xref: /linux/drivers/gpu/drm/drm_drv.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37 
38 #include <drm/drm_client.h>
39 #include <drm/drm_color_mgmt.h>
40 #include <drm/drm_drv.h>
41 #include <drm/drm_file.h>
42 #include <drm/drm_managed.h>
43 #include <drm/drm_mode_object.h>
44 #include <drm/drm_print.h>
45 
46 #include "drm_crtc_internal.h"
47 #include "drm_internal.h"
48 #include "drm_legacy.h"
49 
50 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
51 MODULE_DESCRIPTION("DRM shared core routines");
52 MODULE_LICENSE("GPL and additional rights");
53 
54 static DEFINE_SPINLOCK(drm_minor_lock);
55 static struct idr drm_minors_idr;
56 
57 /*
58  * If the drm core fails to init for whatever reason,
59  * we should prevent any drivers from registering with it.
60  * It's best to check this at drm_dev_init(), as some drivers
61  * prefer to embed struct drm_device into their own device
62  * structure and call drm_dev_init() themselves.
63  */
64 static bool drm_core_init_complete = false;
65 
66 static struct dentry *drm_debugfs_root;
67 
68 DEFINE_STATIC_SRCU(drm_unplug_srcu);
69 
70 /*
71  * DRM Minors
72  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
73  * of them is represented by a drm_minor object. Depending on the capabilities
74  * of the device-driver, different interfaces are registered.
75  *
76  * Minors can be accessed via dev->$minor_name. This pointer is either
77  * NULL or a valid drm_minor pointer and stays valid as long as the device is
78  * valid. This means, DRM minors have the same life-time as the underlying
79  * device. However, this doesn't mean that the minor is active. Minors are
80  * registered and unregistered dynamically according to device-state.
81  */
82 
83 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
84 					     unsigned int type)
85 {
86 	switch (type) {
87 	case DRM_MINOR_PRIMARY:
88 		return &dev->primary;
89 	case DRM_MINOR_RENDER:
90 		return &dev->render;
91 	default:
92 		BUG();
93 	}
94 }
95 
96 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
97 {
98 	struct drm_minor *minor = data;
99 	unsigned long flags;
100 
101 	WARN_ON(dev != minor->dev);
102 
103 	put_device(minor->kdev);
104 
105 	spin_lock_irqsave(&drm_minor_lock, flags);
106 	idr_remove(&drm_minors_idr, minor->index);
107 	spin_unlock_irqrestore(&drm_minor_lock, flags);
108 }
109 
110 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
111 {
112 	struct drm_minor *minor;
113 	unsigned long flags;
114 	int r;
115 
116 	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
117 	if (!minor)
118 		return -ENOMEM;
119 
120 	minor->type = type;
121 	minor->dev = dev;
122 
123 	idr_preload(GFP_KERNEL);
124 	spin_lock_irqsave(&drm_minor_lock, flags);
125 	r = idr_alloc(&drm_minors_idr,
126 		      NULL,
127 		      64 * type,
128 		      64 * (type + 1),
129 		      GFP_NOWAIT);
130 	spin_unlock_irqrestore(&drm_minor_lock, flags);
131 	idr_preload_end();
132 
133 	if (r < 0)
134 		return r;
135 
136 	minor->index = r;
137 
138 	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
139 	if (r)
140 		return r;
141 
142 	minor->kdev = drm_sysfs_minor_alloc(minor);
143 	if (IS_ERR(minor->kdev))
144 		return PTR_ERR(minor->kdev);
145 
146 	*drm_minor_get_slot(dev, type) = minor;
147 	return 0;
148 }
149 
150 static int drm_minor_register(struct drm_device *dev, unsigned int type)
151 {
152 	struct drm_minor *minor;
153 	unsigned long flags;
154 	int ret;
155 
156 	DRM_DEBUG("\n");
157 
158 	minor = *drm_minor_get_slot(dev, type);
159 	if (!minor)
160 		return 0;
161 
162 	ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
163 	if (ret) {
164 		DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
165 		goto err_debugfs;
166 	}
167 
168 	ret = device_add(minor->kdev);
169 	if (ret)
170 		goto err_debugfs;
171 
172 	/* replace NULL with @minor so lookups will succeed from now on */
173 	spin_lock_irqsave(&drm_minor_lock, flags);
