1 /* 2 * Copyright (c) 2006 Luc Verhaegen (quirks list) 3 * Copyright (c) 2007-2008 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * Copyright 2010 Red Hat, Inc. 6 * 7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from 8 * FB layer. 9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com> 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sub license, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice (including the 19 * next paragraph) shall be included in all copies or substantial portions 20 * of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 28 * DEALINGS IN THE SOFTWARE. 29 */ 30 31 #include <linux/bitfield.h> 32 #include <linux/cec.h> 33 #include <linux/hdmi.h> 34 #include <linux/i2c.h> 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pci.h> 38 #include <linux/slab.h> 39 #include <linux/vga_switcheroo.h> 40 41 #include <drm/drm_displayid.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_edid.h> 44 #include <drm/drm_eld.h> 45 #include <drm/drm_encoder.h> 46 #include <drm/drm_print.h> 47 48 #include "drm_crtc_internal.h" 49 #include "drm_internal.h" 50 51 static int oui(u8 first, u8 second, u8 third) 52 { 53 return (first << 16) | (second << 8) | third; 54 } 55 56 #define EDID_EST_TIMINGS 16 57 #define EDID_STD_TIMINGS 8 58 #define EDID_DETAILED_TIMINGS 4 59 60 /* 61 * EDID blocks out in the wild have a variety of bugs, try to collect 62 * them here (note that userspace may work around broken monitors first, 63 * but fixes should make their way here so that the kernel "just works" 64 * on as many displays as possible). 65 */ 66 67 /* First detailed mode wrong, use largest 60Hz mode */ 68 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) 69 /* Reported 135MHz pixel clock is too high, needs adjustment */ 70 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) 71 /* Prefer the largest mode at 75 Hz */ 72 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) 73 /* Detail timing is in cm not mm */ 74 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) 75 /* Detailed timing descriptors have bogus size values, so just take the 76 * maximum size and use that. 77 */ 78 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) 79 /* use +hsync +vsync for detailed mode */ 80 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) 81 /* Force reduced-blanking timings for detailed modes */ 82 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) 83 /* Force 8bpc */ 84 #define EDID_QUIRK_FORCE_8BPC (1 << 8) 85 /* Force 12bpc */ 86 #define EDID_QUIRK_FORCE_12BPC (1 << 9) 87 /* Force 6bpc */ 88 #define EDID_QUIRK_FORCE_6BPC (1 << 10) 89 /* Force 10bpc */ 90 #define EDID_QUIRK_FORCE_10BPC (1 << 11) 91 /* Non desktop display (i.e. HMD) */ 92 #define EDID_QUIRK_NON_DESKTOP (1 << 12) 93 /* Cap the DSC target bitrate to 15bpp */ 94 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13) 95 96 #define MICROSOFT_IEEE_OUI 0xca125c 97 98 struct detailed_mode_closure { 99 struct drm_connector *connector; 100 const struct drm_edid *drm_edid; 101 bool preferred; 102 int modes; 103 }; 104 105 #define LEVEL_DMT 0 106 #define LEVEL_GTF 1 107 #define LEVEL_GTF2 2 108 #define LEVEL_CVT 3 109 110 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \ 111 { \ 112 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \ 113 product_id), \ 114 .quirks = _quirks \ 115 } 116 117 static const struct edid_quirk { 118 u32 panel_id; 119 u32 quirks; 120 } edid_quirk_list[] = { 121 /* Acer AL1706 */ 122 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60), 123 /* Acer F51 */ 124 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60), 125 126 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */ 127 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC), 128 129 /* BenQ GW2765 */ 130 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC), 131 132 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */ 133 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC), 134 135 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */ 136 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC), 137 138 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */ 139 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC), 140 141 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */ 142 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC), 143 144 /* Belinea 10 15 55 */ 145 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60), 146 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60), 147 148 /* Envision Peripherals, Inc. EN-7100e */ 149 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH), 150 /* Envision EN2028 */ 151 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60), 152 153 /* Funai Electronics PM36B */ 154 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 | 155 EDID_QUIRK_DETAILED_IN_CM), 156 157 /* LG 27GP950 */ 158 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP), 159 160 /* LG 27GN950 */ 161 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP), 162 163 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */ 164 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC), 165 166 /* LG Philips LCD LP154W01-A5 */ 167 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), 168 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), 169 170 /* Samsung SyncMaster 205BW. Note: irony */ 171 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP), 172 /* Samsung SyncMaster 22[5-6]BW */ 173 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60), 174 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60), 175 176 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */ 177 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC), 178 179 /* ViewSonic VA2026w */ 180 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING), 181 182 /* Medion MD 30217 PG */ 183 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75), 184 185 /* Lenovo G50 */ 186 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC), 187 188 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ 189 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC), 190 191 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/ 192 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC), 193 194 /* Valve Index Headset */ 195 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP), 196 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP), 197 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP), 198 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP), 199 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP), 200 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP), 201 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP), 202 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP), 203 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP), 204 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP), 205 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP), 206 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP), 207 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP), 208 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP), 209 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP), 210 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP), 211 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP), 212 213 /* HTC Vive and Vive Pro VR Headsets */ 214 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP), 215 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP), 216 217 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */ 218 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP), 219 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP), 220 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP), 221 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP), 222 223 /* Windows Mixed Reality Headsets */ 224 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP), 225 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP), 226 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP), 227 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP), 228 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP), 229 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP), 230 231 /* Sony PlayStation VR Headset */ 232 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP), 233 234 /* Sensics VR Headsets */ 235 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP), 236 237 /* OSVR HDK and HDK2 VR Headsets */ 238 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP), 239 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP), 240 }; 241 242 /* 243 * Autogenerated from the DMT spec. 244 * This table is copied from xfree86/modes/xf86EdidModes.c. 245 */ 246 static const struct drm_display_mode drm_dmt_modes[] = { 247 /* 0x01 - 640x350@85Hz */ 248 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 249 736, 832, 0, 350, 382, 385, 445, 0, 250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 251 /* 0x02 - 640x400@85Hz */ 252 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 253 736, 832, 0, 400, 401, 404, 445, 0, 254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 255 /* 0x03 - 720x400@85Hz */ 256 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 257 828, 936, 0, 400, 401, 404, 446, 0, 258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 259 /* 0x04 - 640x480@60Hz */ 260 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 261 752, 800, 0, 480, 490, 492, 525, 0, 262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 263 /* 0x05 - 640x480@72Hz */ 264 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 265 704, 832, 0, 480, 489, 492, 520, 0, 266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 267 /* 0x06 - 640x480@75Hz */ 268 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 269 720, 840, 0, 480, 481, 484, 500, 0, 270 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 271 /* 0x07 - 640x480@85Hz */ 272 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 273 752, 832, 0, 480, 481, 484, 509, 0, 274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 275 /* 0x08 - 800x600@56Hz */ 276 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 277 896, 1024, 0, 600, 601, 603, 625, 0, 278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 279 /* 0x09 - 800x600@60Hz */ 280 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 281 968, 1056, 0, 600, 601, 605, 628, 0, 282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 283 /* 0x0a - 800x600@72Hz */ 284 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 285 976, 1040, 0, 600, 637, 643, 666, 0, 286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 287 /* 0x0b - 800x600@75Hz */ 288 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 289 896, 1056, 0, 600, 601, 604, 625, 0, 290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 291 /* 0x0c - 800x600@85Hz */ 292 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 293 896, 1048, 0, 600, 601, 604, 631, 0, 294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 295 /* 0x0d - 800x600@120Hz RB */ 296 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 297 880, 960, 0, 600, 603, 607, 636, 0, 298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 299 /* 0x0e - 848x480@60Hz */ 300 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 301 976, 1088, 0, 480, 486, 494, 517, 0, 302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 303 /* 0x0f - 1024x768@43Hz, interlace */ 304 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 305 1208, 1264, 0, 768, 768, 776, 817, 0, 306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 307 DRM_MODE_FLAG_INTERLACE) }, 308 /* 0x10 - 1024x768@60Hz */ 309 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 310 1184, 1344, 0, 768, 771, 777, 806, 0, 311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 312 /* 0x11 - 1024x768@70Hz */ 313 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 314 1184, 1328, 0, 768, 771, 777, 806, 0, 315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 316 /* 0x12 - 1024x768@75Hz */ 317 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 318 1136, 1312, 0, 768, 769, 772, 800, 0, 319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 320 /* 0x13 - 1024x768@85Hz */ 321 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 322 1168, 1376, 0, 768, 769, 772, 808, 0, 323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 324 /* 0x14 - 1024x768@120Hz RB */ 325 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 326 1104, 1184, 0, 768, 771, 775, 813, 0, 327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 328 /* 0x15 - 1152x864@75Hz */ 329 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 330 1344, 1600, 0, 864, 865, 868, 900, 0, 331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 332 /* 0x55 - 1280x720@60Hz */ 333 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 334 1430, 1650, 0, 720, 725, 730, 750, 0, 335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 336 /* 0x16 - 1280x768@60Hz RB */ 337 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 338 1360, 1440, 0, 768, 771, 778, 790, 0, 339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 340 /* 0x17 - 1280x768@60Hz */ 341 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 342 1472, 1664, 0, 768, 771, 778, 798, 0, 343 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 344 /* 0x18 - 1280x768@75Hz */ 345 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 346 1488, 1696, 0, 768, 771, 778, 805, 0, 347 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 348 /* 0x19 - 1280x768@85Hz */ 349 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 350 1496, 1712, 0, 768, 771, 778, 809, 0, 351 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 352 /* 0x1a - 1280x768@120Hz RB */ 353 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 354 1360, 1440, 0, 768, 771, 778, 813, 0, 355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 356 /* 0x1b - 1280x800@60Hz RB */ 357 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 358 1360, 1440, 0, 800, 803, 809, 823, 0, 359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 360 /* 0x1c - 1280x800@60Hz */ 361 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 362 1480, 1680, 0, 800, 803, 809, 831, 0, 363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 364 /* 0x1d - 1280x800@75Hz */ 365 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 366 1488, 1696, 0, 800, 803, 809, 838, 0, 367 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 368 /* 0x1e - 1280x800@85Hz */ 369 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 370 1496, 1712, 0, 800, 803, 809, 843, 0, 371 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 372 /* 0x1f - 1280x800@120Hz RB */ 373 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 374 1360, 1440, 0, 800, 803, 809, 847, 0, 375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 376 /* 0x20 - 1280x960@60Hz */ 377 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 378 1488, 1800, 0, 960, 961, 964, 1000, 0, 379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 380 /* 0x21 - 1280x960@85Hz */ 381 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 382 1504, 1728, 0, 960, 961, 964, 1011, 0, 383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 384 /* 0x22 - 1280x960@120Hz RB */ 385 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 386 1360, 1440, 0, 960, 963, 967, 1017, 0, 387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 388 /* 0x23 - 1280x1024@60Hz */ 389 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 390 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 392 /* 0x24 - 1280x1024@75Hz */ 393 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 394 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 396 /* 0x25 - 1280x1024@85Hz */ 397 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 398 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, 399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 400 /* 0x26 - 1280x1024@120Hz RB */ 401 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 402 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, 403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 404 /* 0x27 - 1360x768@60Hz */ 405 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 406 1536, 1792, 0, 768, 771, 777, 795, 0, 407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 408 /* 0x28 - 1360x768@120Hz RB */ 409 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 410 1440, 1520, 0, 768, 771, 776, 813, 0, 411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 412 /* 0x51 - 1366x768@60Hz */ 413 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436, 414 1579, 1792, 0, 768, 771, 774, 798, 0, 415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 416 /* 0x56 - 1366x768@60Hz */ 417 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380, 418 1436, 1500, 0, 768, 769, 772, 800, 0, 419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 420 /* 0x29 - 1400x1050@60Hz RB */ 421 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 422 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, 423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 424 /* 0x2a - 1400x1050@60Hz */ 425 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 426 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 428 /* 0x2b - 1400x1050@75Hz */ 429 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 430 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, 431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 432 /* 0x2c - 1400x1050@85Hz */ 433 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 434 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, 435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 436 /* 0x2d - 1400x1050@120Hz RB */ 437 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 438 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, 439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 440 /* 0x2e - 1440x900@60Hz RB */ 441 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 442 1520, 1600, 0, 900, 903, 909, 926, 0, 443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 444 /* 0x2f - 1440x900@60Hz */ 445 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 446 1672, 1904, 0, 900, 903, 909, 934, 0, 447 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 448 /* 0x30 - 1440x900@75Hz */ 449 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 450 1688, 1936, 0, 900, 903, 909, 942, 0, 451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 452 /* 0x31 - 1440x900@85Hz */ 453 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 454 1696, 1952, 0, 900, 903, 909, 948, 0, 455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 456 /* 0x32 - 1440x900@120Hz RB */ 457 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 458 1520, 1600, 0, 900, 903, 909, 953, 0, 459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 460 /* 0x53 - 1600x900@60Hz */ 461 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624, 462 1704, 1800, 0, 900, 901, 904, 1000, 0, 463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 464 /* 0x33 - 1600x1200@60Hz */ 465 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 466 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 468 /* 0x34 - 1600x1200@65Hz */ 469 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 470 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 472 /* 0x35 - 1600x1200@70Hz */ 473 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 474 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 476 /* 0x36 - 1600x1200@75Hz */ 477 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 478 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 480 /* 0x37 - 1600x1200@85Hz */ 481 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 482 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 483 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 484 /* 0x38 - 1600x1200@120Hz RB */ 485 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 486 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, 487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 488 /* 0x39 - 1680x1050@60Hz RB */ 489 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 490 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, 491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 492 /* 0x3a - 1680x1050@60Hz */ 493 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 494 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 496 /* 0x3b - 1680x1050@75Hz */ 497 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 498 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, 499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 500 /* 0x3c - 1680x1050@85Hz */ 501 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 502 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, 503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 504 /* 0x3d - 1680x1050@120Hz RB */ 505 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 506 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, 507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 508 /* 0x3e - 1792x1344@60Hz */ 509 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 510 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 512 /* 0x3f - 1792x1344@75Hz */ 513 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 514 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, 515 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 516 /* 0x40 - 1792x1344@120Hz RB */ 517 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 518 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, 519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 520 /* 0x41 - 1856x1392@60Hz */ 521 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 522 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 523 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 524 /* 0x42 - 1856x1392@75Hz */ 525 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 526 2208, 2560, 0, 1392, 1393, 1396, 1500, 0, 527 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 528 /* 0x43 - 1856x1392@120Hz RB */ 529 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 530 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, 531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 532 /* 0x52 - 1920x1080@60Hz */ 533 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 534 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 536 /* 0x44 - 1920x1200@60Hz RB */ 537 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 538 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, 539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 540 /* 0x45 - 1920x1200@60Hz */ 541 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 542 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 544 /* 0x46 - 1920x1200@75Hz */ 545 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 546 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, 547 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 548 /* 0x47 - 1920x1200@85Hz */ 549 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 550 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, 551 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 552 /* 0x48 - 1920x1200@120Hz RB */ 553 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 554 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, 555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 556 /* 0x49 - 1920x1440@60Hz */ 557 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 558 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 560 /* 0x4a - 1920x1440@75Hz */ 561 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 562 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, 563 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 564 /* 0x4b - 1920x1440@120Hz RB */ 565 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 566 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, 567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 568 /* 0x54 - 2048x1152@60Hz */ 569 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074, 570 2154, 2250, 0, 1152, 1153, 1156, 1200, 0, 571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 572 /* 0x4c - 2560x1600@60Hz RB */ 573 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 574 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, 575 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 576 /* 0x4d - 2560x1600@60Hz */ 577 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 578 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 579 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 580 /* 0x4e - 2560x1600@75Hz */ 581 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 582 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, 583 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 584 /* 0x4f - 2560x1600@85Hz */ 585 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 586 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, 587 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 588 /* 0x50 - 2560x1600@120Hz RB */ 589 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 590 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, 591 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 592 /* 0x57 - 4096x2160@60Hz RB */ 593 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104, 594 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 595 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 596 /* 0x58 - 4096x2160@59.94Hz RB */ 597 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104, 598 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 599 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 600 }; 601 602 /* 603 * These more or less come from the DMT spec. The 720x400 modes are 604 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 605 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode 606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT 607 * mode. 608 * 609 * The DMT modes have been fact-checked; the rest are mild guesses. 610 */ 611 static const struct drm_display_mode edid_est_modes[] = { 612 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 613 968, 1056, 0, 600, 601, 605, 628, 0, 614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ 615 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 616 896, 1024, 0, 600, 601, 603, 625, 0, 617 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ 618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 619 720, 840, 0, 480, 481, 484, 500, 0, 620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ 621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 622 704, 832, 0, 480, 489, 492, 520, 0, 623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ 624 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 625 768, 864, 0, 480, 483, 486, 525, 0, 626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ 627 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 628 752, 800, 0, 480, 490, 492, 525, 0, 629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ 630 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 631 846, 900, 0, 400, 421, 423, 449, 0, 632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ 633 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 634 846, 900, 0, 400, 412, 414, 449, 0, 635 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ 636 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 637 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 638 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ 639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 640 1136, 1312, 0, 768, 769, 772, 800, 0, 641 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ 642 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 643 1184, 1328, 0, 768, 771, 777, 806, 0, 644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ 645 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 646 1184, 1344, 0, 768, 771, 777, 806, 0, 647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ 648 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 649 1208, 1264, 0, 768, 768, 776, 817, 0, 650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ 651 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 652 928, 1152, 0, 624, 625, 628, 667, 0, 653 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ 654 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 655 896, 1056, 0, 600, 601, 604, 625, 0, 656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ 657 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 658 976, 1040, 0, 600, 637, 643, 666, 0, 659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ 660 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 661 1344, 1600, 0, 864, 865, 868, 900, 0, 662 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ 663 }; 664 665 struct minimode { 666 short w; 667 short h; 668 short r; 669 short rb; 670 }; 671 672 static const struct minimode est3_modes[] = { 673 /* byte 6 */ 674 { 640, 350, 85, 0 }, 675 { 640, 400, 85, 0 }, 676 { 720, 400, 85, 0 }, 677 { 640, 480, 85, 0 }, 678 { 848, 480, 60, 0 }, 679 { 800, 600, 85, 0 }, 680 { 1024, 768, 85, 0 }, 681 { 1152, 864, 75, 0 }, 682 /* byte 7 */ 683 { 1280, 768, 60, 1 }, 684 { 1280, 768, 60, 0 }, 685 { 1280, 768, 75, 0 }, 686 { 1280, 768, 85, 0 }, 687 { 1280, 960, 60, 0 }, 688 { 1280, 960, 85, 0 }, 689 { 1280, 1024, 60, 0 }, 690 { 1280, 1024, 85, 0 }, 691 /* byte 8 */ 692 { 1360, 768, 60, 0 }, 693 { 1440, 900, 60, 1 }, 694 { 1440, 900, 60, 0 }, 695 { 1440, 900, 75, 0 }, 696 { 1440, 900, 85, 0 }, 697 { 1400, 1050, 60, 1 }, 698 { 1400, 1050, 60, 0 }, 699 { 1400, 1050, 75, 0 }, 700 /* byte 9 */ 701 { 1400, 1050, 85, 0 }, 702 { 1680, 1050, 60, 1 }, 703 { 1680, 1050, 60, 0 }, 704 { 1680, 1050, 75, 0 }, 705 { 1680, 1050, 85, 0 }, 706 { 1600, 1200, 60, 0 }, 707 { 1600, 1200, 65, 0 }, 708 { 1600, 1200, 70, 0 }, 709 /* byte 10 */ 710 { 1600, 1200, 75, 0 }, 711 { 1600, 1200, 85, 0 }, 712 { 1792, 1344, 60, 0 }, 713 { 1792, 1344, 75, 0 }, 714 { 1856, 1392, 60, 0 }, 715 { 1856, 1392, 75, 0 }, 716 { 1920, 1200, 60, 1 }, 717 { 1920, 1200, 60, 0 }, 718 /* byte 11 */ 719 { 1920, 1200, 75, 0 }, 720 { 1920, 1200, 85, 0 }, 721 { 1920, 1440, 60, 0 }, 722 { 1920, 1440, 75, 0 }, 723 }; 724 725 static const struct minimode extra_modes[] = { 726 { 1024, 576, 60, 0 }, 727 { 1366, 768, 60, 0 }, 728 { 1600, 900, 60, 0 }, 729 { 1680, 945, 60, 0 }, 730 { 1920, 1080, 60, 0 }, 731 { 2048, 1152, 60, 0 }, 732 { 2048, 1536, 60, 0 }, 733 }; 734 735 /* 736 * From CEA/CTA-861 spec. 737 * 738 * Do not access directly, instead always use cea_mode_for_vic(). 