xref: /linux/drivers/gpu/drm/drm_blend.c (revision bdfa82f5b8998a6311a8ef0cf89ad413f5cd9ea4)
1 /*
2  * Copyright (C) 2016 Samsung Electronics Co.Ltd
3  * Authors:
4  *	Marek Szyprowski <m.szyprowski@samsung.com>
5  *
6  * DRM core plane blending related functions
7  *
8  * Permission to use, copy, modify, distribute, and sell this software and its
9  * documentation for any purpose is hereby granted without fee, provided that
10  * the above copyright notice appear in all copies and that both that copyright
11  * notice and this permission notice appear in supporting documentation, and
12  * that the name of the copyright holders not be used in advertising or
13  * publicity pertaining to distribution of the software without specific,
14  * written prior permission.  The copyright holders make no representations
15  * about the suitability of this software for any purpose.  It is provided "as
16  * is" without express or implied warranty.
17  *
18  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
20  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
21  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
22  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
23  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/sort.h>
30 
31 #include <drm/drm_atomic.h>
32 #include <drm/drm_blend.h>
33 #include <drm/drm_device.h>
34 #include <drm/drm_print.h>
35 
36 #include "drm_crtc_internal.h"
37 
38 /**
39  * DOC: overview
40  *
41  * The basic plane composition model supported by standard plane properties only
42  * has a source rectangle (in logical pixels within the &drm_framebuffer), with
43  * sub-pixel accuracy, which is scaled up to a pixel-aligned destination
44  * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is
45  * defined by the horizontal and vertical visible pixels (stored in @hdisplay
46  * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These
47  * two rectangles are both stored in the &drm_plane_state.
48  *
49  * For the atomic ioctl the following standard (atomic) properties on the plane object
50  * encode the basic plane composition model:
51  *
52  * SRC_X:
53  * 	X coordinate offset for the source rectangle within the
54  * 	&drm_framebuffer, in 16.16 fixed point. Must be positive.
55  * SRC_Y:
56  * 	Y coordinate offset for the source rectangle within the
57  * 	&drm_framebuffer, in 16.16 fixed point. Must be positive.
58  * SRC_W:
59  * 	Width for the source rectangle within the &drm_framebuffer, in 16.16
60  * 	fixed point. SRC_X plus SRC_W must be within the width of the source
61  * 	framebuffer. Must be positive.
62  * SRC_H:
63  * 	Height for the source rectangle within the &drm_framebuffer, in 16.16
64  * 	fixed point. SRC_Y plus SRC_H must be within the height of the source
65  * 	framebuffer. Must be positive.
66  * CRTC_X:
67  * 	X coordinate offset for the destination rectangle. Can be negative.
68  * CRTC_Y:
69  * 	Y coordinate offset for the destination rectangle. Can be negative.
70  * CRTC_W:
71  * 	Width for the destination rectangle. CRTC_X plus CRTC_W can extend past
72  * 	the currently visible horizontal area of the &drm_crtc.
73  * CRTC_H:
74  * 	Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past
75  * 	the currently visible vertical area of the &drm_crtc.
76  * FB_ID:
77  * 	Mode object ID of the &drm_framebuffer this plane should scan out.
78  *
79  *	When a KMS client is performing front-buffer rendering, it should set
80  *	FB_ID to the same front-buffer FB on each atomic commit. This implies
81  *	to the driver that it needs to re-read the same FB again. Otherwise
82  *	drivers which do not employ continuously repeated scanout cycles might
83  *	not update the screen.
84  * CRTC_ID:
85  * 	Mode object ID of the &drm_crtc this plane should be connected to.
86  *
87  * Note that the source rectangle must fully lie within the bounds of the
88  * &drm_framebuffer. The destination rectangle can lie outside of the visible
89  * area of the current mode of the CRTC. It must be appropriately clipped by the
90  * driver, which can be done by calling drm_plane_helper_check_update(). Drivers
91  * are also allowed to round the subpixel sampling positions appropriately, but
92  * only to the next full pixel. No pixel outside of the source rectangle may
93  * ever be sampled, which is important when applying more sophisticated
94  * filtering than just a bilinear one when scaling. The filtering mode when
95  * scaling is unspecified.
