1 /* 2 * Copyright © 2014 Red Hat 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/bitfield.h> 24 #include <linux/delay.h> 25 #include <linux/errno.h> 26 #include <linux/i2c.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/random.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 33 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 34 #include <linux/stacktrace.h> 35 #include <linux/sort.h> 36 #include <linux/timekeeping.h> 37 #include <linux/math64.h> 38 #endif 39 40 #include <drm/display/drm_dp_mst_helper.h> 41 #include <drm/drm_atomic.h> 42 #include <drm/drm_atomic_helper.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_edid.h> 45 #include <drm/drm_fixed.h> 46 #include <drm/drm_print.h> 47 #include <drm/drm_probe_helper.h> 48 49 #include "drm_dp_helper_internal.h" 50 #include "drm_dp_mst_topology_internal.h" 51 52 /** 53 * DOC: dp mst helper 54 * 55 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport 56 * protocol. The helpers contain a topology manager and bandwidth manager. 57 * The helpers encapsulate the sending and received of sideband msgs. 58 */ 59 struct drm_dp_pending_up_req { 60 struct drm_dp_sideband_msg_hdr hdr; 61 struct drm_dp_sideband_msg_req_body msg; 62 struct list_head next; 63 }; 64 65 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 66 char *buf); 67 68 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port); 69 70 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 71 struct drm_dp_mst_port *port, 72 int offset, int size, u8 *bytes); 73 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 74 struct drm_dp_mst_port *port, 75 int offset, int size, u8 *bytes); 76 77 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 78 struct drm_dp_mst_branch *mstb); 79 80 static void 81 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 82 struct drm_dp_mst_branch *mstb); 83 84 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 85 struct drm_dp_mst_branch *mstb, 86 struct drm_dp_mst_port *port); 87 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 88 guid_t *guid); 89 90 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port); 91 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port); 92 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr); 93 94 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 95 struct drm_dp_mst_branch *branch); 96 97 #define DBG_PREFIX "[dp_mst]" 98 99 #define DP_STR(x) [DP_ ## x] = #x 100 101 static const char *drm_dp_mst_req_type_str(u8 req_type) 102 { 103 static const char * const req_type_str[] = { 104 DP_STR(GET_MSG_TRANSACTION_VERSION), 105 DP_STR(LINK_ADDRESS), 106 DP_STR(CONNECTION_STATUS_NOTIFY), 107 DP_STR(ENUM_PATH_RESOURCES), 108 DP_STR(ALLOCATE_PAYLOAD), 109 DP_STR(QUERY_PAYLOAD), 110 DP_STR(RESOURCE_STATUS_NOTIFY), 111 DP_STR(CLEAR_PAYLOAD_ID_TABLE), 112 DP_STR(REMOTE_DPCD_READ), 113 DP_STR(REMOTE_DPCD_WRITE), 114 DP_STR(REMOTE_I2C_READ), 115 DP_STR(REMOTE_I2C_WRITE), 116 DP_STR(POWER_UP_PHY), 117 DP_STR(POWER_DOWN_PHY), 118 DP_STR(SINK_EVENT_NOTIFY), 119 DP_STR(QUERY_STREAM_ENC_STATUS), 120 }; 121 122 if (req_type >= ARRAY_SIZE(req_type_str) || 123 !req_type_str[req_type]) 124 return "unknown"; 125 126 return req_type_str[req_type]; 127 } 128 129 #undef DP_STR 130 #define DP_STR(x) [DP_NAK_ ## x] = #x 131 132 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason) 133 { 134 static const char * const nak_reason_str[] = { 135 DP_STR(WRITE_FAILURE), 136 DP_STR(INVALID_READ), 137 DP_STR(CRC_FAILURE), 138 DP_STR(BAD_PARAM), 139 DP_STR(DEFER), 140 DP_STR(LINK_FAILURE), 141 DP_STR(NO_RESOURCES), 142 DP_STR(DPCD_FAIL), 143 DP_STR(I2C_NAK), 144 DP_STR(ALLOCATE_FAIL), 145 }; 146 147 if (nak_reason >= ARRAY_SIZE(nak_reason_str) || 148 !nak_reason_str[nak_reason]) 149 return "unknown"; 150 151 return nak_reason_str[nak_reason]; 152 } 153 154 #undef DP_STR 155 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x 156 157 static const char *drm_dp_mst_sideband_tx_state_str(int state) 158 { 159 static const char * const sideband_reason_str[] = { 160 DP_STR(QUEUED), 161 DP_STR(START_SEND), 162 DP_STR(SENT), 163 DP_STR(RX), 164 DP_STR(TIMEOUT), 165 }; 166 167 if (state >= ARRAY_SIZE(sideband_reason_str) || 168 !sideband_reason_str[state]) 169 return "unknown"; 170 171 return sideband_reason_str[state]; 172 } 173 174 static inline u8 175 drm_dp_mst_get_ufp_num_at_lct_from_rad(u8 lct, const u8 *rad) 176 { 177 int idx = (lct / 2) - 1; 178 int shift = (lct % 2) ? 0 : 4; 179 u8 ufp_num; 180 181 /* mst_primary, it's rad is unset*/ 182 if (lct == 1) 183 return 0; 184 185 ufp_num = (rad[idx] >> shift) & 0xf; 186 187 return ufp_num; 188 } 189 190 static int 191 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len) 192 { 193 int i; 194 u8 unpacked_rad[16] = {}; 195 196 for (i = 0; i < lct; i++) 197 unpacked_rad[i] = drm_dp_mst_get_ufp_num_at_lct_from_rad(i + 1, rad); 198 199 /* TODO: Eventually add something to printk so we can format the rad 200 * like this: 1.2.3 201 */ 202 return snprintf(out, len, "%*phC", lct, unpacked_rad); 203 } 204 205 /* sideband msg handling */ 206 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles) 207 { 208 u8 bitmask = 0x80; 209 u8 bitshift = 7; 210 u8 array_index = 0; 211 int number_of_bits = num_nibbles * 4; 212 u8 remainder = 0; 213 214 while (number_of_bits != 0) { 215 number_of_bits--; 216 remainder <<= 1; 217 remainder |= (data[array_index] & bitmask) >> bitshift; 218 bitmask >>= 1; 219 bitshift--; 220 if (bitmask == 0) { 221 bitmask = 0x80; 222 bitshift = 7; 223 array_index++; 224 } 225 if ((remainder & 0x10) == 0x10) 226 remainder ^= 0x13; 227 } 228 229 number_of_bits = 4; 230 while (number_of_bits != 0) { 231 number_of_bits--; 232 remainder <<= 1; 233 if ((remainder & 0x10) != 0) 234 remainder ^= 0x13; 235 } 236 237 return remainder; 238 } 239 240 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes) 241 { 242 u8 bitmask = 0x80; 243 u8 bitshift = 7; 244 u8 array_index = 0; 245 int number_of_bits = number_of_bytes * 8; 246 u16 remainder = 0; 247 248 while (number_of_bits != 0) { 249 number_of_bits--; 250 remainder <<= 1; 251 remainder |= (data[array_index] & bitmask) >> bitshift; 252 bitmask >>= 1; 253 bitshift--; 254 if (bitmask == 0) { 255 bitmask = 0x80; 256 bitshift = 7; 257 array_index++; 258 } 259 if ((remainder & 0x100) == 0x100) 260 remainder ^= 0xd5; 261 } 262 263 number_of_bits = 8; 264 while (number_of_bits != 0) { 265 number_of_bits--; 266 remainder <<= 1; 267 if ((remainder & 0x100) != 0) 268 remainder ^= 0xd5; 269 } 270 271 return remainder & 0xff; 272 } 273 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr) 274 { 275 u8 size = 3; 276 277 size += (hdr->lct / 2); 278 return size; 279 } 280 281 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr, 282 u8 *buf, int *len) 283 { 284 int idx = 0; 285 int i; 286 u8 crc4; 287 288 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf); 289 for (i = 0; i < (hdr->lct / 2); i++) 290 buf[idx++] = hdr->rad[i]; 291 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) | 292 (hdr->msg_len & 0x3f); 293 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4); 294 295 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1); 296 buf[idx - 1] |= (crc4 & 0xf); 297 298 *len = idx; 299 } 300 301 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr, 302 struct drm_dp_sideband_msg_hdr *hdr, 303 u8 *buf, int buflen, u8 *hdrlen) 304 { 305 u8 crc4; 306 u8 len; 307 int i; 308 u8 idx; 309 310 if (buf[0] == 0) 311 return false; 312 len = 3; 313 len += ((buf[0] & 0xf0) >> 4) / 2; 314 if (len > buflen) 315 return false; 316 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1); 317 318 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) { 319 drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]); 320 return false; 321 } 322 323 hdr->lct = (buf[0] & 0xf0) >> 4; 324 hdr->lcr = (buf[0] & 0xf); 325 idx = 1; 326 for (i = 0; i < (hdr->lct / 2); i++) 327 hdr->rad[i] = buf[idx++]; 328 hdr->broadcast = (buf[idx] >> 7) & 0x1; 329 hdr->path_msg = (buf[idx] >> 6) & 0x1; 330 hdr->msg_len = buf[idx] & 0x3f; 331 if (hdr->msg_len < 1) /* min space for body CRC */ 332 return false; 333 334 idx++; 335 hdr->somt = (buf[idx] >> 7) & 0x1; 336 hdr->eomt = (buf[idx] >> 6) & 0x1; 337 hdr->seqno = (buf[idx] >> 4) & 0x1; 338 idx++; 339 *hdrlen = idx; 340 return true; 341 } 342 343 void 344 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req, 345 struct drm_dp_sideband_msg_tx *raw) 346 { 347 int idx = 0; 348 int i; 349 u8 *buf = raw->msg; 350 351 buf[idx++] = req->req_type & 0x7f; 352 353 switch (req->req_type) { 354 case DP_ENUM_PATH_RESOURCES: 355 case DP_POWER_DOWN_PHY: 356 case DP_POWER_UP_PHY: 357 buf[idx] = (req->u.port_num.port_number & 0xf) << 4; 358 idx++; 359 break; 360 case DP_ALLOCATE_PAYLOAD: 361 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 | 362 (req->u.allocate_payload.number_sdp_streams & 0xf); 363 idx++; 364 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f); 365 idx++; 366 buf[idx] = (req->u.allocate_payload.pbn >> 8); 367 idx++; 368 buf[idx] = (req->u.allocate_payload.pbn & 0xff); 369 idx++; 370 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) { 371 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) | 372 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf); 373 idx++; 374 } 375 if (req->u.allocate_payload.number_sdp_streams & 1) { 376 i = req->u.allocate_payload.number_sdp_streams - 1; 377 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4; 378 idx++; 379 } 380 break; 381 case DP_QUERY_PAYLOAD: 382 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4; 383 idx++; 384 buf[idx] = (req->u.query_payload.vcpi & 0x7f); 385 idx++; 386 break; 387 case DP_REMOTE_DPCD_READ: 388 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4; 389 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf; 390 idx++; 391 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8; 392 idx++; 393 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff); 394 idx++; 395 buf[idx] = (req->u.dpcd_read.num_bytes); 396 idx++; 397 break; 398 399 case DP_REMOTE_DPCD_WRITE: 400 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4; 401 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf; 402 idx++; 403 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8; 404 idx++; 405 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff); 406 idx++; 407 buf[idx] = (req->u.dpcd_write.num_bytes); 408 idx++; 409 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes); 410 idx += req->u.dpcd_write.num_bytes; 411 break; 412 case DP_REMOTE_I2C_READ: 413 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4; 414 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3); 415 idx++; 416 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) { 417 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f; 418 idx++; 419 buf[idx] = req->u.i2c_read.transactions[i].num_bytes; 420 idx++; 421 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes); 422 idx += req->u.i2c_read.transactions[i].num_bytes; 423 424 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4; 425 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf); 426 idx++; 427 } 428 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f; 429 idx++; 430 buf[idx] = (req->u.i2c_read.num_bytes_read); 431 idx++; 432 break; 433 434 case DP_REMOTE_I2C_WRITE: 435 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4; 436 idx++; 437 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f; 438 idx++; 439 buf[idx] = (req->u.i2c_write.num_bytes); 440 idx++; 441 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes); 442 idx += req->u.i2c_write.num_bytes; 443 break; 444 case DP_QUERY_STREAM_ENC_STATUS: { 445 const struct drm_dp_query_stream_enc_status *msg; 446 447 msg = &req->u.enc_status; 448 buf[idx] = msg->stream_id; 449 idx++; 450 memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id)); 451 idx += sizeof(msg->client_id); 452 buf[idx] = 0; 453 buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event); 454 buf[idx] |= msg->valid_stream_event ? BIT(2) : 0; 455 buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior); 456 buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0; 457 idx++; 458 } 459 break; 460 } 461 raw->cur_len = idx; 462 } 463 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req); 464 465 /* Decode a sideband request we've encoded, mainly used for debugging */ 466 int 467 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw, 468 struct drm_dp_sideband_msg_req_body *req) 469 { 470 const u8 *buf = raw->msg; 471 int i, idx = 0; 472 473 req->req_type = buf[idx++] & 0x7f; 474 switch (req->req_type) { 475 case DP_ENUM_PATH_RESOURCES: 476 case DP_POWER_DOWN_PHY: 477 case DP_POWER_UP_PHY: 478 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf; 479 break; 480 case DP_ALLOCATE_PAYLOAD: 481 { 482 struct drm_dp_allocate_payload *a = 483 &req->u.allocate_payload; 484 485 a->number_sdp_streams = buf[idx] & 0xf; 486 a->port_number = (buf[idx] >> 4) & 0xf; 487 488 WARN_ON(buf[++idx] & 0x80); 489 a->vcpi = buf[idx] & 0x7f; 490 491 a->pbn = buf[++idx] << 8; 492 a->pbn |= buf[++idx]; 493 494 idx++; 495 for (i = 0; i < a->number_sdp_streams; i++) { 496 a->sdp_stream_sink[i] = 497 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf; 498 } 499 } 500 break; 501 case DP_QUERY_PAYLOAD: 502 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf; 503 WARN_ON(buf[++idx] & 0x80); 504 req->u.query_payload.vcpi = buf[idx] & 0x7f; 505 break; 506 case DP_REMOTE_DPCD_READ: 507 { 508 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read; 509 510 r->port_number = (buf[idx] >> 4) & 0xf; 511 512 r->dpcd_address = (buf[idx] << 16) & 0xf0000; 513 r->dpcd_address |= (buf[++idx] << 8) & 0xff00; 514 r->dpcd_address |= buf[++idx] & 0xff; 515 516 r->num_bytes = buf[++idx]; 517 } 518 break; 519 case DP_REMOTE_DPCD_WRITE: 520 { 521 struct drm_dp_remote_dpcd_write *w = 522 &req->u.dpcd_write; 523 524 w->port_number = (buf[idx] >> 4) & 0xf; 525 526 w->dpcd_address = (buf[idx] << 16) & 0xf0000; 527 w->dpcd_address |= (buf[++idx] << 8) & 0xff00; 528 w->dpcd_address |= buf[++idx] & 0xff; 529 530 w->num_bytes = buf[++idx]; 531 532 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 533 GFP_KERNEL); 534 if (!w->bytes) 535 return -ENOMEM; 536 } 537 break; 538 case DP_REMOTE_I2C_READ: 539 { 540 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read; 541 struct drm_dp_remote_i2c_read_tx *tx; 542 bool failed = false; 543 544 r->num_transactions = buf[idx] & 0x3; 545 r->port_number = (buf[idx] >> 4) & 0xf; 546 for (i = 0; i < r->num_transactions; i++) { 547 tx = &r->transactions[i]; 548 549 tx->i2c_dev_id = buf[++idx] & 0x7f; 550 tx->num_bytes = buf[++idx]; 551 tx->bytes = kmemdup(&buf[++idx], 552 tx->num_bytes, 553 GFP_KERNEL); 554 if (!tx->bytes) { 555 failed = true; 556 break; 557 } 558 idx += tx->num_bytes; 559 tx->no_stop_bit = (buf[idx] >> 5) & 0x1; 560 tx->i2c_transaction_delay = buf[idx] & 0xf; 561 } 562 563 if (failed) { 564 for (i = 0; i < r->num_transactions; i++) { 565 tx = &r->transactions[i]; 566 kfree(tx->bytes); 567 } 568 return -ENOMEM; 569 } 570 571 r->read_i2c_device_id = buf[++idx] & 0x7f; 572 r->num_bytes_read = buf[++idx]; 573 } 574 break; 575 case DP_REMOTE_I2C_WRITE: 576 { 577 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write; 578 579 w->port_number = (buf[idx] >> 4) & 0xf; 580 w->write_i2c_device_id = buf[++idx] & 0x7f; 581 w->num_bytes = buf[++idx]; 582 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 583 GFP_KERNEL); 584 if (!w->bytes) 585 return -ENOMEM; 586 } 587 break; 588 case DP_QUERY_STREAM_ENC_STATUS: 589 req->u.enc_status.stream_id = buf[idx++]; 590 for (i = 0; i < sizeof(req->u.enc_status.client_id); i++) 591 req->u.enc_status.client_id[i] = buf[idx++]; 592 593 req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0), 594 buf[idx]); 595 req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2), 596 buf[idx]); 597 req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3), 598 buf[idx]); 599 req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5), 600 buf[idx]); 601 break; 602 } 603 604 return 0; 605 } 606 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req); 607 608 void 609 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req, 610 int indent, struct drm_printer *printer) 611 { 612 int i; 613 614 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__) 615 if (req->req_type == DP_LINK_ADDRESS) { 616 /* No contents to print */ 617 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type)); 618 return; 619 } 620 621 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type)); 622 indent++; 623 624 switch (req->req_type) { 625 case DP_ENUM_PATH_RESOURCES: 626 case DP_POWER_DOWN_PHY: 627 case DP_POWER_UP_PHY: 628 P("port=%d\n", req->u.port_num.port_number); 629 break; 630 case DP_ALLOCATE_PAYLOAD: 631 