xref: /linux/drivers/gpu/drm/drm_drv.c (revision 73b7fd4b209263a92726daca6453a37ecb89eb9d)
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28 
29 #include <linux/bitops.h>
30 #include <linux/cgroup_dmem.h>
31 #include <linux/debugfs.h>
32 #include <linux/fs.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mount.h>
36 #include <linux/pseudo_fs.h>
37 #include <linux/slab.h>
38 #include <linux/sprintf.h>
39 #include <linux/srcu.h>
40 #include <linux/xarray.h>
41 
42 #include <drm/drm_accel.h>
43 #include <drm/drm_bridge.h>
44 #include <drm/drm_cache.h>
45 #include <drm/drm_client_event.h>
46 #include <drm/drm_color_mgmt.h>
47 #include <drm/drm_drv.h>
48 #include <drm/drm_file.h>
49 #include <drm/drm_managed.h>
50 #include <drm/drm_mode_object.h>
51 #include <drm/drm_panic.h>
52 #include <drm/drm_print.h>
53 #include <drm/drm_privacy_screen_machine.h>
54 
55 #include "drm_crtc_internal.h"
56 #include "drm_internal.h"
57 
58 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
59 MODULE_DESCRIPTION("DRM shared core routines");
60 MODULE_LICENSE("GPL and additional rights");
61 
62 DEFINE_XARRAY_ALLOC(drm_minors_xa);
63 
64 /*
65  * If the drm core fails to init for whatever reason,
66  * we should prevent any drivers from registering with it.
67  * It's best to check this at drm_dev_init(), as some drivers
68  * prefer to embed struct drm_device into their own device
69  * structure and call drm_dev_init() themselves.
70  */
71 static bool drm_core_init_complete;
72 
73 static struct dentry *drm_debugfs_root;
74 
75 DEFINE_STATIC_SRCU(drm_unplug_srcu);
76 
77 /*
78  * DRM Minors
79  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
80  * of them is represented by a drm_minor object. Depending on the capabilities
81  * of the device-driver, different interfaces are registered.
82  *
83  * Minors can be accessed via dev->$minor_name. This pointer is either
84  * NULL or a valid drm_minor pointer and stays valid as long as the device is
85  * valid. This means, DRM minors have the same life-time as the underlying
86  * device. However, this doesn't mean that the minor is active. Minors are
87  * registered and unregistered dynamically according to device-state.
88  */
89 
90 static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
91 {
92 	if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
93 		return &drm_minors_xa;
94 #if IS_ENABLED(CONFIG_DRM_ACCEL)
95 	else if (type == DRM_MINOR_ACCEL)
96 		return &accel_minors_xa;
97 #endif
98 	else
99 		return ERR_PTR(-EOPNOTSUPP);
100 }
101 
102 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
103 					     enum drm_minor_type type)
104 {
105 	switch (type) {
106 	case DRM_MINOR_PRIMARY:
107 		return &dev->primary;
108 	case DRM_MINOR_RENDER:
109 		return &dev->render;
110 	case DRM_MINOR_ACCEL:
111 		return &dev->accel;
112 	default:
113 		BUG();
114 	}
115 }
116 
117 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
118 {
119 	struct drm_minor *minor = data;
120 
121 	WARN_ON(dev != minor->dev);
122 
123 	put_device(minor->kdev);
124 
125 	xa_erase(drm_minor_get_xa(minor->type), minor->index);
126 }
127 
128 /*
129  * DRM used to support 64 devices, for backwards compatibility we need to maintain the
130  * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
131  * and 128-191 are render nodes.
132  * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
133  * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
134  * range.
