1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/slab.h> 35 #include <drm/drmP.h> 36 #include <drm/drm_core.h> 37 #include "drm_crtc_internal.h" 38 #include "drm_legacy.h" 39 #include "drm_internal.h" 40 #include "drm_crtc_internal.h" 41 42 /* 43 * drm_debug: Enable debug output. 44 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details. 45 */ 46 unsigned int drm_debug = 0; 47 EXPORT_SYMBOL(drm_debug); 48 49 MODULE_AUTHOR(CORE_AUTHOR); 50 MODULE_DESCRIPTION(CORE_DESC); 51 MODULE_LICENSE("GPL and additional rights"); 52 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n" 53 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n" 54 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n" 55 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n" 56 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n" 57 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n" 58 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)"); 59 module_param_named(debug, drm_debug, int, 0600); 60 61 static DEFINE_SPINLOCK(drm_minor_lock); 62 static struct idr drm_minors_idr; 63 64 static struct dentry *drm_debugfs_root; 65 66 void drm_err(const char *format, ...) 67 { 68 struct va_format vaf; 69 va_list args; 70 71 va_start(args, format); 72 73 vaf.fmt = format; 74 vaf.va = &args; 75 76 printk(KERN_ERR "[" DRM_NAME ":%ps] *ERROR* %pV", 77 __builtin_return_address(0), &vaf); 78 79 va_end(args); 80 } 81 EXPORT_SYMBOL(drm_err); 82 83 void drm_ut_debug_printk(const char *function_name, const char *format, ...) 84 { 85 struct va_format vaf; 86 va_list args; 87 88 va_start(args, format); 89 vaf.fmt = format; 90 vaf.va = &args; 91 92 printk(KERN_DEBUG "[" DRM_NAME ":%s] %pV", function_name, &vaf); 93 94 va_end(args); 95 } 96 EXPORT_SYMBOL(drm_ut_debug_printk); 97 98 /* 99 * DRM Minors 100 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 101 * of them is represented by a drm_minor object. Depending on the capabilities 102 * of the device-driver, different interfaces are registered. 103 * 104 * Minors can be accessed via dev->$minor_name. This pointer is either 105 * NULL or a valid drm_minor pointer and stays valid as long as the device is 106 * valid. This means, DRM minors have the same life-time as the underlying 107 * device. However, this doesn't mean that the minor is active. Minors are 108 * registered and unregistered dynamically according to device-state. 109 */ 110 111 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 112 unsigned int type) 113 { 114 switch (type) { 115 case DRM_MINOR_LEGACY: 116 return &dev->primary; 117 case DRM_MINOR_RENDER: 118 return &dev->render; 119 case DRM_MINOR_CONTROL: 120 return &dev->control; 121 default: 122 return NULL; 123 } 124 } 125 126 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 127 { 128 struct drm_minor *minor; 129 unsigned long flags; 130 int r; 131 132 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 133 if (!minor) 134 return -ENOMEM; 135 136 minor->type = type; 137 minor->dev = dev; 138 139 idr_preload(GFP_KERNEL); 140 spin_lock_irqsave(&drm_minor_lock, flags); 141 r = idr_alloc(&drm_minors_idr, 142 NULL, 143 64 * type, 144 64 * (type + 1), 145 GFP_NOWAIT); 146 spin_unlock_irqrestore(&drm_minor_lock, flags); 147 idr_preload_end(); 148 149 if (r < 0) 150 goto err_free; 151 152 minor->index = r; 153 154 minor->kdev = drm_sysfs_minor_alloc(minor); 155 if (IS_ERR(minor->kdev)) { 156 r = PTR_ERR(minor->kdev); 157 goto err_index; 158 } 159 160 *drm_minor_get_slot(dev, type) = minor; 161 return 0; 162 163 err_index: 164 spin_lock_irqsave(&drm_minor_lock, flags); 165 idr_remove(&drm_minors_idr, minor->index); 166 spin_unlock_irqrestore(&drm_minor_lock, flags); 167 err_free: 168 kfree(minor); 169 return r; 170 } 171 172 static void drm_minor_free(struct drm_device *dev, unsigned int type) 173 { 174 struct drm_minor **slot, *minor; 175 unsigned long flags; 176 177 slot = drm_minor_get_slot(dev, type); 178 minor = *slot; 179 if (!minor) 180 return; 181 182 put_device(minor->kdev); 183 184 