1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/pseudo_fs.h> 35 #include <linux/slab.h> 36 #include <linux/srcu.h> 37 38 #include <drm/drm_accel.h> 39 #include <drm/drm_cache.h> 40 #include <drm/drm_client.h> 41 #include <drm/drm_color_mgmt.h> 42 #include <drm/drm_drv.h> 43 #include <drm/drm_file.h> 44 #include <drm/drm_managed.h> 45 #include <drm/drm_mode_object.h> 46 #include <drm/drm_print.h> 47 #include <drm/drm_privacy_screen_machine.h> 48 49 #include "drm_crtc_internal.h" 50 #include "drm_internal.h" 51 #include "drm_legacy.h" 52 53 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 54 MODULE_DESCRIPTION("DRM shared core routines"); 55 MODULE_LICENSE("GPL and additional rights"); 56 57 static DEFINE_SPINLOCK(drm_minor_lock); 58 static struct idr drm_minors_idr; 59 60 /* 61 * If the drm core fails to init for whatever reason, 62 * we should prevent any drivers from registering with it. 63 * It's best to check this at drm_dev_init(), as some drivers 64 * prefer to embed struct drm_device into their own device 65 * structure and call drm_dev_init() themselves. 66 */ 67 static bool drm_core_init_complete; 68 69 static struct dentry *drm_debugfs_root; 70 71 DEFINE_STATIC_SRCU(drm_unplug_srcu); 72 73 /* 74 * DRM Minors 75 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 76 * of them is represented by a drm_minor object. Depending on the capabilities 77 * of the device-driver, different interfaces are registered. 78 * 79 * Minors can be accessed via dev->$minor_name. This pointer is either 80 * NULL or a valid drm_minor pointer and stays valid as long as the device is 81 * valid. This means, DRM minors have the same life-time as the underlying 82 * device. However, this doesn't mean that the minor is active. Minors are 83 * registered and unregistered dynamically according to device-state. 84 */ 85 86 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 87 enum drm_minor_type type) 88 { 89 switch (type) { 90 case DRM_MINOR_PRIMARY: 91 return &dev->primary; 92 case DRM_MINOR_RENDER: 93 return &dev->render; 94 case DRM_MINOR_ACCEL: 95 return &dev->accel; 96 default: 97 BUG(); 98 } 99 } 100 101 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 102 { 103 struct drm_minor *minor = data; 104 unsigned long flags; 105 106 WARN_ON(dev != minor->dev); 107 108 put_device(minor->kdev); 109 110 if (minor->type == DRM_MINOR_ACCEL) { 111 accel_minor_remove(minor->index); 112 } else { 113 spin_lock_irqsave(&drm_minor_lock, flags); 114 idr_remove(&drm_minors_idr, minor->index); 115 spin_unlock_irqrestore(&drm_minor_lock, flags); 116 } 117 } 118 119 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type) 120 { 121 struct drm_minor *minor; 122 unsigned long flags; 123 int r; 124 125 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 126 if (!minor) 127 return -ENOMEM; 128 129 minor->type = type; 130 minor->dev = dev; 131 132 idr_preload(GFP_KERNEL); 133 if (type == DRM_MINOR_ACCEL) { 134 r = accel_minor_alloc(); 135 } else { 136 spin_lock_irqsave(&drm_minor_lock, flags); 137 r = idr_alloc(&drm_minors_idr, 138 NULL, 139 64 * type, 140 64 * (type + 1), 141 GFP_NOWAIT); 142 spin_unlock_irqrestore(&drm_minor_lock, flags); 143 } 144 idr_preload_end(); 145 146 if (r < 0) 147 return r; 148 149 minor->index = r; 150 151 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 152 if (r) 153 return r; 154 155 minor->kdev = drm_sysfs_minor_alloc(minor); 156 if (IS_ERR(minor->kdev)) 157 return PTR_ERR(minor->kdev); 158 159 *drm_minor_get_slot(dev, type) = minor; 160 return 0; 161 } 162 163 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type) 164 { 165 struct drm_minor *minor; 166 unsigned long flags; 167 int ret; 168 169 DRM_DEBUG("\n"); 170 171 minor = *drm_minor_get_slot(dev, type); 172 if (!minor) 173 return 0; 174 175 if (minor->type != DRM_MINOR_ACCEL) { 176 ret = drm_debugfs_register(minor, minor->index, 177 drm_debugfs_root); 178 if (ret) { 179 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 180 goto err_debugfs; 