xref: /linux/drivers/gpu/drm/drm_drv.c (revision f5bd9d528ebac41a31919aa41f1a99eccb8917c8)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/bitops.h>
30 #include <linux/cgroup_dmem.h>
31 #include <linux/debugfs.h>
32 #include <linux/fs.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mount.h>
36 #include <linux/pseudo_fs.h>
37 #include <linux/slab.h>
38 #include <linux/sprintf.h>
39 #include <linux/srcu.h>
40 #include <linux/xarray.h>
41 
42 #include <drm/drm_accel.h>
43 #include <drm/drm_cache.h>
44 #include <drm/drm_client_event.h>
45 #include <drm/drm_color_mgmt.h>
46 #include <drm/drm_drv.h>
47 #include <drm/drm_file.h>
48 #include <drm/drm_managed.h>
49 #include <drm/drm_mode_object.h>
50 #include <drm/drm_panic.h>
51 #include <drm/drm_print.h>
52 #include <drm/drm_privacy_screen_machine.h>
53 
54 #include "drm_crtc_internal.h"
55 #include "drm_internal.h"
56 
57 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
58 MODULE_DESCRIPTION("DRM shared core routines");
59 MODULE_LICENSE("GPL and additional rights");
60 
61 DEFINE_XARRAY_ALLOC(drm_minors_xa);
62 
63 /*
64  * If the drm core fails to init for whatever reason,
65  * we should prevent any drivers from registering with it.
66  * It's best to check this at drm_dev_init(), as some drivers
67  * prefer to embed struct drm_device into their own device
68  * structure and call drm_dev_init() themselves.
69  */
70 static bool drm_core_init_complete;
71 
72 static struct dentry *drm_debugfs_root;
73 
74 DEFINE_STATIC_SRCU(drm_unplug_srcu);
75 
76 /*
77  * DRM Minors
78  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
79  * of them is represented by a drm_minor object. Depending on the capabilities
80  * of the device-driver, different interfaces are registered.
81  *
82  * Minors can be accessed via dev->$minor_name. This pointer is either
83  * NULL or a valid drm_minor pointer and stays valid as long as the device is
84  * valid. This means, DRM minors have the same life-time as the underlying
85  * device. However, this doesn't mean that the minor is active. Minors are
86  * registered and unregistered dynamically according to device-state.
87  */
88 
89 static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
90 {
91 	if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
92 		return &drm_minors_xa;
93 #if IS_ENABLED(CONFIG_DRM_ACCEL)
94 	else if (type == DRM_MINOR_ACCEL)
95 		return &accel_minors_xa;
96 #endif
97 	else
98 		return ERR_PTR(-EOPNOTSUPP);
99 }
100 
101 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
102 					     enum drm_minor_type type)
103 {
104 	switch (type) {
105 	case DRM_MINOR_PRIMARY:
106 		return &dev->primary;
107 	case DRM_MINOR_RENDER:
108 		return &dev->render;
109 	case DRM_MINOR_ACCEL:
110 		return &dev->accel;
111 	default:
112 		BUG();
113 	}
114 }
115 
116 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
117 {
118 	struct drm_minor *minor = data;
119 
120 	WARN_ON(dev != minor->dev);
121 
122 	put_device(minor->kdev);
123 
124 	xa_erase(drm_minor_get_xa(minor->type), minor->index);
125 }
126 
127 /*
128  * DRM used to support 64 devices, for backwards compatibility we need to maintain the
129  * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
130  * and 128-191 are render nodes.
131  * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
132  * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
133  * range.