spin_lock_irqsave(&drm_minor_lock, flags); 185 idr_remove(&drm_minors_idr, minor->index); 186 spin_unlock_irqrestore(&drm_minor_lock, flags); 187 188 kfree(minor); 189 *slot = NULL; 190 } 191 192 static int drm_minor_register(struct drm_device *dev, unsigned int type) 193 { 194 struct drm_minor *minor; 195 unsigned long flags; 196 int ret; 197 198 DRM_DEBUG("\n"); 199 200 minor = *drm_minor_get_slot(dev, type); 201 if (!minor) 202 return 0; 203 204 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 205 if (ret) { 206 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 207 return ret; 208 } 209 210 ret = device_add(minor->kdev); 211 if (ret) 212 goto err_debugfs; 213 214 /* replace NULL with @minor so lookups will succeed from now on */ 215 spin_lock_irqsave(&drm_minor_lock, flags); 216 idr_replace(&drm_minors_idr, minor, minor->index); 217 spin_unlock_irqrestore(&drm_minor_lock, flags); 218 219 DRM_DEBUG("new minor registered %d\n", minor->index); 220 return 0; 221 222 err_debugfs: 223 drm_debugfs_cleanup(minor); 224 return ret; 225 } 226 227 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 228 { 229 struct drm_minor *minor; 230 unsigned long flags; 231 232 minor = *drm_minor_get_slot(dev, type); 233 if (!minor || !device_is_registered(minor->kdev)) 234 return; 235 236 /* replace @minor with NULL so lookups will fail from now on */ 237 spin_lock_irqsave(&drm_minor_lock, flags); 238 idr_replace(&drm_minors_idr, NULL, minor->index); 239 spin_unlock_irqrestore(&drm_minor_lock, flags); 240 241 device_del(minor->kdev); 242 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 243 drm_debugfs_cleanup(minor); 244 } 245 246 /** 247 * drm_minor_acquire - Acquire a DRM minor 248 * @minor_id: Minor ID of the DRM-minor 249 * 250 * Looks up the given minor-ID and returns the respective DRM-minor object. The 251 * refence-count of the underlying device is increased so you must release this 252 * object with drm_minor_release(). 253 * 254 * As long as you hold this minor, it is guaranteed that the object and the 255 * minor->dev pointer will stay valid! However, the device may get unplugged and 256 * unregistered while you hold the minor. 257 * 258 * Returns: 259 * Pointer to minor-object with increased device-refcount, or PTR_ERR on 260 * failure. 261 */ 262 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 263 { 264 struct drm_minor *minor; 265 unsigned long flags; 266 267 spin_lock_irqsave(&drm_minor_lock, flags); 268 minor = idr_find(&drm_minors_idr, minor_id); 269 if (minor) 270 drm_dev_ref(minor->dev); 271 spin_unlock_irqrestore(&drm_minor_lock, flags); 272 273 if (!minor) { 274 return ERR_PTR(-ENODEV); 275 } else if (drm_device_is_unplugged(minor->dev)) { 276 drm_dev_unref(minor->dev); 277 return ERR_PTR(-ENODEV); 278 } 279 280 return minor; 281 } 282 283 /** 284 * drm_minor_release - Release DRM minor 285 * @minor: Pointer to DRM minor object 286 * 287 * Release a minor that was previously acquired via drm_minor_acquire(). 288 */ 289 void drm_minor_release(struct drm_minor *minor) 290 { 291 drm_dev_unref(minor->dev); 292 } 293 294 /** 295 * DOC: driver instance overview 296 * 297 * A device instance for a drm driver is represented by struct &drm_device. This 298 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe() 299 * callbacks implemented by the driver. The driver then needs to initialize all 300 * the various subsystems for the drm device like memory management, vblank 301 * handling, modesetting support and intial output configuration plus obviously 302 * initialize all the corresponding hardware bits. Finally when everything is up 303 * and running and ready for userspace the device instance can be published 304 * using drm_dev_register(). 305 * 306 * There is also deprecated support for initalizing device instances using 307 * bus-specific helpers and the ->load() callback. But due to 308 * backwards-compatibility needs the device instance have to be published too 309 * early, which requires unpretty global locking to make safe and is therefore 310 * only support for existing drivers not yet converted to the new scheme. 