xref: /linux/drivers/gpu/drm/drm_edid.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/byteorder/generic.h>
33 #include <linux/cec.h>
34 #include <linux/hdmi.h>
35 #include <linux/i2c.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/seq_buf.h>
40 #include <linux/slab.h>
41 #include <linux/vga_switcheroo.h>
42 
43 #include <drm/drm_drv.h>
44 #include <drm/drm_edid.h>
45 #include <drm/drm_eld.h>
46 #include <drm/drm_encoder.h>
47 #include <drm/drm_print.h>
48 
49 #include "drm_crtc_internal.h"
50 #include "drm_displayid_internal.h"
51 #include "drm_internal.h"
52 
53 static int oui(u8 first, u8 second, u8 third)
54 {
55 	return (first << 16) | (second << 8) | third;
56 }
57 
58 #define EDID_EST_TIMINGS 16
59 #define EDID_STD_TIMINGS 8
60 #define EDID_DETAILED_TIMINGS 4
61 
62 /*
63  * EDID blocks out in the wild have a variety of bugs, try to collect
64  * them here (note that userspace may work around broken monitors first,
65  * but fixes should make their way here so that the kernel "just works"
66  * on as many displays as possible).
67  */
68 
69 /* First detailed mode wrong, use largest 60Hz mode */
70 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
71 /* Reported 135MHz pixel clock is too high, needs adjustment */
72 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
73 /* Prefer the largest mode at 75 Hz */
74 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
75 /* Detail timing is in cm not mm */
76 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
77 /* Detailed timing descriptors have bogus size values, so just take the
78  * maximum size and use that.
79  */
80 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
81 /* use +hsync +vsync for detailed mode */
82 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
83 /* Force reduced-blanking timings for detailed modes */
84 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
85 /* Force 8bpc */
86 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
87 /* Force 12bpc */
88 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
89 /* Force 6bpc */
90 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
91 /* Force 10bpc */
92 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
93 /* Non desktop display (i.e. HMD) */
94 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
95 /* Cap the DSC target bitrate to 15bpp */
96 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
97 
98 #define MICROSOFT_IEEE_OUI	0xca125c
99 
100 struct detailed_mode_closure {
101 	struct drm_connector *connector;
102 	const struct drm_edid *drm_edid;
103 	bool preferred;
104 	int modes;
105 };
106 
107 struct drm_edid_match_closure {
108 	const struct drm_edid_ident *ident;
109 	bool matched;
110 };
111 
112 #define LEVEL_DMT	0
113 #define LEVEL_GTF	1
114 #define LEVEL_GTF2	2
115 #define LEVEL_CVT	3
116 
117 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
118 { \
119 	.ident = { \
120 		.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, \
121 						     vend_chr_2, product_id), \
122 	}, \
123 	.quirks = _quirks \
124 }
125 
126 static const struct edid_quirk {
127 	const struct drm_edid_ident ident;
128 	u32 quirks;
129 } edid_quirk_list[] = {
130 	/* Acer AL1706 */
131 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
132 	/* Acer F51 */
133 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
134 
135 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
136 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
137 
138 	/* BenQ GW2765 */
139 	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
140 
141 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
142 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
143 
144 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
145 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
146 
147 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
148 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
149 
150 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
151 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
152 
153 	/* Belinea 10 15 55 */
154 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
155 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
156 
157 	/* Envision Peripherals, Inc. EN-7100e */
158 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
159 	/* Envision EN2028 */
160 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
161 
162 	/* Funai Electronics PM36B */
163 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
164 				       EDID_QUIRK_DETAILED_IN_CM),
165 
166 	/* LG 27GP950 */
167 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
168 
169 	/* LG 27GN950 */
170 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
171 
172 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
173 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
174 
175 	/* LG Philips LCD LP154W01-A5 */
176 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
177 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
178 
179 	/* Samsung SyncMaster 205BW.  Note: irony */
180 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
181 	/* Samsung SyncMaster 22[5-6]BW */
182 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
183 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
184 
185 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
186 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
187 
188 	/* ViewSonic VA2026w */
189 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
190 
191 	/* Medion MD 30217 PG */
192 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
193 
194 	/* Lenovo G50 */
195 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
196 
197 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
198 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
199 
200 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
201 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
202 
203 	/* Valve Index Headset */
204 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
206 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
207 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
208 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
209 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
210 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
211 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
212 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
213 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
214 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
215 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
216 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
217 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
218 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
219 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
220 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
221 
222 	/* HTC Vive and Vive Pro VR Headsets */
223 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
224 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
225 
226 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
227 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
228 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
229 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
230 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
231 
232 	/* Windows Mixed Reality Headsets */
233 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
234 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
235 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
236 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
237 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
238 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
239 
240 	/* Sony PlayStation VR Headset */
241 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
242 
243 	/* Sensics VR Headsets */
244 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
245 
246 	/* OSVR HDK and HDK2 VR Headsets */
247 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
248 	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
249 };
250 
251 /*
252  * Autogenerated from the DMT spec.
253  * This table is copied from xfree86/modes/xf86EdidModes.c.
254  */
255 static const struct drm_display_mode drm_dmt_modes[] = {
256 	/* 0x01 - 640x350@85Hz */
257 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
258 		   736, 832, 0, 350, 382, 385, 445, 0,
259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 	/* 0x02 - 640x400@85Hz */
261 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
262 		   736, 832, 0, 400, 401, 404, 445, 0,
263 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 	/* 0x03 - 720x400@85Hz */
265 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
266 		   828, 936, 0, 400, 401, 404, 446, 0,
267 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
268 	/* 0x04 - 640x480@60Hz */
269 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
270 		   752, 800, 0, 480, 490, 492, 525, 0,
271 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
272 	/* 0x05 - 640x480@72Hz */
273 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
274 		   704, 832, 0, 480, 489, 492, 520, 0,
275 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
276 	/* 0x06 - 640x480@75Hz */
277 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
278 		   720, 840, 0, 480, 481, 484, 500, 0,
279 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
280 	/* 0x07 - 640x480@85Hz */
281 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
282 		   752, 832, 0, 480, 481, 484, 509, 0,
283 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
284 	/* 0x08 - 800x600@56Hz */
285 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
286 		   896, 1024, 0, 600, 601, 603, 625, 0,
287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 	/* 0x09 - 800x600@60Hz */
289 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
290 		   968, 1056, 0, 600, 601, 605, 628, 0,
291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 	/* 0x0a - 800x600@72Hz */
293 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
294 		   976, 1040, 0, 600, 637, 643, 666, 0,
295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
296 	/* 0x0b - 800x600@75Hz */
297 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
298 		   896, 1056, 0, 600, 601, 604, 625, 0,
299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 	/* 0x0c - 800x600@85Hz */
301 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
302 		   896, 1048, 0, 600, 601, 604, 631, 0,
303 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
304 	/* 0x0d - 800x600@120Hz RB */
305 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
306 		   880, 960, 0, 600, 603, 607, 636, 0,
307 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
308 	/* 0x0e - 848x480@60Hz */
309 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
310 		   976, 1088, 0, 480, 486, 494, 517, 0,
311 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
312 	/* 0x0f - 1024x768@43Hz, interlace */
313 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
314 		   1208, 1264, 0, 768, 768, 776, 817, 0,
315 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
316 		   DRM_MODE_FLAG_INTERLACE) },
317 	/* 0x10 - 1024x768@60Hz */
318 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
319 		   1184, 1344, 0, 768, 771, 777, 806, 0,
320 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
321 	/* 0x11 - 1024x768@70Hz */
322 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
323 		   1184, 1328, 0, 768, 771, 777, 806, 0,
324 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
325 	/* 0x12 - 1024x768@75Hz */
326 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
327 		   1136, 1312, 0, 768, 769, 772, 800, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
329 	/* 0x13 - 1024x768@85Hz */
330 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
331 		   1168, 1376, 0, 768, 769, 772, 808, 0,
332 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
333 	/* 0x14 - 1024x768@120Hz RB */
334 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
335 		   1104, 1184, 0, 768, 771, 775, 813, 0,
336 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
337 	/* 0x15 - 1152x864@75Hz */
338 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
339 		   1344, 1600, 0, 864, 865, 868, 900, 0,
340 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 	/* 0x55 - 1280x720@60Hz */
342 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
343 		   1430, 1650, 0, 720, 725, 730, 750, 0,
344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
345 	/* 0x16 - 1280x768@60Hz RB */
346 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
347 		   1360, 1440, 0, 768, 771, 778, 790, 0,
348 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
349 	/* 0x17 - 1280x768@60Hz */
350 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
351 		   1472, 1664, 0, 768, 771, 778, 798, 0,
352 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
353 	/* 0x18 - 1280x768@75Hz */
354 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
355 		   1488, 1696, 0, 768, 771, 778, 805, 0,
356 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
357 	/* 0x19 - 1280x768@85Hz */
358 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
359 		   1496, 1712, 0, 768, 771, 778, 809, 0,
360 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 	/* 0x1a - 1280x768@120Hz RB */
362 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
363 		   1360, 1440, 0, 768, 771, 778, 813, 0,
364 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
365 	/* 0x1b - 1280x800@60Hz RB */
366 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
367 		   1360, 1440, 0, 800, 803, 809, 823, 0,
368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
369 	/* 0x1c - 1280x800@60Hz */
370 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
371 		   1480, 1680, 0, 800, 803, 809, 831, 0,
372 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
373 	/* 0x1d - 1280x800@75Hz */
374 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
375 		   1488, 1696, 0, 800, 803, 809, 838, 0,
376 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 	/* 0x1e - 1280x800@85Hz */
378 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
379 		   1496, 1712, 0, 800, 803, 809, 843, 0,
380 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
381 	/* 0x1f - 1280x800@120Hz RB */
382 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
383 		   1360, 1440, 0, 800, 803, 809, 847, 0,
384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
385 	/* 0x20 - 1280x960@60Hz */
386 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
387 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
388 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
389 	/* 0x21 - 1280x960@85Hz */
390 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
391 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
392 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
393 	/* 0x22 - 1280x960@120Hz RB */
394 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
395 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
396 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
397 	/* 0x23 - 1280x1024@60Hz */
398 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
399 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
400 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
401 	/* 0x24 - 1280x1024@75Hz */
402 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
403 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
404 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
405 	/* 0x25 - 1280x1024@85Hz */
406 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
407 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
408 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
409 	/* 0x26 - 1280x1024@120Hz RB */
410 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
411 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
413 	/* 0x27 - 1360x768@60Hz */
414 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
415 		   1536, 1792, 0, 768, 771, 777, 795, 0,
416 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
417 	/* 0x28 - 1360x768@120Hz RB */
418 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
419 		   1440, 1520, 0, 768, 771, 776, 813, 0,
420 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
421 	/* 0x51 - 1366x768@60Hz */
422 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
423 		   1579, 1792, 0, 768, 771, 774, 798, 0,
424 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
425 	/* 0x56 - 1366x768@60Hz */
426 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
427 		   1436, 1500, 0, 768, 769, 772, 800, 0,
428 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 	/* 0x29 - 1400x1050@60Hz RB */
430 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
431 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
432 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
433 	/* 0x2a - 1400x1050@60Hz */
434 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
435 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
436 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
437 	/* 0x2b - 1400x1050@75Hz */
438 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
439 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
440 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
441 	/* 0x2c - 1400x1050@85Hz */
442 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
443 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
444 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
445 	/* 0x2d - 1400x1050@120Hz RB */
446 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
447 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
448 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
449 	/* 0x2e - 1440x900@60Hz RB */
450 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
451 		   1520, 1600, 0, 900, 903, 909, 926, 0,
452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
453 	/* 0x2f - 1440x900@60Hz */
454 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
455 		   1672, 1904, 0, 900, 903, 909, 934, 0,
456 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
457 	/* 0x30 - 1440x900@75Hz */
458 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
459 		   1688, 1936, 0, 900, 903, 909, 942, 0,
460 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
461 	/* 0x31 - 1440x900@85Hz */
462 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
463 		   1696, 1952, 0, 900, 903, 909, 948, 0,
464 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
465 	/* 0x32 - 1440x900@120Hz RB */
466 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
467 		   1520, 1600, 0, 900, 903, 909, 953, 0,
468 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
469 	/* 0x53 - 1600x900@60Hz */
470 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
471 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
473 	/* 0x33 - 1600x1200@60Hz */
474 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
475 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
476 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 	/* 0x34 - 1600x1200@65Hz */
478 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
479 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
480 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
481 	/* 0x35 - 1600x1200@70Hz */
482 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
483 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
485 	/* 0x36 - 1600x1200@75Hz */
486 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
487 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
489 	/* 0x37 - 1600x1200@85Hz */
490 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
491 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
492 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
493 	/* 0x38 - 1600x1200@120Hz RB */
494 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
495 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
496 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
497 	/* 0x39 - 1680x1050@60Hz RB */
498 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
499 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
501 	/* 0x3a - 1680x1050@60Hz */
502 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
503 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
504 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
505 	/* 0x3b - 1680x1050@75Hz */
506 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
507 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
508 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
509 	/* 0x3c - 1680x1050@85Hz */
510 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
511 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
512 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
513 	/* 0x3d - 1680x1050@120Hz RB */
514 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
515 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
517 	/* 0x3e - 1792x1344@60Hz */
518 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
519 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
520 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
521 	/* 0x3f - 1792x1344@75Hz */
522 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
523 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
524 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
525 	/* 0x40 - 1792x1344@120Hz RB */
526 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
527 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
528 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
529 	/* 0x41 - 1856x1392@60Hz */
530 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
531 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
532 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
533 	/* 0x42 - 1856x1392@75Hz */
534 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
535 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
536 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
537 	/* 0x43 - 1856x1392@120Hz RB */
538 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
539 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
540 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
541 	/* 0x52 - 1920x1080@60Hz */
542 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
543 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
544 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
545 	/* 0x44 - 1920x1200@60Hz RB */
546 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
547 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
548 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
549 	/* 0x45 - 1920x1200@60Hz */
550 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
551 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
552 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
553 	/* 0x46 - 1920x1200@75Hz */
554 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
555 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
556 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
557 	/* 0x47 - 1920x1200@85Hz */
558 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
559 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
560 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
561 	/* 0x48 - 1920x1200@120Hz RB */
562 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
563 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
565 	/* 0x49 - 1920x1440@60Hz */
566 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
567 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
568 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
569 	/* 0x4a - 1920x1440@75Hz */
570 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
571 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
572 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
573 	/* 0x4b - 1920x1440@120Hz RB */
574 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
575 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
576 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
577 	/* 0x54 - 2048x1152@60Hz */
578 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
579 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
580 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
581 	/* 0x4c - 2560x1600@60Hz RB */
582 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
583 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
584 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
585 	/* 0x4d - 2560x1600@60Hz */
586 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
587 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
588 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
589 	/* 0x4e - 2560x1600@75Hz */
590 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
591 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
592 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
593 	/* 0x4f - 2560x1600@85Hz */
594 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
595 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
596 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
597 	/* 0x50 - 2560x1600@120Hz RB */
598 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
599 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
600 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
601 	/* 0x57 - 4096x2160@60Hz RB */
602 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
603 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
604 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
605 	/* 0x58 - 4096x2160@59.94Hz RB */
606 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
607 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
608 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
609 };
610 
611 /*
612  * These more or less come from the DMT spec.  The 720x400 modes are
613  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
614  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
615  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
616  * mode.
617  *
618  * The DMT modes have been fact-checked; the rest are mild guesses.
619  */
620 static const struct drm_display_mode edid_est_modes[] = {
621 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
622 		   968, 1056, 0, 600, 601, 605, 628, 0,
623 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
624 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
625 		   896, 1024, 0, 600, 601, 603,  625, 0,
626 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
627 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
628 		   720, 840, 0, 480, 481, 484, 500, 0,
629 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
630 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
631 		   704,  832, 0, 480, 489, 492, 520, 0,
632 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
633 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
634 		   768,  864, 0, 480, 483, 486, 525, 0,
635 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
636 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
637 		   752, 800, 0, 480, 490, 492, 525, 0,
638 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
639 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
640 		   846, 900, 0, 400, 421, 423,  449, 0,
641 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
642 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
643 		   846,  900, 0, 400, 412, 414, 449, 0,
644 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
645 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
646 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
647 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
648 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
649 		   1136, 1312, 0,  768, 769, 772, 800, 0,
650 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
651 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
652 		   1184, 1328, 0,  768, 771, 777, 806, 0,
653 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
654 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
655 		   1184, 1344, 0,  768, 771, 777, 806, 0,
656 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
657 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
658 		   1208, 1264, 0, 768, 768, 776, 817, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
660 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
661 		   928, 1152, 0, 624, 625, 628, 667, 0,
662 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
663 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
664 		   896, 1056, 0, 600, 601, 604,  625, 0,
665 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
666 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
667 		   976, 1040, 0, 600, 637, 643, 666, 0,
668 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
669 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
670 		   1344, 1600, 0,  864, 865, 868, 900, 0,
671 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
672 };
673 
674 struct minimode {
675 	short w;
676 	short h;
677 	short r;
678 	short rb;
679 };
680 
681 static const struct minimode est3_modes[] = {
682 	/* byte 6 */
683 	{ 640, 350, 85, 0 },
684 	{ 640, 400, 85, 0 },
685 	{ 720, 400, 85, 0 },
686 	{ 640, 480, 85, 0 },
687 	{ 848, 480, 60, 0 },
688 	{ 800, 600, 85, 0 },
689 	{ 1024, 768, 85, 0 },
690 	{ 1152, 864, 75, 0 },
691 	/* byte 7 */
692 	{ 1280, 768, 60, 1 },
693 	{ 1280, 768, 60, 0 },
694 	{ 1280, 768, 75, 0 },
695 	{ 1280, 768, 85, 0 },
696 	{ 1280, 960, 60, 0 },
697 	{ 1280, 960, 85, 0 },
698 	{ 1280, 1024, 60, 0 },
699 	{ 1280, 1024, 85, 0 },
700 	/* byte 8 */
701 	{ 1360, 768, 60, 0 },
702 	{ 1440, 900, 60, 1 },
703 	{ 1440, 900, 60, 0 },
704 	{ 1440, 900, 75, 0 },
705 	{ 1440, 900, 85, 0 },
706 	{ 1400, 1050, 60, 1 },
707 	{ 1400, 1050, 60, 0 },
708 	{ 1400, 1050, 75, 0 },
709 	/* byte 9 */
710 	{ 1400, 1050, 85, 0 },
711 	{ 1680, 1050, 60, 1 },
712 	{ 1680, 1050, 60, 0 },
713 	{ 1680, 1050, 75, 0 },
714 	{ 1680, 1050, 85, 0 },
715 	{ 1600, 1200, 60, 0 },
716 	{ 1600, 1200, 65, 0 },
717 	{ 1600, 1200, 70, 0 },
718 	/* byte 10 */
719 	{ 1600, 1200, 75, 0 },
720 	{ 1600, 1200, 85, 0 },
721 	{ 1792, 1344, 60, 0 },
722 	{ 1792, 1344, 75, 0 },
723 	{ 1856, 1392, 60, 0 },
724 	{ 1856, 1392, 75, 0 },
725 	{ 1920, 1200, 60, 1 },
726 	{ 1920, 1200, 60, 0 },
727 	/* byte 11 */
728 	{ 1920, 1200, 75, 0 },
729 	{ 1920, 1200, 85, 0 },
730 	{ 1920, 1440, 60, 0 },
731 	{ 1920, 1440, 75, 0 },
732 };
733 
734 static const struct minimode extra_modes[] = {
735 	{ 1024, 576,  60, 0 },
736 	{ 1366, 768,  60, 0 },
737 	{ 1600, 900,  60, 0 },
738 	{ 1680, 945,  60, 0 },
739 	{ 1920, 1080, 60, 0 },
740 	{ 2048, 1152, 60, 0 },
741 	{ 2048, 1536, 60, 0 },
742 };
743 
744 /*
745  * From CEA/CTA-861 spec.
746  *
747  * Do not access directly, instead always use cea_mode_for_vic().