96  *
97  * On top of this basic transformation additional properties can be exposed by
98  * the driver:
99  *
100  * alpha:
101  * 	Alpha is setup with drm_plane_create_alpha_property(). It controls the
102  * 	plane-wide opacity, from transparent (0) to opaque (0xffff). It can be
103  * 	combined with pixel alpha.
104  *	The pixel values in the framebuffers are expected to not be
105  *	pre-multiplied by the global alpha associated to the plane.
106  *
107  * rotation:
108  *	Rotation is set up with drm_plane_create_rotation_property(). It adds a
109  *	rotation and reflection step between the source and destination rectangles.
110  *	Without this property the rectangle is only scaled, but not rotated or
111  *	reflected.
112  *
113  *	Possbile values:
114  *
115  *	"rotate-<degrees>":
116  *		Signals that a drm plane is rotated <degrees> degrees in counter
117  *		clockwise direction.
118  *
119  *	"reflect-<axis>":
120  *		Signals that the contents of a drm plane is reflected along the
121  *		<axis> axis, in the same way as mirroring.
122  *
123  *	reflect-x::
124  *
125  *			|o |    | o|
126  *			|  | -> |  |
127  *			| v|    |v |
128  *
129  *	reflect-y::
130  *
131  *			|o |    | ^|
132  *			|  | -> |  |
133  *			| v|    |o |
134  *
135  * zpos:
136  *	Z position is set up with drm_plane_create_zpos_immutable_property() and
137  *	drm_plane_create_zpos_property(). It controls the visibility of overlapping
138  *	planes. Without this property the primary plane is always below the cursor
139  *	plane, and ordering between all other planes is undefined. The positive
140  *	Z axis points towards the user, i.e. planes with lower Z position values
141  *	are underneath planes with higher Z position values. Two planes with the
142  *	same Z position value have undefined ordering. Note that the Z position
143  *	value can also be immutable, to inform userspace about the hard-coded
144  *	stacking of planes, see drm_plane_create_zpos_immutable_property(). If
145  *	any plane has a zpos property (either mutable or immutable), then all
146  *	planes shall have a zpos property.
147  *
148  * pixel blend mode:
149  *	Pixel blend mode is set up with drm_plane_create_blend_mode_property().
150  *	It adds a blend mode for alpha blending equation selection, describing
151  *	how the pixels from the current plane are composited with the
152  *	background.
153  *
154  *	 Three alpha blending equations are defined:
155  *
156  *	 "None":
157  *		 Blend formula that ignores the pixel alpha::
158  *
159  *			 out.rgb = plane_alpha * fg.rgb +
160  *				 (1 - plane_alpha) * bg.rgb
161  *
162  *	 "Pre-multiplied":
163  *		 Blend formula that assumes the pixel color values
164  *		 have been already pre-multiplied with the alpha
165  *		 channel values::
166  *
167  *			 out.rgb = plane_alpha * fg.rgb +
168  *				 (1 - (plane_alpha * fg.alpha)) * bg.rgb
169  *
170  *	 "Coverage":
171  *		 Blend formula that assumes the pixel color values have not
172  *		 been pre-multiplied and will do so when blending them to the
173  *		 background color values::
174  *
175  *			 out.rgb = plane_alpha * fg.alpha * fg.rgb +
176  *				 (1 - (plane_alpha * fg.alpha)) * bg.rgb
177  *
178  *	 Using the following symbols:
179  *
180  *	 "fg.rgb":
181  *		 Each of the RGB component values from the plane's pixel
182  *	 "fg.alpha":
183  *		 Alpha component value from the plane's pixel. If the plane's
184  *		 pixel format has no alpha component, then this is assumed to be
185  *		 1.0. In these cases, this property has no effect, as all three
186  *		 equations become equivalent.