311 * 312 * When cleaning up a device instance everything needs to be done in reverse: 313 * First unpublish the device instance with drm_dev_unregister(). Then clean up 314 * any other resources allocated at device initialization and drop the driver's 315 * reference to &drm_device using drm_dev_unref(). 316 * 317 * Note that the lifetime rules for &drm_device instance has still a lot of 318 * historical baggage. Hence use the reference counting provided by 319 * drm_dev_ref() and drm_dev_unref() only carefully. 320 * 321 * Also note that embedding of &drm_device is currently not (yet) supported (but 322 * it would be easy to add). Drivers can store driver-private data in the 323 * dev_priv field of &drm_device. 324 */ 325 326 static int drm_dev_set_unique(struct drm_device *dev, const char *name) 327 { 328 kfree(dev->unique); 329 dev->unique = kstrdup(name, GFP_KERNEL); 330 331 return dev->unique ? 0 : -ENOMEM; 332 } 333 334 /** 335 * drm_put_dev - Unregister and release a DRM device 336 * @dev: DRM device 337 * 338 * Called at module unload time or when a PCI device is unplugged. 339 * 340 * Cleans up all DRM device, calling drm_lastclose(). 341 * 342 * Note: Use of this function is deprecated. It will eventually go away 343 * completely. Please use drm_dev_unregister() and drm_dev_unref() explicitly 344 * instead to make sure that the device isn't userspace accessible any more 345 * while teardown is in progress, ensuring that userspace can't access an 346 * inconsistent state. 347 */ 348 void drm_put_dev(struct drm_device *dev) 349 { 350 DRM_DEBUG("\n"); 351 352 if (!dev) { 353 DRM_ERROR("cleanup called no dev\n"); 354 return; 355 } 356 357 drm_dev_unregister(dev); 358 drm_dev_unref(dev); 359 } 360 EXPORT_SYMBOL(drm_put_dev); 361 362 void drm_unplug_dev(struct drm_device *dev) 363 { 364 /* for a USB device */ 365 drm_dev_unregister(dev); 366 367 mutex_lock(&drm_global_mutex); 368 369 drm_device_set_unplugged(dev); 370 371 if (dev->open_count == 0) { 372 drm_put_dev(dev); 373 } 374 mutex_unlock(&drm_global_mutex); 375 } 376 EXPORT_SYMBOL(drm_unplug_dev); 377 378 /* 379 * DRM internal mount 380 * We want to be able to allocate our own "struct address_space" to control 381 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 382 * stand-alone address_space objects, so we need an underlying inode. As there 383 * is no way to allocate an independent inode easily, we need a fake internal 384 * VFS mount-point. 385 * 386 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 387 * frees it again. You are allowed to use iget() and iput() to get references to 388 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 389 * drm_fs_inode_free() call (which does not have to be the last iput()). 390 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 391 * between multiple inode-users. You could, technically, call 392 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 393 * iput(), but this way you'd end up with a new vfsmount for each inode. 394 */ 395 396 static int drm_fs_cnt; 397 static struct vfsmount *drm_fs_mnt; 398 399 static const struct dentry_operations drm_fs_dops = { 400 .d_dname = simple_dname, 401 }; 402 403 static const struct super_operations drm_fs_sops = { 404 .statfs = simple_statfs, 405 }; 406 407 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, 408 const char *dev_name, void *data) 409 { 410 return mount_pseudo(fs_type, 411 "drm:", 412 &drm_fs_sops, 413 &drm_fs_dops, 414 0x010203ff); 415 } 416 417 static struct file_system_type drm_fs_type = { 418 .name = "drm", 419 .owner = THIS_MODULE, 420 .mount = drm_fs_mount, 421 .kill_sb = kill_anon_super, 422 }; 423 424 static struct inode *drm_fs_inode_new(void) 425 { 426 struct inode *inode; 427 int r; 428 429 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 430 if (r < 0) { 431 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 432 return ERR_PTR(r); 433 } 434 435 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 