748  */
749 static const struct drm_display_mode edid_cea_modes_1[] = {
750 	/* 1 - 640x480@60Hz 4:3 */
751 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
752 		   752, 800, 0, 480, 490, 492, 525, 0,
753 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
754 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
755 	/* 2 - 720x480@60Hz 4:3 */
756 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
757 		   798, 858, 0, 480, 489, 495, 525, 0,
758 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
759 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
760 	/* 3 - 720x480@60Hz 16:9 */
761 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
762 		   798, 858, 0, 480, 489, 495, 525, 0,
763 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
764 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
765 	/* 4 - 1280x720@60Hz 16:9 */
766 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
767 		   1430, 1650, 0, 720, 725, 730, 750, 0,
768 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
769 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
770 	/* 5 - 1920x1080i@60Hz 16:9 */
771 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
772 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
773 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
774 		   DRM_MODE_FLAG_INTERLACE),
775 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 	/* 6 - 720(1440)x480i@60Hz 4:3 */
777 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
778 		   801, 858, 0, 480, 488, 494, 525, 0,
779 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
780 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
781 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
782 	/* 7 - 720(1440)x480i@60Hz 16:9 */
783 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
784 		   801, 858, 0, 480, 488, 494, 525, 0,
785 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
786 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
787 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
788 	/* 8 - 720(1440)x240@60Hz 4:3 */
789 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
790 		   801, 858, 0, 240, 244, 247, 262, 0,
791 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
792 		   DRM_MODE_FLAG_DBLCLK),
793 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
794 	/* 9 - 720(1440)x240@60Hz 16:9 */
795 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
796 		   801, 858, 0, 240, 244, 247, 262, 0,
797 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
798 		   DRM_MODE_FLAG_DBLCLK),
799 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
800 	/* 10 - 2880x480i@60Hz 4:3 */
801 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
802 		   3204, 3432, 0, 480, 488, 494, 525, 0,
803 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
804 		   DRM_MODE_FLAG_INTERLACE),
805 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
806 	/* 11 - 2880x480i@60Hz 16:9 */
807 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
808 		   3204, 3432, 0, 480, 488, 494, 525, 0,
809 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
810 		   DRM_MODE_FLAG_INTERLACE),
811 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
812 	/* 12 - 2880x240@60Hz 4:3 */
813 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
814 		   3204, 3432, 0, 240, 244, 247, 262, 0,
815 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
816 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
817 	/* 13 - 2880x240@60Hz 16:9 */
818 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
819 		   3204, 3432, 0, 240, 244, 247, 262, 0,
820 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
821 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
822 	/* 14 - 1440x480@60Hz 4:3 */
823 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
824 		   1596, 1716, 0, 480, 489, 495, 525, 0,
825 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
826 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
827 	/* 15 - 1440x480@60Hz 16:9 */
828 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
829 		   1596, 1716, 0, 480, 489, 495, 525, 0,
830 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
831 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
832 	/* 16 - 1920x1080@60Hz 16:9 */
833 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
834 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
835 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
836 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
837 	/* 17 - 720x576@50Hz 4:3 */
838 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
839 		   796, 864, 0, 576, 581, 586, 625, 0,
840 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
841 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
842 	/* 18 - 720x576@50Hz 16:9 */
843 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
844 		   796, 864, 0, 576, 581, 586, 625, 0,
845 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
846 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
847 	/* 19 - 1280x720@50Hz 16:9 */
848 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
849 		   1760, 1980, 0, 720, 725, 730, 750, 0,
850 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
851 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
852 	/* 20 - 1920x1080i@50Hz 16:9 */
853 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
854 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
855 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
856 		   DRM_MODE_FLAG_INTERLACE),
857 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 	/* 21 - 720(1440)x576i@50Hz 4:3 */
859 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
860 		   795, 864, 0, 576, 580, 586, 625, 0,
861 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
862 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
863 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
864 	/* 22 - 720(1440)x576i@50Hz 16:9 */
865 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
866 		   795, 864, 0, 576, 580, 586, 625, 0,
867 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
868 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
869 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
870 	/* 23 - 720(1440)x288@50Hz 4:3 */
871 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
872 		   795, 864, 0, 288, 290, 293, 312, 0,
873 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
874 		   DRM_MODE_FLAG_DBLCLK),
875 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
876 	/* 24 - 720(1440)x288@50Hz 16:9 */
877 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
878 		   795, 864, 0, 288, 290, 293, 312, 0,
879 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
880 		   DRM_MODE_FLAG_DBLCLK),
881 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
882 	/* 25 - 2880x576i@50Hz 4:3 */
883 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
884 		   3180, 3456, 0, 576, 580, 586, 625, 0,
885 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
886 		   DRM_MODE_FLAG_INTERLACE),
887 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
888 	/* 26 - 2880x576i@50Hz 16:9 */
889 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
890 		   3180, 3456, 0, 576, 580, 586, 625, 0,
891 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
892 		   DRM_MODE_FLAG_INTERLACE),
893 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
894 	/* 27 - 2880x288@50Hz 4:3 */
895 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
896 		   3180, 3456, 0, 288, 290, 293, 312, 0,
897 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
898 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
899 	/* 28 - 2880x288@50Hz 16:9 */
900 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
901 		   3180, 3456, 0, 288, 290, 293, 312, 0,
902 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
903 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 	/* 29 - 1440x576@50Hz 4:3 */
905 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
906 		   1592, 1728, 0, 576, 581, 586, 625, 0,
907 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
908 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
909 	/* 30 - 1440x576@50Hz 16:9 */
910 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
911 		   1592, 1728, 0, 576, 581, 586, 625, 0,
912 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
913 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
914 	/* 31 - 1920x1080@50Hz 16:9 */
915 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
916 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
917 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 	/* 32 - 1920x1080@24Hz 16:9 */
920 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
921 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
922 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
924 	/* 33 - 1920x1080@25Hz 16:9 */
925 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
926 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
927 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 	/* 34 - 1920x1080@30Hz 16:9 */
930 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
931 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
932 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
934 	/* 35 - 2880x480@60Hz 4:3 */
935 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
936 		   3192, 3432, 0, 480, 489, 495, 525, 0,
937 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
938 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
939 	/* 36 - 2880x480@60Hz 16:9 */
940 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
941 		   3192, 3432, 0, 480, 489, 495, 525, 0,
942 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
943 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 	/* 37 - 2880x576@50Hz 4:3 */
945 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
946 		   3184, 3456, 0, 576, 581, 586, 625, 0,
947 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
948 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
949 	/* 38 - 2880x576@50Hz 16:9 */
950 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
951 		   3184, 3456, 0, 576, 581, 586, 625, 0,
952 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
953 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
954 	/* 39 - 1920x1080i@50Hz 16:9 */
955 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
956 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
957 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
958 		   DRM_MODE_FLAG_INTERLACE),
959 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
960 	/* 40 - 1920x1080i@100Hz 16:9 */
961 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
962 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
963 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
964 		   DRM_MODE_FLAG_INTERLACE),
965 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 	/* 41 - 1280x720@100Hz 16:9 */
967 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
968 		   1760, 1980, 0, 720, 725, 730, 750, 0,
969 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
970 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
971 	/* 42 - 720x576@100Hz 4:3 */
972 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
973 		   796, 864, 0, 576, 581, 586, 625, 0,
974 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
975 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
976 	/* 43 - 720x576@100Hz 16:9 */
977 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
978 		   796, 864, 0, 576, 581, 586, 625, 0,
979 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
980 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
981 	/* 44 - 720(1440)x576i@100Hz 4:3 */
982 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
983 		   795, 864, 0, 576, 580, 586, 625, 0,
984 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
985 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
986 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
987 	/* 45 - 720(1440)x576i@100Hz 16:9 */
988 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
989 		   795, 864, 0, 576, 580, 586, 625, 0,
990 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
991 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
992 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
993 	/* 46 - 1920x1080i@120Hz 16:9 */
994 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
995 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
996 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
997 		   DRM_MODE_FLAG_INTERLACE),
998 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 	/* 47 - 1280x720@120Hz 16:9 */
1000 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1001 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1002 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1003 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1004 	/* 48 - 720x480@120Hz 4:3 */
1005 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1006 		   798, 858, 0, 480, 489, 495, 525, 0,
1007 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1008 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1009 	/* 49 - 720x480@120Hz 16:9 */
1010 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1011 		   798, 858, 0, 480, 489, 495, 525, 0,
1012 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1013 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1014 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1015 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1016 		   801, 858, 0, 480, 488, 494, 525, 0,
1017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1018 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1019 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1020 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1021 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1022 		   801, 858, 0, 480, 488, 494, 525, 0,
1023 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1024 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1025 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1026 	/* 52 - 720x576@200Hz 4:3 */
1027 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1028 		   796, 864, 0, 576, 581, 586, 625, 0,
1029 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1030 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1031 	/* 53 - 720x576@200Hz 16:9 */
1032 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1033 		   796, 864, 0, 576, 581, 586, 625, 0,
1034 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1035 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1036 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1037 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1038 		   795, 864, 0, 576, 580, 586, 625, 0,
1039 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1040 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1041 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1042 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1043 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1044 		   795, 864, 0, 576, 580, 586, 625, 0,
1045 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1046 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1047 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1048 	/* 56 - 720x480@240Hz 4:3 */
1049 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1050 		   798, 858, 0, 480, 489, 495, 525, 0,
1051 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1052 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1053 	/* 57 - 720x480@240Hz 16:9 */
1054 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1055 		   798, 858, 0, 480, 489, 495, 525, 0,
1056 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1057 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1058 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1059 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1060 		   801, 858, 0, 480, 488, 494, 525, 0,
1061 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1062 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1063 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1064 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1065 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1066 		   801, 858, 0, 480, 488, 494, 525, 0,
1067 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1068 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1069 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070 	/* 60 - 1280x720@24Hz 16:9 */
1071 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1072 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1073 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075 	/* 61 - 1280x720@25Hz 16:9 */
1076 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1077 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080 	/* 62 - 1280x720@30Hz 16:9 */
1081 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1082 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1083 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1085 	/* 63 - 1920x1080@120Hz 16:9 */
1086 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1087 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1088 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1090 	/* 64 - 1920x1080@100Hz 16:9 */
1091 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1092 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1093 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1095 	/* 65 - 1280x720@24Hz 64:27 */
1096 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1097 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1098 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 	/* 66 - 1280x720@25Hz 64:27 */
1101 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1102 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1103 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 	/* 67 - 1280x720@30Hz 64:27 */
1106 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1107 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1108 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 	/* 68 - 1280x720@50Hz 64:27 */
1111 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1112 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1113 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 	/* 69 - 1280x720@60Hz 64:27 */
1116 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1117 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1118 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 	/* 70 - 1280x720@100Hz 64:27 */
1121 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1122 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1123 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 	/* 71 - 1280x720@120Hz 64:27 */
1126 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1127 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1128 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 	/* 72 - 1920x1080@24Hz 64:27 */
1131 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1132 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1133 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 	/* 73 - 1920x1080@25Hz 64:27 */
1136 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1137 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 	/* 74 - 1920x1080@30Hz 64:27 */
1141 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1142 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1143 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 	/* 75 - 1920x1080@50Hz 64:27 */
1146 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1147 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1148 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 	/* 76 - 1920x1080@60Hz 64:27 */
1151 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1152 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1153 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 	/* 77 - 1920x1080@100Hz 64:27 */
1156 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1157 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 	/* 78 - 1920x1080@120Hz 64:27 */
1161 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1162 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1163 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 	/* 79 - 1680x720@24Hz 64:27 */
1166 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1167 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1168 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 	/* 80 - 1680x720@25Hz 64:27 */
1171 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1172 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 	/* 81 - 1680x720@30Hz 64:27 */
1176 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1177 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1178 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180 	/* 82 - 1680x720@50Hz 64:27 */
1181 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1182 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1183 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185 	/* 83 - 1680x720@60Hz 64:27 */
1186 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1187 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1188 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190 	/* 84 - 1680x720@100Hz 64:27 */
1191 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1192 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195 	/* 85 - 1680x720@120Hz 64:27 */
1196 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1197 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1198 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200 	/* 86 - 2560x1080@24Hz 64:27 */
1201 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1202 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1203 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205 	/* 87 - 2560x1080@25Hz 64:27 */
1206 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1207 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1208 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210 	/* 88 - 2560x1080@30Hz 64:27 */
1211 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1212 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1213 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215 	/* 89 - 2560x1080@50Hz 64:27 */
1216 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1217 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220 	/* 90 - 2560x1080@60Hz 64:27 */
1221 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1222 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1225 	/* 91 - 2560x1080@100Hz 64:27 */
1226 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1227 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1228 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1230 	/* 92 - 2560x1080@120Hz 64:27 */
1231 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1232 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1233 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1235 	/* 93 - 3840x2160@24Hz 16:9 */
1236 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1237 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240 	/* 94 - 3840x2160@25Hz 16:9 */
1241 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1242 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1243 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245 	/* 95 - 3840x2160@30Hz 16:9 */
1246 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1247 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1250 	/* 96 - 3840x2160@50Hz 16:9 */
1251 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1252 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1255 	/* 97 - 3840x2160@60Hz 16:9 */
1256 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1257 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1260 	/* 98 - 4096x2160@24Hz 256:135 */
1261 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1262 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1263 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265 	/* 99 - 4096x2160@25Hz 256:135 */
1266 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1267 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1268 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270 	/* 100 - 4096x2160@30Hz 256:135 */
1271 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1272 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1273 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1275 	/* 101 - 4096x2160@50Hz 256:135 */
1276 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1277 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1280 	/* 102 - 4096x2160@60Hz 256:135 */
1281 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1282 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1285 	/* 103 - 3840x2160@24Hz 64:27 */
1286 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1287 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1288 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290 	/* 104 - 3840x2160@25Hz 64:27 */
1291 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1292 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1293 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295 	/* 105 - 3840x2160@30Hz 64:27 */
1296 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1297 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1300 	/* 106 - 3840x2160@50Hz 64:27 */
1301 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1302 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1303 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305 	/* 107 - 3840x2160@60Hz 64:27 */
1306 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1307 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1308 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310 	/* 108 - 1280x720@48Hz 16:9 */
1311 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1312 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1313 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315 	/* 109 - 1280x720@48Hz 64:27 */
1316 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1317 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320 	/* 110 - 1680x720@48Hz 64:27 */
1321 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1322 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1323 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325 	/* 111 - 1920x1080@48Hz 16:9 */
1326 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1327 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330 	/* 112 - 1920x1080@48Hz 64:27 */
1331 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1332 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1335 	/* 113 - 2560x1080@48Hz 64:27 */
1336 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1337 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340 	/* 114 - 3840x2160@48Hz 16:9 */
1341 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1342 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345 	/* 115 - 4096x2160@48Hz 256:135 */
1346 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1347 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1348 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1350 	/* 116 - 3840x2160@48Hz 64:27 */
1351 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1352 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1353 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355 	/* 117 - 3840x2160@100Hz 16:9 */
1356 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1357 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1358 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1360 	/* 118 - 3840x2160@120Hz 16:9 */
1361 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1362 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1363 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1365 	/* 119 - 3840x2160@100Hz 64:27 */
1366 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1367 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370 	/* 120 - 3840x2160@120Hz 64:27 */
1371 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1372 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1373 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375 	/* 121 - 5120x2160@24Hz 64:27 */
1376 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1377 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1378 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380 	/* 122 - 5120x2160@25Hz 64:27 */
1381 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1382 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1383 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385 	/* 123 - 5120x2160@30Hz 64:27 */
1386 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1387 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1388 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390 	/* 124 - 5120x2160@48Hz 64:27 */
1391 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1392 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1393 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395 	/* 125 - 5120x2160@50Hz 64:27 */
1396 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1397 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1398 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1399 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1400 	/* 126 - 5120x2160@60Hz 64:27 */
1401 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1402 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1404 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1405 	/* 127 - 5120x2160@100Hz 64:27 */
1406 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1407 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1408 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1409 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1410 };
1411 
1412 /*
1413  * From CEA/CTA-861 spec.
1414  *
1415  * Do not access directly, instead always use cea_mode_for_vic().
1416  */
1417 static const struct drm_display_mode edid_cea_modes_193[] = {
1418 	/* 193 - 5120x2160@120Hz 64:27 */
1419 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1420 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1421 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1423 	/* 194 - 7680x4320@24Hz 16:9 */
1424 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1425 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428 	/* 195 - 7680x4320@25Hz 16:9 */
1429 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1430 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433 	/* 196 - 7680x4320@30Hz 16:9 */
1434 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1435 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438 	/* 197 - 7680x4320@48Hz 16:9 */
1439 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1440 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1441 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443 	/* 198 - 7680x4320@50Hz 16:9 */
1444 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1445 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1446 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448 	/* 199 - 7680x4320@60Hz 16:9 */
1449 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1450 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1451 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1453 	/* 200 - 7680x4320@100Hz 16:9 */
1454 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1455 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1456 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1458 	/* 201 - 7680x4320@120Hz 16:9 */
1459 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1460 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1461 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1463 	/* 202 - 7680x4320@24Hz 64:27 */
1464 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1465 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468 	/* 203 - 7680x4320@25Hz 64:27 */
1469 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1470 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473 	/* 204 - 7680x4320@30Hz 64:27 */
1474 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1475 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478 	/* 205 - 7680x4320@48Hz 64:27 */
1479 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1480 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1481 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483 	/* 206 - 7680x4320@50Hz 64:27 */
1484 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1485 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1486 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488 	/* 207 - 7680x4320@60Hz 64:27 */
1489 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1490 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493 	/* 208 - 7680x4320@100Hz 64:27 */
1494 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1495 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1496 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498 	/* 209 - 7680x4320@120Hz 64:27 */
1499 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1500 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1501 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503 	/* 210 - 10240x4320@24Hz 64:27 */
1504 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1505 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508 	/* 211 - 10240x4320@25Hz 64:27 */
1509 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1510 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513 	/* 212 - 10240x4320@30Hz 64:27 */
1514 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1515 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518 	/* 213 - 10240x4320@48Hz 64:27 */
1519 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1520 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523 	/* 214 - 10240x4320@50Hz 64:27 */
1524 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1525 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1526 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528 	/* 215 - 10240x4320@60Hz 64:27 */
1529 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1530 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1531 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1533 	/* 216 - 10240x4320@100Hz 64:27 */
1534 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1535 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1536 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1538 	/* 217 - 10240x4320@120Hz 64:27 */
1539 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1540 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1541 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1542 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1543 	/* 218 - 4096x2160@100Hz 256:135 */
1544 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1545 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1546 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1547 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1548 	/* 219 - 4096x2160@120Hz 256:135 */
1549 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1550 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1551 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1552 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1553 };
1554 
1555 /*
1556  * HDMI 1.4 4k modes. Index using the VIC.
1557  */
1558 static const struct drm_display_mode edid_4k_modes[] = {
1559 	/* 0 - dummy, VICs start at 1 */
1560 	{ },
1561 	/* 1 - 3840x2160@30Hz */
1562 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1563 		   3840, 4016, 4104, 4400, 0,
1564 		   2160, 2168, 2178, 2250, 0,
1565 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1566 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1567 	/* 2 - 3840x2160@25Hz */
1568 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1569 		   3840, 4896, 4984, 5280, 0,
1570 		   2160, 2168, 2178, 2250, 0,
1571 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1572 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1573 	/* 3 - 3840x2160@24Hz */
1574 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1575 		   3840, 5116, 5204, 5500, 0,
1576 		   2160, 2168, 2178, 2250, 0,
1577 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1578 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1579 	/* 4 - 4096x2160@24Hz (SMPTE) */
1580 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1581 		   4096, 5116, 5204, 5500, 0,
1582 		   2160, 2168, 2178, 2250, 0,
1583 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1584 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1585 };
1586 
1587 /*** DDC fetch and block validation ***/
1588 
1589 /*
1590  * The opaque EDID type, internal to drm_edid.c.
1591  */
1592 struct drm_edid {
1593 	/* Size allocated for edid */
1594 	size_t size;
1595 	const struct edid *edid;
1596 };
1597 
1598 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1599 
1600 static int edid_hfeeodb_block_count(const struct edid *edid)
1601 {
1602 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1603 
1604 	return eeodb ? eeodb + 1 : 0;
1605 }
1606 
1607 static int edid_extension_block_count(const struct edid *edid)
1608 {
1609 	return edid->extensions;
1610 }
1611 
1612 static int edid_block_count(const struct edid *edid)
1613 {
1614 	return edid_extension_block_count(edid) + 1;
1615 }
1616 
1617 static int edid_size_by_blocks(int num_blocks)
1618 {
1619 	return num_blocks * EDID_LENGTH;
1620 }
1621 
1622 static int edid_size(const struct edid *edid)
1623 {
1624 	return edid_size_by_blocks(edid_block_count(edid));
1625 }
1626 
1627 static const void *edid_block_data(const struct edid *edid, int index)
1628 {
1629 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1630 
1631 	return edid + index;
1632 }
1633 
1634 static const void *edid_extension_block_data(const struct edid *edid, int index)
1635 {
1636 	return edid_block_data(edid, index + 1);
1637 }
1638 
1639 /* EDID block count indicated in EDID, may exceed allocated size */
1640 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1641 {
1642 	int num_blocks;
1643 
1644 	/* Starting point */
1645 	num_blocks = edid_block_count(drm_edid->edid);
1646 
1647 	/* HF-EEODB override */
1648 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1649 		int eeodb;
1650 
1651 		/*
1652 		 * Note: HF-EEODB may specify a smaller extension count than the
1653 		 * regular one. Unlike in buffer allocation, here we can use it.
1654 		 */
1655 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1656 		if (eeodb)
1657 			num_blocks = eeodb;
1658 	}
1659 
1660 	return num_blocks;
1661 }
1662 
1663 /* EDID block count, limited by allocated size */
1664 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1665 {
1666 	/* Limit by allocated size */
1667 	return min(__drm_edid_block_count(drm_edid),
1668 		   (int)drm_edid->size / EDID_LENGTH);
1669 }
1670 
1671 /* EDID extension block count, limited by allocated size */
1672 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1673 {
1674 	return drm_edid_block_count(drm_edid) - 1;
1675 }
1676 
1677 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1678 {
1679 	return edid_block_data(drm_edid->edid, index);
1680 }
1681 
1682 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1683 						 int index)
1684 {
1685 	return edid_extension_block_data(drm_edid->edid, index);
1686 }
1687 
1688 /*
1689  * Initializer helper for legacy interfaces, where we have no choice but to
1690  * trust edid size. Not for general purpose use.
1691  */
1692 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1693 						   const struct edid *edid)
1694 {
1695 	if (!edid)
1696 		return NULL;
1697 
1698 	memset(drm_edid, 0, sizeof(*drm_edid));
1699 
1700 	drm_edid->edid = edid;
1701 	drm_edid->size = edid_size(edid);
1702 
1703 	return drm_edid;
1704 }
1705 
1706 /*
1707  * EDID base and extension block iterator.
1708  *
1709  * struct drm_edid_iter iter;
1710  * const u8 *block;
1711  *
1712  * drm_edid_iter_begin(drm_edid, &iter);
1713  * drm_edid_iter_for_each(block, &iter) {
1714  *         // do stuff with block
1715  * }
1716  * drm_edid_iter_end(&iter);
1717  */
1718 struct drm_edid_iter {
1719 	const struct drm_edid *drm_edid;
1720 
1721 	/* Current block index. */
1722 	int index;
1723 };
1724 
1725 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1726 				struct drm_edid_iter *iter)
1727 {
1728 	memset(iter, 0, sizeof(*iter));
1729 
1730 	iter->drm_edid = drm_edid;
1731 }
1732 
1733 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1734 {
1735 	const void *block = NULL;
1736 
1737 	if (!iter->drm_edid)
1738 		return NULL;
1739 
1740 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1741 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1742 
1743 	return block;
1744 }
1745 
1746 #define drm_edid_iter_for_each(__block, __iter)			\
1747 	while (((__block) = __drm_edid_iter_next(__iter)))
1748 
1749 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1750 {
1751 	memset(iter, 0, sizeof(*iter));
1752 }
1753 
1754 static const u8 edid_header[] = {
1755 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1756 };
1757 
1758 static void edid_header_fix(void *edid)
1759 {
1760 	memcpy(edid, edid_header, sizeof(edid_header));
1761 }
1762 
1763 /**
1764  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1765  * @_edid: pointer to raw base EDID block
1766  *
1767  * Sanity check the header of the base EDID block.
1768  *
1769  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1770  */
1771 int drm_edid_header_is_valid(const void *_edid)
1772 {
1773 	const struct edid *edid = _edid;
1774 	int i, score = 0;
1775 
1776 	for (i = 0; i < sizeof(edid_header); i++) {
1777 		if (edid->header[i] == edid_header[i])
1778 			score++;
1779 	}
1780 
1781 	return score;
1782 }
1783 EXPORT_SYMBOL(drm_edid_header_is_valid);
1784 
1785 static int edid_fixup __read_mostly = 6;
1786 module_param_named(edid_fixup, edid_fixup, int, 0400);
1787 MODULE_PARM_DESC(edid_fixup,
1788 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1789 
1790 static int edid_block_compute_checksum(const void *_block)
1791 {
1792 	const u8 *block = _block;
1793 	int i;
1794 	u8 csum = 0, crc = 0;
1795 
1796 	for (i = 0; i < EDID_LENGTH - 1; i++)
1797 		csum += block[i];
1798 
1799 	crc = 0x100 - csum;
1800 
1801 	return crc;
1802 }
1803 
1804 static int edid_block_get_checksum(const void *_block)
1805 {
1806 	const struct edid *block = _block;
1807 
1808 	return block->checksum;
1809 }
1810 
1811 static int edid_block_tag(const void *_block)
1812 {
1813 	const u8 *block = _block;
1814 
1815 	return block[0];
1816 }
1817 
1818 static bool edid_block_is_zero(const void *edid)
1819 {
1820 	return !memchr_inv(edid, 0, EDID_LENGTH);
1821 }
1822 
1823 static bool drm_edid_eq(const struct drm_edid *drm_edid,
1824 			const void *raw_edid, size_t raw_edid_size)
1825 {
1826 	bool edid1_present = drm_edid && drm_edid->edid && drm_edid->size;
1827 	bool edid2_present = raw_edid && raw_edid_size;
1828 
1829 	if (edid1_present != edid2_present)
1830 		return false;
1831 
1832 	if (edid1_present) {
1833 		if (drm_edid->size != raw_edid_size)
1834 			return false;
1835 
1836 		if (memcmp(drm_edid->edid, raw_edid, drm_edid->size))
1837 			return false;
1838 	}
1839 
1840 	return true;
1841 }
1842 
1843 enum edid_block_status {
1844 	EDID_BLOCK_OK = 0,
1845 	EDID_BLOCK_READ_FAIL,
1846 	EDID_BLOCK_NULL,
1847 	EDID_BLOCK_ZERO,
1848 	EDID_BLOCK_HEADER_CORRUPT,
1849 	EDID_BLOCK_HEADER_REPAIR,
1850 	EDID_BLOCK_HEADER_FIXED,
1851 	EDID_BLOCK_CHECKSUM,
1852 	EDID_BLOCK_VERSION,
1853 };
1854 
1855 static enum edid_block_status edid_block_check(const void *_block,
1856 					       bool is_base_block)
1857 {
1858 	const struct edid *block = _block;
1859 
1860 	if (!block)
1861 		return EDID_BLOCK_NULL;
1862 
1863 	if (is_base_block) {
1864 		int score = drm_edid_header_is_valid(block);
1865 
1866 		if (score < clamp(edid_fixup, 0, 8)) {
1867 			if (edid_block_is_zero(block))
1868 				return EDID_BLOCK_ZERO;
1869 			else
1870 				return EDID_BLOCK_HEADER_CORRUPT;
1871 		}
1872 
1873 		if (score < 8)
1874 			return EDID_BLOCK_HEADER_REPAIR;
1875 	}
1876 
1877 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1878 		if (edid_block_is_zero(block))
1879 			return EDID_BLOCK_ZERO;
1880 		else
1881 			return EDID_BLOCK_CHECKSUM;
1882 	}
1883 
1884 	if (is_base_block) {
1885 		if (block->version != 1)
1886 			return EDID_BLOCK_VERSION;
1887 	}
1888 
1889 	return EDID_BLOCK_OK;
1890 }
1891 
1892 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1893 {
1894 	return status == EDID_BLOCK_OK ||
1895 		status == EDID_BLOCK_HEADER_FIXED ||
1896 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1897 }
1898 
1899 static bool edid_block_valid(const void *block, bool base)
1900 {
1901 	return edid_block_status_valid(edid_block_check(block, base),
1902 				       edid_block_tag(block));
1903 }
1904 
1905 static void edid_block_status_print(enum edid_block_status status,
1906 				    const struct edid *block,
1907 				    int block_num)
1908 {
1909 	switch (status) {
1910 	case EDID_BLOCK_OK:
1911 		break;
1912 	case EDID_BLOCK_READ_FAIL:
1913 		pr_debug("EDID block %d read failed\n", block_num);
1914 		break;
1915 	case EDID_BLOCK_NULL:
1916 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1917 		break;
1918 	case EDID_BLOCK_ZERO:
1919 		pr_notice("EDID block %d is all zeroes\n", block_num);
1920 		break;
1921 	case EDID_BLOCK_HEADER_CORRUPT:
1922 		pr_notice("EDID has corrupt header\n");
1923 		break;
1924 	case EDID_BLOCK_HEADER_REPAIR:
1925 		pr_debug("EDID corrupt header needs repair\n");
1926 		break;
1927 	case EDID_BLOCK_HEADER_FIXED:
1928 		pr_debug("EDID corrupt header fixed\n");
1929 		break;
1930 	case EDID_BLOCK_CHECKSUM:
1931 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1932 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1933 				 block_num, edid_block_tag(block),
1934 				 edid_block_compute_checksum(block));
1935 		} else {
1936 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1937 				  block_num, edid_block_tag(block),
1938 				  edid_block_compute_checksum(block));
1939 		}
1940 		break;
1941 	case EDID_BLOCK_VERSION:
1942 		pr_notice("EDID has major version %d, instead of 1\n",
1943 			  block->version);
1944 		break;
1945 	default:
1946 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1947 		     block_num, status);
1948 		break;
1949 	}
1950 }
1951 
1952 static void edid_block_dump(const char *level, const void *block, int block_num)
1953 {
1954 	enum edid_block_status status;
1955 	char prefix[20];
1956 
1957 	status = edid_block_check(block, block_num == 0);
1958 	if (status == EDID_BLOCK_ZERO)
1959 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1960 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1961 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1962 	else
1963 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1964 
1965 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1966 		       block, EDID_LENGTH, false);
1967 }
1968 
1969 /**
1970  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1971  * @_block: pointer to raw EDID block
1972  * @block_num: type of block to validate (0 for base, extension otherwise)
1973  * @print_bad_edid: if true, dump bad EDID blocks to the console
1974  * @edid_corrupt: if true, the header or checksum is invalid
1975  *
1976  * Validate a base or extension EDID block and optionally dump bad blocks to
1977  * the console.
1978  *
1979  * Return: True if the block is valid, false otherwise.
1980  */
1981 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1982 			  bool *edid_corrupt)
1983 {
1984 	struct edid *block = (struct edid *)_block;
1985 	enum edid_block_status status;
1986 	bool is_base_block = block_num == 0;
1987 	bool valid;
1988 
1989 	if (WARN_ON(!block))
1990 		return false;
1991 
1992 	status = edid_block_check(block, is_base_block);
1993 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1994 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1995 		edid_header_fix(block);
1996 
1997 		/* Retry with fixed header, update status if that worked. */
1998 		status = edid_block_check(block, is_base_block);
1999 		if (status == EDID_BLOCK_OK)
2000 			status = EDID_BLOCK_HEADER_FIXED;
2001 	}
2002 
2003 	if (edid_corrupt) {
2004 		/*
2005 		 * Unknown major version isn't corrupt but we can't use it. Only
2006 		 * the base block can reset edid_corrupt to false.
2007 		 */
2008 		if (is_base_block &&
2009 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2010 			*edid_corrupt = false;
2011 		else if (status != EDID_BLOCK_OK)
2012 			*edid_corrupt = true;
2013 	}
2014 
2015 	edid_block_status_print(status, block, block_num);
2016 
2017 	/* Determine whether we can use this block with this status. */
2018 	valid = edid_block_status_valid(status, edid_block_tag(block));
2019 
2020 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2021 		pr_notice("Raw EDID:\n");
2022 		edid_block_dump(KERN_NOTICE, block, block_num);
2023 	}
2024 
2025 	return valid;
2026 }
2027 EXPORT_SYMBOL(drm_edid_block_valid);
2028 
2029 /**
2030  * drm_edid_is_valid - sanity check EDID data
2031  * @edid: EDID data
2032  *
2033  * Sanity-check an entire EDID record (including extensions)
2034  *
2035  * Return: True if the EDID data is valid, false otherwise.