135  */
136 #define DRM_MINOR_LIMIT(t) ({ \
137 	typeof(t) _t = (t); \
138 	_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
139 })
140 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
141 
142 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
143 {
144 	struct drm_minor *minor;
145 	int r;
146 
147 	minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
148 	if (!minor)
149 		return -ENOMEM;
150 
151 	minor->type = type;
152 	minor->dev = dev;
153 
154 	r = xa_alloc(drm_minor_get_xa(type), &minor->index,
155 		     NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
156 	if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
157 		r = xa_alloc(&drm_minors_xa, &minor->index,
158 			     NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
159 	if (r < 0)
160 		return r;
161 
162 	r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
163 	if (r)
164 		return r;
165 
166 	minor->kdev = drm_sysfs_minor_alloc(minor);
167 	if (IS_ERR(minor->kdev))
168 		return PTR_ERR(minor->kdev);
169 
170 	*drm_minor_get_slot(dev, type) = minor;
171 	return 0;
172 }
173 
174 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
175 {
176 	struct drm_minor *minor;
177 	void *entry;
178 	int ret;
179 
180 	DRM_DEBUG("\n");
181 
182 	minor = *drm_minor_get_slot(dev, type);
183 	if (!minor)
184 		return 0;
185 
186 	if (minor->type != DRM_MINOR_ACCEL) {
187 		ret = drm_debugfs_register(minor, minor->index,
188 					   drm_debugfs_root);
189 		if (ret) {
190 			DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
191 			goto err_debugfs;
192 		}
193 	}
194 
195 	ret = device_add(minor->kdev);
196 	if (ret)
197 		goto err_debugfs;
198 
199 	/* replace NULL with @minor so lookups will succeed from now on */
200 	entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
201 	if (xa_is_err(entry)) {
202 		ret = xa_err(entry);
203 		goto err_debugfs;
204 	}
205 	WARN_ON(entry);
206 
207 	DRM_DEBUG("new minor registered %d\n", minor->index);
208 	return 0;
209 
210 err_debugfs:
211 	drm_debugfs_unregister(minor);
212 	return ret;
213 }
214 
215 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
216 {
217 	struct drm_minor *minor;
218 
219 	minor = *drm_minor_get_slot(dev, type);
220 	if (!minor || !device_is_registered(minor->kdev))
221 		return;
222 
223 	/* replace @minor with NULL so lookups will fail from now on */
224 	xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
225 
226 	device_del(minor->kdev);
227 	dev_set_drvdata(minor->kdev, NULL); /* safety belt */
228 	drm_debugfs_unregister(minor);
229 }
230 
231 /*
232  * Looks up the given minor-ID and returns the respective DRM-minor object. The
233  * refence-count of the underlying device is increased so you must release this
234  * object with drm_minor_release().
235  *
236  * As long as you hold this minor, it is guaranteed that the object and the
237  * minor->dev pointer will stay valid! However, the device may get unplugged and
238  * unregistered while you hold the minor.
239  */
240 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
241 {
242 	struct drm_minor *minor;
243 
244 	xa_lock(minor_xa);
245 	minor = xa_load(minor_xa, minor_id);
246 	if (minor)
247 		drm_dev_get(minor->dev);
248 	xa_unlock(minor_xa);
249 
250 	if (!minor) {
251 		return ERR_PTR(-ENODEV);
252 	} else if (drm_dev_is_unplugged(minor->dev)) {
253 		drm_dev_put(minor->dev);
254 		return ERR_PTR(-ENODEV);
255 	}
256 
257 	return minor;
258 }
259 
260 void drm_minor_release(struct drm_minor *minor)
261 {
262 	drm_dev_put(minor->dev);
263 }
264 
265 /**
266  * DOC: driver instance overview
267  *
268  * A device instance for a drm driver is represented by &struct drm_device. This
269  * is allocated and initialized with devm_drm_dev_alloc(), usually from
270  * bus-specific ->probe() callbacks implemented by the driver. The driver then
271  * needs to initialize all the various subsystems for the drm device like memory
272  * management, vblank handling, modesetting support and initial output
273  * configuration plus obviously initialize all the corresponding hardware bits.
274  * Finally when everything is up and running and ready for userspace the device
275  * instance can be published using drm_dev_register().
276  *
277  * There is also deprecated support for initializing device instances using
278  * bus-specific helpers and the &drm_driver.load callback. But due to
279  * backwards-compatibility needs the device instance have to be published too
280  * early, which requires unpretty global locking to make safe and is therefore
281  * only support for existing drivers not yet converted to the new scheme.
282  *
283  * When cleaning up a device instance everything needs to be done in reverse:
284  * First unpublish the device instance with drm_dev_unregister(). Then clean up
285  * any other resources allocated at device initialization and drop the driver's
286  * reference to &drm_device using drm_dev_put().
287  *
288  * Note that any allocation or resource which is visible to userspace must be
289  * released only when the final drm_dev_put() is called, and not when the
290  * driver is unbound from the underlying physical struct &device. Best to use
291  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
292  * related functions.
293  *
294  * devres managed resources like devm_kmalloc() can only be used for resources
295  * directly related to the underlying hardware device, and only used in code
296  * paths fully protected by drm_dev_enter() and drm_dev_exit().
297  *
298  * Display driver example
299  * ~~~~~~~~~~~~~~~~~~~~~~
300  *
301  * The following example shows a typical structure of a DRM display driver.
302  * The example focus on the probe() function and the other functions that is
303  * almost always present and serves as a demonstration of devm_drm_dev_alloc().
304  *
305  * .. code-block:: c
306  *
307  *	struct driver_device {
308  *		struct drm_device drm;
309  *		void *userspace_facing;
310  *		struct clk *pclk;
311  *	};
312  *
313  *	static const struct drm_driver driver_drm_driver = {
314  *		[...]
