1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/debugfs.h> 30 #include <linux/fs.h> 31 #include <linux/module.h> 32 #include <linux/moduleparam.h> 33 #include <linux/mount.h> 34 #include <linux/pseudo_fs.h> 35 #include <linux/slab.h> 36 #include <linux/srcu.h> 37 #include <linux/xarray.h> 38 39 #include <drm/drm_accel.h> 40 #include <drm/drm_cache.h> 41 #include <drm/drm_client.h> 42 #include <drm/drm_color_mgmt.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_file.h> 45 #include <drm/drm_managed.h> 46 #include <drm/drm_mode_object.h> 47 #include <drm/drm_panic.h> 48 #include <drm/drm_print.h> 49 #include <drm/drm_privacy_screen_machine.h> 50 51 #include "drm_crtc_internal.h" 52 #include "drm_internal.h" 53 54 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 55 MODULE_DESCRIPTION("DRM shared core routines"); 56 MODULE_LICENSE("GPL and additional rights"); 57 58 DEFINE_XARRAY_ALLOC(drm_minors_xa); 59 60 /* 61 * If the drm core fails to init for whatever reason, 62 * we should prevent any drivers from registering with it. 63 * It's best to check this at drm_dev_init(), as some drivers 64 * prefer to embed struct drm_device into their own device 65 * structure and call drm_dev_init() themselves. 66 */ 67 static bool drm_core_init_complete; 68 69 static struct dentry *drm_debugfs_root; 70 71 DEFINE_STATIC_SRCU(drm_unplug_srcu); 72 73 /* 74 * DRM Minors 75 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 76 * of them is represented by a drm_minor object. Depending on the capabilities 77 * of the device-driver, different interfaces are registered. 78 * 79 * Minors can be accessed via dev->$minor_name. This pointer is either 80 * NULL or a valid drm_minor pointer and stays valid as long as the device is 81 * valid. This means, DRM minors have the same life-time as the underlying 82 * device. However, this doesn't mean that the minor is active. Minors are 83 * registered and unregistered dynamically according to device-state. 84 */ 85 86 static struct xarray *drm_minor_get_xa(enum drm_minor_type type) 87 { 88 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER) 89 return &drm_minors_xa; 90 #if IS_ENABLED(CONFIG_DRM_ACCEL) 91 else if (type == DRM_MINOR_ACCEL) 92 return &accel_minors_xa; 93 #endif 94 else 95 return ERR_PTR(-EOPNOTSUPP); 96 } 97 98 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 99 enum drm_minor_type type) 100 { 101 switch (type) { 102 case DRM_MINOR_PRIMARY: 103 return &dev->primary; 104 case DRM_MINOR_RENDER: 105 return &dev->render; 106 case DRM_MINOR_ACCEL: 107 return &dev->accel; 108 default: 109 BUG(); 110 } 111 } 112 113 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 114 { 115 struct drm_minor *minor = data; 116 117 WARN_ON(dev != minor->dev); 118 119 put_device(minor->kdev); 120 121 xa_erase(drm_minor_get_xa(minor->type), minor->index); 122 } 123 124 /* 125 * DRM used to support 64 devices, for backwards compatibility we need to maintain the 126 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes, 127 * and 128-191 are render nodes. 128 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve. 129 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX 130 * range. 131 */ 132 #define DRM_MINOR_LIMIT(t) ({ \ 133 typeof(t) _t = (t); \ 134 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \ 135 }) 136 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1) 137 138 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type) 139 { 140 struct drm_minor *minor; 141 int r; 142 143 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 144 if (!minor) 145 return -ENOMEM; 146 147 minor->type = type; 148 minor->dev = dev; 149 150 r = xa_alloc(drm_minor_get_xa(type), &minor->index, 151 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL); 152 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)) 153 r = xa_alloc(&drm_minors_xa, &minor->index, 154 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL); 155 if (r < 0) 156 return r; 157 158 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 