181 } 182 } 183 184 ret = device_add(minor->kdev); 185 if (ret) 186 goto err_debugfs; 187 188 /* replace NULL with @minor so lookups will succeed from now on */ 189 if (minor->type == DRM_MINOR_ACCEL) { 190 accel_minor_replace(minor, minor->index); 191 } else { 192 spin_lock_irqsave(&drm_minor_lock, flags); 193 idr_replace(&drm_minors_idr, minor, minor->index); 194 spin_unlock_irqrestore(&drm_minor_lock, flags); 195 } 196 197 DRM_DEBUG("new minor registered %d\n", minor->index); 198 return 0; 199 200 err_debugfs: 201 drm_debugfs_unregister(minor); 202 return ret; 203 } 204 205 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type) 206 { 207 struct drm_minor *minor; 208 unsigned long flags; 209 210 minor = *drm_minor_get_slot(dev, type); 211 if (!minor || !device_is_registered(minor->kdev)) 212 return; 213 214 /* replace @minor with NULL so lookups will fail from now on */ 215 if (minor->type == DRM_MINOR_ACCEL) { 216 accel_minor_replace(NULL, minor->index); 217 } else { 218 spin_lock_irqsave(&drm_minor_lock, flags); 219 idr_replace(&drm_minors_idr, NULL, minor->index); 220 spin_unlock_irqrestore(&drm_minor_lock, flags); 221 } 222 223 device_del(minor->kdev); 224 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 225 drm_debugfs_unregister(minor); 226 } 227 228 /* 229 * Looks up the given minor-ID and returns the respective DRM-minor object. The 230 * refence-count of the underlying device is increased so you must release this 231 * object with drm_minor_release(). 232 * 233 * As long as you hold this minor, it is guaranteed that the object and the 234 * minor->dev pointer will stay valid! However, the device may get unplugged and 235 * unregistered while you hold the minor. 236 */ 237 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 238 { 239 struct drm_minor *minor; 240 unsigned long flags; 241 242 spin_lock_irqsave(&drm_minor_lock, flags); 243 minor = idr_find(&drm_minors_idr, minor_id); 244 if (minor) 245 drm_dev_get(minor->dev); 246 spin_unlock_irqrestore(&drm_minor_lock, flags); 247 248 if (!minor) { 249 return ERR_PTR(-ENODEV); 250 } else if (drm_dev_is_unplugged(minor->dev)) { 251 drm_dev_put(minor->dev); 252 return ERR_PTR(-ENODEV); 253 } 254 255 return minor; 256 } 257 258 void drm_minor_release(struct drm_minor *minor) 259 { 260 drm_dev_put(minor->dev); 261 } 262 263 /** 264 * DOC: driver instance overview 265 * 266 * A device instance for a drm driver is represented by &struct drm_device. This 267 * is allocated and initialized with devm_drm_dev_alloc(), usually from 268 * bus-specific ->probe() callbacks implemented by the driver. The driver then 269 * needs to initialize all the various subsystems for the drm device like memory 270 * management, vblank handling, modesetting support and initial output 271 * configuration plus obviously initialize all the corresponding hardware bits. 272 * Finally when everything is up and running and ready for userspace the device 273 * instance can be published using drm_dev_register(). 274 * 275 * There is also deprecated support for initializing device instances using 276 * bus-specific helpers and the &drm_driver.load callback. But due to 277 * backwards-compatibility needs the device instance have to be published too 278 * early, which requires unpretty global locking to make safe and is therefore 279 * only support for existing drivers not yet converted to the new scheme. 280 * 281 * When cleaning up a device instance everything needs to be done in reverse: 282 * First unpublish the device instance with drm_dev_unregister(). Then clean up 283 * any other resources allocated at device initialization and drop the driver's 284 * reference to &drm_device using drm_dev_put(). 285 * 286 * Note that any allocation or resource which is visible to userspace must be 287 * released only when the final drm_dev_put() is called, and not when the 288 * driver is unbound from the underlying physical struct &device. Best to use 289 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 290 * related functions. 