187  *	 "bg.rgb":
188  *		 Each of the RGB component values from the background
189  *	 "plane_alpha":
190  *		 Plane alpha value set by the plane "alpha" property. If the
191  *		 plane does not expose the "alpha" property, then this is
192  *		 assumed to be 1.0
193  *
194  * Note that all the property extensions described here apply either to the
195  * plane or the CRTC (e.g. for the background color, which currently is not
196  * exposed and assumed to be black).
197  *
198  * SCALING_FILTER:
199  *     Indicates scaling filter to be used for plane scaler
200  *
201  *     The value of this property can be one of the following:
202  *
203  *     Default:
204  *             Driver's default scaling filter
205  *     Nearest Neighbor:
206  *             Nearest Neighbor scaling filter
207  *
208  * Drivers can set up this property for a plane by calling
209  * drm_plane_create_scaling_filter_property
210  */
211 
212 /**
213  * drm_plane_create_alpha_property - create a new alpha property
214  * @plane: drm plane
215  *
216  * This function creates a generic, mutable, alpha property and enables support
217  * for it in the DRM core. It is attached to @plane.
218  *
219  * The alpha property will be allowed to be within the bounds of 0
220  * (transparent) to 0xffff (opaque).
221  *
222  * Returns:
223  * 0 on success, negative error code on failure.
224  */
225 int drm_plane_create_alpha_property(struct drm_plane *plane)
226 {
227 	struct drm_property *prop;
228 
229 	prop = drm_property_create_range(plane->dev, 0, "alpha",
230 					 0, DRM_BLEND_ALPHA_OPAQUE);
231 	if (!prop)
232 		return -ENOMEM;
233 
234 	drm_object_attach_property(&plane->base, prop, DRM_BLEND_ALPHA_OPAQUE);
235 	plane->alpha_property = prop;
236 
237 	if (plane->state)
238 		plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE;
239 
240 	return 0;
241 }
242 EXPORT_SYMBOL(drm_plane_create_alpha_property);
243 
244 /**
245  * drm_plane_create_rotation_property - create a new rotation property
246  * @plane: drm plane
247  * @rotation: initial value of the rotation property
248  * @supported_rotations: bitmask of supported rotations and reflections
249  *
250  * This creates a new property with the selected support for transformations.
251  *
252  * Since a rotation by 180° degress is the same as reflecting both along the x
253  * and the y axis the rotation property is somewhat redundant. Drivers can use
254  * drm_rotation_simplify() to normalize values of this property.
255  *
256  * The property exposed to userspace is a bitmask property (see
257  * drm_property_create_bitmask()) called "rotation" and has the following
258  * bitmask enumaration values:
259  *
260  * DRM_MODE_ROTATE_0:
261  * 	"rotate-0"
262  * DRM_MODE_ROTATE_90:
263  * 	"rotate-90"
264  * DRM_MODE_ROTATE_180:
265  * 	"rotate-180"
266  * DRM_MODE_ROTATE_270:
267  * 	"rotate-270"
268  * DRM_MODE_REFLECT_X:
269  * 	"reflect-x"
270  * DRM_MODE_REFLECT_Y:
271  * 	"reflect-y"
272  *
273  * Rotation is the specified amount in degrees in counter clockwise direction,
274  * the X and Y axis are within the source rectangle, i.e.  the X/Y axis before
275  * rotation. After reflection, the rotation is applied to the image sampled from
276  * the source rectangle, before scaling it to fit the destination rectangle.