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n", 632 req->u.allocate_payload.port_number, 633 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn, 634 req->u.allocate_payload.number_sdp_streams, 635 req->u.allocate_payload.number_sdp_streams, 636 req->u.allocate_payload.sdp_stream_sink); 637 break; 638 case DP_QUERY_PAYLOAD: 639 P("port=%d vcpi=%d\n", 640 req->u.query_payload.port_number, 641 req->u.query_payload.vcpi); 642 break; 643 case DP_REMOTE_DPCD_READ: 644 P("port=%d dpcd_addr=%05x len=%d\n", 645 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address, 646 req->u.dpcd_read.num_bytes); 647 break; 648 case DP_REMOTE_DPCD_WRITE: 649 P("port=%d addr=%05x len=%d: %*ph\n", 650 req->u.dpcd_write.port_number, 651 req->u.dpcd_write.dpcd_address, 652 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes, 653 req->u.dpcd_write.bytes); 654 break; 655 case DP_REMOTE_I2C_READ: 656 P("port=%d num_tx=%d id=%d size=%d:\n", 657 req->u.i2c_read.port_number, 658 req->u.i2c_read.num_transactions, 659 req->u.i2c_read.read_i2c_device_id, 660 req->u.i2c_read.num_bytes_read); 661 662 indent++; 663 for (i = 0; i < req->u.i2c_read.num_transactions; i++) { 664 const struct drm_dp_remote_i2c_read_tx *rtx = 665 &req->u.i2c_read.transactions[i]; 666 667 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n", 668 i, rtx->i2c_dev_id, rtx->num_bytes, 669 rtx->no_stop_bit, rtx->i2c_transaction_delay, 670 rtx->num_bytes, rtx->bytes); 671 } 672 break; 673 case DP_REMOTE_I2C_WRITE: 674 P("port=%d id=%d size=%d: %*ph\n", 675 req->u.i2c_write.port_number, 676 req->u.i2c_write.write_i2c_device_id, 677 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes, 678 req->u.i2c_write.bytes); 679 break; 680 case DP_QUERY_STREAM_ENC_STATUS: 681 P("stream_id=%u client_id=%*ph stream_event=%x " 682 "valid_event=%d stream_behavior=%x valid_behavior=%d", 683 req->u.enc_status.stream_id, 684 (int)ARRAY_SIZE(req->u.enc_status.client_id), 685 req->u.enc_status.client_id, req->u.enc_status.stream_event, 686 req->u.enc_status.valid_stream_event, 687 req->u.enc_status.stream_behavior, 688 req->u.enc_status.valid_stream_behavior); 689 break; 690 default: 691 P("???\n"); 692 break; 693 } 694 #undef P 695 } 696 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body); 697 698 static inline void 699 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p, 700 const struct drm_dp_sideband_msg_tx *txmsg) 701 { 702 struct drm_dp_sideband_msg_req_body req; 703 char buf[64]; 704 int ret; 705 int i; 706 707 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf, 708 sizeof(buf)); 709 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n", 710 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno, 711 drm_dp_mst_sideband_tx_state_str(txmsg->state), 712 txmsg->path_msg, buf); 713 714 ret = drm_dp_decode_sideband_req(txmsg, &req); 715 if (ret) { 716 drm_printf(p, "<failed to decode sideband req: %d>\n", ret); 717 return; 718 } 719 drm_dp_dump_sideband_msg_req_body(&req, 1, p); 720 721 switch (req.req_type) { 722 case DP_REMOTE_DPCD_WRITE: 723 kfree(req.u.dpcd_write.bytes); 724 break; 725 case DP_REMOTE_I2C_READ: 726 for (i = 0; i < req.u.i2c_read.num_transactions; i++) 727 kfree(req.u.i2c_read.transactions[i].bytes); 728 break; 729 case DP_REMOTE_I2C_WRITE: 730 kfree(req.u.i2c_write.bytes); 731 break; 732 } 733 } 734 735 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len) 736 { 737 u8 crc4; 738 739 crc4 = drm_dp_msg_data_crc4(msg, len); 740 msg[len] = crc4; 741 } 742 743 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep, 744 struct drm_dp_sideband_msg_tx *raw) 745 { 746 int idx = 0; 747 u8 *buf = raw->msg; 748 749 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f); 750 751 raw->cur_len = idx; 752 } 753 754 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg, 755 struct drm_dp_sideband_msg_hdr *hdr, 756 u8 hdrlen) 757 { 758 /* 759 * ignore out-of-order messages or messages that are part of a 760 * failed transaction 761 */ 762 if (!hdr->somt && !msg->have_somt) 763 return false; 764 765 /* get length contained in this portion */ 766 msg->curchunk_idx = 0; 767 msg->curchunk_len = hdr->msg_len; 768 msg->curchunk_hdrlen = hdrlen; 769 770 /* we have already gotten an somt - don't bother parsing */ 771 if (hdr->somt && msg->have_somt) 772 return false; 773 774 if (hdr->somt) { 775 memcpy(&msg->initial_hdr, hdr, 776 sizeof(struct drm_dp_sideband_msg_hdr)); 777 msg->have_somt = true; 778 } 779 if (hdr->eomt) 780 msg->have_eomt = true; 781 782 return true; 783 } 784 785 /* this adds a chunk of msg to the builder to get the final msg */ 786 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg, 787 u8 *replybuf, u8 replybuflen) 788 { 789 u8 crc4; 790 791 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen); 792 msg->curchunk_idx += replybuflen; 793 794 if (msg->curchunk_idx >= msg->curchunk_len) { 795 /* do CRC */ 796 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1); 797 if (crc4 != msg->chunk[msg->curchunk_len - 1]) 798 print_hex_dump(KERN_DEBUG, "wrong crc", 799 DUMP_PREFIX_NONE, 16, 1, 800 msg->chunk, msg->curchunk_len, false); 801 /* copy chunk into bigger msg */ 802 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1); 803 msg->curlen += msg->curchunk_len - 1; 804 } 805 return true; 806 } 807 808 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr, 809 struct drm_dp_sideband_msg_rx *raw, 810 struct drm_dp_sideband_msg_reply_body *repmsg) 811 { 812 int idx = 1; 813 int i; 814 815 import_guid(&repmsg->u.link_addr.guid, &raw->msg[idx]); 816 idx += 16; 817 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf; 818 idx++; 819 if (idx > raw->curlen) 820 goto fail_len; 821 for (i = 0; i < repmsg->u.link_addr.nports; i++) { 822 if (raw->msg[idx] & 0x80) 823 repmsg->u.link_addr.ports[i].input_port = 1; 824 825 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7; 826 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf); 827 828 idx++; 829 if (idx > raw->curlen) 830 goto fail_len; 831 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1; 832 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1; 833 if (repmsg->u.link_addr.ports[i].input_port == 0) 834 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 835 idx++; 836 if (idx > raw->curlen) 837 goto fail_len; 838 if (repmsg->u.link_addr.ports[i].input_port == 0) { 839 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]); 840 idx++; 841 if (idx > raw->curlen) 842 goto fail_len; 843 import_guid(&repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx]); 844 idx += 16; 845 if (idx > raw->curlen) 846 goto fail_len; 847 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf; 848 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf); 849 idx++; 850 851 } 852 if (idx > raw->curlen) 853 goto fail_len; 854 } 855 856 return true; 857 fail_len: 858 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 859 return false; 860 } 861 862 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw, 863 struct drm_dp_sideband_msg_reply_body *repmsg) 864 { 865 int idx = 1; 866 867 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf; 868 idx++; 869 if (idx > raw->curlen) 870 goto fail_len; 871 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx]; 872 idx++; 873 if (idx > raw->curlen) 874 goto fail_len; 875 876 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes); 877 return true; 878 fail_len: 879 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 880 return false; 881 } 882 883 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw, 884 struct drm_dp_sideband_msg_reply_body *repmsg) 885 { 886 int idx = 1; 887 888 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf; 889 idx++; 890 if (idx > raw->curlen) 891 goto fail_len; 892 return true; 893 fail_len: 894 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen); 895 return false; 896 } 897 898 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw, 899 struct drm_dp_sideband_msg_reply_body *repmsg) 900 { 901 int idx = 1; 902 903 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf); 904 idx++; 905 if (idx > raw->curlen) 906 goto fail_len; 907 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx]; 908 idx++; 909 /* TODO check */ 910 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes); 911 return true; 912 fail_len: 913 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen); 914 return false; 915 } 916 917 