159 if (r) 160 return r; 161 162 minor->kdev = drm_sysfs_minor_alloc(minor); 163 if (IS_ERR(minor->kdev)) 164 return PTR_ERR(minor->kdev); 165 166 *drm_minor_get_slot(dev, type) = minor; 167 return 0; 168 } 169 170 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type) 171 { 172 struct drm_minor *minor; 173 void *entry; 174 int ret; 175 176 DRM_DEBUG("\n"); 177 178 minor = *drm_minor_get_slot(dev, type); 179 if (!minor) 180 return 0; 181 182 if (minor->type != DRM_MINOR_ACCEL) { 183 ret = drm_debugfs_register(minor, minor->index, 184 drm_debugfs_root); 185 if (ret) { 186 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 187 goto err_debugfs; 188 } 189 } 190 191 ret = device_add(minor->kdev); 192 if (ret) 193 goto err_debugfs; 194 195 /* replace NULL with @minor so lookups will succeed from now on */ 196 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL); 197 if (xa_is_err(entry)) { 198 ret = xa_err(entry); 199 goto err_debugfs; 200 } 201 WARN_ON(entry); 202 203 DRM_DEBUG("new minor registered %d\n", minor->index); 204 return 0; 205 206 err_debugfs: 207 drm_debugfs_unregister(minor); 208 return ret; 209 } 210 211 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type) 212 { 213 struct drm_minor *minor; 214 215 minor = *drm_minor_get_slot(dev, type); 216 if (!minor || !device_is_registered(minor->kdev)) 217 return; 218 219 /* replace @minor with NULL so lookups will fail from now on */ 220 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL); 221 222 device_del(minor->kdev); 223 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 224 drm_debugfs_unregister(minor); 225 } 226 227 /* 228 * Looks up the given minor-ID and returns the respective DRM-minor object. The 229 * refence-count of the underlying device is increased so you must release this 230 * object with drm_minor_release(). 231 * 232 * As long as you hold this minor, it is guaranteed that the object and the 233 * minor->dev pointer will stay valid! However, the device may get unplugged and 234 * unregistered while you hold the minor. 235 */ 236 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id) 237 { 238 struct drm_minor *minor; 239 240 xa_lock(minor_xa); 241 minor = xa_load(minor_xa, minor_id); 242 if (minor) 243 drm_dev_get(minor->dev); 244 xa_unlock(minor_xa); 245 246 if (!minor) { 247 return ERR_PTR(-ENODEV); 248 } else if (drm_dev_is_unplugged(minor->dev)) { 249 drm_dev_put(minor->dev); 250 return ERR_PTR(-ENODEV); 251 } 252 253 return minor; 254 } 255 256 void drm_minor_release(struct drm_minor *minor) 257 { 258 drm_dev_put(minor->dev); 259 } 260 261 /** 262 * DOC: driver instance overview 263 * 264 * A device instance for a drm driver is represented by &struct drm_device. This 265 * is allocated and initialized with devm_drm_dev_alloc(), usually from 266 * bus-specific ->probe() callbacks implemented by the driver. The driver then 267 * needs to initialize all the various subsystems for the drm device like memory 268 * management, vblank handling, modesetting support and initial output 269 * configuration plus obviously initialize all the corresponding hardware bits. 270 * Finally when everything is up and running and ready for userspace the device 271 * instance can be published using drm_dev_register(). 272 * 273 * There is also deprecated support for initializing device instances using 274 * bus-specific helpers and the &drm_driver.load callback. But due to 275 * backwards-compatibility needs the device instance have to be published too 276 * early, which requires unpretty global locking to make safe and is therefore 277 * only support for existing drivers not yet converted to the new scheme. 278 * 279 * When cleaning up a device instance everything needs to be done in reverse: 280 * First unpublish the device instance with drm_dev_unregister(). Then clean up 281 * any other resources allocated at device initialization and drop the driver's 282 * reference to &drm_device using drm_dev_put(). 