1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/bitops.h> 30 #include <linux/cgroup_dmem.h> 31 #include <linux/debugfs.h> 32 #include <linux/export.h> 33 #include <linux/fs.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/mount.h> 37 #include <linux/pseudo_fs.h> 38 #include <linux/slab.h> 39 #include <linux/sprintf.h> 40 #include <linux/srcu.h> 41 #include <linux/xarray.h> 42 43 #include <drm/drm_accel.h> 44 #include <drm/drm_bridge.h> 45 #include <drm/drm_cache.h> 46 #include <drm/drm_client_event.h> 47 #include <drm/drm_color_mgmt.h> 48 #include <drm/drm_drv.h> 49 #include <drm/drm_file.h> 50 #include <drm/drm_managed.h> 51 #include <drm/drm_mode_object.h> 52 #include <drm/drm_panic.h> 53 #include <drm/drm_print.h> 54 #include <drm/drm_privacy_screen_machine.h> 55 56 #include "drm_crtc_internal.h" 57 #include "drm_internal.h" 58 59 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 60 MODULE_DESCRIPTION("DRM shared core routines"); 61 MODULE_LICENSE("GPL and additional rights"); 62 63 DEFINE_XARRAY_ALLOC(drm_minors_xa); 64 65 /* 66 * If the drm core fails to init for whatever reason, 67 * we should prevent any drivers from registering with it. 68 * It's best to check this at drm_dev_init(), as some drivers 69 * prefer to embed struct drm_device into their own device 70 * structure and call drm_dev_init() themselves. 71 */ 72 static bool drm_core_init_complete; 73 74 static struct dentry *drm_debugfs_root; 75 76 DEFINE_STATIC_SRCU(drm_unplug_srcu); 77 78 /* 79 * DRM Minors 80 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 81 * of them is represented by a drm_minor object. Depending on the capabilities 82 * of the device-driver, different interfaces are registered. 83 * 84 * Minors can be accessed via dev->$minor_name. This pointer is either 85 * NULL or a valid drm_minor pointer and stays valid as long as the device is 86 * valid. This means, DRM minors have the same life-time as the underlying 87 * device. However, this doesn't mean that the minor is active. Minors are 88 * registered and unregistered dynamically according to device-state. 89 */ 90 91 static struct xarray *drm_minor_get_xa(enum drm_minor_type type) 92 { 93 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER) 94 return &drm_minors_xa; 95 #if IS_ENABLED(CONFIG_DRM_ACCEL) 96 else if (type == DRM_MINOR_ACCEL) 97 return &accel_minors_xa; 98 #endif 99 else 100 return ERR_PTR(-EOPNOTSUPP); 101 } 102 103 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 104 enum drm_minor_type type) 105 { 106 switch (type) { 107 case DRM_MINOR_PRIMARY: 108 return &dev->primary; 109 case DRM_MINOR_RENDER: 110 return &dev->render; 111 case DRM_MINOR_ACCEL: 112 return &dev->accel; 113 default: 114 BUG(); 115 } 116 } 117 118 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 119 { 120 struct drm_minor *minor = data; 121 122 WARN_ON(dev != minor->dev); 123 124 put_device(minor->kdev); 125 126 xa_erase(drm_minor_get_xa(minor->type), minor->index); 127 } 128 129 /* 130 * DRM used to support 64 devices, for backwards compatibility we need to maintain the 131 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes, 132 * and 128-191 are render nodes. 133 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve. 134 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX 135 * range. 136 */ 137 #define DRM_MINOR_LIMIT(t) ({ \ 138 typeof(t) _t = (t); \ 139 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \ 140 }) 141 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1) 142 143 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type) 144 { 145 struct drm_minor *minor; 146 int r; 147 148 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 149 if (!minor) 150 return -ENOMEM; 151 152 minor->type = type; 153 minor->dev = dev; 154 155 r = xa_alloc(drm_minor_get_xa(type), &minor->index, 156 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL); 157 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)) 158 r = xa_alloc(&drm_minors_xa, &minor->index, 159 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL); 160 if (r < 0) 161 return r; 162 163 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 164 if (r) 165 return r; 166 167 minor->kdev = drm_sysfs_minor_alloc(minor); 168 if (IS_ERR(minor->kdev)) 169 return PTR_ERR(minor->kdev); 170 171 *drm_minor_get_slot(dev, type) = minor; 172 return 0; 173 } 174 175 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type) 176 { 177 struct drm_minor *minor; 178 void *entry; 179 int ret; 180 181 DRM_DEBUG("\n"); 182 183 minor = *drm_minor_get_slot(dev, type); 184 if (!minor) 185 return 0; 186 187 if (minor->type != DRM_MINOR_ACCEL) { 188 ret = drm_debugfs_register(minor, minor->index, 189 drm_debugfs_root); 190 if (ret) { 191 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 192 goto err_debugfs; 193 } 194 } 195 196 ret = device_add(minor->kdev); 197 if (ret) 198 goto err_debugfs; 199 200 /* replace NULL with @minor so lookups will succeed from now on */ 201 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL); 202 if (xa_is_err(entry)) { 203 ret = xa_err(entry); 204 goto err_debugfs; 205 } 206 WARN_ON(entry); 207 208 DRM_DEBUG("new minor registered %d\n", minor->index); 209 return 0; 210 211 err_debugfs: 212 drm_debugfs_unregister(minor); 213 return ret; 214 } 215 216 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type) 217 { 218 struct drm_minor *minor; 219 220 minor = *drm_minor_get_slot(dev, type); 221 if (!minor || !device_is_registered(minor->kdev)) 222 return; 223 224 /* replace @minor with NULL so lookups will fail from now on */ 225 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL); 226 227 device_del(minor->kdev); 228 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 229 drm_debugfs_unregister(minor); 230 } 231 232 /* 233 * Looks up the given minor-ID and returns the respective DRM-minor object. The 234 * refence-count of the underlying device is increased so you must release this 235 * object with drm_minor_release(). 236 * 237 * As long as you hold this minor, it is guaranteed that the object and the 238 * minor->dev pointer will stay valid! However, the device may get unplugged and 239 * unregistered while you hold the minor. 240 */ 241 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id) 242 { 243 struct drm_minor *minor; 244 245 xa_lock(minor_xa); 246 minor = xa_load(minor_xa, minor_id); 247 if (minor) 248 drm_dev_get(minor->dev); 249 xa_unlock(minor_xa); 250 251 if (!minor) { 252 return ERR_PTR(-ENODEV); 253 } else if (drm_dev_is_unplugged(minor->dev)) { 254 drm_dev_put(minor->dev); 255 return ERR_PTR(-ENODEV); 256 } 257 258 return minor; 259 } 260 261 void drm_minor_release(struct drm_minor *minor) 262 { 263 drm_dev_put(minor->dev); 264 } 265 266 /** 267 * DOC: driver instance overview 268 * 269 * A device instance for a drm driver is represented by &struct drm_device. This 270 * is allocated and initialized with devm_drm_dev_alloc(), usually from 271 * bus-specific ->probe() callbacks implemented by the driver. The driver then 272 * needs to initialize all the various subsystems for the drm device like memory 273 * management, vblank handling, modesetting support and initial output 274 * configuration plus obviously initialize all the corresponding hardware bits. 275 * Finally when everything is up and running and ready for userspace the device 276 * instance can be published using drm_dev_register(). 277 * 278 * There is also deprecated support for initializing device instances using 279 * bus-specific helpers and the &drm_driver.load callback. But due to 280 * backwards-compatibility needs the device instance have to be published too 281 * early, which requires unpretty global locking to make safe and is therefore 282 * only support for existing drivers not yet converted to the new scheme. 283 * 284 * When cleaning up a device instance everything needs to be done in reverse: 285 * First unpublish the device instance with drm_dev_unregister(). Then clean up 286 * any other resources allocated at device initialization and drop the driver's 287 * reference to &drm_device using drm_dev_put(). 288 * 289 * Note that any allocation or resource which is visible to userspace must be 290 * released only when the final drm_dev_put() is called, and not when the 291 * driver is unbound from the underlying physical struct &device. Best to use 292 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 293 * related functions. 294 * 295 * devres managed resources like devm_kmalloc() can only be used for resources 296 * directly related to the underlying hardware device, and only used in code 297 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 298 * 299 * Display driver example 300 * ~~~~~~~~~~~~~~~~~~~~~~ 301 * 302 * The following example shows a typical structure of a DRM display driver. 303 * The example focus on the probe() function and the other functions that is 304 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 305 * 306 * .. code-block:: c 307 * 308 * struct driver_device { 309 * struct drm_device drm; 310 * void *userspace_facing; 311 * struct clk *pclk; 312 * }; 313 * 314 * static const struct drm_driver driver_drm_driver = { 315 * [...] 