315  *	};
316  *
317  *	static int driver_probe(struct platform_device *pdev)
318  *	{
319  *		struct driver_device *priv;
320  *		struct drm_device *drm;
321  *		int ret;
322  *
323  *		priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
324  *					  struct driver_device, drm);
325  *		if (IS_ERR(priv))
326  *			return PTR_ERR(priv);
327  *		drm = &priv->drm;
328  *
329  *		ret = drmm_mode_config_init(drm);
330  *		if (ret)
331  *			return ret;
332  *
333  *		priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
334  *		if (!priv->userspace_facing)
335  *			return -ENOMEM;
336  *
337  *		priv->pclk = devm_clk_get(dev, "PCLK");
338  *		if (IS_ERR(priv->pclk))
339  *			return PTR_ERR(priv->pclk);
340  *
341  *		// Further setup, display pipeline etc
342  *
343  *		platform_set_drvdata(pdev, drm);
344  *
345  *		drm_mode_config_reset(drm);
346  *
347  *		ret = drm_dev_register(drm);
348  *		if (ret)
349  *			return ret;
350  *
351  *		drm_fbdev_{...}_setup(drm, 32);
352  *
353  *		return 0;
354  *	}
355  *
356  *	// This function is called before the devm_ resources are released
357  *	static int driver_remove(struct platform_device *pdev)
358  *	{
359  *		struct drm_device *drm = platform_get_drvdata(pdev);
360  *
361  *		drm_dev_unregister(drm);
362  *		drm_atomic_helper_shutdown(drm)
363  *
364  *		return 0;
365  *	}
366  *
367  *	// This function is called on kernel restart and shutdown
368  *	static void driver_shutdown(struct platform_device *pdev)
369  *	{
370  *		drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
371  *	}
372  *
373  *	static int __maybe_unused driver_pm_suspend(struct device *dev)
374  *	{
375  *		return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
376  *	}
377  *
378  *	static int __maybe_unused driver_pm_resume(struct device *dev)
379  *	{
380  *		drm_mode_config_helper_resume(dev_get_drvdata(dev));
381  *
382  *		return 0;
383  *	}
384  *
385  *	static const struct dev_pm_ops driver_pm_ops = {
386  *		SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
387  *	};
388  *
389  *	static struct platform_driver driver_driver = {
390  *		.driver = {
391  *			[...]
392  *			.pm = &driver_pm_ops,
393  *		},
394  *		.probe = driver_probe,
395  *		.remove = driver_remove,
396  *		.shutdown = driver_shutdown,
397  *	};
398  *	module_platform_driver(driver_driver);
399  *
400  * Drivers that want to support device unplugging (USB, DT overlay unload) should
401  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
402  * regions that is accessing device resources to prevent use after they're
403  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
404  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
405  * drm_atomic_helper_shutdown() is called. This means that if the disable code
406  * paths are protected, they will not run on regular driver module unload,
407  * possibly leaving the hardware enabled.
408  */
409 
410 /**
411  * drm_put_dev - Unregister and release a DRM device
412  * @dev: DRM device
413  *
414  * Called at module unload time or when a PCI device is unplugged.
415  *
416  * Cleans up all DRM device, calling drm_lastclose().
417  *
418  * Note: Use of this function is deprecated. It will eventually go away
419  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
420  * instead to make sure that the device isn't userspace accessible any more
421  * while teardown is in progress, ensuring that userspace can't access an
422  * inconsistent state.
423  */
424 void drm_put_dev(struct drm_device *dev)
425 {
426 	DRM_DEBUG("\n");
427 
428 	if (!dev) {
429 		DRM_ERROR("cleanup called no dev\n");
430 		return;
431 	}
432 
433 	drm_dev_unregister(dev);
434 	drm_dev_put(dev);
435 }
436 EXPORT_SYMBOL(drm_put_dev);
437 
438 /**
439  * drm_dev_enter - Enter device critical section
440  * @dev: DRM device
441  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
442  *
443  * This function marks and protects the beginning of a section that should not
444  * be entered after the device has been unplugged. The section end is marked
445  * with drm_dev_exit(). Calls to this function can be nested.
446  *
447  * Returns:
448  * True if it is OK to enter the section, false otherwise.
449  */
450 bool drm_dev_enter(struct drm_device *dev, int *idx)
451 {
452 	*idx = srcu_read_lock(&drm_unplug_srcu);
453 
454 	if (dev->unplugged) {
455 		srcu_read_unlock(&drm_unplug_srcu, *idx);
456 		return false;
457 	}
458 
459 	return true;
460 }
461 EXPORT_SYMBOL(drm_dev_enter);
462 
463 /**
464  * drm_dev_exit - Exit device critical section
465  * @idx: index returned from drm_dev_enter()
466  *
467  * This function marks the end of a section that should not be entered after
468  * the device has been unplugged.