2036  */
2037 bool drm_edid_is_valid(struct edid *edid)
2038 {
2039 	int i;
2040 
2041 	if (!edid)
2042 		return false;
2043 
2044 	for (i = 0; i < edid_block_count(edid); i++) {
2045 		void *block = (void *)edid_block_data(edid, i);
2046 
2047 		if (!drm_edid_block_valid(block, i, true, NULL))
2048 			return false;
2049 	}
2050 
2051 	return true;
2052 }
2053 EXPORT_SYMBOL(drm_edid_is_valid);
2054 
2055 /**
2056  * drm_edid_valid - sanity check EDID data
2057  * @drm_edid: EDID data
2058  *
2059  * Sanity check an EDID. Cross check block count against allocated size and
2060  * checksum the blocks.
2061  *
2062  * Return: True if the EDID data is valid, false otherwise.
2063  */
2064 bool drm_edid_valid(const struct drm_edid *drm_edid)
2065 {
2066 	int i;
2067 
2068 	if (!drm_edid)
2069 		return false;
2070 
2071 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2072 		return false;
2073 
2074 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2075 		const void *block = drm_edid_block_data(drm_edid, i);
2076 
2077 		if (!edid_block_valid(block, i == 0))
2078 			return false;
2079 	}
2080 
2081 	return true;
2082 }
2083 EXPORT_SYMBOL(drm_edid_valid);
2084 
2085 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2086 					       size_t *alloc_size)
2087 {
2088 	struct edid *new;
2089 	int i, valid_blocks = 0;
2090 
2091 	/*
2092 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2093 	 * back to regular extension count here. We don't want to start
2094 	 * modifying the HF-EEODB extension too.
2095 	 */
2096 	for (i = 0; i < edid_block_count(edid); i++) {
2097 		const void *src_block = edid_block_data(edid, i);
2098 
2099 		if (edid_block_valid(src_block, i == 0)) {
2100 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2101 
2102 			memmove(dst_block, src_block, EDID_LENGTH);
2103 			valid_blocks++;
2104 		}
2105 	}
2106 
2107 	/* We already trusted the base block to be valid here... */
2108 	if (WARN_ON(!valid_blocks)) {
2109 		kfree(edid);
2110 		return NULL;
2111 	}
2112 
2113 	edid->extensions = valid_blocks - 1;
2114 	edid->checksum = edid_block_compute_checksum(edid);
2115 
2116 	*alloc_size = edid_size_by_blocks(valid_blocks);
2117 
2118 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2119 	if (!new)
2120 		kfree(edid);
2121 
2122 	return new;
2123 }
2124 
2125 #define DDC_SEGMENT_ADDR 0x30
2126 /**
2127  * drm_do_probe_ddc_edid() - get EDID information via I2C
2128  * @data: I2C device adapter
2129  * @buf: EDID data buffer to be filled
2130  * @block: 128 byte EDID block to start fetching from
2131  * @len: EDID data buffer length to fetch
2132  *
2133  * Try to fetch EDID information by calling I2C driver functions.
2134  *
2135  * Return: 0 on success or -1 on failure.
2136  */
2137 static int
2138 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2139 {
2140 	struct i2c_adapter *adapter = data;
2141 	unsigned char start = block * EDID_LENGTH;
2142 	unsigned char segment = block >> 1;
2143 	unsigned char xfers = segment ? 3 : 2;
2144 	int ret, retries = 5;
2145 
2146 	/*
2147 	 * The core I2C driver will automatically retry the transfer if the
2148 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2149 	 * are susceptible to errors under a heavily loaded machine and
2150 	 * generate spurious NAKs and timeouts. Retrying the transfer
2151 	 * of the individual block a few times seems to overcome this.
2152 	 */
2153 	do {
2154 		struct i2c_msg msgs[] = {
2155 			{
2156 				.addr	= DDC_SEGMENT_ADDR,
2157 				.flags	= 0,
2158 				.len	= 1,
2159 				.buf	= &segment,
2160 			}, {
2161 				.addr	= DDC_ADDR,
2162 				.flags	= 0,
2163 				.len	= 1,
2164 				.buf	= &start,
2165 			}, {
2166 				.addr	= DDC_ADDR,
2167 				.flags	= I2C_M_RD,
2168 				.len	= len,
2169 				.buf	= buf,
2170 			}
2171 		};
2172 
2173 		/*
2174 		 * Avoid sending the segment addr to not upset non-compliant
2175 		 * DDC monitors.
2176 		 */
2177 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2178 
2179 		if (ret == -ENXIO) {
2180 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2181 					adapter->name);
2182 			break;
2183 		}
2184 	} while (ret != xfers && --retries);
2185 
2186 	return ret == xfers ? 0 : -1;
2187 }
2188 
2189 static void connector_bad_edid(struct drm_connector *connector,
2190 			       const struct edid *edid, int num_blocks)
2191 {
2192 	int i;
2193 	u8 last_block;
2194 
2195 	/*
2196 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2197 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2198 	 * of 0x7e in the EDID of the _index_ of the last block in the
2199 	 * combined chunk of memory.
2200 	 */
2201 	last_block = edid->extensions;
2202 
2203 	/* Calculate real checksum for the last edid extension block data */
2204 	if (last_block < num_blocks)
2205 		connector->real_edid_checksum =
2206 			edid_block_compute_checksum(edid + last_block);
2207 
2208 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2209 		return;
2210 
2211 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2212 		    connector->base.id, connector->name);
2213 	for (i = 0; i < num_blocks; i++)
2214 		edid_block_dump(KERN_DEBUG, edid + i, i);
2215 }
2216 
2217 /* Get override or firmware EDID */
2218 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2219 {
2220 	const struct drm_edid *override = NULL;
2221 
2222 	mutex_lock(&connector->edid_override_mutex);
2223 
2224 	if (connector->edid_override)
2225 		override = drm_edid_dup(connector->edid_override);
2226 
2227 	mutex_unlock(&connector->edid_override_mutex);
2228 
2229 	if (!override)
2230 		override = drm_edid_load_firmware(connector);
2231 
2232 	return IS_ERR(override) ? NULL : override;
2233 }
2234 
2235 /* For debugfs edid_override implementation */
2236 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2237 {
2238 	const struct drm_edid *drm_edid;
2239 
2240 	mutex_lock(&connector->edid_override_mutex);
2241 
2242 	drm_edid = connector->edid_override;
2243 	if (drm_edid)
2244 		seq_write(m, drm_edid->edid, drm_edid->size);
2245 
2246 	mutex_unlock(&connector->edid_override_mutex);
2247 
2248 	return 0;
2249 }
2250 
2251 /* For debugfs edid_override implementation */
2252 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2253 			  size_t size)
2254 {
2255 	const struct drm_edid *drm_edid;
2256 
2257 	drm_edid = drm_edid_alloc(edid, size);
2258 	if (!drm_edid_valid(drm_edid)) {
2259 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2260 			    connector->base.id, connector->name);
2261 		drm_edid_free(drm_edid);
2262 		return -EINVAL;
2263 	}
2264 
2265 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2266 		    connector->base.id, connector->name);
2267 
2268 	mutex_lock(&connector->edid_override_mutex);
2269 
2270 	drm_edid_free(connector->edid_override);
2271 	connector->edid_override = drm_edid;
2272 
2273 	mutex_unlock(&connector->edid_override_mutex);
2274 
2275 	return 0;
2276 }
2277 
2278 /* For debugfs edid_override implementation */
2279 int drm_edid_override_reset(struct drm_connector *connector)
2280 {
2281 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2282 		    connector->base.id, connector->name);
2283 
2284 	mutex_lock(&connector->edid_override_mutex);
2285 
2286 	drm_edid_free(connector->edid_override);
2287 	connector->edid_override = NULL;
2288 
2289 	mutex_unlock(&connector->edid_override_mutex);
2290 
2291 	return 0;
2292 }
2293 
2294 /**
2295  * drm_edid_override_connector_update - add modes from override/firmware EDID
2296  * @connector: connector we're probing
2297  *
2298  * Add modes from the override/firmware EDID, if available. Only to be used from
2299  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2300  * failed during drm_get_edid() and caused the override/firmware EDID to be
2301  * skipped.
2302  *
2303  * Return: The number of modes added or 0 if we couldn't find any.
2304  */
2305 int drm_edid_override_connector_update(struct drm_connector *connector)
2306 {
2307 	const struct drm_edid *override;
2308 	int num_modes = 0;
2309 
2310 	override = drm_edid_override_get(connector);
2311 	if (override) {
2312 		if (drm_edid_connector_update(connector, override) == 0)
2313 			num_modes = drm_edid_connector_add_modes(connector);
2314 
2315 		drm_edid_free(override);
2316 
2317 		drm_dbg_kms(connector->dev,
2318 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2319 			    connector->base.id, connector->name, num_modes);
2320 	}
2321 
2322 	return num_modes;
2323 }
2324 EXPORT_SYMBOL(drm_edid_override_connector_update);
2325 
2326 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2327 
2328 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2329 					      read_block_fn read_block,
2330 					      void *context)
2331 {
2332 	enum edid_block_status status;
2333 	bool is_base_block = block_num == 0;
2334 	int try;
2335 
2336 	for (try = 0; try < 4; try++) {
2337 		if (read_block(context, block, block_num, EDID_LENGTH))
2338 			return EDID_BLOCK_READ_FAIL;
2339 
2340 		status = edid_block_check(block, is_base_block);
2341 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2342 			edid_header_fix(block);
2343 
2344 			/* Retry with fixed header, update status if that worked. */
2345 			status = edid_block_check(block, is_base_block);
2346 			if (status == EDID_BLOCK_OK)
2347 				status = EDID_BLOCK_HEADER_FIXED;
2348 		}
2349 
2350 		if (edid_block_status_valid(status, edid_block_tag(block)))
2351 			break;
2352 
2353 		/* Fail early for unrepairable base block all zeros. */
2354 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2355 			break;
2356 	}
2357 
2358 	return status;
2359 }
2360 
2361 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2362 				     read_block_fn read_block, void *context,
2363 				     size_t *size)
2364 {
2365 	enum edid_block_status status;
2366 	int i, num_blocks, invalid_blocks = 0;
2367 	const struct drm_edid *override;
2368 	struct edid *edid, *new;
2369 	size_t alloc_size = EDID_LENGTH;
2370 
2371 	override = drm_edid_override_get(connector);
2372 	if (override) {
2373 		alloc_size = override->size;
2374 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2375 		drm_edid_free(override);
2376 		if (!edid)
2377 			return NULL;
2378 		goto ok;
2379 	}
2380 
2381 	edid = kmalloc(alloc_size, GFP_KERNEL);
2382 	if (!edid)
2383 		return NULL;
2384 
2385 	status = edid_block_read(edid, 0, read_block, context);
2386 
2387 	edid_block_status_print(status, edid, 0);
2388 
2389 	if (status == EDID_BLOCK_READ_FAIL)
2390 		goto fail;
2391 
2392 	/* FIXME: Clarify what a corrupt EDID actually means. */
2393 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2394 		connector->edid_corrupt = false;
2395 	else
2396 		connector->edid_corrupt = true;
2397 
2398 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2399 		if (status == EDID_BLOCK_ZERO)
2400 			connector->null_edid_counter++;
2401 
2402 		connector_bad_edid(connector, edid, 1);
2403 		goto fail;
2404 	}
2405 
2406 	if (!edid_extension_block_count(edid))
2407 		goto ok;
2408 
2409 	alloc_size = edid_size(edid);
2410 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2411 	if (!new)
2412 		goto fail;
2413 	edid = new;
2414 
2415 	num_blocks = edid_block_count(edid);
2416 	for (i = 1; i < num_blocks; i++) {
2417 		void *block = (void *)edid_block_data(edid, i);
2418 
2419 		status = edid_block_read(block, i, read_block, context);
2420 
2421 		edid_block_status_print(status, block, i);
2422 
2423 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2424 			if (status == EDID_BLOCK_READ_FAIL)
2425 				goto fail;
2426 			invalid_blocks++;
2427 		} else if (i == 1) {
2428 			/*
2429 			 * If the first EDID extension is a CTA extension, and
2430 			 * the first Data Block is HF-EEODB, override the
2431 			 * extension block count.
2432 			 *
2433 			 * Note: HF-EEODB could specify a smaller extension
2434 			 * count too, but we can't risk allocating a smaller
2435 			 * amount.
2436 			 */
2437 			int eeodb = edid_hfeeodb_block_count(edid);
2438 
2439 			if (eeodb > num_blocks) {
2440 				num_blocks = eeodb;
2441 				alloc_size = edid_size_by_blocks(num_blocks);
2442 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2443 				if (!new)
2444 					goto fail;
2445 				edid = new;
2446 			}
2447 		}
2448 	}
2449 
2450 	if (invalid_blocks) {
2451 		connector_bad_edid(connector, edid, num_blocks);
2452 
2453 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2454 	}
2455 
2456 ok:
2457 	if (size)
2458 		*size = alloc_size;
2459 
2460 	return edid;
2461 
2462 fail:
2463 	kfree(edid);
2464 	return NULL;
2465 }
2466 
2467 /**
2468  * drm_do_get_edid - get EDID data using a custom EDID block read function
2469  * @connector: connector we're probing
2470  * @read_block: EDID block read function
2471  * @context: private data passed to the block read function
2472  *
2473  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2474  * exposes a different interface to read EDID blocks this function can be used
2475  * to get EDID data using a custom block read function.
2476  *
2477  * As in the general case the DDC bus is accessible by the kernel at the I2C
2478  * level, drivers must make all reasonable efforts to expose it as an I2C
2479  * adapter and use drm_get_edid() instead of abusing this function.
2480  *
2481  * The EDID may be overridden using debugfs override_edid or firmware EDID
2482  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2483  * order. Having either of them bypasses actual EDID reads.
2484  *
2485  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2486  */
2487 struct edid *drm_do_get_edid(struct drm_connector *connector,
2488 			     read_block_fn read_block,
2489 			     void *context)
2490 {
2491 	return _drm_do_get_edid(connector, read_block, context, NULL);
2492 }
2493 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2494 
2495 /**
2496  * drm_edid_raw - Get a pointer to the raw EDID data.
2497  * @drm_edid: drm_edid container
2498  *
2499  * Get a pointer to the raw EDID data.
2500  *
2501  * This is for transition only. Avoid using this like the plague.
2502  *
2503  * Return: Pointer to raw EDID data.
2504  */
2505 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2506 {
2507 	if (!drm_edid || !drm_edid->size)
2508 		return NULL;
2509 
2510 	/*
2511 	 * Do not return pointers where relying on EDID extension count would
2512 	 * lead to buffer overflow.
2513 	 */
2514 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2515 		return NULL;
2516 
2517 	return drm_edid->edid;
2518 }
2519 EXPORT_SYMBOL(drm_edid_raw);
2520 
2521 /* Allocate struct drm_edid container *without* duplicating the edid data */
2522 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2523 {
2524 	struct drm_edid *drm_edid;
2525 
2526 	if (!edid || !size || size < EDID_LENGTH)
2527 		return NULL;
2528 
2529 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2530 	if (drm_edid) {
2531 		drm_edid->edid = edid;
2532 		drm_edid->size = size;
2533 	}
2534 
2535 	return drm_edid;
2536 }
2537 
2538 /**
2539  * drm_edid_alloc - Allocate a new drm_edid container
2540  * @edid: Pointer to raw EDID data
2541  * @size: Size of memory allocated for EDID
2542  *
2543  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2544  * the actual size that has been allocated for the data. There is no validation
2545  * of the raw EDID data against the size, but at least the EDID base block must
2546  * fit in the buffer.
2547  *
2548  * The returned pointer must be freed using drm_edid_free().
2549  *
2550  * Return: drm_edid container, or NULL on errors
2551  */
2552 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2553 {
2554 	const struct drm_edid *drm_edid;
2555 
2556 	if (!edid || !size || size < EDID_LENGTH)
2557 		return NULL;
2558 
2559 	edid = kmemdup(edid, size, GFP_KERNEL);
2560 	if (!edid)
2561 		return NULL;
2562 
2563 	drm_edid = _drm_edid_alloc(edid, size);
2564 	if (!drm_edid)
2565 		kfree(edid);
2566 
2567 	return drm_edid;
2568 }
2569 EXPORT_SYMBOL(drm_edid_alloc);
2570 
2571 /**
2572  * drm_edid_dup - Duplicate a drm_edid container
2573  * @drm_edid: EDID to duplicate
2574  *
2575  * The returned pointer must be freed using drm_edid_free().
2576  *
2577  * Returns: drm_edid container copy, or NULL on errors
2578  */
2579 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2580 {
2581 	if (!drm_edid)
2582 		return NULL;
2583 
2584 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2585 }
2586 EXPORT_SYMBOL(drm_edid_dup);
2587 
2588 /**
2589  * drm_edid_free - Free the drm_edid container
2590  * @drm_edid: EDID to free
2591  */
2592 void drm_edid_free(const struct drm_edid *drm_edid)
2593 {
2594 	if (!drm_edid)
2595 		return;
2596 
2597 	kfree(drm_edid->edid);
2598 	kfree(drm_edid);
2599 }
2600 EXPORT_SYMBOL(drm_edid_free);
2601 
2602 /**
2603  * drm_probe_ddc() - probe DDC presence
2604  * @adapter: I2C adapter to probe
2605  *
2606  * Return: True on success, false on failure.
2607  */
2608 bool
2609 drm_probe_ddc(struct i2c_adapter *adapter)
2610 {
2611 	unsigned char out;
2612 
2613 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2614 }
2615 EXPORT_SYMBOL(drm_probe_ddc);
2616 
2617 /**
2618  * drm_get_edid - get EDID data, if available
2619  * @connector: connector we're probing
2620  * @adapter: I2C adapter to use for DDC
2621  *
2622  * Poke the given I2C channel to grab EDID data if possible.  If found,
2623  * attach it to the connector.
2624  *
2625  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2626  */
2627 struct edid *drm_get_edid(struct drm_connector *connector,
2628 			  struct i2c_adapter *adapter)
2629 {
2630 	struct edid *edid;
2631 
2632 	if (connector->force == DRM_FORCE_OFF)
2633 		return NULL;
2634 
2635 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2636 		return NULL;
2637 
2638 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2639 	drm_connector_update_edid_property(connector, edid);
2640 	return edid;
2641 }
2642 EXPORT_SYMBOL(drm_get_edid);
2643 
2644 /**
2645  * drm_edid_read_custom - Read EDID data using given EDID block read function
2646  * @connector: Connector to use
2647  * @read_block: EDID block read function
2648  * @context: Private data passed to the block read function
2649  *
2650  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2651  * exposes a different interface to read EDID blocks this function can be used
2652  * to get EDID data using a custom block read function.
2653  *
2654  * As in the general case the DDC bus is accessible by the kernel at the I2C
2655  * level, drivers must make all reasonable efforts to expose it as an I2C
2656  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2657  * this function.
2658  *
2659  * The EDID may be overridden using debugfs override_edid or firmware EDID
2660  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2661  * order. Having either of them bypasses actual EDID reads.
2662  *
2663  * The returned pointer must be freed using drm_edid_free().
2664  *
2665  * Return: Pointer to EDID, or NULL if probe/read failed.
2666  */
2667 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2668 					    read_block_fn read_block,
2669 					    void *context)
2670 {
2671 	const struct drm_edid *drm_edid;
2672 	struct edid *edid;
2673 	size_t size = 0;
2674 
2675 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2676 	if (!edid)
2677 		return NULL;
2678 
2679 	/* Sanity check for now */
2680 	drm_WARN_ON(connector->dev, !size);
2681 
2682 	drm_edid = _drm_edid_alloc(edid, size);
2683 	if (!drm_edid)
2684 		kfree(edid);
2685 
2686 	return drm_edid;
2687 }
2688 EXPORT_SYMBOL(drm_edid_read_custom);
2689 
2690 /**
2691  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2692  * @connector: Connector to use
2693  * @adapter: I2C adapter to use for DDC
2694  *
2695  * Read EDID using the given I2C adapter.
2696  *
2697  * The EDID may be overridden using debugfs override_edid or firmware EDID
2698  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2699  * order. Having either of them bypasses actual EDID reads.
2700  *
2701  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2702  * using drm_edid_read() instead of this function.
2703  *
2704  * The returned pointer must be freed using drm_edid_free().
2705  *
2706  * Return: Pointer to EDID, or NULL if probe/read failed.
2707  */
2708 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2709 					 struct i2c_adapter *adapter)
2710 {
2711 	const struct drm_edid *drm_edid;
2712 
2713 	if (connector->force == DRM_FORCE_OFF)
2714 		return NULL;
2715 
2716 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2717 		return NULL;
2718 
2719 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2720 
2721 	/* Note: Do *not* call connector updates here. */
2722 
2723 	return drm_edid;
2724 }
2725 EXPORT_SYMBOL(drm_edid_read_ddc);
2726 
2727 /**
2728  * drm_edid_read - Read EDID data using connector's I2C adapter
2729  * @connector: Connector to use
2730  *
2731  * Read EDID using the connector's I2C adapter.
2732  *
2733  * The EDID may be overridden using debugfs override_edid or firmware EDID
2734  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2735  * order. Having either of them bypasses actual EDID reads.
2736  *
2737  * The returned pointer must be freed using drm_edid_free().
2738  *
2739  * Return: Pointer to EDID, or NULL if probe/read failed.
2740  */
2741 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2742 {
2743 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2744 		return NULL;
2745 
2746 	return drm_edid_read_ddc(connector, connector->ddc);
2747 }
2748 EXPORT_SYMBOL(drm_edid_read);
2749 
2750 /**
2751  * drm_edid_get_product_id - Get the vendor and product identification
2752  * @drm_edid: EDID
2753  * @id: Where to place the product id
2754  */
2755 void drm_edid_get_product_id(const struct drm_edid *drm_edid,
2756 			     struct drm_edid_product_id *id)
2757 {
2758 	if (drm_edid && drm_edid->edid && drm_edid->size >= EDID_LENGTH)
2759 		memcpy(id, &drm_edid->edid->product_id, sizeof(*id));
2760 	else
2761 		memset(id, 0, sizeof(*id));
2762 }
2763 EXPORT_SYMBOL(drm_edid_get_product_id);
2764 
2765 static void decode_date(struct seq_buf *s, const struct drm_edid_product_id *id)
2766 {
2767 	int week = id->week_of_manufacture;
2768 	int year = id->year_of_manufacture + 1990;
2769 
2770 	if (week == 0xff)
2771 		seq_buf_printf(s, "model year: %d", year);
2772 	else if (!week)
2773 		seq_buf_printf(s, "year of manufacture: %d", year);
2774 	else
2775 		seq_buf_printf(s, "week/year of manufacture: %d/%d", week, year);
2776 }
2777 
2778 /**
2779  * drm_edid_print_product_id - Print decoded product id to printer
2780  * @p: drm printer
2781  * @id: EDID product id
2782  * @raw: If true, also print the raw hex
2783  *
2784  * See VESA E-EDID 1.4 section 3.4.
2785  */
2786 void drm_edid_print_product_id(struct drm_printer *p,
2787 			       const struct drm_edid_product_id *id, bool raw)
2788 {
2789 	DECLARE_SEQ_BUF(date, 40);
2790 	char vend[4];
2791 
2792 	drm_edid_decode_mfg_id(be16_to_cpu(id->manufacturer_name), vend);
2793 
2794 	decode_date(&date, id);
2795 
2796 	drm_printf(p, "manufacturer name: %s, product code: %u, serial number: %u, %s\n",
2797 		   vend, le16_to_cpu(id->product_code),
2798 		   le32_to_cpu(id->serial_number), seq_buf_str(&date));
2799 
2800 	if (raw)
2801 		drm_printf(p, "raw product id: %*ph\n", (int)sizeof(*id), id);
2802 
2803 	WARN_ON(seq_buf_has_overflowed(&date));
2804 }
2805 EXPORT_SYMBOL(drm_edid_print_product_id);
2806 
2807 /**
2808  * drm_edid_get_panel_id - Get a panel's ID from EDID
2809  * @drm_edid: EDID that contains panel ID.
2810  *
2811  * This function uses the first block of the EDID of a panel and (assuming
2812  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2813  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2814  * supposed to be different for each different modem of panel.
2815  *
2816  * Return: A 32-bit ID that should be different for each make/model of panel.
2817  *         See the functions drm_edid_encode_panel_id() and
2818  *         drm_edid_decode_panel_id() for some details on the structure of this
2819  *         ID. Return 0 if the EDID size is less than a base block.
2820  */
2821 u32 drm_edid_get_panel_id(const struct drm_edid *drm_edid)
2822 {
2823 	const struct edid *edid = drm_edid->edid;
2824 
2825 	if (drm_edid->size < EDID_LENGTH)
2826 		return 0;
2827 
2828 	/*
2829 	 * We represent the ID as a 32-bit number so it can easily be compared
2830 	 * with "==".
2831 	 *
2832 	 * NOTE that we deal with endianness differently for the top half
2833 	 * of this ID than for the bottom half. The bottom half (the product
2834 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2835 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2836 	 * gets stored as big endian because that makes
2837 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2838 	 * to write (it's easier to extract the ASCII). It doesn't really
2839 	 * matter, though, as long as the number here is unique.
2840 	 */
2841 	return (u32)edid->mfg_id[0] << 24   |
2842 	       (u32)edid->mfg_id[1] << 16   |
2843 	       (u32)EDID_PRODUCT_ID(edid);
2844 }
2845 EXPORT_SYMBOL(drm_edid_get_panel_id);
2846 
2847 /**
2848  * drm_edid_read_base_block - Get a panel's EDID base block
2849  * @adapter: I2C adapter to use for DDC
2850  *
2851  * This function returns the drm_edid containing the first block of the EDID of
2852  * a panel.
2853  *
2854  * This function is intended to be used during early probing on devices where
2855  * more than one panel might be present. Because of its intended use it must
2856  * assume that the EDID of the panel is correct, at least as far as the base
2857  * block is concerned (in other words, we don't process any overrides here).
2858  *
2859  * Caller should call drm_edid_free() after use.