283 * 284 * Note that any allocation or resource which is visible to userspace must be 285 * released only when the final drm_dev_put() is called, and not when the 286 * driver is unbound from the underlying physical struct &device. Best to use 287 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 288 * related functions. 289 * 290 * devres managed resources like devm_kmalloc() can only be used for resources 291 * directly related to the underlying hardware device, and only used in code 292 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 293 * 294 * Display driver example 295 * ~~~~~~~~~~~~~~~~~~~~~~ 296 * 297 * The following example shows a typical structure of a DRM display driver. 298 * The example focus on the probe() function and the other functions that is 299 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 300 * 301 * .. code-block:: c 302 * 303 * struct driver_device { 304 * struct drm_device drm; 305 * void *userspace_facing; 306 * struct clk *pclk; 307 * }; 308 * 309 * static const struct drm_driver driver_drm_driver = { 310 * [...] 311 * }; 312 * 313 * static int driver_probe(struct platform_device *pdev) 314 * { 315 * struct driver_device *priv; 316 * struct drm_device *drm; 317 * int ret; 318 * 319 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 320 * struct driver_device, drm); 321 * if (IS_ERR(priv)) 322 * return PTR_ERR(priv); 323 * drm = &priv->drm; 324 * 325 * ret = drmm_mode_config_init(drm); 326 * if (ret) 327 * return ret; 328 * 329 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 330 * if (!priv->userspace_facing) 331 * return -ENOMEM; 332 * 333 * priv->pclk = devm_clk_get(dev, "PCLK"); 334 * if (IS_ERR(priv->pclk)) 335 * return PTR_ERR(priv->pclk); 336 * 337 * // Further setup, display pipeline etc 338 * 339 * platform_set_drvdata(pdev, drm); 340 * 341 * drm_mode_config_reset(drm); 342 * 343 * ret = drm_dev_register(drm); 344 * if (ret) 345 * return ret; 346 * 347 * drm_fbdev_{...}_setup(drm, 32); 348 * 349 * return 0; 350 * } 351 * 352 * // This function is called before the devm_ resources are released 353 * static int driver_remove(struct platform_device *pdev) 354 * { 355 * struct drm_device *drm = platform_get_drvdata(pdev); 356 * 357 * drm_dev_unregister(drm); 358 * drm_atomic_helper_shutdown(drm) 359 * 360 * return 0; 361 * } 362 * 363 * // This function is called on kernel restart and shutdown 364 * static void driver_shutdown(struct platform_device *pdev) 365 * { 366 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 367 * } 368 * 369 * static int __maybe_unused driver_pm_suspend(struct device *dev) 370 * { 371 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 372 * } 373 * 374 * static int __maybe_unused driver_pm_resume(struct device *dev) 375 * { 376 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 377 * 378 * return 0; 379 * } 380 * 381 * static const struct dev_pm_ops driver_pm_ops = { 382 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 383 * }; 384 * 385 * static struct platform_driver driver_driver = { 386 * .driver = { 387 * [...] 388 * .pm = &driver_pm_ops, 389 * }, 390 * .probe = driver_probe, 391 * .remove = driver_remove, 392 * .shutdown = driver_shutdown, 393 * }; 394 * module_platform_driver(driver_driver); 395 * 396 * Drivers that want to support device unplugging (USB, DT overlay unload) should 397 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 398 * regions that is accessing device resources to prevent use after they're 399 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 400 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 401 * drm_atomic_helper_shutdown() is called. This means that if the disable code 402 * paths are protected, they will not run on regular driver module unload, 403 * possibly leaving the hardware enabled. 404 */ 405 406 /** 407 * drm_put_dev - Unregister and release a DRM device 408 * @dev: DRM device 409 * 410 * Called at module unload time or when a PCI device is unplugged. 411 * 412 * Cleans up all DRM device, calling drm_lastclose(). 