739 */ 740 static const struct drm_display_mode edid_cea_modes_1[] = { 741 /* 1 - 640x480@60Hz 4:3 */ 742 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 743 752, 800, 0, 480, 490, 492, 525, 0, 744 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 745 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 746 /* 2 - 720x480@60Hz 4:3 */ 747 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 748 798, 858, 0, 480, 489, 495, 525, 0, 749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 750 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 751 /* 3 - 720x480@60Hz 16:9 */ 752 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 753 798, 858, 0, 480, 489, 495, 525, 0, 754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 755 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 756 /* 4 - 1280x720@60Hz 16:9 */ 757 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 758 1430, 1650, 0, 720, 725, 730, 750, 0, 759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 761 /* 5 - 1920x1080i@60Hz 16:9 */ 762 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 763 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 765 DRM_MODE_FLAG_INTERLACE), 766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 767 /* 6 - 720(1440)x480i@60Hz 4:3 */ 768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 769 801, 858, 0, 480, 488, 494, 525, 0, 770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 773 /* 7 - 720(1440)x480i@60Hz 16:9 */ 774 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 775 801, 858, 0, 480, 488, 494, 525, 0, 776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 777 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 779 /* 8 - 720(1440)x240@60Hz 4:3 */ 780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 781 801, 858, 0, 240, 244, 247, 262, 0, 782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 783 DRM_MODE_FLAG_DBLCLK), 784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 785 /* 9 - 720(1440)x240@60Hz 16:9 */ 786 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 787 801, 858, 0, 240, 244, 247, 262, 0, 788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 789 DRM_MODE_FLAG_DBLCLK), 790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 791 /* 10 - 2880x480i@60Hz 4:3 */ 792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 793 3204, 3432, 0, 480, 488, 494, 525, 0, 794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 795 DRM_MODE_FLAG_INTERLACE), 796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 797 /* 11 - 2880x480i@60Hz 16:9 */ 798 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 799 3204, 3432, 0, 480, 488, 494, 525, 0, 800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 801 DRM_MODE_FLAG_INTERLACE), 802 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 803 /* 12 - 2880x240@60Hz 4:3 */ 804 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 805 3204, 3432, 0, 240, 244, 247, 262, 0, 806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 807 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 808 /* 13 - 2880x240@60Hz 16:9 */ 809 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 810 3204, 3432, 0, 240, 244, 247, 262, 0, 811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 812 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 813 /* 14 - 1440x480@60Hz 4:3 */ 814 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 815 1596, 1716, 0, 480, 489, 495, 525, 0, 816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 817 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 818 /* 15 - 1440x480@60Hz 16:9 */ 819 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 820 1596, 1716, 0, 480, 489, 495, 525, 0, 821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 822 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 823 /* 16 - 1920x1080@60Hz 16:9 */ 824 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 825 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 827 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 828 /* 17 - 720x576@50Hz 4:3 */ 829 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 830 796, 864, 0, 576, 581, 586, 625, 0, 831 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 832 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 833 /* 18 - 720x576@50Hz 16:9 */ 834 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 835 796, 864, 0, 576, 581, 586, 625, 0, 836 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 837 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 838 /* 19 - 1280x720@50Hz 16:9 */ 839 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 840 1760, 1980, 0, 720, 725, 730, 750, 0, 841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 843 /* 20 - 1920x1080i@50Hz 16:9 */ 844 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 845 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 846 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 847 DRM_MODE_FLAG_INTERLACE), 848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 849 /* 21 - 720(1440)x576i@50Hz 4:3 */ 850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 851 795, 864, 0, 576, 580, 586, 625, 0, 852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 855 /* 22 - 720(1440)x576i@50Hz 16:9 */ 856 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 857 795, 864, 0, 576, 580, 586, 625, 0, 858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 859 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 861 /* 23 - 720(1440)x288@50Hz 4:3 */ 862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 863 795, 864, 0, 288, 290, 293, 312, 0, 864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 865 DRM_MODE_FLAG_DBLCLK), 866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 867 /* 24 - 720(1440)x288@50Hz 16:9 */ 868 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 869 795, 864, 0, 288, 290, 293, 312, 0, 870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 871 DRM_MODE_FLAG_DBLCLK), 872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 873 /* 25 - 2880x576i@50Hz 4:3 */ 874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 875 3180, 3456, 0, 576, 580, 586, 625, 0, 876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 877 DRM_MODE_FLAG_INTERLACE), 878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 879 /* 26 - 2880x576i@50Hz 16:9 */ 880 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 881 3180, 3456, 0, 576, 580, 586, 625, 0, 882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 883 DRM_MODE_FLAG_INTERLACE), 884 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 885 /* 27 - 2880x288@50Hz 4:3 */ 886 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 887 3180, 3456, 0, 288, 290, 293, 312, 0, 888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 889 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 890 /* 28 - 2880x288@50Hz 16:9 */ 891 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 892 3180, 3456, 0, 288, 290, 293, 312, 0, 893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 894 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 895 /* 29 - 1440x576@50Hz 4:3 */ 896 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 897 1592, 1728, 0, 576, 581, 586, 625, 0, 898 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 899 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 900 /* 30 - 1440x576@50Hz 16:9 */ 901 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 902 1592, 1728, 0, 576, 581, 586, 625, 0, 903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 904 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 905 /* 31 - 1920x1080@50Hz 16:9 */ 906 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 907 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 908 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 909 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 910 /* 32 - 1920x1080@24Hz 16:9 */ 911 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 912 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 914 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 915 /* 33 - 1920x1080@25Hz 16:9 */ 916 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 917 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 918 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 919 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 920 /* 34 - 1920x1080@30Hz 16:9 */ 921 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 922 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 923 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 924 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 925 /* 35 - 2880x480@60Hz 4:3 */ 926 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 927 3192, 3432, 0, 480, 489, 495, 525, 0, 928 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 929 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 930 /* 36 - 2880x480@60Hz 16:9 */ 931 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 932 3192, 3432, 0, 480, 489, 495, 525, 0, 933 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 934 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 935 /* 37 - 2880x576@50Hz 4:3 */ 936 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 937 3184, 3456, 0, 576, 581, 586, 625, 0, 938 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 939 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 940 /* 38 - 2880x576@50Hz 16:9 */ 941 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 942 3184, 3456, 0, 576, 581, 586, 625, 0, 943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 945 /* 39 - 1920x1080i@50Hz 16:9 */ 946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 947 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, 948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | 949 DRM_MODE_FLAG_INTERLACE), 950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 951 /* 40 - 1920x1080i@100Hz 16:9 */ 952 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 953 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 955 DRM_MODE_FLAG_INTERLACE), 956 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 957 /* 41 - 1280x720@100Hz 16:9 */ 958 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 959 1760, 1980, 0, 720, 725, 730, 750, 0, 960 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 961 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 962 /* 42 - 720x576@100Hz 4:3 */ 963 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 964 796, 864, 0, 576, 581, 586, 625, 0, 965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 966 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 967 /* 43 - 720x576@100Hz 16:9 */ 968 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 969 796, 864, 0, 576, 581, 586, 625, 0, 970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 972 /* 44 - 720(1440)x576i@100Hz 4:3 */ 973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 974 795, 864, 0, 576, 580, 586, 625, 0, 975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 978 /* 45 - 720(1440)x576i@100Hz 16:9 */ 979 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 980 795, 864, 0, 576, 580, 586, 625, 0, 981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 984 /* 46 - 1920x1080i@120Hz 16:9 */ 985 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 986 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 988 DRM_MODE_FLAG_INTERLACE), 989 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 990 /* 47 - 1280x720@120Hz 16:9 */ 991 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 992 1430, 1650, 0, 720, 725, 730, 750, 0, 993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 994 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 995 /* 48 - 720x480@120Hz 4:3 */ 996 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 997 798, 858, 0, 480, 489, 495, 525, 0, 998 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 999 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1000 /* 49 - 720x480@120Hz 16:9 */ 1001 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 1002 798, 858, 0, 480, 489, 495, 525, 0, 1003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1005 /* 50 - 720(1440)x480i@120Hz 4:3 */ 1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 1007 801, 858, 0, 480, 488, 494, 525, 0, 1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1011 /* 51 - 720(1440)x480i@120Hz 16:9 */ 1012 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 1013 801, 858, 0, 480, 488, 494, 525, 0, 1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1015 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1016 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1017 /* 52 - 720x576@200Hz 4:3 */ 1018 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 1019 796, 864, 0, 576, 581, 586, 625, 0, 1020 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1021 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1022 /* 53 - 720x576@200Hz 16:9 */ 1023 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 1024 796, 864, 0, 576, 581, 586, 625, 0, 1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1027 /* 54 - 720(1440)x576i@200Hz 4:3 */ 1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 1029 795, 864, 0, 576, 580, 586, 625, 0, 1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1033 /* 55 - 720(1440)x576i@200Hz 16:9 */ 1034 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 1035 795, 864, 0, 576, 580, 586, 625, 0, 1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1037 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1038 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1039 /* 56 - 720x480@240Hz 4:3 */ 1040 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1041 798, 858, 0, 480, 489, 495, 525, 0, 1042 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1043 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1044 /* 57 - 720x480@240Hz 16:9 */ 1045 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 1046 798, 858, 0, 480, 489, 495, 525, 0, 1047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1049 /* 58 - 720(1440)x480i@240Hz 4:3 */ 1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1051 801, 858, 0, 480, 488, 494, 525, 0, 1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 1055 /* 59 - 720(1440)x480i@240Hz 16:9 */ 1056 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 1057 801, 858, 0, 480, 488, 494, 525, 0, 1058 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 1059 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 1060 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1061 /* 60 - 1280x720@24Hz 16:9 */ 1062 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1063 3080, 3300, 0, 720, 725, 730, 750, 0, 1064 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1065 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1066 /* 61 - 1280x720@25Hz 16:9 */ 1067 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1068 3740, 3960, 0, 720, 725, 730, 750, 0, 1069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1070 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1071 /* 62 - 1280x720@30Hz 16:9 */ 1072 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1073 3080, 3300, 0, 720, 725, 730, 750, 0, 1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1075 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1076 /* 63 - 1920x1080@120Hz 16:9 */ 1077 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1078 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1080 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1081 /* 64 - 1920x1080@100Hz 16:9 */ 1082 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1083 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1084 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1085 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1086 /* 65 - 1280x720@24Hz 64:27 */ 1087 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 1088 3080, 3300, 0, 720, 725, 730, 750, 0, 1089 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1090 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1091 /* 66 - 1280x720@25Hz 64:27 */ 1092 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 1093 3740, 3960, 0, 720, 725, 730, 750, 0, 1094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1095 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1096 /* 67 - 1280x720@30Hz 64:27 */ 1097 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 1098 3080, 3300, 0, 720, 725, 730, 750, 0, 1099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1100 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1101 /* 68 - 1280x720@50Hz 64:27 */ 1102 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1103 1760, 1980, 0, 720, 725, 730, 750, 0, 1104 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1105 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1106 /* 69 - 1280x720@60Hz 64:27 */ 1107 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1108 1430, 1650, 0, 720, 725, 730, 750, 0, 1109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1110 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1111 /* 70 - 1280x720@100Hz 64:27 */ 1112 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1113 1760, 1980, 0, 720, 725, 730, 750, 0, 1114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1115 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1116 /* 71 - 1280x720@120Hz 64:27 */ 1117 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1118 1430, 1650, 0, 720, 725, 730, 750, 0, 1119 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1120 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1121 /* 72 - 1920x1080@24Hz 64:27 */ 1122 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 1123 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1124 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1125 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1126 /* 73 - 1920x1080@25Hz 64:27 */ 1127 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 1128 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1130 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1131 /* 74 - 1920x1080@30Hz 64:27 */ 1132 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 1133 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1135 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1136 /* 75 - 1920x1080@50Hz 64:27 */ 1137 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 1138 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1140 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1141 /* 76 - 1920x1080@60Hz 64:27 */ 1142 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 1143 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1144 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1145 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1146 /* 77 - 1920x1080@100Hz 64:27 */ 1147 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1148 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1150 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1151 /* 78 - 1920x1080@120Hz 64:27 */ 1152 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 1153 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1155 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1156 /* 79 - 1680x720@24Hz 64:27 */ 1157 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040, 1158 3080, 3300, 0, 720, 725, 730, 750, 0, 1159 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1160 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1161 /* 80 - 1680x720@25Hz 64:27 */ 1162 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908, 1163 2948, 3168, 0, 720, 725, 730, 750, 0, 1164 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1165 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1166 /* 81 - 1680x720@30Hz 64:27 */ 1167 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380, 1168 2420, 2640, 0, 720, 725, 730, 750, 0, 1169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1170 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1171 /* 82 - 1680x720@50Hz 64:27 */ 1172 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940, 1173 1980, 2200, 0, 720, 725, 730, 750, 0, 1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1175 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1176 /* 83 - 1680x720@60Hz 64:27 */ 1177 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940, 1178 1980, 2200, 0, 720, 725, 730, 750, 0, 1179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1180 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1181 /* 84 - 1680x720@100Hz 64:27 */ 1182 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740, 1183 1780, 2000, 0, 720, 725, 730, 825, 0, 1184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1185 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1186 /* 85 - 1680x720@120Hz 64:27 */ 1187 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740, 1188 1780, 2000, 0, 720, 725, 730, 825, 0, 1189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1190 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1191 /* 86 - 2560x1080@24Hz 64:27 */ 1192 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558, 1193 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, 1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1195 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1196 /* 87 - 2560x1080@25Hz 64:27 */ 1197 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008, 1198 3052, 3200, 0, 1080, 1084, 1089, 1125, 0, 1199 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1200 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1201 /* 88 - 2560x1080@30Hz 64:27 */ 1202 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328, 1203 3372, 3520, 0, 1080, 1084, 1089, 1125, 0, 1204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1205 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1206 /* 89 - 2560x1080@50Hz 64:27 */ 1207 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108, 1208 3152, 3300, 0, 1080, 1084, 1089, 1125, 0, 1209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1210 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1211 /* 90 - 2560x1080@60Hz 64:27 */ 1212 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808, 1213 2852, 3000, 0, 1080, 1084, 1089, 1100, 0, 1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1215 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1216 /* 91 - 2560x1080@100Hz 64:27 */ 1217 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778, 1218 2822, 2970, 0, 1080, 1084, 1089, 1250, 0, 1219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1220 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1221 /* 92 - 2560x1080@120Hz 64:27 */ 1222 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108, 1223 3152, 3300, 0, 1080, 1084, 1089, 1250, 0, 1224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1225 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1226 /* 93 - 3840x2160@24Hz 16:9 */ 1227 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1228 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1230 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1231 /* 94 - 3840x2160@25Hz 16:9 */ 1232 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1233 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1235 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1236 /* 95 - 3840x2160@30Hz 16:9 */ 1237 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1238 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1240 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1241 /* 96 - 3840x2160@50Hz 16:9 */ 1242 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1243 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1245 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1246 /* 97 - 3840x2160@60Hz 16:9 */ 1247 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1248 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1250 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1251 /* 98 - 4096x2160@24Hz 256:135 */ 1252 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 1253 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1255 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1256 /* 99 - 4096x2160@25Hz 256:135 */ 1257 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064, 1258 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1260 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1261 /* 100 - 4096x2160@30Hz 256:135 */ 1262 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184, 1263 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1265 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1266 /* 101 - 4096x2160@50Hz 256:135 */ 1267 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064, 1268 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, 1269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1270 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1271 /* 102 - 4096x2160@60Hz 256:135 */ 1272 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184, 1273 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1275 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1276 /* 103 - 3840x2160@24Hz 64:27 */ 1277 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 1278 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1280 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1281 /* 104 - 3840x2160@25Hz 64:27 */ 1282 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 1283 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1285 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1286 /* 105 - 3840x2160@30Hz 64:27 */ 1287 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 1288 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1290 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1291 /* 106 - 3840x2160@50Hz 64:27 */ 1292 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 1293 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1295 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1296 /* 107 - 3840x2160@60Hz 64:27 */ 1297 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 1298 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1300 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1301 /* 108 - 1280x720@48Hz 16:9 */ 1302 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 1303 2280, 2500, 0, 720, 725, 730, 750, 0, 1304 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1305 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1306 /* 109 - 1280x720@48Hz 64:27 */ 1307 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 1308 2280, 2500, 0, 720, 725, 730, 750, 0, 1309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1310 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1311 /* 110 - 1680x720@48Hz 64:27 */ 1312 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490, 1313 2530, 2750, 0, 720, 725, 730, 750, 0, 1314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1315 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1316 /* 111 - 1920x1080@48Hz 16:9 */ 1317 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 1318 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1320 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1321 /* 112 - 1920x1080@48Hz 64:27 */ 1322 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 1323 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 1324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1325 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1326 /* 113 - 2560x1080@48Hz 64:27 */ 1327 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558, 1328 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, 1329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1330 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1331 /* 114 - 3840x2160@48Hz 16:9 */ 1332 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 1333 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1335 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1336 /* 115 - 4096x2160@48Hz 256:135 */ 1337 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116, 1338 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1340 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1341 /* 116 - 3840x2160@48Hz 64:27 */ 1342 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 1343 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, 1344 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1345 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1346 /* 117 - 3840x2160@100Hz 16:9 */ 1347 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 1348 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1350 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1351 /* 118 - 3840x2160@120Hz 16:9 */ 1352 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 1353 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1355 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1356 /* 119 - 3840x2160@100Hz 64:27 */ 1357 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 1358 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1360 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1361 /* 120 - 3840x2160@120Hz 64:27 */ 1362 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 1363 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, 1364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1365 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1366 /* 121 - 5120x2160@24Hz 64:27 */ 1367 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116, 1368 7204, 7500, 0, 2160, 2168, 2178, 2200, 0, 1369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1370 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1371 /* 122 - 5120x2160@25Hz 64:27 */ 1372 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816, 1373 6904, 7200, 0, 2160, 2168, 2178, 2200, 0, 1374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1375 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1376 /* 123 - 5120x2160@30Hz 64:27 */ 1377 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784, 1378 5872, 6000, 0, 2160, 2168, 2178, 2200, 0, 1379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1380 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1381 /* 124 - 5120x2160@48Hz 64:27 */ 1382 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866, 1383 5954, 6250, 0, 2160, 2168, 2178, 2475, 0, 1384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1385 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1386 /* 125 - 5120x2160@50Hz 64:27 */ 1387 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216, 1388 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, 1389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1390 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1391 /* 126 - 5120x2160@60Hz 64:27 */ 1392 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284, 1393 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, 1394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1395 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1396 /* 127 - 5120x2160@100Hz 64:27 */ 1397 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216, 1398 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, 1399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1400 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1401 }; 1402 1403 /* 1404 * From CEA/CTA-861 spec. 1405 * 1406 * Do not access directly, instead always use cea_mode_for_vic(). 