174 	idr_replace(&drm_minors_idr, minor, minor->index);
175 	spin_unlock_irqrestore(&drm_minor_lock, flags);
176 
177 	DRM_DEBUG("new minor registered %d\n", minor->index);
178 	return 0;
179 
180 err_debugfs:
181 	drm_debugfs_cleanup(minor);
182 	return ret;
183 }
184 
185 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
186 {
187 	struct drm_minor *minor;
188 	unsigned long flags;
189 
190 	minor = *drm_minor_get_slot(dev, type);
191 	if (!minor || !device_is_registered(minor->kdev))
192 		return;
193 
194 	/* replace @minor with NULL so lookups will fail from now on */
195 	spin_lock_irqsave(&drm_minor_lock, flags);
196 	idr_replace(&drm_minors_idr, NULL, minor->index);
197 	spin_unlock_irqrestore(&drm_minor_lock, flags);
198 
199 	device_del(minor->kdev);
200 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
201 	drm_debugfs_cleanup(minor);
202 }
203 
204 /*
205  * Looks up the given minor-ID and returns the respective DRM-minor object. The
206  * refence-count of the underlying device is increased so you must release this
207  * object with drm_minor_release().
208  *
209  * As long as you hold this minor, it is guaranteed that the object and the
210  * minor->dev pointer will stay valid! However, the device may get unplugged and
211  * unregistered while you hold the minor.
212  */
213 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
214 {
215 	struct drm_minor *minor;
216 	unsigned long flags;
217 
218 	spin_lock_irqsave(&drm_minor_lock, flags);
219 	minor = idr_find(&drm_minors_idr, minor_id);
220 	if (minor)
221 		drm_dev_get(minor->dev);
222 	spin_unlock_irqrestore(&drm_minor_lock, flags);
223 
224 	if (!minor) {
225 		return ERR_PTR(-ENODEV);
226 	} else if (drm_dev_is_unplugged(minor->dev)) {
227 		drm_dev_put(minor->dev);
228 		return ERR_PTR(-ENODEV);
229 	}
230 
231 	return minor;
232 }
233 
234 void drm_minor_release(struct drm_minor *minor)
235 {
236 	drm_dev_put(minor->dev);
237 }
238 
239 /**
240  * DOC: driver instance overview
241  *
242  * A device instance for a drm driver is represented by &struct drm_device. This
243  * is allocated and initialized with devm_drm_dev_alloc(), usually from
244  * bus-specific ->probe() callbacks implemented by the driver. The driver then
245  * needs to initialize all the various subsystems for the drm device like memory
246  * management, vblank handling, modesetting support and initial output
247  * configuration plus obviously initialize all the corresponding hardware bits.
248  * Finally when everything is up and running and ready for userspace the device
249  * instance can be published using drm_dev_register().
250  *
251  * There is also deprecated support for initalizing device instances using
252  * bus-specific helpers and the &drm_driver.load callback. But due to
253  * backwards-compatibility needs the device instance have to be published too
254  * early, which requires unpretty global locking to make safe and is therefore
255  * only support for existing drivers not yet converted to the new scheme.
256  *
257  * When cleaning up a device instance everything needs to be done in reverse:
258  * First unpublish the device instance with drm_dev_unregister(). Then clean up
259  * any other resources allocated at device initialization and drop the driver's
260  * reference to &drm_device using drm_dev_put().
261  *
262  * Note that any allocation or resource which is visible to userspace must be
263  * released only when the final drm_dev_put() is called, and not when the
264  * driver is unbound from the underlying physical struct &device. Best to use
265  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
266  * related functions.
267  *
268  * devres managed resources like devm_kmalloc() can only be used for resources
269  * directly related to the underlying hardware device, and only used in code
270  * paths fully protected by drm_dev_enter() and drm_dev_exit().