469  */
470 void drm_dev_exit(int idx)
471 {
472 	srcu_read_unlock(&drm_unplug_srcu, idx);
473 }
474 EXPORT_SYMBOL(drm_dev_exit);
475 
476 /**
477  * drm_dev_unplug - unplug a DRM device
478  * @dev: DRM device
479  *
480  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
481  * userspace operations. Entry-points can use drm_dev_enter() and
482  * drm_dev_exit() to protect device resources in a race free manner. This
483  * essentially unregisters the device like drm_dev_unregister(), but can be
484  * called while there are still open users of @dev.
485  */
486 void drm_dev_unplug(struct drm_device *dev)
487 {
488 	/*
489 	 * After synchronizing any critical read section is guaranteed to see
490 	 * the new value of ->unplugged, and any critical section which might
491 	 * still have seen the old value of ->unplugged is guaranteed to have
492 	 * finished.
493 	 */
494 	dev->unplugged = true;
495 	synchronize_srcu(&drm_unplug_srcu);
496 
497 	drm_dev_unregister(dev);
498 
499 	/* Clear all CPU mappings pointing to this device */
500 	unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
501 }
502 EXPORT_SYMBOL(drm_dev_unplug);
503 
504 /**
505  * drm_dev_set_dma_dev - set the DMA device for a DRM device
506  * @dev: DRM device
507  * @dma_dev: DMA device or NULL
508  *
509  * Sets the DMA device of the given DRM device. Only required if
510  * the DMA device is different from the DRM device's parent. After
511  * calling this function, the DRM device holds a reference on
512  * @dma_dev. Pass NULL to clear the DMA device.
513  */
514 void drm_dev_set_dma_dev(struct drm_device *dev, struct device *dma_dev)
515 {
516 	dma_dev = get_device(dma_dev);
517 
518 	put_device(dev->dma_dev);
519 	dev->dma_dev = dma_dev;
520 }
521 EXPORT_SYMBOL(drm_dev_set_dma_dev);
522 
523 /*
524  * Available recovery methods for wedged device. To be sent along with device
525  * wedged uevent.
526  */
527 static const char *drm_get_wedge_recovery(unsigned int opt)
528 {
529 	switch (BIT(opt)) {
530 	case DRM_WEDGE_RECOVERY_NONE:
531 		return "none";
532 	case DRM_WEDGE_RECOVERY_REBIND:
533 		return "rebind";
534 	case DRM_WEDGE_RECOVERY_BUS_RESET:
535 		return "bus-reset";
536 	default:
537 		return NULL;
538 	}
539 }
540 
541 /**
542  * drm_dev_wedged_event - generate a device wedged uevent
543  * @dev: DRM device
544  * @method: method(s) to be used for recovery
545  *
546  * This generates a device wedged uevent for the DRM device specified by @dev.
547  * Recovery @method\(s) of choice will be sent in the uevent environment as
548  * ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects.
549  * If caller is unsure about recovery or @method is unknown (0),
550  * ``WEDGED=unknown`` will be sent instead.
551  *
552  * Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more
553  * details.
554  *
555  * Returns: 0 on success, negative error code otherwise.
556  */
557 int drm_dev_wedged_event(struct drm_device *dev, unsigned long method)
558 {
559 	const char *recovery = NULL;
560 	unsigned int len, opt;
561 	/* Event string length up to 28+ characters with available methods */
562 	char event_string[32];
563 	char *envp[] = { event_string, NULL };
564 
565 	len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED=");
566 
567 	for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) {
568 		recovery = drm_get_wedge_recovery(opt);
569 		if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt))
570 			break;
571 
572 		len += scnprintf(event_string + len, sizeof(event_string), "%s,", recovery);
573 	}
574 
575 	if (recovery)
576 		/* Get rid of trailing comma */
577 		event_string[len - 1] = '\0';
578 	else
579 		/* Caller is unsure about recovery, do the best we can at this point. */
580 		snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown");
581 
582 	drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ?
583 		 "but recovered through reset" : "needs recovery");
584 
585 	return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp);
586 }
587 EXPORT_SYMBOL(drm_dev_wedged_event);
588 
589 /*
590  * DRM internal mount
591  * We want to be able to allocate our own "struct address_space" to control
592  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
593  * stand-alone address_space objects, so we need an underlying inode. As there
594  * is no way to allocate an independent inode easily, we need a fake internal
595  * VFS mount-point.
596  *
597  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
598  * frees it again. You are allowed to use iget() and iput() to get references to
599  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
600  * drm_fs_inode_free() call (which does not have to be the last iput()).
601  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
602  * between multiple inode-users. You could, technically, call
603  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
604  * iput(), but this way you'd end up with a new vfsmount for each inode.