1407 */ 1408 static const struct drm_display_mode edid_cea_modes_193[] = { 1409 /* 193 - 5120x2160@120Hz 64:27 */ 1410 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284, 1411 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, 1412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1413 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1414 /* 194 - 7680x4320@24Hz 16:9 */ 1415 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 1416 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1418 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1419 /* 195 - 7680x4320@25Hz 16:9 */ 1420 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 1421 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1422 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1423 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1424 /* 196 - 7680x4320@30Hz 16:9 */ 1425 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 1426 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1428 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1429 /* 197 - 7680x4320@48Hz 16:9 */ 1430 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 1431 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1433 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1434 /* 198 - 7680x4320@50Hz 16:9 */ 1435 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 1436 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1438 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1439 /* 199 - 7680x4320@60Hz 16:9 */ 1440 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 1441 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1443 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1444 /* 200 - 7680x4320@100Hz 16:9 */ 1445 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 1446 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, 1447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1448 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1449 /* 201 - 7680x4320@120Hz 16:9 */ 1450 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 1451 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, 1452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1453 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1454 /* 202 - 7680x4320@24Hz 64:27 */ 1455 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 1456 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1458 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1459 /* 203 - 7680x4320@25Hz 64:27 */ 1460 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 1461 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1462 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1463 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1464 /* 204 - 7680x4320@30Hz 64:27 */ 1465 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 1466 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1468 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1469 /* 205 - 7680x4320@48Hz 64:27 */ 1470 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 1471 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, 1472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1473 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1474 /* 206 - 7680x4320@50Hz 64:27 */ 1475 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 1476 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, 1477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1478 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1479 /* 207 - 7680x4320@60Hz 64:27 */ 1480 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 1481 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, 1482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1483 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1484 /* 208 - 7680x4320@100Hz 64:27 */ 1485 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 1486 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, 1487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1488 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1489 /* 209 - 7680x4320@120Hz 64:27 */ 1490 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 1491 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, 1492 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1493 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1494 /* 210 - 10240x4320@24Hz 64:27 */ 1495 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732, 1496 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, 1497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1498 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1499 /* 211 - 10240x4320@25Hz 64:27 */ 1500 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732, 1501 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, 1502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1503 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1504 /* 212 - 10240x4320@30Hz 64:27 */ 1505 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528, 1506 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1508 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1509 /* 213 - 10240x4320@48Hz 64:27 */ 1510 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732, 1511 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, 1512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1513 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1514 /* 214 - 10240x4320@50Hz 64:27 */ 1515 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732, 1516 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, 1517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1518 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1519 /* 215 - 10240x4320@60Hz 64:27 */ 1520 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528, 1521 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1522 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1523 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1524 /* 216 - 10240x4320@100Hz 64:27 */ 1525 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432, 1526 12608, 13200, 0, 4320, 4336, 4356, 4500, 0, 1527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1528 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1529 /* 217 - 10240x4320@120Hz 64:27 */ 1530 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528, 1531 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, 1532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1533 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, 1534 /* 218 - 4096x2160@100Hz 256:135 */ 1535 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896, 1536 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, 1537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1538 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1539 /* 219 - 4096x2160@120Hz 256:135 */ 1540 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184, 1541 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, 1542 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1543 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1544 }; 1545 1546 /* 1547 * HDMI 1.4 4k modes. Index using the VIC. 1548 */ 1549 static const struct drm_display_mode edid_4k_modes[] = { 1550 /* 0 - dummy, VICs start at 1 */ 1551 { }, 1552 /* 1 - 3840x2160@30Hz */ 1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1554 3840, 4016, 4104, 4400, 0, 1555 2160, 2168, 2178, 2250, 0, 1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1558 /* 2 - 3840x2160@25Hz */ 1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1560 3840, 4896, 4984, 5280, 0, 1561 2160, 2168, 2178, 2250, 0, 1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1564 /* 3 - 3840x2160@24Hz */ 1565 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1566 3840, 5116, 5204, 5500, 0, 1567 2160, 2168, 2178, 2250, 0, 1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1570 /* 4 - 4096x2160@24Hz (SMPTE) */ 1571 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 1572 4096, 5116, 5204, 5500, 0, 1573 2160, 2168, 2178, 2250, 0, 1574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1575 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, 1576 }; 1577 1578 /*** DDC fetch and block validation ***/ 1579 1580 /* 1581 * The opaque EDID type, internal to drm_edid.c. 1582 */ 1583 struct drm_edid { 1584 /* Size allocated for edid */ 1585 size_t size; 1586 const struct edid *edid; 1587 }; 1588 1589 static int edid_hfeeodb_extension_block_count(const struct edid *edid); 1590 1591 static int edid_hfeeodb_block_count(const struct edid *edid) 1592 { 1593 int eeodb = edid_hfeeodb_extension_block_count(edid); 1594 1595 return eeodb ? eeodb + 1 : 0; 1596 } 1597 1598 static int edid_extension_block_count(const struct edid *edid) 1599 { 1600 return edid->extensions; 1601 } 1602 1603 static int edid_block_count(const struct edid *edid) 1604 { 1605 return edid_extension_block_count(edid) + 1; 1606 } 1607 1608 static int edid_size_by_blocks(int num_blocks) 1609 { 1610 return num_blocks * EDID_LENGTH; 1611 } 1612 1613 static int edid_size(const struct edid *edid) 1614 { 1615 return edid_size_by_blocks(edid_block_count(edid)); 1616 } 1617 1618 static const void *edid_block_data(const struct edid *edid, int index) 1619 { 1620 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH); 1621 1622 return edid + index; 1623 } 1624 1625 static const void *edid_extension_block_data(const struct edid *edid, int index) 1626 { 1627 return edid_block_data(edid, index + 1); 1628 } 1629 1630 /* EDID block count indicated in EDID, may exceed allocated size */ 1631 static int __drm_edid_block_count(const struct drm_edid *drm_edid) 1632 { 1633 int num_blocks; 1634 1635 /* Starting point */ 1636 num_blocks = edid_block_count(drm_edid->edid); 1637 1638 /* HF-EEODB override */ 1639 if (drm_edid->size >= edid_size_by_blocks(2)) { 1640 int eeodb; 1641 1642 /* 1643 * Note: HF-EEODB may specify a smaller extension count than the 1644 * regular one. Unlike in buffer allocation, here we can use it. 1645 */ 1646 eeodb = edid_hfeeodb_block_count(drm_edid->edid); 1647 if (eeodb) 1648 num_blocks = eeodb; 1649 } 1650 1651 return num_blocks; 1652 } 1653 1654 /* EDID block count, limited by allocated size */ 1655 static int drm_edid_block_count(const struct drm_edid *drm_edid) 1656 { 1657 /* Limit by allocated size */ 1658 return min(__drm_edid_block_count(drm_edid), 1659 (int)drm_edid->size / EDID_LENGTH); 1660 } 1661 1662 /* EDID extension block count, limited by allocated size */ 1663 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid) 1664 { 1665 return drm_edid_block_count(drm_edid) - 1; 1666 } 1667 1668 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index) 1669 { 1670 return edid_block_data(drm_edid->edid, index); 1671 } 1672 1673 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid, 1674 int index) 1675 { 1676 return edid_extension_block_data(drm_edid->edid, index); 1677 } 1678 1679 /* 1680 * Initializer helper for legacy interfaces, where we have no choice but to 1681 * trust edid size. Not for general purpose use. 1682 */ 1683 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid, 1684 const struct edid *edid) 1685 { 1686 if (!edid) 1687 return NULL; 1688 1689 memset(drm_edid, 0, sizeof(*drm_edid)); 1690 1691 drm_edid->edid = edid; 1692 drm_edid->size = edid_size(edid); 1693 1694 return drm_edid; 1695 } 1696 1697 /* 1698 * EDID base and extension block iterator. 1699 * 1700 * struct drm_edid_iter iter; 1701 * const u8 *block; 1702 * 1703 * drm_edid_iter_begin(drm_edid, &iter); 1704 * drm_edid_iter_for_each(block, &iter) { 1705 * // do stuff with block 1706 * } 1707 * drm_edid_iter_end(&iter); 1708 */ 1709 struct drm_edid_iter { 1710 const struct drm_edid *drm_edid; 1711 1712 /* Current block index. */ 1713 int index; 1714 }; 1715 1716 static void drm_edid_iter_begin(const struct drm_edid *drm_edid, 1717 struct drm_edid_iter *iter) 1718 { 1719 memset(iter, 0, sizeof(*iter)); 1720 1721 iter->drm_edid = drm_edid; 1722 } 1723 1724 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter) 1725 { 1726 const void *block = NULL; 1727 1728 if (!iter->drm_edid) 1729 return NULL; 1730 1731 if (iter->index < drm_edid_block_count(iter->drm_edid)) 1732 block = drm_edid_block_data(iter->drm_edid, iter->index++); 1733 1734 return block; 1735 } 1736 1737 #define drm_edid_iter_for_each(__block, __iter) \ 1738 while (((__block) = __drm_edid_iter_next(__iter))) 1739 1740 static void drm_edid_iter_end(struct drm_edid_iter *iter) 1741 { 1742 memset(iter, 0, sizeof(*iter)); 1743 } 1744 1745 static const u8 edid_header[] = { 1746 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 1747 }; 1748 1749 static void edid_header_fix(void *edid) 1750 { 1751 memcpy(edid, edid_header, sizeof(edid_header)); 1752 } 1753 1754 /** 1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block 1756 * @_edid: pointer to raw base EDID block 1757 * 1758 * Sanity check the header of the base EDID block. 1759 * 1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong. 1761 */ 1762 int drm_edid_header_is_valid(const void *_edid) 1763 { 1764 const struct edid *edid = _edid; 1765 int i, score = 0; 1766 1767 for (i = 0; i < sizeof(edid_header); i++) { 1768 if (edid->header[i] == edid_header[i]) 1769 score++; 1770 } 1771 1772 return score; 1773 } 1774 EXPORT_SYMBOL(drm_edid_header_is_valid); 1775 1776 static int edid_fixup __read_mostly = 6; 1777 module_param_named(edid_fixup, edid_fixup, int, 0400); 1778 MODULE_PARM_DESC(edid_fixup, 1779 "Minimum number of valid EDID header bytes (0-8, default 6)"); 1780 1781 static int edid_block_compute_checksum(const void *_block) 1782 { 1783 const u8 *block = _block; 1784 int i; 1785 u8 csum = 0, crc = 0; 1786 1787 for (i = 0; i < EDID_LENGTH - 1; i++) 1788 csum += block[i]; 1789 1790 crc = 0x100 - csum; 1791 1792 return crc; 1793 } 1794 1795 static int edid_block_get_checksum(const void *_block) 1796 { 1797 const struct edid *block = _block; 1798 1799 return block->checksum; 1800 } 1801 1802 static int edid_block_tag(const void *_block) 1803 { 1804 const u8 *block = _block; 1805 1806 return block[0]; 1807 } 1808 1809 static bool edid_block_is_zero(const void *edid) 1810 { 1811 return !memchr_inv(edid, 0, EDID_LENGTH); 1812 } 1813 1814 /** 1815 * drm_edid_are_equal - compare two edid blobs. 1816 * @edid1: pointer to first blob 1817 * @edid2: pointer to second blob 1818 * This helper can be used during probing to determine if 1819 * edid had changed. 1820 */ 1821 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2) 1822 { 1823 int edid1_len, edid2_len; 1824 bool edid1_present = edid1 != NULL; 1825 bool edid2_present = edid2 != NULL; 1826 1827 if (edid1_present != edid2_present) 1828 return false; 1829 1830 if (edid1) { 1831 edid1_len = edid_size(edid1); 1832 edid2_len = edid_size(edid2); 1833 1834 if (edid1_len != edid2_len) 1835 return false; 1836 1837 if (memcmp(edid1, edid2, edid1_len)) 1838 return false; 1839 } 1840 1841 return true; 1842 } 1843 EXPORT_SYMBOL(drm_edid_are_equal); 1844 1845 enum edid_block_status { 1846 EDID_BLOCK_OK = 0, 1847 EDID_BLOCK_READ_FAIL, 1848 EDID_BLOCK_NULL, 1849 EDID_BLOCK_ZERO, 1850 EDID_BLOCK_HEADER_CORRUPT, 1851 EDID_BLOCK_HEADER_REPAIR, 1852 EDID_BLOCK_HEADER_FIXED, 1853 EDID_BLOCK_CHECKSUM, 1854 EDID_BLOCK_VERSION, 1855 }; 1856 1857 static enum edid_block_status edid_block_check(const void *_block, 1858 bool is_base_block) 1859 { 1860 const struct edid *block = _block; 1861 1862 if (!block) 1863 return EDID_BLOCK_NULL; 1864 1865 if (is_base_block) { 1866 int score = drm_edid_header_is_valid(block); 1867 1868 if (score < clamp(edid_fixup, 0, 8)) { 1869 if (edid_block_is_zero(block)) 1870 return EDID_BLOCK_ZERO; 1871 else 1872 return EDID_BLOCK_HEADER_CORRUPT; 1873 } 1874 1875 if (score < 8) 1876 return EDID_BLOCK_HEADER_REPAIR; 1877 } 1878 1879 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) { 1880 if (edid_block_is_zero(block)) 1881 return EDID_BLOCK_ZERO; 1882 else 1883 return EDID_BLOCK_CHECKSUM; 1884 } 1885 1886 if (is_base_block) { 1887 if (block->version != 1) 1888 return EDID_BLOCK_VERSION; 1889 } 1890 1891 return EDID_BLOCK_OK; 1892 } 1893 1894 static bool edid_block_status_valid(enum edid_block_status status, int tag) 1895 { 1896 return status == EDID_BLOCK_OK || 1897 status == EDID_BLOCK_HEADER_FIXED || 1898 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT); 1899 } 1900 1901 static bool edid_block_valid(const void *block, bool base) 1902 { 1903 return edid_block_status_valid(edid_block_check(block, base), 1904 edid_block_tag(block)); 1905 } 1906 1907 static void edid_block_status_print(enum edid_block_status status, 1908 const struct edid *block, 1909 int block_num) 1910 { 1911 switch (status) { 1912 case EDID_BLOCK_OK: 1913 break; 1914 case EDID_BLOCK_READ_FAIL: 1915 pr_debug("EDID block %d read failed\n", block_num); 1916 break; 1917 case EDID_BLOCK_NULL: 1918 pr_debug("EDID block %d pointer is NULL\n", block_num); 1919 break; 1920 case EDID_BLOCK_ZERO: 1921 pr_notice("EDID block %d is all zeroes\n", block_num); 1922 break; 1923 case EDID_BLOCK_HEADER_CORRUPT: 1924 pr_notice("EDID has corrupt header\n"); 1925 break; 1926 case EDID_BLOCK_HEADER_REPAIR: 1927 pr_debug("EDID corrupt header needs repair\n"); 1928 break; 1929 case EDID_BLOCK_HEADER_FIXED: 1930 pr_debug("EDID corrupt header fixed\n"); 1931 break; 1932 case EDID_BLOCK_CHECKSUM: 1933 if (edid_block_status_valid(status, edid_block_tag(block))) { 1934 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n", 1935 block_num, edid_block_tag(block), 1936 edid_block_compute_checksum(block)); 1937 } else { 1938 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n", 1939 block_num, edid_block_tag(block), 1940 edid_block_compute_checksum(block)); 1941 } 1942 break; 1943 case EDID_BLOCK_VERSION: 1944 pr_notice("EDID has major version %d, instead of 1\n", 1945 block->version); 1946 break; 1947 default: 1948 WARN(1, "EDID block %d unknown edid block status code %d\n", 1949 block_num, status); 1950 break; 1951 } 1952 } 1953 1954 static void edid_block_dump(const char *level, const void *block, int block_num) 1955 { 1956 enum edid_block_status status; 1957 char prefix[20]; 1958 1959 status = edid_block_check(block, block_num == 0); 1960 if (status == EDID_BLOCK_ZERO) 1961 sprintf(prefix, "\t[%02x] ZERO ", block_num); 1962 else if (!edid_block_status_valid(status, edid_block_tag(block))) 1963 sprintf(prefix, "\t[%02x] BAD ", block_num); 1964 else 1965 sprintf(prefix, "\t[%02x] GOOD ", block_num); 1966 1967 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1, 1968 block, EDID_LENGTH, false); 1969 } 1970 1971 /** 1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension) 1973 * @_block: pointer to raw EDID block 1974 * @block_num: type of block to validate (0 for base, extension otherwise) 1975 * @print_bad_edid: if true, dump bad EDID blocks to the console 1976 * @edid_corrupt: if true, the header or checksum is invalid 1977 * 1978 * Validate a base or extension EDID block and optionally dump bad blocks to 1979 * the console. 1980 * 1981 * Return: True if the block is valid, false otherwise. 1982 */ 1983 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid, 1984 bool *edid_corrupt) 1985 { 1986 struct edid *block = (struct edid *)_block; 1987 enum edid_block_status status; 1988 bool is_base_block = block_num == 0; 1989 bool valid; 1990 1991 if (WARN_ON(!block)) 1992 return false; 1993 1994 status = edid_block_check(block, is_base_block); 1995 if (status == EDID_BLOCK_HEADER_REPAIR) { 1996 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n"); 1997 edid_header_fix(block); 1998 1999 /* Retry with fixed header, update status if that worked. */ 2000 status = edid_block_check(block, is_base_block); 2001 if (status == EDID_BLOCK_OK) 2002 status = EDID_BLOCK_HEADER_FIXED; 2003 } 2004 2005 if (edid_corrupt) { 2006 /* 2007 * Unknown major version isn't corrupt but we can't use it. Only 2008 * the base block can reset edid_corrupt to false. 2009 */ 2010 if (is_base_block && 2011 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)) 2012 *edid_corrupt = false; 2013 else if (status != EDID_BLOCK_OK) 2014 *edid_corrupt = true; 2015 } 2016 2017 edid_block_status_print(status, block, block_num); 2018 2019 /* Determine whether we can use this block with this status. */ 2020 valid = edid_block_status_valid(status, edid_block_tag(block)); 2021 2022 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) { 2023 pr_notice("Raw EDID:\n"); 2024 edid_block_dump(KERN_NOTICE, block, block_num); 2025 } 2026 2027 return valid; 2028 } 2029 EXPORT_SYMBOL(drm_edid_block_valid); 2030 2031 /** 2032 * drm_edid_is_valid - sanity check EDID data 2033 * @edid: EDID data 2034 * 2035 * Sanity-check an entire EDID record (including extensions) 2036 * 2037 * Return: True if the EDID data is valid, false otherwise. 2038 */ 2039 bool drm_edid_is_valid(struct edid *edid) 2040 { 2041 int i; 2042 2043 if (!edid) 2044 return false; 2045 2046 for (i = 0; i < edid_block_count(edid); i++) { 2047 void *block = (void *)edid_block_data(edid, i); 2048 2049 if (!drm_edid_block_valid(block, i, true, NULL)) 2050 return false; 2051 } 2052 2053 return true; 2054 } 2055 EXPORT_SYMBOL(drm_edid_is_valid); 2056 2057 /** 2058 * drm_edid_valid - sanity check EDID data 2059 * @drm_edid: EDID data 2060 * 2061 * Sanity check an EDID. Cross check block count against allocated size and 2062 * checksum the blocks. 2063 * 2064 * Return: True if the EDID data is valid, false otherwise. 2065 */ 2066 bool drm_edid_valid(const struct drm_edid *drm_edid) 2067 { 2068 int i; 2069 2070 if (!drm_edid) 2071 return false; 2072 2073 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size) 2074 return false; 2075 2076 for (i = 0; i < drm_edid_block_count(drm_edid); i++) { 2077 const void *block = drm_edid_block_data(drm_edid, i); 2078 2079 if (!edid_block_valid(block, i == 0)) 2080 return false; 2081 } 2082 2083 return true; 2084 } 2085 EXPORT_SYMBOL(drm_edid_valid); 2086 2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid, 2088 size_t *alloc_size) 2089 { 2090 struct edid *new; 2091 int i, valid_blocks = 0; 2092 2093 /* 2094 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert 2095 * back to regular extension count here. We don't want to start 2096 * modifying the HF-EEODB extension too. 2097 */ 2098 for (i = 0; i < edid_block_count(edid); i++) { 2099 const void *src_block = edid_block_data(edid, i); 2100 2101 if (edid_block_valid(src_block, i == 0)) { 2102 void *dst_block = (void *)edid_block_data(edid, valid_blocks); 2103 2104 memmove(dst_block, src_block, EDID_LENGTH); 2105 valid_blocks++; 2106 } 2107 } 2108 2109 /* We already trusted the base block to be valid here... */ 2110 if (WARN_ON(!valid_blocks)) { 2111 kfree(edid); 2112 return NULL; 2113 } 2114 2115 edid->extensions = valid_blocks - 1; 2116 edid->checksum = edid_block_compute_checksum(edid); 2117 2118 *alloc_size = edid_size_by_blocks(valid_blocks); 2119 2120 new = krealloc(edid, *alloc_size, GFP_KERNEL); 2121 if (!new) 2122 kfree(edid); 2123 2124 return new; 2125 } 2126 2127 #define DDC_SEGMENT_ADDR 0x30 2128 /** 2129 * drm_do_probe_ddc_edid() - get EDID information via I2C 2130 * @data: I2C device adapter 2131 * @buf: EDID data buffer to be filled 2132 * @block: 128 byte EDID block to start fetching from 2133 * @len: EDID data buffer length to fetch 2134 * 2135 * Try to fetch EDID information by calling I2C driver functions. 2136 * 2137 * Return: 0 on success or -1 on failure. 2138 */ 2139 static int 2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len) 2141 { 2142 struct i2c_adapter *adapter = data; 2143 unsigned char start = block * EDID_LENGTH; 2144 unsigned char segment = block >> 1; 2145 unsigned char xfers = segment ? 3 : 2; 2146 int ret, retries = 5; 2147 2148 /* 2149 * The core I2C driver will automatically retry the transfer if the 2150 * adapter reports EAGAIN. However, we find that bit-banging transfers 2151 * are susceptible to errors under a heavily loaded machine and 2152 * generate spurious NAKs and timeouts. Retrying the transfer 2153 * of the individual block a few times seems to overcome this. 2154 */ 2155 do { 2156 struct i2c_msg msgs[] = { 2157 { 2158 .addr = DDC_SEGMENT_ADDR, 2159 .flags = 0, 2160 .len = 1, 2161 .buf = &segment, 2162 }, { 2163 .addr = DDC_ADDR, 2164 .flags = 0, 2165 .len = 1, 2166 .buf = &start, 2167 }, { 2168 .addr = DDC_ADDR, 2169 .flags = I2C_M_RD, 2170 .len = len, 2171 .buf = buf, 2172 } 2173 }; 2174 2175 /* 2176 * Avoid sending the segment addr to not upset non-compliant 2177 * DDC monitors. 2178 */ 2179 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); 2180 2181 if (ret == -ENXIO) { 2182 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", 2183 adapter->name); 2184 break; 2185 } 2186 } while (ret != xfers && --retries); 2187 2188 return ret == xfers ? 0 : -1; 2189 } 2190 2191 static void connector_bad_edid(struct drm_connector *connector, 2192 const struct edid *edid, int num_blocks) 2193 { 2194 int i; 2195 u8 last_block; 2196 2197 /* 2198 * 0x7e in the EDID is the number of extension blocks. The EDID 2199 * is 1 (base block) + num_ext_blocks big. That means we can think 2200 * of 0x7e in the EDID of the _index_ of the last block in the 2201 * combined chunk of memory. 2202 */ 2203 last_block = edid->extensions; 2204 2205 /* Calculate real checksum for the last edid extension block data */ 2206 if (last_block < num_blocks) 2207 connector->real_edid_checksum = 2208 edid_block_compute_checksum(edid + last_block); 2209 2210 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS)) 2211 return; 2212 2213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n", 2214 connector->base.id, connector->name); 2215 for (i = 0; i < num_blocks; i++) 2216 edid_block_dump(KERN_DEBUG, edid + i, i); 2217 } 2218 2219 /* Get override or firmware EDID */ 2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector) 2221 { 2222 const struct drm_edid *override = NULL; 2223 2224 mutex_lock(&connector->edid_override_mutex); 2225 2226 if (connector->edid_override) 2227 override = drm_edid_dup(connector->edid_override); 2228 2229 mutex_unlock(&connector->edid_override_mutex); 2230 2231 if (!override) 2232 override = drm_edid_load_firmware(connector); 2233 2234 return IS_ERR(override) ? NULL : override; 2235 } 2236 2237 /* For debugfs edid_override implementation */ 2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m) 2239 { 2240 const struct drm_edid *drm_edid; 2241 2242 mutex_lock(&connector->edid_override_mutex); 2243 2244 drm_edid = connector->edid_override; 2245 if (drm_edid) 2246 seq_write(m, drm_edid->edid, drm_edid->size); 2247 2248 mutex_unlock(&connector->edid_override_mutex); 2249 2250 return 0; 2251 } 2252 2253 /* For debugfs edid_override implementation */ 2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid, 2255 size_t size) 2256 { 2257 const struct drm_edid *drm_edid; 2258 2259 drm_edid = drm_edid_alloc(edid, size); 2260 if (!drm_edid_valid(drm_edid)) { 2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n", 2262 connector->base.id, connector->name); 2263 drm_edid_free(drm_edid); 2264 return -EINVAL; 2265 } 2266 2267 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n", 2268 connector->base.id, connector->name); 2269 2270 mutex_lock(&connector->edid_override_mutex); 2271 2272 drm_edid_free(connector->edid_override); 2273 connector->edid_override = drm_edid; 2274 2275 mutex_unlock(&connector->edid_override_mutex); 2276 2277 return 0; 2278 } 2279 2280 /* For debugfs edid_override implementation */ 2281 int drm_edid_override_reset(struct drm_connector *connector) 2282 { 2283 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n", 2284 connector->base.id, connector->name); 2285 2286 mutex_lock(&connector->edid_override_mutex); 2287 2288 drm_edid_free(connector->edid_override); 2289 connector->edid_override = NULL; 2290 2291 mutex_unlock(&connector->edid_override_mutex); 2292 2293 return 0; 2294 } 2295 2296 /** 2297 * drm_edid_override_connector_update - add modes from override/firmware EDID 2298 * @connector: connector we're probing 2299 * 2300 * Add modes from the override/firmware EDID, if available. Only to be used from 2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe 2302 * failed during drm_get_edid() and caused the override/firmware EDID to be 2303 * skipped. 