1 /* 2 * Copyright (C) 2016 Samsung Electronics Co.Ltd 3 * Authors: 4 * Marek Szyprowski <m.szyprowski@samsung.com> 5 * 6 * DRM core plane blending related functions 7 * 8 * Permission to use, copy, modify, distribute, and sell this software and its 9 * documentation for any purpose is hereby granted without fee, provided that 10 * the above copyright notice appear in all copies and that both that copyright 11 * notice and this permission notice appear in supporting documentation, and 12 * that the name of the copyright holders not be used in advertising or 13 * publicity pertaining to distribution of the software without specific, 14 * written prior permission. The copyright holders make no representations 15 * about the suitability of this software for any purpose. It is provided "as 16 * is" without express or implied warranty. 17 * 18 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 20 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 21 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 22 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 23 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 24 * OF THIS SOFTWARE. 25 */ 26 #include <drm/drmP.h> 27 #include <drm/drm_atomic.h> 28 #include <drm/drm_blend.h> 29 #include <linux/export.h> 30 #include <linux/slab.h> 31 #include <linux/sort.h> 32 33 #include "drm_crtc_internal.h" 34 35 /** 36 * DOC: overview 37 * 38 * The basic plane composition model supported by standard plane properties only 39 * has a source rectangle (in logical pixels within the &drm_framebuffer), with 40 * sub-pixel accuracy, which is scaled up to a pixel-aligned destination 41 * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is 42 * defined by the horizontal and vertical visible pixels (stored in @hdisplay 43 * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These 44 * two rectangles are both stored in the &drm_plane_state. 45 * 46 * For the atomic ioctl the following standard (atomic) properties on the plane object 47 * encode the basic plane composition model: 48 * 49 * SRC_X: 50 * X coordinate offset for the source rectangle within the 51 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 52 * SRC_Y: 53 * Y coordinate offset for the source rectangle within the 54 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 55 * SRC_W: 56 * Width for the source rectangle within the &drm_framebuffer, in 16.16 57 * fixed point. SRC_X plus SRC_W must be within the width of the source 58 * framebuffer. Must be positive. 59 * SRC_H: 60 * Height for the source rectangle within the &drm_framebuffer, in 16.16 61 * fixed point. SRC_Y plus SRC_H must be within the height of the source 62 * framebuffer. Must be positive. 63 * CRTC_X: 64 * X coordinate offset for the destination rectangle. Can be negative. 65 * CRTC_Y: 66 * Y coordinate offset for the destination rectangle. Can be negative. 67 * CRTC_W: 68 * Width for the destination rectangle. CRTC_X plus CRTC_W can extend past 69 * the currently visible horizontal area of the &drm_crtc. 70 * CRTC_H: 71 * Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past 72 * the currently visible vertical area of the &drm_crtc. 73 * FB_ID: 74 * Mode object ID of the &drm_framebuffer this plane should scan out. 75 * CRTC_ID: 76 * Mode object ID of the &drm_crtc this plane should be connected to. 77 * 78 * Note that the source rectangle must fully lie within the bounds of the 79 * &drm_framebuffer. The destination rectangle can lie outside of the visible 80 * area of the current mode of the CRTC. It must be apprpriately clipped by the 81 * driver, which can be done by calling drm_plane_helper_check_update(). Drivers 82 * are also allowed to round the subpixel sampling positions appropriately, but 83 * only to the next full pixel. No pixel outside of the source rectangle may 84 * ever be sampled, which is important when applying more sophisticated 85 * filtering than just a bilinear one when scaling. The filtering mode when 86 * scaling is unspecified. 87 * 88 * On top of this basic transformation additional properties can be exposed by 89 * the driver: 90 * 91 * alpha: 92 * Alpha is setup with drm_plane_create_alpha_property(). It controls the 93 * plane-wide opacity, from transparent (0) to opaque (0xffff). It can be 94 * combined with pixel alpha. 