413 * 414 * Note: Use of this function is deprecated. It will eventually go away 415 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 416 * instead to make sure that the device isn't userspace accessible any more 417 * while teardown is in progress, ensuring that userspace can't access an 418 * inconsistent state. 419 */ 420 void drm_put_dev(struct drm_device *dev) 421 { 422 DRM_DEBUG("\n"); 423 424 if (!dev) { 425 DRM_ERROR("cleanup called no dev\n"); 426 return; 427 } 428 429 drm_dev_unregister(dev); 430 drm_dev_put(dev); 431 } 432 EXPORT_SYMBOL(drm_put_dev); 433 434 /** 435 * drm_dev_enter - Enter device critical section 436 * @dev: DRM device 437 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 438 * 439 * This function marks and protects the beginning of a section that should not 440 * be entered after the device has been unplugged. The section end is marked 441 * with drm_dev_exit(). Calls to this function can be nested. 442 * 443 * Returns: 444 * True if it is OK to enter the section, false otherwise. 445 */ 446 bool drm_dev_enter(struct drm_device *dev, int *idx) 447 { 448 *idx = srcu_read_lock(&drm_unplug_srcu); 449 450 if (dev->unplugged) { 451 srcu_read_unlock(&drm_unplug_srcu, *idx); 452 return false; 453 } 454 455 return true; 456 } 457 EXPORT_SYMBOL(drm_dev_enter); 458 459 /** 460 * drm_dev_exit - Exit device critical section 461 * @idx: index returned from drm_dev_enter() 462 * 463 * This function marks the end of a section that should not be entered after 464 * the device has been unplugged. 465 */ 466 void drm_dev_exit(int idx) 467 { 468 srcu_read_unlock(&drm_unplug_srcu, idx); 469 } 470 EXPORT_SYMBOL(drm_dev_exit); 471 472 /** 473 * drm_dev_unplug - unplug a DRM device 474 * @dev: DRM device 475 * 476 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 477 * userspace operations. Entry-points can use drm_dev_enter() and 478 * drm_dev_exit() to protect device resources in a race free manner. This 479 * essentially unregisters the device like drm_dev_unregister(), but can be 480 * called while there are still open users of @dev. 481 */ 482 void drm_dev_unplug(struct drm_device *dev) 483 { 484 /* 485 * After synchronizing any critical read section is guaranteed to see 486 * the new value of ->unplugged, and any critical section which might 487 * still have seen the old value of ->unplugged is guaranteed to have 488 * finished. 489 */ 490 dev->unplugged = true; 491 synchronize_srcu(&drm_unplug_srcu); 492 493 drm_dev_unregister(dev); 494 495 /* Clear all CPU mappings pointing to this device */ 496 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 497 } 498 EXPORT_SYMBOL(drm_dev_unplug); 499 500 /* 501 * DRM internal mount 502 * We want to be able to allocate our own "struct address_space" to control 503 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 504 * stand-alone address_space objects, so we need an underlying inode. As there 505 * is no way to allocate an independent inode easily, we need a fake internal 506 * VFS mount-point. 507 * 508 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 509 * frees it again. You are allowed to use iget() and iput() to get references to 510 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 511 * drm_fs_inode_free() call (which does not have to be the last iput()). 512 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 513 * between multiple inode-users. You could, technically, call 514 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 515 * iput(), but this way you'd end up with a new vfsmount for each inode. 