316 * }; 317 * 318 * static int driver_probe(struct platform_device *pdev) 319 * { 320 * struct driver_device *priv; 321 * struct drm_device *drm; 322 * int ret; 323 * 324 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 325 * struct driver_device, drm); 326 * if (IS_ERR(priv)) 327 * return PTR_ERR(priv); 328 * drm = &priv->drm; 329 * 330 * ret = drmm_mode_config_init(drm); 331 * if (ret) 332 * return ret; 333 * 334 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 335 * if (!priv->userspace_facing) 336 * return -ENOMEM; 337 * 338 * priv->pclk = devm_clk_get(dev, "PCLK"); 339 * if (IS_ERR(priv->pclk)) 340 * return PTR_ERR(priv->pclk); 341 * 342 * // Further setup, display pipeline etc 343 * 344 * platform_set_drvdata(pdev, drm); 345 * 346 * drm_mode_config_reset(drm); 347 * 348 * ret = drm_dev_register(drm); 349 * if (ret) 350 * return ret; 351 * 352 * drm_fbdev_{...}_setup(drm, 32); 353 * 354 * return 0; 355 * } 356 * 357 * // This function is called before the devm_ resources are released 358 * static int driver_remove(struct platform_device *pdev) 359 * { 360 * struct drm_device *drm = platform_get_drvdata(pdev); 361 * 362 * drm_dev_unregister(drm); 363 * drm_atomic_helper_shutdown(drm) 364 * 365 * return 0; 366 * } 367 * 368 * // This function is called on kernel restart and shutdown 369 * static void driver_shutdown(struct platform_device *pdev) 370 * { 371 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 372 * } 373 * 374 * static int __maybe_unused driver_pm_suspend(struct device *dev) 375 * { 376 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 377 * } 378 * 379 * static int __maybe_unused driver_pm_resume(struct device *dev) 380 * { 381 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 382 * 383 * return 0; 384 * } 385 * 386 * static const struct dev_pm_ops driver_pm_ops = { 387 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 388 * }; 389 * 390 * static struct platform_driver driver_driver = { 391 * .driver = { 392 * [...] 393 * .pm = &driver_pm_ops, 394 * }, 395 * .probe = driver_probe, 396 * .remove = driver_remove, 397 * .shutdown = driver_shutdown, 398 * }; 399 * module_platform_driver(driver_driver); 400 * 401 * Drivers that want to support device unplugging (USB, DT overlay unload) should 402 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 403 * regions that is accessing device resources to prevent use after they're 404 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 405 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 406 * drm_atomic_helper_shutdown() is called. This means that if the disable code 407 * paths are protected, they will not run on regular driver module unload, 408 * possibly leaving the hardware enabled. 409 */ 410 411 /** 412 * drm_put_dev - Unregister and release a DRM device 413 * @dev: DRM device 414 * 415 * Called at module unload time or when a PCI device is unplugged. 416 * 417 * Cleans up all DRM device, calling drm_lastclose(). 418 * 419 * Note: Use of this function is deprecated. It will eventually go away 420 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 421 * instead to make sure that the device isn't userspace accessible any more 422 * while teardown is in progress, ensuring that userspace can't access an 423 * inconsistent state. 424 */ 425 void drm_put_dev(struct drm_device *dev) 426 { 427 DRM_DEBUG("\n"); 428 429 if (!dev) { 430 DRM_ERROR("cleanup called no dev\n"); 431 return; 432 } 433 434 drm_dev_unregister(dev); 435 drm_dev_put(dev); 436 } 437 EXPORT_SYMBOL(drm_put_dev); 438 439 /** 440 * drm_dev_enter - Enter device critical section 441 * @dev: DRM device 442 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 443 * 444 * This function marks and protects the beginning of a section that should not 445 * be entered after the device has been unplugged. The section end is marked 446 * with drm_dev_exit(). Calls to this function can be nested. 447 * 448 * Returns: 449 * True if it is OK to enter the section, false otherwise. 450 */ 451 bool drm_dev_enter(struct drm_device *dev, int *idx) 452 { 453 *idx = srcu_read_lock(&drm_unplug_srcu); 454 455 if (dev->unplugged) { 456 srcu_read_unlock(&drm_unplug_srcu, *idx); 457 return false; 458 } 459 460 return true; 461 } 462 EXPORT_SYMBOL(drm_dev_enter); 463 464 /** 465 * drm_dev_exit - Exit device critical section 466 * @idx: index returned from drm_dev_enter() 467 * 468 * This function marks the end of a section that should not be entered after 469 * the device has been unplugged. 