271  *
272  * Display driver example
273  * ~~~~~~~~~~~~~~~~~~~~~~
274  *
275  * The following example shows a typical structure of a DRM display driver.
276  * The example focus on the probe() function and the other functions that is
277  * almost always present and serves as a demonstration of devm_drm_dev_alloc().
278  *
279  * .. code-block:: c
280  *
281  *	struct driver_device {
282  *		struct drm_device drm;
283  *		void *userspace_facing;
284  *		struct clk *pclk;
285  *	};
286  *
287  *	static const struct drm_driver driver_drm_driver = {
288  *		[...]
289  *	};
290  *
291  *	static int driver_probe(struct platform_device *pdev)
292  *	{
293  *		struct driver_device *priv;
294  *		struct drm_device *drm;
295  *		int ret;
296  *
297  *		priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
298  *					  struct driver_device, drm);
299  *		if (IS_ERR(priv))
300  *			return PTR_ERR(priv);
301  *		drm = &priv->drm;
302  *
303  *		ret = drmm_mode_config_init(drm);
304  *		if (ret)
305  *			return ret;
306  *
307  *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
308  *		if (!priv->userspace_facing)
309  *			return -ENOMEM;
310  *
311  *		priv->pclk = devm_clk_get(dev, "PCLK");
312  *		if (IS_ERR(priv->pclk))
313  *			return PTR_ERR(priv->pclk);
314  *
315  *		// Further setup, display pipeline etc
316  *
317  *		platform_set_drvdata(pdev, drm);
318  *
319  *		drm_mode_config_reset(drm);
320  *
321  *		ret = drm_dev_register(drm);
322  *		if (ret)
323  *			return ret;
324  *
325  *		drm_fbdev_generic_setup(drm, 32);
326  *
327  *		return 0;
328  *	}
329  *
330  *	// This function is called before the devm_ resources are released
331  *	static int driver_remove(struct platform_device *pdev)
332  *	{
333  *		struct drm_device *drm = platform_get_drvdata(pdev);
334  *
335  *		drm_dev_unregister(drm);
336  *		drm_atomic_helper_shutdown(drm)
337  *
338  *		return 0;
339  *	}
340  *
341  *	// This function is called on kernel restart and shutdown
342  *	static void driver_shutdown(struct platform_device *pdev)
343  *	{
344  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
345  *	}
346  *
347  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
348  *	{
349  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
350  *	}
351  *
352  *	static int __maybe_unused driver_pm_resume(struct device *dev)
353  *	{
354  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
355  *
356  *		return 0;
357  *	}
358  *
359  *	static const struct dev_pm_ops driver_pm_ops = {
360  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
361  *	};
362  *
363  *	static struct platform_driver driver_driver = {
364  *		.driver = {
365  *			[...]
366  *			.pm = &driver_pm_ops,
367  *		},
368  *		.probe = driver_probe,
369  *		.remove = driver_remove,
370  *		.shutdown = driver_shutdown,
371  *	};
372  *	module_platform_driver(driver_driver);
373  *
374  * Drivers that want to support device unplugging (USB, DT overlay unload) should
375  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
376  * regions that is accessing device resources to prevent use after they're
377  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
378  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
379  * drm_atomic_helper_shutdown() is called. This means that if the disable code
380  * paths are protected, they will not run on regular driver module unload,
381  * possibily leaving the hardware enabled.
382  */
383 
384 /**
385  * drm_put_dev - Unregister and release a DRM device
386  * @dev: DRM device
387  *
388  * Called at module unload time or when a PCI device is unplugged.
389  *
390  * Cleans up all DRM device, calling drm_lastclose().
391  *
392  * Note: Use of this function is deprecated. It will eventually go away
393  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
394  * instead to make sure that the device isn't userspace accessible any more
395  * while teardown is in progress, ensuring that userspace can't access an
396  * inconsistent state.