516 */ 517 518 static int drm_fs_cnt; 519 static struct vfsmount *drm_fs_mnt; 520 521 static int drm_fs_init_fs_context(struct fs_context *fc) 522 { 523 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 524 } 525 526 static struct file_system_type drm_fs_type = { 527 .name = "drm", 528 .owner = THIS_MODULE, 529 .init_fs_context = drm_fs_init_fs_context, 530 .kill_sb = kill_anon_super, 531 }; 532 533 static struct inode *drm_fs_inode_new(void) 534 { 535 struct inode *inode; 536 int r; 537 538 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 539 if (r < 0) { 540 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 541 return ERR_PTR(r); 542 } 543 544 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 545 if (IS_ERR(inode)) 546 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 547 548 return inode; 549 } 550 551 static void drm_fs_inode_free(struct inode *inode) 552 { 553 if (inode) { 554 iput(inode); 555 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 556 } 557 } 558 559 /** 560 * DOC: component helper usage recommendations 561 * 562 * DRM drivers that drive hardware where a logical device consists of a pile of 563 * independent hardware blocks are recommended to use the :ref:`component helper 564 * library<component>`. For consistency and better options for code reuse the 565 * following guidelines apply: 566 * 567 * - The entire device initialization procedure should be run from the 568 * &component_master_ops.master_bind callback, starting with 569 * devm_drm_dev_alloc(), then binding all components with 570 * component_bind_all() and finishing with drm_dev_register(). 571 * 572 * - The opaque pointer passed to all components through component_bind_all() 573 * should point at &struct drm_device of the device instance, not some driver 574 * specific private structure. 575 * 576 * - The component helper fills the niche where further standardization of 577 * interfaces is not practical. When there already is, or will be, a 578 * standardized interface like &drm_bridge or &drm_panel, providing its own 579 * functions to find such components at driver load time, like 580 * drm_of_find_panel_or_bridge(), then the component helper should not be 581 * used. 582 */ 583 584 static void drm_dev_init_release(struct drm_device *dev, void *res) 585 { 586 drm_fs_inode_free(dev->anon_inode); 587 588 put_device(dev->dev); 589 /* Prevent use-after-free in drm_managed_release when debugging is 590 * enabled. Slightly awkward, but can't really be helped. */ 591 dev->dev = NULL; 592 mutex_destroy(&dev->master_mutex); 593 mutex_destroy(&dev->clientlist_mutex); 594 mutex_destroy(&dev->filelist_mutex); 595 mutex_destroy(&dev->struct_mutex); 596 } 597 598 static int drm_dev_init(struct drm_device *dev, 599 const struct drm_driver *driver, 600 struct device *parent) 601 { 602 struct inode *inode; 603 int ret; 604 605 if (!drm_core_init_complete) { 606 DRM_ERROR("DRM core is not initialized\n"); 607 return -ENODEV; 608 } 609 610 if (WARN_ON(!parent)) 611 return -EINVAL; 612 613 kref_init(&dev->ref); 614 dev->dev = get_device(parent); 615 dev->driver = driver; 616 617 INIT_LIST_HEAD(&dev->managed.resources); 618 spin_lock_init(&dev->managed.lock); 619 620 /* no per-device feature limits by default */ 621 dev->driver_features = ~0u; 622 623 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 624 (drm_core_check_feature(dev, DRIVER_RENDER) || 625 drm_core_check_feature(dev, DRIVER_MODESET))) { 626 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 627 return -EINVAL; 628 } 629 630 INIT_LIST_HEAD(&dev->filelist); 631 INIT_LIST_HEAD(&dev->filelist_internal); 632 INIT_LIST_HEAD(&dev->clientlist); 633 INIT_LIST_HEAD(&dev->vblank_event_list); 634 635 spin_lock_init(&dev->event_lock); 636 mutex_init(&dev->struct_mutex); 637 mutex_init(&dev->filelist_mutex); 638 mutex_init(&dev->clientlist_mutex); 639 mutex_init(&dev->master_mutex); 640 raw_spin_lock_init(&dev->mode_config.panic_lock); 641 642 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 643 if (ret) 644 return ret; 645 646 inode = drm_fs_inode_new(); 647 if (IS_ERR(inode)) { 648 ret = PTR_ERR(inode); 649 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 650 goto err; 651 } 652 653 dev->anon_inode = inode; 654 655 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 656 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 657 if (ret) 658 goto err; 659 } else { 660 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 661 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 