470 */ 471 void drm_dev_exit(int idx) 472 { 473 srcu_read_unlock(&drm_unplug_srcu, idx); 474 } 475 EXPORT_SYMBOL(drm_dev_exit); 476 477 /** 478 * drm_dev_unplug - unplug a DRM device 479 * @dev: DRM device 480 * 481 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 482 * userspace operations. Entry-points can use drm_dev_enter() and 483 * drm_dev_exit() to protect device resources in a race free manner. This 484 * essentially unregisters the device like drm_dev_unregister(), but can be 485 * called while there are still open users of @dev. 486 */ 487 void drm_dev_unplug(struct drm_device *dev) 488 { 489 /* 490 * After synchronizing any critical read section is guaranteed to see 491 * the new value of ->unplugged, and any critical section which might 492 * still have seen the old value of ->unplugged is guaranteed to have 493 * finished. 494 */ 495 dev->unplugged = true; 496 synchronize_srcu(&drm_unplug_srcu); 497 498 drm_dev_unregister(dev); 499 500 /* Clear all CPU mappings pointing to this device */ 501 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 502 } 503 EXPORT_SYMBOL(drm_dev_unplug); 504 505 /** 506 * drm_dev_set_dma_dev - set the DMA device for a DRM device 507 * @dev: DRM device 508 * @dma_dev: DMA device or NULL 509 * 510 * Sets the DMA device of the given DRM device. Only required if 511 * the DMA device is different from the DRM device's parent. After 512 * calling this function, the DRM device holds a reference on 513 * @dma_dev. Pass NULL to clear the DMA device. 514 */ 515 void drm_dev_set_dma_dev(struct drm_device *dev, struct device *dma_dev) 516 { 517 dma_dev = get_device(dma_dev); 518 519 put_device(dev->dma_dev); 520 dev->dma_dev = dma_dev; 521 } 522 EXPORT_SYMBOL(drm_dev_set_dma_dev); 523 524 /* 525 * Available recovery methods for wedged device. To be sent along with device 526 * wedged uevent. 527 */ 528 static const char *drm_get_wedge_recovery(unsigned int opt) 529 { 530 switch (BIT(opt)) { 531 case DRM_WEDGE_RECOVERY_NONE: 532 return "none"; 533 case DRM_WEDGE_RECOVERY_REBIND: 534 return "rebind"; 535 case DRM_WEDGE_RECOVERY_BUS_RESET: 536 return "bus-reset"; 537 default: 538 return NULL; 539 } 540 } 541 542 /** 543 * drm_dev_wedged_event - generate a device wedged uevent 544 * @dev: DRM device 545 * @method: method(s) to be used for recovery 546 * 547 * This generates a device wedged uevent for the DRM device specified by @dev. 548 * Recovery @method\(s) of choice will be sent in the uevent environment as 549 * ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects. 550 * If caller is unsure about recovery or @method is unknown (0), 551 * ``WEDGED=unknown`` will be sent instead. 552 * 553 * Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more 554 * details. 555 * 556 * Returns: 0 on success, negative error code otherwise. 557 */ 558 int drm_dev_wedged_event(struct drm_device *dev, unsigned long method) 559 { 560 const char *recovery = NULL; 561 unsigned int len, opt; 562 /* Event string length up to 28+ characters with available methods */ 563 char event_string[32]; 564 char *envp[] = { event_string, NULL }; 565 566 len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED="); 567 568 for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) { 569 recovery = drm_get_wedge_recovery(opt); 570 if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt)) 571 break; 572 573 len += scnprintf(event_string + len, sizeof(event_string) - len, "%s,", recovery); 574 } 575 576 if (recovery) 577 /* Get rid of trailing comma */ 578 event_string[len - 1] = '\0'; 579 else 580 /* Caller is unsure about recovery, do the best we can at this point. */ 581 snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown"); 582 583 drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ? 584 "but recovered through reset" : "needs recovery"); 585 586 return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp); 587 } 588 EXPORT_SYMBOL(drm_dev_wedged_event); 589 590 /* 591 * DRM internal mount 592 * We want to be able to allocate our own "struct address_space" to control 593 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 594 * stand-alone address_space objects, so we need an underlying inode. As there 595 * is no way to allocate an independent inode easily, we need a fake internal 596 * VFS mount-point. 597 * 598 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 599 * frees it again. You are allowed to use iget() and iput() to get references to 600 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 601 * drm_fs_inode_free() call (which does not have to be the last iput()). 602 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 603 * between multiple inode-users. You could, technically, call 604 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 605 * iput(), but this way you'd end up with a new vfsmount for each inode. 