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw, 918 struct drm_dp_sideband_msg_reply_body *repmsg) 919 { 920 int idx = 1; 921 922 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf; 923 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1; 924 idx++; 925 if (idx > raw->curlen) 926 goto fail_len; 927 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 928 idx += 2; 929 if (idx > raw->curlen) 930 goto fail_len; 931 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 932 idx += 2; 933 if (idx > raw->curlen) 934 goto fail_len; 935 return true; 936 fail_len: 937 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen); 938 return false; 939 } 940 941 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw, 942 struct drm_dp_sideband_msg_reply_body *repmsg) 943 { 944 int idx = 1; 945 946 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 947 idx++; 948 if (idx > raw->curlen) 949 goto fail_len; 950 repmsg->u.allocate_payload.vcpi = raw->msg[idx]; 951 idx++; 952 if (idx > raw->curlen) 953 goto fail_len; 954 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 955 idx += 2; 956 if (idx > raw->curlen) 957 goto fail_len; 958 return true; 959 fail_len: 960 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen); 961 return false; 962 } 963 964 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw, 965 struct drm_dp_sideband_msg_reply_body *repmsg) 966 { 967 int idx = 1; 968 969 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 970 idx++; 971 if (idx > raw->curlen) 972 goto fail_len; 973 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 974 idx += 2; 975 if (idx > raw->curlen) 976 goto fail_len; 977 return true; 978 fail_len: 979 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen); 980 return false; 981 } 982 983 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw, 984 struct drm_dp_sideband_msg_reply_body *repmsg) 985 { 986 int idx = 1; 987 988 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf; 989 idx++; 990 if (idx > raw->curlen) { 991 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n", 992 idx, raw->curlen); 993 return false; 994 } 995 return true; 996 } 997 998 static bool 999 drm_dp_sideband_parse_query_stream_enc_status( 1000 struct drm_dp_sideband_msg_rx *raw, 1001 struct drm_dp_sideband_msg_reply_body *repmsg) 1002 { 1003 struct drm_dp_query_stream_enc_status_ack_reply *reply; 1004 1005 reply = &repmsg->u.enc_status; 1006 1007 reply->stream_id = raw->msg[3]; 1008 1009 reply->reply_signed = raw->msg[2] & BIT(0); 1010 1011 /* 1012 * NOTE: It's my impression from reading the spec that the below parsing 1013 * is correct. However I noticed while testing with an HDCP 1.4 display 1014 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I 1015 * would expect both bits to be set. So keep the parsing following the 1016 * spec, but beware reality might not match the spec (at least for some 1017 * configurations). 1018 */ 1019 reply->hdcp_1x_device_present = raw->msg[2] & BIT(4); 1020 reply->hdcp_2x_device_present = raw->msg[2] & BIT(3); 1021 1022 reply->query_capable_device_present = raw->msg[2] & BIT(5); 1023 reply->legacy_device_present = raw->msg[2] & BIT(6); 1024 reply->unauthorizable_device_present = raw->msg[2] & BIT(7); 1025 1026 reply->auth_completed = !!(raw->msg[1] & BIT(3)); 1027 reply->encryption_enabled = !!(raw->msg[1] & BIT(4)); 1028 reply->repeater_present = !!(raw->msg[1] & BIT(5)); 1029 reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6; 1030 1031 return true; 1032 } 1033 1034 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr, 1035 struct drm_dp_sideband_msg_rx *raw, 1036 struct drm_dp_sideband_msg_reply_body *msg) 1037 { 1038 memset(msg, 0, sizeof(*msg)); 1039 msg->reply_type = (raw->msg[0] & 0x80) >> 7; 1040 msg->req_type = (raw->msg[0] & 0x7f); 1041 1042 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) { 1043 import_guid(&msg->u.nak.guid, &raw->msg[1]); 1044 msg->u.nak.reason = raw->msg[17]; 1045 msg->u.nak.nak_data = raw->msg[18]; 1046 return false; 1047 } 1048 1049 switch (msg->req_type) { 1050 case DP_LINK_ADDRESS: 1051 return drm_dp_sideband_parse_link_address(mgr, raw, msg); 1052 case DP_QUERY_PAYLOAD: 1053 return drm_dp_sideband_parse_query_payload_ack(raw, msg); 1054 case DP_REMOTE_DPCD_READ: 1055 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg); 1056 case DP_REMOTE_DPCD_WRITE: 1057 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg); 1058 case DP_REMOTE_I2C_READ: 1059 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg); 1060 case DP_REMOTE_I2C_WRITE: 1061 return true; /* since there's nothing to parse */ 1062 case DP_ENUM_PATH_RESOURCES: 1063 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg); 1064 case DP_ALLOCATE_PAYLOAD: 1065 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg); 1066 case DP_POWER_DOWN_PHY: 1067 case DP_POWER_UP_PHY: 1068 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg); 1069 case DP_CLEAR_PAYLOAD_ID_TABLE: 1070 return true; /* since there's nothing to parse */ 1071 case DP_QUERY_STREAM_ENC_STATUS: 1072 return drm_dp_sideband_parse_query_stream_enc_status(raw, msg); 1073 default: 1074 drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n", 1075 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1076 return false; 1077 } 1078 } 1079 1080 static bool 1081 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1082 struct drm_dp_sideband_msg_rx *raw, 1083 struct drm_dp_sideband_msg_req_body *msg) 1084 { 1085 int idx = 1; 1086 1087 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1088 idx++; 1089 if (idx > raw->curlen) 1090 goto fail_len; 1091 1092 import_guid(&msg->u.conn_stat.guid, &raw->msg[idx]); 1093 idx += 16; 1094 if (idx > raw->curlen) 1095 goto fail_len; 1096 1097 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1; 1098 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 1099 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1; 1100 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1; 1101 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7); 1102 idx++; 1103 return true; 1104 fail_len: 1105 drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n", 1106 idx, raw->curlen); 1107 return false; 1108 } 1109 1110 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1111 struct drm_dp_sideband_msg_rx *raw, 1112 struct drm_dp_sideband_msg_req_body *msg) 1113 { 1114 int idx = 1; 1115 1116 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1117 idx++; 1118 if (idx > raw->curlen) 1119 goto fail_len; 1120 1121 import_guid(&msg->u.resource_stat.guid, &raw->msg[idx]); 1122 idx += 16; 1123 if (idx > raw->curlen) 1124 goto fail_len; 1125 1126 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 1127 idx++; 1128 return true; 1129 fail_len: 1130 drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen); 1131 return false; 1132 } 1133 1134 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr, 1135 struct drm_dp_sideband_msg_rx *raw, 1136 struct drm_dp_sideband_msg_req_body *msg) 1137 { 1138 memset(msg, 0, sizeof(*msg)); 1139 msg->req_type = (raw->msg[0] & 0x7f); 1140 1141 switch (msg->req_type) { 1142 case DP_CONNECTION_STATUS_NOTIFY: 1143 return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg); 1144 case DP_RESOURCE_STATUS_NOTIFY: 1145 return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg); 1146 default: 1147 drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n", 1148 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1149 return false; 1150 } 1151 } 1152 1153 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, 1154 u8 port_num, u32 offset, u8 num_bytes, u8 *bytes) 1155 { 1156 struct drm_dp_sideband_msg_req_body req; 1157 1158 req.req_type = DP_REMOTE_DPCD_WRITE; 1159 req.u.dpcd_write.port_number = port_num; 1160 req.u.dpcd_write.dpcd_address = offset; 1161 req.u.dpcd_write.num_bytes = num_bytes; 1162 req.u.dpcd_write.bytes = bytes; 1163 drm_dp_encode_sideband_req(&req, msg); 1164 } 1165 1166 static void build_link_address(struct drm_dp_sideband_msg_tx *msg) 1167 { 1168 struct drm_dp_sideband_msg_req_body req; 1169 1170 req.req_type = DP_LINK_ADDRESS; 1171 drm_dp_encode_sideband_req(&req, msg); 1172 } 1173 1174 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg) 1175 { 1176 struct drm_dp_sideband_msg_req_body req; 1177 1178 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE; 1179 drm_dp_encode_sideband_req(&req, msg); 1180 msg->path_msg = true; 1181 } 1182 1183 