134  */
135 #define DRM_MINOR_LIMIT(t) ({ \
136 	typeof(t) _t = (t); \
137 	_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
138 })
139 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
140 
141 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
142 {
143 	struct drm_minor *minor;
144 	int r;
145 
146 	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
147 	if (!minor)
148 		return -ENOMEM;
149 
150 	minor->type = type;
151 	minor->dev = dev;
152 
153 	r = xa_alloc(drm_minor_get_xa(type), &minor->index,
154 		     NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
155 	if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
156 		r = xa_alloc(&drm_minors_xa, &minor->index,
157 			     NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
158 	if (r < 0)
159 		return r;
160 
161 	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
162 	if (r)
163 		return r;
164 
165 	minor->kdev = drm_sysfs_minor_alloc(minor);
166 	if (IS_ERR(minor->kdev))
167 		return PTR_ERR(minor->kdev);
168 
169 	*drm_minor_get_slot(dev, type) = minor;
170 	return 0;
171 }
172 
173 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
174 {
175 	struct drm_minor *minor;
176 	void *entry;
177 	int ret;
178 
179 	DRM_DEBUG("\n");
180 
181 	minor = *drm_minor_get_slot(dev, type);
182 	if (!minor)
183 		return 0;
184 
185 	if (minor->type != DRM_MINOR_ACCEL) {
186 		ret = drm_debugfs_register(minor, minor->index,
187 					   drm_debugfs_root);
188 		if (ret) {
189 			DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
190 			goto err_debugfs;
191 		}
192 	}
193 
194 	ret = device_add(minor->kdev);
195 	if (ret)
196 		goto err_debugfs;
197 
198 	/* replace NULL with @minor so lookups will succeed from now on */
199 	entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
200 	if (xa_is_err(entry)) {
201 		ret = xa_err(entry);
202 		goto err_debugfs;
203 	}
204 	WARN_ON(entry);
205 
206 	DRM_DEBUG("new minor registered %d\n", minor->index);
207 	return 0;
208 
209 err_debugfs:
210 	drm_debugfs_unregister(minor);
211 	return ret;
212 }
213 
214 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
215 {
216 	struct drm_minor *minor;
217 
218 	minor = *drm_minor_get_slot(dev, type);
219 	if (!minor || !device_is_registered(minor->kdev))
220 		return;
221 
222 	/* replace @minor with NULL so lookups will fail from now on */
223 	xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
224 
225 	device_del(minor->kdev);
226 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
227 	drm_debugfs_unregister(minor);
228 }
229 
230 /*
231  * Looks up the given minor-ID and returns the respective DRM-minor object. The
232  * refence-count of the underlying device is increased so you must release this
233  * object with drm_minor_release().
234  *
235  * As long as you hold this minor, it is guaranteed that the object and the
236  * minor->dev pointer will stay valid! However, the device may get unplugged and
237  * unregistered while you hold the minor.
238  */
239 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
240 {
241 	struct drm_minor *minor;
242 
243 	xa_lock(minor_xa);
244 	minor = xa_load(minor_xa, minor_id);
245 	if (minor)
246 		drm_dev_get(minor->dev);
247 	xa_unlock(minor_xa);
248 
249 	if (!minor) {
250 		return ERR_PTR(-ENODEV);
251 	} else if (drm_dev_is_unplugged(minor->dev)) {
252 		drm_dev_put(minor->dev);
253 		return ERR_PTR(-ENODEV);
254 	}
255 
256 	return minor;
257 }
258 
259 void drm_minor_release(struct drm_minor *minor)
260 {
261 	drm_dev_put(minor->dev);
262 }
263 
264 /**
265  * DOC: driver instance overview
266  *
267  * A device instance for a drm driver is represented by &struct drm_device. This
268  * is allocated and initialized with devm_drm_dev_alloc(), usually from
269  * bus-specific ->probe() callbacks implemented by the driver. The driver then
270  * needs to initialize all the various subsystems for the drm device like memory
271  * management, vblank handling, modesetting support and initial output
272  * configuration plus obviously initialize all the corresponding hardware bits.
273  * Finally when everything is up and running and ready for userspace the device
274  * instance can be published using drm_dev_register().
275  *
276  * There is also deprecated support for initializing device instances using
277  * bus-specific helpers and the &drm_driver.load callback. But due to
278  * backwards-compatibility needs the device instance have to be published too
279  * early, which requires unpretty global locking to make safe and is therefore
280  * only support for existing drivers not yet converted to the new scheme.
281  *
282  * When cleaning up a device instance everything needs to be done in reverse:
283  * First unpublish the device instance with drm_dev_unregister(). Then clean up
284  * any other resources allocated at device initialization and drop the driver's
285  * reference to &drm_device using drm_dev_put().
286  *
287  * Note that any allocation or resource which is visible to userspace must be
288  * released only when the final drm_dev_put() is called, and not when the
289  * driver is unbound from the underlying physical struct &device. Best to use
290  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
291  * related functions.
292  *
293  * devres managed resources like devm_kmalloc() can only be used for resources
294  * directly related to the underlying hardware device, and only used in code
295  * paths fully protected by drm_dev_enter() and drm_dev_exit().
296  *
297  * Display driver example
298  * ~~~~~~~~~~~~~~~~~~~~~~
299  *
300  * The following example shows a typical structure of a DRM display driver.
301  * The example focus on the probe() function and the other functions that is
302  * almost always present and serves as a demonstration of devm_drm_dev_alloc().
303  *
304  * .. code-block:: c
305  *
306  *	struct driver_device {
307  *		struct drm_device drm;
308  *		void *userspace_facing;
309  *		struct clk *pclk;
310  *	};
311  *
312  *	static const struct drm_driver driver_drm_driver = {
313  *		[...]