95 * The pixel values in the framebuffers are expected to not be 96 * pre-multiplied by the global alpha associated to the plane. 97 * 98 * rotation: 99 * Rotation is set up with drm_plane_create_rotation_property(). It adds a 100 * rotation and reflection step between the source and destination rectangles. 101 * Without this property the rectangle is only scaled, but not rotated or 102 * reflected. 103 * 104 * Possbile values: 105 * 106 * "rotate-<degrees>": 107 * Signals that a drm plane is rotated <degrees> degrees in counter 108 * clockwise direction. 109 * 110 * "reflect-<axis>": 111 * Signals that the contents of a drm plane is reflected along the 112 * <axis> axis, in the same way as mirroring. 113 * 114 * reflect-x:: 115 * 116 * |o | | o| 117 * | | -> | | 118 * | v| |v | 119 * 120 * reflect-y:: 121 * 122 * |o | | ^| 123 * | | -> | | 124 * | v| |o | 125 * 126 * zpos: 127 * Z position is set up with drm_plane_create_zpos_immutable_property() and 128 * drm_plane_create_zpos_property(). It controls the visibility of overlapping 129 * planes. Without this property the primary plane is always below the cursor 130 * plane, and ordering between all other planes is undefined. 131 * 132 * pixel blend mode: 133 * Pixel blend mode is set up with drm_plane_create_blend_mode_property(). 134 * It adds a blend mode for alpha blending equation selection, describing 135 * how the pixels from the current plane are composited with the 136 * background. 137 * 138 * Three alpha blending equations are defined: 139 * 140 * "None": 141 * Blend formula that ignores the pixel alpha:: 142 * 143 * out.rgb = plane_alpha * fg.rgb + 144 * (1 - plane_alpha) * bg.rgb 145 * 146 * "Pre-multiplied": 147 * Blend formula that assumes the pixel color values 148 * have been already pre-multiplied with the alpha 149 * channel values:: 150 * 151 * out.rgb = plane_alpha * fg.rgb + 152 * (1 - (plane_alpha * fg.alpha)) * bg.rgb 153 * 154 * "Coverage": 155 * Blend formula that assumes the pixel color values have not 156 * been pre-multiplied and will do so when blending them to the 157 * background color values:: 158 * 159 * out.rgb = plane_alpha * fg.alpha * fg.rgb + 160 * (1 - (plane_alpha * fg.alpha)) * bg.rgb 161 * 162 * Using the following symbols: 163 * 164 * "fg.rgb": 165 * Each of the RGB component values from the plane's pixel 166 * "fg.alpha": 167 * Alpha component value from the plane's pixel. If the plane's 168 * pixel format has no alpha component, then this is assumed to be 169 * 1.0. In these cases, this property has no effect, as all three 170 * equations become equivalent. 171 * "bg.rgb": 172 * Each of the RGB component values from the background 173 * "plane_alpha": 174 * Plane alpha value set by the plane "alpha" property. If the 175 * plane does not expose the "alpha" property, then this is 176 * assumed to be 1.0 177 * 178 * Note that all the property extensions described here apply either to the 179 * plane or the CRTC (e.g. for the background color, which currently is not 180 * exposed and assumed to be black). 181 */ 182 183 /** 184 * drm_plane_create_alpha_property - create a new alpha property 185 * @plane: drm plane 186 * 187 * This function creates a generic, mutable, alpha property and enables support 188 * for it in the DRM core. It is attached to @plane. 189 * 190 * The alpha property will be allowed to be within the bounds of 0 191 * (transparent) to 0xffff (opaque). 192 * 193 * Returns: 194 * 0 on success, negative error code on failure. 195 */ 196 int drm_plane_create_alpha_property(struct drm_plane *plane) 197 { 198 struct drm_property *prop; 199 200 prop = drm_property_create_range(plane->dev, 0, "alpha", 201 0, DRM_BLEND_ALPHA_OPAQUE); 202 if (!prop) 203 return -ENOMEM; 204 205 drm_object_attach_property(&plane->base, prop, DRM_BLEND_ALPHA_OPAQUE); 206 plane->alpha_property = prop; 207 208 if (plane->state) 209 plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE; 210 211 return 0; 212 } 213 EXPORT_SYMBOL(drm_plane_create_alpha_property); 214 215 /** 216 * drm_plane_create_rotation_property - create a new rotation property 217 * @plane: drm plane 218 * @rotation: initial value of the rotation property 219 * @supported_rotations: bitmask of supported rotations and reflections 220 * 221 * This creates a new property with the selected support for transformations. 