397  */
398 void drm_put_dev(struct drm_device *dev)
399 {
400 	DRM_DEBUG("\n");
401 
402 	if (!dev) {
403 		DRM_ERROR("cleanup called no dev\n");
404 		return;
405 	}
406 
407 	drm_dev_unregister(dev);
408 	drm_dev_put(dev);
409 }
410 EXPORT_SYMBOL(drm_put_dev);
411 
412 /**
413  * drm_dev_enter - Enter device critical section
414  * @dev: DRM device
415  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
416  *
417  * This function marks and protects the beginning of a section that should not
418  * be entered after the device has been unplugged. The section end is marked
419  * with drm_dev_exit(). Calls to this function can be nested.
420  *
421  * Returns:
422  * True if it is OK to enter the section, false otherwise.
423  */
424 bool drm_dev_enter(struct drm_device *dev, int *idx)
425 {
426 	*idx = srcu_read_lock(&drm_unplug_srcu);
427 
428 	if (dev->unplugged) {
429 		srcu_read_unlock(&drm_unplug_srcu, *idx);
430 		return false;
431 	}
432 
433 	return true;
434 }
435 EXPORT_SYMBOL(drm_dev_enter);
436 
437 /**
438  * drm_dev_exit - Exit device critical section
439  * @idx: index returned from drm_dev_enter()
440  *
441  * This function marks the end of a section that should not be entered after
442  * the device has been unplugged.
443  */
444 void drm_dev_exit(int idx)
445 {
446 	srcu_read_unlock(&drm_unplug_srcu, idx);
447 }
448 EXPORT_SYMBOL(drm_dev_exit);
449 
450 /**
451  * drm_dev_unplug - unplug a DRM device
452  * @dev: DRM device
453  *
454  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
455  * userspace operations. Entry-points can use drm_dev_enter() and
456  * drm_dev_exit() to protect device resources in a race free manner. This
457  * essentially unregisters the device like drm_dev_unregister(), but can be
458  * called while there are still open users of @dev.
459  */
460 void drm_dev_unplug(struct drm_device *dev)
461 {
462 	/*
463 	 * After synchronizing any critical read section is guaranteed to see
464 	 * the new value of ->unplugged, and any critical section which might
465 	 * still have seen the old value of ->unplugged is guaranteed to have
466 	 * finished.
467 	 */
468 	dev->unplugged = true;
469 	synchronize_srcu(&drm_unplug_srcu);
470 
471 	drm_dev_unregister(dev);
472 
473 	/* Clear all CPU mappings pointing to this device */
474 	unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
475 }
476 EXPORT_SYMBOL(drm_dev_unplug);
477 
478 /*
479  * DRM internal mount
480  * We want to be able to allocate our own "struct address_space" to control
481  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
482  * stand-alone address_space objects, so we need an underlying inode. As there
483  * is no way to allocate an independent inode easily, we need a fake internal
484  * VFS mount-point.
485  *
486  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
487  * frees it again. You are allowed to use iget() and iput() to get references to
488  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
489  * drm_fs_inode_free() call (which does not have to be the last iput()).
490  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
491  * between multiple inode-users. You could, technically, call
492  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
493  * iput(), but this way you'd end up with a new vfsmount for each inode.
494  */
495 
496 static int drm_fs_cnt;
497 static struct vfsmount *drm_fs_mnt;
498 
499 static int drm_fs_init_fs_context(struct fs_context *fc)
500 {
501 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
502 }
503 
504 static struct file_system_type drm_fs_type = {
505 	.name		= "drm",
506 	.owner		= THIS_MODULE,
507 	.init_fs_context = drm_fs_init_fs_context,
508 	.kill_sb	= kill_anon_super,
509 };
510 
511 static struct inode *drm_fs_inode_new(void)
512 {
513 	struct inode *inode;
514 	int r;
515 
516 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
517 	if (r < 0) {
518 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
519 		return ERR_PTR(r);
520 	}
521 
522 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
523 	if (IS_ERR(inode))
524 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
525 
526 	return inode;
527 }
528 
529 static void drm_fs_inode_free(struct inode *inode)
530 {
531 	if (inode) {
532 		iput(inode);
533 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
534 	}
535 }
536 
537 /**
538  * DOC: component helper usage recommendations
539  *
540  * DRM drivers that drive hardware where a logical device consists of a pile of
541  * independent hardware blocks are recommended to use the :ref:`component helper
542  * library<component>`. For consistency and better options for code reuse the
543  * following guidelines apply:
544  *
545  *  - The entire device initialization procedure should be run from the
546  *    &component_master_ops.master_bind callback, starting with
547  *    devm_drm_dev_alloc(), then binding all components with
548  *    component_bind_all() and finishing with drm_dev_register().