2304 * 2305 * Return: The number of modes added or 0 if we couldn't find any. 2306 */ 2307 int drm_edid_override_connector_update(struct drm_connector *connector) 2308 { 2309 const struct drm_edid *override; 2310 int num_modes = 0; 2311 2312 override = drm_edid_override_get(connector); 2313 if (override) { 2314 if (drm_edid_connector_update(connector, override) == 0) 2315 num_modes = drm_edid_connector_add_modes(connector); 2316 2317 drm_edid_free(override); 2318 2319 drm_dbg_kms(connector->dev, 2320 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n", 2321 connector->base.id, connector->name, num_modes); 2322 } 2323 2324 return num_modes; 2325 } 2326 EXPORT_SYMBOL(drm_edid_override_connector_update); 2327 2328 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len); 2329 2330 static enum edid_block_status edid_block_read(void *block, unsigned int block_num, 2331 read_block_fn read_block, 2332 void *context) 2333 { 2334 enum edid_block_status status; 2335 bool is_base_block = block_num == 0; 2336 int try; 2337 2338 for (try = 0; try < 4; try++) { 2339 if (read_block(context, block, block_num, EDID_LENGTH)) 2340 return EDID_BLOCK_READ_FAIL; 2341 2342 status = edid_block_check(block, is_base_block); 2343 if (status == EDID_BLOCK_HEADER_REPAIR) { 2344 edid_header_fix(block); 2345 2346 /* Retry with fixed header, update status if that worked. */ 2347 status = edid_block_check(block, is_base_block); 2348 if (status == EDID_BLOCK_OK) 2349 status = EDID_BLOCK_HEADER_FIXED; 2350 } 2351 2352 if (edid_block_status_valid(status, edid_block_tag(block))) 2353 break; 2354 2355 /* Fail early for unrepairable base block all zeros. */ 2356 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO) 2357 break; 2358 } 2359 2360 return status; 2361 } 2362 2363 static struct edid *_drm_do_get_edid(struct drm_connector *connector, 2364 read_block_fn read_block, void *context, 2365 size_t *size) 2366 { 2367 enum edid_block_status status; 2368 int i, num_blocks, invalid_blocks = 0; 2369 const struct drm_edid *override; 2370 struct edid *edid, *new; 2371 size_t alloc_size = EDID_LENGTH; 2372 2373 override = drm_edid_override_get(connector); 2374 if (override) { 2375 alloc_size = override->size; 2376 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL); 2377 drm_edid_free(override); 2378 if (!edid) 2379 return NULL; 2380 goto ok; 2381 } 2382 2383 edid = kmalloc(alloc_size, GFP_KERNEL); 2384 if (!edid) 2385 return NULL; 2386 2387 status = edid_block_read(edid, 0, read_block, context); 2388 2389 edid_block_status_print(status, edid, 0); 2390 2391 if (status == EDID_BLOCK_READ_FAIL) 2392 goto fail; 2393 2394 /* FIXME: Clarify what a corrupt EDID actually means. */ 2395 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION) 2396 connector->edid_corrupt = false; 2397 else 2398 connector->edid_corrupt = true; 2399 2400 if (!edid_block_status_valid(status, edid_block_tag(edid))) { 2401 if (status == EDID_BLOCK_ZERO) 2402 connector->null_edid_counter++; 2403 2404 connector_bad_edid(connector, edid, 1); 2405 goto fail; 2406 } 2407 2408 if (!edid_extension_block_count(edid)) 2409 goto ok; 2410 2411 alloc_size = edid_size(edid); 2412 new = krealloc(edid, alloc_size, GFP_KERNEL); 2413 if (!new) 2414 goto fail; 2415 edid = new; 2416 2417 num_blocks = edid_block_count(edid); 2418 for (i = 1; i < num_blocks; i++) { 2419 void *block = (void *)edid_block_data(edid, i); 2420 2421 status = edid_block_read(block, i, read_block, context); 2422 2423 edid_block_status_print(status, block, i); 2424 2425 if (!edid_block_status_valid(status, edid_block_tag(block))) { 2426 if (status == EDID_BLOCK_READ_FAIL) 2427 goto fail; 2428 invalid_blocks++; 2429 } else if (i == 1) { 2430 /* 2431 * If the first EDID extension is a CTA extension, and 2432 * the first Data Block is HF-EEODB, override the 2433 * extension block count. 2434 * 2435 * Note: HF-EEODB could specify a smaller extension 2436 * count too, but we can't risk allocating a smaller 2437 * amount. 2438 */ 2439 int eeodb = edid_hfeeodb_block_count(edid); 2440 2441 if (eeodb > num_blocks) { 2442 num_blocks = eeodb; 2443 alloc_size = edid_size_by_blocks(num_blocks); 2444 new = krealloc(edid, alloc_size, GFP_KERNEL); 2445 if (!new) 2446 goto fail; 2447 edid = new; 2448 } 2449 } 2450 } 2451 2452 if (invalid_blocks) { 2453 connector_bad_edid(connector, edid, num_blocks); 2454 2455 edid = edid_filter_invalid_blocks(edid, &alloc_size); 2456 } 2457 2458 ok: 2459 if (size) 2460 *size = alloc_size; 2461 2462 return edid; 2463 2464 fail: 2465 kfree(edid); 2466 return NULL; 2467 } 2468 2469 /** 2470 * drm_do_get_edid - get EDID data using a custom EDID block read function 2471 * @connector: connector we're probing 2472 * @read_block: EDID block read function 2473 * @context: private data passed to the block read function 2474 * 2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that 2476 * exposes a different interface to read EDID blocks this function can be used 2477 * to get EDID data using a custom block read function. 2478 * 2479 * As in the general case the DDC bus is accessible by the kernel at the I2C 2480 * level, drivers must make all reasonable efforts to expose it as an I2C 2481 * adapter and use drm_get_edid() instead of abusing this function. 2482 * 2483 * The EDID may be overridden using debugfs override_edid or firmware EDID 2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2485 * order. Having either of them bypasses actual EDID reads. 2486 * 2487 * Return: Pointer to valid EDID or NULL if we couldn't find any. 2488 */ 2489 struct edid *drm_do_get_edid(struct drm_connector *connector, 2490 read_block_fn read_block, 2491 void *context) 2492 { 2493 return _drm_do_get_edid(connector, read_block, context, NULL); 2494 } 2495 EXPORT_SYMBOL_GPL(drm_do_get_edid); 2496 2497 /** 2498 * drm_edid_raw - Get a pointer to the raw EDID data. 2499 * @drm_edid: drm_edid container 2500 * 2501 * Get a pointer to the raw EDID data. 2502 * 2503 * This is for transition only. Avoid using this like the plague. 2504 * 2505 * Return: Pointer to raw EDID data. 2506 */ 2507 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid) 2508 { 2509 if (!drm_edid || !drm_edid->size) 2510 return NULL; 2511 2512 /* 2513 * Do not return pointers where relying on EDID extension count would 2514 * lead to buffer overflow. 2515 */ 2516 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size)) 2517 return NULL; 2518 2519 return drm_edid->edid; 2520 } 2521 EXPORT_SYMBOL(drm_edid_raw); 2522 2523 /* Allocate struct drm_edid container *without* duplicating the edid data */ 2524 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size) 2525 { 2526 struct drm_edid *drm_edid; 2527 2528 if (!edid || !size || size < EDID_LENGTH) 2529 return NULL; 2530 2531 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL); 2532 if (drm_edid) { 2533 drm_edid->edid = edid; 2534 drm_edid->size = size; 2535 } 2536 2537 return drm_edid; 2538 } 2539 2540 /** 2541 * drm_edid_alloc - Allocate a new drm_edid container 2542 * @edid: Pointer to raw EDID data 2543 * @size: Size of memory allocated for EDID 2544 * 2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass 2546 * the actual size that has been allocated for the data. There is no validation 2547 * of the raw EDID data against the size, but at least the EDID base block must 2548 * fit in the buffer. 2549 * 2550 * The returned pointer must be freed using drm_edid_free(). 2551 * 2552 * Return: drm_edid container, or NULL on errors 2553 */ 2554 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size) 2555 { 2556 const struct drm_edid *drm_edid; 2557 2558 if (!edid || !size || size < EDID_LENGTH) 2559 return NULL; 2560 2561 edid = kmemdup(edid, size, GFP_KERNEL); 2562 if (!edid) 2563 return NULL; 2564 2565 drm_edid = _drm_edid_alloc(edid, size); 2566 if (!drm_edid) 2567 kfree(edid); 2568 2569 return drm_edid; 2570 } 2571 EXPORT_SYMBOL(drm_edid_alloc); 2572 2573 /** 2574 * drm_edid_dup - Duplicate a drm_edid container 2575 * @drm_edid: EDID to duplicate 2576 * 2577 * The returned pointer must be freed using drm_edid_free(). 2578 * 2579 * Returns: drm_edid container copy, or NULL on errors 2580 */ 2581 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid) 2582 { 2583 if (!drm_edid) 2584 return NULL; 2585 2586 return drm_edid_alloc(drm_edid->edid, drm_edid->size); 2587 } 2588 EXPORT_SYMBOL(drm_edid_dup); 2589 2590 /** 2591 * drm_edid_free - Free the drm_edid container 2592 * @drm_edid: EDID to free 2593 */ 2594 void drm_edid_free(const struct drm_edid *drm_edid) 2595 { 2596 if (!drm_edid) 2597 return; 2598 2599 kfree(drm_edid->edid); 2600 kfree(drm_edid); 2601 } 2602 EXPORT_SYMBOL(drm_edid_free); 2603 2604 /** 2605 * drm_probe_ddc() - probe DDC presence 2606 * @adapter: I2C adapter to probe 2607 * 2608 * Return: True on success, false on failure. 2609 */ 2610 bool 2611 drm_probe_ddc(struct i2c_adapter *adapter) 2612 { 2613 unsigned char out; 2614 2615 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); 2616 } 2617 EXPORT_SYMBOL(drm_probe_ddc); 2618 2619 /** 2620 * drm_get_edid - get EDID data, if available 2621 * @connector: connector we're probing 2622 * @adapter: I2C adapter to use for DDC 2623 * 2624 * Poke the given I2C channel to grab EDID data if possible. If found, 2625 * attach it to the connector. 2626 * 2627 * Return: Pointer to valid EDID or NULL if we couldn't find any. 2628 */ 2629 struct edid *drm_get_edid(struct drm_connector *connector, 2630 struct i2c_adapter *adapter) 2631 { 2632 struct edid *edid; 2633 2634 if (connector->force == DRM_FORCE_OFF) 2635 return NULL; 2636 2637 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 2638 return NULL; 2639 2640 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL); 2641 drm_connector_update_edid_property(connector, edid); 2642 return edid; 2643 } 2644 EXPORT_SYMBOL(drm_get_edid); 2645 2646 /** 2647 * drm_edid_read_custom - Read EDID data using given EDID block read function 2648 * @connector: Connector to use 2649 * @read_block: EDID block read function 2650 * @context: Private data passed to the block read function 2651 * 2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that 2653 * exposes a different interface to read EDID blocks this function can be used 2654 * to get EDID data using a custom block read function. 2655 * 2656 * As in the general case the DDC bus is accessible by the kernel at the I2C 2657 * level, drivers must make all reasonable efforts to expose it as an I2C 2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing 2659 * this function. 2660 * 2661 * The EDID may be overridden using debugfs override_edid or firmware EDID 2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2663 * order. Having either of them bypasses actual EDID reads. 2664 * 2665 * The returned pointer must be freed using drm_edid_free(). 2666 * 2667 * Return: Pointer to EDID, or NULL if probe/read failed. 2668 */ 2669 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector, 2670 read_block_fn read_block, 2671 void *context) 2672 { 2673 const struct drm_edid *drm_edid; 2674 struct edid *edid; 2675 size_t size = 0; 2676 2677 edid = _drm_do_get_edid(connector, read_block, context, &size); 2678 if (!edid) 2679 return NULL; 2680 2681 /* Sanity check for now */ 2682 drm_WARN_ON(connector->dev, !size); 2683 2684 drm_edid = _drm_edid_alloc(edid, size); 2685 if (!drm_edid) 2686 kfree(edid); 2687 2688 return drm_edid; 2689 } 2690 EXPORT_SYMBOL(drm_edid_read_custom); 2691 2692 /** 2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter 2694 * @connector: Connector to use 2695 * @adapter: I2C adapter to use for DDC 2696 * 2697 * Read EDID using the given I2C adapter. 2698 * 2699 * The EDID may be overridden using debugfs override_edid or firmware EDID 2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2701 * order. Having either of them bypasses actual EDID reads. 2702 * 2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and 2704 * using drm_edid_read() instead of this function. 2705 * 2706 * The returned pointer must be freed using drm_edid_free(). 2707 * 2708 * Return: Pointer to EDID, or NULL if probe/read failed. 2709 */ 2710 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector, 2711 struct i2c_adapter *adapter) 2712 { 2713 const struct drm_edid *drm_edid; 2714 2715 if (connector->force == DRM_FORCE_OFF) 2716 return NULL; 2717 2718 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 2719 return NULL; 2720 2721 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter); 2722 2723 /* Note: Do *not* call connector updates here. */ 2724 2725 return drm_edid; 2726 } 2727 EXPORT_SYMBOL(drm_edid_read_ddc); 2728 2729 /** 2730 * drm_edid_read - Read EDID data using connector's I2C adapter 2731 * @connector: Connector to use 2732 * 2733 * Read EDID using the connector's I2C adapter. 2734 * 2735 * The EDID may be overridden using debugfs override_edid or firmware EDID 2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority 2737 * order. Having either of them bypasses actual EDID reads. 2738 * 2739 * The returned pointer must be freed using drm_edid_free(). 2740 * 2741 * Return: Pointer to EDID, or NULL if probe/read failed. 2742 */ 2743 const struct drm_edid *drm_edid_read(struct drm_connector *connector) 2744 { 2745 if (drm_WARN_ON(connector->dev, !connector->ddc)) 2746 return NULL; 2747 2748 return drm_edid_read_ddc(connector, connector->ddc); 2749 } 2750 EXPORT_SYMBOL(drm_edid_read); 2751 2752 static u32 edid_extract_panel_id(const struct edid *edid) 2753 { 2754 /* 2755 * We represent the ID as a 32-bit number so it can easily be compared 2756 * with "==". 2757 * 2758 * NOTE that we deal with endianness differently for the top half 2759 * of this ID than for the bottom half. The bottom half (the product 2760 * id) gets decoded as little endian by the EDID_PRODUCT_ID because 2761 * that's how everyone seems to interpret it. The top half (the mfg_id) 2762 * gets stored as big endian because that makes 2763 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier 2764 * to write (it's easier to extract the ASCII). It doesn't really 2765 * matter, though, as long as the number here is unique. 2766 */ 2767 return (u32)edid->mfg_id[0] << 24 | 2768 (u32)edid->mfg_id[1] << 16 | 2769 (u32)EDID_PRODUCT_ID(edid); 2770 } 2771 2772 /** 2773 * drm_edid_get_panel_id - Get a panel's ID through DDC 2774 * @adapter: I2C adapter to use for DDC 2775 * 2776 * This function reads the first block of the EDID of a panel and (assuming 2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value 2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's 2779 * supposed to be different for each different modem of panel. 2780 * 2781 * This function is intended to be used during early probing on devices where 2782 * more than one panel might be present. Because of its intended use it must 2783 * assume that the EDID of the panel is correct, at least as far as the ID 2784 * is concerned (in other words, we don't process any overrides here). 2785 * 2786 * NOTE: it's expected that this function and drm_do_get_edid() will both 2787 * be read the EDID, but there is no caching between them. Since we're only 2788 * reading the first block, hopefully this extra overhead won't be too big. 2789 * 2790 * Return: A 32-bit ID that should be different for each make/model of panel. 2791 * See the functions drm_edid_encode_panel_id() and 2792 * drm_edid_decode_panel_id() for some details on the structure of this 2793 * ID. 2794 */ 2795 2796 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter) 2797 { 2798 enum edid_block_status status; 2799 void *base_block; 2800 u32 panel_id = 0; 2801 2802 /* 2803 * There are no manufacturer IDs of 0, so if there is a problem reading 2804 * the EDID then we'll just return 0. 2805 */ 2806 2807 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL); 2808 if (!base_block) 2809 return 0; 2810 2811 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter); 2812 2813 edid_block_status_print(status, base_block, 0); 2814 2815 if (edid_block_status_valid(status, edid_block_tag(base_block))) 2816 panel_id = edid_extract_panel_id(base_block); 2817 else 2818 edid_block_dump(KERN_NOTICE, base_block, 0); 2819 2820 kfree(base_block); 2821 2822 return panel_id; 2823 } 2824 EXPORT_SYMBOL(drm_edid_get_panel_id); 2825 2826 /** 2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output 2828 * @connector: connector we're probing 2829 * @adapter: I2C adapter to use for DDC 2830 * 2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of 2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily 2833 * switch DDC to the GPU which is retrieving EDID. 2834 * 2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 2836 */ 2837 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector, 2838 struct i2c_adapter *adapter) 2839 { 2840 struct drm_device *dev = connector->dev; 2841 struct pci_dev *pdev = to_pci_dev(dev->dev); 2842 struct edid *edid; 2843 2844 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) 2845 return NULL; 2846 2847 vga_switcheroo_lock_ddc(pdev); 2848 edid = drm_get_edid(connector, adapter); 2849 vga_switcheroo_unlock_ddc(pdev); 2850 2851 return edid; 2852 } 2853 EXPORT_SYMBOL(drm_get_edid_switcheroo); 2854 2855 /** 2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output 2857 * @connector: connector we're probing 2858 * @adapter: I2C adapter to use for DDC 2859 * 2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set 2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to 2862 * temporarily switch DDC to the GPU which is retrieving EDID. 2863 * 2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 2865 */ 2866 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector, 2867 struct i2c_adapter *adapter) 2868 { 2869 struct drm_device *dev = connector->dev; 2870 struct pci_dev *pdev = to_pci_dev(dev->dev); 2871 const struct drm_edid *drm_edid; 2872 2873 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) 2874 return NULL; 2875 2876 vga_switcheroo_lock_ddc(pdev); 2877 drm_edid = drm_edid_read_ddc(connector, adapter); 2878 vga_switcheroo_unlock_ddc(pdev); 2879 2880 return drm_edid; 2881 } 2882 EXPORT_SYMBOL(drm_edid_read_switcheroo); 2883 2884 /** 2885 * drm_edid_duplicate - duplicate an EDID and the extensions 2886 * @edid: EDID to duplicate 2887 * 2888 * Return: Pointer to duplicated EDID or NULL on allocation failure. 2889 */ 2890 struct edid *drm_edid_duplicate(const struct edid *edid) 2891 { 2892 if (!edid) 2893 return NULL; 2894 2895 return kmemdup(edid, edid_size(edid), GFP_KERNEL); 2896 } 2897 EXPORT_SYMBOL(drm_edid_duplicate); 2898 2899 /*** EDID parsing ***/ 2900 2901 /** 2902 * edid_get_quirks - return quirk flags for a given EDID 2903 * @drm_edid: EDID to process 2904 * 2905 * This tells subsequent routines what fixes they need to apply. 2906 */ 2907 static u32 edid_get_quirks(const struct drm_edid *drm_edid) 2908 { 2909 u32 panel_id = edid_extract_panel_id(drm_edid->edid); 2910 const struct edid_quirk *quirk; 2911 int i; 2912 2913 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { 2914 quirk = &edid_quirk_list[i]; 2915 if (quirk->panel_id == panel_id) 2916 return quirk->quirks; 2917 } 2918 2919 return 0; 2920 } 2921 2922 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) 2923 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) 2924 2925 /* 2926 * Walk the mode list for connector, clearing the preferred status on existing 2927 * modes and setting it anew for the right mode ala quirks. 2928 */ 2929 static void edid_fixup_preferred(struct drm_connector *connector) 2930 { 2931 const struct drm_display_info *info = &connector->display_info; 2932 struct drm_display_mode *t, *cur_mode, *preferred_mode; 2933 int target_refresh = 0; 2934 int cur_vrefresh, preferred_vrefresh; 2935 2936 if (list_empty(&connector->probed_modes)) 2937 return; 2938 2939 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60) 2940 target_refresh = 60; 2941 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75) 2942 target_refresh = 75; 2943 2944 preferred_mode = list_first_entry(&connector->probed_modes, 2945 struct drm_display_mode, head); 2946 2947 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { 2948 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; 2949 2950 if (cur_mode == preferred_mode) 2951 continue; 2952 2953 /* Largest mode is preferred */ 2954 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) 2955 preferred_mode = cur_mode; 2956 2957 cur_vrefresh = drm_mode_vrefresh(cur_mode); 2958 preferred_vrefresh = drm_mode_vrefresh(preferred_mode); 2959 /* At a given size, try to get closest to target refresh */ 2960 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && 2961 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < 2962 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { 2963 preferred_mode = cur_mode; 2964 } 2965 } 2966 2967 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; 2968 } 2969 2970 static bool 2971 mode_is_rb(const struct drm_display_mode *mode) 2972 { 2973 return (mode->htotal - mode->hdisplay == 160) && 2974 (mode->hsync_end - mode->hdisplay == 80) && 2975 (mode->hsync_end - mode->hsync_start == 32) && 2976 (mode->vsync_start - mode->vdisplay == 3); 2977 } 2978 2979 /* 2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT 2981 * @dev: Device to duplicate against 2982 * @hsize: Mode width 2983 * @vsize: Mode height 2984 * @fresh: Mode refresh rate 2985 * @rb: Mode reduced-blanking-ness 2986 * 2987 * Walk the DMT mode list looking for a match for the given parameters. 2988 * 2989 * Return: A newly allocated copy of the mode, or NULL if not found. 2990 */ 2991 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, 2992 int hsize, int vsize, int fresh, 2993 bool rb) 2994 { 2995 int i; 2996 2997 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 2998 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 2999 3000 if (hsize != ptr->hdisplay) 3001 continue; 3002 if (vsize != ptr->vdisplay) 3003 continue; 3004 if (fresh != drm_mode_vrefresh(ptr)) 3005 continue; 3006 if (rb != mode_is_rb(ptr)) 3007 continue; 3008 3009 return drm_mode_duplicate(dev, ptr); 3010 } 3011 3012 return NULL; 3013 } 3014 EXPORT_SYMBOL(drm_mode_find_dmt); 3015 3016 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type) 3017 { 3018 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); 3019 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2); 3020 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3); 3021 3022 return descriptor->pixel_clock == 0 && 3023 descriptor->data.other_data.pad1 == 0 && 3024 descriptor->data.other_data.type == type; 3025 } 3026 3027 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor) 3028 { 3029 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); 3030 3031 return descriptor->pixel_clock != 0; 3032 } 3033 3034 typedef void detailed_cb(const struct detailed_timing *timing, void *closure); 3035 3036 static void 3037 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) 3038 { 3039 int i, n; 3040 u8 d = ext[0x02]; 3041 const u8 *det_base = ext + d; 3042 3043 if (d < 4 || d > 127) 3044 return; 3045 3046 n = (127 - d) / 18; 3047 for (i = 0; i < n; i++) 3048 cb((const struct detailed_timing *)(det_base + 18 * i), closure); 3049 } 3050 3051 static void 3052 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) 3053 { 3054 unsigned int i, n = min((int)ext[0x02], 6); 3055 const u8 *det_base = ext + 5; 3056 3057 if (ext[0x01] != 1) 3058 return; /* unknown version */ 3059 3060 for (i = 0; i < n; i++) 3061 cb((const struct detailed_timing *)(det_base + 18 * i), closure); 3062 } 3063 3064 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid, 3065 detailed_cb *cb, void *closure) 3066 { 3067 struct drm_edid_iter edid_iter; 3068 const u8 *ext; 3069 int i; 3070 3071 if (!drm_edid) 3072 return; 3073 3074 for (i = 0; i < EDID_DETAILED_TIMINGS; i++) 3075 cb(&drm_edid->edid->detailed_timings[i], closure); 3076 3077 drm_edid_iter_begin(drm_edid, &edid_iter); 3078 drm_edid_iter_for_each(ext, &edid_iter) { 3079 switch (*ext) { 3080 case CEA_EXT: 3081 cea_for_each_detailed_block(ext, cb, closure); 3082 break; 3083 case VTB_EXT: 3084 vtb_for_each_detailed_block(ext, cb, closure); 3085 break; 3086 default: 3087 break; 3088 } 3089 } 3090 drm_edid_iter_end(&edid_iter); 3091 } 3092 3093 static void 3094 is_rb(const struct detailed_timing *descriptor, void *data) 3095 { 3096 bool *res = data; 3097 3098 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3099 return; 3100 3101 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3102 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15); 3103 3104 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG && 3105 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING) 3106 *res = true; 3107 } 3108 3109 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ 3110 static bool 3111 drm_monitor_supports_rb(const struct drm_edid *drm_edid) 3112 { 3113 if (drm_edid->edid->revision >= 4) { 3114 bool ret = false; 3115 3116 drm_for_each_detailed_block(drm_edid, is_rb, &ret); 3117 return ret; 3118 } 3119 3120 return drm_edid_is_digital(drm_edid); 3121 } 3122 3123 static void 3124 find_gtf2(const struct detailed_timing *descriptor, void *data) 3125 { 3126 const struct detailed_timing **res = data; 3127 3128 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3129 return; 3130 3131 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3132 3133 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG) 3134 *res = descriptor; 3135 } 3136 3137 /* Secondary GTF curve kicks in above some break frequency */ 3138 static int 3139 drm_gtf2_hbreak(const struct drm_edid *drm_edid) 3140 { 3141 const struct detailed_timing *descriptor = NULL; 3142 3143 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3144 3145 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12); 3146 3147 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0; 3148 } 3149 3150 static int 3151 drm_gtf2_2c(const struct drm_edid *drm_edid) 3152 { 3153 const struct detailed_timing *descriptor = NULL; 3154 3155 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3156 3157 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13); 3158 3159 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0; 3160 } 3161 3162 static int 3163 drm_gtf2_m(const struct drm_edid *drm_edid) 3164 { 3165 const struct detailed_timing *descriptor = NULL; 3166 3167 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3168 3169 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14); 3170 3171 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0; 3172 } 3173 3174 static int 3175 drm_gtf2_k(const struct drm_edid *drm_edid) 3176 { 3177 const struct detailed_timing *descriptor = NULL; 3178 3179 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3180 3181 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16); 3182 3183 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0; 3184 } 3185 3186 static int 3187 drm_gtf2_2j(const struct drm_edid *drm_edid) 3188 { 3189 const struct detailed_timing *descriptor = NULL; 3190 3191 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); 3192 3193 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17); 3194 3195 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0; 3196 } 3197 3198 static void 3199 get_timing_level(const struct detailed_timing *descriptor, void *data) 3200 { 3201 int *res = data; 3202 3203 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) 3204 return; 3205 3206 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); 3207 3208 switch (descriptor->data.other_data.data.range.flags) { 3209 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: 3210 *res = LEVEL_GTF; 3211 break; 3212 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: 3213 *res = LEVEL_GTF2; 3214 break; 3215 case DRM_EDID_CVT_SUPPORT_FLAG: 3216 *res = LEVEL_CVT; 3217 break; 3218 default: 3219 break; 3220 } 3221 } 3222 3223 /* Get standard timing level (CVT/GTF/DMT). */ 3224 static int standard_timing_level(const struct drm_edid *drm_edid) 3225 { 3226 const struct edid *edid = drm_edid->edid; 3227 3228 if (edid->revision >= 4) { 3229 /* 3230 * If the range descriptor doesn't 3231 * indicate otherwise default to CVT 3232 */ 3233 int ret = LEVEL_CVT; 3234 3235 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret); 3236 3237 return ret; 3238 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) { 3239 return LEVEL_GTF2; 3240 } else if (edid->revision >= 2) { 3241 return LEVEL_GTF; 3242 } else { 3243 return LEVEL_DMT; 3244 } 3245 } 3246 3247 /* 3248 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old 3249 * monitors fill with ascii space (0x20) instead. 3250 */ 3251 static int 3252 bad_std_timing(u8 a, u8 b) 3253 { 3254 return (a == 0x00 && b == 0x00) || 3255 (a == 0x01 && b == 0x01) || 3256 (a == 0x20 && b == 0x20); 3257 } 3258 3259 static int drm_mode_hsync(const struct drm_display_mode *mode) 3260 { 3261 if (mode->htotal <= 0) 3262 return 0; 3263 3264 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal); 3265 } 3266 3267 static struct drm_display_mode * 3268 drm_gtf2_mode(struct drm_device *dev, 3269 const struct drm_edid *drm_edid, 3270 int hsize, int vsize, int vrefresh_rate) 3271 { 3272 struct drm_display_mode *mode; 3273 3274 /* 3275 * This is potentially wrong if there's ever a monitor with 3276 * more than one ranges section, each claiming a different 3277 * secondary GTF curve. Please don't do that. 3278 */ 3279 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 3280 if (!mode) 3281 return NULL; 3282 3283 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) { 3284 drm_mode_destroy(dev, mode); 3285 mode = drm_gtf_mode_complex(dev, hsize, vsize, 3286 vrefresh_rate, 0, 0, 3287 drm_gtf2_m(drm_edid), 3288 drm_gtf2_2c(drm_edid), 3289 drm_gtf2_k(drm_edid), 3290 drm_gtf2_2j(drm_edid)); 3291 } 3292 3293 return mode; 3294 } 3295 3296 /* 3297 * Take the standard timing params (in this case width, aspect, and refresh) 3298 * and convert them into a real mode using CVT/GTF/DMT. 3299 */ 3300 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector, 3301 const struct drm_edid *drm_edid, 3302 const struct std_timing *t) 3303 { 3304 struct drm_device *dev = connector->dev; 3305 struct drm_display_mode *m, *mode = NULL; 3306 int hsize, vsize; 3307 int vrefresh_rate; 3308 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) 3309 >> EDID_TIMING_ASPECT_SHIFT; 3310 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) 3311 >> EDID_TIMING_VFREQ_SHIFT; 3312 int timing_level = standard_timing_level(drm_edid); 3313 3314 if (bad_std_timing(t->hsize, t->vfreq_aspect)) 3315 return NULL; 3316 3317 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ 3318 hsize = t->hsize * 8 + 248; 3319 /* vrefresh_rate = vfreq + 60 */ 3320 vrefresh_rate = vfreq + 60; 3321 /* the vdisplay is calculated based on the aspect ratio */ 3322 if (aspect_ratio == 0) { 3323 if (drm_edid->edid->revision < 3) 3324 vsize = hsize; 3325 else 3326 vsize = (hsize * 10) / 16; 3327 } else if (aspect_ratio == 1) 3328 vsize = (hsize * 3) / 4; 3329 else if (aspect_ratio == 2) 3330 vsize = (hsize * 4) / 5; 3331 else 3332 vsize = (hsize * 9) / 16; 3333 3334 /* HDTV hack, part 1 */ 3335 if (vrefresh_rate == 60 && 3336 ((hsize == 1360 && vsize == 765) || 3337 (hsize == 1368 && vsize == 769))) { 3338 hsize = 1366; 3339 vsize = 768; 3340 } 3341 3342 /* 3343 * If this connector already has a mode for this size and refresh 3344 * rate (because it came from detailed or CVT info), use that 3345 * instead. This way we don't have to guess at interlace or 3346 * reduced blanking. 