277  */
278 int drm_plane_create_rotation_property(struct drm_plane *plane,
279 				       unsigned int rotation,
280 				       unsigned int supported_rotations)
281 {
282 	static const struct drm_prop_enum_list props[] = {
283 		{ __builtin_ffs(DRM_MODE_ROTATE_0) - 1,   "rotate-0" },
284 		{ __builtin_ffs(DRM_MODE_ROTATE_90) - 1,  "rotate-90" },
285 		{ __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" },
286 		{ __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" },
287 		{ __builtin_ffs(DRM_MODE_REFLECT_X) - 1,  "reflect-x" },
288 		{ __builtin_ffs(DRM_MODE_REFLECT_Y) - 1,  "reflect-y" },
289 	};
290 	struct drm_property *prop;
291 
292 	WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0);
293 	WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK));
294 	WARN_ON(rotation & ~supported_rotations);
295 
296 	prop = drm_property_create_bitmask(plane->dev, 0, "rotation",
297 					   props, ARRAY_SIZE(props),
298 					   supported_rotations);
299 	if (!prop)
300 		return -ENOMEM;
301 
302 	drm_object_attach_property(&plane->base, prop, rotation);
303 
304 	if (plane->state)
305 		plane->state->rotation = rotation;
306 
307 	plane->rotation_property = prop;
308 
309 	return 0;
310 }
311 EXPORT_SYMBOL(drm_plane_create_rotation_property);
312 
313 /**
314  * drm_rotation_simplify() - Try to simplify the rotation
315  * @rotation: Rotation to be simplified
316  * @supported_rotations: Supported rotations
317  *
318  * Attempt to simplify the rotation to a form that is supported.
319  * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X
320  * one could call this function like this:
321  *
322  * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 |
323  *                       DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 |
324  *                       DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y);
325  *
326  * to eliminate the DRM_MODE_REFLECT_X flag. Depending on what kind of
327  * transforms the hardware supports, this function may not
328  * be able to produce a supported transform, so the caller should
329  * check the result afterwards.
330  */
331 unsigned int drm_rotation_simplify(unsigned int rotation,
332 				   unsigned int supported_rotations)
333 {
334 	if (rotation & ~supported_rotations) {
335 		rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y;
336 		rotation = (rotation & DRM_MODE_REFLECT_MASK) |
337 			    BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1)
338 			    % 4);
339 	}
340 
341 	return rotation;
342 }
343 EXPORT_SYMBOL(drm_rotation_simplify);
344 
345 /**
346  * drm_plane_create_zpos_property - create mutable zpos property
347  * @plane: drm plane
348  * @zpos: initial value of zpos property
349  * @min: minimal possible value of zpos property
350  * @max: maximal possible value of zpos property
351  *
352  * This function initializes generic mutable zpos property and enables support
353  * for it in drm core. Drivers can then attach this property to planes to enable
354  * support for configurable planes arrangement during blending operation.
355  * Drivers that attach a mutable zpos property to any plane should call the
356  * drm_atomic_normalize_zpos() helper during their implementation of
357  * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos
358  * values and store them in &drm_plane_state.normalized_zpos. Usually min
359  * should be set to 0 and max to maximal number of planes for given crtc - 1.
360  *
361  * If zpos of some planes cannot be changed (like fixed background or
362  * cursor/topmost planes), drivers shall adjust the min/max values and assign
363  * those planes immutable zpos properties with lower or higher values (for more
364  * information, see drm_plane_create_zpos_immutable_property() function). In such
365  * case drivers shall also assign proper initial zpos values for all planes in
366  * its plane_reset() callback, so the planes will be always sorted properly.
367  *
368  * See also drm_atomic_normalize_zpos().
369  *
370  * The property exposed to userspace is called "zpos".
371  *
372  * Returns:
373  * Zero on success, negative errno on failure.
374  */
375 int drm_plane_create_zpos_property(struct drm_plane *plane,
376 				   unsigned int zpos,
377 				   unsigned int min, unsigned int max)
378 {
379 	struct drm_property *prop;
380 
381 	prop = drm_property_create_range(plane->dev, 0, "zpos", min, max);
382 	if (!prop)
383 		return -ENOMEM;
384 
385 	drm_object_attach_property(&plane->base, prop, zpos);
386 
387 	plane->zpos_property = prop;
388 
389 	if (plane->state) {
390 		plane->state->zpos = zpos;
391 		plane->state->normalized_zpos = zpos;
392 	}
393 
394 	return 0;
395 }
396 EXPORT_SYMBOL(drm_plane_create_zpos_property);
397 
398 /**
399  * drm_plane_create_zpos_immutable_property - create immuttable zpos property
400  * @plane: drm plane
401  * @zpos: value of zpos property
402  *
403  * This function initializes generic immutable zpos property and enables
404  * support for it in drm core. Using this property driver lets userspace
405  * to get the arrangement of the planes for blending operation and notifies
406  * it that the hardware (or driver) doesn't support changing of the planes'
407  * order. For mutable zpos see drm_plane_create_zpos_property().