549  *
550  *  - The opaque pointer passed to all components through component_bind_all()
551  *    should point at &struct drm_device of the device instance, not some driver
552  *    specific private structure.
553  *
554  *  - The component helper fills the niche where further standardization of
555  *    interfaces is not practical. When there already is, or will be, a
556  *    standardized interface like &drm_bridge or &drm_panel, providing its own
557  *    functions to find such components at driver load time, like
558  *    drm_of_find_panel_or_bridge(), then the component helper should not be
559  *    used.
560  */
561 
562 static void drm_dev_init_release(struct drm_device *dev, void *res)
563 {
564 	drm_legacy_ctxbitmap_cleanup(dev);
565 	drm_legacy_remove_map_hash(dev);
566 	drm_fs_inode_free(dev->anon_inode);
567 
568 	put_device(dev->dev);
569 	/* Prevent use-after-free in drm_managed_release when debugging is
570 	 * enabled. Slightly awkward, but can't really be helped. */
571 	dev->dev = NULL;
572 	mutex_destroy(&dev->master_mutex);
573 	mutex_destroy(&dev->clientlist_mutex);
574 	mutex_destroy(&dev->filelist_mutex);
575 	mutex_destroy(&dev->struct_mutex);
576 	drm_legacy_destroy_members(dev);
577 }
578 
579 static int drm_dev_init(struct drm_device *dev,
580 			const struct drm_driver *driver,
581 			struct device *parent)
582 {
583 	int ret;
584 
585 	if (!drm_core_init_complete) {
586 		DRM_ERROR("DRM core is not initialized\n");
587 		return -ENODEV;
588 	}
589 
590 	if (WARN_ON(!parent))
591 		return -EINVAL;
592 
593 	kref_init(&dev->ref);
594 	dev->dev = get_device(parent);
595 	dev->driver = driver;
596 
597 	INIT_LIST_HEAD(&dev->managed.resources);
598 	spin_lock_init(&dev->managed.lock);
599 
600 	/* no per-device feature limits by default */
601 	dev->driver_features = ~0u;
602 
603 	drm_legacy_init_members(dev);
604 	INIT_LIST_HEAD(&dev->filelist);
605 	INIT_LIST_HEAD(&dev->filelist_internal);
606 	INIT_LIST_HEAD(&dev->clientlist);
607 	INIT_LIST_HEAD(&dev->vblank_event_list);
608 
609 	spin_lock_init(&dev->event_lock);
610 	mutex_init(&dev->struct_mutex);
611 	mutex_init(&dev->filelist_mutex);
612 	mutex_init(&dev->clientlist_mutex);
613 	mutex_init(&dev->master_mutex);
614 
615 	ret = drmm_add_action(dev, drm_dev_init_release, NULL);
616 	if (ret)
617 		return ret;
618 
619 	dev->anon_inode = drm_fs_inode_new();
620 	if (IS_ERR(dev->anon_inode)) {
621 		ret = PTR_ERR(dev->anon_inode);
622 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
623 		goto err;
624 	}
625 
626 	if (drm_core_check_feature(dev, DRIVER_RENDER)) {
627 		ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
628 		if (ret)
629 			goto err;
630 	}
631 
632 	ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
633 	if (ret)
634 		goto err;
635 
636 	ret = drm_legacy_create_map_hash(dev);
637 	if (ret)
638 		goto err;
639 
640 	drm_legacy_ctxbitmap_init(dev);
641 
642 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
643 		ret = drm_gem_init(dev);
644 		if (ret) {
645 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
646 			goto err;
647 		}
648 	}
649 
650 	ret = drm_dev_set_unique(dev, dev_name(parent));
651 	if (ret)
652 		goto err;
653 
654 	return 0;
655 
656 err:
657 	drm_managed_release(dev);
658 
659 	return ret;
660 }
661 
662 static void devm_drm_dev_init_release(void *data)
663 {
664 	drm_dev_put(data);
665 }
666 
667 static int devm_drm_dev_init(struct device *parent,
668 			     struct drm_device *dev,
669 			     const struct drm_driver *driver)
670 {
671 	int ret;
672 
673 	ret = drm_dev_init(dev, driver, parent);