2860  *
2861  * NOTE: it's expected that this function and drm_do_get_edid() will both
2862  * be read the EDID, but there is no caching between them. Since we're only
2863  * reading the first block, hopefully this extra overhead won't be too big.
2864  *
2865  * WARNING: Only use this function when the connector is unknown. For example,
2866  * during the early probe of panel. The EDID read from the function is temporary
2867  * and should be replaced by the full EDID returned from other drm_edid_read.
2868  *
2869  * Return: Pointer to allocated EDID base block, or NULL on any failure.
2870  */
2871 const struct drm_edid *drm_edid_read_base_block(struct i2c_adapter *adapter)
2872 {
2873 	enum edid_block_status status;
2874 	void *base_block;
2875 
2876 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2877 	if (!base_block)
2878 		return NULL;
2879 
2880 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2881 
2882 	edid_block_status_print(status, base_block, 0);
2883 
2884 	if (!edid_block_status_valid(status, edid_block_tag(base_block))) {
2885 		edid_block_dump(KERN_NOTICE, base_block, 0);
2886 		kfree(base_block);
2887 		return NULL;
2888 	}
2889 
2890 	return _drm_edid_alloc(base_block, EDID_LENGTH);
2891 }
2892 EXPORT_SYMBOL(drm_edid_read_base_block);
2893 
2894 /**
2895  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2896  * @connector: connector we're probing
2897  * @adapter: I2C adapter to use for DDC
2898  *
2899  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2900  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2901  * switch DDC to the GPU which is retrieving EDID.
2902  *
2903  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2904  */
2905 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2906 				     struct i2c_adapter *adapter)
2907 {
2908 	struct drm_device *dev = connector->dev;
2909 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2910 	struct edid *edid;
2911 
2912 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2913 		return NULL;
2914 
2915 	vga_switcheroo_lock_ddc(pdev);
2916 	edid = drm_get_edid(connector, adapter);
2917 	vga_switcheroo_unlock_ddc(pdev);
2918 
2919 	return edid;
2920 }
2921 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2922 
2923 /**
2924  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2925  * @connector: connector we're probing
2926  * @adapter: I2C adapter to use for DDC
2927  *
2928  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2929  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2930  * temporarily switch DDC to the GPU which is retrieving EDID.
2931  *
2932  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2933  */
2934 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2935 						struct i2c_adapter *adapter)
2936 {
2937 	struct drm_device *dev = connector->dev;
2938 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2939 	const struct drm_edid *drm_edid;
2940 
2941 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2942 		return NULL;
2943 
2944 	vga_switcheroo_lock_ddc(pdev);
2945 	drm_edid = drm_edid_read_ddc(connector, adapter);
2946 	vga_switcheroo_unlock_ddc(pdev);
2947 
2948 	return drm_edid;
2949 }
2950 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2951 
2952 /**
2953  * drm_edid_duplicate - duplicate an EDID and the extensions
2954  * @edid: EDID to duplicate
2955  *
2956  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2957  */
2958 struct edid *drm_edid_duplicate(const struct edid *edid)
2959 {
2960 	if (!edid)
2961 		return NULL;
2962 
2963 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2964 }
2965 EXPORT_SYMBOL(drm_edid_duplicate);
2966 
2967 /*** EDID parsing ***/
2968 
2969 /**
2970  * edid_get_quirks - return quirk flags for a given EDID
2971  * @drm_edid: EDID to process
2972  *
2973  * This tells subsequent routines what fixes they need to apply.
2974  *
2975  * Return: A u32 represents the quirks to apply.
2976  */
2977 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2978 {
2979 	const struct edid_quirk *quirk;
2980 	int i;
2981 
2982 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2983 		quirk = &edid_quirk_list[i];
2984 		if (drm_edid_match(drm_edid, &quirk->ident))
2985 			return quirk->quirks;
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2992 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2993 
2994 /*
2995  * Walk the mode list for connector, clearing the preferred status on existing
2996  * modes and setting it anew for the right mode ala quirks.
2997  */
2998 static void edid_fixup_preferred(struct drm_connector *connector)
2999 {
3000 	const struct drm_display_info *info = &connector->display_info;
3001 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
3002 	int target_refresh = 0;
3003 	int cur_vrefresh, preferred_vrefresh;
3004 
3005 	if (list_empty(&connector->probed_modes))
3006 		return;
3007 
3008 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
3009 		target_refresh = 60;
3010 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
3011 		target_refresh = 75;
3012 
3013 	preferred_mode = list_first_entry(&connector->probed_modes,
3014 					  struct drm_display_mode, head);
3015 
3016 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
3017 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
3018 
3019 		if (cur_mode == preferred_mode)
3020 			continue;
3021 
3022 		/* Largest mode is preferred */
3023 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
3024 			preferred_mode = cur_mode;
3025 
3026 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
3027 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
3028 		/* At a given size, try to get closest to target refresh */
3029 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
3030 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
3031 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
3032 			preferred_mode = cur_mode;
3033 		}
3034 	}
3035 
3036 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
3037 }
3038 
3039 static bool
3040 mode_is_rb(const struct drm_display_mode *mode)
3041 {
3042 	return (mode->htotal - mode->hdisplay == 160) &&
3043 	       (mode->hsync_end - mode->hdisplay == 80) &&
3044 	       (mode->hsync_end - mode->hsync_start == 32) &&
3045 	       (mode->vsync_start - mode->vdisplay == 3);
3046 }
3047 
3048 /*
3049  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
3050  * @dev: Device to duplicate against
3051  * @hsize: Mode width
3052  * @vsize: Mode height
3053  * @fresh: Mode refresh rate
3054  * @rb: Mode reduced-blanking-ness
3055  *
3056  * Walk the DMT mode list looking for a match for the given parameters.
3057  *
3058  * Return: A newly allocated copy of the mode, or NULL if not found.
3059  */
3060 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
3061 					   int hsize, int vsize, int fresh,
3062 					   bool rb)
3063 {
3064 	int i;
3065 
3066 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3067 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3068 
3069 		if (hsize != ptr->hdisplay)
3070 			continue;
3071 		if (vsize != ptr->vdisplay)
3072 			continue;
3073 		if (fresh != drm_mode_vrefresh(ptr))
3074 			continue;
3075 		if (rb != mode_is_rb(ptr))
3076 			continue;
3077 
3078 		return drm_mode_duplicate(dev, ptr);
3079 	}
3080 
3081 	return NULL;
3082 }
3083 EXPORT_SYMBOL(drm_mode_find_dmt);
3084 
3085 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3086 {
3087 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3088 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3089 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3090 
3091 	return descriptor->pixel_clock == 0 &&
3092 		descriptor->data.other_data.pad1 == 0 &&
3093 		descriptor->data.other_data.type == type;
3094 }
3095 
3096 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3097 {
3098 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3099 
3100 	return descriptor->pixel_clock != 0;
3101 }
3102 
3103 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3104 
3105 static void
3106 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3107 {
3108 	int i, n;
3109 	u8 d = ext[0x02];
3110 	const u8 *det_base = ext + d;
3111 
3112 	if (d < 4 || d > 127)
3113 		return;
3114 
3115 	n = (127 - d) / 18;
3116 	for (i = 0; i < n; i++)
3117 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3118 }
3119 
3120 static void
3121 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3122 {
3123 	unsigned int i, n = min((int)ext[0x02], 6);
3124 	const u8 *det_base = ext + 5;
3125 
3126 	if (ext[0x01] != 1)
3127 		return; /* unknown version */
3128 
3129 	for (i = 0; i < n; i++)
3130 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3131 }
3132 
3133 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3134 					detailed_cb *cb, void *closure)
3135 {
3136 	struct drm_edid_iter edid_iter;
3137 	const u8 *ext;
3138 	int i;
3139 
3140 	if (!drm_edid)
3141 		return;
3142 
3143 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3144 		cb(&drm_edid->edid->detailed_timings[i], closure);
3145 
3146 	drm_edid_iter_begin(drm_edid, &edid_iter);
3147 	drm_edid_iter_for_each(ext, &edid_iter) {
3148 		switch (*ext) {
3149 		case CEA_EXT:
3150 			cea_for_each_detailed_block(ext, cb, closure);
3151 			break;
3152 		case VTB_EXT:
3153 			vtb_for_each_detailed_block(ext, cb, closure);
3154 			break;
3155 		default:
3156 			break;
3157 		}
3158 	}
3159 	drm_edid_iter_end(&edid_iter);
3160 }
3161 
3162 static void
3163 is_rb(const struct detailed_timing *descriptor, void *data)
3164 {
3165 	bool *res = data;
3166 
3167 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3168 		return;
3169 
3170 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3171 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3172 
3173 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3174 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3175 		*res = true;
3176 }
3177 
3178 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3179 static bool
3180 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3181 {
3182 	if (drm_edid->edid->revision >= 4) {
3183 		bool ret = false;
3184 
3185 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3186 		return ret;
3187 	}
3188 
3189 	return drm_edid_is_digital(drm_edid);
3190 }
3191 
3192 static void
3193 find_gtf2(const struct detailed_timing *descriptor, void *data)
3194 {
3195 	const struct detailed_timing **res = data;
3196 
3197 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3198 		return;
3199 
3200 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3201 
3202 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3203 		*res = descriptor;
3204 }
3205 
3206 /* Secondary GTF curve kicks in above some break frequency */
3207 static int
3208 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3209 {
3210 	const struct detailed_timing *descriptor = NULL;
3211 
3212 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3213 
3214 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3215 
3216 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3217 }
3218 
3219 static int
3220 drm_gtf2_2c(const struct drm_edid *drm_edid)
3221 {
3222 	const struct detailed_timing *descriptor = NULL;
3223 
3224 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3225 
3226 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3227 
3228 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3229 }
3230 
3231 static int
3232 drm_gtf2_m(const struct drm_edid *drm_edid)
3233 {
3234 	const struct detailed_timing *descriptor = NULL;
3235 
3236 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3237 
3238 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3239 
3240 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3241 }
3242 
3243 static int
3244 drm_gtf2_k(const struct drm_edid *drm_edid)
3245 {
3246 	const struct detailed_timing *descriptor = NULL;
3247 
3248 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3249 
3250 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3251 
3252 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3253 }
3254 
3255 static int
3256 drm_gtf2_2j(const struct drm_edid *drm_edid)
3257 {
3258 	const struct detailed_timing *descriptor = NULL;
3259 
3260 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3261 
3262 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3263 
3264 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3265 }
3266 
3267 static void
3268 get_timing_level(const struct detailed_timing *descriptor, void *data)
3269 {
3270 	int *res = data;
3271 
3272 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3273 		return;
3274 
3275 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3276 
3277 	switch (descriptor->data.other_data.data.range.flags) {
3278 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3279 		*res = LEVEL_GTF;
3280 		break;
3281 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3282 		*res = LEVEL_GTF2;
3283 		break;
3284 	case DRM_EDID_CVT_SUPPORT_FLAG:
3285 		*res = LEVEL_CVT;
3286 		break;
3287 	default:
3288 		break;
3289 	}
3290 }
3291 
3292 /* Get standard timing level (CVT/GTF/DMT). */
3293 static int standard_timing_level(const struct drm_edid *drm_edid)
3294 {
3295 	const struct edid *edid = drm_edid->edid;
3296 
3297 	if (edid->revision >= 4) {
3298 		/*
3299 		 * If the range descriptor doesn't
3300 		 * indicate otherwise default to CVT
3301 		 */
3302 		int ret = LEVEL_CVT;
3303 
3304 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3305 
3306 		return ret;
3307 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3308 		return LEVEL_GTF2;
3309 	} else if (edid->revision >= 2) {
3310 		return LEVEL_GTF;
3311 	} else {
3312 		return LEVEL_DMT;
3313 	}
3314 }
3315 
3316 /*
3317  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3318  * monitors fill with ascii space (0x20) instead.
3319  */
3320 static int
3321 bad_std_timing(u8 a, u8 b)
3322 {
3323 	return (a == 0x00 && b == 0x00) ||
3324 	       (a == 0x01 && b == 0x01) ||
3325 	       (a == 0x20 && b == 0x20);
3326 }
3327 
3328 static int drm_mode_hsync(const struct drm_display_mode *mode)
3329 {
3330 	if (mode->htotal <= 0)
3331 		return 0;
3332 
3333 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3334 }
3335 
3336 static struct drm_display_mode *
3337 drm_gtf2_mode(struct drm_device *dev,
3338 	      const struct drm_edid *drm_edid,
3339 	      int hsize, int vsize, int vrefresh_rate)
3340 {
3341 	struct drm_display_mode *mode;
3342 
3343 	/*
3344 	 * This is potentially wrong if there's ever a monitor with
3345 	 * more than one ranges section, each claiming a different
3346 	 * secondary GTF curve.  Please don't do that.
3347 	 */
3348 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3349 	if (!mode)
3350 		return NULL;
3351 
3352 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3353 		drm_mode_destroy(dev, mode);
3354 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3355 					    vrefresh_rate, 0, 0,
3356 					    drm_gtf2_m(drm_edid),
3357 					    drm_gtf2_2c(drm_edid),
3358 					    drm_gtf2_k(drm_edid),
3359 					    drm_gtf2_2j(drm_edid));
3360 	}
3361 
3362 	return mode;
3363 }
3364 
3365 /*
3366  * Take the standard timing params (in this case width, aspect, and refresh)
3367  * and convert them into a real mode using CVT/GTF/DMT.
3368  */
3369 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3370 					     const struct drm_edid *drm_edid,
3371 					     const struct std_timing *t)
3372 {
3373 	struct drm_device *dev = connector->dev;
3374 	struct drm_display_mode *m, *mode = NULL;
3375 	int hsize, vsize;
3376 	int vrefresh_rate;
3377 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3378 		>> EDID_TIMING_ASPECT_SHIFT;
3379 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3380 		>> EDID_TIMING_VFREQ_SHIFT;
3381 	int timing_level = standard_timing_level(drm_edid);
3382 
3383 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3384 		return NULL;
3385 
3386 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3387 	hsize = t->hsize * 8 + 248;
3388 	/* vrefresh_rate = vfreq + 60 */
3389 	vrefresh_rate = vfreq + 60;
3390 	/* the vdisplay is calculated based on the aspect ratio */
3391 	if (aspect_ratio == 0) {
3392 		if (drm_edid->edid->revision < 3)
3393 			vsize = hsize;
3394 		else
3395 			vsize = (hsize * 10) / 16;
3396 	} else if (aspect_ratio == 1)
3397 		vsize = (hsize * 3) / 4;
3398 	else if (aspect_ratio == 2)
3399 		vsize = (hsize * 4) / 5;
3400 	else
3401 		vsize = (hsize * 9) / 16;
3402 
3403 	/* HDTV hack, part 1 */
3404 	if (vrefresh_rate == 60 &&
3405 	    ((hsize == 1360 && vsize == 765) ||
3406 	     (hsize == 1368 && vsize == 769))) {
3407 		hsize = 1366;
3408 		vsize = 768;
3409 	}
3410 
3411 	/*
3412 	 * If this connector already has a mode for this size and refresh
3413 	 * rate (because it came from detailed or CVT info), use that
3414 	 * instead.  This way we don't have to guess at interlace or
3415 	 * reduced blanking.
3416 	 */
3417 	list_for_each_entry(m, &connector->probed_modes, head)
3418 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3419 		    drm_mode_vrefresh(m) == vrefresh_rate)
3420 			return NULL;
3421 
3422 	/* HDTV hack, part 2 */
3423 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3424 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3425 				    false);
3426 		if (!mode)
3427 			return NULL;
3428 		mode->hdisplay = 1366;
3429 		mode->hsync_start = mode->hsync_start - 1;
3430 		mode->hsync_end = mode->hsync_end - 1;
3431 		return mode;
3432 	}
3433 
3434 	/* check whether it can be found in default mode table */
3435 	if (drm_monitor_supports_rb(drm_edid)) {
3436 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3437 					 true);
3438 		if (mode)
3439 			return mode;
3440 	}
3441 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3442 	if (mode)
3443 		return mode;
3444 
3445 	/* okay, generate it */
3446 	switch (timing_level) {
3447 	case LEVEL_DMT:
3448 		break;
3449 	case LEVEL_GTF:
3450 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3451 		break;
3452 	case LEVEL_GTF2:
3453 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3454 		break;
3455 	case LEVEL_CVT:
3456 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3457 				    false);
3458 		break;
3459 	}
3460 	return mode;
3461 }
3462 
3463 /*
3464  * EDID is delightfully ambiguous about how interlaced modes are to be
3465  * encoded.  Our internal representation is of frame height, but some
3466  * HDTV detailed timings are encoded as field height.
3467  *
3468  * The format list here is from CEA, in frame size.  Technically we
3469  * should be checking refresh rate too.  Whatever.
3470  */
3471 static void
3472 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3473 			    const struct detailed_pixel_timing *pt)
3474 {
3475 	int i;
3476 	static const struct {
3477 		int w, h;
3478 	} cea_interlaced[] = {
3479 		{ 1920, 1080 },
3480 		{  720,  480 },
3481 		{ 1440,  480 },
3482 		{ 2880,  480 },
3483 		{  720,  576 },
3484 		{ 1440,  576 },
3485 		{ 2880,  576 },
3486 	};
3487 
3488 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3489 		return;
3490 
3491 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3492 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3493 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3494 			mode->vdisplay *= 2;
3495 			mode->vsync_start *= 2;
3496 			mode->vsync_end *= 2;
3497 			mode->vtotal *= 2;
3498 			mode->vtotal |= 1;
3499 		}
3500 	}
3501 
3502 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3503 }
3504 
3505 /*
3506  * Create a new mode from an EDID detailed timing section. An EDID detailed
3507  * timing block contains enough info for us to create and return a new struct
3508  * drm_display_mode.
3509  */
3510 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3511 						  const struct drm_edid *drm_edid,
3512 						  const struct detailed_timing *timing)
3513 {
3514 	const struct drm_display_info *info = &connector->display_info;
3515 	struct drm_device *dev = connector->dev;
3516 	struct drm_display_mode *mode;
3517 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3518 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3519 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3520 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3521 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3522 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3523 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3524 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3525 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3526 
3527 	/* ignore tiny modes */
3528 	if (hactive < 64 || vactive < 64)
3529 		return NULL;
3530 
3531 	if (pt->misc & DRM_EDID_PT_STEREO) {
3532 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3533 			    connector->base.id, connector->name);
3534 		return NULL;
3535 	}
3536 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3537 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3538 			    connector->base.id, connector->name);
3539 	}
3540 
3541 	/* it is incorrect if hsync/vsync width is zero */
3542 	if (!hsync_pulse_width || !vsync_pulse_width) {
3543 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3544 			    connector->base.id, connector->name);
3545 		return NULL;
3546 	}
3547 
3548 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3549 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3550 		if (!mode)
3551 			return NULL;
3552 
3553 		goto set_size;
3554 	}
3555 
3556 	mode = drm_mode_create(dev);
3557 	if (!mode)
3558 		return NULL;
3559 
3560 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3561 		mode->clock = 1088 * 10;
3562 	else
3563 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3564 
3565 	mode->hdisplay = hactive;
3566 	mode->hsync_start = mode->hdisplay + hsync_offset;
3567 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3568 	mode->htotal = mode->hdisplay + hblank;
3569 
3570 	mode->vdisplay = vactive;
3571 	mode->vsync_start = mode->vdisplay + vsync_offset;
3572 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3573 	mode->vtotal = mode->vdisplay + vblank;
3574 
3575 	/* Some EDIDs have bogus h/vsync_end values */
3576 	if (mode->hsync_end > mode->htotal) {
3577 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3578 			    connector->base.id, connector->name,
3579 			    mode->hsync_end, mode->htotal);
3580 		mode->hsync_end = mode->htotal;
3581 	}
3582 	if (mode->vsync_end > mode->vtotal) {
3583 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3584 			    connector->base.id, connector->name,
3585 			    mode->vsync_end, mode->vtotal);
3586 		mode->vsync_end = mode->vtotal;
3587 	}
3588 
3589 	drm_mode_do_interlace_quirk(mode, pt);
3590 
3591 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3592 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3593 	} else {
3594 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3595 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3596 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3597 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3598 	}
3599 
3600 set_size:
3601 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3602 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3603 
3604 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3605 		mode->width_mm *= 10;
3606 		mode->height_mm *= 10;
3607 	}
3608 
3609 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3610 		mode->width_mm = drm_edid->edid->width_cm * 10;
3611 		mode->height_mm = drm_edid->edid->height_cm * 10;
3612 	}
3613 
3614 	mode->type = DRM_MODE_TYPE_DRIVER;
3615 	drm_mode_set_name(mode);
3616 
3617 	return mode;
3618 }
3619 
3620 static bool
3621 mode_in_hsync_range(const struct drm_display_mode *mode,
3622 		    const struct edid *edid, const u8 *t)
3623 {
3624 	int hsync, hmin, hmax;
3625 
3626 	hmin = t[7];
3627 	if (edid->revision >= 4)
3628 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3629 	hmax = t[8];
3630 	if (edid->revision >= 4)
3631 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3632 	hsync = drm_mode_hsync(mode);
3633 
3634 	return (hsync <= hmax && hsync >= hmin);
3635 }
3636 
3637 static bool
3638 mode_in_vsync_range(const struct drm_display_mode *mode,
3639 		    const struct edid *edid, const u8 *t)
3640 {
3641 	int vsync, vmin, vmax;
3642 
3643 	vmin = t[5];
3644 	if (edid->revision >= 4)
3645 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3646 	vmax = t[6];
3647 	if (edid->revision >= 4)
3648 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3649 	vsync = drm_mode_vrefresh(mode);
3650 
3651 	return (vsync <= vmax && vsync >= vmin);
3652 }
3653 
3654 static u32
3655 range_pixel_clock(const struct edid *edid, const u8 *t)
3656 {
3657 	/* unspecified */
3658 	if (t[9] == 0 || t[9] == 255)
3659 		return 0;
3660 
3661 	/* 1.4 with CVT support gives us real precision, yay */
3662 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3663 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3664 
3665 	/* 1.3 is pathetic, so fuzz up a bit */
3666 	return t[9] * 10000 + 5001;
3667 }
3668 
3669 static bool mode_in_range(const struct drm_display_mode *mode,
3670 			  const struct drm_edid *drm_edid,
3671 			  const struct detailed_timing *timing)
3672 {
3673 	const struct edid *edid = drm_edid->edid;
3674 	u32 max_clock;
3675 	const u8 *t = (const u8 *)timing;
3676 
3677 	if (!mode_in_hsync_range(mode, edid, t))
3678 		return false;
3679 
3680 	if (!mode_in_vsync_range(mode, edid, t))
3681 		return false;
3682 
3683 	max_clock = range_pixel_clock(edid, t);
3684 	if (max_clock)
3685 		if (mode->clock > max_clock)
3686 			return false;
3687 
3688 	/* 1.4 max horizontal check */
3689 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3690 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3691 			return false;
3692 
3693 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3694 		return false;
3695 
3696 	return true;
3697 }
3698 
3699 static bool valid_inferred_mode(const struct drm_connector *connector,
3700 				const struct drm_display_mode *mode)
3701 {
3702 	const struct drm_display_mode *m;
3703 	bool ok = false;
3704 
3705 	list_for_each_entry(m, &connector->probed_modes, head) {
3706 		if (mode->hdisplay == m->hdisplay &&
3707 		    mode->vdisplay == m->vdisplay &&
3708 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3709 			return false; /* duplicated */
3710 		if (mode->hdisplay <= m->hdisplay &&
3711 		    mode->vdisplay <= m->vdisplay)
3712 			ok = true;
3713 	}
3714 	return ok;
3715 }
3716 
3717 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3718 				   const struct drm_edid *drm_edid,
3719 				   const struct detailed_timing *timing)
3720 {
3721 	int i, modes = 0;
3722 	struct drm_display_mode *newmode;
3723 	struct drm_device *dev = connector->dev;
3724 
3725 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3726 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3727 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3728 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3729 			if (newmode) {
3730 				drm_mode_probed_add(connector, newmode);
3731 				modes++;
3732 			}
3733 		}
3734 	}
3735 
3736 	return modes;
3737 }
3738 
3739 /* fix up 1366x768 mode from 1368x768;
3740  * GFT/CVT can't express 1366 width which isn't dividable by 8
3741  */
3742 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3743 {
3744 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3745 		mode->hdisplay = 1366;
3746 		mode->hsync_start--;
3747 		mode->hsync_end--;
3748 		drm_mode_set_name(mode);
3749 	}
3750 }
3751 
3752 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3753 				   const struct drm_edid *drm_edid,
3754 				   const struct detailed_timing *timing)
3755 {
3756 	int i, modes = 0;
3757 	struct drm_display_mode *newmode;
3758 	struct drm_device *dev = connector->dev;
3759 
3760 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3761 		const struct minimode *m = &extra_modes[i];
3762 
3763 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3764 		if (!newmode)
3765 			return modes;
3766 
3767 		drm_mode_fixup_1366x768(newmode);
3768 		if (!mode_in_range(newmode, drm_edid, timing) ||
3769 		    !valid_inferred_mode(connector, newmode)) {
3770 			drm_mode_destroy(dev, newmode);
3771 			continue;
3772 		}
3773 
3774 		drm_mode_probed_add(connector, newmode);
3775 		modes++;
3776 	}
3777 
3778 	return modes;
3779 }
3780 
3781 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3782 				    const struct drm_edid *drm_edid,
3783 				    const struct detailed_timing *timing)
3784 {
3785 	int i, modes = 0;
3786 	struct drm_display_mode *newmode;
3787 	struct drm_device *dev = connector->dev;
3788 
3789 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3790 		const struct minimode *m = &extra_modes[i];
3791 
3792 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3793 		if (!newmode)
3794 			return modes;
3795 
3796 		drm_mode_fixup_1366x768(newmode);
3797 		if (!mode_in_range(newmode, drm_edid, timing) ||
3798 		    !valid_inferred_mode(connector, newmode)) {
3799 			drm_mode_destroy(dev, newmode);
3800 			continue;
3801 		}
3802 
3803 		drm_mode_probed_add(connector, newmode);
3804 		modes++;
3805 	}
3806 
3807 	return modes;
3808 }
3809 
3810 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3811 				   const struct drm_edid *drm_edid,
3812 				   const struct detailed_timing *timing)
3813 {
3814 	int i, modes = 0;
3815 	struct drm_display_mode *newmode;
3816 	struct drm_device *dev = connector->dev;
3817 	bool rb = drm_monitor_supports_rb(drm_edid);
3818 
3819 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3820 		const struct minimode *m = &extra_modes[i];
3821 
3822 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3823 		if (!newmode)
3824 			return modes;
3825 
3826 		drm_mode_fixup_1366x768(newmode);
3827 		if (!mode_in_range(newmode, drm_edid, timing) ||
3828 		    !valid_inferred_mode(connector, newmode)) {
3829 			drm_mode_destroy(dev, newmode);
3830 			continue;
3831 		}
3832 
3833 		drm_mode_probed_add(connector, newmode);
3834 		modes++;
3835 	}
3836 
3837 	return modes;
3838 }
3839 
3840 static void
3841 do_inferred_modes(const struct detailed_timing *timing, void *c)
3842 {
3843 	struct detailed_mode_closure *closure = c;
3844 	const struct detailed_non_pixel *data = &timing->data.other_data;
3845 	const struct detailed_data_monitor_range *range = &data->data.range;
3846 
3847 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3848 		return;
3849 
3850 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3851 						  closure->drm_edid,
3852 						  timing);
3853 
3854 	if (closure->drm_edid->edid->revision < 2)
3855 		return; /* GTF not defined yet */
3856 
3857 	switch (range->flags) {
3858 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3859 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3860 							   closure->drm_edid,
3861 							   timing);
3862 		break;
3863 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3864 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3865 							  closure->drm_edid,
3866 							  timing);
3867 		break;
3868 	case DRM_EDID_CVT_SUPPORT_FLAG:
3869 		if (closure->drm_edid->edid->revision < 4)
3870 			break;
3871 
3872 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3873 							  closure->drm_edid,
3874 							  timing);
3875 		break;
3876 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3877 	default:
3878 		break;
3879 	}
3880 }
3881 
3882 static int add_inferred_modes(struct drm_connector *connector,
3883 			      const struct drm_edid *drm_edid)
3884 {
3885 	struct detailed_mode_closure closure = {
3886 		.connector = connector,
3887 		.drm_edid = drm_edid,
3888 	};
3889 
3890 	if (drm_edid->edid->revision >= 1)
3891 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3892 
3893 	return closure.modes;
3894 }
3895 
3896 static int
3897 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3898 {
3899 	int i, j, m, modes = 0;
3900 	struct drm_display_mode *mode;
3901 	const u8 *est = ((const u8 *)timing) + 6;
3902 
3903 	for (i = 0; i < 6; i++) {
3904 		for (j = 7; j >= 0; j--) {
3905 			m = (i * 8) + (7 - j);
3906 			if (m >= ARRAY_SIZE(est3_modes))
3907 				break;
3908 			if (est[i] & (1 << j)) {
3909 				mode = drm_mode_find_dmt(connector->dev,
3910 							 est3_modes[m].w,
3911 							 est3_modes[m].h,
3912 							 est3_modes[m].r,
3913 							 est3_modes[m].rb);
3914 				if (mode) {
3915 					drm_mode_probed_add(connector, mode);
3916 					modes++;
3917 				}
3918 			}
3919 		}
3920 	}
3921 
3922 	return modes;
3923 }
3924 
3925 static void
3926 do_established_modes(const struct detailed_timing *timing, void *c)
3927 {
3928 	struct detailed_mode_closure *closure = c;
3929 
3930 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3931 		return;
3932 
3933 	closure->modes += drm_est3_modes(closure->connector, timing);
3934 }
3935 
3936 /*
3937  * Get established modes from EDID and add them. Each EDID block contains a
3938  * bitmap of the supported "established modes" list (defined above). Tease them
3939  * out and add them to the global modes list.