662 if (ret) 663 goto err; 664 } 665 666 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 667 if (ret) 668 goto err; 669 } 670 671 if (drm_core_check_feature(dev, DRIVER_GEM)) { 672 ret = drm_gem_init(dev); 673 if (ret) { 674 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 675 goto err; 676 } 677 } 678 679 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL); 680 if (!dev->unique) { 681 ret = -ENOMEM; 682 goto err; 683 } 684 685 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 686 accel_debugfs_init(dev); 687 else 688 drm_debugfs_dev_init(dev, drm_debugfs_root); 689 690 return 0; 691 692 err: 693 drm_managed_release(dev); 694 695 return ret; 696 } 697 698 static void devm_drm_dev_init_release(void *data) 699 { 700 drm_dev_put(data); 701 } 702 703 static int devm_drm_dev_init(struct device *parent, 704 struct drm_device *dev, 705 const struct drm_driver *driver) 706 { 707 int ret; 708 709 ret = drm_dev_init(dev, driver, parent); 710 if (ret) 711 return ret; 712 713 return devm_add_action_or_reset(parent, 714 devm_drm_dev_init_release, dev); 715 } 716 717 void *__devm_drm_dev_alloc(struct device *parent, 718 const struct drm_driver *driver, 719 size_t size, size_t offset) 720 { 721 void *container; 722 struct drm_device *drm; 723 int ret; 724 725 container = kzalloc(size, GFP_KERNEL); 726 if (!container) 727 return ERR_PTR(-ENOMEM); 728 729 drm = container + offset; 730 ret = devm_drm_dev_init(parent, drm, driver); 731 if (ret) { 732 kfree(container); 733 return ERR_PTR(ret); 734 } 735 drmm_add_final_kfree(drm, container); 736 737 return container; 738 } 739 EXPORT_SYMBOL(__devm_drm_dev_alloc); 740 741 /** 742 * drm_dev_alloc - Allocate new DRM device 743 * @driver: DRM driver to allocate device for 744 * @parent: Parent device object 745 * 746 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 747 * subclassing through embedding the struct &drm_device in a driver private 748 * structure, and which does not support automatic cleanup through devres. 749 * 750 * RETURNS: 751 * Pointer to new DRM device, or ERR_PTR on failure. 752 */ 753 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 754 struct device *parent) 755 { 756 struct drm_device *dev; 757 int ret; 758 759 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 760 if (!dev) 761 return ERR_PTR(-ENOMEM); 762 763 ret = drm_dev_init(dev, driver, parent); 764 if (ret) { 765 kfree(dev); 766 return ERR_PTR(ret); 767 } 768 769 drmm_add_final_kfree(dev, dev); 770 771 return dev; 772 } 773 EXPORT_SYMBOL(drm_dev_alloc); 774 775 static void drm_dev_release(struct kref *ref) 776 { 777 struct drm_device *dev = container_of(ref, struct drm_device, ref); 778 779 /* Just in case register/unregister was never called */ 780 drm_debugfs_dev_fini(dev); 781 782 if (dev->driver->release) 783 dev->driver->release(dev); 784 785 drm_managed_release(dev); 786 787 kfree(dev->managed.final_kfree); 788 } 789 790 /** 791 * drm_dev_get - Take reference of a DRM device 792 * @dev: device to take reference of or NULL 793 * 794 * This increases the ref-count of @dev by one. You *must* already own a 795 * reference when calling this. Use drm_dev_put() to drop this reference 796 * again. 797 * 798 * This function never fails. However, this function does not provide *any* 799 * guarantee whether the device is alive or running. It only provides a 800 * reference to the object and the memory associated with it. 801 */ 802 void drm_dev_get(struct drm_device *dev) 803 { 804 if (dev) 805 kref_get(&dev->ref); 806 } 807 EXPORT_SYMBOL(drm_dev_get); 808 809 /** 810 * drm_dev_put - Drop reference of a DRM device 811 * @dev: device to drop reference of or NULL 812 * 813 * This decreases the ref-count of @dev by one. The device is destroyed if the 814 * ref-count drops to zero. 815 */ 816 void drm_dev_put(struct drm_device *dev) 817 { 818 if (dev) 819 kref_put(&dev->ref, drm_dev_release); 820 } 821 EXPORT_SYMBOL(drm_dev_put); 822 823 static int create_compat_control_link(struct drm_device *dev) 824 { 825 struct drm_minor *minor; 826 char *name; 827 int ret; 828 829 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 830 return 0; 831 832 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 833 if (!minor) 834 return 0; 835 836 /* 837 * Some existing userspace out there uses the existing of the controlD* 838 * sysfs files to figure out whether it's a modeset driver. It only does 839 * readdir, hence a symlink is sufficient (and the least confusing 840 * option). Otherwise controlD* is entirely unused. 