314  *	};
315  *
316  *	static int driver_probe(struct platform_device *pdev)
317  *	{
318  *		struct driver_device *priv;
319  *		struct drm_device *drm;
320  *		int ret;
321  *
322  *		priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
323  *					  struct driver_device, drm);
324  *		if (IS_ERR(priv))
325  *			return PTR_ERR(priv);
326  *		drm = &priv->drm;
327  *
328  *		ret = drmm_mode_config_init(drm);
329  *		if (ret)
330  *			return ret;
331  *
332  *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
333  *		if (!priv->userspace_facing)
334  *			return -ENOMEM;
335  *
336  *		priv->pclk = devm_clk_get(dev, "PCLK");
337  *		if (IS_ERR(priv->pclk))
338  *			return PTR_ERR(priv->pclk);
339  *
340  *		// Further setup, display pipeline etc
341  *
342  *		platform_set_drvdata(pdev, drm);
343  *
344  *		drm_mode_config_reset(drm);
345  *
346  *		ret = drm_dev_register(drm);
347  *		if (ret)
348  *			return ret;
349  *
350  *		drm_fbdev_{...}_setup(drm, 32);
351  *
352  *		return 0;
353  *	}
354  *
355  *	// This function is called before the devm_ resources are released
356  *	static int driver_remove(struct platform_device *pdev)
357  *	{
358  *		struct drm_device *drm = platform_get_drvdata(pdev);
359  *
360  *		drm_dev_unregister(drm);
361  *		drm_atomic_helper_shutdown(drm)
362  *
363  *		return 0;
364  *	}
365  *
366  *	// This function is called on kernel restart and shutdown
367  *	static void driver_shutdown(struct platform_device *pdev)
368  *	{
369  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
370  *	}
371  *
372  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
373  *	{
374  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
375  *	}
376  *
377  *	static int __maybe_unused driver_pm_resume(struct device *dev)
378  *	{
379  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
380  *
381  *		return 0;
382  *	}
383  *
384  *	static const struct dev_pm_ops driver_pm_ops = {
385  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
386  *	};
387  *
388  *	static struct platform_driver driver_driver = {
389  *		.driver = {
390  *			[...]
391  *			.pm = &driver_pm_ops,
392  *		},
393  *		.probe = driver_probe,
394  *		.remove = driver_remove,
395  *		.shutdown = driver_shutdown,
396  *	};
397  *	module_platform_driver(driver_driver);
398  *
399  * Drivers that want to support device unplugging (USB, DT overlay unload) should
400  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
401  * regions that is accessing device resources to prevent use after they're
402  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
403  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
404  * drm_atomic_helper_shutdown() is called. This means that if the disable code
405  * paths are protected, they will not run on regular driver module unload,
406  * possibly leaving the hardware enabled.
407  */
408 
409 /**
410  * drm_put_dev - Unregister and release a DRM device
411  * @dev: DRM device
412  *
413  * Called at module unload time or when a PCI device is unplugged.
414  *
415  * Cleans up all DRM device, calling drm_lastclose().
416  *
417  * Note: Use of this function is deprecated. It will eventually go away
418  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
419  * instead to make sure that the device isn't userspace accessible any more
420  * while teardown is in progress, ensuring that userspace can't access an
421  * inconsistent state.
422  */
423 void drm_put_dev(struct drm_device *dev)
424 {
425 	DRM_DEBUG("\n");
426 
427 	if (!dev) {
428 		DRM_ERROR("cleanup called no dev\n");
429 		return;
430 	}
431 
432 	drm_dev_unregister(dev);
433 	drm_dev_put(dev);
434 }
435 EXPORT_SYMBOL(drm_put_dev);
436 
437 /**
438  * drm_dev_enter - Enter device critical section
439  * @dev: DRM device
440  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
441  *
442  * This function marks and protects the beginning of a section that should not
443  * be entered after the device has been unplugged. The section end is marked
444  * with drm_dev_exit(). Calls to this function can be nested.
445  *
446  * Returns:
447  * True if it is OK to enter the section, false otherwise.
448  */
449 bool drm_dev_enter(struct drm_device *dev, int *idx)
450 {
451 	*idx = srcu_read_lock(&drm_unplug_srcu);
452 
453 	if (dev->unplugged) {
454 		srcu_read_unlock(&drm_unplug_srcu, *idx);
455 		return false;
456 	}
457 
458 	return true;
459 }
460 EXPORT_SYMBOL(drm_dev_enter);
461 
462 /**
463  * drm_dev_exit - Exit device critical section
464  * @idx: index returned from drm_dev_enter()
465  *
466  * This function marks the end of a section that should not be entered after
467  * the device has been unplugged.