3940  */
3941 static int add_established_modes(struct drm_connector *connector,
3942 				 const struct drm_edid *drm_edid)
3943 {
3944 	struct drm_device *dev = connector->dev;
3945 	const struct edid *edid = drm_edid->edid;
3946 	unsigned long est_bits = edid->established_timings.t1 |
3947 		(edid->established_timings.t2 << 8) |
3948 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3949 	int i, modes = 0;
3950 	struct detailed_mode_closure closure = {
3951 		.connector = connector,
3952 		.drm_edid = drm_edid,
3953 	};
3954 
3955 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3956 		if (est_bits & (1<<i)) {
3957 			struct drm_display_mode *newmode;
3958 
3959 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3960 			if (newmode) {
3961 				drm_mode_probed_add(connector, newmode);
3962 				modes++;
3963 			}
3964 		}
3965 	}
3966 
3967 	if (edid->revision >= 1)
3968 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3969 					    &closure);
3970 
3971 	return modes + closure.modes;
3972 }
3973 
3974 static void
3975 do_standard_modes(const struct detailed_timing *timing, void *c)
3976 {
3977 	struct detailed_mode_closure *closure = c;
3978 	const struct detailed_non_pixel *data = &timing->data.other_data;
3979 	struct drm_connector *connector = closure->connector;
3980 	int i;
3981 
3982 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3983 		return;
3984 
3985 	for (i = 0; i < 6; i++) {
3986 		const struct std_timing *std = &data->data.timings[i];
3987 		struct drm_display_mode *newmode;
3988 
3989 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3990 		if (newmode) {
3991 			drm_mode_probed_add(connector, newmode);
3992 			closure->modes++;
3993 		}
3994 	}
3995 }
3996 
3997 /*
3998  * Get standard modes from EDID and add them. Standard modes can be calculated
3999  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
4000  * add them to the list.
4001  */
4002 static int add_standard_modes(struct drm_connector *connector,
4003 			      const struct drm_edid *drm_edid)
4004 {
4005 	int i, modes = 0;
4006 	struct detailed_mode_closure closure = {
4007 		.connector = connector,
4008 		.drm_edid = drm_edid,
4009 	};
4010 
4011 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
4012 		struct drm_display_mode *newmode;
4013 
4014 		newmode = drm_mode_std(connector, drm_edid,
4015 				       &drm_edid->edid->standard_timings[i]);
4016 		if (newmode) {
4017 			drm_mode_probed_add(connector, newmode);
4018 			modes++;
4019 		}
4020 	}
4021 
4022 	if (drm_edid->edid->revision >= 1)
4023 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
4024 					    &closure);
4025 
4026 	/* XXX should also look for standard codes in VTB blocks */
4027 
4028 	return modes + closure.modes;
4029 }
4030 
4031 static int drm_cvt_modes(struct drm_connector *connector,
4032 			 const struct detailed_timing *timing)
4033 {
4034 	int i, j, modes = 0;
4035 	struct drm_display_mode *newmode;
4036 	struct drm_device *dev = connector->dev;
4037 	const struct cvt_timing *cvt;
4038 	static const int rates[] = { 60, 85, 75, 60, 50 };
4039 	const u8 empty[3] = { 0, 0, 0 };
4040 
4041 	for (i = 0; i < 4; i++) {
4042 		int width, height;
4043 
4044 		cvt = &(timing->data.other_data.data.cvt[i]);
4045 
4046 		if (!memcmp(cvt->code, empty, 3))
4047 			continue;
4048 
4049 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4050 		switch (cvt->code[1] & 0x0c) {
4051 		/* default - because compiler doesn't see that we've enumerated all cases */
4052 		default:
4053 		case 0x00:
4054 			width = height * 4 / 3;
4055 			break;
4056 		case 0x04:
4057 			width = height * 16 / 9;
4058 			break;
4059 		case 0x08:
4060 			width = height * 16 / 10;
4061 			break;
4062 		case 0x0c:
4063 			width = height * 15 / 9;
4064 			break;
4065 		}
4066 
4067 		for (j = 1; j < 5; j++) {
4068 			if (cvt->code[2] & (1 << j)) {
4069 				newmode = drm_cvt_mode(dev, width, height,
4070 						       rates[j], j == 0,
4071 						       false, false);
4072 				if (newmode) {
4073 					drm_mode_probed_add(connector, newmode);
4074 					modes++;
4075 				}
4076 			}
4077 		}
4078 	}
4079 
4080 	return modes;
4081 }
4082 
4083 static void
4084 do_cvt_mode(const struct detailed_timing *timing, void *c)
4085 {
4086 	struct detailed_mode_closure *closure = c;
4087 
4088 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4089 		return;
4090 
4091 	closure->modes += drm_cvt_modes(closure->connector, timing);
4092 }
4093 
4094 static int
4095 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4096 {
4097 	struct detailed_mode_closure closure = {
4098 		.connector = connector,
4099 		.drm_edid = drm_edid,
4100 	};
4101 
4102 	if (drm_edid->edid->revision >= 3)
4103 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4104 
4105 	/* XXX should also look for CVT codes in VTB blocks */
4106 
4107 	return closure.modes;
4108 }
4109 
4110 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4111 					  struct drm_display_mode *mode);
4112 
4113 static void
4114 do_detailed_mode(const struct detailed_timing *timing, void *c)
4115 {
4116 	struct detailed_mode_closure *closure = c;
4117 	struct drm_display_mode *newmode;
4118 
4119 	if (!is_detailed_timing_descriptor(timing))
4120 		return;
4121 
4122 	newmode = drm_mode_detailed(closure->connector,
4123 				    closure->drm_edid, timing);
4124 	if (!newmode)
4125 		return;
4126 
4127 	if (closure->preferred)
4128 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4129 
4130 	/*
4131 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4132 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4133 	 * is just slightly off.
4134 	 */
4135 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4136 
4137 	drm_mode_probed_add(closure->connector, newmode);
4138 	closure->modes++;
4139 	closure->preferred = false;
4140 }
4141 
4142 /*
4143  * add_detailed_modes - Add modes from detailed timings
4144  * @connector: attached connector
4145  * @drm_edid: EDID block to scan
4146  */
4147 static int add_detailed_modes(struct drm_connector *connector,
4148 			      const struct drm_edid *drm_edid)
4149 {
4150 	struct detailed_mode_closure closure = {
4151 		.connector = connector,
4152 		.drm_edid = drm_edid,
4153 	};
4154 
4155 	if (drm_edid->edid->revision >= 4)
4156 		closure.preferred = true; /* first detailed timing is always preferred */
4157 	else
4158 		closure.preferred =
4159 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4160 
4161 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4162 
4163 	return closure.modes;
4164 }
4165 
4166 /* CTA-861-H Table 60 - CTA Tag Codes */
4167 #define CTA_DB_AUDIO			1
4168 #define CTA_DB_VIDEO			2
4169 #define CTA_DB_VENDOR			3
4170 #define CTA_DB_SPEAKER			4
4171 #define CTA_DB_EXTENDED_TAG		7
4172 
4173 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4174 #define CTA_EXT_DB_VIDEO_CAP		0
4175 #define CTA_EXT_DB_VENDOR		1
4176 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4177 #define CTA_EXT_DB_420_VIDEO_DATA	14
4178 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4179 #define CTA_EXT_DB_HF_EEODB		0x78
4180 #define CTA_EXT_DB_HF_SCDB		0x79
4181 
4182 #define EDID_BASIC_AUDIO	(1 << 6)
4183 #define EDID_CEA_YCRCB444	(1 << 5)
4184 #define EDID_CEA_YCRCB422	(1 << 4)
4185 #define EDID_CEA_VCDB_QS	(1 << 6)
4186 
4187 /*
4188  * Search EDID for CEA extension block.
4189  *
4190  * FIXME: Prefer not returning pointers to raw EDID data.
4191  */
4192 const u8 *drm_edid_find_extension(const struct drm_edid *drm_edid,
4193 				  int ext_id, int *ext_index)
4194 {
4195 	const u8 *edid_ext = NULL;
4196 	int i;
4197 
4198 	/* No EDID or EDID extensions */
4199 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4200 		return NULL;
4201 
4202 	/* Find CEA extension */
4203 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4204 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4205 		if (edid_block_tag(edid_ext) == ext_id)
4206 			break;
4207 	}
4208 
4209 	if (i >= drm_edid_extension_block_count(drm_edid))
4210 		return NULL;
4211 
4212 	*ext_index = i + 1;
4213 
4214 	return edid_ext;
4215 }
4216 
4217 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4218 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4219 {
4220 	const struct displayid_block *block;
4221 	struct displayid_iter iter;
4222 	struct drm_edid_iter edid_iter;
4223 	const u8 *ext;
4224 	bool found = false;
4225 
4226 	/* Look for a top level CEA extension block */
4227 	drm_edid_iter_begin(drm_edid, &edid_iter);
4228 	drm_edid_iter_for_each(ext, &edid_iter) {
4229 		if (ext[0] == CEA_EXT) {
4230 			found = true;
4231 			break;
4232 		}
4233 	}
4234 	drm_edid_iter_end(&edid_iter);
4235 
4236 	if (found)
4237 		return true;
4238 
4239 	/* CEA blocks can also be found embedded in a DisplayID block */
4240 	displayid_iter_edid_begin(drm_edid, &iter);
4241 	displayid_iter_for_each(block, &iter) {
4242 		if (block->tag == DATA_BLOCK_CTA) {
4243 			found = true;
4244 			break;
4245 		}
4246 	}
4247 	displayid_iter_end(&iter);
4248 
4249 	return found;
4250 }
4251 
4252 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4253 {
4254 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4255 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4256 
4257 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4258 		return &edid_cea_modes_1[vic - 1];
4259 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4260 		return &edid_cea_modes_193[vic - 193];
4261 	return NULL;
4262 }
4263 
4264 static u8 cea_num_vics(void)
4265 {
4266 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4267 }
4268 
4269 static u8 cea_next_vic(u8 vic)
4270 {
4271 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4272 		vic = 193;
4273 	return vic;
4274 }
4275 
4276 /*
4277  * Calculate the alternate clock for the CEA mode
4278  * (60Hz vs. 59.94Hz etc.)
4279  */
4280 static unsigned int
4281 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4282 {
4283 	unsigned int clock = cea_mode->clock;
4284 
4285 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4286 		return clock;
4287 
4288 	/*
4289 	 * edid_cea_modes contains the 59.94Hz
4290 	 * variant for 240 and 480 line modes,
4291 	 * and the 60Hz variant otherwise.
4292 	 */
4293 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4294 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4295 	else
4296 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4297 
4298 	return clock;
4299 }
4300 
4301 static bool
4302 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4303 {
4304 	/*
4305 	 * For certain VICs the spec allows the vertical
4306 	 * front porch to vary by one or two lines.
4307 	 *
4308 	 * cea_modes[] stores the variant with the shortest
4309 	 * vertical front porch. We can adjust the mode to
4310 	 * get the other variants by simply increasing the
4311 	 * vertical front porch length.
4312 	 */
4313 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4314 		     cea_mode_for_vic(9)->vtotal != 262 ||
4315 		     cea_mode_for_vic(12)->vtotal != 262 ||
4316 		     cea_mode_for_vic(13)->vtotal != 262 ||
4317 		     cea_mode_for_vic(23)->vtotal != 312 ||
4318 		     cea_mode_for_vic(24)->vtotal != 312 ||
4319 		     cea_mode_for_vic(27)->vtotal != 312 ||
4320 		     cea_mode_for_vic(28)->vtotal != 312);
4321 
4322 	if (((vic == 8 || vic == 9 ||
4323 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4324 	    ((vic == 23 || vic == 24 ||
4325 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4326 		mode->vsync_start++;
4327 		mode->vsync_end++;
4328 		mode->vtotal++;
4329 
4330 		return true;
4331 	}
4332 
4333 	return false;
4334 }
4335 
4336 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4337 					     unsigned int clock_tolerance)
4338 {
4339 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4340 	u8 vic;
4341 
4342 	if (!to_match->clock)
4343 		return 0;
4344 
4345 	if (to_match->picture_aspect_ratio)
4346 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4347 
4348 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4349 		struct drm_display_mode cea_mode;
4350 		unsigned int clock1, clock2;
4351 
4352 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4353 
4354 		/* Check both 60Hz and 59.94Hz */
4355 		clock1 = cea_mode.clock;
4356 		clock2 = cea_mode_alternate_clock(&cea_mode);
4357 
4358 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4359 		    abs(to_match->clock - clock2) > clock_tolerance)
4360 			continue;
4361 
4362 		do {
4363 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4364 				return vic;
4365 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4366 	}
4367 
4368 	return 0;
4369 }
4370 
4371 /**
4372  * drm_match_cea_mode - look for a CEA mode matching given mode
4373  * @to_match: display mode
4374  *
4375  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4376  * mode.
4377  */
4378 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4379 {
4380 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4381 	u8 vic;
4382 
4383 	if (!to_match->clock)
4384 		return 0;
4385 
4386 	if (to_match->picture_aspect_ratio)
4387 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4388 
4389 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4390 		struct drm_display_mode cea_mode;
4391 		unsigned int clock1, clock2;
4392 
4393 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4394 
4395 		/* Check both 60Hz and 59.94Hz */
4396 		clock1 = cea_mode.clock;
4397 		clock2 = cea_mode_alternate_clock(&cea_mode);
4398 
4399 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4400 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4401 			continue;
4402 
4403 		do {
4404 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4405 				return vic;
4406 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4407 	}
4408 
4409 	return 0;
4410 }
4411 EXPORT_SYMBOL(drm_match_cea_mode);
4412 
4413 static bool drm_valid_cea_vic(u8 vic)
4414 {
4415 	return cea_mode_for_vic(vic) != NULL;
4416 }
4417 
4418 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4419 {
4420 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4421 
4422 	if (mode)
4423 		return mode->picture_aspect_ratio;
4424 
4425 	return HDMI_PICTURE_ASPECT_NONE;
4426 }
4427 
4428 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4429 {
4430 	return edid_4k_modes[video_code].picture_aspect_ratio;
4431 }
4432 
4433 /*
4434  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4435  * specific block).
4436  */
4437 static unsigned int
4438 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4439 {
4440 	return cea_mode_alternate_clock(hdmi_mode);
4441 }
4442 
4443 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4444 					      unsigned int clock_tolerance)
4445 {
4446 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4447 	u8 vic;
4448 
4449 	if (!to_match->clock)
4450 		return 0;
4451 
4452 	if (to_match->picture_aspect_ratio)
4453 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4454 
4455 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4456 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4457 		unsigned int clock1, clock2;
4458 
4459 		/* Make sure to also match alternate clocks */
4460 		clock1 = hdmi_mode->clock;
4461 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4462 
4463 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4464 		    abs(to_match->clock - clock2) > clock_tolerance)
4465 			continue;
4466 
4467 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4468 			return vic;
4469 	}
4470 
4471 	return 0;
4472 }
4473 
4474 /*
4475  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4476  * @to_match: display mode
4477  *
4478  * An HDMI mode is one defined in the HDMI vendor specific block.
4479  *
4480  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4481  */
4482 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4483 {
4484 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4485 	u8 vic;
4486 
4487 	if (!to_match->clock)
4488 		return 0;
4489 
4490 	if (to_match->picture_aspect_ratio)
4491 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4492 
4493 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4494 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4495 		unsigned int clock1, clock2;
4496 
4497 		/* Make sure to also match alternate clocks */
4498 		clock1 = hdmi_mode->clock;
4499 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4500 
4501 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4502 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4503 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4504 			return vic;
4505 	}
4506 	return 0;
4507 }
4508 
4509 static bool drm_valid_hdmi_vic(u8 vic)
4510 {
4511 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4512 }
4513 
4514 static int add_alternate_cea_modes(struct drm_connector *connector,
4515 				   const struct drm_edid *drm_edid)
4516 {
4517 	struct drm_device *dev = connector->dev;
4518 	struct drm_display_mode *mode, *tmp;
4519 	LIST_HEAD(list);
4520 	int modes = 0;
4521 
4522 	/* Don't add CTA modes if the CTA extension block is missing */
4523 	if (!drm_edid_has_cta_extension(drm_edid))
4524 		return 0;
4525 
4526 	/*
4527 	 * Go through all probed modes and create a new mode
4528 	 * with the alternate clock for certain CEA modes.
4529 	 */
4530 	list_for_each_entry(mode, &connector->probed_modes, head) {
4531 		const struct drm_display_mode *cea_mode = NULL;
4532 		struct drm_display_mode *newmode;
4533 		u8 vic = drm_match_cea_mode(mode);
4534 		unsigned int clock1, clock2;
4535 
4536 		if (drm_valid_cea_vic(vic)) {
4537 			cea_mode = cea_mode_for_vic(vic);
4538 			clock2 = cea_mode_alternate_clock(cea_mode);
4539 		} else {
4540 			vic = drm_match_hdmi_mode(mode);
4541 			if (drm_valid_hdmi_vic(vic)) {
4542 				cea_mode = &edid_4k_modes[vic];
4543 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4544 			}
4545 		}
4546 
4547 		if (!cea_mode)
4548 			continue;
4549 
4550 		clock1 = cea_mode->clock;
4551 
4552 		if (clock1 == clock2)
4553 			continue;
4554 
4555 		if (mode->clock != clock1 && mode->clock != clock2)
4556 			continue;
4557 
4558 		newmode = drm_mode_duplicate(dev, cea_mode);
4559 		if (!newmode)
4560 			continue;
4561 
4562 		/* Carry over the stereo flags */
4563 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4564 
4565 		/*
4566 		 * The current mode could be either variant. Make
4567 		 * sure to pick the "other" clock for the new mode.
4568 		 */
4569 		if (mode->clock != clock1)
4570 			newmode->clock = clock1;
4571 		else
4572 			newmode->clock = clock2;
4573 
4574 		list_add_tail(&newmode->head, &list);
4575 	}
4576 
4577 	list_for_each_entry_safe(mode, tmp, &list, head) {
4578 		list_del(&mode->head);
4579 		drm_mode_probed_add(connector, mode);
4580 		modes++;
4581 	}
4582 
4583 	return modes;
4584 }
4585 
4586 static u8 svd_to_vic(u8 svd)
4587 {
4588 	/* 0-6 bit vic, 7th bit native mode indicator */
4589 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4590 		return svd & 127;
4591 
4592 	return svd;
4593 }
4594 
4595 /*
4596  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4597  * the EDID, or NULL on errors.
4598  */
4599 static struct drm_display_mode *
4600 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4601 {
4602 	const struct drm_display_info *info = &connector->display_info;
4603 	struct drm_device *dev = connector->dev;
4604 
4605 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4606 		return NULL;
4607 
4608 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4609 }
4610 
4611 /*
4612  * do_y420vdb_modes - Parse YCBCR 420 only modes
4613  * @connector: connector corresponding to the HDMI sink
4614  * @svds: start of the data block of CEA YCBCR 420 VDB
4615  * @len: length of the CEA YCBCR 420 VDB
4616  *
4617  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4618  * which contains modes which can be supported in YCBCR 420
4619  * output format only.
4620  */
4621 static int do_y420vdb_modes(struct drm_connector *connector,
4622 			    const u8 *svds, u8 svds_len)
4623 {
4624 	struct drm_device *dev = connector->dev;
4625 	int modes = 0, i;
4626 
4627 	for (i = 0; i < svds_len; i++) {
4628 		u8 vic = svd_to_vic(svds[i]);
4629 		struct drm_display_mode *newmode;
4630 
4631 		if (!drm_valid_cea_vic(vic))
4632 			continue;
4633 
4634 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4635 		if (!newmode)
4636 			break;
4637 		drm_mode_probed_add(connector, newmode);
4638 		modes++;
4639 	}
4640 
4641 	return modes;
4642 }
4643 
4644 /**
4645  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4646  * @dev: DRM device
4647  * @video_code: CEA VIC of the mode
4648  *
4649  * Creates a new mode matching the specified CEA VIC.
4650  *
4651  * Returns: A new drm_display_mode on success or NULL on failure
4652  */
4653 struct drm_display_mode *
4654 drm_display_mode_from_cea_vic(struct drm_device *dev,
4655 			      u8 video_code)
4656 {
4657 	const struct drm_display_mode *cea_mode;
4658 	struct drm_display_mode *newmode;
4659 
4660 	cea_mode = cea_mode_for_vic(video_code);
4661 	if (!cea_mode)
4662 		return NULL;
4663 
4664 	newmode = drm_mode_duplicate(dev, cea_mode);
4665 	if (!newmode)
4666 		return NULL;
4667 
4668 	return newmode;
4669 }
4670 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4671 
4672 /* Add modes based on VICs parsed in parse_cta_vdb() */
4673 static int add_cta_vdb_modes(struct drm_connector *connector)
4674 {
4675 	const struct drm_display_info *info = &connector->display_info;
4676 	int i, modes = 0;
4677 
4678 	if (!info->vics)
4679 		return 0;
4680 
4681 	for (i = 0; i < info->vics_len; i++) {
4682 		struct drm_display_mode *mode;
4683 
4684 		mode = drm_display_mode_from_vic_index(connector, i);
4685 		if (mode) {
4686 			drm_mode_probed_add(connector, mode);
4687 			modes++;
4688 		}
4689 	}
4690 
4691 	return modes;
4692 }
4693 
4694 struct stereo_mandatory_mode {
4695 	int width, height, vrefresh;
4696 	unsigned int flags;
4697 };
4698 
4699 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4700 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4701 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4702 	{ 1920, 1080, 50,
4703 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4704 	{ 1920, 1080, 60,
4705 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4706 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4707 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4708 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4709 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4710 };
4711 
4712 static bool
4713 stereo_match_mandatory(const struct drm_display_mode *mode,
4714 		       const struct stereo_mandatory_mode *stereo_mode)
4715 {
4716 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4717 
4718 	return mode->hdisplay == stereo_mode->width &&
4719 	       mode->vdisplay == stereo_mode->height &&
4720 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4721 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4722 }
4723 
4724 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4725 {
4726 	struct drm_device *dev = connector->dev;
4727 	const struct drm_display_mode *mode;
4728 	struct list_head stereo_modes;
4729 	int modes = 0, i;
4730 
4731 	INIT_LIST_HEAD(&stereo_modes);
4732 
4733 	list_for_each_entry(mode, &connector->probed_modes, head) {
4734 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4735 			const struct stereo_mandatory_mode *mandatory;
4736 			struct drm_display_mode *new_mode;
4737 
4738 			if (!stereo_match_mandatory(mode,
4739 						    &stereo_mandatory_modes[i]))
4740 				continue;
4741 
4742 			mandatory = &stereo_mandatory_modes[i];
4743 			new_mode = drm_mode_duplicate(dev, mode);
4744 			if (!new_mode)
4745 				continue;
4746 
4747 			new_mode->flags |= mandatory->flags;
4748 			list_add_tail(&new_mode->head, &stereo_modes);
4749 			modes++;
4750 		}
4751 	}
4752 
4753 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4754 
4755 	return modes;
4756 }
4757 
4758 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4759 {
4760 	struct drm_device *dev = connector->dev;
4761 	struct drm_display_mode *newmode;
4762 
4763 	if (!drm_valid_hdmi_vic(vic)) {
4764 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4765 			connector->base.id, connector->name, vic);
4766 		return 0;
4767 	}
4768 
4769 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4770 	if (!newmode)
4771 		return 0;
4772 
4773 	drm_mode_probed_add(connector, newmode);
4774 
4775 	return 1;
4776 }
4777 
4778 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4779 			       int vic_index)
4780 {
4781 	struct drm_display_mode *newmode;
4782 	int modes = 0;
4783 
4784 	if (structure & (1 << 0)) {
4785 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4786 		if (newmode) {
4787 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4788 			drm_mode_probed_add(connector, newmode);
4789 			modes++;
4790 		}
4791 	}
4792 	if (structure & (1 << 6)) {
4793 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4794 		if (newmode) {
4795 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4796 			drm_mode_probed_add(connector, newmode);
4797 			modes++;
4798 		}
4799 	}
4800 	if (structure & (1 << 8)) {
4801 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4802 		if (newmode) {
4803 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4804 			drm_mode_probed_add(connector, newmode);
4805 			modes++;
4806 		}
4807 	}
4808 
4809 	return modes;
4810 }
4811 
4812 static bool hdmi_vsdb_latency_present(const u8 *db)
4813 {
4814 	return db[8] & BIT(7);
4815 }
4816 
4817 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4818 {
4819 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4820 }
4821 
4822 static int hdmi_vsdb_latency_length(const u8 *db)
4823 {
4824 	if (hdmi_vsdb_i_latency_present(db))
4825 		return 4;
4826 	else if (hdmi_vsdb_latency_present(db))
4827 		return 2;
4828 	else
4829 		return 0;
4830 }
4831 
4832 /*
4833  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4834  * @connector: connector corresponding to the HDMI sink
4835  * @db: start of the CEA vendor specific block
4836  * @len: length of the CEA block payload, ie. one can access up to db[len]
4837  *
4838  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4839  * also adds the stereo 3d modes when applicable.