436 if (IS_ERR(inode)) 437 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 438 439 return inode; 440 } 441 442 static void drm_fs_inode_free(struct inode *inode) 443 { 444 if (inode) { 445 iput(inode); 446 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 447 } 448 } 449 450 /** 451 * drm_dev_init - Initialise new DRM device 452 * @dev: DRM device 453 * @driver: DRM driver 454 * @parent: Parent device object 455 * 456 * Initialize a new DRM device. No device registration is done. 457 * Call drm_dev_register() to advertice the device to user space and register it 458 * with other core subsystems. This should be done last in the device 459 * initialization sequence to make sure userspace can't access an inconsistent 460 * state. 461 * 462 * The initial ref-count of the object is 1. Use drm_dev_ref() and 463 * drm_dev_unref() to take and drop further ref-counts. 464 * 465 * Note that for purely virtual devices @parent can be NULL. 466 * 467 * Drivers that do not want to allocate their own device struct 468 * embedding struct &drm_device can call drm_dev_alloc() instead. 469 * 470 * RETURNS: 471 * 0 on success, or error code on failure. 472 */ 473 int drm_dev_init(struct drm_device *dev, 474 struct drm_driver *driver, 475 struct device *parent) 476 { 477 int ret; 478 479 kref_init(&dev->ref); 480 dev->dev = parent; 481 dev->driver = driver; 482 483 INIT_LIST_HEAD(&dev->filelist); 484 INIT_LIST_HEAD(&dev->ctxlist); 485 INIT_LIST_HEAD(&dev->vmalist); 486 INIT_LIST_HEAD(&dev->maplist); 487 INIT_LIST_HEAD(&dev->vblank_event_list); 488 489 spin_lock_init(&dev->buf_lock); 490 spin_lock_init(&dev->event_lock); 491 mutex_init(&dev->struct_mutex); 492 mutex_init(&dev->filelist_mutex); 493 mutex_init(&dev->ctxlist_mutex); 494 mutex_init(&dev->master_mutex); 495 496 dev->anon_inode = drm_fs_inode_new(); 497 if (IS_ERR(dev->anon_inode)) { 498 ret = PTR_ERR(dev->anon_inode); 499 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 500 goto err_free; 501 } 502 503 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 504 ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL); 505 if (ret) 506 goto err_minors; 507 } 508 509 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 510 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 511 if (ret) 512 goto err_minors; 513 } 514 515 ret = drm_minor_alloc(dev, DRM_MINOR_LEGACY); 516 if (ret) 517 goto err_minors; 518 519 ret = drm_ht_create(&dev->map_hash, 12); 520 if (ret) 521 goto err_minors; 522 523 drm_legacy_ctxbitmap_init(dev); 524 525 if (drm_core_check_feature(dev, DRIVER_GEM)) { 526 ret = drm_gem_init(dev); 527 if (ret) { 528 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 529 goto err_ctxbitmap; 530 } 531 } 532 533 /* Use the parent device name as DRM device unique identifier, but fall 534 * back to the driver name for virtual devices like vgem. */ 535 ret = drm_dev_set_unique(dev, parent ? dev_name(parent) : driver->name); 536 if (ret) 537 goto err_setunique; 538 539 return 0; 540 541 err_setunique: 542 if (drm_core_check_feature(dev, DRIVER_GEM)) 543 drm_gem_destroy(dev); 544 err_ctxbitmap: 545 drm_legacy_ctxbitmap_cleanup(dev); 546 drm_ht_remove(&dev->map_hash); 547 err_minors: 548 drm_minor_free(dev, DRM_MINOR_LEGACY); 549 drm_minor_free(dev, DRM_MINOR_RENDER); 550 drm_minor_free(dev, DRM_MINOR_CONTROL); 551 drm_fs_inode_free(dev->anon_inode); 552 err_free: 553 mutex_destroy(&dev->master_mutex); 554 return ret; 555 } 556 EXPORT_SYMBOL(drm_dev_init); 557 558 /** 559 * drm_dev_alloc - Allocate new DRM device 560 * @driver: DRM driver to allocate device for 561 * @parent: Parent device object 562 * 563 * Allocate and initialize a new DRM device. No device registration is done. 564 * Call drm_dev_register() to advertice the device to user space and register it 565 * with other core subsystems. This should be done last in the device 566 * initialization sequence to make sure userspace can't access an inconsistent 567 * state. 