291 * 292 * devres managed resources like devm_kmalloc() can only be used for resources 293 * directly related to the underlying hardware device, and only used in code 294 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 295 * 296 * Display driver example 297 * ~~~~~~~~~~~~~~~~~~~~~~ 298 * 299 * The following example shows a typical structure of a DRM display driver. 300 * The example focus on the probe() function and the other functions that is 301 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 302 * 303 * .. code-block:: c 304 * 305 * struct driver_device { 306 * struct drm_device drm; 307 * void *userspace_facing; 308 * struct clk *pclk; 309 * }; 310 * 311 * static const struct drm_driver driver_drm_driver = { 312 * [...] 313 * }; 314 * 315 * static int driver_probe(struct platform_device *pdev) 316 * { 317 * struct driver_device *priv; 318 * struct drm_device *drm; 319 * int ret; 320 * 321 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 322 * struct driver_device, drm); 323 * if (IS_ERR(priv)) 324 * return PTR_ERR(priv); 325 * drm = &priv->drm; 326 * 327 * ret = drmm_mode_config_init(drm); 328 * if (ret) 329 * return ret; 330 * 331 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 332 * if (!priv->userspace_facing) 333 * return -ENOMEM; 334 * 335 * priv->pclk = devm_clk_get(dev, "PCLK"); 336 * if (IS_ERR(priv->pclk)) 337 * return PTR_ERR(priv->pclk); 338 * 339 * // Further setup, display pipeline etc 340 * 341 * platform_set_drvdata(pdev, drm); 342 * 343 * drm_mode_config_reset(drm); 344 * 345 * ret = drm_dev_register(drm); 346 * if (ret) 347 * return ret; 348 * 349 * drm_fbdev_generic_setup(drm, 32); 350 * 351 * return 0; 352 * } 353 * 354 * // This function is called before the devm_ resources are released 355 * static int driver_remove(struct platform_device *pdev) 356 * { 357 * struct drm_device *drm = platform_get_drvdata(pdev); 358 * 359 * drm_dev_unregister(drm); 360 * drm_atomic_helper_shutdown(drm) 361 * 362 * return 0; 363 * } 364 * 365 * // This function is called on kernel restart and shutdown 366 * static void driver_shutdown(struct platform_device *pdev) 367 * { 368 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 369 * } 370 * 371 * static int __maybe_unused driver_pm_suspend(struct device *dev) 372 * { 373 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 374 * } 375 * 376 * static int __maybe_unused driver_pm_resume(struct device *dev) 377 * { 378 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 379 * 380 * return 0; 381 * } 382 * 383 * static const struct dev_pm_ops driver_pm_ops = { 384 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 385 * }; 386 * 387 * static struct platform_driver driver_driver = { 388 * .driver = { 389 * [...] 390 * .pm = &driver_pm_ops, 391 * }, 392 * .probe = driver_probe, 393 * .remove = driver_remove, 394 * .shutdown = driver_shutdown, 395 * }; 396 * module_platform_driver(driver_driver); 397 * 398 * Drivers that want to support device unplugging (USB, DT overlay unload) should 399 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 400 * regions that is accessing device resources to prevent use after they're 401 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 402 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 403 * drm_atomic_helper_shutdown() is called. This means that if the disable code 404 * paths are protected, they will not run on regular driver module unload, 405 * possibly leaving the hardware enabled. 406 */ 407 408 /** 409 * drm_put_dev - Unregister and release a DRM device 410 * @dev: DRM device 411 * 412 * Called at module unload time or when a PCI device is unplugged. 413 * 414 * Cleans up all DRM device, calling drm_lastclose(). 415 * 416 * Note: Use of this function is deprecated. It will eventually go away 417 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 418 * instead to make sure that the device isn't userspace accessible any more 419 * while teardown is in progress, ensuring that userspace can't access an 420 * inconsistent state. 