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, 1184 int port_num) 1185 { 1186 struct drm_dp_sideband_msg_req_body req; 1187 1188 req.req_type = DP_ENUM_PATH_RESOURCES; 1189 req.u.port_num.port_number = port_num; 1190 drm_dp_encode_sideband_req(&req, msg); 1191 msg->path_msg = true; 1192 return 0; 1193 } 1194 1195 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, 1196 int port_num, 1197 u8 vcpi, uint16_t pbn, 1198 u8 number_sdp_streams, 1199 u8 *sdp_stream_sink) 1200 { 1201 struct drm_dp_sideband_msg_req_body req; 1202 1203 memset(&req, 0, sizeof(req)); 1204 req.req_type = DP_ALLOCATE_PAYLOAD; 1205 req.u.allocate_payload.port_number = port_num; 1206 req.u.allocate_payload.vcpi = vcpi; 1207 req.u.allocate_payload.pbn = pbn; 1208 req.u.allocate_payload.number_sdp_streams = number_sdp_streams; 1209 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink, 1210 number_sdp_streams); 1211 drm_dp_encode_sideband_req(&req, msg); 1212 msg->path_msg = true; 1213 } 1214 1215 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg, 1216 int port_num, bool power_up) 1217 { 1218 struct drm_dp_sideband_msg_req_body req; 1219 1220 if (power_up) 1221 req.req_type = DP_POWER_UP_PHY; 1222 else 1223 req.req_type = DP_POWER_DOWN_PHY; 1224 1225 req.u.port_num.port_number = port_num; 1226 drm_dp_encode_sideband_req(&req, msg); 1227 msg->path_msg = true; 1228 } 1229 1230 static int 1231 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id, 1232 u8 *q_id) 1233 { 1234 struct drm_dp_sideband_msg_req_body req; 1235 1236 req.req_type = DP_QUERY_STREAM_ENC_STATUS; 1237 req.u.enc_status.stream_id = stream_id; 1238 memcpy(req.u.enc_status.client_id, q_id, 1239 sizeof(req.u.enc_status.client_id)); 1240 req.u.enc_status.stream_event = 0; 1241 req.u.enc_status.valid_stream_event = false; 1242 req.u.enc_status.stream_behavior = 0; 1243 req.u.enc_status.valid_stream_behavior = false; 1244 1245 drm_dp_encode_sideband_req(&req, msg); 1246 return 0; 1247 } 1248 1249 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr, 1250 struct drm_dp_sideband_msg_tx *txmsg) 1251 { 1252 unsigned int state; 1253 1254 /* 1255 * All updates to txmsg->state are protected by mgr->qlock, and the two 1256 * cases we check here are terminal states. For those the barriers 1257 * provided by the wake_up/wait_event pair are enough. 1258 */ 1259 state = READ_ONCE(txmsg->state); 1260 return (state == DRM_DP_SIDEBAND_TX_RX || 1261 state == DRM_DP_SIDEBAND_TX_TIMEOUT); 1262 } 1263 1264 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb, 1265 struct drm_dp_sideband_msg_tx *txmsg) 1266 { 1267 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1268 unsigned long wait_timeout = msecs_to_jiffies(4000); 1269 unsigned long wait_expires = jiffies + wait_timeout; 1270 int ret; 1271 1272 for (;;) { 1273 /* 1274 * If the driver provides a way for this, change to 1275 * poll-waiting for the MST reply interrupt if we didn't receive 1276 * it for 50 msec. This would cater for cases where the HPD 1277 * pulse signal got lost somewhere, even though the sink raised 1278 * the corresponding MST interrupt correctly. One example is the 1279 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason 1280 * filters out short pulses with a duration less than ~540 usec. 1281 * 1282 * The poll period is 50 msec to avoid missing an interrupt 1283 * after the sink has cleared it (after a 110msec timeout 1284 * since it raised the interrupt). 1285 */ 1286 ret = wait_event_timeout(mgr->tx_waitq, 1287 check_txmsg_state(mgr, txmsg), 1288 mgr->cbs->poll_hpd_irq ? 1289 msecs_to_jiffies(50) : 1290 wait_timeout); 1291 1292 if (ret || !mgr->cbs->poll_hpd_irq || 1293 time_after(jiffies, wait_expires)) 1294 break; 1295 1296 mgr->cbs->poll_hpd_irq(mgr); 1297 } 1298 1299 mutex_lock(&mgr->qlock); 1300 if (ret > 0) { 1301 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) { 1302 ret = -EIO; 1303 goto out; 1304 } 1305 } else { 1306 drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n", 1307 txmsg, txmsg->state, txmsg->seqno); 1308 1309 /* dump some state */ 1310 ret = -EIO; 1311 1312 /* remove from q */ 1313 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED || 1314 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 1315 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 1316 list_del(&txmsg->next); 1317 } 1318 out: 1319 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) { 1320 struct drm_printer p = drm_dbg_printer(mgr->dev, DRM_UT_DP, 1321 DBG_PREFIX); 1322 1323 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 1324 } 1325 mutex_unlock(&mgr->qlock); 1326 1327 drm_dp_mst_kick_tx(mgr); 1328 return ret; 1329 } 1330 1331 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad) 1332 { 1333 struct drm_dp_mst_branch *mstb; 1334 1335 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL); 1336 if (!mstb) 1337 return NULL; 1338 1339 mstb->lct = lct; 1340 if (lct > 1) 1341 memcpy(mstb->rad, rad, lct / 2); 1342 INIT_LIST_HEAD(&mstb->ports); 1343 kref_init(&mstb->topology_kref); 1344 kref_init(&mstb->malloc_kref); 1345 return mstb; 1346 } 1347 1348 static void drm_dp_free_mst_branch_device(struct kref *kref) 1349 { 1350 struct drm_dp_mst_branch *mstb = 1351 container_of(kref, struct drm_dp_mst_branch, malloc_kref); 1352 1353 if (mstb->port_parent) 1354 drm_dp_mst_put_port_malloc(mstb->port_parent); 1355 1356 kfree(mstb); 1357 } 1358 1359 /** 1360 * DOC: Branch device and port refcounting 1361 * 1362 * Topology refcount overview 1363 * ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1364 * 1365 * The refcounting schemes for &struct drm_dp_mst_branch and &struct 1366 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have 1367 * two different kinds of refcounts: topology refcounts, and malloc refcounts. 1368 * 1369 * Topology refcounts are not exposed to drivers, and are handled internally 1370 * by the DP MST helpers. The helpers use them in order to prevent the 1371 * in-memory topology state from being changed in the middle of critical 1372 * operations like changing the internal state of payload allocations. This 1373 * means each branch and port will be considered to be connected to the rest 1374 * of the topology until its topology refcount reaches zero. Additionally, 1375 * for ports this means that their associated &struct drm_connector will stay 1376 * registered with userspace until the port's refcount reaches 0. 1377 * 1378 * Malloc refcount overview 1379 * ~~~~~~~~~~~~~~~~~~~~~~~~ 1380 * 1381 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct 1382 * drm_dp_mst_branch allocated even after all of its topology references have 1383 * been dropped, so that the driver or MST helpers can safely access each 1384 * branch's last known state before it was disconnected from the topology. 1385 * When the malloc refcount of a port or branch reaches 0, the memory 1386 * allocation containing the &struct drm_dp_mst_branch or &struct 1387 * drm_dp_mst_port respectively will be freed. 1388 * 1389 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed 1390 * to drivers. As of writing this documentation, there are no drivers that 1391 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST 1392 * helpers. Exposing this API to drivers in a race-free manner would take more 1393 * tweaking of the refcounting scheme, however patches are welcome provided 1394 * there is a legitimate driver usecase for this. 1395 * 1396 * Refcount relationships in a topology 1397 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1398 * 1399 * Let's take a look at why the relationship between topology and malloc 1400 * refcounts is designed the way it is. 1401 * 1402 * .. kernel-figure:: dp-mst/topology-figure-1.dot 1403 * 1404 * An example of topology and malloc refs in a DP MST topology with two 1405 * active payloads. Topology refcount increments are indicated by solid 1406 * lines, and malloc refcount increments are indicated by dashed lines. 1407 * Each starts from the branch which incremented the refcount, and ends at 1408 * the branch to which the refcount belongs to, i.e. the arrow points the 1409 * same way as the C pointers used to reference a structure. 1410 * 1411 * As you can see in the above figure, every branch increments the topology 1412 * refcount of its children, and increments the malloc refcount of its 1413 * parent. Additionally, every payload increments the malloc refcount of its 1414 * assigned port by 1. 