3347 */ 3348 list_for_each_entry(m, &connector->probed_modes, head) 3349 if (m->hdisplay == hsize && m->vdisplay == vsize && 3350 drm_mode_vrefresh(m) == vrefresh_rate) 3351 return NULL; 3352 3353 /* HDTV hack, part 2 */ 3354 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { 3355 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, 3356 false); 3357 if (!mode) 3358 return NULL; 3359 mode->hdisplay = 1366; 3360 mode->hsync_start = mode->hsync_start - 1; 3361 mode->hsync_end = mode->hsync_end - 1; 3362 return mode; 3363 } 3364 3365 /* check whether it can be found in default mode table */ 3366 if (drm_monitor_supports_rb(drm_edid)) { 3367 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, 3368 true); 3369 if (mode) 3370 return mode; 3371 } 3372 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); 3373 if (mode) 3374 return mode; 3375 3376 /* okay, generate it */ 3377 switch (timing_level) { 3378 case LEVEL_DMT: 3379 break; 3380 case LEVEL_GTF: 3381 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 3382 break; 3383 case LEVEL_GTF2: 3384 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate); 3385 break; 3386 case LEVEL_CVT: 3387 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, 3388 false); 3389 break; 3390 } 3391 return mode; 3392 } 3393 3394 /* 3395 * EDID is delightfully ambiguous about how interlaced modes are to be 3396 * encoded. Our internal representation is of frame height, but some 3397 * HDTV detailed timings are encoded as field height. 3398 * 3399 * The format list here is from CEA, in frame size. Technically we 3400 * should be checking refresh rate too. Whatever. 3401 */ 3402 static void 3403 drm_mode_do_interlace_quirk(struct drm_display_mode *mode, 3404 const struct detailed_pixel_timing *pt) 3405 { 3406 int i; 3407 static const struct { 3408 int w, h; 3409 } cea_interlaced[] = { 3410 { 1920, 1080 }, 3411 { 720, 480 }, 3412 { 1440, 480 }, 3413 { 2880, 480 }, 3414 { 720, 576 }, 3415 { 1440, 576 }, 3416 { 2880, 576 }, 3417 }; 3418 3419 if (!(pt->misc & DRM_EDID_PT_INTERLACED)) 3420 return; 3421 3422 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { 3423 if ((mode->hdisplay == cea_interlaced[i].w) && 3424 (mode->vdisplay == cea_interlaced[i].h / 2)) { 3425 mode->vdisplay *= 2; 3426 mode->vsync_start *= 2; 3427 mode->vsync_end *= 2; 3428 mode->vtotal *= 2; 3429 mode->vtotal |= 1; 3430 } 3431 } 3432 3433 mode->flags |= DRM_MODE_FLAG_INTERLACE; 3434 } 3435 3436 /* 3437 * Create a new mode from an EDID detailed timing section. An EDID detailed 3438 * timing block contains enough info for us to create and return a new struct 3439 * drm_display_mode. 3440 */ 3441 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector, 3442 const struct drm_edid *drm_edid, 3443 const struct detailed_timing *timing) 3444 { 3445 const struct drm_display_info *info = &connector->display_info; 3446 struct drm_device *dev = connector->dev; 3447 struct drm_display_mode *mode; 3448 const struct detailed_pixel_timing *pt = &timing->data.pixel_data; 3449 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; 3450 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; 3451 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; 3452 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; 3453 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; 3454 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; 3455 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; 3456 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); 3457 3458 /* ignore tiny modes */ 3459 if (hactive < 64 || vactive < 64) 3460 return NULL; 3461 3462 if (pt->misc & DRM_EDID_PT_STEREO) { 3463 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n", 3464 connector->base.id, connector->name); 3465 return NULL; 3466 } 3467 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { 3468 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n", 3469 connector->base.id, connector->name); 3470 } 3471 3472 /* it is incorrect if hsync/vsync width is zero */ 3473 if (!hsync_pulse_width || !vsync_pulse_width) { 3474 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n", 3475 connector->base.id, connector->name); 3476 return NULL; 3477 } 3478 3479 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { 3480 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); 3481 if (!mode) 3482 return NULL; 3483 3484 goto set_size; 3485 } 3486 3487 mode = drm_mode_create(dev); 3488 if (!mode) 3489 return NULL; 3490 3491 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) 3492 mode->clock = 1088 * 10; 3493 else 3494 mode->clock = le16_to_cpu(timing->pixel_clock) * 10; 3495 3496 mode->hdisplay = hactive; 3497 mode->hsync_start = mode->hdisplay + hsync_offset; 3498 mode->hsync_end = mode->hsync_start + hsync_pulse_width; 3499 mode->htotal = mode->hdisplay + hblank; 3500 3501 mode->vdisplay = vactive; 3502 mode->vsync_start = mode->vdisplay + vsync_offset; 3503 mode->vsync_end = mode->vsync_start + vsync_pulse_width; 3504 mode->vtotal = mode->vdisplay + vblank; 3505 3506 /* Some EDIDs have bogus h/vsync_end values */ 3507 if (mode->hsync_end > mode->htotal) { 3508 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n", 3509 connector->base.id, connector->name, 3510 mode->hsync_end, mode->htotal); 3511 mode->hsync_end = mode->htotal; 3512 } 3513 if (mode->vsync_end > mode->vtotal) { 3514 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n", 3515 connector->base.id, connector->name, 3516 mode->vsync_end, mode->vtotal); 3517 mode->vsync_end = mode->vtotal; 3518 } 3519 3520 drm_mode_do_interlace_quirk(mode, pt); 3521 3522 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) { 3523 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC; 3524 } else { 3525 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? 3526 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 3527 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? 3528 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 3529 } 3530 3531 set_size: 3532 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; 3533 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; 3534 3535 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) { 3536 mode->width_mm *= 10; 3537 mode->height_mm *= 10; 3538 } 3539 3540 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { 3541 mode->width_mm = drm_edid->edid->width_cm * 10; 3542 mode->height_mm = drm_edid->edid->height_cm * 10; 3543 } 3544 3545 mode->type = DRM_MODE_TYPE_DRIVER; 3546 drm_mode_set_name(mode); 3547 3548 return mode; 3549 } 3550 3551 static bool 3552 mode_in_hsync_range(const struct drm_display_mode *mode, 3553 const struct edid *edid, const u8 *t) 3554 { 3555 int hsync, hmin, hmax; 3556 3557 hmin = t[7]; 3558 if (edid->revision >= 4) 3559 hmin += ((t[4] & 0x04) ? 255 : 0); 3560 hmax = t[8]; 3561 if (edid->revision >= 4) 3562 hmax += ((t[4] & 0x08) ? 255 : 0); 3563 hsync = drm_mode_hsync(mode); 3564 3565 return (hsync <= hmax && hsync >= hmin); 3566 } 3567 3568 static bool 3569 mode_in_vsync_range(const struct drm_display_mode *mode, 3570 const struct edid *edid, const u8 *t) 3571 { 3572 int vsync, vmin, vmax; 3573 3574 vmin = t[5]; 3575 if (edid->revision >= 4) 3576 vmin += ((t[4] & 0x01) ? 255 : 0); 3577 vmax = t[6]; 3578 if (edid->revision >= 4) 3579 vmax += ((t[4] & 0x02) ? 255 : 0); 3580 vsync = drm_mode_vrefresh(mode); 3581 3582 return (vsync <= vmax && vsync >= vmin); 3583 } 3584 3585 static u32 3586 range_pixel_clock(const struct edid *edid, const u8 *t) 3587 { 3588 /* unspecified */ 3589 if (t[9] == 0 || t[9] == 255) 3590 return 0; 3591 3592 /* 1.4 with CVT support gives us real precision, yay */ 3593 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) 3594 return (t[9] * 10000) - ((t[12] >> 2) * 250); 3595 3596 /* 1.3 is pathetic, so fuzz up a bit */ 3597 return t[9] * 10000 + 5001; 3598 } 3599 3600 static bool mode_in_range(const struct drm_display_mode *mode, 3601 const struct drm_edid *drm_edid, 3602 const struct detailed_timing *timing) 3603 { 3604 const struct edid *edid = drm_edid->edid; 3605 u32 max_clock; 3606 const u8 *t = (const u8 *)timing; 3607 3608 if (!mode_in_hsync_range(mode, edid, t)) 3609 return false; 3610 3611 if (!mode_in_vsync_range(mode, edid, t)) 3612 return false; 3613 3614 max_clock = range_pixel_clock(edid, t); 3615 if (max_clock) 3616 if (mode->clock > max_clock) 3617 return false; 3618 3619 /* 1.4 max horizontal check */ 3620 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) 3621 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) 3622 return false; 3623 3624 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid)) 3625 return false; 3626 3627 return true; 3628 } 3629 3630 static bool valid_inferred_mode(const struct drm_connector *connector, 3631 const struct drm_display_mode *mode) 3632 { 3633 const struct drm_display_mode *m; 3634 bool ok = false; 3635 3636 list_for_each_entry(m, &connector->probed_modes, head) { 3637 if (mode->hdisplay == m->hdisplay && 3638 mode->vdisplay == m->vdisplay && 3639 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) 3640 return false; /* duplicated */ 3641 if (mode->hdisplay <= m->hdisplay && 3642 mode->vdisplay <= m->vdisplay) 3643 ok = true; 3644 } 3645 return ok; 3646 } 3647 3648 static int drm_dmt_modes_for_range(struct drm_connector *connector, 3649 const struct drm_edid *drm_edid, 3650 const struct detailed_timing *timing) 3651 { 3652 int i, modes = 0; 3653 struct drm_display_mode *newmode; 3654 struct drm_device *dev = connector->dev; 3655 3656 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 3657 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) && 3658 valid_inferred_mode(connector, drm_dmt_modes + i)) { 3659 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); 3660 if (newmode) { 3661 drm_mode_probed_add(connector, newmode); 3662 modes++; 3663 } 3664 } 3665 } 3666 3667 return modes; 3668 } 3669 3670 /* fix up 1366x768 mode from 1368x768; 3671 * GFT/CVT can't express 1366 width which isn't dividable by 8 3672 */ 3673 void drm_mode_fixup_1366x768(struct drm_display_mode *mode) 3674 { 3675 if (mode->hdisplay == 1368 && mode->vdisplay == 768) { 3676 mode->hdisplay = 1366; 3677 mode->hsync_start--; 3678 mode->hsync_end--; 3679 drm_mode_set_name(mode); 3680 } 3681 } 3682 3683 static int drm_gtf_modes_for_range(struct drm_connector *connector, 3684 const struct drm_edid *drm_edid, 3685 const struct detailed_timing *timing) 3686 { 3687 int i, modes = 0; 3688 struct drm_display_mode *newmode; 3689 struct drm_device *dev = connector->dev; 3690 3691 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3692 const struct minimode *m = &extra_modes[i]; 3693 3694 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); 3695 if (!newmode) 3696 return modes; 3697 3698 drm_mode_fixup_1366x768(newmode); 3699 if (!mode_in_range(newmode, drm_edid, timing) || 3700 !valid_inferred_mode(connector, newmode)) { 3701 drm_mode_destroy(dev, newmode); 3702 continue; 3703 } 3704 3705 drm_mode_probed_add(connector, newmode); 3706 modes++; 3707 } 3708 3709 return modes; 3710 } 3711 3712 static int drm_gtf2_modes_for_range(struct drm_connector *connector, 3713 const struct drm_edid *drm_edid, 3714 const struct detailed_timing *timing) 3715 { 3716 int i, modes = 0; 3717 struct drm_display_mode *newmode; 3718 struct drm_device *dev = connector->dev; 3719 3720 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3721 const struct minimode *m = &extra_modes[i]; 3722 3723 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r); 3724 if (!newmode) 3725 return modes; 3726 3727 drm_mode_fixup_1366x768(newmode); 3728 if (!mode_in_range(newmode, drm_edid, timing) || 3729 !valid_inferred_mode(connector, newmode)) { 3730 drm_mode_destroy(dev, newmode); 3731 continue; 3732 } 3733 3734 drm_mode_probed_add(connector, newmode); 3735 modes++; 3736 } 3737 3738 return modes; 3739 } 3740 3741 static int drm_cvt_modes_for_range(struct drm_connector *connector, 3742 const struct drm_edid *drm_edid, 3743 const struct detailed_timing *timing) 3744 { 3745 int i, modes = 0; 3746 struct drm_display_mode *newmode; 3747 struct drm_device *dev = connector->dev; 3748 bool rb = drm_monitor_supports_rb(drm_edid); 3749 3750 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 3751 const struct minimode *m = &extra_modes[i]; 3752 3753 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); 3754 if (!newmode) 3755 return modes; 3756 3757 drm_mode_fixup_1366x768(newmode); 3758 if (!mode_in_range(newmode, drm_edid, timing) || 3759 !valid_inferred_mode(connector, newmode)) { 3760 drm_mode_destroy(dev, newmode); 3761 continue; 3762 } 3763 3764 drm_mode_probed_add(connector, newmode); 3765 modes++; 3766 } 3767 3768 return modes; 3769 } 3770 3771 static void 3772 do_inferred_modes(const struct detailed_timing *timing, void *c) 3773 { 3774 struct detailed_mode_closure *closure = c; 3775 const struct detailed_non_pixel *data = &timing->data.other_data; 3776 const struct detailed_data_monitor_range *range = &data->data.range; 3777 3778 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) 3779 return; 3780 3781 closure->modes += drm_dmt_modes_for_range(closure->connector, 3782 closure->drm_edid, 3783 timing); 3784 3785 if (closure->drm_edid->edid->revision < 2) 3786 return; /* GTF not defined yet */ 3787 3788 switch (range->flags) { 3789 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: 3790 closure->modes += drm_gtf2_modes_for_range(closure->connector, 3791 closure->drm_edid, 3792 timing); 3793 break; 3794 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: 3795 closure->modes += drm_gtf_modes_for_range(closure->connector, 3796 closure->drm_edid, 3797 timing); 3798 break; 3799 case DRM_EDID_CVT_SUPPORT_FLAG: 3800 if (closure->drm_edid->edid->revision < 4) 3801 break; 3802 3803 closure->modes += drm_cvt_modes_for_range(closure->connector, 3804 closure->drm_edid, 3805 timing); 3806 break; 3807 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG: 3808 default: 3809 break; 3810 } 3811 } 3812 3813 static int add_inferred_modes(struct drm_connector *connector, 3814 const struct drm_edid *drm_edid) 3815 { 3816 struct detailed_mode_closure closure = { 3817 .connector = connector, 3818 .drm_edid = drm_edid, 3819 }; 3820 3821 if (drm_edid->edid->revision >= 1) 3822 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure); 3823 3824 return closure.modes; 3825 } 3826 3827 static int 3828 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing) 3829 { 3830 int i, j, m, modes = 0; 3831 struct drm_display_mode *mode; 3832 const u8 *est = ((const u8 *)timing) + 6; 3833 3834 for (i = 0; i < 6; i++) { 3835 for (j = 7; j >= 0; j--) { 3836 m = (i * 8) + (7 - j); 3837 if (m >= ARRAY_SIZE(est3_modes)) 3838 break; 3839 if (est[i] & (1 << j)) { 3840 mode = drm_mode_find_dmt(connector->dev, 3841 est3_modes[m].w, 3842 est3_modes[m].h, 3843 est3_modes[m].r, 3844 est3_modes[m].rb); 3845 if (mode) { 3846 drm_mode_probed_add(connector, mode); 3847 modes++; 3848 } 3849 } 3850 } 3851 } 3852 3853 return modes; 3854 } 3855 3856 static void 3857 do_established_modes(const struct detailed_timing *timing, void *c) 3858 { 3859 struct detailed_mode_closure *closure = c; 3860 3861 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS)) 3862 return; 3863 3864 closure->modes += drm_est3_modes(closure->connector, timing); 3865 } 3866 3867 /* 3868 * Get established modes from EDID and add them. Each EDID block contains a 3869 * bitmap of the supported "established modes" list (defined above). Tease them 3870 * out and add them to the global modes list. 3871 */ 3872 static int add_established_modes(struct drm_connector *connector, 3873 const struct drm_edid *drm_edid) 3874 { 3875 struct drm_device *dev = connector->dev; 3876 const struct edid *edid = drm_edid->edid; 3877 unsigned long est_bits = edid->established_timings.t1 | 3878 (edid->established_timings.t2 << 8) | 3879 ((edid->established_timings.mfg_rsvd & 0x80) << 9); 3880 int i, modes = 0; 3881 struct detailed_mode_closure closure = { 3882 .connector = connector, 3883 .drm_edid = drm_edid, 3884 }; 3885 3886 for (i = 0; i <= EDID_EST_TIMINGS; i++) { 3887 if (est_bits & (1<<i)) { 3888 struct drm_display_mode *newmode; 3889 3890 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]); 3891 if (newmode) { 3892 drm_mode_probed_add(connector, newmode); 3893 modes++; 3894 } 3895 } 3896 } 3897 3898 if (edid->revision >= 1) 3899 drm_for_each_detailed_block(drm_edid, do_established_modes, 3900 &closure); 3901 3902 return modes + closure.modes; 3903 } 3904 3905 static void 3906 do_standard_modes(const struct detailed_timing *timing, void *c) 3907 { 3908 struct detailed_mode_closure *closure = c; 3909 const struct detailed_non_pixel *data = &timing->data.other_data; 3910 struct drm_connector *connector = closure->connector; 3911 int i; 3912 3913 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES)) 3914 return; 3915 3916 for (i = 0; i < 6; i++) { 3917 const struct std_timing *std = &data->data.timings[i]; 3918 struct drm_display_mode *newmode; 3919 3920 newmode = drm_mode_std(connector, closure->drm_edid, std); 3921 if (newmode) { 3922 drm_mode_probed_add(connector, newmode); 3923 closure->modes++; 3924 } 3925 } 3926 } 3927 3928 /* 3929 * Get standard modes from EDID and add them. Standard modes can be calculated 3930 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and 3931 * add them to the list. 3932 */ 3933 static int add_standard_modes(struct drm_connector *connector, 3934 const struct drm_edid *drm_edid) 3935 { 3936 int i, modes = 0; 3937 struct detailed_mode_closure closure = { 3938 .connector = connector, 3939 .drm_edid = drm_edid, 3940 }; 3941 3942 for (i = 0; i < EDID_STD_TIMINGS; i++) { 3943 struct drm_display_mode *newmode; 3944 3945 newmode = drm_mode_std(connector, drm_edid, 3946 &drm_edid->edid->standard_timings[i]); 3947 if (newmode) { 3948 drm_mode_probed_add(connector, newmode); 3949 modes++; 3950 } 3951 } 3952 3953 if (drm_edid->edid->revision >= 1) 3954 drm_for_each_detailed_block(drm_edid, do_standard_modes, 3955 &closure); 3956 3957 /* XXX should also look for standard codes in VTB blocks */ 3958 3959 return modes + closure.modes; 3960 } 3961 3962 static int drm_cvt_modes(struct drm_connector *connector, 3963 const struct detailed_timing *timing) 3964 { 3965 int i, j, modes = 0; 3966 struct drm_display_mode *newmode; 3967 struct drm_device *dev = connector->dev; 3968 const struct cvt_timing *cvt; 3969 static const int rates[] = { 60, 85, 75, 60, 50 }; 3970 const u8 empty[3] = { 0, 0, 0 }; 3971 3972 for (i = 0; i < 4; i++) { 3973 int width, height; 3974 3975 cvt = &(timing->data.other_data.data.cvt[i]); 3976 3977 if (!memcmp(cvt->code, empty, 3)) 3978 continue; 3979 3980 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; 3981 switch (cvt->code[1] & 0x0c) { 3982 /* default - because compiler doesn't see that we've enumerated all cases */ 3983 default: 3984 case 0x00: 3985 width = height * 4 / 3; 3986 break; 3987 case 0x04: 3988 width = height * 16 / 9; 3989 break; 3990 case 0x08: 3991 width = height * 16 / 10; 3992 break; 3993 case 0x0c: 3994 width = height * 15 / 9; 3995 break; 3996 } 3997 3998 for (j = 1; j < 5; j++) { 3999 if (cvt->code[2] & (1 << j)) { 4000 newmode = drm_cvt_mode(dev, width, height, 4001 rates[j], j == 0, 4002 false, false); 4003 if (newmode) { 4004 drm_mode_probed_add(connector, newmode); 4005 modes++; 4006 } 4007 } 4008 } 4009 } 4010 4011 return modes; 4012 } 4013 4014 static void 4015 do_cvt_mode(const struct detailed_timing *timing, void *c) 4016 { 4017 struct detailed_mode_closure *closure = c; 4018 4019 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE)) 4020 return; 4021 4022 closure->modes += drm_cvt_modes(closure->connector, timing); 4023 } 4024 4025 static int 4026 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) 4027 { 4028 struct detailed_mode_closure closure = { 4029 .connector = connector, 4030 .drm_edid = drm_edid, 4031 }; 4032 4033 if (drm_edid->edid->revision >= 3) 4034 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure); 4035 4036 /* XXX should also look for CVT codes in VTB blocks */ 4037 4038 return closure.modes; 4039 } 4040 4041 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, 4042 struct drm_display_mode *mode); 4043 4044 static void 4045 do_detailed_mode(const struct detailed_timing *timing, void *c) 4046 { 4047 struct detailed_mode_closure *closure = c; 4048 struct drm_display_mode *newmode; 4049 4050 if (!is_detailed_timing_descriptor(timing)) 4051 return; 4052 4053 newmode = drm_mode_detailed(closure->connector, 4054 closure->drm_edid, timing); 4055 if (!newmode) 4056 return; 4057 4058 if (closure->preferred) 4059 newmode->type |= DRM_MODE_TYPE_PREFERRED; 4060 4061 /* 4062 * Detailed modes are limited to 10kHz pixel clock resolution, 4063 * so fix up anything that looks like CEA/HDMI mode, but the clock 4064 * is just slightly off. 4065 */ 4066 fixup_detailed_cea_mode_clock(closure->connector, newmode); 4067 4068 drm_mode_probed_add(closure->connector, newmode); 4069 closure->modes++; 4070 closure->preferred = false; 4071 } 4072 4073 /* 4074 * add_detailed_modes - Add modes from detailed timings 4075 * @connector: attached connector 4076 * @drm_edid: EDID block to scan 4077 */ 4078 static int add_detailed_modes(struct drm_connector *connector, 4079 const struct drm_edid *drm_edid) 4080 { 4081 struct detailed_mode_closure closure = { 4082 .connector = connector, 4083 .drm_edid = drm_edid, 4084 }; 4085 4086 if (drm_edid->edid->revision >= 4) 4087 closure.preferred = true; /* first detailed timing is always preferred */ 4088 else 4089 closure.preferred = 4090 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING; 4091 4092 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure); 4093 4094 return closure.modes; 4095 } 4096 4097 /* CTA-861-H Table 60 - CTA Tag Codes */ 4098 #define CTA_DB_AUDIO 1 4099 #define CTA_DB_VIDEO 2 4100 #define CTA_DB_VENDOR 3 4101 #define CTA_DB_SPEAKER 4 4102 #define CTA_DB_EXTENDED_TAG 7 4103 4104 /* CTA-861-H Table 62 - CTA Extended Tag Codes */ 4105 #define CTA_EXT_DB_VIDEO_CAP 0 4106 #define CTA_EXT_DB_VENDOR 1 4107 #define CTA_EXT_DB_HDR_STATIC_METADATA 6 4108 #define CTA_EXT_DB_420_VIDEO_DATA 14 4109 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15 4110 #define CTA_EXT_DB_HF_EEODB 0x78 4111 #define CTA_EXT_DB_HF_SCDB 0x79 4112 4113 #define EDID_BASIC_AUDIO (1 << 6) 4114 #define EDID_CEA_YCRCB444 (1 << 5) 4115 #define EDID_CEA_YCRCB422 (1 << 4) 4116 #define EDID_CEA_VCDB_QS (1 << 6) 4117 4118 /* 4119 * Search EDID for CEA extension block. 4120 * 4121 * FIXME: Prefer not returning pointers to raw EDID data. 4122 */ 4123 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid, 4124 int ext_id, int *ext_index) 4125 { 4126 const u8 *edid_ext = NULL; 4127 int i; 4128 4129 /* No EDID or EDID extensions */ 4130 if (!drm_edid || !drm_edid_extension_block_count(drm_edid)) 4131 return NULL; 4132 4133 /* Find CEA extension */ 4134 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) { 4135 edid_ext = drm_edid_extension_block_data(drm_edid, i); 4136 if (edid_block_tag(edid_ext) == ext_id) 4137 break; 4138 } 4139 4140 if (i >= drm_edid_extension_block_count(drm_edid)) 4141 return NULL; 4142 4143 *ext_index = i + 1; 4144 4145 return edid_ext; 4146 } 4147 4148 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */ 4149 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid) 4150 { 4151 const struct displayid_block *block; 4152 struct displayid_iter iter; 4153 int ext_index = 0; 4154 bool found = false; 4155 4156 /* Look for a top level CEA extension block */ 4157 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index)) 4158 return true; 4159 4160 /* CEA blocks can also be found embedded in a DisplayID block */ 4161 displayid_iter_edid_begin(drm_edid, &iter); 4162 displayid_iter_for_each(block, &iter) { 4163 if (block->tag == DATA_BLOCK_CTA) { 4164 found = true; 4165 break; 4166 } 4167 } 4168 displayid_iter_end(&iter); 4169 4170 return found; 4171 } 4172 4173 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic) 4174 { 4175 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127); 4176 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219); 4177 4178 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1)) 4179 return &edid_cea_modes_1[vic - 1]; 4180 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193)) 4181 return &edid_cea_modes_193[vic - 193]; 4182 return NULL; 4183 } 4184 4185 static u8 cea_num_vics(void) 4186 { 4187 return 193 + ARRAY_SIZE(edid_cea_modes_193); 4188 } 4189 4190 static u8 cea_next_vic(u8 vic) 4191 { 4192 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1)) 4193 vic = 193; 4194 return vic; 4195 } 4196 4197 /* 4198 * Calculate the alternate clock for the CEA mode 4199 * (60Hz vs. 59.94Hz etc.) 4200 */ 4201 static unsigned int 4202 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) 4203 { 4204 unsigned int clock = cea_mode->clock; 4205 4206 if (drm_mode_vrefresh(cea_mode) % 6 != 0) 4207 return clock; 4208 4209 /* 4210 * edid_cea_modes contains the 59.94Hz 4211 * variant for 240 and 480 line modes, 4212 * and the 60Hz variant otherwise. 4213 */ 4214 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) 4215 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000); 4216 else 4217 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001); 4218 4219 return clock; 4220 } 4221 4222 static bool 4223 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode) 4224 { 4225 /* 4226 * For certain VICs the spec allows the vertical 4227 * front porch to vary by one or two lines. 4228 * 4229 * cea_modes[] stores the variant with the shortest 4230 * vertical front porch. We can adjust the mode to 4231 * get the other variants by simply increasing the 4232 * vertical front porch length. 4233 */ 4234 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 || 4235 cea_mode_for_vic(9)->vtotal != 262 || 4236 cea_mode_for_vic(12)->vtotal != 262 || 4237 cea_mode_for_vic(13)->vtotal != 262 || 4238 cea_mode_for_vic(23)->vtotal != 312 || 4239 cea_mode_for_vic(24)->vtotal != 312 || 4240 cea_mode_for_vic(27)->vtotal != 312 || 4241 cea_mode_for_vic(28)->vtotal != 312); 4242 4243 if (((vic == 8 || vic == 9 || 4244 vic == 12 || vic == 13) && mode->vtotal < 263) || 4245 ((vic == 23 || vic == 24 || 4246 vic == 27 || vic == 28) && mode->vtotal < 314)) { 4247 mode->vsync_start++; 4248 mode->vsync_end++; 4249 mode->vtotal++; 4250 4251 return true; 4252 } 4253 4254 return false; 4255 } 4256 4257 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match, 4258 unsigned int clock_tolerance) 4259 { 4260 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4261 u8 vic; 4262 4263 if (!to_match->clock) 4264 return 0; 4265 4266 if (to_match->picture_aspect_ratio) 4267 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4268 4269 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { 4270 struct drm_display_mode cea_mode; 4271 unsigned int clock1, clock2; 4272 4273 drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); 4274 4275 /* Check both 60Hz and 59.94Hz */ 4276 clock1 = cea_mode.clock; 4277 clock2 = cea_mode_alternate_clock(&cea_mode); 4278 4279 if (abs(to_match->clock - clock1) > clock_tolerance && 4280 abs(to_match->clock - clock2) > clock_tolerance) 4281 continue; 4282 4283 do { 4284 if (drm_mode_match(to_match, &cea_mode, match_flags)) 4285 return vic; 4286 } while (cea_mode_alternate_timings(vic, &cea_mode)); 4287 } 4288 4289 return 0; 4290 } 4291 4292 /** 4293 * drm_match_cea_mode - look for a CEA mode matching given mode 4294 * @to_match: display mode 4295 * 4296 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 4297 * mode. 4298 */ 4299 u8 drm_match_cea_mode(const struct drm_display_mode *to_match) 4300 { 4301 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4302 u8 vic; 4303 4304 if (!to_match->clock) 4305 return 0; 4306 4307 if (to_match->picture_aspect_ratio) 4308 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4309 4310 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { 4311 struct drm_display_mode cea_mode; 4312 unsigned int clock1, clock2; 4313 4314 drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); 4315 4316 /* Check both 60Hz and 59.94Hz */ 4317 clock1 = cea_mode.clock; 4318 clock2 = cea_mode_alternate_clock(&cea_mode); 4319 4320 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) && 4321 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2)) 4322 continue; 4323 4324 do { 4325 if (drm_mode_match(to_match, &cea_mode, match_flags)) 4326 return vic; 4327 } while (cea_mode_alternate_timings(vic, &cea_mode)); 4328 } 4329 4330 return 0; 4331 } 4332 EXPORT_SYMBOL(drm_match_cea_mode); 4333 4334 static bool drm_valid_cea_vic(u8 vic) 4335 { 4336 return cea_mode_for_vic(vic) != NULL; 4337 } 4338 4339 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code) 4340 { 4341 const struct drm_display_mode *mode = cea_mode_for_vic(video_code); 4342 4343 if (mode) 4344 return mode->picture_aspect_ratio; 4345 4346 return HDMI_PICTURE_ASPECT_NONE; 4347 } 4348 4349 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code) 4350 { 4351 return edid_4k_modes[video_code].picture_aspect_ratio; 4352 } 4353 4354 /* 4355 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor 4356 * specific block). 