605  */
606 
607 static int drm_fs_cnt;
608 static struct vfsmount *drm_fs_mnt;
609 
610 static int drm_fs_init_fs_context(struct fs_context *fc)
611 {
612 	return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
613 }
614 
615 static struct file_system_type drm_fs_type = {
616 	.name		= "drm",
617 	.owner		= THIS_MODULE,
618 	.init_fs_context = drm_fs_init_fs_context,
619 	.kill_sb	= kill_anon_super,
620 };
621 
622 static struct inode *drm_fs_inode_new(void)
623 {
624 	struct inode *inode;
625 	int r;
626 
627 	r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
628 	if (r < 0) {
629 		DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
630 		return ERR_PTR(r);
631 	}
632 
633 	inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
634 	if (IS_ERR(inode))
635 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
636 
637 	return inode;
638 }
639 
640 static void drm_fs_inode_free(struct inode *inode)
641 {
642 	if (inode) {
643 		iput(inode);
644 		simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
645 	}
646 }
647 
648 /**
649  * DOC: component helper usage recommendations
650  *
651  * DRM drivers that drive hardware where a logical device consists of a pile of
652  * independent hardware blocks are recommended to use the :ref:`component helper
653  * library<component>`. For consistency and better options for code reuse the
654  * following guidelines apply:
655  *
656  *  - The entire device initialization procedure should be run from the
657  *    &component_master_ops.master_bind callback, starting with
658  *    devm_drm_dev_alloc(), then binding all components with
659  *    component_bind_all() and finishing with drm_dev_register().
660  *
661  *  - The opaque pointer passed to all components through component_bind_all()
662  *    should point at &struct drm_device of the device instance, not some driver
663  *    specific private structure.
664  *
665  *  - The component helper fills the niche where further standardization of
666  *    interfaces is not practical. When there already is, or will be, a
667  *    standardized interface like &drm_bridge or &drm_panel, providing its own
668  *    functions to find such components at driver load time, like
669  *    drm_of_find_panel_or_bridge(), then the component helper should not be
670  *    used.
671  */
672 
673 static void drm_dev_init_release(struct drm_device *dev, void *res)
674 {
675 	drm_fs_inode_free(dev->anon_inode);
676 
677 	put_device(dev->dma_dev);
678 	dev->dma_dev = NULL;
679 	put_device(dev->dev);
680 	/* Prevent use-after-free in drm_managed_release when debugging is
681 	 * enabled. Slightly awkward, but can't really be helped. */
682 	dev->dev = NULL;
683 	mutex_destroy(&dev->master_mutex);
684 	mutex_destroy(&dev->clientlist_mutex);
685 	mutex_destroy(&dev->filelist_mutex);
686 	mutex_destroy(&dev->struct_mutex);
687 }
688 
689 static int drm_dev_init(struct drm_device *dev,
690 			const struct drm_driver *driver,
691 			struct device *parent)
692 {
693 	struct inode *inode;
694 	int ret;
695 
696 	if (!drm_core_init_complete) {
697 		DRM_ERROR("DRM core is not initialized\n");
698 		return -ENODEV;
699 	}
700 
701 	if (WARN_ON(!parent))
702 		return -EINVAL;
703 
704 	kref_init(&dev->ref);
705 	dev->dev = get_device(parent);
706 	dev->driver = driver;
707 
708 	INIT_LIST_HEAD(&dev->managed.resources);
709 	spin_lock_init(&dev->managed.lock);
710 
711 	/* no per-device feature limits by default */
712 	dev->driver_features = ~0u;
713 
714 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
715 				(drm_core_check_feature(dev, DRIVER_RENDER) ||
716 				drm_core_check_feature(dev, DRIVER_MODESET))) {
717 		DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
718 		return -EINVAL;
719 	}
720 
721 	INIT_LIST_HEAD(&dev->filelist);
722 	INIT_LIST_HEAD(&dev->filelist_internal);
723 	INIT_LIST_HEAD(&dev->clientlist);
724 	INIT_LIST_HEAD(&dev->vblank_event_list);
725 
726 	spin_lock_init(&dev->event_lock);
727 	mutex_init(&dev->struct_mutex);
728 	mutex_init(&dev->filelist_mutex);
729 	mutex_init(&dev->clientlist_mutex);
730 	mutex_init(&dev->master_mutex);
731 	raw_spin_lock_init(&dev->mode_config.panic_lock);
732 
733 	ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
734 	if (ret)
735 		return ret;
736 
737 	inode = drm_fs_inode_new();
738 	if (IS_ERR(inode)) {
739 		ret = PTR_ERR(inode);
740 		DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
741 		goto err;
742 	}
743 
744 	dev->anon_inode = inode;
745 
746 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
747 		ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
748 		if (ret)
749 			goto err;
750 	} else {
751 		if (drm_core_check_feature(dev, DRIVER_RENDER)) {