4840  */
4841 static int
4842 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4843 {
4844 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4845 	u8 vic_len, hdmi_3d_len = 0;
4846 	u16 mask;
4847 	u16 structure_all;
4848 
4849 	if (len < 8)
4850 		goto out;
4851 
4852 	/* no HDMI_Video_Present */
4853 	if (!(db[8] & (1 << 5)))
4854 		goto out;
4855 
4856 	offset += hdmi_vsdb_latency_length(db);
4857 
4858 	/* the declared length is not long enough for the 2 first bytes
4859 	 * of additional video format capabilities */
4860 	if (len < (8 + offset + 2))
4861 		goto out;
4862 
4863 	/* 3D_Present */
4864 	offset++;
4865 	if (db[8 + offset] & (1 << 7)) {
4866 		modes += add_hdmi_mandatory_stereo_modes(connector);
4867 
4868 		/* 3D_Multi_present */
4869 		multi_present = (db[8 + offset] & 0x60) >> 5;
4870 	}
4871 
4872 	offset++;
4873 	vic_len = db[8 + offset] >> 5;
4874 	hdmi_3d_len = db[8 + offset] & 0x1f;
4875 
4876 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4877 		u8 vic;
4878 
4879 		vic = db[9 + offset + i];
4880 		modes += add_hdmi_mode(connector, vic);
4881 	}
4882 	offset += 1 + vic_len;
4883 
4884 	if (multi_present == 1)
4885 		multi_len = 2;
4886 	else if (multi_present == 2)
4887 		multi_len = 4;
4888 	else
4889 		multi_len = 0;
4890 
4891 	if (len < (8 + offset + hdmi_3d_len - 1))
4892 		goto out;
4893 
4894 	if (hdmi_3d_len < multi_len)
4895 		goto out;
4896 
4897 	if (multi_present == 1 || multi_present == 2) {
4898 		/* 3D_Structure_ALL */
4899 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4900 
4901 		/* check if 3D_MASK is present */
4902 		if (multi_present == 2)
4903 			mask = (db[10 + offset] << 8) | db[11 + offset];
4904 		else
4905 			mask = 0xffff;
4906 
4907 		for (i = 0; i < 16; i++) {
4908 			if (mask & (1 << i))
4909 				modes += add_3d_struct_modes(connector,
4910 							     structure_all, i);
4911 		}
4912 	}
4913 
4914 	offset += multi_len;
4915 
4916 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4917 		int vic_index;
4918 		struct drm_display_mode *newmode = NULL;
4919 		unsigned int newflag = 0;
4920 		bool detail_present;
4921 
4922 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4923 
4924 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4925 			break;
4926 
4927 		/* 2D_VIC_order_X */
4928 		vic_index = db[8 + offset + i] >> 4;
4929 
4930 		/* 3D_Structure_X */
4931 		switch (db[8 + offset + i] & 0x0f) {
4932 		case 0:
4933 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4934 			break;
4935 		case 6:
4936 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4937 			break;
4938 		case 8:
4939 			/* 3D_Detail_X */
4940 			if ((db[9 + offset + i] >> 4) == 1)
4941 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4942 			break;
4943 		}
4944 
4945 		if (newflag != 0) {
4946 			newmode = drm_display_mode_from_vic_index(connector,
4947 								  vic_index);
4948 
4949 			if (newmode) {
4950 				newmode->flags |= newflag;
4951 				drm_mode_probed_add(connector, newmode);
4952 				modes++;
4953 			}
4954 		}
4955 
4956 		if (detail_present)
4957 			i++;
4958 	}
4959 
4960 out:
4961 	return modes;
4962 }
4963 
4964 static int
4965 cea_revision(const u8 *cea)
4966 {
4967 	/*
4968 	 * FIXME is this correct for the DispID variant?
4969 	 * The DispID spec doesn't really specify whether
4970 	 * this is the revision of the CEA extension or
4971 	 * the DispID CEA data block. And the only value
4972 	 * given as an example is 0.
4973 	 */
4974 	return cea[1];
4975 }
4976 
4977 /*
4978  * CTA Data Block iterator.
4979  *
4980  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4981  * CTA Data Blocks.
4982  *
4983  * struct cea_db *db:
4984  * struct cea_db_iter iter;
4985  *
4986  * cea_db_iter_edid_begin(edid, &iter);
4987  * cea_db_iter_for_each(db, &iter) {
4988  *         // do stuff with db
4989  * }
4990  * cea_db_iter_end(&iter);
4991  */
4992 struct cea_db_iter {
4993 	struct drm_edid_iter edid_iter;
4994 	struct displayid_iter displayid_iter;
4995 
4996 	/* Current Data Block Collection. */
4997 	const u8 *collection;
4998 
4999 	/* Current Data Block index in current collection. */
5000 	int index;
5001 
5002 	/* End index in current collection. */
5003 	int end;
5004 };
5005 
5006 /* CTA-861-H section 7.4 CTA Data BLock Collection */
5007 struct cea_db {
5008 	u8 tag_length;
5009 	u8 data[];
5010 } __packed;
5011 
5012 static int cea_db_tag(const struct cea_db *db)
5013 {
5014 	return db->tag_length >> 5;
5015 }
5016 
5017 static int cea_db_payload_len(const void *_db)
5018 {
5019 	/* FIXME: Transition to passing struct cea_db * everywhere. */
5020 	const struct cea_db *db = _db;
5021 
5022 	return db->tag_length & 0x1f;
5023 }
5024 
5025 static const void *cea_db_data(const struct cea_db *db)
5026 {
5027 	return db->data;
5028 }
5029 
5030 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
5031 {
5032 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
5033 		cea_db_payload_len(db) >= 1 &&
5034 		db->data[0] == tag;
5035 }
5036 
5037 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
5038 {
5039 	const u8 *data = cea_db_data(db);
5040 
5041 	return cea_db_tag(db) == CTA_DB_VENDOR &&
5042 		cea_db_payload_len(db) >= 3 &&
5043 		oui(data[2], data[1], data[0]) == vendor_oui;
5044 }
5045 
5046 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
5047 				   struct cea_db_iter *iter)
5048 {
5049 	memset(iter, 0, sizeof(*iter));
5050 
5051 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
5052 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
5053 }
5054 
5055 static const struct cea_db *
5056 __cea_db_iter_current_block(const struct cea_db_iter *iter)
5057 {
5058 	const struct cea_db *db;
5059 
5060 	if (!iter->collection)
5061 		return NULL;
5062 
5063 	db = (const struct cea_db *)&iter->collection[iter->index];
5064 
5065 	if (iter->index + sizeof(*db) <= iter->end &&
5066 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
5067 		return db;
5068 
5069 	return NULL;
5070 }
5071 
5072 /*
5073  * References:
5074  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5075  */
5076 static int cea_db_collection_size(const u8 *cta)
5077 {
5078 	u8 d = cta[2];
5079 
5080 	if (d < 4 || d > 127)
5081 		return 0;
5082 
5083 	return d - 4;
5084 }
5085 
5086 /*
5087  * References:
5088  * - VESA E-EDID v1.4
5089  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5090  */
5091 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5092 {
5093 	const u8 *ext;
5094 
5095 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5096 		int size;
5097 
5098 		/* Only support CTA Extension revision 3+ */
5099 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5100 			continue;
5101 
5102 		size = cea_db_collection_size(ext);
5103 		if (!size)
5104 			continue;
5105 
5106 		iter->index = 4;
5107 		iter->end = iter->index + size;
5108 
5109 		return ext;
5110 	}
5111 
5112 	return NULL;
5113 }
5114 
5115 /*
5116  * References:
5117  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5118  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5119  *
5120  * Note that the above do not specify any connection between DisplayID Data
5121  * Block revision and CTA Extension versions.
5122  */
5123 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5124 {
5125 	const struct displayid_block *block;
5126 
5127 	displayid_iter_for_each(block, &iter->displayid_iter) {
5128 		if (block->tag != DATA_BLOCK_CTA)
5129 			continue;
5130 
5131 		/*
5132 		 * The displayid iterator has already verified the block bounds
5133 		 * in displayid_iter_block().
5134 		 */
5135 		iter->index = sizeof(*block);
5136 		iter->end = iter->index + block->num_bytes;
5137 
5138 		return block;
5139 	}
5140 
5141 	return NULL;
5142 }
5143 
5144 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5145 {
5146 	const struct cea_db *db;
5147 
5148 	if (iter->collection) {
5149 		/* Current collection should always be valid. */
5150 		db = __cea_db_iter_current_block(iter);
5151 		if (WARN_ON(!db)) {
5152 			iter->collection = NULL;
5153 			return NULL;
5154 		}
5155 
5156 		/* Next block in CTA Data Block Collection */
5157 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5158 
5159 		db = __cea_db_iter_current_block(iter);
5160 		if (db)
5161 			return db;
5162 	}
5163 
5164 	for (;;) {
5165 		/*
5166 		 * Find the next CTA Data Block Collection. First iterate all
5167 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5168 		 *
5169 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5170 		 * Extension, it's recommended that DisplayID extensions are
5171 		 * exposed after all of the CTA Extensions.
5172 		 */
5173 		iter->collection = __cea_db_iter_edid_next(iter);
5174 		if (!iter->collection)
5175 			iter->collection = __cea_db_iter_displayid_next(iter);
5176 
5177 		if (!iter->collection)
5178 			return NULL;
5179 
5180 		db = __cea_db_iter_current_block(iter);
5181 		if (db)
5182 			return db;
5183 	}
5184 }
5185 
5186 #define cea_db_iter_for_each(__db, __iter) \
5187 	while (((__db) = __cea_db_iter_next(__iter)))
5188 
5189 static void cea_db_iter_end(struct cea_db_iter *iter)
5190 {
5191 	displayid_iter_end(&iter->displayid_iter);
5192 	drm_edid_iter_end(&iter->edid_iter);
5193 
5194 	memset(iter, 0, sizeof(*iter));
5195 }
5196 
5197 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5198 {
5199 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5200 		cea_db_payload_len(db) >= 5;
5201 }
5202 
5203 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5204 {
5205 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5206 		cea_db_payload_len(db) >= 7;
5207 }
5208 
5209 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5210 {
5211 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5212 		cea_db_payload_len(db) >= 2;
5213 }
5214 
5215 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5216 {
5217 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5218 		cea_db_payload_len(db) == 21;
5219 }
5220 
5221 static bool cea_db_is_vcdb(const struct cea_db *db)
5222 {
5223 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5224 		cea_db_payload_len(db) == 2;
5225 }
5226 
5227 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5228 {
5229 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5230 		cea_db_payload_len(db) >= 7;
5231 }
5232 
5233 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5234 {
5235 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5236 }
5237 
5238 static bool cea_db_is_y420vdb(const struct cea_db *db)
5239 {
5240 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5241 }
5242 
5243 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5244 {
5245 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5246 		cea_db_payload_len(db) >= 3;
5247 }
5248 
5249 /*
5250  * Get the HF-EEODB override extension block count from EDID.
5251  *
5252  * The passed in EDID may be partially read, as long as it has at least two
5253  * blocks (base block and one extension block) if EDID extension count is > 0.
5254  *
5255  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5256  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5257  * iterators instead.
5258  *
5259  * References:
5260  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5261  */
5262 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5263 {
5264 	const u8 *cta;
5265 
5266 	/* No extensions according to base block, no HF-EEODB. */
5267 	if (!edid_extension_block_count(edid))
5268 		return 0;
5269 
5270 	/* HF-EEODB is always in the first EDID extension block only */
5271 	cta = edid_extension_block_data(edid, 0);
5272 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5273 		return 0;
5274 
5275 	/* Need to have the data block collection, and at least 3 bytes. */
5276 	if (cea_db_collection_size(cta) < 3)
5277 		return 0;
5278 
5279 	/*
5280 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5281 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5282 	 * through 6 of Block 1 of the E-EDID.
5283 	 */
5284 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5285 		return 0;
5286 
5287 	return cta[4 + 2];
5288 }
5289 
5290 /*
5291  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5292  *
5293  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5294  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5295  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5296  * support YCBCR420 output too.
5297  */
5298 static void parse_cta_y420cmdb(struct drm_connector *connector,
5299 			       const struct cea_db *db, u64 *y420cmdb_map)
5300 {
5301 	struct drm_display_info *info = &connector->display_info;
5302 	int i, map_len = cea_db_payload_len(db) - 1;
5303 	const u8 *data = cea_db_data(db) + 1;
5304 	u64 map = 0;
5305 
5306 	if (map_len == 0) {
5307 		/* All CEA modes support ycbcr420 sampling also.*/
5308 		map = U64_MAX;
5309 		goto out;
5310 	}
5311 
5312 	/*
5313 	 * This map indicates which of the existing CEA block modes
5314 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5315 	 * set, first mode from VDB can support YCBCR420 output too.
5316 	 * We will parse and keep this map, before parsing VDB itself
5317 	 * to avoid going through the same block again and again.
5318 	 *
5319 	 * Spec is not clear about max possible size of this block.
5320 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5321 	 * address 8 CEA modes, in this way this map can address
5322 	 * 8*8 = first 64 SVDs.
5323 	 */
5324 	if (WARN_ON_ONCE(map_len > 8))
5325 		map_len = 8;
5326 
5327 	for (i = 0; i < map_len; i++)
5328 		map |= (u64)data[i] << (8 * i);
5329 
5330 out:
5331 	if (map)
5332 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5333 
5334 	*y420cmdb_map = map;
5335 }
5336 
5337 static int add_cea_modes(struct drm_connector *connector,
5338 			 const struct drm_edid *drm_edid)
5339 {
5340 	const struct cea_db *db;
5341 	struct cea_db_iter iter;
5342 	int modes;
5343 
5344 	/* CTA VDB block VICs parsed earlier */
5345 	modes = add_cta_vdb_modes(connector);
5346 
5347 	cea_db_iter_edid_begin(drm_edid, &iter);
5348 	cea_db_iter_for_each(db, &iter) {
5349 		if (cea_db_is_hdmi_vsdb(db)) {
5350 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5351 						    cea_db_payload_len(db));
5352 		} else if (cea_db_is_y420vdb(db)) {
5353 			const u8 *vdb420 = cea_db_data(db) + 1;
5354 
5355 			/* Add 4:2:0(only) modes present in EDID */
5356 			modes += do_y420vdb_modes(connector, vdb420,
5357 						  cea_db_payload_len(db) - 1);
5358 		}
5359 	}
5360 	cea_db_iter_end(&iter);
5361 
5362 	return modes;
5363 }
5364 
5365 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5366 					  struct drm_display_mode *mode)
5367 {
5368 	const struct drm_display_mode *cea_mode;
5369 	int clock1, clock2, clock;
5370 	u8 vic;
5371 	const char *type;
5372 
5373 	/*
5374 	 * allow 5kHz clock difference either way to account for
5375 	 * the 10kHz clock resolution limit of detailed timings.
5376 	 */
5377 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5378 	if (drm_valid_cea_vic(vic)) {
5379 		type = "CEA";
5380 		cea_mode = cea_mode_for_vic(vic);
5381 		clock1 = cea_mode->clock;
5382 		clock2 = cea_mode_alternate_clock(cea_mode);
5383 	} else {
5384 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5385 		if (drm_valid_hdmi_vic(vic)) {
5386 			type = "HDMI";
5387 			cea_mode = &edid_4k_modes[vic];
5388 			clock1 = cea_mode->clock;
5389 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5390 		} else {
5391 			return;
5392 		}
5393 	}
5394 
5395 	/* pick whichever is closest */
5396 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5397 		clock = clock1;
5398 	else
5399 		clock = clock2;
5400 
5401 	if (mode->clock == clock)
5402 		return;
5403 
5404 	drm_dbg_kms(connector->dev,
5405 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5406 		    connector->base.id, connector->name,
5407 		    type, vic, mode->clock, clock);
5408 	mode->clock = clock;
5409 }
5410 
5411 static void drm_calculate_luminance_range(struct drm_connector *connector)
5412 {
5413 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5414 	struct drm_luminance_range_info *luminance_range =
5415 		&connector->display_info.luminance_range;
5416 	static const u8 pre_computed_values[] = {
5417 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5418 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5419 	};
5420 	u32 max_avg, min_cll, max, min, q, r;
5421 
5422 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5423 		return;
5424 
5425 	max_avg = hdr_metadata->max_fall;
5426 	min_cll = hdr_metadata->min_cll;
5427 
5428 	/*
5429 	 * From the specification (CTA-861-G), for calculating the maximum
5430 	 * luminance we need to use:
5431 	 *	Luminance = 50*2**(CV/32)
5432 	 * Where CV is a one-byte value.
5433 	 * For calculating this expression we may need float point precision;
5434 	 * to avoid this complexity level, we take advantage that CV is divided
5435 	 * by a constant. From the Euclids division algorithm, we know that CV
5436 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5437 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5438 	 * need to pre-compute the value of r/32. For pre-computing the values
5439 	 * We just used the following Ruby line:
5440 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5441 	 * The results of the above expressions can be verified at
5442 	 * pre_computed_values.
5443 	 */
5444 	q = max_avg >> 5;
5445 	r = max_avg % 32;
5446 	max = (1 << q) * pre_computed_values[r];
5447 
5448 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5449 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5450 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5451 
5452 	luminance_range->min_luminance = min;
5453 	luminance_range->max_luminance = max;
5454 }
5455 
5456 static uint8_t eotf_supported(const u8 *edid_ext)
5457 {
5458 	return edid_ext[2] &
5459 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5460 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5461 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5462 		 BIT(HDMI_EOTF_BT_2100_HLG));
5463 }
5464 
5465 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5466 {
5467 	return edid_ext[3] &
5468 		BIT(HDMI_STATIC_METADATA_TYPE1);
5469 }
5470 
5471 static void
5472 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5473 {
5474 	u16 len;
5475 
5476 	len = cea_db_payload_len(db);
5477 
5478 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5479 						eotf_supported(db);
5480 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5481 						hdr_metadata_type(db);
5482 
5483 	if (len >= 4)
5484 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5485 	if (len >= 5)
5486 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5487 	if (len >= 6) {
5488 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5489 
5490 		/* Calculate only when all values are available */
5491 		drm_calculate_luminance_range(connector);
5492 	}
5493 }
5494 
5495 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5496 static void
5497 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5498 {
5499 	u8 len = cea_db_payload_len(db);
5500 
5501 	if (len >= 6 && (db[6] & (1 << 7)))
5502 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5503 
5504 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5505 		connector->latency_present[0] = true;
5506 		connector->video_latency[0] = db[9];
5507 		connector->audio_latency[0] = db[10];
5508 	}
5509 
5510 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5511 		connector->latency_present[1] = true;
5512 		connector->video_latency[1] = db[11];
5513 		connector->audio_latency[1] = db[12];
5514 	}
5515 
5516 	drm_dbg_kms(connector->dev,
5517 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5518 		    connector->base.id, connector->name,
5519 		    connector->latency_present[0], connector->latency_present[1],
5520 		    connector->video_latency[0], connector->video_latency[1],
5521 		    connector->audio_latency[0], connector->audio_latency[1]);
5522 }
5523 
5524 static void
5525 match_identity(const struct detailed_timing *timing, void *data)
5526 {
5527 	struct drm_edid_match_closure *closure = data;
5528 	unsigned int i;
5529 	const char *name = closure->ident->name;
5530 	unsigned int name_len = strlen(name);
5531 	const char *desc = timing->data.other_data.data.str.str;
5532 	unsigned int desc_len = ARRAY_SIZE(timing->data.other_data.data.str.str);
5533 
5534 	if (name_len > desc_len ||
5535 	    !(is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME) ||
5536 	      is_display_descriptor(timing, EDID_DETAIL_MONITOR_STRING)))
5537 		return;
5538 
5539 	if (strncmp(name, desc, name_len))
5540 		return;
5541 
5542 	for (i = name_len; i < desc_len; i++) {
5543 		if (desc[i] == '\n')
5544 			break;
5545 		/* Allow white space before EDID string terminator. */
5546 		if (!isspace(desc[i]))
5547 			return;
5548 	}
5549 
5550 	closure->matched = true;
5551 }
5552 
5553 /**
5554  * drm_edid_match - match drm_edid with given identity
5555  * @drm_edid: EDID
5556  * @ident: the EDID identity to match with
5557  *
5558  * Check if the EDID matches with the given identity.
5559  *
5560  * Return: True if the given identity matched with EDID, false otherwise.
5561  */
5562 bool drm_edid_match(const struct drm_edid *drm_edid,
5563 		    const struct drm_edid_ident *ident)
5564 {
5565 	if (!drm_edid || drm_edid_get_panel_id(drm_edid) != ident->panel_id)
5566 		return false;
5567 
5568 	/* Match with name only if it's not NULL. */
5569 	if (ident->name) {
5570 		struct drm_edid_match_closure closure = {
5571 			.ident = ident,
5572 			.matched = false,
5573 		};
5574 
5575 		drm_for_each_detailed_block(drm_edid, match_identity, &closure);
5576 
5577 		return closure.matched;
5578 	}
5579 
5580 	return true;
5581 }
5582 EXPORT_SYMBOL(drm_edid_match);
5583 
5584 static void
5585 monitor_name(const struct detailed_timing *timing, void *data)
5586 {
5587 	const char **res = data;
5588 
5589 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5590 		return;
5591 
5592 	*res = timing->data.other_data.data.str.str;
5593 }
5594 
5595 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5596 {
5597 	const char *edid_name = NULL;
5598 	int mnl;
5599 
5600 	if (!drm_edid || !name)
5601 		return 0;
5602 
5603 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5604 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5605 		if (edid_name[mnl] == 0x0a)
5606 			break;
5607 
5608 		name[mnl] = edid_name[mnl];
5609 	}
5610 
5611 	return mnl;
5612 }
5613 
5614 /**
5615  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5616  * @edid: monitor EDID information
5617  * @name: pointer to a character array to hold the name of the monitor
5618  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5619  *
5620  */
5621 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5622 {
5623 	int name_length = 0;
5624 
5625 	if (bufsize <= 0)
5626 		return;
5627 
5628 	if (edid) {
5629 		char buf[13];
5630 		struct drm_edid drm_edid = {
5631 			.edid = edid,
5632 			.size = edid_size(edid),
5633 		};
5634 
5635 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5636 		memcpy(name, buf, name_length);
5637 	}
5638 
5639 	name[name_length] = '\0';
5640 }
5641 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5642 
5643 static void clear_eld(struct drm_connector *connector)
5644 {
5645 	memset(connector->eld, 0, sizeof(connector->eld));
5646 
5647 	connector->latency_present[0] = false;
5648 	connector->latency_present[1] = false;
5649 	connector->video_latency[0] = 0;
5650 	connector->audio_latency[0] = 0;
5651 	connector->video_latency[1] = 0;
5652 	connector->audio_latency[1] = 0;
5653 }
5654 
5655 /*
5656  * Get 3-byte SAD buffer from struct cea_sad.
5657  */
5658 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5659 {
5660 	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5661 	sad[1] = cta_sad->freq;
5662 	sad[2] = cta_sad->byte2;
5663 }
5664 
5665 /*
5666  * Set struct cea_sad from 3-byte SAD buffer.