222 * 223 * Since a rotation by 180° degress is the same as reflecting both along the x 224 * and the y axis the rotation property is somewhat redundant. Drivers can use 225 * drm_rotation_simplify() to normalize values of this property. 226 * 227 * The property exposed to userspace is a bitmask property (see 228 * drm_property_create_bitmask()) called "rotation" and has the following 229 * bitmask enumaration values: 230 * 231 * DRM_MODE_ROTATE_0: 232 * "rotate-0" 233 * DRM_MODE_ROTATE_90: 234 * "rotate-90" 235 * DRM_MODE_ROTATE_180: 236 * "rotate-180" 237 * DRM_MODE_ROTATE_270: 238 * "rotate-270" 239 * DRM_MODE_REFLECT_X: 240 * "reflect-x" 241 * DRM_MODE_REFLECT_Y: 242 * "reflect-y" 243 * 244 * Rotation is the specified amount in degrees in counter clockwise direction, 245 * the X and Y axis are within the source rectangle, i.e. the X/Y axis before 246 * rotation. After reflection, the rotation is applied to the image sampled from 247 * the source rectangle, before scaling it to fit the destination rectangle. 248 */ 249 int drm_plane_create_rotation_property(struct drm_plane *plane, 250 unsigned int rotation, 251 unsigned int supported_rotations) 252 { 253 static const struct drm_prop_enum_list props[] = { 254 { __builtin_ffs(DRM_MODE_ROTATE_0) - 1, "rotate-0" }, 255 { __builtin_ffs(DRM_MODE_ROTATE_90) - 1, "rotate-90" }, 256 { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" }, 257 { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" }, 258 { __builtin_ffs(DRM_MODE_REFLECT_X) - 1, "reflect-x" }, 259 { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1, "reflect-y" }, 260 }; 261 struct drm_property *prop; 262 263 WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0); 264 WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK)); 265 WARN_ON(rotation & ~supported_rotations); 266 267 prop = drm_property_create_bitmask(plane->dev, 0, "rotation", 268 props, ARRAY_SIZE(props), 269 supported_rotations); 270 if (!prop) 271 return -ENOMEM; 272 273 drm_object_attach_property(&plane->base, prop, rotation); 274 275 if (plane->state) 276 plane->state->rotation = rotation; 277 278 plane->rotation_property = prop; 279 280 return 0; 281 } 282 EXPORT_SYMBOL(drm_plane_create_rotation_property); 283 284 /** 285 * drm_rotation_simplify() - Try to simplify the rotation 286 * @rotation: Rotation to be simplified 287 * @supported_rotations: Supported rotations 288 * 289 * Attempt to simplify the rotation to a form that is supported. 290 * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X 291 * one could call this function like this: 292 * 293 * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 | 294 * DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 | 295 * DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y); 296 * 297 * to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of 298 * transforms the hardware supports, this function may not 299 * be able to produce a supported transform, so the caller should 300 * check the result afterwards. 301 */ 302 unsigned int drm_rotation_simplify(unsigned int rotation, 303 unsigned int supported_rotations) 304 { 305 if (rotation & ~supported_rotations) { 306 rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y; 307 rotation = (rotation & DRM_MODE_REFLECT_MASK) | 308 BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1) 309 % 4); 310 } 311 312 return rotation; 313 } 314 EXPORT_SYMBOL(drm_rotation_simplify); 315 316 /** 317 * drm_plane_create_zpos_property - create mutable zpos property 318 * @plane: drm plane 319 * @zpos: initial value of zpos property 320 * @min: minimal possible value of zpos property 321 * @max: maximal possible value of zpos property 322 * 323 * This function initializes generic mutable zpos property and enables support 324 * for it in drm core. Drivers can then attach this property to planes to enable 325 * support for configurable planes arrangement during blending operation. 326 * Drivers that attach a mutable zpos property to any plane should call the 327 * drm_atomic_normalize_zpos() helper during their implementation of 328 * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos 329 * values and store them in &drm_plane_state.normalized_zpos. Usually min 330 * should be set to 0 and max to maximal number of planes for given crtc - 1. 