568 * 569 * The initial ref-count of the object is 1. Use drm_dev_ref() and 570 * drm_dev_unref() to take and drop further ref-counts. 571 * 572 * Note that for purely virtual devices @parent can be NULL. 573 * 574 * Drivers that wish to subclass or embed struct &drm_device into their 575 * own struct should look at using drm_dev_init() instead. 576 * 577 * RETURNS: 578 * Pointer to new DRM device, or NULL if out of memory. 579 */ 580 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 581 struct device *parent) 582 { 583 struct drm_device *dev; 584 int ret; 585 586 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 587 if (!dev) 588 return NULL; 589 590 ret = drm_dev_init(dev, driver, parent); 591 if (ret) { 592 kfree(dev); 593 return NULL; 594 } 595 596 return dev; 597 } 598 EXPORT_SYMBOL(drm_dev_alloc); 599 600 static void drm_dev_release(struct kref *ref) 601 { 602 struct drm_device *dev = container_of(ref, struct drm_device, ref); 603 604 if (drm_core_check_feature(dev, DRIVER_GEM)) 605 drm_gem_destroy(dev); 606 607 drm_legacy_ctxbitmap_cleanup(dev); 608 drm_ht_remove(&dev->map_hash); 609 drm_fs_inode_free(dev->anon_inode); 610 611 drm_minor_free(dev, DRM_MINOR_LEGACY); 612 drm_minor_free(dev, DRM_MINOR_RENDER); 613 drm_minor_free(dev, DRM_MINOR_CONTROL); 614 615 mutex_destroy(&dev->master_mutex); 616 kfree(dev->unique); 617 kfree(dev); 618 } 619 620 /** 621 * drm_dev_ref - Take reference of a DRM device 622 * @dev: device to take reference of or NULL 623 * 624 * This increases the ref-count of @dev by one. You *must* already own a 625 * reference when calling this. Use drm_dev_unref() to drop this reference 626 * again. 627 * 628 * This function never fails. However, this function does not provide *any* 629 * guarantee whether the device is alive or running. It only provides a 630 * reference to the object and the memory associated with it. 631 */ 632 void drm_dev_ref(struct drm_device *dev) 633 { 634 if (dev) 635 kref_get(&dev->ref); 636 } 637 EXPORT_SYMBOL(drm_dev_ref); 638 639 /** 640 * drm_dev_unref - Drop reference of a DRM device 641 * @dev: device to drop reference of or NULL 642 * 643 * This decreases the ref-count of @dev by one. The device is destroyed if the 644 * ref-count drops to zero. 645 */ 646 void drm_dev_unref(struct drm_device *dev) 647 { 648 if (dev) 649 kref_put(&dev->ref, drm_dev_release); 650 } 651 EXPORT_SYMBOL(drm_dev_unref); 652 653 /** 654 * drm_dev_register - Register DRM device 655 * @dev: Device to register 656 * @flags: Flags passed to the driver's .load() function 657 * 658 * Register the DRM device @dev with the system, advertise device to user-space 659 * and start normal device operation. @dev must be allocated via drm_dev_alloc() 660 * previously. 661 * 662 * Never call this twice on any device! 663 * 664 * NOTE: To ensure backward compatibility with existing drivers method this 665 * function calls the ->load() method after registering the device nodes, 666 * creating race conditions. Usage of the ->load() methods is therefore 667 * deprecated, drivers must perform all initialization before calling 668 * drm_dev_register(). 669 * 670 * RETURNS: 671 * 0 on success, negative error code on failure. 672 */ 673 int drm_dev_register(struct drm_device *dev, unsigned long flags) 674 { 675 int ret; 676 677 mutex_lock(&drm_global_mutex); 678 679 ret = drm_minor_register(dev, DRM_MINOR_CONTROL); 680 if (ret) 681 goto err_minors; 682 683 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 684 if (ret) 685 goto err_minors; 686 687 ret = drm_minor_register(dev, DRM_MINOR_LEGACY); 688 if (ret) 689 goto err_minors; 690 691 if (dev->driver->load) { 692 ret = dev->driver->load(dev, flags); 693 if (ret) 694 goto err_minors; 695 } 696 697 if (drm_core_check_feature(dev, DRIVER_MODESET)) 698 drm_modeset_register_all(dev); 699 700 ret = 0; 701 goto out_unlock; 702 703 err_minors: 704 drm_minor_unregister(dev, DRM_MINOR_LEGACY); 705 drm_minor_unregister(dev, DRM_MINOR_RENDER); 706 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 707 out_unlock: 708 mutex_unlock(&drm_global_mutex); 709 return ret; 710 } 711 EXPORT_SYMBOL(drm_dev_register); 712 713 /** 714 * drm_dev_unregister - Unregister DRM device 715 * @dev: Device to unregister 716 * 717 * Unregister the DRM device from the system. This does the reverse of 718 * drm_dev_register() but does not deallocate the device. The caller must call 719 * drm_dev_unref() to drop their final reference. 