468  */
469 void drm_dev_exit(int idx)
470 {
471 	srcu_read_unlock(&drm_unplug_srcu, idx);
472 }
473 EXPORT_SYMBOL(drm_dev_exit);
474 
475 /**
476  * drm_dev_unplug - unplug a DRM device
477  * @dev: DRM device
478  *
479  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
480  * userspace operations. Entry-points can use drm_dev_enter() and
481  * drm_dev_exit() to protect device resources in a race free manner. This
482  * essentially unregisters the device like drm_dev_unregister(), but can be
483  * called while there are still open users of @dev.
484  */
485 void drm_dev_unplug(struct drm_device *dev)
486 {
487 	/*
488 	 * After synchronizing any critical read section is guaranteed to see
489 	 * the new value of ->unplugged, and any critical section which might
490 	 * still have seen the old value of ->unplugged is guaranteed to have
491 	 * finished.
492 	 */
493 	dev->unplugged = true;
494 	synchronize_srcu(&drm_unplug_srcu);
495 
496 	drm_dev_unregister(dev);
497 
498 	/* Clear all CPU mappings pointing to this device */
499 	unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
500 }
501 EXPORT_SYMBOL(drm_dev_unplug);
502 
503 /**
504  * drm_dev_set_dma_dev - set the DMA device for a DRM device
505  * @dev: DRM device
506  * @dma_dev: DMA device or NULL
507  *
508  * Sets the DMA device of the given DRM device. Only required if
509  * the DMA device is different from the DRM device's parent. After
510  * calling this function, the DRM device holds a reference on
511  * @dma_dev. Pass NULL to clear the DMA device.
512  */
513 void drm_dev_set_dma_dev(struct drm_device *dev, struct device *dma_dev)
514 {
515 	dma_dev = get_device(dma_dev);
516 
517 	put_device(dev->dma_dev);
518 	dev->dma_dev = dma_dev;
519 }
520 EXPORT_SYMBOL(drm_dev_set_dma_dev);
521 
522 /*
523  * Available recovery methods for wedged device. To be sent along with device
524  * wedged uevent.
525  */
526 static const char *drm_get_wedge_recovery(unsigned int opt)
527 {
528 	switch (BIT(opt)) {
529 	case DRM_WEDGE_RECOVERY_NONE:
530 		return "none";
531 	case DRM_WEDGE_RECOVERY_REBIND:
532 		return "rebind";
533 	case DRM_WEDGE_RECOVERY_BUS_RESET:
534 		return "bus-reset";
535 	default:
536 		return NULL;
537 	}
538 }
539 
540 /**
541  * drm_dev_wedged_event - generate a device wedged uevent
542  * @dev: DRM device
543  * @method: method(s) to be used for recovery
544  *
545  * This generates a device wedged uevent for the DRM device specified by @dev.
546  * Recovery @method\(s) of choice will be sent in the uevent environment as
547  * ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects.
548  * If caller is unsure about recovery or @method is unknown (0),
549  * ``WEDGED=unknown`` will be sent instead.
550  *
551  * Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more
552  * details.
553  *
554  * Returns: 0 on success, negative error code otherwise.
555  */
556 int drm_dev_wedged_event(struct drm_device *dev, unsigned long method)
557 {
558 	const char *recovery = NULL;
559 	unsigned int len, opt;
560 	/* Event string length up to 28+ characters with available methods */
561 	char event_string[32];
562 	char *envp[] = { event_string, NULL };
563 
564 	len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED=");
565 
566 	for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) {
567 		recovery = drm_get_wedge_recovery(opt);
568 		if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt))
569 			break;
570 
571 		len += scnprintf(event_string + len, sizeof(event_string), "%s,", recovery);
572 	}
573 
574 	if (recovery)
575 		/* Get rid of trailing comma */
576 		event_string[len - 1] = '\0';
577 	else
578 		/* Caller is unsure about recovery, do the best we can at this point. */
579 		snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown");
580 
581 	drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ?
582 		 "but recovered through reset" : "needs recovery");
583 
584 	return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp);
585 }
586 EXPORT_SYMBOL(drm_dev_wedged_event);
587 
588 /*
589  * DRM internal mount
590  * We want to be able to allocate our own "struct address_space" to control
591  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
592  * stand-alone address_space objects, so we need an underlying inode. As there
593  * is no way to allocate an independent inode easily, we need a fake internal
594  * VFS mount-point.
595  *
596  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
597  * frees it again. You are allowed to use iget() and iput() to get references to
598  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
599  * drm_fs_inode_free() call (which does not have to be the last iput()).
600  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
601  * between multiple inode-users. You could, technically, call
602  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
603  * iput(), but this way you'd end up with a new vfsmount for each inode.