5667  */
5668 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5669 {
5670 	cta_sad->format = (sad[0] & 0x78) >> 3;
5671 	cta_sad->channels = sad[0] & 0x07;
5672 	cta_sad->freq = sad[1] & 0x7f;
5673 	cta_sad->byte2 = sad[2];
5674 }
5675 
5676 /*
5677  * drm_edid_to_eld - build ELD from EDID
5678  * @connector: connector corresponding to the HDMI/DP sink
5679  * @drm_edid: EDID to parse
5680  *
5681  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5682  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5683  */
5684 static void drm_edid_to_eld(struct drm_connector *connector,
5685 			    const struct drm_edid *drm_edid)
5686 {
5687 	const struct drm_display_info *info = &connector->display_info;
5688 	const struct cea_db *db;
5689 	struct cea_db_iter iter;
5690 	uint8_t *eld = connector->eld;
5691 	int total_sad_count = 0;
5692 	int mnl;
5693 
5694 	if (!drm_edid)
5695 		return;
5696 
5697 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5698 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5699 		    connector->base.id, connector->name,
5700 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5701 
5702 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5703 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5704 
5705 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5706 
5707 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5708 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5709 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5710 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5711 
5712 	cea_db_iter_edid_begin(drm_edid, &iter);
5713 	cea_db_iter_for_each(db, &iter) {
5714 		const u8 *data = cea_db_data(db);
5715 		int len = cea_db_payload_len(db);
5716 		int sad_count;
5717 
5718 		switch (cea_db_tag(db)) {
5719 		case CTA_DB_AUDIO:
5720 			/* Audio Data Block, contains SADs */
5721 			sad_count = min(len / 3, 15 - total_sad_count);
5722 			if (sad_count >= 1)
5723 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5724 				       data, sad_count * 3);
5725 			total_sad_count += sad_count;
5726 			break;
5727 		case CTA_DB_SPEAKER:
5728 			/* Speaker Allocation Data Block */
5729 			if (len >= 1)
5730 				eld[DRM_ELD_SPEAKER] = data[0];
5731 			break;
5732 		case CTA_DB_VENDOR:
5733 			/* HDMI Vendor-Specific Data Block */
5734 			if (cea_db_is_hdmi_vsdb(db))
5735 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5736 			break;
5737 		default:
5738 			break;
5739 		}
5740 	}
5741 	cea_db_iter_end(&iter);
5742 
5743 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5744 
5745 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5746 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5747 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5748 	else
5749 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5750 
5751 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5752 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5753 
5754 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5755 		    connector->base.id, connector->name,
5756 		    drm_eld_size(eld), total_sad_count);
5757 }
5758 
5759 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5760 			    struct cea_sad **psads)
5761 {
5762 	const struct cea_db *db;
5763 	struct cea_db_iter iter;
5764 	int count = 0;
5765 
5766 	cea_db_iter_edid_begin(drm_edid, &iter);
5767 	cea_db_iter_for_each(db, &iter) {
5768 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5769 			struct cea_sad *sads;
5770 			int i;
5771 
5772 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5773 			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5774 			*psads = sads;
5775 			if (!sads)
5776 				return -ENOMEM;
5777 			for (i = 0; i < count; i++)
5778 				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5779 			break;
5780 		}
5781 	}
5782 	cea_db_iter_end(&iter);
5783 
5784 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5785 
5786 	return count;
5787 }
5788 
5789 /**
5790  * drm_edid_to_sad - extracts SADs from EDID
5791  * @edid: EDID to parse
5792  * @sads: pointer that will be set to the extracted SADs
5793  *
5794  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5795  *
5796  * Note: The returned pointer needs to be freed using kfree().
5797  *
5798  * Return: The number of found SADs or negative number on error.
5799  */
5800 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5801 {
5802 	struct drm_edid drm_edid;
5803 
5804 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5805 }
5806 EXPORT_SYMBOL(drm_edid_to_sad);
5807 
5808 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5809 					   u8 **sadb)
5810 {
5811 	const struct cea_db *db;
5812 	struct cea_db_iter iter;
5813 	int count = 0;
5814 
5815 	cea_db_iter_edid_begin(drm_edid, &iter);
5816 	cea_db_iter_for_each(db, &iter) {
5817 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5818 		    cea_db_payload_len(db) == 3) {
5819 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5820 					GFP_KERNEL);
5821 			if (!*sadb)
5822 				return -ENOMEM;
5823 			count = cea_db_payload_len(db);
5824 			break;
5825 		}
5826 	}
5827 	cea_db_iter_end(&iter);
5828 
5829 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5830 
5831 	return count;
5832 }
5833 
5834 /**
5835  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5836  * @edid: EDID to parse
5837  * @sadb: pointer to the speaker block
5838  *
5839  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5840  *
5841  * Note: The returned pointer needs to be freed using kfree().
5842  *
5843  * Return: The number of found Speaker Allocation Blocks or negative number on
5844  * error.
5845  */
5846 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5847 {
5848 	struct drm_edid drm_edid;
5849 
5850 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5851 					       sadb);
5852 }
5853 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5854 
5855 /**
5856  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5857  * @connector: connector associated with the HDMI/DP sink
5858  * @mode: the display mode
5859  *
5860  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5861  * the sink doesn't support audio or video.
5862  */
5863 int drm_av_sync_delay(struct drm_connector *connector,
5864 		      const struct drm_display_mode *mode)
5865 {
5866 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5867 	int a, v;
5868 
5869 	if (!connector->latency_present[0])
5870 		return 0;
5871 	if (!connector->latency_present[1])
5872 		i = 0;
5873 
5874 	a = connector->audio_latency[i];
5875 	v = connector->video_latency[i];
5876 
5877 	/*
5878 	 * HDMI/DP sink doesn't support audio or video?
5879 	 */
5880 	if (a == 255 || v == 255)
5881 		return 0;
5882 
5883 	/*
5884 	 * Convert raw EDID values to millisecond.
5885 	 * Treat unknown latency as 0ms.
5886 	 */
5887 	if (a)
5888 		a = min(2 * (a - 1), 500);
5889 	if (v)
5890 		v = min(2 * (v - 1), 500);
5891 
5892 	return max(v - a, 0);
5893 }
5894 EXPORT_SYMBOL(drm_av_sync_delay);
5895 
5896 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5897 {
5898 	const struct cea_db *db;
5899 	struct cea_db_iter iter;
5900 	bool hdmi = false;
5901 
5902 	/*
5903 	 * Because HDMI identifier is in Vendor Specific Block,
5904 	 * search it from all data blocks of CEA extension.
5905 	 */
5906 	cea_db_iter_edid_begin(drm_edid, &iter);
5907 	cea_db_iter_for_each(db, &iter) {
5908 		if (cea_db_is_hdmi_vsdb(db)) {
5909 			hdmi = true;
5910 			break;
5911 		}
5912 	}
5913 	cea_db_iter_end(&iter);
5914 
5915 	return hdmi;
5916 }
5917 
5918 /**
5919  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5920  * @edid: monitor EDID information
5921  *
5922  * Parse the CEA extension according to CEA-861-B.
5923  *
5924  * Drivers that have added the modes parsed from EDID to drm_display_info
5925  * should use &drm_display_info.is_hdmi instead of calling this function.
5926  *
5927  * Return: True if the monitor is HDMI, false if not or unknown.
5928  */
5929 bool drm_detect_hdmi_monitor(const struct edid *edid)
5930 {
5931 	struct drm_edid drm_edid;
5932 
5933 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5934 }
5935 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5936 
5937 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5938 {
5939 	struct drm_edid_iter edid_iter;
5940 	const struct cea_db *db;
5941 	struct cea_db_iter iter;
5942 	const u8 *edid_ext;
5943 	bool has_audio = false;
5944 
5945 	drm_edid_iter_begin(drm_edid, &edid_iter);
5946 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5947 		if (edid_ext[0] == CEA_EXT) {
5948 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5949 			if (has_audio)
5950 				break;
5951 		}
5952 	}
5953 	drm_edid_iter_end(&edid_iter);
5954 
5955 	if (has_audio) {
5956 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5957 		goto end;
5958 	}
5959 
5960 	cea_db_iter_edid_begin(drm_edid, &iter);
5961 	cea_db_iter_for_each(db, &iter) {
5962 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5963 			const u8 *data = cea_db_data(db);
5964 			int i;
5965 
5966 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5967 				DRM_DEBUG_KMS("CEA audio format %d\n",
5968 					      (data[i] >> 3) & 0xf);
5969 			has_audio = true;
5970 			break;
5971 		}
5972 	}
5973 	cea_db_iter_end(&iter);
5974 
5975 end:
5976 	return has_audio;
5977 }
5978 
5979 /**
5980  * drm_detect_monitor_audio - check monitor audio capability
5981  * @edid: EDID block to scan
5982  *
5983  * Monitor should have CEA extension block.
5984  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5985  * audio' only. If there is any audio extension block and supported
5986  * audio format, assume at least 'basic audio' support, even if 'basic
5987  * audio' is not defined in EDID.
5988  *
5989  * Return: True if the monitor supports audio, false otherwise.
5990  */
5991 bool drm_detect_monitor_audio(const struct edid *edid)
5992 {
5993 	struct drm_edid drm_edid;
5994 
5995 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5996 }
5997 EXPORT_SYMBOL(drm_detect_monitor_audio);
5998 
5999 
6000 /**
6001  * drm_default_rgb_quant_range - default RGB quantization range
6002  * @mode: display mode
6003  *
6004  * Determine the default RGB quantization range for the mode,
6005  * as specified in CEA-861.
6006  *
6007  * Return: The default RGB quantization range for the mode
6008  */
6009 enum hdmi_quantization_range
6010 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
6011 {
6012 	/* All CEA modes other than VIC 1 use limited quantization range. */
6013 	return drm_match_cea_mode(mode) > 1 ?
6014 		HDMI_QUANTIZATION_RANGE_LIMITED :
6015 		HDMI_QUANTIZATION_RANGE_FULL;
6016 }
6017 EXPORT_SYMBOL(drm_default_rgb_quant_range);
6018 
6019 /* CTA-861 Video Data Block (CTA VDB) */
6020 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
6021 {
6022 	struct drm_display_info *info = &connector->display_info;
6023 	int i, vic_index, len = cea_db_payload_len(db);
6024 	const u8 *svds = cea_db_data(db);
6025 	u8 *vics;
6026 
6027 	if (!len)
6028 		return;
6029 
6030 	/* Gracefully handle multiple VDBs, however unlikely that is */
6031 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
6032 	if (!vics)
6033 		return;
6034 
6035 	vic_index = info->vics_len;
6036 	info->vics_len += len;
6037 	info->vics = vics;
6038 
6039 	for (i = 0; i < len; i++) {
6040 		u8 vic = svd_to_vic(svds[i]);
6041 
6042 		if (!drm_valid_cea_vic(vic))
6043 			vic = 0;
6044 
6045 		info->vics[vic_index++] = vic;
6046 	}
6047 }
6048 
6049 /*
6050  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
6051  *
6052  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
6053  * using the VICs themselves.
6054  */
6055 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
6056 {
6057 	struct drm_display_info *info = &connector->display_info;
6058 	struct drm_hdmi_info *hdmi = &info->hdmi;
6059 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
6060 
6061 	for (i = 0; i < len; i++) {
6062 		u8 vic = info->vics[i];
6063 
6064 		if (vic && y420cmdb_map & BIT_ULL(i))
6065 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
6066 	}
6067 }
6068 
6069 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
6070 {
6071 	const struct drm_display_info *info = &connector->display_info;
6072 	int i;
6073 
6074 	if (!vic || !info->vics)
6075 		return false;
6076 
6077 	for (i = 0; i < info->vics_len; i++) {
6078 		if (info->vics[i] == vic)
6079 			return true;
6080 	}
6081 
6082 	return false;
6083 }
6084 
6085 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
6086 static void parse_cta_y420vdb(struct drm_connector *connector,
6087 			      const struct cea_db *db)
6088 {
6089 	struct drm_display_info *info = &connector->display_info;
6090 	struct drm_hdmi_info *hdmi = &info->hdmi;
6091 	const u8 *svds = cea_db_data(db) + 1;
6092 	int i;
6093 
6094 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
6095 		u8 vic = svd_to_vic(svds[i]);
6096 
6097 		if (!drm_valid_cea_vic(vic))
6098 			continue;
6099 
6100 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
6101 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
6102 	}
6103 }
6104 
6105 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
6106 {
6107 	struct drm_display_info *info = &connector->display_info;
6108 
6109 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
6110 		    connector->base.id, connector->name, db[2]);
6111 
6112 	if (db[2] & EDID_CEA_VCDB_QS)
6113 		info->rgb_quant_range_selectable = true;
6114 }
6115 
6116 static
6117 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
6118 {
6119 	switch (max_frl_rate) {
6120 	case 1:
6121 		*max_lanes = 3;
6122 		*max_rate_per_lane = 3;
6123 		break;
6124 	case 2:
6125 		*max_lanes = 3;
6126 		*max_rate_per_lane = 6;
6127 		break;
6128 	case 3:
6129 		*max_lanes = 4;
6130 		*max_rate_per_lane = 6;
6131 		break;
6132 	case 4:
6133 		*max_lanes = 4;
6134 		*max_rate_per_lane = 8;
6135 		break;
6136 	case 5:
6137 		*max_lanes = 4;
6138 		*max_rate_per_lane = 10;
6139 		break;
6140 	case 6:
6141 		*max_lanes = 4;
6142 		*max_rate_per_lane = 12;
6143 		break;
6144 	case 0:
6145 	default:
6146 		*max_lanes = 0;
6147 		*max_rate_per_lane = 0;
6148 	}
6149 }
6150 
6151 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6152 					       const u8 *db)
6153 {
6154 	u8 dc_mask;
6155 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6156 
6157 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6158 	hdmi->y420_dc_modes = dc_mask;
6159 }
6160 
6161 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6162 			       const u8 *hf_scds)
6163 {
6164 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6165 
6166 	if (!hdmi_dsc->v_1p2)
6167 		return;
6168 
6169 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6170 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6171 
6172 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6173 		hdmi_dsc->bpc_supported = 16;
6174 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6175 		hdmi_dsc->bpc_supported = 12;
6176 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6177 		hdmi_dsc->bpc_supported = 10;
6178 	else
6179 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6180 		hdmi_dsc->bpc_supported = 8;
6181 
6182 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6183 		u8 dsc_max_slices;
6184 		u8 dsc_max_frl_rate;
6185 
6186 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6187 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6188 				     &hdmi_dsc->max_frl_rate_per_lane);
6189 
6190 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6191 
6192 		switch (dsc_max_slices) {
6193 		case 1:
6194 			hdmi_dsc->max_slices = 1;
6195 			hdmi_dsc->clk_per_slice = 340;
6196 			break;
6197 		case 2:
6198 			hdmi_dsc->max_slices = 2;
6199 			hdmi_dsc->clk_per_slice = 340;
6200 			break;
6201 		case 3:
6202 			hdmi_dsc->max_slices = 4;
6203 			hdmi_dsc->clk_per_slice = 340;
6204 			break;
6205 		case 4:
6206 			hdmi_dsc->max_slices = 8;
6207 			hdmi_dsc->clk_per_slice = 340;
6208 			break;
6209 		case 5:
6210 			hdmi_dsc->max_slices = 8;
6211 			hdmi_dsc->clk_per_slice = 400;
6212 			break;
6213 		case 6:
6214 			hdmi_dsc->max_slices = 12;
6215 			hdmi_dsc->clk_per_slice = 400;
6216 			break;
6217 		case 7:
6218 			hdmi_dsc->max_slices = 16;
6219 			hdmi_dsc->clk_per_slice = 400;
6220 			break;
6221 		case 0:
6222 		default:
6223 			hdmi_dsc->max_slices = 0;
6224 			hdmi_dsc->clk_per_slice = 0;
6225 		}
6226 	}
6227 
6228 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6229 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6230 }
6231 
6232 /* Sink Capability Data Structure */
6233 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6234 				      const u8 *hf_scds)
6235 {
6236 	struct drm_display_info *info = &connector->display_info;
6237 	struct drm_hdmi_info *hdmi = &info->hdmi;
6238 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6239 	int max_tmds_clock = 0;
6240 	u8 max_frl_rate = 0;
6241 	bool dsc_support = false;
6242 
6243 	info->has_hdmi_infoframe = true;
6244 
6245 	if (hf_scds[6] & 0x80) {
6246 		hdmi->scdc.supported = true;
6247 		if (hf_scds[6] & 0x40)
6248 			hdmi->scdc.read_request = true;
6249 	}
6250 
6251 	/*
6252 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6253 	 * And as per the spec, three factors confirm this:
6254 	 * * Availability of a HF-VSDB block in EDID (check)
6255 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6256 	 * * SCDC support available (let's check)
6257 	 * Lets check it out.
6258 	 */
6259 
6260 	if (hf_scds[5]) {
6261 		struct drm_scdc *scdc = &hdmi->scdc;
6262 
6263 		/* max clock is 5000 KHz times block value */
6264 		max_tmds_clock = hf_scds[5] * 5000;
6265 
6266 		if (max_tmds_clock > 340000) {
6267 			info->max_tmds_clock = max_tmds_clock;
6268 		}
6269 
6270 		if (scdc->supported) {
6271 			scdc->scrambling.supported = true;
6272 
6273 			/* Few sinks support scrambling for clocks < 340M */
6274 			if ((hf_scds[6] & 0x8))
6275 				scdc->scrambling.low_rates = true;
6276 		}
6277 	}
6278 
6279 	if (hf_scds[7]) {
6280 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6281 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6282 				     &hdmi->max_frl_rate_per_lane);
6283 	}
6284 
6285 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6286 
6287 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6288 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6289 		dsc_support = true;
6290 	}
6291 
6292 	drm_dbg_kms(connector->dev,
6293 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6294 		    connector->base.id, connector->name,
6295 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6296 }
6297 
6298 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6299 					   const u8 *hdmi)
6300 {
6301 	struct drm_display_info *info = &connector->display_info;
6302 	unsigned int dc_bpc = 0;
6303 
6304 	/* HDMI supports at least 8 bpc */
6305 	info->bpc = 8;
6306 
6307 	if (cea_db_payload_len(hdmi) < 6)
6308 		return;
6309 
6310 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6311 		dc_bpc = 10;
6312 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6313 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6314 			    connector->base.id, connector->name);
6315 	}
6316 
6317 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6318 		dc_bpc = 12;
6319 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6320 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6321 			    connector->base.id, connector->name);
6322 	}
6323 
6324 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6325 		dc_bpc = 16;
6326 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6327 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6328 			    connector->base.id, connector->name);
6329 	}
6330 
6331 	if (dc_bpc == 0) {
6332 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6333 			    connector->base.id, connector->name);
6334 		return;
6335 	}
6336 
6337 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6338 		    connector->base.id, connector->name, dc_bpc);
6339 	info->bpc = dc_bpc;
6340 
6341 	/* YCRCB444 is optional according to spec. */
6342 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6343 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6344 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6345 			    connector->base.id, connector->name);
6346 	}
6347 
6348 	/*
6349 	 * Spec says that if any deep color mode is supported at all,
6350 	 * then deep color 36 bit must be supported.
6351 	 */
6352 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6353 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6354 			    connector->base.id, connector->name);
6355 	}
6356 }
6357 
6358 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6359 static void
6360 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6361 {
6362 	struct drm_display_info *info = &connector->display_info;
6363 	u8 len = cea_db_payload_len(db);
6364 
6365 	info->is_hdmi = true;
6366 
6367 	info->source_physical_address = (db[4] << 8) | db[5];
6368 
6369 	if (len >= 6)
6370 		info->dvi_dual = db[6] & 1;
6371 	if (len >= 7)
6372 		info->max_tmds_clock = db[7] * 5000;
6373 
6374 	/*
6375 	 * Try to infer whether the sink supports HDMI infoframes.
6376 	 *
6377 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6378 	 * supports infoframes if HDMI_Video_present is set.
6379 	 */
6380 	if (len >= 8 && db[8] & BIT(5))
6381 		info->has_hdmi_infoframe = true;
6382 
6383 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6384 		    connector->base.id, connector->name,
6385 		    info->dvi_dual, info->max_tmds_clock);
6386 
6387 	drm_parse_hdmi_deep_color_info(connector, db);
6388 }
6389 
6390 /*
6391  * See EDID extension for head-mounted and specialized monitors, specified at:
6392  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6393  */
6394 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6395 				     const u8 *db)
6396 {
6397 	struct drm_display_info *info = &connector->display_info;
6398 	u8 version = db[4];
6399 	bool desktop_usage = db[5] & BIT(6);
6400 
6401 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6402 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6403 		info->non_desktop = true;
6404 
6405 	drm_dbg_kms(connector->dev,
6406 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6407 		    connector->base.id, connector->name, version, db[5]);
6408 }
6409 
6410 static void drm_parse_cea_ext(struct drm_connector *connector,
6411 			      const struct drm_edid *drm_edid)
6412 {
6413 	struct drm_display_info *info = &connector->display_info;
6414 	struct drm_edid_iter edid_iter;
6415 	const struct cea_db *db;
6416 	struct cea_db_iter iter;
6417 	const u8 *edid_ext;
6418 	u64 y420cmdb_map = 0;
6419 
6420 	drm_edid_iter_begin(drm_edid, &edid_iter);
6421 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6422 		if (edid_ext[0] != CEA_EXT)
6423 			continue;
6424 
6425 		if (!info->cea_rev)
6426 			info->cea_rev = edid_ext[1];
6427 
6428 		if (info->cea_rev != edid_ext[1])
6429 			drm_dbg_kms(connector->dev,
6430 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6431 				    connector->base.id, connector->name,
6432 				    info->cea_rev, edid_ext[1]);
6433 
6434 		/* The existence of a CTA extension should imply RGB support */
6435 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6436 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6437 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6438 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6439 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6440 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6441 			info->has_audio = true;
6442 
6443 	}
6444 	drm_edid_iter_end(&edid_iter);
6445 
6446 	cea_db_iter_edid_begin(drm_edid, &iter);
6447 	cea_db_iter_for_each(db, &iter) {
6448 		/* FIXME: convert parsers to use struct cea_db */
6449 		const u8 *data = (const u8 *)db;
6450 
6451 		if (cea_db_is_hdmi_vsdb(db))
6452 			drm_parse_hdmi_vsdb_video(connector, data);
6453 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6454 			 cea_db_is_hdmi_forum_scdb(db))
6455 			drm_parse_hdmi_forum_scds(connector, data);
6456 		else if (cea_db_is_microsoft_vsdb(db))
6457 			drm_parse_microsoft_vsdb(connector, data);
6458 		else if (cea_db_is_y420cmdb(db))
6459 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6460 		else if (cea_db_is_y420vdb(db))
6461 			parse_cta_y420vdb(connector, db);
6462 		else if (cea_db_is_vcdb(db))
6463 			drm_parse_vcdb(connector, data);
6464 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6465 			drm_parse_hdr_metadata_block(connector, data);
6466 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6467 			parse_cta_vdb(connector, db);
6468 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6469 			info->has_audio = true;
6470 	}
6471 	cea_db_iter_end(&iter);
6472 
6473 	if (y420cmdb_map)
6474 		update_cta_y420cmdb(connector, y420cmdb_map);
6475 }
6476 
6477 static
6478 void get_monitor_range(const struct detailed_timing *timing, void *c)
6479 {
6480 	struct detailed_mode_closure *closure = c;
6481 	struct drm_display_info *info = &closure->connector->display_info;
6482 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6483 	const struct detailed_non_pixel *data = &timing->data.other_data;
6484 	const struct detailed_data_monitor_range *range = &data->data.range;
6485 	const struct edid *edid = closure->drm_edid->edid;
6486 
6487 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6488 		return;
6489 
6490 	/*
6491 	 * These limits are used to determine the VRR refresh
6492 	 * rate range. Only the "range limits only" variant
6493 	 * of the range descriptor seems to guarantee that
6494 	 * any and all timings are accepted by the sink, as
6495 	 * opposed to just timings conforming to the indicated
6496 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6497 	 * range descriptor are not accepted here.
6498 	 */
6499 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6500 		return;
6501 
6502 	monitor_range->min_vfreq = range->min_vfreq;
6503 	monitor_range->max_vfreq = range->max_vfreq;
6504 
6505 	if (edid->revision >= 4) {
6506 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6507 			monitor_range->min_vfreq += 255;
6508 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6509 			monitor_range->max_vfreq += 255;
6510 	}
6511 }
6512 
6513 static void drm_get_monitor_range(struct drm_connector *connector,
6514 				  const struct drm_edid *drm_edid)
6515 {
6516 	const struct drm_display_info *info = &connector->display_info;
6517 	struct detailed_mode_closure closure = {
6518 		.connector = connector,
6519 		.drm_edid = drm_edid,
6520 	};
6521 
6522 	if (drm_edid->edid->revision < 4)
6523 		return;
6524 
6525 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6526 		return;
6527 
6528 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6529 
6530 	drm_dbg_kms(connector->dev,
6531 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6532 		    connector->base.id, connector->name,
6533 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6534 }
6535 
6536 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6537 				    const struct displayid_block *block)
6538 {
6539 	struct displayid_vesa_vendor_specific_block *vesa =
6540 		(struct displayid_vesa_vendor_specific_block *)block;
6541 	struct drm_display_info *info = &connector->display_info;
6542 
6543 	if (block->num_bytes < 3) {
6544 		drm_dbg_kms(connector->dev,
6545 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6546 			    connector->base.id, connector->name, block->num_bytes);
6547 		return;
6548 	}
6549 
6550 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6551 		return;
6552 
6553 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6554 		drm_dbg_kms(connector->dev,
6555 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6556 			    connector->base.id, connector->name);
6557 		return;
6558 	}
6559 
6560 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6561 	default:
6562 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6563 			    connector->base.id, connector->name);
6564 		fallthrough;
6565 	case 0:
6566 		info->mso_stream_count = 0;
6567 		break;
6568 	case 1:
6569 		info->mso_stream_count = 2; /* 2 or 4 links */
6570 		break;
6571 	case 2:
6572 		info->mso_stream_count = 4; /* 4 links */
6573 		break;
6574 	}
6575 
6576 	if (!info->mso_stream_count) {
6577 		info->mso_pixel_overlap = 0;
6578 		return;
6579 	}
6580 
6581 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6582 	if (info->mso_pixel_overlap > 8) {
6583 		drm_dbg_kms(connector->dev,
6584 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6585 			    connector->base.id, connector->name,
6586 			    info->mso_pixel_overlap);
6587 		info->mso_pixel_overlap = 8;
6588 	}
6589 
6590 	drm_dbg_kms(connector->dev,
6591 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6592 		    connector->base.id, connector->name,
6593 		    info->mso_stream_count, info->mso_pixel_overlap);
6594 }
6595 
6596 static void drm_update_mso(struct drm_connector *connector,
6597 			   const struct drm_edid *drm_edid)
6598 {
6599 	const struct displayid_block *block;
6600 	struct displayid_iter iter;
6601 
6602 	displayid_iter_edid_begin(drm_edid, &iter);
6603 	displayid_iter_for_each(block, &iter) {
6604 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6605 			drm_parse_vesa_mso_data(connector, block);
6606 	}
6607 	displayid_iter_end(&iter);
6608 }
6609 
6610 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6611  * all of the values which would have been set from EDID
6612  */
6613 static void drm_reset_display_info(struct drm_connector *connector)
6614 {
6615 	struct drm_display_info *info = &connector->display_info;
6616 
6617 	info->width_mm = 0;
6618 	info->height_mm = 0;
6619 
6620 	info->bpc = 0;
6621 	info->color_formats = 0;
6622 	info->cea_rev = 0;
6623 	info->max_tmds_clock = 0;
6624 	info->dvi_dual = false;
6625 	info->is_hdmi = false;
6626 	info->has_audio = false;
6627 	info->has_hdmi_infoframe = false;
6628 	info->rgb_quant_range_selectable = false;
6629 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6630 
6631 	info->edid_hdmi_rgb444_dc_modes = 0;
6632 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6633 
6634 	info->non_desktop = 0;
6635 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6636 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6637 
6638 	info->mso_stream_count = 0;
6639 	info->mso_pixel_overlap = 0;
6640 	info->max_dsc_bpp = 0;
6641 
6642 	kfree(info->vics);
6643 	info->vics = NULL;
6644 	info->vics_len = 0;
6645 
6646 	info->quirks = 0;
6647 
6648 	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6649 }
6650 
6651 static void update_displayid_info(struct drm_connector *connector,
6652 				  const struct drm_edid *drm_edid)
6653 {
6654 	struct drm_display_info *info = &connector->display_info;
6655 	const struct displayid_block *block;
6656 	struct displayid_iter iter;
6657 
6658 	displayid_iter_edid_begin(drm_edid, &iter);
6659 	displayid_iter_for_each(block, &iter) {
6660 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6661 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6662 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6663 			info->non_desktop = true;
6664 
6665 		/*
6666 		 * We're only interested in the base section here, no need to
6667 		 * iterate further.