720 * 721 * This should be called first in the device teardown code to make sure 722 * userspace can't access the device instance any more. 723 */ 724 void drm_dev_unregister(struct drm_device *dev) 725 { 726 struct drm_map_list *r_list, *list_temp; 727 728 drm_lastclose(dev); 729 730 if (drm_core_check_feature(dev, DRIVER_MODESET)) 731 drm_modeset_unregister_all(dev); 732 733 if (dev->driver->unload) 734 dev->driver->unload(dev); 735 736 if (dev->agp) 737 drm_pci_agp_destroy(dev); 738 739 drm_vblank_cleanup(dev); 740 741 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) 742 drm_legacy_rmmap(dev, r_list->map); 743 744 drm_minor_unregister(dev, DRM_MINOR_LEGACY); 745 drm_minor_unregister(dev, DRM_MINOR_RENDER); 746 drm_minor_unregister(dev, DRM_MINOR_CONTROL); 747 } 748 EXPORT_SYMBOL(drm_dev_unregister); 749 750 /* 751 * DRM Core 752 * The DRM core module initializes all global DRM objects and makes them 753 * available to drivers. Once setup, drivers can probe their respective 754 * devices. 755 * Currently, core management includes: 756 * - The "DRM-Global" key/value database 757 * - Global ID management for connectors 758 * - DRM major number allocation 759 * - DRM minor management 760 * - DRM sysfs class 761 * - DRM debugfs root 762 * 763 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 764 * interface registered on a DRM device, you can request minor numbers from DRM 765 * core. DRM core takes care of major-number management and char-dev 766 * registration. A stub ->open() callback forwards any open() requests to the 767 * registered minor. 768 */ 769 770 static int drm_stub_open(struct inode *inode, struct file *filp) 771 { 772 const struct file_operations *new_fops; 773 struct drm_minor *minor; 774 int err; 775 776 DRM_DEBUG("\n"); 777 778 mutex_lock(&drm_global_mutex); 779 minor = drm_minor_acquire(iminor(inode)); 780 if (IS_ERR(minor)) { 781 err = PTR_ERR(minor); 782 goto out_unlock; 783 } 784 785 new_fops = fops_get(minor->dev->driver->fops); 786 if (!new_fops) { 787 err = -ENODEV; 788 goto out_release; 789 } 790 791 replace_fops(filp, new_fops); 792 if (filp->f_op->open) 793 err = filp->f_op->open(inode, filp); 794 else 795 err = 0; 796 797 out_release: 798 drm_minor_release(minor); 799 out_unlock: 800 mutex_unlock(&drm_global_mutex); 801 return err; 802 } 803 804 static const struct file_operations drm_stub_fops = { 805 .owner = THIS_MODULE, 806 .open = drm_stub_open, 807 .llseek = noop_llseek, 808 }; 809 810 static int __init drm_core_init(void) 811 { 812 int ret = -ENOMEM; 813 814 drm_global_init(); 815 drm_connector_ida_init(); 816 idr_init(&drm_minors_idr); 817 818 if (register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops)) 819 goto err_p1; 820 821 ret = drm_sysfs_init(); 822 if (ret < 0) { 823 printk(KERN_ERR "DRM: Error creating drm class.\n"); 824 goto err_p2; 825 } 826 827 drm_debugfs_root = debugfs_create_dir("dri", NULL); 828 if (!drm_debugfs_root) { 829 DRM_ERROR("Cannot create /sys/kernel/debug/dri\n"); 830 ret = -1; 831 goto err_p3; 832 } 833 834 DRM_INFO("Initialized %s %d.%d.%d %s\n", 835 CORE_NAME, CORE_MAJOR, CORE_MINOR, CORE_PATCHLEVEL, CORE_DATE); 836 return 0; 837 err_p3: 838 drm_sysfs_destroy(); 839 err_p2: 840 unregister_chrdev(DRM_MAJOR, "drm"); 841 842 idr_destroy(&drm_minors_idr); 843 err_p1: 844 return ret; 845 } 846 847 static void __exit drm_core_exit(void) 848 { 849 debugfs_remove(drm_debugfs_root); 850 drm_sysfs_destroy(); 851 852 unregister_chrdev(DRM_MAJOR, "drm"); 853 854 drm_connector_ida_destroy(); 855 idr_destroy(&drm_minors_idr); 856 } 857 858 module_init(drm_core_init); 859 module_exit(drm_core_exit); 860