604  */
605 
606 static int drm_fs_cnt;
607 static struct vfsmount *drm_fs_mnt;
608 
609 static int drm_fs_init_fs_context(struct fs_context *fc)
610 {
611 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
612 }
613 
614 static struct file_system_type drm_fs_type = {
615 	.name		= "drm",
616 	.owner		= THIS_MODULE,
617 	.init_fs_context = drm_fs_init_fs_context,
618 	.kill_sb	= kill_anon_super,
619 };
620 
621 static struct inode *drm_fs_inode_new(void)
622 {
623 	struct inode *inode;
624 	int r;
625 
626 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
627 	if (r < 0) {
628 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
629 		return ERR_PTR(r);
630 	}
631 
632 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
633 	if (IS_ERR(inode))
634 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
635 
636 	return inode;
637 }
638 
639 static void drm_fs_inode_free(struct inode *inode)
640 {
641 	if (inode) {
642 		iput(inode);
643 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
644 	}
645 }
646 
647 /**
648  * DOC: component helper usage recommendations
649  *
650  * DRM drivers that drive hardware where a logical device consists of a pile of
651  * independent hardware blocks are recommended to use the :ref:`component helper
652  * library<component>`. For consistency and better options for code reuse the
653  * following guidelines apply:
654  *
655  *  - The entire device initialization procedure should be run from the
656  *    &component_master_ops.master_bind callback, starting with
657  *    devm_drm_dev_alloc(), then binding all components with
658  *    component_bind_all() and finishing with drm_dev_register().
659  *
660  *  - The opaque pointer passed to all components through component_bind_all()
661  *    should point at &struct drm_device of the device instance, not some driver
662  *    specific private structure.
663  *
664  *  - The component helper fills the niche where further standardization of
665  *    interfaces is not practical. When there already is, or will be, a
666  *    standardized interface like &drm_bridge or &drm_panel, providing its own
667  *    functions to find such components at driver load time, like
668  *    drm_of_find_panel_or_bridge(), then the component helper should not be
669  *    used.
670  */
671 
672 static void drm_dev_init_release(struct drm_device *dev, void *res)
673 {
674 	drm_fs_inode_free(dev->anon_inode);
675 
676 	put_device(dev->dma_dev);
677 	dev->dma_dev = NULL;
678 	put_device(dev->dev);
679 	/* Prevent use-after-free in drm_managed_release when debugging is
680 	 * enabled. Slightly awkward, but can't really be helped. */
681 	dev->dev = NULL;
682 	mutex_destroy(&dev->master_mutex);
683 	mutex_destroy(&dev->clientlist_mutex);
684 	mutex_destroy(&dev->filelist_mutex);
685 	mutex_destroy(&dev->struct_mutex);
686 }
687 
688 static int drm_dev_init(struct drm_device *dev,
689 			const struct drm_driver *driver,
690 			struct device *parent)
691 {
692 	struct inode *inode;
693 	int ret;
694 
695 	if (!drm_core_init_complete) {
696 		DRM_ERROR("DRM core is not initialized\n");
697 		return -ENODEV;
698 	}
699 
700 	if (WARN_ON(!parent))
701 		return -EINVAL;
702 
703 	kref_init(&dev->ref);
704 	dev->dev = get_device(parent);
705 	dev->driver = driver;
706 
707 	INIT_LIST_HEAD(&dev->managed.resources);
708 	spin_lock_init(&dev->managed.lock);
709 
710 	/* no per-device feature limits by default */
711 	dev->driver_features = ~0u;
712 
713 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
714 				(drm_core_check_feature(dev, DRIVER_RENDER) ||
715 				drm_core_check_feature(dev, DRIVER_MODESET))) {
716 		DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
717 		return -EINVAL;
718 	}
719 
720 	INIT_LIST_HEAD(&dev->filelist);
721 	INIT_LIST_HEAD(&dev->filelist_internal);
722 	INIT_LIST_HEAD(&dev->clientlist);
723 	INIT_LIST_HEAD(&dev->vblank_event_list);
724 
725 	spin_lock_init(&dev->event_lock);
726 	mutex_init(&dev->struct_mutex);
727 	mutex_init(&dev->filelist_mutex);
728 	mutex_init(&dev->clientlist_mutex);
729 	mutex_init(&dev->master_mutex);
730 	raw_spin_lock_init(&dev->mode_config.panic_lock);
731 
732 	ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
733 	if (ret)
734 		return ret;
735 
736 	inode = drm_fs_inode_new();
737 	if (IS_ERR(inode)) {
738 		ret = PTR_ERR(inode);
739 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
740 		goto err;
741 	}
742 
743 	dev->anon_inode = inode;
744 
745 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
746 		ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
747 		if (ret)
748 			goto err;
749 	} else {
750 		if (drm_core_check_feature(dev, DRIVER_RENDER)) {