408  *
409  * The property exposed to userspace is called "zpos".
410  *
411  * Returns:
412  * Zero on success, negative errno on failure.
413  */
414 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane,
415 					     unsigned int zpos)
416 {
417 	struct drm_property *prop;
418 
419 	prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE,
420 					 "zpos", zpos, zpos);
421 	if (!prop)
422 		return -ENOMEM;
423 
424 	drm_object_attach_property(&plane->base, prop, zpos);
425 
426 	plane->zpos_property = prop;
427 
428 	if (plane->state) {
429 		plane->state->zpos = zpos;
430 		plane->state->normalized_zpos = zpos;
431 	}
432 
433 	return 0;
434 }
435 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property);
436 
437 static int drm_atomic_state_zpos_cmp(const void *a, const void *b)
438 {
439 	const struct drm_plane_state *sa = *(struct drm_plane_state **)a;
440 	const struct drm_plane_state *sb = *(struct drm_plane_state **)b;
441 
442 	if (sa->zpos != sb->zpos)
443 		return sa->zpos - sb->zpos;
444 	else
445 		return sa->plane->base.id - sb->plane->base.id;
446 }
447 
448 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc,
449 					  struct drm_crtc_state *crtc_state)
450 {
451 	struct drm_atomic_state *state = crtc_state->state;
452 	struct drm_device *dev = crtc->dev;
453 	int total_planes = dev->mode_config.num_total_plane;
454 	struct drm_plane_state **states;
455 	struct drm_plane *plane;
456 	int i, n = 0;
457 	int ret = 0;
458 
459 	drm_dbg_atomic(dev, "[CRTC:%d:%s] calculating normalized zpos values\n",
460 		       crtc->base.id, crtc->name);
461 
462 	states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL);
463 	if (!states)
464 		return -ENOMEM;
465 
466 	/*
467 	 * Normalization process might create new states for planes which
468 	 * normalized_zpos has to be recalculated.
469 	 */
470 	drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) {
471 		struct drm_plane_state *plane_state =
472 			drm_atomic_get_plane_state(state, plane);
473 		if (IS_ERR(plane_state)) {
474 			ret = PTR_ERR(plane_state);
475 			goto done;
476 		}
477 		states[n++] = plane_state;
478 		drm_dbg_atomic(dev, "[PLANE:%d:%s] processing zpos value %d\n",
479 			       plane->base.id, plane->name, plane_state->zpos);
480 	}
481 
482 	sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL);
483 
484 	for (i = 0; i < n; i++) {
485 		plane = states[i]->plane;
486 
487 		states[i]->normalized_zpos = i;
488 		drm_dbg_atomic(dev, "[PLANE:%d:%s] normalized zpos value %d\n",
489 			       plane->base.id, plane->name, i);
490 	}
491 	crtc_state->zpos_changed = true;
492 
493 done:
494 	kfree(states);
495 	return ret;
496 }
497 
498 /**
499  * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs
500  * @dev: DRM device
501  * @state: atomic state of DRM device
502  *
503  * This function calculates normalized zpos value for all modified planes in
504  * the provided atomic state of DRM device.
505  *
506  * For every CRTC this function checks new states of all planes assigned to
507  * it and calculates normalized zpos value for these planes. Planes are compared
508  * first by their zpos values, then by plane id (if zpos is equal). The plane
509  * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos
510  * is then filled with unique values from 0 to number of active planes in crtc
511  * minus one.