674 	if (ret)
675 		return ret;
676 
677 	return devm_add_action_or_reset(parent,
678 					devm_drm_dev_init_release, dev);
679 }
680 
681 void *__devm_drm_dev_alloc(struct device *parent,
682 			   const struct drm_driver *driver,
683 			   size_t size, size_t offset)
684 {
685 	void *container;
686 	struct drm_device *drm;
687 	int ret;
688 
689 	container = kzalloc(size, GFP_KERNEL);
690 	if (!container)
691 		return ERR_PTR(-ENOMEM);
692 
693 	drm = container + offset;
694 	ret = devm_drm_dev_init(parent, drm, driver);
695 	if (ret) {
696 		kfree(container);
697 		return ERR_PTR(ret);
698 	}
699 	drmm_add_final_kfree(drm, container);
700 
701 	return container;
702 }
703 EXPORT_SYMBOL(__devm_drm_dev_alloc);
704 
705 /**
706  * drm_dev_alloc - Allocate new DRM device
707  * @driver: DRM driver to allocate device for
708  * @parent: Parent device object
709  *
710  * This is the deprecated version of devm_drm_dev_alloc(), which does not support
711  * subclassing through embedding the struct &drm_device in a driver private
712  * structure, and which does not support automatic cleanup through devres.
713  *
714  * RETURNS:
715  * Pointer to new DRM device, or ERR_PTR on failure.
716  */
717 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
718 				 struct device *parent)
719 {
720 	struct drm_device *dev;
721 	int ret;
722 
723 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
724 	if (!dev)
725 		return ERR_PTR(-ENOMEM);
726 
727 	ret = drm_dev_init(dev, driver, parent);
728 	if (ret) {
729 		kfree(dev);
730 		return ERR_PTR(ret);
731 	}
732 
733 	drmm_add_final_kfree(dev, dev);
734 
735 	return dev;
736 }
737 EXPORT_SYMBOL(drm_dev_alloc);
738 
739 static void drm_dev_release(struct kref *ref)
740 {
741 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
742 
743 	if (dev->driver->release)
744 		dev->driver->release(dev);
745 
746 	drm_managed_release(dev);
747 
748 	kfree(dev->managed.final_kfree);
749 }
750 
751 /**
752  * drm_dev_get - Take reference of a DRM device
753  * @dev: device to take reference of or NULL
754  *
755  * This increases the ref-count of @dev by one. You *must* already own a
756  * reference when calling this. Use drm_dev_put() to drop this reference
757  * again.
758  *
759  * This function never fails. However, this function does not provide *any*
760  * guarantee whether the device is alive or running. It only provides a
761  * reference to the object and the memory associated with it.
762  */
763 void drm_dev_get(struct drm_device *dev)
764 {
765 	if (dev)
766 		kref_get(&dev->ref);
767 }
768 EXPORT_SYMBOL(drm_dev_get);
769 
770 /**
771  * drm_dev_put - Drop reference of a DRM device
772  * @dev: device to drop reference of or NULL
773  *
774  * This decreases the ref-count of @dev by one. The device is destroyed if the
775  * ref-count drops to zero.
776  */
777 void drm_dev_put(struct drm_device *dev)
778 {
779 	if (dev)
780 		kref_put(&dev->ref, drm_dev_release);
781 }
782 EXPORT_SYMBOL(drm_dev_put);
783 
784 static int create_compat_control_link(struct drm_device *dev)
785 {
786 	struct drm_minor *minor;
787 	char *name;
788 	int ret;
789 
790 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
791 		return 0;
792 
793 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
794 	if (!minor)
795 		return 0;
796 
797 	/*
798 	 * Some existing userspace out there uses the existing of the controlD*
799 	 * sysfs files to figure out whether it's a modeset driver. It only does
800 	 * readdir, hence a symlink is sufficient (and the least confusing
801 	 * option). Otherwise controlD* is entirely unused.