751 			ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
752 			if (ret)
753 				goto err;
754 		}
755 
756 		ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
757 		if (ret)
758 			goto err;
759 	}
760 
761 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
762 		ret = drm_gem_init(dev);
763 		if (ret) {
764 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
765 			goto err;
766 		}
767 	}
768 
769 	dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
770 	if (!dev->unique) {
771 		ret = -ENOMEM;
772 		goto err;
773 	}
774 
775 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
776 		accel_debugfs_init(dev);
777 	else
778 		drm_debugfs_dev_init(dev, drm_debugfs_root);
779 
780 	return 0;
781 
782 err:
783 	drm_managed_release(dev);
784 
785 	return ret;
786 }
787 
788 static void devm_drm_dev_init_release(void *data)
789 {
790 	drm_dev_put(data);
791 }
792 
793 static int devm_drm_dev_init(struct device *parent,
794 			     struct drm_device *dev,
795 			     const struct drm_driver *driver)
796 {
797 	int ret;
798 
799 	ret = drm_dev_init(dev, driver, parent);
800 	if (ret)
801 		return ret;
802 
803 	return devm_add_action_or_reset(parent,
804 					devm_drm_dev_init_release, dev);
805 }
806 
807 void *__devm_drm_dev_alloc(struct device *parent,
808 			   const struct drm_driver *driver,
809 			   size_t size, size_t offset)
810 {
811 	void *container;
812 	struct drm_device *drm;
813 	int ret;
814 
815 	container = kzalloc(size, GFP_KERNEL);
816 	if (!container)
817 		return ERR_PTR(-ENOMEM);
818 
819 	drm = container + offset;
820 	ret = devm_drm_dev_init(parent, drm, driver);
821 	if (ret) {
822 		kfree(container);
823 		return ERR_PTR(ret);
824 	}
825 	drmm_add_final_kfree(drm, container);
826 
827 	return container;
828 }
829 EXPORT_SYMBOL(__devm_drm_dev_alloc);
830 
831 /**
832  * drm_dev_alloc - Allocate new DRM device
833  * @driver: DRM driver to allocate device for
834  * @parent: Parent device object
835  *
836  * This is the deprecated version of devm_drm_dev_alloc(), which does not support
837  * subclassing through embedding the struct &drm_device in a driver private
838  * structure, and which does not support automatic cleanup through devres.
839  *
840  * RETURNS:
841  * Pointer to new DRM device, or ERR_PTR on failure.
842  */
843 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
844 				 struct device *parent)
845 {
846 	struct drm_device *dev;
847 	int ret;
848 
849 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
850 	if (!dev)
851 		return ERR_PTR(-ENOMEM);
852 
853 	ret = drm_dev_init(dev, driver, parent);
854 	if (ret) {
855 		kfree(dev);
856 		return ERR_PTR(ret);
857 	}
858 
859 	drmm_add_final_kfree(dev, dev);
860 
861 	return dev;
862 }
863 EXPORT_SYMBOL(drm_dev_alloc);
864 
865 static void drm_dev_release(struct kref *ref)
866 {
867 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
868 
869 	/* Just in case register/unregister was never called */
870 	drm_debugfs_dev_fini(dev);
871 
872 	if (dev->driver->release)
873 		dev->driver->release(dev);
874 
875 	drm_managed_release(dev);
876 
877 	kfree(dev->managed.final_kfree);
878 }
879 
880 /**
881  * drm_dev_get - Take reference of a DRM device
882  * @dev: device to take reference of or NULL
883  *
884  * This increases the ref-count of @dev by one. You *must* already own a
885  * reference when calling this. Use drm_dev_put() to drop this reference
886  * again.
887  *
888  * This function never fails. However, this function does not provide *any*
889  * guarantee whether the device is alive or running. It only provides a
890  * reference to the object and the memory associated with it.
891  */
892 void drm_dev_get(struct drm_device *dev)
893 {
894 	if (dev)
895 		kref_get(&dev->ref);
896 }
897 EXPORT_SYMBOL(drm_dev_get);
898 
899 /**
900  * drm_dev_put - Drop reference of a DRM device
901  * @dev: device to drop reference of or NULL
902  *
903  * This decreases the ref-count of @dev by one. The device is destroyed if the
904  * ref-count drops to zero.
905  */
906 void drm_dev_put(struct drm_device *dev)
907 {
908 	if (dev)
909 		kref_put(&dev->ref, drm_dev_release);
910 }
911 EXPORT_SYMBOL(drm_dev_put);
912 
913 static void drmm_cg_unregister_region(struct drm_device *dev, void *arg)
914 {
915 	dmem_cgroup_unregister_region(arg);
916 }
917 
918 /**
919  * drmm_cgroup_register_region - Register a region of a DRM device to cgroups
920  * @dev: device for region
921  * @region_name: Region name for registering
922  * @size: Size of region in bytes
923  *
924  * This decreases the ref-count of @dev by one. The device is destroyed if the
925  * ref-count drops to zero.