606 */ 607 608 static int drm_fs_cnt; 609 static struct vfsmount *drm_fs_mnt; 610 611 static int drm_fs_init_fs_context(struct fs_context *fc) 612 { 613 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 614 } 615 616 static struct file_system_type drm_fs_type = { 617 .name = "drm", 618 .owner = THIS_MODULE, 619 .init_fs_context = drm_fs_init_fs_context, 620 .kill_sb = kill_anon_super, 621 }; 622 623 static struct inode *drm_fs_inode_new(void) 624 { 625 struct inode *inode; 626 int r; 627 628 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 629 if (r < 0) { 630 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 631 return ERR_PTR(r); 632 } 633 634 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 635 if (IS_ERR(inode)) 636 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 637 638 return inode; 639 } 640 641 static void drm_fs_inode_free(struct inode *inode) 642 { 643 if (inode) { 644 iput(inode); 645 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 646 } 647 } 648 649 /** 650 * DOC: component helper usage recommendations 651 * 652 * DRM drivers that drive hardware where a logical device consists of a pile of 653 * independent hardware blocks are recommended to use the :ref:`component helper 654 * library<component>`. For consistency and better options for code reuse the 655 * following guidelines apply: 656 * 657 * - The entire device initialization procedure should be run from the 658 * &component_master_ops.master_bind callback, starting with 659 * devm_drm_dev_alloc(), then binding all components with 660 * component_bind_all() and finishing with drm_dev_register(). 661 * 662 * - The opaque pointer passed to all components through component_bind_all() 663 * should point at &struct drm_device of the device instance, not some driver 664 * specific private structure. 665 * 666 * - The component helper fills the niche where further standardization of 667 * interfaces is not practical. When there already is, or will be, a 668 * standardized interface like &drm_bridge or &drm_panel, providing its own 669 * functions to find such components at driver load time, like 670 * drm_of_find_panel_or_bridge(), then the component helper should not be 671 * used. 672 */ 673 674 static void drm_dev_init_release(struct drm_device *dev, void *res) 675 { 676 drm_fs_inode_free(dev->anon_inode); 677 678 put_device(dev->dma_dev); 679 dev->dma_dev = NULL; 680 put_device(dev->dev); 681 /* Prevent use-after-free in drm_managed_release when debugging is 682 * enabled. Slightly awkward, but can't really be helped. */ 683 dev->dev = NULL; 684 mutex_destroy(&dev->master_mutex); 685 mutex_destroy(&dev->clientlist_mutex); 686 mutex_destroy(&dev->filelist_mutex); 687 mutex_destroy(&dev->struct_mutex); 688 } 689 690 static int drm_dev_init(struct drm_device *dev, 691 const struct drm_driver *driver, 692 struct device *parent) 693 { 694 struct inode *inode; 695 int ret; 696 697 if (!drm_core_init_complete) { 698 DRM_ERROR("DRM core is not initialized\n"); 699 return -ENODEV; 700 } 701 702 if (WARN_ON(!parent)) 703 return -EINVAL; 704 705 kref_init(&dev->ref); 706 dev->dev = get_device(parent); 707 dev->driver = driver; 708 709 INIT_LIST_HEAD(&dev->managed.resources); 710 spin_lock_init(&dev->managed.lock); 711 712 /* no per-device feature limits by default */ 713 dev->driver_features = ~0u; 714 715 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 716 (drm_core_check_feature(dev, DRIVER_RENDER) || 717 drm_core_check_feature(dev, DRIVER_MODESET))) { 718 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 719 return -EINVAL; 720 } 721 722 INIT_LIST_HEAD(&dev->filelist); 723 INIT_LIST_HEAD(&dev->filelist_internal); 724 INIT_LIST_HEAD(&dev->clientlist); 725 INIT_LIST_HEAD(&dev->vblank_event_list); 726 727 spin_lock_init(&dev->event_lock); 728 mutex_init(&dev->struct_mutex); 729 mutex_init(&dev->filelist_mutex); 730 mutex_init(&dev->clientlist_mutex); 731 mutex_init(&dev->master_mutex); 732 raw_spin_lock_init(&dev->mode_config.panic_lock); 733 734 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 735 if (ret) 736 return ret; 737 738 inode = drm_fs_inode_new(); 739 if (IS_ERR(inode)) { 740 ret = PTR_ERR(inode); 741 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 742 goto err; 743 } 744 745 dev->anon_inode = inode; 746 747 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 748 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 749 if (ret) 750 goto err; 751 } else { 752 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 753 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 754 if (ret) 755 goto err; 756 } 757 758 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 759 if (ret) 760 goto err; 761 } 762 763 if (drm_core_check_feature(dev, DRIVER_GEM)) { 764 ret = drm_gem_init(dev); 765 if (ret) { 766 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 767 goto err; 768 } 769 } 770 771 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL); 772 if (!dev->unique) { 773 ret = -ENOMEM; 774 goto err; 775 } 776 777 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 778 accel_debugfs_init(dev); 779 else 780 drm_debugfs_dev_init(dev, drm_debugfs_root); 781 782 return 0; 783 784 err: 785 drm_managed_release(dev); 786 787 return ret; 788 } 789 790 static void devm_drm_dev_init_release(void *data) 791 { 792 drm_dev_put(data); 793 } 794 795 static int devm_drm_dev_init(struct device *parent, 796 struct drm_device *dev, 797 const struct drm_driver *driver) 798 { 799 int ret; 800 801 ret = drm_dev_init(dev, driver, parent); 802 if (ret) 803 return ret; 804 805 return devm_add_action_or_reset(parent, 806 devm_drm_dev_init_release, dev); 807 } 808 809 void *__devm_drm_dev_alloc(struct device *parent, 810 const struct drm_driver *driver, 811 size_t size, size_t offset) 812 { 813 void *container; 814 struct drm_device *drm; 815 int ret; 816 817 container = kzalloc(size, GFP_KERNEL); 818 if (!container) 819 return ERR_PTR(-ENOMEM); 820 821 drm = container + offset; 822 ret = devm_drm_dev_init(parent, drm, driver); 823 if (ret) { 824 kfree(container); 825 return ERR_PTR(ret); 826 } 827 drmm_add_final_kfree(drm, container); 828 829 return container; 830 } 831 EXPORT_SYMBOL(__devm_drm_dev_alloc); 832 833 /** 834 * __drm_dev_alloc - Allocation of a &drm_device instance 835 * @parent: Parent device object 836 * @driver: DRM driver 837 * @size: the size of the struct which contains struct drm_device 838 * @offset: the offset of the &drm_device within the container. 839 * 840 * This should *NOT* be by any drivers, but is a dedicated interface for the 841 * corresponding Rust abstraction. 842 * 843 * This is the same as devm_drm_dev_alloc(), but without the corresponding 844 * resource management through the parent device, but not the same as 845 * drm_dev_alloc(), since the latter is the deprecated version, which does not 846 * support subclassing. 847 * 848 * Returns: A pointer to new DRM device, or an ERR_PTR on failure. 849 */ 850 void *__drm_dev_alloc(struct device *parent, 851 const struct drm_driver *driver, 852 size_t size, size_t offset) 853 { 854 void *container; 855 struct drm_device *drm; 856 int ret; 857 858 container = kzalloc(size, GFP_KERNEL); 859 if (!container) 860 return ERR_PTR(-ENOMEM); 861 862 drm = container + offset; 863 ret = drm_dev_init(drm, driver, parent); 864 if (ret) { 865 kfree(container); 866 return ERR_PTR(ret); 867 } 868 drmm_add_final_kfree(drm, container); 869 870 return container; 871 } 872 EXPORT_SYMBOL(__drm_dev_alloc); 873 874 /** 875 * drm_dev_alloc - Allocate new DRM device 876 * @driver: DRM driver to allocate device for 877 * @parent: Parent device object 878 * 879 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 880 * subclassing through embedding the struct &drm_device in a driver private 881 * structure, and which does not support automatic cleanup through devres. 882 * 883 * RETURNS: 884 * Pointer to new DRM device, or ERR_PTR on failure. 885 */ 886 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 887 struct device *parent) 888 { 889 return __drm_dev_alloc(parent, driver, sizeof(struct drm_device), 0); 890 } 891 EXPORT_SYMBOL(drm_dev_alloc); 892 893 static void drm_dev_release(struct kref *ref) 894 { 895 struct drm_device *dev = container_of(ref, struct drm_device, ref); 896 897 /* Just in case register/unregister was never called */ 898 drm_debugfs_dev_fini(dev); 899 900 if (dev->driver->release) 901 dev->driver->release(dev); 902 903 drm_managed_release(dev); 904 905 kfree(dev->managed.final_kfree); 906 } 907 908 /** 909 * drm_dev_get - Take reference of a DRM device 910 * @dev: device to take reference of or NULL 911 * 912 * This increases the ref-count of @dev by one. You *must* already own a 913 * reference when calling this. Use drm_dev_put() to drop this reference 914 * again. 