841 * 842 * Old controlD chardev have been allocated in the range 843 * 64-127. 844 */ 845 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 846 if (!name) 847 return -ENOMEM; 848 849 ret = sysfs_create_link(minor->kdev->kobj.parent, 850 &minor->kdev->kobj, 851 name); 852 853 kfree(name); 854 855 return ret; 856 } 857 858 static void remove_compat_control_link(struct drm_device *dev) 859 { 860 struct drm_minor *minor; 861 char *name; 862 863 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 864 return; 865 866 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 867 if (!minor) 868 return; 869 870 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 871 if (!name) 872 return; 873 874 sysfs_remove_link(minor->kdev->kobj.parent, name); 875 876 kfree(name); 877 } 878 879 /** 880 * drm_dev_register - Register DRM device 881 * @dev: Device to register 882 * @flags: Flags passed to the driver's .load() function 883 * 884 * Register the DRM device @dev with the system, advertise device to user-space 885 * and start normal device operation. @dev must be initialized via drm_dev_init() 886 * previously. 887 * 888 * Never call this twice on any device! 889 * 890 * NOTE: To ensure backward compatibility with existing drivers method this 891 * function calls the &drm_driver.load method after registering the device 892 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 893 * therefore deprecated, drivers must perform all initialization before calling 894 * drm_dev_register(). 895 * 896 * RETURNS: 897 * 0 on success, negative error code on failure. 898 */ 899 int drm_dev_register(struct drm_device *dev, unsigned long flags) 900 { 901 const struct drm_driver *driver = dev->driver; 902 int ret; 903 904 if (!driver->load) 905 drm_mode_config_validate(dev); 906 907 WARN_ON(!dev->managed.final_kfree); 908 909 if (drm_dev_needs_global_mutex(dev)) 910 mutex_lock(&drm_global_mutex); 911 912 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 913 accel_debugfs_register(dev); 914 else 915 drm_debugfs_dev_register(dev); 916 917 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 918 if (ret) 919 goto err_minors; 920 921 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 922 if (ret) 923 goto err_minors; 924 925 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 926 if (ret) 927 goto err_minors; 928 929 ret = create_compat_control_link(dev); 930 if (ret) 931 goto err_minors; 932 933 dev->registered = true; 934 935 if (driver->load) { 936 ret = driver->load(dev, flags); 937 if (ret) 938 goto err_minors; 939 } 940 941 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 942 ret = drm_modeset_register_all(dev); 943 if (ret) 944 goto err_unload; 945 } 946 drm_panic_register(dev); 947 948 DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n", 949 driver->name, driver->major, driver->minor, 950 driver->patchlevel, 951 dev->dev ? dev_name(dev->dev) : "virtual device", 952 dev->primary ? dev->primary->index : dev->accel->index); 953 954 goto out_unlock; 955 956 err_unload: 957 if (dev->driver->unload) 958 dev->driver->unload(dev); 959 err_minors: 960 remove_compat_control_link(dev); 961 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 962 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 963 drm_minor_unregister(dev, DRM_MINOR_RENDER); 964 out_unlock: 965 if (drm_dev_needs_global_mutex(dev)) 966 mutex_unlock(&drm_global_mutex); 967 return ret; 968 } 969 EXPORT_SYMBOL(drm_dev_register); 970 971 /** 972 * drm_dev_unregister - Unregister DRM device 973 * @dev: Device to unregister 974 * 975 * Unregister the DRM device from the system. This does the reverse of 976 * drm_dev_register() but does not deallocate the device. The caller must call 977 * drm_dev_put() to drop their final reference, unless it is managed with devres 978 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is 979 * already an unwind action registered. 