926  */
927 struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size)
928 {
929 	struct dmem_cgroup_region *region;
930 	int ret;
931 
932 	region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name);
933 	if (IS_ERR_OR_NULL(region))
934 		return region;
935 
936 	ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region);
937 	if (ret)
938 		return ERR_PTR(ret);
939 
940 	return region;
941 }
942 EXPORT_SYMBOL_GPL(drmm_cgroup_register_region);
943 
944 static int create_compat_control_link(struct drm_device *dev)
945 {
946 	struct drm_minor *minor;
947 	char *name;
948 	int ret;
949 
950 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
951 		return 0;
952 
953 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
954 	if (!minor)
955 		return 0;
956 
957 	/*
958 	 * Some existing userspace out there uses the existing of the controlD*
959 	 * sysfs files to figure out whether it's a modeset driver. It only does
960 	 * readdir, hence a symlink is sufficient (and the least confusing
961 	 * option). Otherwise controlD* is entirely unused.
962 	 *
963 	 * Old controlD chardev have been allocated in the range
964 	 * 64-127.
965 	 */
966 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
967 	if (!name)
968 		return -ENOMEM;
969 
970 	ret = sysfs_create_link(minor->kdev->kobj.parent,
971 				&minor->kdev->kobj,
972 				name);
973 
974 	kfree(name);
975 
976 	return ret;
977 }
978 
979 static void remove_compat_control_link(struct drm_device *dev)
980 {
981 	struct drm_minor *minor;
982 	char *name;
983 
984 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
985 		return;
986 
987 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
988 	if (!minor)
989 		return;
990 
991 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
992 	if (!name)
993 		return;
994 
995 	sysfs_remove_link(minor->kdev->kobj.parent, name);
996 
997 	kfree(name);
998 }
999 
1000 /**
1001  * drm_dev_register - Register DRM device
1002  * @dev: Device to register
1003  * @flags: Flags passed to the driver's .load() function
1004  *
1005  * Register the DRM device @dev with the system, advertise device to user-space
1006  * and start normal device operation. @dev must be initialized via drm_dev_init()
1007  * previously.
1008  *
1009  * Never call this twice on any device!
1010  *
1011  * NOTE: To ensure backward compatibility with existing drivers method this
1012  * function calls the &drm_driver.load method after registering the device
1013  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
1014  * therefore deprecated, drivers must perform all initialization before calling
1015  * drm_dev_register().
1016  *
1017  * RETURNS:
1018  * 0 on success, negative error code on failure.
1019  */
1020 int drm_dev_register(struct drm_device *dev, unsigned long flags)
1021 {
1022 	const struct drm_driver *driver = dev->driver;
1023 	int ret;
1024 
1025 	if (!driver->load)
1026 		drm_mode_config_validate(dev);
1027 
1028 	WARN_ON(!dev->managed.final_kfree);
1029 
1030 	if (drm_dev_needs_global_mutex(dev))
1031 		mutex_lock(&drm_global_mutex);
1032 
1033 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
1034 		accel_debugfs_register(dev);
1035 	else
1036 		drm_debugfs_dev_register(dev);
1037 
1038 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
1039 	if (ret)
1040 		goto err_minors;
1041 
1042 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
1043 	if (ret)
1044 		goto err_minors;
1045 
1046 	ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
1047 	if (ret)
1048 		goto err_minors;
1049 
1050 	ret = create_compat_control_link(dev);
1051 	if (ret)
1052 		goto err_minors;
1053 
1054 	dev->registered = true;
1055 
1056 	if (driver->load) {
1057 		ret = driver->load(dev, flags);
1058 		if (ret)
1059 			goto err_minors;
1060 	}
1061 
1062 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1063 		ret = drm_modeset_register_all(dev);
1064 		if (ret)
1065 			goto err_unload;
1066 	}
1067 	drm_panic_register(dev);
1068 
1069 	DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
1070 		 driver->name, driver->major, driver->minor,
1071 		 driver->patchlevel,
1072 		 dev->dev ? dev_name(dev->dev) : "virtual device",
1073 		 dev->primary ? dev->primary->index : dev->accel->index);
1074 
1075 	goto out_unlock;
1076 
1077 err_unload:
1078 	if (dev->driver->unload)
1079 		dev->driver->unload(dev);
1080 err_minors:
1081 	remove_compat_control_link(dev);
1082 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1083 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1084 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1085 out_unlock:
1086 	if (drm_dev_needs_global_mutex(dev))
1087 		mutex_unlock(&drm_global_mutex);
1088 	return ret;
1089 }
1090 EXPORT_SYMBOL(drm_dev_register);
1091 
1092 /**
1093  * drm_dev_unregister - Unregister DRM device
1094  * @dev: Device to unregister
1095  *
1096  * Unregister the DRM device from the system. This does the reverse of
1097  * drm_dev_register() but does not deallocate the device. The caller must call
1098  * drm_dev_put() to drop their final reference, unless it is managed with devres
1099  * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
1100  * already an unwind action registered.