331 * 332 * If zpos of some planes cannot be changed (like fixed background or 333 * cursor/topmost planes), driver should adjust min/max values and assign those 334 * planes immutable zpos property with lower or higher values (for more 335 * information, see drm_plane_create_zpos_immutable_property() function). In such 336 * case driver should also assign proper initial zpos values for all planes in 337 * its plane_reset() callback, so the planes will be always sorted properly. 338 * 339 * See also drm_atomic_normalize_zpos(). 340 * 341 * The property exposed to userspace is called "zpos". 342 * 343 * Returns: 344 * Zero on success, negative errno on failure. 345 */ 346 int drm_plane_create_zpos_property(struct drm_plane *plane, 347 unsigned int zpos, 348 unsigned int min, unsigned int max) 349 { 350 struct drm_property *prop; 351 352 prop = drm_property_create_range(plane->dev, 0, "zpos", min, max); 353 if (!prop) 354 return -ENOMEM; 355 356 drm_object_attach_property(&plane->base, prop, zpos); 357 358 plane->zpos_property = prop; 359 360 if (plane->state) { 361 plane->state->zpos = zpos; 362 plane->state->normalized_zpos = zpos; 363 } 364 365 return 0; 366 } 367 EXPORT_SYMBOL(drm_plane_create_zpos_property); 368 369 /** 370 * drm_plane_create_zpos_immutable_property - create immuttable zpos property 371 * @plane: drm plane 372 * @zpos: value of zpos property 373 * 374 * This function initializes generic immutable zpos property and enables 375 * support for it in drm core. Using this property driver lets userspace 376 * to get the arrangement of the planes for blending operation and notifies 377 * it that the hardware (or driver) doesn't support changing of the planes' 378 * order. For mutable zpos see drm_plane_create_zpos_property(). 379 * 380 * The property exposed to userspace is called "zpos". 381 * 382 * Returns: 383 * Zero on success, negative errno on failure. 384 */ 385 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane, 386 unsigned int zpos) 387 { 388 struct drm_property *prop; 389 390 prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE, 391 "zpos", zpos, zpos); 392 if (!prop) 393 return -ENOMEM; 394 395 drm_object_attach_property(&plane->base, prop, zpos); 396 397 plane->zpos_property = prop; 398 399 if (plane->state) { 400 plane->state->zpos = zpos; 401 plane->state->normalized_zpos = zpos; 402 } 403 404 return 0; 405 } 406 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property); 407 408 static int drm_atomic_state_zpos_cmp(const void *a, const void *b) 409 { 410 const struct drm_plane_state *sa = *(struct drm_plane_state **)a; 411 const struct drm_plane_state *sb = *(struct drm_plane_state **)b; 412 413 if (sa->zpos != sb->zpos) 414 return sa->zpos - sb->zpos; 415 else 416 return sa->plane->base.id - sb->plane->base.id; 417 } 418 419 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc, 420 struct drm_crtc_state *crtc_state) 421 { 422 struct drm_atomic_state *state = crtc_state->state; 423 struct drm_device *dev = crtc->dev; 424 int total_planes = dev->mode_config.num_total_plane; 425 struct drm_plane_state **states; 426 struct drm_plane *plane; 427 int i, n = 0; 428 int ret = 0; 429 430 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n", 431 crtc->base.id, crtc->name); 432 433 states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL); 434 if (!states) 435 return -ENOMEM; 436 437 /* 438 * Normalization process might create new states for planes which 439 * normalized_zpos has to be recalculated. 440 */ 441 drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) { 442 struct drm_plane_state *plane_state = 443 drm_atomic_get_plane_state(state, plane); 444 if (IS_ERR(plane_state)) { 445 ret = PTR_ERR(plane_state); 446 goto done; 447 } 448 states[n++] = plane_state; 449 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n", 450 plane->base.id, plane->name, 451 plane_state->zpos); 452 } 453 454 sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL); 455 456 for (i = 0; i < n; i++) { 457 plane = states[i]->plane; 458 459 states[i]->normalized_zpos = i; 460 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n", 461 plane->base.id, plane->name, i); 462 } 463 crtc_state->zpos_changed = true; 464 465 done: 466 kfree(states); 467 return ret; 468 } 469 470 /** 471 * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs 472 * @dev: DRM device 473 * @state: atomic state of DRM device 474 * 475 * This function calculates normalized zpos value for all modified planes in 476 * the provided atomic state of DRM device. 