421 */ 422 void drm_put_dev(struct drm_device *dev) 423 { 424 DRM_DEBUG("\n"); 425 426 if (!dev) { 427 DRM_ERROR("cleanup called no dev\n"); 428 return; 429 } 430 431 drm_dev_unregister(dev); 432 drm_dev_put(dev); 433 } 434 EXPORT_SYMBOL(drm_put_dev); 435 436 /** 437 * drm_dev_enter - Enter device critical section 438 * @dev: DRM device 439 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 440 * 441 * This function marks and protects the beginning of a section that should not 442 * be entered after the device has been unplugged. The section end is marked 443 * with drm_dev_exit(). Calls to this function can be nested. 444 * 445 * Returns: 446 * True if it is OK to enter the section, false otherwise. 447 */ 448 bool drm_dev_enter(struct drm_device *dev, int *idx) 449 { 450 *idx = srcu_read_lock(&drm_unplug_srcu); 451 452 if (dev->unplugged) { 453 srcu_read_unlock(&drm_unplug_srcu, *idx); 454 return false; 455 } 456 457 return true; 458 } 459 EXPORT_SYMBOL(drm_dev_enter); 460 461 /** 462 * drm_dev_exit - Exit device critical section 463 * @idx: index returned from drm_dev_enter() 464 * 465 * This function marks the end of a section that should not be entered after 466 * the device has been unplugged. 467 */ 468 void drm_dev_exit(int idx) 469 { 470 srcu_read_unlock(&drm_unplug_srcu, idx); 471 } 472 EXPORT_SYMBOL(drm_dev_exit); 473 474 /** 475 * drm_dev_unplug - unplug a DRM device 476 * @dev: DRM device 477 * 478 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 479 * userspace operations. Entry-points can use drm_dev_enter() and 480 * drm_dev_exit() to protect device resources in a race free manner. This 481 * essentially unregisters the device like drm_dev_unregister(), but can be 482 * called while there are still open users of @dev. 483 */ 484 void drm_dev_unplug(struct drm_device *dev) 485 { 486 /* 487 * After synchronizing any critical read section is guaranteed to see 488 * the new value of ->unplugged, and any critical section which might 489 * still have seen the old value of ->unplugged is guaranteed to have 490 * finished. 491 */ 492 dev->unplugged = true; 493 synchronize_srcu(&drm_unplug_srcu); 494 495 drm_dev_unregister(dev); 496 497 /* Clear all CPU mappings pointing to this device */ 498 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 499 } 500 EXPORT_SYMBOL(drm_dev_unplug); 501 502 /* 503 * DRM internal mount 504 * We want to be able to allocate our own "struct address_space" to control 505 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 506 * stand-alone address_space objects, so we need an underlying inode. As there 507 * is no way to allocate an independent inode easily, we need a fake internal 508 * VFS mount-point. 509 * 510 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 511 * frees it again. You are allowed to use iget() and iput() to get references to 512 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 513 * drm_fs_inode_free() call (which does not have to be the last iput()). 514 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 515 * between multiple inode-users. You could, technically, call 516 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 517 * iput(), but this way you'd end up with a new vfsmount for each inode. 518 */ 519 520 static int drm_fs_cnt; 521 static struct vfsmount *drm_fs_mnt; 522 523 static int drm_fs_init_fs_context(struct fs_context *fc) 524 { 525 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 526 } 527 528 static struct file_system_type drm_fs_type = { 529 .name = "drm", 530 .owner = THIS_MODULE, 531 .init_fs_context = drm_fs_init_fs_context, 532 .kill_sb = kill_anon_super, 533 }; 534 535 static struct inode *drm_fs_inode_new(void) 536 { 537 struct inode *inode; 538 int r; 539 540 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 541 if (r < 0) { 542 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 543 return ERR_PTR(r); 544 } 545 546 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 