4357 */ 4358 static unsigned int 4359 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) 4360 { 4361 return cea_mode_alternate_clock(hdmi_mode); 4362 } 4363 4364 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match, 4365 unsigned int clock_tolerance) 4366 { 4367 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4368 u8 vic; 4369 4370 if (!to_match->clock) 4371 return 0; 4372 4373 if (to_match->picture_aspect_ratio) 4374 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4375 4376 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 4377 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 4378 unsigned int clock1, clock2; 4379 4380 /* Make sure to also match alternate clocks */ 4381 clock1 = hdmi_mode->clock; 4382 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 4383 4384 if (abs(to_match->clock - clock1) > clock_tolerance && 4385 abs(to_match->clock - clock2) > clock_tolerance) 4386 continue; 4387 4388 if (drm_mode_match(to_match, hdmi_mode, match_flags)) 4389 return vic; 4390 } 4391 4392 return 0; 4393 } 4394 4395 /* 4396 * drm_match_hdmi_mode - look for a HDMI mode matching given mode 4397 * @to_match: display mode 4398 * 4399 * An HDMI mode is one defined in the HDMI vendor specific block. 4400 * 4401 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. 4402 */ 4403 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) 4404 { 4405 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; 4406 u8 vic; 4407 4408 if (!to_match->clock) 4409 return 0; 4410 4411 if (to_match->picture_aspect_ratio) 4412 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; 4413 4414 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 4415 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 4416 unsigned int clock1, clock2; 4417 4418 /* Make sure to also match alternate clocks */ 4419 clock1 = hdmi_mode->clock; 4420 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 4421 4422 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || 4423 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && 4424 drm_mode_match(to_match, hdmi_mode, match_flags)) 4425 return vic; 4426 } 4427 return 0; 4428 } 4429 4430 static bool drm_valid_hdmi_vic(u8 vic) 4431 { 4432 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes); 4433 } 4434 4435 static int add_alternate_cea_modes(struct drm_connector *connector, 4436 const struct drm_edid *drm_edid) 4437 { 4438 struct drm_device *dev = connector->dev; 4439 struct drm_display_mode *mode, *tmp; 4440 LIST_HEAD(list); 4441 int modes = 0; 4442 4443 /* Don't add CTA modes if the CTA extension block is missing */ 4444 if (!drm_edid_has_cta_extension(drm_edid)) 4445 return 0; 4446 4447 /* 4448 * Go through all probed modes and create a new mode 4449 * with the alternate clock for certain CEA modes. 4450 */ 4451 list_for_each_entry(mode, &connector->probed_modes, head) { 4452 const struct drm_display_mode *cea_mode = NULL; 4453 struct drm_display_mode *newmode; 4454 u8 vic = drm_match_cea_mode(mode); 4455 unsigned int clock1, clock2; 4456 4457 if (drm_valid_cea_vic(vic)) { 4458 cea_mode = cea_mode_for_vic(vic); 4459 clock2 = cea_mode_alternate_clock(cea_mode); 4460 } else { 4461 vic = drm_match_hdmi_mode(mode); 4462 if (drm_valid_hdmi_vic(vic)) { 4463 cea_mode = &edid_4k_modes[vic]; 4464 clock2 = hdmi_mode_alternate_clock(cea_mode); 4465 } 4466 } 4467 4468 if (!cea_mode) 4469 continue; 4470 4471 clock1 = cea_mode->clock; 4472 4473 if (clock1 == clock2) 4474 continue; 4475 4476 if (mode->clock != clock1 && mode->clock != clock2) 4477 continue; 4478 4479 newmode = drm_mode_duplicate(dev, cea_mode); 4480 if (!newmode) 4481 continue; 4482 4483 /* Carry over the stereo flags */ 4484 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; 4485 4486 /* 4487 * The current mode could be either variant. Make 4488 * sure to pick the "other" clock for the new mode. 4489 */ 4490 if (mode->clock != clock1) 4491 newmode->clock = clock1; 4492 else 4493 newmode->clock = clock2; 4494 4495 list_add_tail(&newmode->head, &list); 4496 } 4497 4498 list_for_each_entry_safe(mode, tmp, &list, head) { 4499 list_del(&mode->head); 4500 drm_mode_probed_add(connector, mode); 4501 modes++; 4502 } 4503 4504 return modes; 4505 } 4506 4507 static u8 svd_to_vic(u8 svd) 4508 { 4509 /* 0-6 bit vic, 7th bit native mode indicator */ 4510 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192)) 4511 return svd & 127; 4512 4513 return svd; 4514 } 4515 4516 /* 4517 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in 4518 * the EDID, or NULL on errors. 4519 */ 4520 static struct drm_display_mode * 4521 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index) 4522 { 4523 const struct drm_display_info *info = &connector->display_info; 4524 struct drm_device *dev = connector->dev; 4525 4526 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index]) 4527 return NULL; 4528 4529 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]); 4530 } 4531 4532 /* 4533 * do_y420vdb_modes - Parse YCBCR 420 only modes 4534 * @connector: connector corresponding to the HDMI sink 4535 * @svds: start of the data block of CEA YCBCR 420 VDB 4536 * @len: length of the CEA YCBCR 420 VDB 4537 * 4538 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB) 4539 * which contains modes which can be supported in YCBCR 420 4540 * output format only. 4541 */ 4542 static int do_y420vdb_modes(struct drm_connector *connector, 4543 const u8 *svds, u8 svds_len) 4544 { 4545 struct drm_device *dev = connector->dev; 4546 int modes = 0, i; 4547 4548 for (i = 0; i < svds_len; i++) { 4549 u8 vic = svd_to_vic(svds[i]); 4550 struct drm_display_mode *newmode; 4551 4552 if (!drm_valid_cea_vic(vic)) 4553 continue; 4554 4555 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic)); 4556 if (!newmode) 4557 break; 4558 drm_mode_probed_add(connector, newmode); 4559 modes++; 4560 } 4561 4562 return modes; 4563 } 4564 4565 /** 4566 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC 4567 * @dev: DRM device 4568 * @video_code: CEA VIC of the mode 4569 * 4570 * Creates a new mode matching the specified CEA VIC. 4571 * 4572 * Returns: A new drm_display_mode on success or NULL on failure 4573 */ 4574 struct drm_display_mode * 4575 drm_display_mode_from_cea_vic(struct drm_device *dev, 4576 u8 video_code) 4577 { 4578 const struct drm_display_mode *cea_mode; 4579 struct drm_display_mode *newmode; 4580 4581 cea_mode = cea_mode_for_vic(video_code); 4582 if (!cea_mode) 4583 return NULL; 4584 4585 newmode = drm_mode_duplicate(dev, cea_mode); 4586 if (!newmode) 4587 return NULL; 4588 4589 return newmode; 4590 } 4591 EXPORT_SYMBOL(drm_display_mode_from_cea_vic); 4592 4593 /* Add modes based on VICs parsed in parse_cta_vdb() */ 4594 static int add_cta_vdb_modes(struct drm_connector *connector) 4595 { 4596 const struct drm_display_info *info = &connector->display_info; 4597 int i, modes = 0; 4598 4599 if (!info->vics) 4600 return 0; 4601 4602 for (i = 0; i < info->vics_len; i++) { 4603 struct drm_display_mode *mode; 4604 4605 mode = drm_display_mode_from_vic_index(connector, i); 4606 if (mode) { 4607 drm_mode_probed_add(connector, mode); 4608 modes++; 4609 } 4610 } 4611 4612 return modes; 4613 } 4614 4615 struct stereo_mandatory_mode { 4616 int width, height, vrefresh; 4617 unsigned int flags; 4618 }; 4619 4620 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { 4621 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4622 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, 4623 { 1920, 1080, 50, 4624 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 4625 { 1920, 1080, 60, 4626 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 4627 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4628 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, 4629 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 4630 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } 4631 }; 4632 4633 static bool 4634 stereo_match_mandatory(const struct drm_display_mode *mode, 4635 const struct stereo_mandatory_mode *stereo_mode) 4636 { 4637 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 4638 4639 return mode->hdisplay == stereo_mode->width && 4640 mode->vdisplay == stereo_mode->height && 4641 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && 4642 drm_mode_vrefresh(mode) == stereo_mode->vrefresh; 4643 } 4644 4645 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) 4646 { 4647 struct drm_device *dev = connector->dev; 4648 const struct drm_display_mode *mode; 4649 struct list_head stereo_modes; 4650 int modes = 0, i; 4651 4652 INIT_LIST_HEAD(&stereo_modes); 4653 4654 list_for_each_entry(mode, &connector->probed_modes, head) { 4655 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { 4656 const struct stereo_mandatory_mode *mandatory; 4657 struct drm_display_mode *new_mode; 4658 4659 if (!stereo_match_mandatory(mode, 4660 &stereo_mandatory_modes[i])) 4661 continue; 4662 4663 mandatory = &stereo_mandatory_modes[i]; 4664 new_mode = drm_mode_duplicate(dev, mode); 4665 if (!new_mode) 4666 continue; 4667 4668 new_mode->flags |= mandatory->flags; 4669 list_add_tail(&new_mode->head, &stereo_modes); 4670 modes++; 4671 } 4672 } 4673 4674 list_splice_tail(&stereo_modes, &connector->probed_modes); 4675 4676 return modes; 4677 } 4678 4679 static int add_hdmi_mode(struct drm_connector *connector, u8 vic) 4680 { 4681 struct drm_device *dev = connector->dev; 4682 struct drm_display_mode *newmode; 4683 4684 if (!drm_valid_hdmi_vic(vic)) { 4685 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n", 4686 connector->base.id, connector->name, vic); 4687 return 0; 4688 } 4689 4690 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); 4691 if (!newmode) 4692 return 0; 4693 4694 drm_mode_probed_add(connector, newmode); 4695 4696 return 1; 4697 } 4698 4699 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, 4700 int vic_index) 4701 { 4702 struct drm_display_mode *newmode; 4703 int modes = 0; 4704 4705 if (structure & (1 << 0)) { 4706 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4707 if (newmode) { 4708 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; 4709 drm_mode_probed_add(connector, newmode); 4710 modes++; 4711 } 4712 } 4713 if (structure & (1 << 6)) { 4714 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4715 if (newmode) { 4716 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 4717 drm_mode_probed_add(connector, newmode); 4718 modes++; 4719 } 4720 } 4721 if (structure & (1 << 8)) { 4722 newmode = drm_display_mode_from_vic_index(connector, vic_index); 4723 if (newmode) { 4724 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 4725 drm_mode_probed_add(connector, newmode); 4726 modes++; 4727 } 4728 } 4729 4730 return modes; 4731 } 4732 4733 static bool hdmi_vsdb_latency_present(const u8 *db) 4734 { 4735 return db[8] & BIT(7); 4736 } 4737 4738 static bool hdmi_vsdb_i_latency_present(const u8 *db) 4739 { 4740 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6); 4741 } 4742 4743 static int hdmi_vsdb_latency_length(const u8 *db) 4744 { 4745 if (hdmi_vsdb_i_latency_present(db)) 4746 return 4; 4747 else if (hdmi_vsdb_latency_present(db)) 4748 return 2; 4749 else 4750 return 0; 4751 } 4752 4753 /* 4754 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block 4755 * @connector: connector corresponding to the HDMI sink 4756 * @db: start of the CEA vendor specific block 4757 * @len: length of the CEA block payload, ie. one can access up to db[len] 4758 * 4759 * Parses the HDMI VSDB looking for modes to add to @connector. This function 4760 * also adds the stereo 3d modes when applicable. 4761 */ 4762 static int 4763 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len) 4764 { 4765 int modes = 0, offset = 0, i, multi_present = 0, multi_len; 4766 u8 vic_len, hdmi_3d_len = 0; 4767 u16 mask; 4768 u16 structure_all; 4769 4770 if (len < 8) 4771 goto out; 4772 4773 /* no HDMI_Video_Present */ 4774 if (!(db[8] & (1 << 5))) 4775 goto out; 4776 4777 offset += hdmi_vsdb_latency_length(db); 4778 4779 /* the declared length is not long enough for the 2 first bytes 4780 * of additional video format capabilities */ 4781 if (len < (8 + offset + 2)) 4782 goto out; 4783 4784 /* 3D_Present */ 4785 offset++; 4786 if (db[8 + offset] & (1 << 7)) { 4787 modes += add_hdmi_mandatory_stereo_modes(connector); 4788 4789 /* 3D_Multi_present */ 4790 multi_present = (db[8 + offset] & 0x60) >> 5; 4791 } 4792 4793 offset++; 4794 vic_len = db[8 + offset] >> 5; 4795 hdmi_3d_len = db[8 + offset] & 0x1f; 4796 4797 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { 4798 u8 vic; 4799 4800 vic = db[9 + offset + i]; 4801 modes += add_hdmi_mode(connector, vic); 4802 } 4803 offset += 1 + vic_len; 4804 4805 if (multi_present == 1) 4806 multi_len = 2; 4807 else if (multi_present == 2) 4808 multi_len = 4; 4809 else 4810 multi_len = 0; 4811 4812 if (len < (8 + offset + hdmi_3d_len - 1)) 4813 goto out; 4814 4815 if (hdmi_3d_len < multi_len) 4816 goto out; 4817 4818 if (multi_present == 1 || multi_present == 2) { 4819 /* 3D_Structure_ALL */ 4820 structure_all = (db[8 + offset] << 8) | db[9 + offset]; 4821 4822 /* check if 3D_MASK is present */ 4823 if (multi_present == 2) 4824 mask = (db[10 + offset] << 8) | db[11 + offset]; 4825 else 4826 mask = 0xffff; 4827 4828 for (i = 0; i < 16; i++) { 4829 if (mask & (1 << i)) 4830 modes += add_3d_struct_modes(connector, 4831 structure_all, i); 4832 } 4833 } 4834 4835 offset += multi_len; 4836 4837 for (i = 0; i < (hdmi_3d_len - multi_len); i++) { 4838 int vic_index; 4839 struct drm_display_mode *newmode = NULL; 4840 unsigned int newflag = 0; 4841 bool detail_present; 4842 4843 detail_present = ((db[8 + offset + i] & 0x0f) > 7); 4844 4845 if (detail_present && (i + 1 == hdmi_3d_len - multi_len)) 4846 break; 4847 4848 /* 2D_VIC_order_X */ 4849 vic_index = db[8 + offset + i] >> 4; 4850 4851 /* 3D_Structure_X */ 4852 switch (db[8 + offset + i] & 0x0f) { 4853 case 0: 4854 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING; 4855 break; 4856 case 6: 4857 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 4858 break; 4859 case 8: 4860 /* 3D_Detail_X */ 4861 if ((db[9 + offset + i] >> 4) == 1) 4862 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 4863 break; 4864 } 4865 4866 if (newflag != 0) { 4867 newmode = drm_display_mode_from_vic_index(connector, 4868 vic_index); 4869 4870 if (newmode) { 4871 newmode->flags |= newflag; 4872 drm_mode_probed_add(connector, newmode); 4873 modes++; 4874 } 4875 } 4876 4877 if (detail_present) 4878 i++; 4879 } 4880 4881 out: 4882 return modes; 4883 } 4884 4885 static int 4886 cea_revision(const u8 *cea) 4887 { 4888 /* 4889 * FIXME is this correct for the DispID variant? 4890 * The DispID spec doesn't really specify whether 4891 * this is the revision of the CEA extension or 4892 * the DispID CEA data block. And the only value 4893 * given as an example is 0. 4894 */ 4895 return cea[1]; 4896 } 4897 4898 /* 4899 * CTA Data Block iterator. 4900 * 4901 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID 4902 * CTA Data Blocks. 4903 * 4904 * struct cea_db *db: 4905 * struct cea_db_iter iter; 4906 * 4907 * cea_db_iter_edid_begin(edid, &iter); 4908 * cea_db_iter_for_each(db, &iter) { 4909 * // do stuff with db 4910 * } 4911 * cea_db_iter_end(&iter); 4912 */ 4913 struct cea_db_iter { 4914 struct drm_edid_iter edid_iter; 4915 struct displayid_iter displayid_iter; 4916 4917 /* Current Data Block Collection. */ 4918 const u8 *collection; 4919 4920 /* Current Data Block index in current collection. */ 4921 int index; 4922 4923 /* End index in current collection. */ 4924 int end; 4925 }; 4926 4927 /* CTA-861-H section 7.4 CTA Data BLock Collection */ 4928 struct cea_db { 4929 u8 tag_length; 4930 u8 data[]; 4931 } __packed; 4932 4933 static int cea_db_tag(const struct cea_db *db) 4934 { 4935 return db->tag_length >> 5; 4936 } 4937 4938 static int cea_db_payload_len(const void *_db) 4939 { 4940 /* FIXME: Transition to passing struct cea_db * everywhere. */ 4941 const struct cea_db *db = _db; 4942 4943 return db->tag_length & 0x1f; 4944 } 4945 4946 static const void *cea_db_data(const struct cea_db *db) 4947 { 4948 return db->data; 4949 } 4950 4951 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag) 4952 { 4953 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG && 4954 cea_db_payload_len(db) >= 1 && 4955 db->data[0] == tag; 4956 } 4957 4958 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui) 4959 { 4960 const u8 *data = cea_db_data(db); 4961 4962 return cea_db_tag(db) == CTA_DB_VENDOR && 4963 cea_db_payload_len(db) >= 3 && 4964 oui(data[2], data[1], data[0]) == vendor_oui; 4965 } 4966 4967 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid, 4968 struct cea_db_iter *iter) 4969 { 4970 memset(iter, 0, sizeof(*iter)); 4971 4972 drm_edid_iter_begin(drm_edid, &iter->edid_iter); 4973 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter); 4974 } 4975 4976 static const struct cea_db * 4977 __cea_db_iter_current_block(const struct cea_db_iter *iter) 4978 { 4979 const struct cea_db *db; 4980 4981 if (!iter->collection) 4982 return NULL; 4983 4984 db = (const struct cea_db *)&iter->collection[iter->index]; 4985 4986 if (iter->index + sizeof(*db) <= iter->end && 4987 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end) 4988 return db; 4989 4990 return NULL; 4991 } 4992 4993 /* 4994 * References: 4995 * - CTA-861-H section 7.3.3 CTA Extension Version 3 4996 */ 4997 static int cea_db_collection_size(const u8 *cta) 4998 { 4999 u8 d = cta[2]; 5000 5001 if (d < 4 || d > 127) 5002 return 0; 5003 5004 return d - 4; 5005 } 5006 5007 /* 5008 * References: 5009 * - VESA E-EDID v1.4 5010 * - CTA-861-H section 7.3.3 CTA Extension Version 3 5011 */ 5012 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter) 5013 { 5014 const u8 *ext; 5015 5016 drm_edid_iter_for_each(ext, &iter->edid_iter) { 5017 int size; 5018 5019 /* Only support CTA Extension revision 3+ */ 5020 if (ext[0] != CEA_EXT || cea_revision(ext) < 3) 5021 continue; 5022 5023 size = cea_db_collection_size(ext); 5024 if (!size) 5025 continue; 5026 5027 iter->index = 4; 5028 iter->end = iter->index + size; 5029 5030 return ext; 5031 } 5032 5033 return NULL; 5034 } 5035 5036 /* 5037 * References: 5038 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block 5039 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block 5040 * 5041 * Note that the above do not specify any connection between DisplayID Data 5042 * Block revision and CTA Extension versions. 5043 */ 5044 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter) 5045 { 5046 const struct displayid_block *block; 5047 5048 displayid_iter_for_each(block, &iter->displayid_iter) { 5049 if (block->tag != DATA_BLOCK_CTA) 5050 continue; 5051 5052 /* 5053 * The displayid iterator has already verified the block bounds 5054 * in displayid_iter_block(). 5055 */ 5056 iter->index = sizeof(*block); 5057 iter->end = iter->index + block->num_bytes; 5058 5059 return block; 5060 } 5061 5062 return NULL; 5063 } 5064 5065 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter) 5066 { 5067 const struct cea_db *db; 5068 5069 if (iter->collection) { 5070 /* Current collection should always be valid. */ 5071 db = __cea_db_iter_current_block(iter); 5072 if (WARN_ON(!db)) { 5073 iter->collection = NULL; 5074 return NULL; 5075 } 5076 5077 /* Next block in CTA Data Block Collection */ 5078 iter->index += sizeof(*db) + cea_db_payload_len(db); 5079 5080 db = __cea_db_iter_current_block(iter); 5081 if (db) 5082 return db; 5083 } 5084 5085 for (;;) { 5086 /* 5087 * Find the next CTA Data Block Collection. First iterate all 5088 * the EDID CTA Extensions, then all the DisplayID CTA blocks. 5089 * 5090 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID 5091 * Extension, it's recommended that DisplayID extensions are 5092 * exposed after all of the CTA Extensions. 5093 */ 5094 iter->collection = __cea_db_iter_edid_next(iter); 5095 if (!iter->collection) 5096 iter->collection = __cea_db_iter_displayid_next(iter); 5097 5098 if (!iter->collection) 5099 return NULL; 5100 5101 db = __cea_db_iter_current_block(iter); 5102 if (db) 5103 return db; 5104 } 5105 } 5106 5107 #define cea_db_iter_for_each(__db, __iter) \ 5108 while (((__db) = __cea_db_iter_next(__iter))) 5109 5110 static void cea_db_iter_end(struct cea_db_iter *iter) 5111 { 5112 displayid_iter_end(&iter->displayid_iter); 5113 drm_edid_iter_end(&iter->edid_iter); 5114 5115 memset(iter, 0, sizeof(*iter)); 5116 } 5117 5118 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db) 5119 { 5120 return cea_db_is_vendor(db, HDMI_IEEE_OUI) && 5121 cea_db_payload_len(db) >= 5; 5122 } 5123 5124 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db) 5125 { 5126 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) && 5127 cea_db_payload_len(db) >= 7; 5128 } 5129 5130 static bool cea_db_is_hdmi_forum_eeodb(const void *db) 5131 { 5132 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) && 5133 cea_db_payload_len(db) >= 2; 5134 } 5135 5136 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db) 5137 { 5138 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) && 5139 cea_db_payload_len(db) == 21; 5140 } 5141 5142 static bool cea_db_is_vcdb(const struct cea_db *db) 5143 { 5144 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) && 5145 cea_db_payload_len(db) == 2; 5146 } 5147 5148 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db) 5149 { 5150 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) && 5151 cea_db_payload_len(db) >= 7; 5152 } 5153 5154 static bool cea_db_is_y420cmdb(const struct cea_db *db) 5155 { 5156 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP); 5157 } 5158 5159 static bool cea_db_is_y420vdb(const struct cea_db *db) 5160 { 5161 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA); 5162 } 5163 5164 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db) 5165 { 5166 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) && 5167 cea_db_payload_len(db) >= 3; 5168 } 5169 5170 /* 5171 * Get the HF-EEODB override extension block count from EDID. 5172 * 5173 * The passed in EDID may be partially read, as long as it has at least two 5174 * blocks (base block and one extension block) if EDID extension count is > 0. 5175 * 5176 * Note that this is *not* how you should parse CTA Data Blocks in general; this 5177 * is only to handle partially read EDIDs. Normally, use the CTA Data Block 5178 * iterators instead. 5179 * 5180 * References: 5181 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block 5182 */ 5183 static int edid_hfeeodb_extension_block_count(const struct edid *edid) 5184 { 5185 const u8 *cta; 5186 5187 /* No extensions according to base block, no HF-EEODB. */ 5188 if (!edid_extension_block_count(edid)) 5189 return 0; 5190 5191 /* HF-EEODB is always in the first EDID extension block only */ 5192 cta = edid_extension_block_data(edid, 0); 5193 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3) 5194 return 0; 5195 5196 /* Need to have the data block collection, and at least 3 bytes. */ 5197 if (cea_db_collection_size(cta) < 3) 5198 return 0; 5199 5200 /* 5201 * Sinks that include the HF-EEODB in their E-EDID shall include one and 5202 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4 5203 * through 6 of Block 1 of the E-EDID. 5204 */ 5205 if (!cea_db_is_hdmi_forum_eeodb(&cta[4])) 5206 return 0; 5207 5208 return cta[4 + 2]; 5209 } 5210 5211 /* 5212 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB) 5213 * 5214 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB, 5215 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444 5216 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can 5217 * support YCBCR420 output too. 5218 */ 5219 static void parse_cta_y420cmdb(struct drm_connector *connector, 5220 const struct cea_db *db, u64 *y420cmdb_map) 5221 { 5222 struct drm_display_info *info = &connector->display_info; 5223 int i, map_len = cea_db_payload_len(db) - 1; 5224 const u8 *data = cea_db_data(db) + 1; 5225 u64 map = 0; 5226 5227 if (map_len == 0) { 5228 /* All CEA modes support ycbcr420 sampling also.*/ 5229 map = U64_MAX; 5230 goto out; 5231 } 5232 5233 /* 5234 * This map indicates which of the existing CEA block modes 5235 * from VDB can support YCBCR420 output too. So if bit=0 is 5236 * set, first mode from VDB can support YCBCR420 output too. 5237 * We will parse and keep this map, before parsing VDB itself 5238 * to avoid going through the same block again and again. 5239 * 5240 * Spec is not clear about max possible size of this block. 5241 * Clamping max bitmap block size at 8 bytes. Every byte can 5242 * address 8 CEA modes, in this way this map can address 5243 * 8*8 = first 64 SVDs. 5244 */ 5245 if (WARN_ON_ONCE(map_len > 8)) 5246 map_len = 8; 5247 5248 for (i = 0; i < map_len; i++) 5249 map |= (u64)data[i] << (8 * i); 5250 5251 out: 5252 if (map) 5253 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; 5254 5255 *y420cmdb_map = map; 5256 } 5257 5258 static int add_cea_modes(struct drm_connector *connector, 5259 const struct drm_edid *drm_edid) 5260 { 5261 const struct cea_db *db; 5262 struct cea_db_iter iter; 5263 int modes; 5264 5265 /* CTA VDB block VICs parsed earlier */ 5266 modes = add_cta_vdb_modes(connector); 5267 5268 cea_db_iter_edid_begin(drm_edid, &iter); 5269 cea_db_iter_for_each(db, &iter) { 5270 if (cea_db_is_hdmi_vsdb(db)) { 5271 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db, 5272 cea_db_payload_len(db)); 5273 } else if (cea_db_is_y420vdb(db)) { 5274 const u8 *vdb420 = cea_db_data(db) + 1; 5275 5276 /* Add 4:2:0(only) modes present in EDID */ 5277 modes += do_y420vdb_modes(connector, vdb420, 5278 cea_db_payload_len(db) - 1); 5279 } 5280 } 5281 cea_db_iter_end(&iter); 5282 5283 return modes; 5284 } 5285 5286 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, 5287 struct drm_display_mode *mode) 5288 { 5289 const struct drm_display_mode *cea_mode; 5290 int clock1, clock2, clock; 5291 u8 vic; 5292 const char *type; 5293 5294 /* 5295 * allow 5kHz clock difference either way to account for 5296 * the 10kHz clock resolution limit of detailed timings. 5297 */ 5298 vic = drm_match_cea_mode_clock_tolerance(mode, 5); 5299 if (drm_valid_cea_vic(vic)) { 5300 type = "CEA"; 5301 cea_mode = cea_mode_for_vic(vic); 5302 clock1 = cea_mode->clock; 5303 clock2 = cea_mode_alternate_clock(cea_mode); 5304 } else { 5305 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5); 5306 if (drm_valid_hdmi_vic(vic)) { 5307 type = "HDMI"; 5308 cea_mode = &edid_4k_modes[vic]; 5309 clock1 = cea_mode->clock; 5310 clock2 = hdmi_mode_alternate_clock(cea_mode); 5311 } else { 5312 return; 5313 } 5314 } 5315 5316 /* pick whichever is closest */ 5317 if (abs(mode->clock - clock1) < abs(mode->clock - clock2)) 5318 clock = clock1; 5319 else 5320 clock = clock2; 5321 5322 if (mode->clock == clock) 5323 return; 5324 5325 drm_dbg_kms(connector->dev, 5326 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n", 5327 connector->base.id, connector->name, 5328 type, vic, mode->clock, clock); 5329 mode->clock = clock; 5330 } 5331 5332 static void drm_calculate_luminance_range(struct drm_connector *connector) 5333 { 5334 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1; 5335 struct drm_luminance_range_info *luminance_range = 5336 &connector->display_info.luminance_range; 5337 static const u8 pre_computed_values[] = { 5338 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 5339 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98 5340 }; 5341 u32 max_avg, min_cll, max, min, q, r; 5342 5343 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1))) 5344 return; 5345 5346 max_avg = hdr_metadata->max_fall; 5347 min_cll = hdr_metadata->min_cll; 5348 5349 /* 5350 * From the specification (CTA-861-G), for calculating the maximum 5351 * luminance we need to use: 5352 * Luminance = 50*2**(CV/32) 5353 * Where CV is a one-byte value. 5354 * For calculating this expression we may need float point precision; 5355 * to avoid this complexity level, we take advantage that CV is divided 5356 * by a constant. From the Euclids division algorithm, we know that CV 5357 * can be written as: CV = 32*q + r. Next, we replace CV in the 5358 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just 5359 * need to pre-compute the value of r/32. For pre-computing the values 5360 * We just used the following Ruby line: 5361 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round} 5362 * The results of the above expressions can be verified at 5363 * pre_computed_values. 5364 */ 5365 q = max_avg >> 5; 5366 r = max_avg % 32; 5367 max = (1 << q) * pre_computed_values[r]; 5368 5369 /* min luminance: maxLum * (CV/255)^2 / 100 */ 5370 q = DIV_ROUND_CLOSEST(min_cll, 255); 5371 min = max * DIV_ROUND_CLOSEST((q * q), 100); 5372 5373 luminance_range->min_luminance = min; 5374 luminance_range->max_luminance = max; 5375 } 5376 5377 static uint8_t eotf_supported(const u8 *edid_ext) 5378 { 5379 return edid_ext[2] & 5380 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) | 5381 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) | 5382 BIT(HDMI_EOTF_SMPTE_ST2084) | 5383 BIT(HDMI_EOTF_BT_2100_HLG)); 5384 } 5385 5386 static uint8_t hdr_metadata_type(const u8 *edid_ext) 5387 { 5388 return edid_ext[3] & 5389 BIT(HDMI_STATIC_METADATA_TYPE1); 5390 } 5391 5392 static void 5393 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db) 5394 { 5395 u16 len; 5396 5397 len = cea_db_payload_len(db); 5398 5399 connector->hdr_sink_metadata.hdmi_type1.eotf = 5400 eotf_supported(db); 5401 connector->hdr_sink_metadata.hdmi_type1.metadata_type = 5402 hdr_metadata_type(db); 5403 5404 if (len >= 4) 5405 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4]; 5406 if (len >= 5) 5407 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5]; 5408 if (len >= 6) { 5409 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6]; 5410 5411 /* Calculate only when all values are available */ 5412 drm_calculate_luminance_range(connector); 5413 } 5414 } 5415 5416 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ 5417 static void 5418 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db) 5419 { 5420 u8 len = cea_db_payload_len(db); 5421 5422 if (len >= 6 && (db[6] & (1 << 7))) 5423 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI; 5424 5425 if (len >= 10 && hdmi_vsdb_latency_present(db)) { 5426 connector->latency_present[0] = true; 5427 connector->video_latency[0] = db[9]; 5428 connector->audio_latency[0] = db[10]; 5429 } 5430 5431 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) { 5432 connector->latency_present[1] = true; 5433 connector->video_latency[1] = db[11]; 5434 connector->audio_latency[1] = db[12]; 5435 } 5436 5437 drm_dbg_kms(connector->dev, 5438 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n", 5439 connector->base.id, connector->name, 5440 connector->latency_present[0], connector->latency_present[1], 5441 connector->video_latency[0], connector->video_latency[1], 5442 connector->audio_latency[0], connector->audio_latency[1]); 5443 } 5444 5445 static void 5446 monitor_name(const struct detailed_timing *timing, void *data) 5447 { 5448 const char **res = data; 5449 5450 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME)) 5451 return; 5452 5453 *res = timing->data.other_data.data.str.str; 5454 } 5455 5456 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13]) 5457 { 5458 const char *edid_name = NULL; 5459 int mnl; 5460 5461 if (!drm_edid || !name) 5462 return 0; 5463 5464 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name); 5465 for (mnl = 0; edid_name && mnl < 13; mnl++) { 5466 if (edid_name[mnl] == 0x0a) 5467 break; 5468 5469 name[mnl] = edid_name[mnl]; 5470 } 5471 5472 return mnl; 5473 } 5474 5475 /** 5476 * drm_edid_get_monitor_name - fetch the monitor name from the edid 5477 * @edid: monitor EDID information 5478 * @name: pointer to a character array to hold the name of the monitor 5479 * @bufsize: The size of the name buffer (should be at least 14 chars.) 