752 			ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
753 			if (ret)
754 				goto err;
755 		}
756 
757 		ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
758 		if (ret)
759 			goto err;
760 	}
761 
762 	if (drm_core_check_feature(dev, DRIVER_GEM)) {
763 		ret = drm_gem_init(dev);
764 		if (ret) {
765 			DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
766 			goto err;
767 		}
768 	}
769 
770 	dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
771 	if (!dev->unique) {
772 		ret = -ENOMEM;
773 		goto err;
774 	}
775 
776 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
777 		accel_debugfs_init(dev);
778 	else
779 		drm_debugfs_dev_init(dev, drm_debugfs_root);
780 
781 	return 0;
782 
783 err:
784 	drm_managed_release(dev);
785 
786 	return ret;
787 }
788 
789 static void devm_drm_dev_init_release(void *data)
790 {
791 	drm_dev_put(data);
792 }
793 
794 static int devm_drm_dev_init(struct device *parent,
795 			     struct drm_device *dev,
796 			     const struct drm_driver *driver)
797 {
798 	int ret;
799 
800 	ret = drm_dev_init(dev, driver, parent);
801 	if (ret)
802 		return ret;
803 
804 	return devm_add_action_or_reset(parent,
805 					devm_drm_dev_init_release, dev);
806 }
807 
808 void *__devm_drm_dev_alloc(struct device *parent,
809 			   const struct drm_driver *driver,
810 			   size_t size, size_t offset)
811 {
812 	void *container;
813 	struct drm_device *drm;
814 	int ret;
815 
816 	container = kzalloc(size, GFP_KERNEL);
817 	if (!container)
818 		return ERR_PTR(-ENOMEM);
819 
820 	drm = container + offset;
821 	ret = devm_drm_dev_init(parent, drm, driver);
822 	if (ret) {
823 		kfree(container);
824 		return ERR_PTR(ret);
825 	}
826 	drmm_add_final_kfree(drm, container);
827 
828 	return container;
829 }
830 EXPORT_SYMBOL(__devm_drm_dev_alloc);
831 
832 /**
833  * drm_dev_alloc - Allocate new DRM device
834  * @driver: DRM driver to allocate device for
835  * @parent: Parent device object
836  *
837  * This is the deprecated version of devm_drm_dev_alloc(), which does not support
838  * subclassing through embedding the struct &drm_device in a driver private
839  * structure, and which does not support automatic cleanup through devres.
840  *
841  * RETURNS:
842  * Pointer to new DRM device, or ERR_PTR on failure.
843  */
844 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
845 				 struct device *parent)
846 {
847 	struct drm_device *dev;
848 	int ret;
849 
850 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
851 	if (!dev)
852 		return ERR_PTR(-ENOMEM);
853 
854 	ret = drm_dev_init(dev, driver, parent);
855 	if (ret) {
856 		kfree(dev);
857 		return ERR_PTR(ret);
858 	}
859 
860 	drmm_add_final_kfree(dev, dev);
861 
862 	return dev;
863 }
864 EXPORT_SYMBOL(drm_dev_alloc);
865 
866 static void drm_dev_release(struct kref *ref)
867 {
868 	struct drm_device *dev = container_of(ref, struct drm_device, ref);
869 
870 	/* Just in case register/unregister was never called */
871 	drm_debugfs_dev_fini(dev);
872 
873 	if (dev->driver->release)
874 		dev->driver->release(dev);
875 
876 	drm_managed_release(dev);
877 
878 	kfree(dev->managed.final_kfree);
879 }
880 
881 /**
882  * drm_dev_get - Take reference of a DRM device
883  * @dev: device to take reference of or NULL
884  *
885  * This increases the ref-count of @dev by one. You *must* already own a
886  * reference when calling this. Use drm_dev_put() to drop this reference
887  * again.
888  *
889  * This function never fails. However, this function does not provide *any*
890  * guarantee whether the device is alive or running. It only provides a
891  * reference to the object and the memory associated with it.
892  */
893 void drm_dev_get(struct drm_device *dev)
894 {
895 	if (dev)
896 		kref_get(&dev->ref);
897 }
898 EXPORT_SYMBOL(drm_dev_get);
899 
900 /**
901  * drm_dev_put - Drop reference of a DRM device
902  * @dev: device to drop reference of or NULL
903  *
904  * This decreases the ref-count of @dev by one. The device is destroyed if the
905  * ref-count drops to zero.
906  */
907 void drm_dev_put(struct drm_device *dev)
908 {
909 	if (dev)
910 		kref_put(&dev->ref, drm_dev_release);
911 }
912 EXPORT_SYMBOL(drm_dev_put);
913 
914 static void drmm_cg_unregister_region(struct drm_device *dev, void *arg)
915 {
916 	dmem_cgroup_unregister_region(arg);
917 }
918 
919 /**
920  * drmm_cgroup_register_region - Register a region of a DRM device to cgroups
921  * @dev: device for region
922  * @region_name: Region name for registering
923  * @size: Size of region in bytes
924  *
925  * This decreases the ref-count of @dev by one. The device is destroyed if the
926  * ref-count drops to zero.