802 	 *
803 	 * Old controlD chardev have been allocated in the range
804 	 * 64-127.
805 	 */
806 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
807 	if (!name)
808 		return -ENOMEM;
809 
810 	ret = sysfs_create_link(minor->kdev->kobj.parent,
811 				&minor->kdev->kobj,
812 				name);
813 
814 	kfree(name);
815 
816 	return ret;
817 }
818 
819 static void remove_compat_control_link(struct drm_device *dev)
820 {
821 	struct drm_minor *minor;
822 	char *name;
823 
824 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
825 		return;
826 
827 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
828 	if (!minor)
829 		return;
830 
831 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
832 	if (!name)
833 		return;
834 
835 	sysfs_remove_link(minor->kdev->kobj.parent, name);
836 
837 	kfree(name);
838 }
839 
840 /**
841  * drm_dev_register - Register DRM device
842  * @dev: Device to register
843  * @flags: Flags passed to the driver's .load() function
844  *
845  * Register the DRM device @dev with the system, advertise device to user-space
846  * and start normal device operation. @dev must be initialized via drm_dev_init()
847  * previously.
848  *
849  * Never call this twice on any device!
850  *
851  * NOTE: To ensure backward compatibility with existing drivers method this
852  * function calls the &drm_driver.load method after registering the device
853  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
854  * therefore deprecated, drivers must perform all initialization before calling
855  * drm_dev_register().
856  *
857  * RETURNS:
858  * 0 on success, negative error code on failure.
859  */
860 int drm_dev_register(struct drm_device *dev, unsigned long flags)
861 {
862 	const struct drm_driver *driver = dev->driver;
863 	int ret;
864 
865 	if (!driver->load)
866 		drm_mode_config_validate(dev);
867 
868 	WARN_ON(!dev->managed.final_kfree);
869 
870 	if (drm_dev_needs_global_mutex(dev))
871 		mutex_lock(&drm_global_mutex);
872 
873 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
874 	if (ret)
875 		goto err_minors;
876 
877 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
878 	if (ret)
879 		goto err_minors;
880 
881 	ret = create_compat_control_link(dev);
882 	if (ret)
883 		goto err_minors;
884 
885 	dev->registered = true;
886 
887 	if (dev->driver->load) {
888 		ret = dev->driver->load(dev, flags);
889 		if (ret)
890 			goto err_minors;
891 	}
892 
893 	if (drm_core_check_feature(dev, DRIVER_MODESET))
894 		drm_modeset_register_all(dev);
895 
896 	DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
897 		 driver->name, driver->major, driver->minor,
898 		 driver->patchlevel, driver->date,
899 		 dev->dev ? dev_name(dev->dev) : "virtual device",
900 		 dev->primary->index);
901 
902 	goto out_unlock;
903 
904 err_minors:
905 	remove_compat_control_link(dev);
906 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
907 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
908 out_unlock:
909 	if (drm_dev_needs_global_mutex(dev))
910 		mutex_unlock(&drm_global_mutex);
911 	return ret;
912 }
913 EXPORT_SYMBOL(drm_dev_register);
914 
915 /**
916  * drm_dev_unregister - Unregister DRM device
917  * @dev: Device to unregister
918  *
919  * Unregister the DRM device from the system. This does the reverse of
920  * drm_dev_register() but does not deallocate the device. The caller must call
921  * drm_dev_put() to drop their final reference.
922  *
923  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
924  * which can be called while there are still open users of @dev.
925  *
926  * This should be called first in the device teardown code to make sure
927  * userspace can't access the device instance any more.