5480 * 5481 */ 5482 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize) 5483 { 5484 int name_length = 0; 5485 5486 if (bufsize <= 0) 5487 return; 5488 5489 if (edid) { 5490 char buf[13]; 5491 struct drm_edid drm_edid = { 5492 .edid = edid, 5493 .size = edid_size(edid), 5494 }; 5495 5496 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1); 5497 memcpy(name, buf, name_length); 5498 } 5499 5500 name[name_length] = '\0'; 5501 } 5502 EXPORT_SYMBOL(drm_edid_get_monitor_name); 5503 5504 static void clear_eld(struct drm_connector *connector) 5505 { 5506 memset(connector->eld, 0, sizeof(connector->eld)); 5507 5508 connector->latency_present[0] = false; 5509 connector->latency_present[1] = false; 5510 connector->video_latency[0] = 0; 5511 connector->audio_latency[0] = 0; 5512 connector->video_latency[1] = 0; 5513 connector->audio_latency[1] = 0; 5514 } 5515 5516 /* 5517 * Get 3-byte SAD buffer from struct cea_sad. 5518 */ 5519 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad) 5520 { 5521 sad[0] = cta_sad->format << 3 | cta_sad->channels; 5522 sad[1] = cta_sad->freq; 5523 sad[2] = cta_sad->byte2; 5524 } 5525 5526 /* 5527 * Set struct cea_sad from 3-byte SAD buffer. 5528 */ 5529 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad) 5530 { 5531 cta_sad->format = (sad[0] & 0x78) >> 3; 5532 cta_sad->channels = sad[0] & 0x07; 5533 cta_sad->freq = sad[1] & 0x7f; 5534 cta_sad->byte2 = sad[2]; 5535 } 5536 5537 /* 5538 * drm_edid_to_eld - build ELD from EDID 5539 * @connector: connector corresponding to the HDMI/DP sink 5540 * @drm_edid: EDID to parse 5541 * 5542 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The 5543 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in. 5544 */ 5545 static void drm_edid_to_eld(struct drm_connector *connector, 5546 const struct drm_edid *drm_edid) 5547 { 5548 const struct drm_display_info *info = &connector->display_info; 5549 const struct cea_db *db; 5550 struct cea_db_iter iter; 5551 uint8_t *eld = connector->eld; 5552 int total_sad_count = 0; 5553 int mnl; 5554 5555 if (!drm_edid) 5556 return; 5557 5558 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]); 5559 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n", 5560 connector->base.id, connector->name, 5561 &eld[DRM_ELD_MONITOR_NAME_STRING]); 5562 5563 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT; 5564 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl; 5565 5566 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D; 5567 5568 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0]; 5569 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1]; 5570 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0]; 5571 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1]; 5572 5573 cea_db_iter_edid_begin(drm_edid, &iter); 5574 cea_db_iter_for_each(db, &iter) { 5575 const u8 *data = cea_db_data(db); 5576 int len = cea_db_payload_len(db); 5577 int sad_count; 5578 5579 switch (cea_db_tag(db)) { 5580 case CTA_DB_AUDIO: 5581 /* Audio Data Block, contains SADs */ 5582 sad_count = min(len / 3, 15 - total_sad_count); 5583 if (sad_count >= 1) 5584 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)], 5585 data, sad_count * 3); 5586 total_sad_count += sad_count; 5587 break; 5588 case CTA_DB_SPEAKER: 5589 /* Speaker Allocation Data Block */ 5590 if (len >= 1) 5591 eld[DRM_ELD_SPEAKER] = data[0]; 5592 break; 5593 case CTA_DB_VENDOR: 5594 /* HDMI Vendor-Specific Data Block */ 5595 if (cea_db_is_hdmi_vsdb(db)) 5596 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db); 5597 break; 5598 default: 5599 break; 5600 } 5601 } 5602 cea_db_iter_end(&iter); 5603 5604 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT; 5605 5606 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || 5607 connector->connector_type == DRM_MODE_CONNECTOR_eDP) 5608 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP; 5609 else 5610 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI; 5611 5612 eld[DRM_ELD_BASELINE_ELD_LEN] = 5613 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4); 5614 5615 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n", 5616 connector->base.id, connector->name, 5617 drm_eld_size(eld), total_sad_count); 5618 } 5619 5620 static int _drm_edid_to_sad(const struct drm_edid *drm_edid, 5621 struct cea_sad **psads) 5622 { 5623 const struct cea_db *db; 5624 struct cea_db_iter iter; 5625 int count = 0; 5626 5627 cea_db_iter_edid_begin(drm_edid, &iter); 5628 cea_db_iter_for_each(db, &iter) { 5629 if (cea_db_tag(db) == CTA_DB_AUDIO) { 5630 struct cea_sad *sads; 5631 int i; 5632 5633 count = cea_db_payload_len(db) / 3; /* SAD is 3B */ 5634 sads = kcalloc(count, sizeof(*sads), GFP_KERNEL); 5635 *psads = sads; 5636 if (!sads) 5637 return -ENOMEM; 5638 for (i = 0; i < count; i++) 5639 drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]); 5640 break; 5641 } 5642 } 5643 cea_db_iter_end(&iter); 5644 5645 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count); 5646 5647 return count; 5648 } 5649 5650 /** 5651 * drm_edid_to_sad - extracts SADs from EDID 5652 * @edid: EDID to parse 5653 * @sads: pointer that will be set to the extracted SADs 5654 * 5655 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. 5656 * 5657 * Note: The returned pointer needs to be freed using kfree(). 5658 * 5659 * Return: The number of found SADs or negative number on error. 5660 */ 5661 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads) 5662 { 5663 struct drm_edid drm_edid; 5664 5665 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads); 5666 } 5667 EXPORT_SYMBOL(drm_edid_to_sad); 5668 5669 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid, 5670 u8 **sadb) 5671 { 5672 const struct cea_db *db; 5673 struct cea_db_iter iter; 5674 int count = 0; 5675 5676 cea_db_iter_edid_begin(drm_edid, &iter); 5677 cea_db_iter_for_each(db, &iter) { 5678 if (cea_db_tag(db) == CTA_DB_SPEAKER && 5679 cea_db_payload_len(db) == 3) { 5680 *sadb = kmemdup(db->data, cea_db_payload_len(db), 5681 GFP_KERNEL); 5682 if (!*sadb) 5683 return -ENOMEM; 5684 count = cea_db_payload_len(db); 5685 break; 5686 } 5687 } 5688 cea_db_iter_end(&iter); 5689 5690 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count); 5691 5692 return count; 5693 } 5694 5695 /** 5696 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID 5697 * @edid: EDID to parse 5698 * @sadb: pointer to the speaker block 5699 * 5700 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. 5701 * 5702 * Note: The returned pointer needs to be freed using kfree(). 5703 * 5704 * Return: The number of found Speaker Allocation Blocks or negative number on 5705 * error. 5706 */ 5707 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb) 5708 { 5709 struct drm_edid drm_edid; 5710 5711 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid), 5712 sadb); 5713 } 5714 EXPORT_SYMBOL(drm_edid_to_speaker_allocation); 5715 5716 /** 5717 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay 5718 * @connector: connector associated with the HDMI/DP sink 5719 * @mode: the display mode 5720 * 5721 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if 5722 * the sink doesn't support audio or video. 5723 */ 5724 int drm_av_sync_delay(struct drm_connector *connector, 5725 const struct drm_display_mode *mode) 5726 { 5727 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); 5728 int a, v; 5729 5730 if (!connector->latency_present[0]) 5731 return 0; 5732 if (!connector->latency_present[1]) 5733 i = 0; 5734 5735 a = connector->audio_latency[i]; 5736 v = connector->video_latency[i]; 5737 5738 /* 5739 * HDMI/DP sink doesn't support audio or video? 5740 */ 5741 if (a == 255 || v == 255) 5742 return 0; 5743 5744 /* 5745 * Convert raw EDID values to millisecond. 5746 * Treat unknown latency as 0ms. 5747 */ 5748 if (a) 5749 a = min(2 * (a - 1), 500); 5750 if (v) 5751 v = min(2 * (v - 1), 500); 5752 5753 return max(v - a, 0); 5754 } 5755 EXPORT_SYMBOL(drm_av_sync_delay); 5756 5757 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid) 5758 { 5759 const struct cea_db *db; 5760 struct cea_db_iter iter; 5761 bool hdmi = false; 5762 5763 /* 5764 * Because HDMI identifier is in Vendor Specific Block, 5765 * search it from all data blocks of CEA extension. 5766 */ 5767 cea_db_iter_edid_begin(drm_edid, &iter); 5768 cea_db_iter_for_each(db, &iter) { 5769 if (cea_db_is_hdmi_vsdb(db)) { 5770 hdmi = true; 5771 break; 5772 } 5773 } 5774 cea_db_iter_end(&iter); 5775 5776 return hdmi; 5777 } 5778 5779 /** 5780 * drm_detect_hdmi_monitor - detect whether monitor is HDMI 5781 * @edid: monitor EDID information 5782 * 5783 * Parse the CEA extension according to CEA-861-B. 5784 * 5785 * Drivers that have added the modes parsed from EDID to drm_display_info 5786 * should use &drm_display_info.is_hdmi instead of calling this function. 5787 * 5788 * Return: True if the monitor is HDMI, false if not or unknown. 5789 */ 5790 bool drm_detect_hdmi_monitor(const struct edid *edid) 5791 { 5792 struct drm_edid drm_edid; 5793 5794 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid)); 5795 } 5796 EXPORT_SYMBOL(drm_detect_hdmi_monitor); 5797 5798 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid) 5799 { 5800 struct drm_edid_iter edid_iter; 5801 const struct cea_db *db; 5802 struct cea_db_iter iter; 5803 const u8 *edid_ext; 5804 bool has_audio = false; 5805 5806 drm_edid_iter_begin(drm_edid, &edid_iter); 5807 drm_edid_iter_for_each(edid_ext, &edid_iter) { 5808 if (edid_ext[0] == CEA_EXT) { 5809 has_audio = edid_ext[3] & EDID_BASIC_AUDIO; 5810 if (has_audio) 5811 break; 5812 } 5813 } 5814 drm_edid_iter_end(&edid_iter); 5815 5816 if (has_audio) { 5817 DRM_DEBUG_KMS("Monitor has basic audio support\n"); 5818 goto end; 5819 } 5820 5821 cea_db_iter_edid_begin(drm_edid, &iter); 5822 cea_db_iter_for_each(db, &iter) { 5823 if (cea_db_tag(db) == CTA_DB_AUDIO) { 5824 const u8 *data = cea_db_data(db); 5825 int i; 5826 5827 for (i = 0; i < cea_db_payload_len(db); i += 3) 5828 DRM_DEBUG_KMS("CEA audio format %d\n", 5829 (data[i] >> 3) & 0xf); 5830 has_audio = true; 5831 break; 5832 } 5833 } 5834 cea_db_iter_end(&iter); 5835 5836 end: 5837 return has_audio; 5838 } 5839 5840 /** 5841 * drm_detect_monitor_audio - check monitor audio capability 5842 * @edid: EDID block to scan 5843 * 5844 * Monitor should have CEA extension block. 5845 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic 5846 * audio' only. If there is any audio extension block and supported 5847 * audio format, assume at least 'basic audio' support, even if 'basic 5848 * audio' is not defined in EDID. 5849 * 5850 * Return: True if the monitor supports audio, false otherwise. 5851 */ 5852 bool drm_detect_monitor_audio(const struct edid *edid) 5853 { 5854 struct drm_edid drm_edid; 5855 5856 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid)); 5857 } 5858 EXPORT_SYMBOL(drm_detect_monitor_audio); 5859 5860 5861 /** 5862 * drm_default_rgb_quant_range - default RGB quantization range 5863 * @mode: display mode 5864 * 5865 * Determine the default RGB quantization range for the mode, 5866 * as specified in CEA-861. 5867 * 5868 * Return: The default RGB quantization range for the mode 5869 */ 5870 enum hdmi_quantization_range 5871 drm_default_rgb_quant_range(const struct drm_display_mode *mode) 5872 { 5873 /* All CEA modes other than VIC 1 use limited quantization range. */ 5874 return drm_match_cea_mode(mode) > 1 ? 5875 HDMI_QUANTIZATION_RANGE_LIMITED : 5876 HDMI_QUANTIZATION_RANGE_FULL; 5877 } 5878 EXPORT_SYMBOL(drm_default_rgb_quant_range); 5879 5880 /* CTA-861 Video Data Block (CTA VDB) */ 5881 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db) 5882 { 5883 struct drm_display_info *info = &connector->display_info; 5884 int i, vic_index, len = cea_db_payload_len(db); 5885 const u8 *svds = cea_db_data(db); 5886 u8 *vics; 5887 5888 if (!len) 5889 return; 5890 5891 /* Gracefully handle multiple VDBs, however unlikely that is */ 5892 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL); 5893 if (!vics) 5894 return; 5895 5896 vic_index = info->vics_len; 5897 info->vics_len += len; 5898 info->vics = vics; 5899 5900 for (i = 0; i < len; i++) { 5901 u8 vic = svd_to_vic(svds[i]); 5902 5903 if (!drm_valid_cea_vic(vic)) 5904 vic = 0; 5905 5906 info->vics[vic_index++] = vic; 5907 } 5908 } 5909 5910 /* 5911 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB. 5912 * 5913 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed 5914 * using the VICs themselves. 5915 */ 5916 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map) 5917 { 5918 struct drm_display_info *info = &connector->display_info; 5919 struct drm_hdmi_info *hdmi = &info->hdmi; 5920 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map)); 5921 5922 for (i = 0; i < len; i++) { 5923 u8 vic = info->vics[i]; 5924 5925 if (vic && y420cmdb_map & BIT_ULL(i)) 5926 bitmap_set(hdmi->y420_cmdb_modes, vic, 1); 5927 } 5928 } 5929 5930 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic) 5931 { 5932 const struct drm_display_info *info = &connector->display_info; 5933 int i; 5934 5935 if (!vic || !info->vics) 5936 return false; 5937 5938 for (i = 0; i < info->vics_len; i++) { 5939 if (info->vics[i] == vic) 5940 return true; 5941 } 5942 5943 return false; 5944 } 5945 5946 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */ 5947 static void parse_cta_y420vdb(struct drm_connector *connector, 5948 const struct cea_db *db) 5949 { 5950 struct drm_display_info *info = &connector->display_info; 5951 struct drm_hdmi_info *hdmi = &info->hdmi; 5952 const u8 *svds = cea_db_data(db) + 1; 5953 int i; 5954 5955 for (i = 0; i < cea_db_payload_len(db) - 1; i++) { 5956 u8 vic = svd_to_vic(svds[i]); 5957 5958 if (!drm_valid_cea_vic(vic)) 5959 continue; 5960 5961 bitmap_set(hdmi->y420_vdb_modes, vic, 1); 5962 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; 5963 } 5964 } 5965 5966 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db) 5967 { 5968 struct drm_display_info *info = &connector->display_info; 5969 5970 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n", 5971 connector->base.id, connector->name, db[2]); 5972 5973 if (db[2] & EDID_CEA_VCDB_QS) 5974 info->rgb_quant_range_selectable = true; 5975 } 5976 5977 static 5978 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane) 5979 { 5980 switch (max_frl_rate) { 5981 case 1: 5982 *max_lanes = 3; 5983 *max_rate_per_lane = 3; 5984 break; 5985 case 2: 5986 *max_lanes = 3; 5987 *max_rate_per_lane = 6; 5988 break; 5989 case 3: 5990 *max_lanes = 4; 5991 *max_rate_per_lane = 6; 5992 break; 5993 case 4: 5994 *max_lanes = 4; 5995 *max_rate_per_lane = 8; 5996 break; 5997 case 5: 5998 *max_lanes = 4; 5999 *max_rate_per_lane = 10; 6000 break; 6001 case 6: 6002 *max_lanes = 4; 6003 *max_rate_per_lane = 12; 6004 break; 6005 case 0: 6006 default: 6007 *max_lanes = 0; 6008 *max_rate_per_lane = 0; 6009 } 6010 } 6011 6012 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector, 6013 const u8 *db) 6014 { 6015 u8 dc_mask; 6016 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 6017 6018 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK; 6019 hdmi->y420_dc_modes = dc_mask; 6020 } 6021 6022 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc, 6023 const u8 *hf_scds) 6024 { 6025 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2; 6026 6027 if (!hdmi_dsc->v_1p2) 6028 return; 6029 6030 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420; 6031 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP; 6032 6033 if (hf_scds[11] & DRM_EDID_DSC_16BPC) 6034 hdmi_dsc->bpc_supported = 16; 6035 else if (hf_scds[11] & DRM_EDID_DSC_12BPC) 6036 hdmi_dsc->bpc_supported = 12; 6037 else if (hf_scds[11] & DRM_EDID_DSC_10BPC) 6038 hdmi_dsc->bpc_supported = 10; 6039 else 6040 /* Supports min 8 BPC if DSC 1.2 is supported*/ 6041 hdmi_dsc->bpc_supported = 8; 6042 6043 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) { 6044 u8 dsc_max_slices; 6045 u8 dsc_max_frl_rate; 6046 6047 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4; 6048 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes, 6049 &hdmi_dsc->max_frl_rate_per_lane); 6050 6051 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES; 6052 6053 switch (dsc_max_slices) { 6054 case 1: 6055 hdmi_dsc->max_slices = 1; 6056 hdmi_dsc->clk_per_slice = 340; 6057 break; 6058 case 2: 6059 hdmi_dsc->max_slices = 2; 6060 hdmi_dsc->clk_per_slice = 340; 6061 break; 6062 case 3: 6063 hdmi_dsc->max_slices = 4; 6064 hdmi_dsc->clk_per_slice = 340; 6065 break; 6066 case 4: 6067 hdmi_dsc->max_slices = 8; 6068 hdmi_dsc->clk_per_slice = 340; 6069 break; 6070 case 5: 6071 hdmi_dsc->max_slices = 8; 6072 hdmi_dsc->clk_per_slice = 400; 6073 break; 6074 case 6: 6075 hdmi_dsc->max_slices = 12; 6076 hdmi_dsc->clk_per_slice = 400; 6077 break; 6078 case 7: 6079 hdmi_dsc->max_slices = 16; 6080 hdmi_dsc->clk_per_slice = 400; 6081 break; 6082 case 0: 6083 default: 6084 hdmi_dsc->max_slices = 0; 6085 hdmi_dsc->clk_per_slice = 0; 6086 } 6087 } 6088 6089 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13]) 6090 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES; 6091 } 6092 6093 /* Sink Capability Data Structure */ 6094 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector, 6095 const u8 *hf_scds) 6096 { 6097 struct drm_display_info *info = &connector->display_info; 6098 struct drm_hdmi_info *hdmi = &info->hdmi; 6099 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap; 6100 int max_tmds_clock = 0; 6101 u8 max_frl_rate = 0; 6102 bool dsc_support = false; 6103 6104 info->has_hdmi_infoframe = true; 6105 6106 if (hf_scds[6] & 0x80) { 6107 hdmi->scdc.supported = true; 6108 if (hf_scds[6] & 0x40) 6109 hdmi->scdc.read_request = true; 6110 } 6111 6112 /* 6113 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz. 6114 * And as per the spec, three factors confirm this: 6115 * * Availability of a HF-VSDB block in EDID (check) 6116 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check) 6117 * * SCDC support available (let's check) 6118 * Lets check it out. 6119 */ 6120 6121 if (hf_scds[5]) { 6122 struct drm_scdc *scdc = &hdmi->scdc; 6123 6124 /* max clock is 5000 KHz times block value */ 6125 max_tmds_clock = hf_scds[5] * 5000; 6126 6127 if (max_tmds_clock > 340000) { 6128 info->max_tmds_clock = max_tmds_clock; 6129 } 6130 6131 if (scdc->supported) { 6132 scdc->scrambling.supported = true; 6133 6134 /* Few sinks support scrambling for clocks < 340M */ 6135 if ((hf_scds[6] & 0x8)) 6136 scdc->scrambling.low_rates = true; 6137 } 6138 } 6139 6140 if (hf_scds[7]) { 6141 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4; 6142 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes, 6143 &hdmi->max_frl_rate_per_lane); 6144 } 6145 6146 drm_parse_ycbcr420_deep_color_info(connector, hf_scds); 6147 6148 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) { 6149 drm_parse_dsc_info(hdmi_dsc, hf_scds); 6150 dsc_support = true; 6151 } 6152 6153 drm_dbg_kms(connector->dev, 6154 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n", 6155 connector->base.id, connector->name, 6156 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support)); 6157 } 6158 6159 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector, 6160 const u8 *hdmi) 6161 { 6162 struct drm_display_info *info = &connector->display_info; 6163 unsigned int dc_bpc = 0; 6164 6165 /* HDMI supports at least 8 bpc */ 6166 info->bpc = 8; 6167 6168 if (cea_db_payload_len(hdmi) < 6) 6169 return; 6170 6171 if (hdmi[6] & DRM_EDID_HDMI_DC_30) { 6172 dc_bpc = 10; 6173 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30; 6174 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n", 6175 connector->base.id, connector->name); 6176 } 6177 6178 if (hdmi[6] & DRM_EDID_HDMI_DC_36) { 6179 dc_bpc = 12; 6180 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36; 6181 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n", 6182 connector->base.id, connector->name); 6183 } 6184 6185 if (hdmi[6] & DRM_EDID_HDMI_DC_48) { 6186 dc_bpc = 16; 6187 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48; 6188 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n", 6189 connector->base.id, connector->name); 6190 } 6191 6192 if (dc_bpc == 0) { 6193 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n", 6194 connector->base.id, connector->name); 6195 return; 6196 } 6197 6198 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n", 6199 connector->base.id, connector->name, dc_bpc); 6200 info->bpc = dc_bpc; 6201 6202 /* YCRCB444 is optional according to spec. */ 6203 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) { 6204 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes; 6205 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n", 6206 connector->base.id, connector->name); 6207 } 6208 6209 /* 6210 * Spec says that if any deep color mode is supported at all, 6211 * then deep color 36 bit must be supported. 6212 */ 6213 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) { 6214 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n", 6215 connector->base.id, connector->name); 6216 } 6217 } 6218 6219 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ 6220 static void 6221 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db) 6222 { 6223 struct drm_display_info *info = &connector->display_info; 6224 u8 len = cea_db_payload_len(db); 6225 6226 info->is_hdmi = true; 6227 6228 info->source_physical_address = (db[4] << 8) | db[5]; 6229 6230 if (len >= 6) 6231 info->dvi_dual = db[6] & 1; 6232 if (len >= 7) 6233 info->max_tmds_clock = db[7] * 5000; 6234 6235 /* 6236 * Try to infer whether the sink supports HDMI infoframes. 6237 * 6238 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink 6239 * supports infoframes if HDMI_Video_present is set. 6240 */ 6241 if (len >= 8 && db[8] & BIT(5)) 6242 info->has_hdmi_infoframe = true; 6243 6244 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n", 6245 connector->base.id, connector->name, 6246 info->dvi_dual, info->max_tmds_clock); 6247 6248 drm_parse_hdmi_deep_color_info(connector, db); 6249 } 6250 6251 /* 6252 * See EDID extension for head-mounted and specialized monitors, specified at: 6253 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension 6254 */ 6255 static void drm_parse_microsoft_vsdb(struct drm_connector *connector, 6256 const u8 *db) 6257 { 6258 struct drm_display_info *info = &connector->display_info; 6259 u8 version = db[4]; 6260 bool desktop_usage = db[5] & BIT(6); 6261 6262 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */ 6263 if (version == 1 || version == 2 || (version == 3 && !desktop_usage)) 6264 info->non_desktop = true; 6265 6266 drm_dbg_kms(connector->dev, 6267 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n", 6268 connector->base.id, connector->name, version, db[5]); 6269 } 6270 6271 static void drm_parse_cea_ext(struct drm_connector *connector, 6272 const struct drm_edid *drm_edid) 6273 { 6274 struct drm_display_info *info = &connector->display_info; 6275 struct drm_edid_iter edid_iter; 6276 const struct cea_db *db; 6277 struct cea_db_iter iter; 6278 const u8 *edid_ext; 6279 u64 y420cmdb_map = 0; 6280 6281 drm_edid_iter_begin(drm_edid, &edid_iter); 6282 drm_edid_iter_for_each(edid_ext, &edid_iter) { 6283 if (edid_ext[0] != CEA_EXT) 6284 continue; 6285 6286 if (!info->cea_rev) 6287 info->cea_rev = edid_ext[1]; 6288 6289 if (info->cea_rev != edid_ext[1]) 6290 drm_dbg_kms(connector->dev, 6291 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n", 6292 connector->base.id, connector->name, 6293 info->cea_rev, edid_ext[1]); 6294 6295 /* The existence of a CTA extension should imply RGB support */ 6296 info->color_formats = DRM_COLOR_FORMAT_RGB444; 6297 if (edid_ext[3] & EDID_CEA_YCRCB444) 6298 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; 6299 if (edid_ext[3] & EDID_CEA_YCRCB422) 6300 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; 6301 if (edid_ext[3] & EDID_BASIC_AUDIO) 6302 info->has_audio = true; 6303 6304 } 6305 drm_edid_iter_end(&edid_iter); 6306 6307 cea_db_iter_edid_begin(drm_edid, &iter); 6308 cea_db_iter_for_each(db, &iter) { 6309 /* FIXME: convert parsers to use struct cea_db */ 6310 const u8 *data = (const u8 *)db; 6311 6312 if (cea_db_is_hdmi_vsdb(db)) 6313 drm_parse_hdmi_vsdb_video(connector, data); 6314 else if (cea_db_is_hdmi_forum_vsdb(db) || 6315 cea_db_is_hdmi_forum_scdb(db)) 6316 drm_parse_hdmi_forum_scds(connector, data); 6317 else if (cea_db_is_microsoft_vsdb(db)) 6318 drm_parse_microsoft_vsdb(connector, data); 6319 else if (cea_db_is_y420cmdb(db)) 6320 parse_cta_y420cmdb(connector, db, &y420cmdb_map); 6321 else if (cea_db_is_y420vdb(db)) 6322 parse_cta_y420vdb(connector, db); 6323 else if (cea_db_is_vcdb(db)) 6324 drm_parse_vcdb(connector, data); 6325 else if (cea_db_is_hdmi_hdr_metadata_block(db)) 6326 drm_parse_hdr_metadata_block(connector, data); 6327 else if (cea_db_tag(db) == CTA_DB_VIDEO) 6328 parse_cta_vdb(connector, db); 6329 else if (cea_db_tag(db) == CTA_DB_AUDIO) 6330 info->has_audio = true; 6331 } 6332 cea_db_iter_end(&iter); 6333 6334 if (y420cmdb_map) 6335 update_cta_y420cmdb(connector, y420cmdb_map); 6336 } 6337 6338 static 6339 void get_monitor_range(const struct detailed_timing *timing, void *c) 6340 { 6341 struct detailed_mode_closure *closure = c; 6342 struct drm_display_info *info = &closure->connector->display_info; 6343 struct drm_monitor_range_info *monitor_range = &info->monitor_range; 6344 const struct detailed_non_pixel *data = &timing->data.other_data; 6345 const struct detailed_data_monitor_range *range = &data->data.range; 6346 const struct edid *edid = closure->drm_edid->edid; 6347 6348 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) 6349 return; 6350 6351 /* 6352 * These limits are used to determine the VRR refresh 6353 * rate range. Only the "range limits only" variant 6354 * of the range descriptor seems to guarantee that 6355 * any and all timings are accepted by the sink, as 6356 * opposed to just timings conforming to the indicated 6357 * formula (GTF/GTF2/CVT). Thus other variants of the 6358 * range descriptor are not accepted here. 6359 */ 6360 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG) 6361 return; 6362 6363 monitor_range->min_vfreq = range->min_vfreq; 6364 monitor_range->max_vfreq = range->max_vfreq; 6365 6366 if (edid->revision >= 4) { 6367 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ) 6368 monitor_range->min_vfreq += 255; 6369 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ) 6370 monitor_range->max_vfreq += 255; 6371 } 6372 } 6373 6374 static void drm_get_monitor_range(struct drm_connector *connector, 6375 const struct drm_edid *drm_edid) 6376 { 6377 const struct drm_display_info *info = &connector->display_info; 6378 struct detailed_mode_closure closure = { 6379 .connector = connector, 6380 .drm_edid = drm_edid, 6381 }; 6382 6383 if (drm_edid->edid->revision < 4) 6384 return; 6385 6386 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)) 6387 return; 6388 6389 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure); 6390 6391 drm_dbg_kms(connector->dev, 6392 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n", 6393 connector->base.id, connector->name, 6394 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq); 6395 } 6396 6397 static void drm_parse_vesa_mso_data(struct drm_connector *connector, 6398 const struct displayid_block *block) 6399 { 6400 struct displayid_vesa_vendor_specific_block *vesa = 6401 (struct displayid_vesa_vendor_specific_block *)block; 6402 struct drm_display_info *info = &connector->display_info; 6403 6404 if (block->num_bytes < 3) { 6405 drm_dbg_kms(connector->dev, 6406 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n", 6407 connector->base.id, connector->name, block->num_bytes); 6408 return; 6409 } 6410 6411 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI) 6412 return; 6413 6414 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) { 6415 drm_dbg_kms(connector->dev, 6416 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n", 6417 connector->base.id, connector->name); 6418 return; 6419 } 6420 6421 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) { 6422 default: 6423 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n", 6424 connector->base.id, connector->name); 6425 fallthrough; 6426 case 0: 6427 info->mso_stream_count = 0; 6428 break; 6429 case 1: 6430 info->mso_stream_count = 2; /* 2 or 4 links */ 6431 break; 6432 case 2: 6433 info->mso_stream_count = 4; /* 4 links */ 6434 break; 6435 } 6436 6437 if (!info->mso_stream_count) { 6438 info->mso_pixel_overlap = 0; 6439 return; 6440 } 6441 6442 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso); 6443 if (info->mso_pixel_overlap > 8) { 6444 drm_dbg_kms(connector->dev, 6445 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n", 6446 connector->base.id, connector->name, 6447 info->mso_pixel_overlap); 6448 info->mso_pixel_overlap = 8; 6449 } 6450 6451 drm_dbg_kms(connector->dev, 6452 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n", 6453 connector->base.id, connector->name, 6454 info->mso_stream_count, info->mso_pixel_overlap); 6455 } 6456 6457 static void drm_update_mso(struct drm_connector *connector, 6458 const struct drm_edid *drm_edid) 6459 { 6460 const struct displayid_block *block; 6461 struct displayid_iter iter; 6462 6463 displayid_iter_edid_begin(drm_edid, &iter); 6464 displayid_iter_for_each(block, &iter) { 6465 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC) 6466 drm_parse_vesa_mso_data(connector, block); 6467 } 6468 displayid_iter_end(&iter); 6469 } 6470 6471 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset 6472 * all of the values which would have been set from EDID 6473 */ 6474 static void drm_reset_display_info(struct drm_connector *connector) 6475 { 6476 struct drm_display_info *info = &connector->display_info; 6477 6478 info->width_mm = 0; 6479 info->height_mm = 0; 6480 6481 info->bpc = 0; 6482 info->color_formats = 0; 6483 info->cea_rev = 0; 6484 info->max_tmds_clock = 0; 6485 info->dvi_dual = false; 6486 info->is_hdmi = false; 6487 info->has_audio = false; 6488 info->has_hdmi_infoframe = false; 6489 info->rgb_quant_range_selectable = false; 6490 memset(&info->hdmi, 0, sizeof(info->hdmi)); 6491 6492 info->edid_hdmi_rgb444_dc_modes = 0; 6493 info->edid_hdmi_ycbcr444_dc_modes = 0; 6494 6495 info->non_desktop = 0; 6496 memset(&info->monitor_range, 0, sizeof(info->monitor_range)); 6497 memset(&info->luminance_range, 0, sizeof(info->luminance_range)); 6498 6499 info->mso_stream_count = 0; 6500 info->mso_pixel_overlap = 0; 6501 info->max_dsc_bpp = 0; 6502 6503 kfree(info->vics); 6504 info->vics = NULL; 6505 info->vics_len = 0; 6506 6507 info->quirks = 0; 6508 6509 info->source_physical_address = CEC_PHYS_ADDR_INVALID; 6510 } 6511 6512 static void update_displayid_info(struct drm_connector *connector, 6513 const struct drm_edid *drm_edid) 6514 { 6515 struct drm_display_info *info = &connector->display_info; 6516 const struct displayid_block *block; 6517 struct displayid_iter iter; 6518 6519 displayid_iter_edid_begin(drm_edid, &iter); 6520 displayid_iter_for_each(block, &iter) { 6521 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 && 6522 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR || 6523 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR)) 6524 info->non_desktop = true; 6525 6526 /* 6527 * We're only interested in the base section here, no need to 6528 * iterate further. 