927  */
928 struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size)
929 {
930 	struct dmem_cgroup_region *region;
931 	int ret;
932 
933 	region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name);
934 	if (IS_ERR_OR_NULL(region))
935 		return region;
936 
937 	ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region);
938 	if (ret)
939 		return ERR_PTR(ret);
940 
941 	return region;
942 }
943 EXPORT_SYMBOL_GPL(drmm_cgroup_register_region);
944 
945 static int create_compat_control_link(struct drm_device *dev)
946 {
947 	struct drm_minor *minor;
948 	char *name;
949 	int ret;
950 
951 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
952 		return 0;
953 
954 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
955 	if (!minor)
956 		return 0;
957 
958 	/*
959 	 * Some existing userspace out there uses the existing of the controlD*
960 	 * sysfs files to figure out whether it's a modeset driver. It only does
961 	 * readdir, hence a symlink is sufficient (and the least confusing
962 	 * option). Otherwise controlD* is entirely unused.
963 	 *
964 	 * Old controlD chardev have been allocated in the range
965 	 * 64-127.
966 	 */
967 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
968 	if (!name)
969 		return -ENOMEM;
970 
971 	ret = sysfs_create_link(minor->kdev->kobj.parent,
972 				&minor->kdev->kobj,
973 				name);
974 
975 	kfree(name);
976 
977 	return ret;
978 }
979 
980 static void remove_compat_control_link(struct drm_device *dev)
981 {
982 	struct drm_minor *minor;
983 	char *name;
984 
985 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
986 		return;
987 
988 	minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
989 	if (!minor)
990 		return;
991 
992 	name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
993 	if (!name)
994 		return;
995 
996 	sysfs_remove_link(minor->kdev->kobj.parent, name);
997 
998 	kfree(name);
999 }
1000 
1001 /**
1002  * drm_dev_register - Register DRM device
1003  * @dev: Device to register
1004  * @flags: Flags passed to the driver's .load() function
1005  *
1006  * Register the DRM device @dev with the system, advertise device to user-space
1007  * and start normal device operation. @dev must be initialized via drm_dev_init()
1008  * previously.
1009  *
1010  * Never call this twice on any device!
1011  *
1012  * NOTE: To ensure backward compatibility with existing drivers method this
1013  * function calls the &drm_driver.load method after registering the device
1014  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
1015  * therefore deprecated, drivers must perform all initialization before calling
1016  * drm_dev_register().
1017  *
1018  * RETURNS:
1019  * 0 on success, negative error code on failure.
1020  */
1021 int drm_dev_register(struct drm_device *dev, unsigned long flags)
1022 {
1023 	const struct drm_driver *driver = dev->driver;
1024 	int ret;
1025 
1026 	if (!driver->load)
1027 		drm_mode_config_validate(dev);
1028 
1029 	WARN_ON(!dev->managed.final_kfree);
1030 
1031 	if (drm_dev_needs_global_mutex(dev))
1032 		mutex_lock(&drm_global_mutex);
1033 
1034 	if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
1035 		accel_debugfs_register(dev);
1036 	else
1037 		drm_debugfs_dev_register(dev);
1038 
1039 	ret = drm_minor_register(dev, DRM_MINOR_RENDER);
1040 	if (ret)
1041 		goto err_minors;
1042 
1043 	ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
1044 	if (ret)
1045 		goto err_minors;
1046 
1047 	ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
1048 	if (ret)
1049 		goto err_minors;
1050 
1051 	ret = create_compat_control_link(dev);
1052 	if (ret)
1053 		goto err_minors;
1054 
1055 	dev->registered = true;
1056 
1057 	if (driver->load) {
1058 		ret = driver->load(dev, flags);
1059 		if (ret)
1060 			goto err_minors;
1061 	}
1062 
1063 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1064 		ret = drm_modeset_register_all(dev);
1065 		if (ret)
1066 			goto err_unload;
1067 	}
1068 	drm_panic_register(dev);
1069 
1070 	DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
1071 		 driver->name, driver->major, driver->minor,
1072 		 driver->patchlevel,
1073 		 dev->dev ? dev_name(dev->dev) : "virtual device",
1074 		 dev->primary ? dev->primary->index : dev->accel->index);
1075 
1076 	goto out_unlock;
1077 
1078 err_unload:
1079 	if (dev->driver->unload)
1080 		dev->driver->unload(dev);
1081 err_minors:
1082 	remove_compat_control_link(dev);
1083 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1084 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1085 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1086 out_unlock:
1087 	if (drm_dev_needs_global_mutex(dev))
1088 		mutex_unlock(&drm_global_mutex);
1089 	return ret;
1090 }
1091 EXPORT_SYMBOL(drm_dev_register);
1092 
1093 /**
1094  * drm_dev_unregister - Unregister DRM device
1095  * @dev: Device to unregister
1096  *
1097  * Unregister the DRM device from the system. This does the reverse of
1098  * drm_dev_register() but does not deallocate the device. The caller must call
1099  * drm_dev_put() to drop their final reference, unless it is managed with devres
1100  * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
1101  * already an unwind action registered.