1101  *
1102  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1103  * which can be called while there are still open users of @dev.
1104  *
1105  * This should be called first in the device teardown code to make sure
1106  * userspace can't access the device instance any more.
1107  */
1108 void drm_dev_unregister(struct drm_device *dev)
1109 {
1110 	dev->registered = false;
1111 
1112 	drm_panic_unregister(dev);
1113 
1114 	drm_client_dev_unregister(dev);
1115 
1116 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1117 		drm_modeset_unregister_all(dev);
1118 
1119 	if (dev->driver->unload)
1120 		dev->driver->unload(dev);
1121 
1122 	remove_compat_control_link(dev);
1123 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1124 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1125 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1126 	drm_debugfs_dev_fini(dev);
1127 }
1128 EXPORT_SYMBOL(drm_dev_unregister);
1129 
1130 /*
1131  * DRM Core
1132  * The DRM core module initializes all global DRM objects and makes them
1133  * available to drivers. Once setup, drivers can probe their respective
1134  * devices.
1135  * Currently, core management includes:
1136  *  - The "DRM-Global" key/value database
1137  *  - Global ID management for connectors
1138  *  - DRM major number allocation
1139  *  - DRM minor management
1140  *  - DRM sysfs class
1141  *  - DRM debugfs root
1142  *
1143  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1144  * interface registered on a DRM device, you can request minor numbers from DRM
1145  * core. DRM core takes care of major-number management and char-dev
1146  * registration. A stub ->open() callback forwards any open() requests to the
1147  * registered minor.
1148  */
1149 
1150 static int drm_stub_open(struct inode *inode, struct file *filp)
1151 {
1152 	const struct file_operations *new_fops;
1153 	struct drm_minor *minor;
1154 	int err;
1155 
1156 	DRM_DEBUG("\n");
1157 
1158 	minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1159 	if (IS_ERR(minor))
1160 		return PTR_ERR(minor);
1161 
1162 	new_fops = fops_get(minor->dev->driver->fops);
1163 	if (!new_fops) {
1164 		err = -ENODEV;
1165 		goto out;
1166 	}
1167 
1168 	replace_fops(filp, new_fops);
1169 	if (filp->f_op->open)
1170 		err = filp->f_op->open(inode, filp);
1171 	else
1172 		err = 0;
1173 
1174 out:
1175 	drm_minor_release(minor);
1176 
1177 	return err;
1178 }
1179 
1180 static const struct file_operations drm_stub_fops = {
1181 	.owner = THIS_MODULE,
1182 	.open = drm_stub_open,
1183 	.llseek = noop_llseek,
1184 };
1185 
1186 static void drm_core_exit(void)
1187 {
1188 	drm_privacy_screen_lookup_exit();
1189 	drm_panic_exit();
1190 	accel_core_exit();
1191 	unregister_chrdev(DRM_MAJOR, "drm");
1192 	debugfs_remove(drm_debugfs_root);
1193 	drm_sysfs_destroy();
1194 	WARN_ON(!xa_empty(&drm_minors_xa));
1195 	drm_connector_ida_destroy();
1196 }
1197 
1198 static int __init drm_core_init(void)
1199 {
1200 	int ret;
1201 
1202 	drm_connector_ida_init();
1203 	drm_memcpy_init_early();
1204 
1205 	ret = drm_sysfs_init();
1206 	if (ret < 0) {
1207 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1208 		goto error;
1209 	}
1210 
1211 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1212 
1213 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1214 	if (ret < 0)
1215 		goto error;
1216 
1217 	ret = accel_core_init();
1218 	if (ret < 0)
1219 		goto error;
1220 
1221 	drm_panic_init();
1222 
1223 	drm_privacy_screen_lookup_init();
1224 
1225 	drm_core_init_complete = true;
1226 
1227 	DRM_DEBUG("Initialized\n");
1228 	return 0;
1229 
1230 error:
1231 	drm_core_exit();
1232 	return ret;
1233 }
1234 
1235 module_init(drm_core_init);
1236 module_exit(drm_core_exit);
1237