928  */
929 void drm_dev_unregister(struct drm_device *dev)
930 {
931 	if (drm_core_check_feature(dev, DRIVER_LEGACY))
932 		drm_lastclose(dev);
933 
934 	dev->registered = false;
935 
936 	drm_client_dev_unregister(dev);
937 
938 	if (drm_core_check_feature(dev, DRIVER_MODESET))
939 		drm_modeset_unregister_all(dev);
940 
941 	if (dev->driver->unload)
942 		dev->driver->unload(dev);
943 
944 	if (dev->agp)
945 		drm_pci_agp_destroy(dev);
946 
947 	drm_legacy_rmmaps(dev);
948 
949 	remove_compat_control_link(dev);
950 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
951 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
952 }
953 EXPORT_SYMBOL(drm_dev_unregister);
954 
955 /**
956  * drm_dev_set_unique - Set the unique name of a DRM device
957  * @dev: device of which to set the unique name
958  * @name: unique name
959  *
960  * Sets the unique name of a DRM device using the specified string. This is
961  * already done by drm_dev_init(), drivers should only override the default
962  * unique name for backwards compatibility reasons.
963  *
964  * Return: 0 on success or a negative error code on failure.
965  */
966 int drm_dev_set_unique(struct drm_device *dev, const char *name)
967 {
968 	drmm_kfree(dev, dev->unique);
969 	dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL);
970 
971 	return dev->unique ? 0 : -ENOMEM;
972 }
973 EXPORT_SYMBOL(drm_dev_set_unique);
974 
975 /*
976  * DRM Core
977  * The DRM core module initializes all global DRM objects and makes them
978  * available to drivers. Once setup, drivers can probe their respective
979  * devices.
980  * Currently, core management includes:
981  *  - The "DRM-Global" key/value database
982  *  - Global ID management for connectors
983  *  - DRM major number allocation
984  *  - DRM minor management
985  *  - DRM sysfs class
986  *  - DRM debugfs root
987  *
988  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
989  * interface registered on a DRM device, you can request minor numbers from DRM
990  * core. DRM core takes care of major-number management and char-dev
991  * registration. A stub ->open() callback forwards any open() requests to the
992  * registered minor.
993  */
994 
995 static int drm_stub_open(struct inode *inode, struct file *filp)
996 {
997 	const struct file_operations *new_fops;
998 	struct drm_minor *minor;
999 	int err;
1000 
1001 	DRM_DEBUG("\n");
1002 
1003 	minor = drm_minor_acquire(iminor(inode));
1004 	if (IS_ERR(minor))
1005 		return PTR_ERR(minor);
1006 
1007 	new_fops = fops_get(minor->dev->driver->fops);
1008 	if (!new_fops) {
1009 		err = -ENODEV;
1010 		goto out;
1011 	}
1012 
1013 	replace_fops(filp, new_fops);
1014 	if (filp->f_op->open)
1015 		err = filp->f_op->open(inode, filp);
1016 	else
1017 		err = 0;
1018 
1019 out:
1020 	drm_minor_release(minor);
1021 
1022 	return err;
1023 }
1024 
1025 static const struct file_operations drm_stub_fops = {
1026 	.owner = THIS_MODULE,
1027 	.open = drm_stub_open,
1028 	.llseek = noop_llseek,
1029 };
1030 
1031 static void drm_core_exit(void)
1032 {
1033 	unregister_chrdev(DRM_MAJOR, "drm");
1034 	debugfs_remove(drm_debugfs_root);
1035 	drm_sysfs_destroy();
1036 	idr_destroy(&drm_minors_idr);
1037 	drm_connector_ida_destroy();
1038 }
1039 
1040 static int __init drm_core_init(void)
1041 {
1042 	int ret;
1043 
1044 	drm_connector_ida_init();
1045 	idr_init(&drm_minors_idr);
1046 
1047 	ret = drm_sysfs_init();
1048 	if (ret < 0) {
1049 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1050 		goto error;
1051 	}
1052 
1053 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1054 
1055 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1056 	if (ret < 0)
1057 		goto error;
1058 
1059 	drm_core_init_complete = true;
1060 
1061 	DRM_DEBUG("Initialized\n");
1062 	return 0;
1063 
1064 error:
1065 	drm_core_exit();
1066 	return ret;
1067 }
1068 
1069 module_init(drm_core_init);
1070 module_exit(drm_core_exit);
1071