1415 * 1416 * So, what would happen if MSTB #3 from the above figure was unplugged from 1417 * the system, but the driver hadn't yet removed payload #2 from port #3? The 1418 * topology would start to look like the figure below. 1419 * 1420 * .. kernel-figure:: dp-mst/topology-figure-2.dot 1421 * 1422 * Ports and branch devices which have been released from memory are 1423 * colored grey, and references which have been removed are colored red. 1424 * 1425 * Whenever a port or branch device's topology refcount reaches zero, it will 1426 * decrement the topology refcounts of all its children, the malloc refcount 1427 * of its parent, and finally its own malloc refcount. For MSTB #4 and port 1428 * #4, this means they both have been disconnected from the topology and freed 1429 * from memory. But, because payload #2 is still holding a reference to port 1430 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port 1431 * is still accessible from memory. This also means port #3 has not yet 1432 * decremented the malloc refcount of MSTB #3, so its &struct 1433 * drm_dp_mst_branch will also stay allocated in memory until port #3's 1434 * malloc refcount reaches 0. 1435 * 1436 * This relationship is necessary because in order to release payload #2, we 1437 * need to be able to figure out the last relative of port #3 that's still 1438 * connected to the topology. In this case, we would travel up the topology as 1439 * shown below. 1440 * 1441 * .. kernel-figure:: dp-mst/topology-figure-3.dot 1442 * 1443 * And finally, remove payload #2 by communicating with port #2 through 1444 * sideband transactions. 1445 */ 1446 1447 /** 1448 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch 1449 * device 1450 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of 1451 * 1452 * Increments &drm_dp_mst_branch.malloc_kref. When 1453 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1454 * will be released and @mstb may no longer be used. 1455 * 1456 * See also: drm_dp_mst_put_mstb_malloc() 1457 */ 1458 static void 1459 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb) 1460 { 1461 kref_get(&mstb->malloc_kref); 1462 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref)); 1463 } 1464 1465 /** 1466 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch 1467 * device 1468 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of 1469 * 1470 * Decrements &drm_dp_mst_branch.malloc_kref. When 1471 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1472 * will be released and @mstb may no longer be used. 1473 * 1474 * See also: drm_dp_mst_get_mstb_malloc() 1475 */ 1476 static void 1477 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb) 1478 { 1479 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1); 1480 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device); 1481 } 1482 1483 static void drm_dp_free_mst_port(struct kref *kref) 1484 { 1485 struct drm_dp_mst_port *port = 1486 container_of(kref, struct drm_dp_mst_port, malloc_kref); 1487 1488 drm_dp_mst_put_mstb_malloc(port->parent); 1489 kfree(port); 1490 } 1491 1492 /** 1493 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port 1494 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of 1495 * 1496 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1497 * reaches 0, the memory allocation for @port will be released and @port may 1498 * no longer be used. 1499 * 1500 * Because @port could potentially be freed at any time by the DP MST helpers 1501 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this 1502 * function, drivers that which to make use of &struct drm_dp_mst_port should 1503 * ensure that they grab at least one main malloc reference to their MST ports 1504 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before 1505 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0. 1506 * 1507 * See also: drm_dp_mst_put_port_malloc() 1508 */ 1509 void 1510 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port) 1511 { 1512 kref_get(&port->malloc_kref); 1513 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref)); 1514 } 1515 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc); 1516 1517 /** 1518 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port 1519 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of 1520 * 1521 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1522 * reaches 0, the memory allocation for @port will be released and @port may 1523 * no longer be used. 1524 * 1525 * See also: drm_dp_mst_get_port_malloc() 1526 */ 1527 void 1528 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port) 1529 { 1530 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1); 1531 kref_put(&port->malloc_kref, drm_dp_free_mst_port); 1532 } 1533 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc); 1534 1535 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 1536 1537 #define STACK_DEPTH 8 1538 1539 static noinline void 1540 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr, 1541 struct drm_dp_mst_topology_ref_history *history, 1542 enum drm_dp_mst_topology_ref_type type) 1543 { 1544 struct drm_dp_mst_topology_ref_entry *entry = NULL; 1545 depot_stack_handle_t backtrace; 1546 ulong stack_entries[STACK_DEPTH]; 1547 uint n; 1548 int i; 1549 1550 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1); 1551 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL); 1552 if (!backtrace) 1553 return; 1554 1555 /* Try to find an existing entry for this backtrace */ 1556 for (i = 0; i < history->len; i++) { 1557 if (history->entries[i].backtrace == backtrace) { 1558 entry = &history->entries[i]; 1559 break; 1560 } 1561 } 1562 1563 /* Otherwise add one */ 1564 if (!entry) { 1565 struct drm_dp_mst_topology_ref_entry *new; 1566 int new_len = history->len + 1; 1567 1568 new = krealloc(history->entries, sizeof(*new) * new_len, 1569 GFP_KERNEL); 1570 if (!new) 1571 return; 1572 1573 entry = &new[history->len]; 1574 history->len = new_len; 1575 history->entries = new; 1576 1577 entry->backtrace = backtrace; 1578 entry->type = type; 1579 entry->count = 0; 1580 } 1581 entry->count++; 1582 entry->ts_nsec = ktime_get_ns(); 1583 } 1584 1585 static int 1586 topology_ref_history_cmp(const void *a, const void *b) 1587 { 1588 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b; 1589 1590 if (entry_a->ts_nsec > entry_b->ts_nsec) 1591 return 1; 1592 else if (entry_a->ts_nsec < entry_b->ts_nsec) 1593 return -1; 1594 else 1595 return 0; 1596 } 1597 1598 static inline const char * 1599 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type) 1600 { 1601 if (type == DRM_DP_MST_TOPOLOGY_REF_GET) 1602 return "get"; 1603 else 1604 return "put"; 1605 } 1606 1607 static void 1608 __dump_topology_ref_history(struct drm_device *drm, 1609 struct drm_dp_mst_topology_ref_history *history, 1610 void *ptr, const char *type_str) 1611 { 1612 struct drm_printer p = drm_dbg_printer(drm, DRM_UT_DP, DBG_PREFIX); 1613 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 1614 int i; 1615 1616 if (!buf) 1617 return; 1618 1619 if (!history->len) 1620 goto out; 1621 1622 /* First, sort the list so that it goes from oldest to newest 1623 * reference entry 1624 */ 1625 sort(history->entries, history->len, sizeof(*history->entries), 1626 topology_ref_history_cmp, NULL); 1627 1628 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n", 1629 type_str, ptr); 1630 1631 for (i = 0; i < history->len; i++) { 1632 const struct drm_dp_mst_topology_ref_entry *entry = 1633 &history->entries[i]; 1634 u64 ts_nsec = entry->ts_nsec; 1635 u32 rem_nsec = do_div(ts_nsec, 1000000000); 1636 1637 stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4); 1638 1639 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s", 1640 entry->count, 1641 topology_ref_type_to_str(entry->type), 1642 ts_nsec, rem_nsec / 1000, buf); 1643 } 1644 1645 /* Now free the history, since this is the only time we expose it */ 1646 kfree(history->entries); 1647 out: 1648 kfree(buf); 1649 } 1650 1651 static __always_inline void 1652 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) 1653 { 1654 __dump_topology_ref_history(mstb->mgr->dev, &mstb->topology_ref_history, 1655 mstb, "MSTB"); 1656 } 1657 1658 static __always_inline void 1659 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) 1660 { 1661 __dump_topology_ref_history(port->mgr->dev, &port->topology_ref_history, 1662 port, "Port"); 1663 } 1664 1665 static __always_inline void 1666 