477 * 478 * For every CRTC this function checks new states of all planes assigned to 479 * it and calculates normalized zpos value for these planes. Planes are compared 480 * first by their zpos values, then by plane id (if zpos is equal). The plane 481 * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos 482 * is then filled with unique values from 0 to number of active planes in crtc 483 * minus one. 484 * 485 * RETURNS 486 * Zero for success or -errno 487 */ 488 int drm_atomic_normalize_zpos(struct drm_device *dev, 489 struct drm_atomic_state *state) 490 { 491 struct drm_crtc *crtc; 492 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 493 struct drm_plane *plane; 494 struct drm_plane_state *old_plane_state, *new_plane_state; 495 int i, ret = 0; 496 497 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { 498 crtc = new_plane_state->crtc; 499 if (!crtc) 500 continue; 501 if (old_plane_state->zpos != new_plane_state->zpos) { 502 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 503 new_crtc_state->zpos_changed = true; 504 } 505 } 506 507 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 508 if (old_crtc_state->plane_mask != new_crtc_state->plane_mask || 509 new_crtc_state->zpos_changed) { 510 ret = drm_atomic_helper_crtc_normalize_zpos(crtc, 511 new_crtc_state); 512 if (ret) 513 return ret; 514 } 515 } 516 return 0; 517 } 518 EXPORT_SYMBOL(drm_atomic_normalize_zpos); 519 520 /** 521 * drm_plane_create_blend_mode_property - create a new blend mode property 522 * @plane: drm plane 523 * @supported_modes: bitmask of supported modes, must include 524 * BIT(DRM_MODE_BLEND_PREMULTI). Current DRM assumption is 525 * that alpha is premultiplied, and old userspace can break if 526 * the property defaults to anything else. 527 * 528 * This creates a new property describing the blend mode. 529 * 530 * The property exposed to userspace is an enumeration property (see 531 * drm_property_create_enum()) called "pixel blend mode" and has the 532 * following enumeration values: 533 * 534 * "None": 535 * Blend formula that ignores the pixel alpha. 536 * 537 * "Pre-multiplied": 538 * Blend formula that assumes the pixel color values have been already 539 * pre-multiplied with the alpha channel values. 540 * 541 * "Coverage": 542 * Blend formula that assumes the pixel color values have not been 543 * pre-multiplied and will do so when blending them to the background color 544 * values. 545 * 546 * RETURNS: 547 * Zero for success or -errno 548 */ 549 int drm_plane_create_blend_mode_property(struct drm_plane *plane, 550 unsigned int supported_modes) 551 { 552 struct drm_device *dev = plane->dev; 553 struct drm_property *prop; 554 static const struct drm_prop_enum_list props[] = { 555 { DRM_MODE_BLEND_PIXEL_NONE, "None" }, 556 { DRM_MODE_BLEND_PREMULTI, "Pre-multiplied" }, 557 { DRM_MODE_BLEND_COVERAGE, "Coverage" }, 558 }; 559 unsigned int valid_mode_mask = BIT(DRM_MODE_BLEND_PIXEL_NONE) | 560 BIT(DRM_MODE_BLEND_PREMULTI) | 561 BIT(DRM_MODE_BLEND_COVERAGE); 562 int i; 563 564 if (WARN_ON((supported_modes & ~valid_mode_mask) || 565 ((supported_modes & BIT(DRM_MODE_BLEND_PREMULTI)) == 0))) 566 return -EINVAL; 567 568 prop = drm_property_create(dev, DRM_MODE_PROP_ENUM, 569 "pixel blend mode", 570 hweight32(supported_modes)); 571 if (!prop) 572 return -ENOMEM; 573 574 for (i = 0; i < ARRAY_SIZE(props); i++) { 575 int ret; 576 577 if (!(BIT(props[i].type) & supported_modes)) 578 continue; 579 580 ret = drm_property_add_enum(prop, props[i].type, 581 props[i].name); 582 583 if (ret) { 584 drm_property_destroy(dev, prop); 585 586 return ret; 587 } 588 } 589 590 drm_object_attach_property(&plane->base, prop, DRM_MODE_BLEND_PREMULTI); 591 plane->blend_mode_property = prop; 592 593 return 0; 594 } 595 EXPORT_SYMBOL(drm_plane_create_blend_mode_property); 596