915 * 916 * This function never fails. However, this function does not provide *any* 917 * guarantee whether the device is alive or running. It only provides a 918 * reference to the object and the memory associated with it. 919 */ 920 void drm_dev_get(struct drm_device *dev) 921 { 922 if (dev) 923 kref_get(&dev->ref); 924 } 925 EXPORT_SYMBOL(drm_dev_get); 926 927 /** 928 * drm_dev_put - Drop reference of a DRM device 929 * @dev: device to drop reference of or NULL 930 * 931 * This decreases the ref-count of @dev by one. The device is destroyed if the 932 * ref-count drops to zero. 933 */ 934 void drm_dev_put(struct drm_device *dev) 935 { 936 if (dev) 937 kref_put(&dev->ref, drm_dev_release); 938 } 939 EXPORT_SYMBOL(drm_dev_put); 940 941 static void drmm_cg_unregister_region(struct drm_device *dev, void *arg) 942 { 943 dmem_cgroup_unregister_region(arg); 944 } 945 946 /** 947 * drmm_cgroup_register_region - Register a region of a DRM device to cgroups 948 * @dev: device for region 949 * @region_name: Region name for registering 950 * @size: Size of region in bytes 951 * 952 * This decreases the ref-count of @dev by one. The device is destroyed if the 953 * ref-count drops to zero. 954 */ 955 struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size) 956 { 957 struct dmem_cgroup_region *region; 958 int ret; 959 960 region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name); 961 if (IS_ERR_OR_NULL(region)) 962 return region; 963 964 ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region); 965 if (ret) 966 return ERR_PTR(ret); 967 968 return region; 969 } 970 EXPORT_SYMBOL_GPL(drmm_cgroup_register_region); 971 972 static int create_compat_control_link(struct drm_device *dev) 973 { 974 struct drm_minor *minor; 975 char *name; 976 int ret; 977 978 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 979 return 0; 980 981 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 982 if (!minor) 983 return 0; 984 985 /* 986 * Some existing userspace out there uses the existing of the controlD* 987 * sysfs files to figure out whether it's a modeset driver. It only does 988 * readdir, hence a symlink is sufficient (and the least confusing 989 * option). Otherwise controlD* is entirely unused. 990 * 991 * Old controlD chardev have been allocated in the range 992 * 64-127. 993 */ 994 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 995 if (!name) 996 return -ENOMEM; 997 998 ret = sysfs_create_link(minor->kdev->kobj.parent, 999 &minor->kdev->kobj, 1000 name); 1001 1002 kfree(name); 1003 1004 return ret; 1005 } 1006 1007 static void remove_compat_control_link(struct drm_device *dev) 1008 { 1009 struct drm_minor *minor; 1010 char *name; 1011 1012 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1013 return; 1014 1015 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 1016 if (!minor) 1017 return; 1018 1019 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 1020 if (!name) 1021 return; 1022 1023 sysfs_remove_link(minor->kdev->kobj.parent, name); 1024 1025 kfree(name); 1026 } 1027 1028 /** 1029 * drm_dev_register - Register DRM device 1030 * @dev: Device to register 1031 * @flags: Flags passed to the driver's .load() function 1032 * 1033 * Register the DRM device @dev with the system, advertise device to user-space 1034 * and start normal device operation. @dev must be initialized via drm_dev_init() 1035 * previously. 1036 * 1037 * Never call this twice on any device! 1038 * 1039 * NOTE: To ensure backward compatibility with existing drivers method this 1040 * function calls the &drm_driver.load method after registering the device 1041 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 1042 * therefore deprecated, drivers must perform all initialization before calling 1043 * drm_dev_register(). 1044 * 1045 * RETURNS: 1046 * 0 on success, negative error code on failure. 1047 */ 1048 int drm_dev_register(struct drm_device *dev, unsigned long flags) 1049 { 1050 const struct drm_driver *driver = dev->driver; 1051 int ret; 1052 1053 if (!driver->load) 1054 drm_mode_config_validate(dev); 1055 1056 WARN_ON(!dev->managed.final_kfree); 1057 1058 if (drm_dev_needs_global_mutex(dev)) 1059 mutex_lock(&drm_global_mutex); 1060 1061 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 1062 accel_debugfs_register(dev); 1063 else 1064 drm_debugfs_dev_register(dev); 1065 1066 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 1067 if (ret) 1068 goto err_minors; 1069 1070 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 1071 if (ret) 1072 goto err_minors; 1073 1074 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 1075 if (ret) 1076 goto err_minors; 1077 1078 ret = create_compat_control_link(dev); 1079 if (ret) 1080 goto err_minors; 1081 1082 dev->registered = true; 1083 1084 if (driver->load) { 1085 ret = driver->load(dev, flags); 1086 if (ret) 1087 goto err_minors; 1088 } 1089 1090 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1091 ret = drm_modeset_register_all(dev); 1092 if (ret) 1093 goto err_unload; 1094 } 1095 drm_panic_register(dev); 1096 1097 DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n", 1098 driver->name, driver->major, driver->minor, 1099 driver->patchlevel, 1100 dev->dev ? dev_name(dev->dev) : "virtual device", 1101 dev->primary ? dev->primary->index : dev->accel->index); 1102 1103 goto out_unlock; 1104 1105 err_unload: 1106 if (dev->driver->unload) 1107 dev->driver->unload(dev); 1108 err_minors: 1109 remove_compat_control_link(dev); 1110 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1111 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1112 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1113 out_unlock: 1114 if (drm_dev_needs_global_mutex(dev)) 1115 mutex_unlock(&drm_global_mutex); 1116 return ret; 1117 } 1118 EXPORT_SYMBOL(drm_dev_register); 1119 1120 /** 1121 * drm_dev_unregister - Unregister DRM device 1122 * @dev: Device to unregister 1123 * 1124 * Unregister the DRM device from the system. This does the reverse of 1125 * drm_dev_register() but does not deallocate the device. The caller must call 1126 * drm_dev_put() to drop their final reference, unless it is managed with devres 1127 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is 1128 * already an unwind action registered. 1129 * 1130 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1131 * which can be called while there are still open users of @dev. 1132 * 1133 * This should be called first in the device teardown code to make sure 1134 * userspace can't access the device instance any more. 1135 */ 1136 void drm_dev_unregister(struct drm_device *dev) 1137 { 1138 dev->registered = false; 1139 1140 drm_panic_unregister(dev); 1141 1142 drm_client_dev_unregister(dev); 1143 1144 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1145 drm_modeset_unregister_all(dev); 1146 1147 if (dev->driver->unload) 1148 dev->driver->unload(dev); 1149 1150 remove_compat_control_link(dev); 1151 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1152 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1153 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1154 drm_debugfs_dev_fini(dev); 1155 } 1156 EXPORT_SYMBOL(drm_dev_unregister); 1157 1158 /* 1159 * DRM Core 1160 * The DRM core module initializes all global DRM objects and makes them 1161 * available to drivers. Once setup, drivers can probe their respective 1162 * devices. 1163 * Currently, core management includes: 1164 * - The "DRM-Global" key/value database 1165 * - Global ID management for connectors 1166 * - DRM major number allocation 1167 * - DRM minor management 1168 * - DRM sysfs class 1169 * - DRM debugfs root 1170 * 1171 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1172 * interface registered on a DRM device, you can request minor numbers from DRM 1173 * core. DRM core takes care of major-number management and char-dev 1174 * registration. A stub ->open() callback forwards any open() requests to the 1175 * registered minor. 1176 */ 1177 1178 static int drm_stub_open(struct inode *inode, struct file *filp) 1179 { 1180 const struct file_operations *new_fops; 1181 struct drm_minor *minor; 1182 int err; 1183 1184 DRM_DEBUG("\n"); 1185 1186 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode)); 1187 if (IS_ERR(minor)) 1188 return PTR_ERR(minor); 1189 1190 new_fops = fops_get(minor->dev->driver->fops); 1191 if (!new_fops) { 1192 err = -ENODEV; 1193 goto out; 1194 } 1195 1196 replace_fops(filp, new_fops); 1197 if (filp->f_op->open) 1198 err = filp->f_op->open(inode, filp); 1199 else 1200 err = 0; 1201 1202 out: 1203 drm_minor_release(minor); 1204 1205 return err; 1206 } 1207 1208 static const struct file_operations drm_stub_fops = { 1209 .owner = THIS_MODULE, 1210 .open = drm_stub_open, 1211 .llseek = noop_llseek, 1212 }; 1213 1214 static void drm_core_exit(void) 1215 { 1216 drm_privacy_screen_lookup_exit(); 1217 drm_panic_exit(); 1218 accel_core_exit(); 1219 unregister_chrdev(DRM_MAJOR, "drm"); 1220 debugfs_remove(drm_debugfs_root); 1221 drm_sysfs_destroy(); 1222 WARN_ON(!xa_empty(&drm_minors_xa)); 1223 drm_connector_ida_destroy(); 1224 } 1225 1226 static int __init drm_core_init(void) 1227 { 1228 int ret; 1229 1230 drm_connector_ida_init(); 1231 drm_memcpy_init_early(); 1232 1233 ret = drm_sysfs_init(); 1234 if (ret < 0) { 1235 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1236 goto error; 1237 } 1238 1239 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1240 drm_bridge_debugfs_params(drm_debugfs_root); 1241 1242 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1243 if (ret < 0) 1244 goto error; 1245 1246 ret = accel_core_init(); 1247 if (ret < 0) 1248 goto error; 1249 1250 drm_panic_init(); 1251 1252 drm_privacy_screen_lookup_init(); 1253 1254 drm_core_init_complete = true; 1255 1256 DRM_DEBUG("Initialized\n"); 1257 return 0; 1258 1259 error: 1260 drm_core_exit(); 1261 return ret; 1262 } 1263 1264 module_init(drm_core_init); 1265 module_exit(drm_core_exit); 1266