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb, 1667 enum drm_dp_mst_topology_ref_type type) 1668 { 1669 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type); 1670 } 1671 1672 static __always_inline void 1673 save_port_topology_ref(struct drm_dp_mst_port *port, 1674 enum drm_dp_mst_topology_ref_type type) 1675 { 1676 __topology_ref_save(port->mgr, &port->topology_ref_history, type); 1677 } 1678 1679 static inline void 1680 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) 1681 { 1682 mutex_lock(&mgr->topology_ref_history_lock); 1683 } 1684 1685 static inline void 1686 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) 1687 { 1688 mutex_unlock(&mgr->topology_ref_history_lock); 1689 } 1690 #else 1691 static inline void 1692 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {} 1693 static inline void 1694 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {} 1695 static inline void 1696 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {} 1697 static inline void 1698 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {} 1699 #define save_mstb_topology_ref(mstb, type) 1700 #define save_port_topology_ref(port, type) 1701 #endif 1702 1703 struct drm_dp_mst_atomic_payload * 1704 drm_atomic_get_mst_payload_state(struct drm_dp_mst_topology_state *state, 1705 struct drm_dp_mst_port *port) 1706 { 1707 struct drm_dp_mst_atomic_payload *payload; 1708 1709 list_for_each_entry(payload, &state->payloads, next) 1710 if (payload->port == port) 1711 return payload; 1712 1713 return NULL; 1714 } 1715 EXPORT_SYMBOL(drm_atomic_get_mst_payload_state); 1716 1717 static void drm_dp_destroy_mst_branch_device(struct kref *kref) 1718 { 1719 struct drm_dp_mst_branch *mstb = 1720 container_of(kref, struct drm_dp_mst_branch, topology_kref); 1721 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1722 1723 drm_dp_mst_dump_mstb_topology_history(mstb); 1724 1725 INIT_LIST_HEAD(&mstb->destroy_next); 1726 1727 /* 1728 * This can get called under mgr->mutex, so we need to perform the 1729 * actual destruction of the mstb in another worker 1730 */ 1731 mutex_lock(&mgr->delayed_destroy_lock); 1732 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list); 1733 mutex_unlock(&mgr->delayed_destroy_lock); 1734 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1735 } 1736 1737 /** 1738 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a 1739 * branch device unless it's zero 1740 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of 1741 * 1742 * Attempts to grab a topology reference to @mstb, if it hasn't yet been 1743 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has 1744 * reached 0). Holding a topology reference implies that a malloc reference 1745 * will be held to @mstb as long as the user holds the topology reference. 1746 * 1747 * Care should be taken to ensure that the user has at least one malloc 1748 * reference to @mstb. If you already have a topology reference to @mstb, you 1749 * should use drm_dp_mst_topology_get_mstb() instead. 1750 * 1751 * See also: 1752 * drm_dp_mst_topology_get_mstb() 1753 * drm_dp_mst_topology_put_mstb() 1754 * 1755 * Returns: 1756 * * 1: A topology reference was grabbed successfully 1757 * * 0: @port is no longer in the topology, no reference was grabbed 1758 */ 1759 static int __must_check 1760 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb) 1761 { 1762 int ret; 1763 1764 topology_ref_history_lock(mstb->mgr); 1765 ret = kref_get_unless_zero(&mstb->topology_kref); 1766 if (ret) { 1767 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1768 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1769 } 1770 1771 topology_ref_history_unlock(mstb->mgr); 1772 1773 return ret; 1774 } 1775 1776 /** 1777 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a 1778 * branch device 1779 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of 1780 * 1781 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or 1782 * not it's already reached 0. This is only valid to use in scenarios where 1783 * you are already guaranteed to have at least one active topology reference 1784 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used. 1785 * 1786 * See also: 1787 * drm_dp_mst_topology_try_get_mstb() 1788 * drm_dp_mst_topology_put_mstb() 1789 */ 1790 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb) 1791 { 1792 topology_ref_history_lock(mstb->mgr); 1793 1794 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1795 WARN_ON(kref_read(&mstb->topology_kref) == 0); 1796 kref_get(&mstb->topology_kref); 1797 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1798 1799 topology_ref_history_unlock(mstb->mgr); 1800 } 1801 1802 /** 1803 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch 1804 * device 1805 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from 1806 * 1807 * Releases a topology reference from @mstb by decrementing 1808 * &drm_dp_mst_branch.topology_kref. 1809 * 1810 * See also: 1811 * drm_dp_mst_topology_try_get_mstb() 1812 * drm_dp_mst_topology_get_mstb() 1813 */ 1814 static void 1815 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb) 1816 { 1817 topology_ref_history_lock(mstb->mgr); 1818 1819 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1); 1820 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT); 1821 1822 topology_ref_history_unlock(mstb->mgr); 1823 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device); 1824 } 1825 1826 static void drm_dp_destroy_port(struct kref *kref) 1827 { 1828 struct drm_dp_mst_port *port = 1829 container_of(kref, struct drm_dp_mst_port, topology_kref); 1830 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 1831 1832 drm_dp_mst_dump_port_topology_history(port); 1833 1834 /* There's nothing that needs locking to destroy an input port yet */ 1835 if (port->input) { 1836 drm_dp_mst_put_port_malloc(port); 1837 return; 1838 } 1839 1840 drm_edid_free(port->cached_edid); 1841 1842 /* 1843 * we can't destroy the connector here, as we might be holding the 1844 * mode_config.mutex from an EDID retrieval 1845 */ 1846 mutex_lock(&mgr->delayed_destroy_lock); 1847 list_add(&port->next, &mgr->destroy_port_list); 1848 mutex_unlock(&mgr->delayed_destroy_lock); 1849 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1850 } 1851 1852 /** 1853 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a 1854 * port unless it's zero 1855 * @port: &struct drm_dp_mst_port to increment the topology refcount of 1856 * 1857 * Attempts to grab a topology reference to @port, if it hasn't yet been 1858 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached 1859 * 0). Holding a topology reference implies that a malloc reference will be 1860 * held to @port as long as the user holds the topology reference. 1861 * 1862 * Care should be taken to ensure that the user has at least one malloc 1863 * reference to @port. If you already have a topology reference to @port, you 1864 * should use drm_dp_mst_topology_get_port() instead. 1865 * 1866 * See also: 1867 * drm_dp_mst_topology_get_port() 1868 * drm_dp_mst_topology_put_port() 1869 * 1870 * Returns: 1871 * * 1: A topology reference was grabbed successfully 1872 * * 0: @port is no longer in the topology, no reference was grabbed 1873 */ 1874 static int __must_check 1875 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port) 1876 { 1877 int ret; 1878 1879 topology_ref_history_lock(port->mgr); 1880 ret = kref_get_unless_zero(&port->topology_kref); 1881 if (ret) { 1882 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1883 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1884 } 1885 1886 topology_ref_history_unlock(port->mgr); 1887 return ret; 1888 } 1889 1890 /** 1891 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port 1892 * @port: The &struct drm_dp_mst_port to increment the topology refcount of 1893 * 1894 * Increments &drm_dp_mst_port.topology_refcount without checking whether or 1895 * not it's already reached 0. This is only valid to use in scenarios where 1896 * you are already guaranteed to have at least one active topology reference 1897 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used. 1898 * 1899 * See also: 1900 * drm_dp_mst_topology_try_get_port() 1901 * drm_dp_mst_topology_put_port() 1902 */ 1903 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port) 1904 { 1905 topology_ref_history_lock(port->mgr); 1906 1907 WARN_ON(kref_read(&port->topology_kref) == 0); 1908 