547 if (IS_ERR(inode)) 548 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 549 550 return inode; 551 } 552 553 static void drm_fs_inode_free(struct inode *inode) 554 { 555 if (inode) { 556 iput(inode); 557 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 558 } 559 } 560 561 /** 562 * DOC: component helper usage recommendations 563 * 564 * DRM drivers that drive hardware where a logical device consists of a pile of 565 * independent hardware blocks are recommended to use the :ref:`component helper 566 * library<component>`. For consistency and better options for code reuse the 567 * following guidelines apply: 568 * 569 * - The entire device initialization procedure should be run from the 570 * &component_master_ops.master_bind callback, starting with 571 * devm_drm_dev_alloc(), then binding all components with 572 * component_bind_all() and finishing with drm_dev_register(). 573 * 574 * - The opaque pointer passed to all components through component_bind_all() 575 * should point at &struct drm_device of the device instance, not some driver 576 * specific private structure. 577 * 578 * - The component helper fills the niche where further standardization of 579 * interfaces is not practical. When there already is, or will be, a 580 * standardized interface like &drm_bridge or &drm_panel, providing its own 581 * functions to find such components at driver load time, like 582 * drm_of_find_panel_or_bridge(), then the component helper should not be 583 * used. 584 */ 585 586 static void drm_dev_init_release(struct drm_device *dev, void *res) 587 { 588 drm_legacy_ctxbitmap_cleanup(dev); 589 drm_legacy_remove_map_hash(dev); 590 drm_fs_inode_free(dev->anon_inode); 591 592 put_device(dev->dev); 593 /* Prevent use-after-free in drm_managed_release when debugging is 594 * enabled. Slightly awkward, but can't really be helped. */ 595 dev->dev = NULL; 596 mutex_destroy(&dev->master_mutex); 597 mutex_destroy(&dev->clientlist_mutex); 598 mutex_destroy(&dev->filelist_mutex); 599 mutex_destroy(&dev->struct_mutex); 600 drm_legacy_destroy_members(dev); 601 } 602 603 static int drm_dev_init(struct drm_device *dev, 604 const struct drm_driver *driver, 605 struct device *parent) 606 { 607 struct inode *inode; 608 int ret; 609 610 if (!drm_core_init_complete) { 611 DRM_ERROR("DRM core is not initialized\n"); 612 return -ENODEV; 613 } 614 615 if (WARN_ON(!parent)) 616 return -EINVAL; 617 618 kref_init(&dev->ref); 619 dev->dev = get_device(parent); 620 dev->driver = driver; 621 622 INIT_LIST_HEAD(&dev->managed.resources); 623 spin_lock_init(&dev->managed.lock); 624 625 /* no per-device feature limits by default */ 626 dev->driver_features = ~0u; 627 628 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 629 (drm_core_check_feature(dev, DRIVER_RENDER) || 630 drm_core_check_feature(dev, DRIVER_MODESET))) { 631 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 632 return -EINVAL; 633 } 634 635 drm_legacy_init_members(dev); 636 INIT_LIST_HEAD(&dev->filelist); 637 INIT_LIST_HEAD(&dev->filelist_internal); 638 INIT_LIST_HEAD(&dev->clientlist); 639 INIT_LIST_HEAD(&dev->vblank_event_list); 640 641 spin_lock_init(&dev->event_lock); 642 mutex_init(&dev->struct_mutex); 643 mutex_init(&dev->filelist_mutex); 644 mutex_init(&dev->clientlist_mutex); 645 mutex_init(&dev->master_mutex); 646 647 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 648 if (ret) 649 return ret; 650 651 inode = drm_fs_inode_new(); 652 if (IS_ERR(inode)) { 653 ret = PTR_ERR(inode); 654 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 655 goto err; 656 } 657 658 dev->anon_inode = inode; 659 660 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 661 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 662 if (ret) 663 goto err; 664 } else { 665 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 666 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 667 if (ret) 668 goto err; 669 } 670 671 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 