1102  *
1103  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1104  * which can be called while there are still open users of @dev.
1105  *
1106  * This should be called first in the device teardown code to make sure
1107  * userspace can't access the device instance any more.
1108  */
1109 void drm_dev_unregister(struct drm_device *dev)
1110 {
1111 	dev->registered = false;
1112 
1113 	drm_panic_unregister(dev);
1114 
1115 	drm_client_dev_unregister(dev);
1116 
1117 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1118 		drm_modeset_unregister_all(dev);
1119 
1120 	if (dev->driver->unload)
1121 		dev->driver->unload(dev);
1122 
1123 	remove_compat_control_link(dev);
1124 	drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1125 	drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1126 	drm_minor_unregister(dev, DRM_MINOR_RENDER);
1127 	drm_debugfs_dev_fini(dev);
1128 }
1129 EXPORT_SYMBOL(drm_dev_unregister);
1130 
1131 /*
1132  * DRM Core
1133  * The DRM core module initializes all global DRM objects and makes them
1134  * available to drivers. Once setup, drivers can probe their respective
1135  * devices.
1136  * Currently, core management includes:
1137  *  - The "DRM-Global" key/value database
1138  *  - Global ID management for connectors
1139  *  - DRM major number allocation
1140  *  - DRM minor management
1141  *  - DRM sysfs class
1142  *  - DRM debugfs root
1143  *
1144  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1145  * interface registered on a DRM device, you can request minor numbers from DRM
1146  * core. DRM core takes care of major-number management and char-dev
1147  * registration. A stub ->open() callback forwards any open() requests to the
1148  * registered minor.
1149  */
1150 
1151 static int drm_stub_open(struct inode *inode, struct file *filp)
1152 {
1153 	const struct file_operations *new_fops;
1154 	struct drm_minor *minor;
1155 	int err;
1156 
1157 	DRM_DEBUG("\n");
1158 
1159 	minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1160 	if (IS_ERR(minor))
1161 		return PTR_ERR(minor);
1162 
1163 	new_fops = fops_get(minor->dev->driver->fops);
1164 	if (!new_fops) {
1165 		err = -ENODEV;
1166 		goto out;
1167 	}
1168 
1169 	replace_fops(filp, new_fops);
1170 	if (filp->f_op->open)
1171 		err = filp->f_op->open(inode, filp);
1172 	else
1173 		err = 0;
1174 
1175 out:
1176 	drm_minor_release(minor);
1177 
1178 	return err;
1179 }
1180 
1181 static const struct file_operations drm_stub_fops = {
1182 	.owner = THIS_MODULE,
1183 	.open = drm_stub_open,
1184 	.llseek = noop_llseek,
1185 };
1186 
1187 static void drm_core_exit(void)
1188 {
1189 	drm_privacy_screen_lookup_exit();
1190 	drm_panic_exit();
1191 	accel_core_exit();
1192 	unregister_chrdev(DRM_MAJOR, "drm");
1193 	debugfs_remove(drm_debugfs_root);
1194 	drm_sysfs_destroy();
1195 	WARN_ON(!xa_empty(&drm_minors_xa));
1196 	drm_connector_ida_destroy();
1197 }
1198 
1199 static int __init drm_core_init(void)
1200 {
1201 	int ret;
1202 
1203 	drm_connector_ida_init();
1204 	drm_memcpy_init_early();
1205 
1206 	ret = drm_sysfs_init();
1207 	if (ret < 0) {
1208 		DRM_ERROR("Cannot create DRM class: %d\n", ret);
1209 		goto error;
1210 	}
1211 
1212 	drm_debugfs_root = debugfs_create_dir("dri", NULL);
1213 	drm_bridge_debugfs_params(drm_debugfs_root);
1214 
1215 	ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1216 	if (ret < 0)
1217 		goto error;
1218 
1219 	ret = accel_core_init();
1220 	if (ret < 0)
1221 		goto error;
1222 
1223 	drm_panic_init();
1224 
1225 	drm_privacy_screen_lookup_init();
1226 
1227 	drm_core_init_complete = true;
1228 
1229 	DRM_DEBUG("Initialized\n");
1230 	return 0;
1231 
1232 error:
1233 	drm_core_exit();
1234 	return ret;
1235 }
1236 
1237 module_init(drm_core_init);
1238 module_exit(drm_core_exit);
1239