361 
7362 	displayid_iter_edid_begin(drm_edid, &iter);
7363 	displayid_iter_for_each(block, &iter) {
7364 		if (displayid_is_tiled_block(&iter, block))
7365 			drm_parse_tiled_block(connector, block);
7366 	}
7367 	displayid_iter_end(&iter);
7368 
7369 	if (!connector->has_tile && connector->tile_group) {
7370 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7371 		connector->tile_group = NULL;
7372 	}
7373 }
7374 
7375 /**
7376  * drm_edid_is_digital - is digital?
7377  * @drm_edid: The EDID
7378  *
7379  * Return true if input is digital.
7380  */
7381 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7382 {
7383 	return drm_edid && drm_edid->edid &&
7384 		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7385 }
7386 EXPORT_SYMBOL(drm_edid_is_digital);
7387