672 if (ret) 673 goto err; 674 } 675 676 ret = drm_legacy_create_map_hash(dev); 677 if (ret) 678 goto err; 679 680 drm_legacy_ctxbitmap_init(dev); 681 682 if (drm_core_check_feature(dev, DRIVER_GEM)) { 683 ret = drm_gem_init(dev); 684 if (ret) { 685 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 686 goto err; 687 } 688 } 689 690 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL); 691 if (!dev->unique) { 692 ret = -ENOMEM; 693 goto err; 694 } 695 696 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 697 accel_debugfs_init(dev); 698 else 699 drm_debugfs_dev_init(dev, drm_debugfs_root); 700 701 return 0; 702 703 err: 704 drm_managed_release(dev); 705 706 return ret; 707 } 708 709 static void devm_drm_dev_init_release(void *data) 710 { 711 drm_dev_put(data); 712 } 713 714 static int devm_drm_dev_init(struct device *parent, 715 struct drm_device *dev, 716 const struct drm_driver *driver) 717 { 718 int ret; 719 720 ret = drm_dev_init(dev, driver, parent); 721 if (ret) 722 return ret; 723 724 return devm_add_action_or_reset(parent, 725 devm_drm_dev_init_release, dev); 726 } 727 728 void *__devm_drm_dev_alloc(struct device *parent, 729 const struct drm_driver *driver, 730 size_t size, size_t offset) 731 { 732 void *container; 733 struct drm_device *drm; 734 int ret; 735 736 container = kzalloc(size, GFP_KERNEL); 737 if (!container) 738 return ERR_PTR(-ENOMEM); 739 740 drm = container + offset; 741 ret = devm_drm_dev_init(parent, drm, driver); 742 if (ret) { 743 kfree(container); 744 return ERR_PTR(ret); 745 } 746 drmm_add_final_kfree(drm, container); 747 748 return container; 749 } 750 EXPORT_SYMBOL(__devm_drm_dev_alloc); 751 752 /** 753 * drm_dev_alloc - Allocate new DRM device 754 * @driver: DRM driver to allocate device for 755 * @parent: Parent device object 756 * 757 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 758 * subclassing through embedding the struct &drm_device in a driver private 759 * structure, and which does not support automatic cleanup through devres. 760 * 761 * RETURNS: 762 * Pointer to new DRM device, or ERR_PTR on failure. 763 */ 764 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 765 struct device *parent) 766 { 767 struct drm_device *dev; 768 int ret; 769 770 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 771 if (!dev) 772 return ERR_PTR(-ENOMEM); 773 774 ret = drm_dev_init(dev, driver, parent); 775 if (ret) { 776 kfree(dev); 777 return ERR_PTR(ret); 778 } 779 780 drmm_add_final_kfree(dev, dev); 781 782 return dev; 783 } 784 EXPORT_SYMBOL(drm_dev_alloc); 785 786 static void drm_dev_release(struct kref *ref) 787 { 788 struct drm_device *dev = container_of(ref, struct drm_device, ref); 789 790 /* Just in case register/unregister was never called */ 791 drm_debugfs_dev_fini(dev); 792 793 if (dev->driver->release) 794 dev->driver->release(dev); 795 796 drm_managed_release(dev); 797 798 kfree(dev->managed.final_kfree); 799 } 800 801 /** 802 * drm_dev_get - Take reference of a DRM device 803 * @dev: device to take reference of or NULL 804 * 805 * This increases the ref-count of @dev by one. You *must* already own a 806 * reference when calling this. Use drm_dev_put() to drop this reference 807 * again. 808 * 809 * This function never fails. However, this function does not provide *any* 810 * guarantee whether the device is alive or running. It only provides a 811 * reference to the object and the memory associated with it. 812 */ 813 void drm_dev_get(struct drm_device *dev) 814 { 815 if (dev) 816 kref_get(&dev->ref); 817 } 818 EXPORT_SYMBOL(drm_dev_get); 819 820 /** 821 * drm_dev_put - Drop reference of a DRM device 822 * @dev: device to drop reference of or NULL 823 * 824 * This decreases the ref-count of @dev by one. The device is destroyed if the 825 * ref-count drops to zero. 826 */ 827 void drm_dev_put(struct drm_device *dev) 828 { 829 if (dev) 830 kref_put(&dev->ref, drm_dev_release); 831 } 832 EXPORT_SYMBOL(drm_dev_put); 833 834 static int create_compat_control_link(struct drm_device *dev) 835 { 836 struct drm_minor *minor; 837 char *name; 838 int ret; 839 840 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 841 return 0; 842 843 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 844 if (!minor) 845 return 0; 846 847 /* 848 * Some existing userspace out there uses the existing of the controlD* 849 * sysfs files to figure out whether it's a modeset driver. It only does 850 * readdir, hence a symlink is sufficient (and the least confusing 851 * option). Otherwise controlD* is entirely unused. 