6668 		 */
6669 		break;
6670 	}
6671 	displayid_iter_end(&iter);
6672 }
6673 
6674 static void update_display_info(struct drm_connector *connector,
6675 				const struct drm_edid *drm_edid)
6676 {
6677 	struct drm_display_info *info = &connector->display_info;
6678 	const struct edid *edid;
6679 
6680 	drm_reset_display_info(connector);
6681 	clear_eld(connector);
6682 
6683 	if (!drm_edid)
6684 		return;
6685 
6686 	edid = drm_edid->edid;
6687 
6688 	info->quirks = edid_get_quirks(drm_edid);
6689 
6690 	info->width_mm = edid->width_cm * 10;
6691 	info->height_mm = edid->height_cm * 10;
6692 
6693 	drm_get_monitor_range(connector, drm_edid);
6694 
6695 	if (edid->revision < 3)
6696 		goto out;
6697 
6698 	if (!drm_edid_is_digital(drm_edid))
6699 		goto out;
6700 
6701 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6702 	drm_parse_cea_ext(connector, drm_edid);
6703 
6704 	update_displayid_info(connector, drm_edid);
6705 
6706 	/*
6707 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6708 	 *
6709 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6710 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6711 	 * extensions which tell otherwise.
6712 	 */
6713 	if (info->bpc == 0 && edid->revision == 3 &&
6714 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6715 		info->bpc = 8;
6716 		drm_dbg_kms(connector->dev,
6717 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6718 			    connector->base.id, connector->name, info->bpc);
6719 	}
6720 
6721 	/* Only defined for 1.4 with digital displays */
6722 	if (edid->revision < 4)
6723 		goto out;
6724 
6725 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6726 	case DRM_EDID_DIGITAL_DEPTH_6:
6727 		info->bpc = 6;
6728 		break;
6729 	case DRM_EDID_DIGITAL_DEPTH_8:
6730 		info->bpc = 8;
6731 		break;
6732 	case DRM_EDID_DIGITAL_DEPTH_10:
6733 		info->bpc = 10;
6734 		break;
6735 	case DRM_EDID_DIGITAL_DEPTH_12:
6736 		info->bpc = 12;
6737 		break;
6738 	case DRM_EDID_DIGITAL_DEPTH_14:
6739 		info->bpc = 14;
6740 		break;
6741 	case DRM_EDID_DIGITAL_DEPTH_16:
6742 		info->bpc = 16;
6743 		break;
6744 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6745 	default:
6746 		info->bpc = 0;
6747 		break;
6748 	}
6749 
6750 	drm_dbg_kms(connector->dev,
6751 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6752 		    connector->base.id, connector->name, info->bpc);
6753 
6754 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6755 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6756 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6757 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6758 
6759 	drm_update_mso(connector, drm_edid);
6760 
6761 out:
6762 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6763 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6764 			    connector->base.id, connector->name,
6765 			    info->non_desktop ? " (redundant quirk)" : "");
6766 		info->non_desktop = true;
6767 	}
6768 
6769 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6770 		info->max_dsc_bpp = 15;
6771 
6772 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6773 		info->bpc = 6;
6774 
6775 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6776 		info->bpc = 8;
6777 
6778 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6779 		info->bpc = 10;
6780 
6781 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6782 		info->bpc = 12;
6783 
6784 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6785 	drm_edid_to_eld(connector, drm_edid);
6786 }
6787 
6788 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6789 							    struct displayid_detailed_timings_1 *timings,
6790 							    bool type_7)
6791 {
6792 	struct drm_display_mode *mode;
6793 	unsigned pixel_clock = (timings->pixel_clock[0] |
6794 				(timings->pixel_clock[1] << 8) |
6795 				(timings->pixel_clock[2] << 16)) + 1;
6796 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6797 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6798 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6799 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6800 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6801 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6802 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6803 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6804 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6805 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6806 
6807 	mode = drm_mode_create(dev);
6808 	if (!mode)
6809 		return NULL;
6810 
6811 	/* resolution is kHz for type VII, and 10 kHz for type I */
6812 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6813 	mode->hdisplay = hactive;
6814 	mode->hsync_start = mode->hdisplay + hsync;
6815 	mode->hsync_end = mode->hsync_start + hsync_width;
6816 	mode->htotal = mode->hdisplay + hblank;
6817 
6818 	mode->vdisplay = vactive;
6819 	mode->vsync_start = mode->vdisplay + vsync;
6820 	mode->vsync_end = mode->vsync_start + vsync_width;
6821 	mode->vtotal = mode->vdisplay + vblank;
6822 
6823 	mode->flags = 0;
6824 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6825 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6826 	mode->type = DRM_MODE_TYPE_DRIVER;
6827 
6828 	if (timings->flags & 0x80)
6829 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6830 	drm_mode_set_name(mode);
6831 
6832 	return mode;
6833 }
6834 
6835 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6836 					  const struct displayid_block *block)
6837 {
6838 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6839 	int i;
6840 	int num_timings;
6841 	struct drm_display_mode *newmode;
6842 	int num_modes = 0;
6843 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6844 	/* blocks must be multiple of 20 bytes length */
6845 	if (block->num_bytes % 20)
6846 		return 0;
6847 
6848 	num_timings = block->num_bytes / 20;
6849 	for (i = 0; i < num_timings; i++) {
6850 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6851 
6852 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6853 		if (!newmode)
6854 			continue;
6855 
6856 		drm_mode_probed_add(connector, newmode);
6857 		num_modes++;
6858 	}
6859 	return num_modes;
6860 }
6861 
6862 static int add_displayid_detailed_modes(struct drm_connector *connector,
6863 					const struct drm_edid *drm_edid)
6864 {
6865 	const struct displayid_block *block;
6866 	struct displayid_iter iter;
6867 	int num_modes = 0;
6868 
6869 	displayid_iter_edid_begin(drm_edid, &iter);
6870 	displayid_iter_for_each(block, &iter) {
6871 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6872 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6873 			num_modes += add_displayid_detailed_1_modes(connector, block);
6874 	}
6875 	displayid_iter_end(&iter);
6876 
6877 	return num_modes;
6878 }
6879 
6880 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6881 					 const struct drm_edid *drm_edid)
6882 {
6883 	const struct drm_display_info *info = &connector->display_info;
6884 	int num_modes = 0;
6885 
6886 	if (!drm_edid)
6887 		return 0;
6888 
6889 	/*
6890 	 * EDID spec says modes should be preferred in this order:
6891 	 * - preferred detailed mode
6892 	 * - other detailed modes from base block
6893 	 * - detailed modes from extension blocks
6894 	 * - CVT 3-byte code modes
6895 	 * - standard timing codes
6896 	 * - established timing codes
6897 	 * - modes inferred from GTF or CVT range information
6898 	 *
6899 	 * We get this pretty much right.
6900 	 *
6901 	 * XXX order for additional mode types in extension blocks?
6902 	 */
6903 	num_modes += add_detailed_modes(connector, drm_edid);
6904 	num_modes += add_cvt_modes(connector, drm_edid);
6905 	num_modes += add_standard_modes(connector, drm_edid);
6906 	num_modes += add_established_modes(connector, drm_edid);
6907 	num_modes += add_cea_modes(connector, drm_edid);
6908 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6909 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6910 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6911 		num_modes += add_inferred_modes(connector, drm_edid);
6912 
6913 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6914 		edid_fixup_preferred(connector);
6915 
6916 	return num_modes;
6917 }
6918 
6919 static void _drm_update_tile_info(struct drm_connector *connector,
6920 				  const struct drm_edid *drm_edid);
6921 
6922 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6923 					       const struct drm_edid *drm_edid)
6924 {
6925 	struct drm_device *dev = connector->dev;
6926 	int ret;
6927 
6928 	if (connector->edid_blob_ptr) {
6929 		const void *old_edid = connector->edid_blob_ptr->data;
6930 		size_t old_edid_size = connector->edid_blob_ptr->length;
6931 
6932 		if (old_edid && !drm_edid_eq(drm_edid, old_edid, old_edid_size)) {
6933 			connector->epoch_counter++;
6934 			drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6935 				    connector->base.id, connector->name,
6936 				    connector->epoch_counter);
6937 		}
6938 	}
6939 
6940 	ret = drm_property_replace_global_blob(dev,
6941 					       &connector->edid_blob_ptr,
6942 					       drm_edid ? drm_edid->size : 0,
6943 					       drm_edid ? drm_edid->edid : NULL,
6944 					       &connector->base,
6945 					       dev->mode_config.edid_property);
6946 	if (ret) {
6947 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6948 			    connector->base.id, connector->name, ret);
6949 		goto out;
6950 	}
6951 
6952 	ret = drm_object_property_set_value(&connector->base,
6953 					    dev->mode_config.non_desktop_property,
6954 					    connector->display_info.non_desktop);
6955 	if (ret) {
6956 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6957 			    connector->base.id, connector->name, ret);
6958 		goto out;
6959 	}
6960 
6961 	ret = drm_connector_set_tile_property(connector);
6962 	if (ret) {
6963 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6964 			    connector->base.id, connector->name, ret);
6965 		goto out;
6966 	}
6967 
6968 out:
6969 	return ret;
6970 }
6971 
6972 /**
6973  * drm_edid_connector_update - Update connector information from EDID
6974  * @connector: Connector
6975  * @drm_edid: EDID
6976  *
6977  * Update the connector display info, ELD, HDR metadata, relevant properties,
6978  * etc. from the passed in EDID.
6979  *
6980  * If EDID is NULL, reset the information.
6981  *
6982  * Must be called before calling drm_edid_connector_add_modes().
6983  *
6984  * Return: 0 on success, negative error on errors.
6985  */
6986 int drm_edid_connector_update(struct drm_connector *connector,
6987 			      const struct drm_edid *drm_edid)
6988 {
6989 	update_display_info(connector, drm_edid);
6990 
6991 	_drm_update_tile_info(connector, drm_edid);
6992 
6993 	return _drm_edid_connector_property_update(connector, drm_edid);
6994 }
6995 EXPORT_SYMBOL(drm_edid_connector_update);
6996 
6997 /**
6998  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6999  * @connector: Connector
7000  *
7001  * Add the modes from the previously updated EDID property to the connector
7002  * probed modes list.
7003  *
7004  * drm_edid_connector_update() must have been called before this to update the
7005  * EDID property.
7006  *
7007  * Return: The number of modes added, or 0 if we couldn't find any.
7008  */
7009 int drm_edid_connector_add_modes(struct drm_connector *connector)
7010 {
7011 	const struct drm_edid *drm_edid = NULL;
7012 	int count;
7013 
7014 	if (connector->edid_blob_ptr)
7015 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
7016 					  connector->edid_blob_ptr->length);
7017 
7018 	count = _drm_edid_connector_add_modes(connector, drm_edid);
7019 
7020 	drm_edid_free(drm_edid);
7021 
7022 	return count;
7023 }
7024 EXPORT_SYMBOL(drm_edid_connector_add_modes);
7025 
7026 /**
7027  * drm_connector_update_edid_property - update the edid property of a connector
7028  * @connector: drm connector
7029  * @edid: new value of the edid property
7030  *
7031  * This function creates a new blob modeset object and assigns its id to the
7032  * connector's edid property.
7033  * Since we also parse tile information from EDID's displayID block, we also
7034  * set the connector's tile property here. See drm_connector_set_tile_property()
7035  * for more details.
7036  *
7037  * This function is deprecated. Use drm_edid_connector_update() instead.
7038  *
7039  * Returns:
7040  * Zero on success, negative errno on failure.
7041  */
7042 int drm_connector_update_edid_property(struct drm_connector *connector,
7043 				       const struct edid *edid)
7044 {
7045 	struct drm_edid drm_edid;
7046 
7047 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
7048 }
7049 EXPORT_SYMBOL(drm_connector_update_edid_property);
7050 
7051 /**
7052  * drm_add_edid_modes - add modes from EDID data, if available
7053  * @connector: connector we're probing
7054  * @edid: EDID data
7055  *
7056  * Add the specified modes to the connector's mode list. Also fills out the
7057  * &drm_display_info structure and ELD in @connector with any information which
7058  * can be derived from the edid.
7059  *
7060  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
7061  *
7062  * Return: The number of modes added or 0 if we couldn't find any.
7063  */
7064 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
7065 {
7066 	struct drm_edid _drm_edid;
7067 	const struct drm_edid *drm_edid;
7068 
7069 	if (edid && !drm_edid_is_valid(edid)) {
7070 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
7071 			 connector->base.id, connector->name);
7072 		edid = NULL;
7073 	}
7074 
7075 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
7076 
7077 	update_display_info(connector, drm_edid);
7078 
7079 	return _drm_edid_connector_add_modes(connector, drm_edid);
7080 }
7081 EXPORT_SYMBOL(drm_add_edid_modes);
7082 
7083 /**
7084  * drm_add_modes_noedid - add modes for the connectors without EDID
7085  * @connector: connector we're probing
7086  * @hdisplay: the horizontal display limit
7087  * @vdisplay: the vertical display limit
7088  *
7089  * Add the specified modes to the connector's mode list. Only when the
7090  * hdisplay/vdisplay is not beyond the given limit, it will be added.
7091  *
7092  * Return: The number of modes added or 0 if we couldn't find any.
7093  */
7094 int drm_add_modes_noedid(struct drm_connector *connector,
7095 			int hdisplay, int vdisplay)
7096 {
7097 	int i, count, num_modes = 0;
7098 	struct drm_display_mode *mode;
7099 	struct drm_device *dev = connector->dev;
7100 
7101 	count = ARRAY_SIZE(drm_dmt_modes);
7102 	if (hdisplay < 0)
7103 		hdisplay = 0;
7104 	if (vdisplay < 0)
7105 		vdisplay = 0;
7106 
7107 	for (i = 0; i < count; i++) {
7108 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
7109 
7110 		if (hdisplay && vdisplay) {
7111 			/*
7112 			 * Only when two are valid, they will be used to check
7113 			 * whether the mode should be added to the mode list of
7114 			 * the connector.
7115 			 */
7116 			if (ptr->hdisplay > hdisplay ||
7117 					ptr->vdisplay > vdisplay)
7118 				continue;
7119 		}
7120 		if (drm_mode_vrefresh(ptr) > 61)
7121 			continue;
7122 		mode = drm_mode_duplicate(dev, ptr);
7123 		if (mode) {
7124 			drm_mode_probed_add(connector, mode);
7125 			num_modes++;
7126 		}
7127 	}
7128 	return num_modes;
7129 }
7130 EXPORT_SYMBOL(drm_add_modes_noedid);
7131 
7132 static bool is_hdmi2_sink(const struct drm_connector *connector)
7133 {
7134 	/*
7135 	 * FIXME: sil-sii8620 doesn't have a connector around when
7136 	 * we need one, so we have to be prepared for a NULL connector.
7137 	 */
7138 	if (!connector)
7139 		return true;
7140 
7141 	return connector->display_info.hdmi.scdc.supported ||
7142 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7143 }
7144 
7145 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7146 			    const struct drm_display_mode *mode)
7147 {
7148 	bool has_hdmi_infoframe = connector ?
7149 		connector->display_info.has_hdmi_infoframe : false;
7150 
7151 	if (!has_hdmi_infoframe)
7152 		return 0;
7153 
7154 	/* No HDMI VIC when signalling 3D video format */
7155 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7156 		return 0;
7157 
7158 	return drm_match_hdmi_mode(mode);
7159 }
7160 
7161 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7162 			   const struct drm_display_mode *mode)
7163 {
7164 	/*
7165 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7166 	 * we should send its VIC in vendor infoframes, else send the
7167 	 * VIC in AVI infoframes. Lets check if this mode is present in
7168 	 * HDMI 1.4b 4K modes
7169 	 */
7170 	if (drm_mode_hdmi_vic(connector, mode))
7171 		return 0;
7172 
7173 	return drm_match_cea_mode(mode);
7174 }
7175 
7176 /*
7177  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7178  * conform to HDMI 1.4.
7179  *
7180  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7181  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7182  *
7183  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7184  * version.
7185  */
7186 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7187 {
7188 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7189 	    !cta_vdb_has_vic(connector, vic))
7190 		return 0;
7191 
7192 	return vic;
7193 }
7194 
7195 /**
7196  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7197  *                                              data from a DRM display mode
7198  * @frame: HDMI AVI infoframe
7199  * @connector: the connector
7200  * @mode: DRM display mode
7201  *
7202  * Return: 0 on success or a negative error code on failure.
7203  */
7204 int
7205 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7206 					 const struct drm_connector *connector,
7207 					 const struct drm_display_mode *mode)
7208 {
7209 	enum hdmi_picture_aspect picture_aspect;
7210 	u8 vic, hdmi_vic;
7211 
7212 	if (!frame || !mode)
7213 		return -EINVAL;
7214 
7215 	hdmi_avi_infoframe_init(frame);
7216 
7217 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7218 		frame->pixel_repeat = 1;
7219 
7220 	vic = drm_mode_cea_vic(connector, mode);
7221 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7222 
7223 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7224 
7225 	/*
7226 	 * As some drivers don't support atomic, we can't use connector state.
7227 	 * So just initialize the frame with default values, just the same way
7228 	 * as it's done with other properties here.
7229 	 */
7230 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7231 	frame->itc = 0;
7232 
7233 	/*
7234 	 * Populate picture aspect ratio from either
7235 	 * user input (if specified) or from the CEA/HDMI mode lists.
7236 	 */
7237 	picture_aspect = mode->picture_aspect_ratio;
7238 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7239 		if (vic)
7240 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7241 		else if (hdmi_vic)
7242 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7243 	}
7244 
7245 	/*
7246 	 * The infoframe can't convey anything but none, 4:3
7247 	 * and 16:9, so if the user has asked for anything else
7248 	 * we can only satisfy it by specifying the right VIC.
7249 	 */
7250 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7251 		if (vic) {
7252 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7253 				return -EINVAL;
7254 		} else if (hdmi_vic) {
7255 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7256 				return -EINVAL;
7257 		} else {
7258 			return -EINVAL;
7259 		}
7260 
7261 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7262 	}
7263 
7264 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7265 	frame->picture_aspect = picture_aspect;
7266 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7267 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7268 
7269 	return 0;
7270 }
7271 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7272 
7273 /**
7274  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7275  *                                        quantization range information
7276  * @frame: HDMI AVI infoframe
7277  * @connector: the connector
7278  * @mode: DRM display mode
7279  * @rgb_quant_range: RGB quantization range (Q)
7280  */
7281 void
7282 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7283 				   const struct drm_connector *connector,
7284 				   const struct drm_display_mode *mode,
7285 				   enum hdmi_quantization_range rgb_quant_range)
7286 {
7287 	const struct drm_display_info *info = &connector->display_info;
7288 
7289 	/*
7290 	 * CEA-861:
7291 	 * "A Source shall not send a non-zero Q value that does not correspond
7292 	 *  to the default RGB Quantization Range for the transmitted Picture
7293 	 *  unless the Sink indicates support for the Q bit in a Video
7294 	 *  Capabilities Data Block."
7295 	 *
7296 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7297 	 * default RGB quantization range for the mode, even when QS=0.
7298 	 */
7299 	if (info->rgb_quant_range_selectable ||
7300 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7301 		frame->quantization_range = rgb_quant_range;
7302 	else
7303 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7304 
7305 	/*
7306 	 * CEA-861-F:
7307 	 * "When transmitting any RGB colorimetry, the Source should set the
7308 	 *  YQ-field to match the RGB Quantization Range being transmitted
7309 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7310 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7311 	 *
7312 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7313 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7314 	 * good way to tell which version of CEA-861 the sink supports, so
7315 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7316 	 * on CEA-861-F.
7317 	 */
7318 	if (!is_hdmi2_sink(connector) ||
7319 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7320 		frame->ycc_quantization_range =
7321 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7322 	else
7323 		frame->ycc_quantization_range =
7324 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7325 }
7326 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7327 
7328 static enum hdmi_3d_structure
7329 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7330 {
7331 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7332 
7333 	switch (layout) {
7334 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7335 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7336 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7337 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7338 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7339 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7340 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7341 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7342 	case DRM_MODE_FLAG_3D_L_DEPTH:
7343 		return HDMI_3D_STRUCTURE_L_DEPTH;
7344 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7345 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7346 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7347 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7348 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7349 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7350 	default:
7351 		return HDMI_3D_STRUCTURE_INVALID;
7352 	}
7353 }
7354 
7355 /**
7356  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7357  * data from a DRM display mode
7358  * @frame: HDMI vendor infoframe
7359  * @connector: the connector
7360  * @mode: DRM display mode
7361  *
7362  * Note that there's is a need to send HDMI vendor infoframes only when using a
7363  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7364  * function will return -EINVAL, error that can be safely ignored.
7365  *
7366  * Return: 0 on success or a negative error code on failure.
7367  */
7368 int
7369 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7370 					    const struct drm_connector *connector,
7371 					    const struct drm_display_mode *mode)
7372 {
7373 	/*
7374 	 * FIXME: sil-sii8620 doesn't have a connector around when
7375 	 * we need one, so we have to be prepared for a NULL connector.
7376 	 */
7377 	bool has_hdmi_infoframe = connector ?
7378 		connector->display_info.has_hdmi_infoframe : false;
7379 	int err;
7380 
7381 	if (!frame || !mode)
7382 		return -EINVAL;
7383 
7384 	if (!has_hdmi_infoframe)
7385 		return -EINVAL;
7386 
7387 	err = hdmi_vendor_infoframe_init(frame);
7388 	if (err < 0)
7389 		return err;
7390 
7391 	/*
7392 	 * Even if it's not absolutely necessary to send the infoframe
7393 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7394 	 * know that the sink can handle it. This is based on a
7395 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7396 	 * have trouble realizing that they should switch from 3D to 2D
7397 	 * mode if the source simply stops sending the infoframe when
7398 	 * it wants to switch from 3D to 2D.
7399 	 */
7400 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7401 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7402 
7403 	return 0;
7404 }
7405 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7406 
7407 static void drm_parse_tiled_block(struct drm_connector *connector,
7408 				  const struct displayid_block *block)
7409 {
7410 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7411 	u16 w, h;
7412 	u8 tile_v_loc, tile_h_loc;
7413 	u8 num_v_tile, num_h_tile;
7414 	struct drm_tile_group *tg;
7415 
7416 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7417 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7418 
7419 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7420 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7421 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7422 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7423 
7424 	connector->has_tile = true;
7425 	if (tile->tile_cap & 0x80)
7426 		connector->tile_is_single_monitor = true;
7427 
7428 	connector->num_h_tile = num_h_tile + 1;
7429 	connector->num_v_tile = num_v_tile + 1;
7430 	connector->tile_h_loc = tile_h_loc;
7431 	connector->tile_v_loc = tile_v_loc;
7432 	connector->tile_h_size = w + 1;
7433 	connector->tile_v_size = h + 1;
7434 
7435 	drm_dbg_kms(connector->dev,
7436 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7437 		    connector->base.id, connector->name,
7438 		    tile->tile_cap,
7439 		    connector->tile_h_size, connector->tile_v_size,
7440 		    connector->num_h_tile, connector->num_v_tile,
7441 		    connector->tile_h_loc, connector->tile_v_loc,
7442 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7443 
7444 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7445 	if (!tg)
7446 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7447 	if (!tg)
7448 		return;
7449 
7450 	if (connector->tile_group != tg) {
7451 		/* if we haven't got a pointer,
7452 		   take the reference, drop ref to old tile group */
7453 		if (connector->tile_group)
7454 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7455 		connector->tile_group = tg;
7456 	} else {
7457 		/* if same tile group, then release the ref we just took. */
7458 		drm_mode_put_tile_group(connector->dev, tg);
7459 	}
7460 }
7461 
7462 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7463 				     const struct displayid_block *block)
7464 {
7465 	return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 &&
7466 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7467 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7468 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7469 }
7470 
7471 static void _drm_update_tile_info(struct drm_connector *connector,
7472 				  const struct drm_edid *drm_edid)
7473 {
7474 	const struct displayid_block *block;
7475 	struct displayid_iter iter;
7476 
7477 	connector->has_tile = false;
7478 
7479 	displayid_iter_edid_begin(drm_edid, &iter);
7480 	displayid_iter_for_each(block, &iter) {
7481 		if (displayid_is_tiled_block(&iter, block))
7482 			drm_parse_tiled_block(connector, block);
7483 	}
7484 	displayid_iter_end(&iter);
7485 
7486 	if (!connector->has_tile && connector->tile_group) {
7487 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7488 		connector->tile_group = NULL;
7489 	}
7490 }
7491 
7492 /**
7493  * drm_edid_is_digital - is digital?
7494  * @drm_edid: The EDID
7495  *
7496  * Return true if input is digital.
7497  */
7498 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7499 {
7500 	return drm_edid && drm_edid->edid &&
7501 		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7502 }
7503 EXPORT_SYMBOL(drm_edid_is_digital);
7504