512  *
513  * RETURNS
514  * Zero for success or -errno
515  */
516 int drm_atomic_normalize_zpos(struct drm_device *dev,
517 			      struct drm_atomic_state *state)
518 {
519 	struct drm_crtc *crtc;
520 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
521 	struct drm_plane *plane;
522 	struct drm_plane_state *old_plane_state, *new_plane_state;
523 	int i, ret = 0;
524 
525 	for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
526 		crtc = new_plane_state->crtc;
527 		if (!crtc)
528 			continue;
529 		if (old_plane_state->zpos != new_plane_state->zpos) {
530 			new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
531 			new_crtc_state->zpos_changed = true;
532 		}
533 	}
534 
535 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
536 		if (old_crtc_state->plane_mask != new_crtc_state->plane_mask ||
537 		    new_crtc_state->zpos_changed) {
538 			ret = drm_atomic_helper_crtc_normalize_zpos(crtc,
539 								    new_crtc_state);
540 			if (ret)
541 				return ret;
542 		}
543 	}
544 	return 0;
545 }
546 EXPORT_SYMBOL(drm_atomic_normalize_zpos);
547 
548 /**
549  * drm_plane_create_blend_mode_property - create a new blend mode property
550  * @plane: drm plane
551  * @supported_modes: bitmask of supported modes, must include
552  *		     BIT(DRM_MODE_BLEND_PREMULTI). Current DRM assumption is
553  *		     that alpha is premultiplied, and old userspace can break if
554  *		     the property defaults to anything else.
555  *
556  * This creates a new property describing the blend mode.
557  *
558  * The property exposed to userspace is an enumeration property (see
559  * drm_property_create_enum()) called "pixel blend mode" and has the
560  * following enumeration values:
561  *
562  * "None":
563  *	Blend formula that ignores the pixel alpha.
564  *
565  * "Pre-multiplied":
566  *	Blend formula that assumes the pixel color values have been already
567  *	pre-multiplied with the alpha channel values.
568  *
569  * "Coverage":
570  *	Blend formula that assumes the pixel color values have not been
571  *	pre-multiplied and will do so when blending them to the background color
572  *	values.
573  *
574  * RETURNS:
575  * Zero for success or -errno
576  */
577 int drm_plane_create_blend_mode_property(struct drm_plane *plane,
578 					 unsigned int supported_modes)
579 {
580 	struct drm_device *dev = plane->dev;
581 	struct drm_property *prop;
582 	static const struct drm_prop_enum_list props[] = {
583 		{ DRM_MODE_BLEND_PIXEL_NONE, "None" },
584 		{ DRM_MODE_BLEND_PREMULTI, "Pre-multiplied" },
585 		{ DRM_MODE_BLEND_COVERAGE, "Coverage" },
586 	};
587 	unsigned int valid_mode_mask = BIT(DRM_MODE_BLEND_PIXEL_NONE) |
588 				       BIT(DRM_MODE_BLEND_PREMULTI)   |
589 				       BIT(DRM_MODE_BLEND_COVERAGE);
590 	int i;
591 
592 	if (WARN_ON((supported_modes & ~valid_mode_mask) ||
593 		    ((supported_modes & BIT(DRM_MODE_BLEND_PREMULTI)) == 0)))
594 		return -EINVAL;
595 
596 	prop = drm_property_create(dev, DRM_MODE_PROP_ENUM,
597 				   "pixel blend mode",
598 				   hweight32(supported_modes));
599 	if (!prop)
600 		return -ENOMEM;
601 
602 	for (i = 0; i < ARRAY_SIZE(props); i++) {
603 		int ret;
604 
605 		if (!(BIT(props[i].type) & supported_modes))
606 			continue;
607 
608 		ret = drm_property_add_enum(prop, props[i].type,
609 					    props[i].name);
610 
611 		if (ret) {
612 			drm_property_destroy(dev, prop);
613 
614 			return ret;
615 		}
616 	}
617 
618 	drm_object_attach_property(&plane->base, prop, DRM_MODE_BLEND_PREMULTI);
619 	plane->blend_mode_property = prop;
620 
621 	return 0;
622 }
623 EXPORT_SYMBOL(drm_plane_create_blend_mode_property);
624