852 * 853 * Old controlD chardev have been allocated in the range 854 * 64-127. 855 */ 856 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 857 if (!name) 858 return -ENOMEM; 859 860 ret = sysfs_create_link(minor->kdev->kobj.parent, 861 &minor->kdev->kobj, 862 name); 863 864 kfree(name); 865 866 return ret; 867 } 868 869 static void remove_compat_control_link(struct drm_device *dev) 870 { 871 struct drm_minor *minor; 872 char *name; 873 874 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 875 return; 876 877 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 878 if (!minor) 879 return; 880 881 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 882 if (!name) 883 return; 884 885 sysfs_remove_link(minor->kdev->kobj.parent, name); 886 887 kfree(name); 888 } 889 890 /** 891 * drm_dev_register - Register DRM device 892 * @dev: Device to register 893 * @flags: Flags passed to the driver's .load() function 894 * 895 * Register the DRM device @dev with the system, advertise device to user-space 896 * and start normal device operation. @dev must be initialized via drm_dev_init() 897 * previously. 898 * 899 * Never call this twice on any device! 900 * 901 * NOTE: To ensure backward compatibility with existing drivers method this 902 * function calls the &drm_driver.load method after registering the device 903 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 904 * therefore deprecated, drivers must perform all initialization before calling 905 * drm_dev_register(). 906 * 907 * RETURNS: 908 * 0 on success, negative error code on failure. 909 */ 910 int drm_dev_register(struct drm_device *dev, unsigned long flags) 911 { 912 const struct drm_driver *driver = dev->driver; 913 int ret; 914 915 if (!driver->load) 916 drm_mode_config_validate(dev); 917 918 WARN_ON(!dev->managed.final_kfree); 919 920 if (drm_dev_needs_global_mutex(dev)) 921 mutex_lock(&drm_global_mutex); 922 923 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 924 accel_debugfs_register(dev); 925 else 926 drm_debugfs_dev_register(dev); 927 928 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 929 if (ret) 930 goto err_minors; 931 932 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 933 if (ret) 934 goto err_minors; 935 936 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 937 if (ret) 938 goto err_minors; 939 940 ret = create_compat_control_link(dev); 941 if (ret) 942 goto err_minors; 943 944 dev->registered = true; 945 946 if (driver->load) { 947 ret = driver->load(dev, flags); 948 if (ret) 949 goto err_minors; 950 } 951 952 if (drm_core_check_feature(dev, DRIVER_MODESET)) 953 drm_modeset_register_all(dev); 954 955 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 956 driver->name, driver->major, driver->minor, 957 driver->patchlevel, driver->date, 958 dev->dev ? dev_name(dev->dev) : "virtual device", 959 dev->primary ? dev->primary->index : dev->accel->index); 960 961 goto out_unlock; 962 963 err_minors: 964 remove_compat_control_link(dev); 965 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 966 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 967 drm_minor_unregister(dev, DRM_MINOR_RENDER); 968 out_unlock: 969 if (drm_dev_needs_global_mutex(dev)) 970 mutex_unlock(&drm_global_mutex); 971 return ret; 972 } 973 EXPORT_SYMBOL(drm_dev_register); 974 975 /** 976 * drm_dev_unregister - Unregister DRM device 977 * @dev: Device to unregister 978 * 979 * Unregister the DRM device from the system. This does the reverse of 980 * drm_dev_register() but does not deallocate the device. The caller must call 981 * drm_dev_put() to drop their final reference, unless it is managed with devres 982 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is 983 * already an unwind action registered. 