6529 */ 6530 break; 6531 } 6532 displayid_iter_end(&iter); 6533 } 6534 6535 static void update_display_info(struct drm_connector *connector, 6536 const struct drm_edid *drm_edid) 6537 { 6538 struct drm_display_info *info = &connector->display_info; 6539 const struct edid *edid; 6540 6541 drm_reset_display_info(connector); 6542 clear_eld(connector); 6543 6544 if (!drm_edid) 6545 return; 6546 6547 edid = drm_edid->edid; 6548 6549 info->quirks = edid_get_quirks(drm_edid); 6550 6551 info->width_mm = edid->width_cm * 10; 6552 info->height_mm = edid->height_cm * 10; 6553 6554 drm_get_monitor_range(connector, drm_edid); 6555 6556 if (edid->revision < 3) 6557 goto out; 6558 6559 if (!drm_edid_is_digital(drm_edid)) 6560 goto out; 6561 6562 info->color_formats |= DRM_COLOR_FORMAT_RGB444; 6563 drm_parse_cea_ext(connector, drm_edid); 6564 6565 update_displayid_info(connector, drm_edid); 6566 6567 /* 6568 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3? 6569 * 6570 * For such displays, the DFP spec 1.0, section 3.10 "EDID support" 6571 * tells us to assume 8 bpc color depth if the EDID doesn't have 6572 * extensions which tell otherwise. 6573 */ 6574 if (info->bpc == 0 && edid->revision == 3 && 6575 edid->input & DRM_EDID_DIGITAL_DFP_1_X) { 6576 info->bpc = 8; 6577 drm_dbg_kms(connector->dev, 6578 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n", 6579 connector->base.id, connector->name, info->bpc); 6580 } 6581 6582 /* Only defined for 1.4 with digital displays */ 6583 if (edid->revision < 4) 6584 goto out; 6585 6586 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { 6587 case DRM_EDID_DIGITAL_DEPTH_6: 6588 info->bpc = 6; 6589 break; 6590 case DRM_EDID_DIGITAL_DEPTH_8: 6591 info->bpc = 8; 6592 break; 6593 case DRM_EDID_DIGITAL_DEPTH_10: 6594 info->bpc = 10; 6595 break; 6596 case DRM_EDID_DIGITAL_DEPTH_12: 6597 info->bpc = 12; 6598 break; 6599 case DRM_EDID_DIGITAL_DEPTH_14: 6600 info->bpc = 14; 6601 break; 6602 case DRM_EDID_DIGITAL_DEPTH_16: 6603 info->bpc = 16; 6604 break; 6605 case DRM_EDID_DIGITAL_DEPTH_UNDEF: 6606 default: 6607 info->bpc = 0; 6608 break; 6609 } 6610 6611 drm_dbg_kms(connector->dev, 6612 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n", 6613 connector->base.id, connector->name, info->bpc); 6614 6615 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) 6616 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; 6617 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) 6618 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; 6619 6620 drm_update_mso(connector, drm_edid); 6621 6622 out: 6623 if (info->quirks & EDID_QUIRK_NON_DESKTOP) { 6624 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n", 6625 connector->base.id, connector->name, 6626 info->non_desktop ? " (redundant quirk)" : ""); 6627 info->non_desktop = true; 6628 } 6629 6630 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP) 6631 info->max_dsc_bpp = 15; 6632 6633 if (info->quirks & EDID_QUIRK_FORCE_6BPC) 6634 info->bpc = 6; 6635 6636 if (info->quirks & EDID_QUIRK_FORCE_8BPC) 6637 info->bpc = 8; 6638 6639 if (info->quirks & EDID_QUIRK_FORCE_10BPC) 6640 info->bpc = 10; 6641 6642 if (info->quirks & EDID_QUIRK_FORCE_12BPC) 6643 info->bpc = 12; 6644 6645 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */ 6646 drm_edid_to_eld(connector, drm_edid); 6647 } 6648 6649 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev, 6650 struct displayid_detailed_timings_1 *timings, 6651 bool type_7) 6652 { 6653 struct drm_display_mode *mode; 6654 unsigned pixel_clock = (timings->pixel_clock[0] | 6655 (timings->pixel_clock[1] << 8) | 6656 (timings->pixel_clock[2] << 16)) + 1; 6657 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1; 6658 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1; 6659 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1; 6660 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1; 6661 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1; 6662 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1; 6663 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1; 6664 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1; 6665 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1; 6666 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1; 6667 6668 mode = drm_mode_create(dev); 6669 if (!mode) 6670 return NULL; 6671 6672 /* resolution is kHz for type VII, and 10 kHz for type I */ 6673 mode->clock = type_7 ? pixel_clock : pixel_clock * 10; 6674 mode->hdisplay = hactive; 6675 mode->hsync_start = mode->hdisplay + hsync; 6676 mode->hsync_end = mode->hsync_start + hsync_width; 6677 mode->htotal = mode->hdisplay + hblank; 6678 6679 mode->vdisplay = vactive; 6680 mode->vsync_start = mode->vdisplay + vsync; 6681 mode->vsync_end = mode->vsync_start + vsync_width; 6682 mode->vtotal = mode->vdisplay + vblank; 6683 6684 mode->flags = 0; 6685 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 6686 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 6687 mode->type = DRM_MODE_TYPE_DRIVER; 6688 6689 if (timings->flags & 0x80) 6690 mode->type |= DRM_MODE_TYPE_PREFERRED; 6691 drm_mode_set_name(mode); 6692 6693 return mode; 6694 } 6695 6696 static int add_displayid_detailed_1_modes(struct drm_connector *connector, 6697 const struct displayid_block *block) 6698 { 6699 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block; 6700 int i; 6701 int num_timings; 6702 struct drm_display_mode *newmode; 6703 int num_modes = 0; 6704 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING; 6705 /* blocks must be multiple of 20 bytes length */ 6706 if (block->num_bytes % 20) 6707 return 0; 6708 6709 num_timings = block->num_bytes / 20; 6710 for (i = 0; i < num_timings; i++) { 6711 struct displayid_detailed_timings_1 *timings = &det->timings[i]; 6712 6713 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7); 6714 if (!newmode) 6715 continue; 6716 6717 drm_mode_probed_add(connector, newmode); 6718 num_modes++; 6719 } 6720 return num_modes; 6721 } 6722 6723 static int add_displayid_detailed_modes(struct drm_connector *connector, 6724 const struct drm_edid *drm_edid) 6725 { 6726 const struct displayid_block *block; 6727 struct displayid_iter iter; 6728 int num_modes = 0; 6729 6730 displayid_iter_edid_begin(drm_edid, &iter); 6731 displayid_iter_for_each(block, &iter) { 6732 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING || 6733 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING) 6734 num_modes += add_displayid_detailed_1_modes(connector, block); 6735 } 6736 displayid_iter_end(&iter); 6737 6738 return num_modes; 6739 } 6740 6741 static int _drm_edid_connector_add_modes(struct drm_connector *connector, 6742 const struct drm_edid *drm_edid) 6743 { 6744 const struct drm_display_info *info = &connector->display_info; 6745 int num_modes = 0; 6746 6747 if (!drm_edid) 6748 return 0; 6749 6750 /* 6751 * EDID spec says modes should be preferred in this order: 6752 * - preferred detailed mode 6753 * - other detailed modes from base block 6754 * - detailed modes from extension blocks 6755 * - CVT 3-byte code modes 6756 * - standard timing codes 6757 * - established timing codes 6758 * - modes inferred from GTF or CVT range information 6759 * 6760 * We get this pretty much right. 6761 * 6762 * XXX order for additional mode types in extension blocks? 6763 */ 6764 num_modes += add_detailed_modes(connector, drm_edid); 6765 num_modes += add_cvt_modes(connector, drm_edid); 6766 num_modes += add_standard_modes(connector, drm_edid); 6767 num_modes += add_established_modes(connector, drm_edid); 6768 num_modes += add_cea_modes(connector, drm_edid); 6769 num_modes += add_alternate_cea_modes(connector, drm_edid); 6770 num_modes += add_displayid_detailed_modes(connector, drm_edid); 6771 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ) 6772 num_modes += add_inferred_modes(connector, drm_edid); 6773 6774 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) 6775 edid_fixup_preferred(connector); 6776 6777 return num_modes; 6778 } 6779 6780 static void _drm_update_tile_info(struct drm_connector *connector, 6781 const struct drm_edid *drm_edid); 6782 6783 static int _drm_edid_connector_property_update(struct drm_connector *connector, 6784 const struct drm_edid *drm_edid) 6785 { 6786 struct drm_device *dev = connector->dev; 6787 int ret; 6788 6789 if (connector->edid_blob_ptr) { 6790 const struct edid *old_edid = connector->edid_blob_ptr->data; 6791 6792 if (old_edid) { 6793 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) { 6794 connector->epoch_counter++; 6795 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n", 6796 connector->base.id, connector->name, 6797 connector->epoch_counter); 6798 } 6799 } 6800 } 6801 6802 ret = drm_property_replace_global_blob(dev, 6803 &connector->edid_blob_ptr, 6804 drm_edid ? drm_edid->size : 0, 6805 drm_edid ? drm_edid->edid : NULL, 6806 &connector->base, 6807 dev->mode_config.edid_property); 6808 if (ret) { 6809 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n", 6810 connector->base.id, connector->name, ret); 6811 goto out; 6812 } 6813 6814 ret = drm_object_property_set_value(&connector->base, 6815 dev->mode_config.non_desktop_property, 6816 connector->display_info.non_desktop); 6817 if (ret) { 6818 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n", 6819 connector->base.id, connector->name, ret); 6820 goto out; 6821 } 6822 6823 ret = drm_connector_set_tile_property(connector); 6824 if (ret) { 6825 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n", 6826 connector->base.id, connector->name, ret); 6827 goto out; 6828 } 6829 6830 out: 6831 return ret; 6832 } 6833 6834 /** 6835 * drm_edid_connector_update - Update connector information from EDID 6836 * @connector: Connector 6837 * @drm_edid: EDID 6838 * 6839 * Update the connector display info, ELD, HDR metadata, relevant properties, 6840 * etc. from the passed in EDID. 6841 * 6842 * If EDID is NULL, reset the information. 6843 * 6844 * Must be called before calling drm_edid_connector_add_modes(). 6845 * 6846 * Return: 0 on success, negative error on errors. 6847 */ 6848 int drm_edid_connector_update(struct drm_connector *connector, 6849 const struct drm_edid *drm_edid) 6850 { 6851 update_display_info(connector, drm_edid); 6852 6853 _drm_update_tile_info(connector, drm_edid); 6854 6855 return _drm_edid_connector_property_update(connector, drm_edid); 6856 } 6857 EXPORT_SYMBOL(drm_edid_connector_update); 6858 6859 /** 6860 * drm_edid_connector_add_modes - Update probed modes from the EDID property 6861 * @connector: Connector 6862 * 6863 * Add the modes from the previously updated EDID property to the connector 6864 * probed modes list. 6865 * 6866 * drm_edid_connector_update() must have been called before this to update the 6867 * EDID property. 6868 * 6869 * Return: The number of modes added, or 0 if we couldn't find any. 6870 */ 6871 int drm_edid_connector_add_modes(struct drm_connector *connector) 6872 { 6873 const struct drm_edid *drm_edid = NULL; 6874 int count; 6875 6876 if (connector->edid_blob_ptr) 6877 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data, 6878 connector->edid_blob_ptr->length); 6879 6880 count = _drm_edid_connector_add_modes(connector, drm_edid); 6881 6882 drm_edid_free(drm_edid); 6883 6884 return count; 6885 } 6886 EXPORT_SYMBOL(drm_edid_connector_add_modes); 6887 6888 /** 6889 * drm_connector_update_edid_property - update the edid property of a connector 6890 * @connector: drm connector 6891 * @edid: new value of the edid property 6892 * 6893 * This function creates a new blob modeset object and assigns its id to the 6894 * connector's edid property. 6895 * Since we also parse tile information from EDID's displayID block, we also 6896 * set the connector's tile property here. See drm_connector_set_tile_property() 6897 * for more details. 6898 * 6899 * This function is deprecated. Use drm_edid_connector_update() instead. 6900 * 6901 * Returns: 6902 * Zero on success, negative errno on failure. 6903 */ 6904 int drm_connector_update_edid_property(struct drm_connector *connector, 6905 const struct edid *edid) 6906 { 6907 struct drm_edid drm_edid; 6908 6909 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid)); 6910 } 6911 EXPORT_SYMBOL(drm_connector_update_edid_property); 6912 6913 /** 6914 * drm_add_edid_modes - add modes from EDID data, if available 6915 * @connector: connector we're probing 6916 * @edid: EDID data 6917 * 6918 * Add the specified modes to the connector's mode list. Also fills out the 6919 * &drm_display_info structure and ELD in @connector with any information which 6920 * can be derived from the edid. 6921 * 6922 * This function is deprecated. Use drm_edid_connector_add_modes() instead. 6923 * 6924 * Return: The number of modes added or 0 if we couldn't find any. 6925 */ 6926 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) 6927 { 6928 struct drm_edid _drm_edid; 6929 const struct drm_edid *drm_edid; 6930 6931 if (edid && !drm_edid_is_valid(edid)) { 6932 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n", 6933 connector->base.id, connector->name); 6934 edid = NULL; 6935 } 6936 6937 drm_edid = drm_edid_legacy_init(&_drm_edid, edid); 6938 6939 update_display_info(connector, drm_edid); 6940 6941 return _drm_edid_connector_add_modes(connector, drm_edid); 6942 } 6943 EXPORT_SYMBOL(drm_add_edid_modes); 6944 6945 /** 6946 * drm_add_modes_noedid - add modes for the connectors without EDID 6947 * @connector: connector we're probing 6948 * @hdisplay: the horizontal display limit 6949 * @vdisplay: the vertical display limit 6950 * 6951 * Add the specified modes to the connector's mode list. Only when the 6952 * hdisplay/vdisplay is not beyond the given limit, it will be added. 6953 * 6954 * Return: The number of modes added or 0 if we couldn't find any. 6955 */ 6956 int drm_add_modes_noedid(struct drm_connector *connector, 6957 int hdisplay, int vdisplay) 6958 { 6959 int i, count, num_modes = 0; 6960 struct drm_display_mode *mode; 6961 struct drm_device *dev = connector->dev; 6962 6963 count = ARRAY_SIZE(drm_dmt_modes); 6964 if (hdisplay < 0) 6965 hdisplay = 0; 6966 if (vdisplay < 0) 6967 vdisplay = 0; 6968 6969 for (i = 0; i < count; i++) { 6970 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 6971 6972 if (hdisplay && vdisplay) { 6973 /* 6974 * Only when two are valid, they will be used to check 6975 * whether the mode should be added to the mode list of 6976 * the connector. 6977 */ 6978 if (ptr->hdisplay > hdisplay || 6979 ptr->vdisplay > vdisplay) 6980 continue; 6981 } 6982 if (drm_mode_vrefresh(ptr) > 61) 6983 continue; 6984 mode = drm_mode_duplicate(dev, ptr); 6985 if (mode) { 6986 drm_mode_probed_add(connector, mode); 6987 num_modes++; 6988 } 6989 } 6990 return num_modes; 6991 } 6992 EXPORT_SYMBOL(drm_add_modes_noedid); 6993 6994 static bool is_hdmi2_sink(const struct drm_connector *connector) 6995 { 6996 /* 6997 * FIXME: sil-sii8620 doesn't have a connector around when 6998 * we need one, so we have to be prepared for a NULL connector. 6999 */ 7000 if (!connector) 7001 return true; 7002 7003 return connector->display_info.hdmi.scdc.supported || 7004 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420; 7005 } 7006 7007 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector, 7008 const struct drm_display_mode *mode) 7009 { 7010 bool has_hdmi_infoframe = connector ? 7011 connector->display_info.has_hdmi_infoframe : false; 7012 7013 if (!has_hdmi_infoframe) 7014 return 0; 7015 7016 /* No HDMI VIC when signalling 3D video format */ 7017 if (mode->flags & DRM_MODE_FLAG_3D_MASK) 7018 return 0; 7019 7020 return drm_match_hdmi_mode(mode); 7021 } 7022 7023 static u8 drm_mode_cea_vic(const struct drm_connector *connector, 7024 const struct drm_display_mode *mode) 7025 { 7026 /* 7027 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes 7028 * we should send its VIC in vendor infoframes, else send the 7029 * VIC in AVI infoframes. Lets check if this mode is present in 7030 * HDMI 1.4b 4K modes 7031 */ 7032 if (drm_mode_hdmi_vic(connector, mode)) 7033 return 0; 7034 7035 return drm_match_cea_mode(mode); 7036 } 7037 7038 /* 7039 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that 7040 * conform to HDMI 1.4. 7041 * 7042 * HDMI 1.4 (CTA-861-D) VIC range: [1..64] 7043 * HDMI 2.0 (CTA-861-F) VIC range: [1..107] 7044 * 7045 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI 7046 * version. 7047 */ 7048 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic) 7049 { 7050 if (!is_hdmi2_sink(connector) && vic > 64 && 7051 !cta_vdb_has_vic(connector, vic)) 7052 return 0; 7053 7054 return vic; 7055 } 7056 7057 /** 7058 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with 7059 * data from a DRM display mode 7060 * @frame: HDMI AVI infoframe 7061 * @connector: the connector 7062 * @mode: DRM display mode 7063 * 7064 * Return: 0 on success or a negative error code on failure. 7065 */ 7066 int 7067 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, 7068 const struct drm_connector *connector, 7069 const struct drm_display_mode *mode) 7070 { 7071 enum hdmi_picture_aspect picture_aspect; 7072 u8 vic, hdmi_vic; 7073 7074 if (!frame || !mode) 7075 return -EINVAL; 7076 7077 hdmi_avi_infoframe_init(frame); 7078 7079 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 7080 frame->pixel_repeat = 1; 7081 7082 vic = drm_mode_cea_vic(connector, mode); 7083 hdmi_vic = drm_mode_hdmi_vic(connector, mode); 7084 7085 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; 7086 7087 /* 7088 * As some drivers don't support atomic, we can't use connector state. 7089 * So just initialize the frame with default values, just the same way 7090 * as it's done with other properties here. 7091 */ 7092 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS; 7093 frame->itc = 0; 7094 7095 /* 7096 * Populate picture aspect ratio from either 7097 * user input (if specified) or from the CEA/HDMI mode lists. 7098 */ 7099 picture_aspect = mode->picture_aspect_ratio; 7100 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) { 7101 if (vic) 7102 picture_aspect = drm_get_cea_aspect_ratio(vic); 7103 else if (hdmi_vic) 7104 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic); 7105 } 7106 7107 /* 7108 * The infoframe can't convey anything but none, 4:3 7109 * and 16:9, so if the user has asked for anything else 7110 * we can only satisfy it by specifying the right VIC. 7111 */ 7112 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) { 7113 if (vic) { 7114 if (picture_aspect != drm_get_cea_aspect_ratio(vic)) 7115 return -EINVAL; 7116 } else if (hdmi_vic) { 7117 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic)) 7118 return -EINVAL; 7119 } else { 7120 return -EINVAL; 7121 } 7122 7123 picture_aspect = HDMI_PICTURE_ASPECT_NONE; 7124 } 7125 7126 frame->video_code = vic_for_avi_infoframe(connector, vic); 7127 frame->picture_aspect = picture_aspect; 7128 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; 7129 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN; 7130 7131 return 0; 7132 } 7133 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); 7134 7135 /** 7136 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe 7137 * quantization range information 7138 * @frame: HDMI AVI infoframe 7139 * @connector: the connector 7140 * @mode: DRM display mode 7141 * @rgb_quant_range: RGB quantization range (Q) 7142 */ 7143 void 7144 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame, 7145 const struct drm_connector *connector, 7146 const struct drm_display_mode *mode, 7147 enum hdmi_quantization_range rgb_quant_range) 7148 { 7149 const struct drm_display_info *info = &connector->display_info; 7150 7151 /* 7152 * CEA-861: 7153 * "A Source shall not send a non-zero Q value that does not correspond 7154 * to the default RGB Quantization Range for the transmitted Picture 7155 * unless the Sink indicates support for the Q bit in a Video 7156 * Capabilities Data Block." 7157 * 7158 * HDMI 2.0 recommends sending non-zero Q when it does match the 7159 * default RGB quantization range for the mode, even when QS=0. 7160 */ 7161 if (info->rgb_quant_range_selectable || 7162 rgb_quant_range == drm_default_rgb_quant_range(mode)) 7163 frame->quantization_range = rgb_quant_range; 7164 else 7165 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 7166 7167 /* 7168 * CEA-861-F: 7169 * "When transmitting any RGB colorimetry, the Source should set the 7170 * YQ-field to match the RGB Quantization Range being transmitted 7171 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB, 7172 * set YQ=1) and the Sink shall ignore the YQ-field." 7173 * 7174 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused 7175 * by non-zero YQ when receiving RGB. There doesn't seem to be any 7176 * good way to tell which version of CEA-861 the sink supports, so 7177 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based 7178 * on CEA-861-F. 7179 */ 7180 if (!is_hdmi2_sink(connector) || 7181 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) 7182 frame->ycc_quantization_range = 7183 HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 7184 else 7185 frame->ycc_quantization_range = 7186 HDMI_YCC_QUANTIZATION_RANGE_FULL; 7187 } 7188 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range); 7189 7190 static enum hdmi_3d_structure 7191 s3d_structure_from_display_mode(const struct drm_display_mode *mode) 7192 { 7193 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; 7194 7195 switch (layout) { 7196 case DRM_MODE_FLAG_3D_FRAME_PACKING: 7197 return HDMI_3D_STRUCTURE_FRAME_PACKING; 7198 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: 7199 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; 7200 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: 7201 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; 7202 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: 7203 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; 7204 case DRM_MODE_FLAG_3D_L_DEPTH: 7205 return HDMI_3D_STRUCTURE_L_DEPTH; 7206 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: 7207 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; 7208 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: 7209 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; 7210 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: 7211 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; 7212 default: 7213 return HDMI_3D_STRUCTURE_INVALID; 7214 } 7215 } 7216 7217 /** 7218 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with 7219 * data from a DRM display mode 7220 * @frame: HDMI vendor infoframe 7221 * @connector: the connector 7222 * @mode: DRM display mode 7223 * 7224 * Note that there's is a need to send HDMI vendor infoframes only when using a 7225 * 4k or stereoscopic 3D mode. So when giving any other mode as input this 7226 * function will return -EINVAL, error that can be safely ignored. 7227 * 7228 * Return: 0 on success or a negative error code on failure. 7229 */ 7230 int 7231 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, 7232 const struct drm_connector *connector, 7233 const struct drm_display_mode *mode) 7234 { 7235 /* 7236 * FIXME: sil-sii8620 doesn't have a connector around when 7237 * we need one, so we have to be prepared for a NULL connector. 7238 */ 7239 bool has_hdmi_infoframe = connector ? 7240 connector->display_info.has_hdmi_infoframe : false; 7241 int err; 7242 7243 if (!frame || !mode) 7244 return -EINVAL; 7245 7246 if (!has_hdmi_infoframe) 7247 return -EINVAL; 7248 7249 err = hdmi_vendor_infoframe_init(frame); 7250 if (err < 0) 7251 return err; 7252 7253 /* 7254 * Even if it's not absolutely necessary to send the infoframe 7255 * (ie.vic==0 and s3d_struct==0) we will still send it if we 7256 * know that the sink can handle it. This is based on a 7257 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks 7258 * have trouble realizing that they should switch from 3D to 2D 7259 * mode if the source simply stops sending the infoframe when 7260 * it wants to switch from 3D to 2D. 7261 */ 7262 frame->vic = drm_mode_hdmi_vic(connector, mode); 7263 frame->s3d_struct = s3d_structure_from_display_mode(mode); 7264 7265 return 0; 7266 } 7267 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); 7268 7269 static void drm_parse_tiled_block(struct drm_connector *connector, 7270 const struct displayid_block *block) 7271 { 7272 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block; 7273 u16 w, h; 7274 u8 tile_v_loc, tile_h_loc; 7275 u8 num_v_tile, num_h_tile; 7276 struct drm_tile_group *tg; 7277 7278 w = tile->tile_size[0] | tile->tile_size[1] << 8; 7279 h = tile->tile_size[2] | tile->tile_size[3] << 8; 7280 7281 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30); 7282 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30); 7283 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4); 7284 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4); 7285 7286 connector->has_tile = true; 7287 if (tile->tile_cap & 0x80) 7288 connector->tile_is_single_monitor = true; 7289 7290 connector->num_h_tile = num_h_tile + 1; 7291 connector->num_v_tile = num_v_tile + 1; 7292 connector->tile_h_loc = tile_h_loc; 7293 connector->tile_v_loc = tile_v_loc; 7294 connector->tile_h_size = w + 1; 7295 connector->tile_v_size = h + 1; 7296 7297 drm_dbg_kms(connector->dev, 7298 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c", 7299 connector->base.id, connector->name, 7300 tile->tile_cap, 7301 connector->tile_h_size, connector->tile_v_size, 7302 connector->num_h_tile, connector->num_v_tile, 7303 connector->tile_h_loc, connector->tile_v_loc, 7304 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]); 7305 7306 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id); 7307 if (!tg) 7308 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id); 7309 if (!tg) 7310 return; 7311 7312 if (connector->tile_group != tg) { 7313 /* if we haven't got a pointer, 7314 take the reference, drop ref to old tile group */ 7315 if (connector->tile_group) 7316 drm_mode_put_tile_group(connector->dev, connector->tile_group); 7317 connector->tile_group = tg; 7318 } else { 7319 /* if same tile group, then release the ref we just took. */ 7320 drm_mode_put_tile_group(connector->dev, tg); 7321 } 7322 } 7323 7324 static bool displayid_is_tiled_block(const struct displayid_iter *iter, 7325 const struct displayid_block *block) 7326 { 7327 return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 && 7328 block->tag == DATA_BLOCK_TILED_DISPLAY) || 7329 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 && 7330 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY); 7331 } 7332 7333 static void _drm_update_tile_info(struct drm_connector *connector, 7334 const struct drm_edid *drm_edid) 7335 { 7336 const struct displayid_block *block; 7337 struct displayid_iter iter; 7338 7339 connector->has_tile = false; 7340 7341 displayid_iter_edid_begin(drm_edid, &iter); 7342 displayid_iter_for_each(block, &iter) { 7343 if (displayid_is_tiled_block(&iter, block)) 7344 drm_parse_tiled_block(connector, block); 7345 } 7346 displayid_iter_end(&iter); 7347 7348 if (!connector->has_tile && connector->tile_group) { 7349 drm_mode_put_tile_group(connector->dev, connector->tile_group); 7350 connector->tile_group = NULL; 7351 } 7352 } 7353 7354 /** 7355 * drm_edid_is_digital - is digital? 7356 * @drm_edid: The EDID 7357 * 7358 * Return true if input is digital. 7359 */ 7360 bool drm_edid_is_digital(const struct drm_edid *drm_edid) 7361 { 7362 return drm_edid && drm_edid->edid && 7363 drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL; 7364 } 7365 EXPORT_SYMBOL(drm_edid_is_digital); 7366