980 * 981 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 982 * which can be called while there are still open users of @dev. 983 * 984 * This should be called first in the device teardown code to make sure 985 * userspace can't access the device instance any more. 986 */ 987 void drm_dev_unregister(struct drm_device *dev) 988 { 989 dev->registered = false; 990 991 drm_panic_unregister(dev); 992 993 drm_client_dev_unregister(dev); 994 995 if (drm_core_check_feature(dev, DRIVER_MODESET)) 996 drm_modeset_unregister_all(dev); 997 998 if (dev->driver->unload) 999 dev->driver->unload(dev); 1000 1001 remove_compat_control_link(dev); 1002 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1003 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1004 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1005 drm_debugfs_dev_fini(dev); 1006 } 1007 EXPORT_SYMBOL(drm_dev_unregister); 1008 1009 /* 1010 * DRM Core 1011 * The DRM core module initializes all global DRM objects and makes them 1012 * available to drivers. Once setup, drivers can probe their respective 1013 * devices. 1014 * Currently, core management includes: 1015 * - The "DRM-Global" key/value database 1016 * - Global ID management for connectors 1017 * - DRM major number allocation 1018 * - DRM minor management 1019 * - DRM sysfs class 1020 * - DRM debugfs root 1021 * 1022 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1023 * interface registered on a DRM device, you can request minor numbers from DRM 1024 * core. DRM core takes care of major-number management and char-dev 1025 * registration. A stub ->open() callback forwards any open() requests to the 1026 * registered minor. 1027 */ 1028 1029 static int drm_stub_open(struct inode *inode, struct file *filp) 1030 { 1031 const struct file_operations *new_fops; 1032 struct drm_minor *minor; 1033 int err; 1034 1035 DRM_DEBUG("\n"); 1036 1037 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode)); 1038 if (IS_ERR(minor)) 1039 return PTR_ERR(minor); 1040 1041 new_fops = fops_get(minor->dev->driver->fops); 1042 if (!new_fops) { 1043 err = -ENODEV; 1044 goto out; 1045 } 1046 1047 replace_fops(filp, new_fops); 1048 if (filp->f_op->open) 1049 err = filp->f_op->open(inode, filp); 1050 else 1051 err = 0; 1052 1053 out: 1054 drm_minor_release(minor); 1055 1056 return err; 1057 } 1058 1059 static const struct file_operations drm_stub_fops = { 1060 .owner = THIS_MODULE, 1061 .open = drm_stub_open, 1062 .llseek = noop_llseek, 1063 }; 1064 1065 static void drm_core_exit(void) 1066 { 1067 drm_privacy_screen_lookup_exit(); 1068 drm_panic_exit(); 1069 accel_core_exit(); 1070 unregister_chrdev(DRM_MAJOR, "drm"); 1071 debugfs_remove(drm_debugfs_root); 1072 drm_sysfs_destroy(); 1073 WARN_ON(!xa_empty(&drm_minors_xa)); 1074 drm_connector_ida_destroy(); 1075 } 1076 1077 static int __init drm_core_init(void) 1078 { 1079 int ret; 1080 1081 drm_connector_ida_init(); 1082 drm_memcpy_init_early(); 1083 1084 ret = drm_sysfs_init(); 1085 if (ret < 0) { 1086 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1087 goto error; 1088 } 1089 1090 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1091 1092 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1093 if (ret < 0) 1094 goto error; 1095 1096 ret = accel_core_init(); 1097 if (ret < 0) 1098 goto error; 1099 1100 drm_panic_init(); 1101 1102 drm_privacy_screen_lookup_init(); 1103 1104 drm_core_init_complete = true; 1105 1106 DRM_DEBUG("Initialized\n"); 1107 return 0; 1108 1109 error: 1110 drm_core_exit(); 1111 return ret; 1112 } 1113 1114 module_init(drm_core_init); 1115 module_exit(drm_core_exit); 1116