984 * 985 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 986 * which can be called while there are still open users of @dev. 987 * 988 * This should be called first in the device teardown code to make sure 989 * userspace can't access the device instance any more. 990 */ 991 void drm_dev_unregister(struct drm_device *dev) 992 { 993 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 994 drm_lastclose(dev); 995 996 dev->registered = false; 997 998 drm_client_dev_unregister(dev); 999 1000 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1001 drm_modeset_unregister_all(dev); 1002 1003 if (dev->driver->unload) 1004 dev->driver->unload(dev); 1005 1006 drm_legacy_pci_agp_destroy(dev); 1007 drm_legacy_rmmaps(dev); 1008 1009 remove_compat_control_link(dev); 1010 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1011 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1012 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1013 drm_debugfs_dev_fini(dev); 1014 } 1015 EXPORT_SYMBOL(drm_dev_unregister); 1016 1017 /* 1018 * DRM Core 1019 * The DRM core module initializes all global DRM objects and makes them 1020 * available to drivers. Once setup, drivers can probe their respective 1021 * devices. 1022 * Currently, core management includes: 1023 * - The "DRM-Global" key/value database 1024 * - Global ID management for connectors 1025 * - DRM major number allocation 1026 * - DRM minor management 1027 * - DRM sysfs class 1028 * - DRM debugfs root 1029 * 1030 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1031 * interface registered on a DRM device, you can request minor numbers from DRM 1032 * core. DRM core takes care of major-number management and char-dev 1033 * registration. A stub ->open() callback forwards any open() requests to the 1034 * registered minor. 1035 */ 1036 1037 static int drm_stub_open(struct inode *inode, struct file *filp) 1038 { 1039 const struct file_operations *new_fops; 1040 struct drm_minor *minor; 1041 int err; 1042 1043 DRM_DEBUG("\n"); 1044 1045 minor = drm_minor_acquire(iminor(inode)); 1046 if (IS_ERR(minor)) 1047 return PTR_ERR(minor); 1048 1049 new_fops = fops_get(minor->dev->driver->fops); 1050 if (!new_fops) { 1051 err = -ENODEV; 1052 goto out; 1053 } 1054 1055 replace_fops(filp, new_fops); 1056 if (filp->f_op->open) 1057 err = filp->f_op->open(inode, filp); 1058 else 1059 err = 0; 1060 1061 out: 1062 drm_minor_release(minor); 1063 1064 return err; 1065 } 1066 1067 static const struct file_operations drm_stub_fops = { 1068 .owner = THIS_MODULE, 1069 .open = drm_stub_open, 1070 .llseek = noop_llseek, 1071 }; 1072 1073 static void drm_core_exit(void) 1074 { 1075 drm_privacy_screen_lookup_exit(); 1076 accel_core_exit(); 1077 unregister_chrdev(DRM_MAJOR, "drm"); 1078 debugfs_remove(drm_debugfs_root); 1079 drm_sysfs_destroy(); 1080 idr_destroy(&drm_minors_idr); 1081 drm_connector_ida_destroy(); 1082 } 1083 1084 static int __init drm_core_init(void) 1085 { 1086 int ret; 1087 1088 drm_connector_ida_init(); 1089 idr_init(&drm_minors_idr); 1090 drm_memcpy_init_early(); 1091 1092 ret = drm_sysfs_init(); 1093 if (ret < 0) { 1094 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1095 goto error; 1096 } 1097 1098 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1099 1100 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1101 if (ret < 0) 1102 goto error; 1103 1104 ret = accel_core_init(); 1105 if (ret < 0) 1106 goto error; 1107 1108 drm_privacy_screen_lookup_init(); 1109 1110 drm_core_init_complete = true; 1111 1112 DRM_DEBUG("Initialized\n"); 1113 return 0; 1114 1115 error: 1116 drm_core_exit(); 1117 return ret; 1118 } 1119 1120 module_init(drm_core_init); 1121 module_exit(drm_core_exit); 1122