kref_get(&port->topology_kref); 1909 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1910 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1911 1912 topology_ref_history_unlock(port->mgr); 1913 } 1914 1915 /** 1916 * drm_dp_mst_topology_put_port() - release a topology reference to a port 1917 * @port: The &struct drm_dp_mst_port to release the topology reference from 1918 * 1919 * Releases a topology reference from @port by decrementing 1920 * &drm_dp_mst_port.topology_kref. 1921 * 1922 * See also: 1923 * drm_dp_mst_topology_try_get_port() 1924 * drm_dp_mst_topology_get_port() 1925 */ 1926 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port) 1927 { 1928 topology_ref_history_lock(port->mgr); 1929 1930 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1); 1931 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT); 1932 1933 topology_ref_history_unlock(port->mgr); 1934 kref_put(&port->topology_kref, drm_dp_destroy_port); 1935 } 1936 1937 static struct drm_dp_mst_branch * 1938 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb, 1939 struct drm_dp_mst_branch *to_find) 1940 { 1941 struct drm_dp_mst_port *port; 1942 struct drm_dp_mst_branch *rmstb; 1943 1944 if (to_find == mstb) 1945 return mstb; 1946 1947 list_for_each_entry(port, &mstb->ports, next) { 1948 if (port->mstb) { 1949 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1950 port->mstb, to_find); 1951 if (rmstb) 1952 return rmstb; 1953 } 1954 } 1955 return NULL; 1956 } 1957 1958 static struct drm_dp_mst_branch * 1959 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr, 1960 struct drm_dp_mst_branch *mstb) 1961 { 1962 struct drm_dp_mst_branch *rmstb = NULL; 1963 1964 mutex_lock(&mgr->lock); 1965 if (mgr->mst_primary) { 1966 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1967 mgr->mst_primary, mstb); 1968 1969 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb)) 1970 rmstb = NULL; 1971 } 1972 mutex_unlock(&mgr->lock); 1973 return rmstb; 1974 } 1975 1976 static struct drm_dp_mst_port * 1977 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb, 1978 struct drm_dp_mst_port *to_find) 1979 { 1980 struct drm_dp_mst_port *port, *mport; 1981 1982 list_for_each_entry(port, &mstb->ports, next) { 1983 if (port == to_find) 1984 return port; 1985 1986 if (port->mstb) { 1987 mport = drm_dp_mst_topology_get_port_validated_locked( 1988 port->mstb, to_find); 1989 if (mport) 1990 return mport; 1991 } 1992 } 1993 return NULL; 1994 } 1995 1996 static struct drm_dp_mst_port * 1997 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr, 1998 struct drm_dp_mst_port *port) 1999 { 2000 struct drm_dp_mst_port *rport = NULL; 2001 2002 mutex_lock(&mgr->lock); 2003 if (mgr->mst_primary) { 2004 rport = drm_dp_mst_topology_get_port_validated_locked( 2005 mgr->mst_primary, port); 2006 2007 if (rport && !drm_dp_mst_topology_try_get_port(rport)) 2008 rport = NULL; 2009 } 2010 mutex_unlock(&mgr->lock); 2011 return rport; 2012 } 2013 2014 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num) 2015 { 2016 struct drm_dp_mst_port *port; 2017 int ret; 2018 2019 list_for_each_entry(port, &mstb->ports, next) { 2020 if (port->port_num == port_num) { 2021 ret = drm_dp_mst_topology_try_get_port(port); 2022 return ret ? port : NULL; 2023 } 2024 } 2025 2026 return NULL; 2027 } 2028 2029 /* 2030 * calculate a new RAD for this MST branch device 2031 * if parent has an LCT of 2 then it has 1 nibble of RAD, 2032 * if parent has an LCT of 3 then it has 2 nibbles of RAD, 2033 */ 2034 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port, 2035 u8 *rad) 2036 { 2037 int parent_lct = port->parent->lct; 2038 int shift = 4; 2039 int idx = (parent_lct - 1) / 2; 2040 2041 if (parent_lct > 1) { 2042 memcpy(rad, port->parent->rad, idx + 1); 2043 shift = (parent_lct % 2) ? 4 : 0; 2044 } else 2045 rad[0] = 0; 2046 2047 rad[idx] |= port->port_num << shift; 2048 return parent_lct + 1; 2049 } 2050 2051 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs) 2052 { 2053 switch (pdt) { 2054 case DP_PEER_DEVICE_DP_LEGACY_CONV: 2055 case DP_PEER_DEVICE_SST_SINK: 2056 return true; 2057 case DP_PEER_DEVICE_MST_BRANCHING: 2058 /* For sst branch device */ 2059 if (!mcs) 2060 return true; 2061 2062 return false; 2063 } 2064 return true; 2065 } 2066 2067 static int 2068 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt, 2069 bool new_mcs) 2070 { 2071 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2072 struct drm_dp_mst_branch *mstb; 2073 u8 rad[8], lct; 2074 int ret = 0; 2075 2076 if (port->pdt == new_pdt && port->mcs == new_mcs) 2077 return 0; 2078 2079 /* Teardown the old pdt, if there is one */ 2080 if (port->pdt != DP_PEER_DEVICE_NONE) { 2081 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2082 /* 2083 * If the new PDT would also have an i2c bus, 2084 * don't bother with reregistering it 2085 */ 2086 if (new_pdt != DP_PEER_DEVICE_NONE && 2087 drm_dp_mst_is_end_device(new_pdt, new_mcs)) { 2088 port->pdt = new_pdt; 2089 port->mcs = new_mcs; 2090 return 0; 2091 } 2092 2093 /* remove i2c over sideband */ 2094 drm_dp_mst_unregister_i2c_bus(port); 2095 } else { 2096 mutex_lock(&mgr->lock); 2097 drm_dp_mst_topology_put_mstb(port->mstb); 2098 port->mstb = NULL; 2099 mutex_unlock(&mgr->lock); 2100 } 2101 } 2102 2103 port->pdt = new_pdt; 2104 port->mcs = new_mcs; 2105 2106 if (port->pdt != DP_PEER_DEVICE_NONE) { 2107 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2108 /* add i2c over sideband */ 2109 ret = drm_dp_mst_register_i2c_bus(port); 2110 } else { 2111 lct = drm_dp_calculate_rad(port, rad); 2112 mstb = drm_dp_add_mst_branch_device(lct, rad); 2113 if (!mstb) { 2114 ret = -ENOMEM; 2115 drm_err(mgr->dev, "Failed to create MSTB for port %p", port); 2116 goto out; 2117 } 2118 2119 mutex_lock(&mgr->lock); 2120 port->mstb = mstb; 2121 mstb->mgr = port->mgr; 2122 mstb->port_parent = port; 2123 2124 /* 2125 * Make sure this port's memory allocation stays 2126 * around until its child MSTB releases it 2127 */ 2128 drm_dp_mst_get_port_malloc(port); 2129 mutex_unlock(&mgr->lock); 2130 2131 /* And make sure we send a link address for this */ 2132 ret = 1; 2133 } 2134 } 2135 2136 out: 2137 if (ret < 0) 2138 port->pdt = DP_PEER_DEVICE_NONE; 2139 return ret; 2140 } 2141 2142 /** 2143 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband 2144 * @aux: Fake sideband AUX CH 2145 * @offset: address of the (first) register to read 2146 * @buffer: buffer to store the register values 2147 * @size: number of bytes in @buffer 2148 * 2149 * Performs the same functionality for remote devices via 2150 * sideband messaging as drm_dp_dpcd_read() does for local 2151 * devices via actual AUX CH. 2152 * 2153 * Return: Number of bytes read, or negative error code on failure. 2154 */ 2155 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux, 2156 unsigned int offset, void *buffer, size_t size) 2157 { 2158 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2159 aux); 2160 2161 return drm_dp_send_dpcd_read(port->mgr, port, 2162 offset, size, buffer); 2163 } 2164 2165 /** 2166 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband 2167 * @aux: Fake sideband AUX CH 2168 * @offset: address of the (first) register to write 2169 * @buffer: buffer containing the values to write 2170 * @size: number of bytes in @buffer 2171 * 2172 * Performs the same functionality for remote devices via 2173 * sideband messaging as drm_dp_dpcd_write() does for local 2174 * devices via actual AUX CH. 2175 * 2176 * Return: number of bytes written on success, negative error code on failure. 2177 */ 2178 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux, 2179 unsigned int offset, void *buffer, size_t size) 2180 { 2181 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2182 aux); 2183 2184 return drm_dp_send_dpcd_write(port->mgr, port, 2185 offset, size, buffer); 2186 } 2187 2188 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, guid_t *guid) 2189 { 2190 int ret = 0; 2191 2192 guid_copy(&mstb->guid, guid); 2193 2194 if (!drm_dp_validate_guid(mstb->mgr, &mstb->guid)) { 2195 struct drm_dp_aux *aux; 2196 u8 buf[UUID_SIZE]; 2197 2198 export_guid(buf, &mstb->guid); 2199 2200 if (mstb->port_parent) 2201 aux = &mstb->port_parent->aux; 2202 else 2203 aux = mstb->mgr->aux; 2204 2205 ret = drm_dp_dpcd_write_data(aux, DP_GUID, buf, sizeof(buf)); 2206 } 2207 2208 return ret; 2209 } 2210 2211 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb, 2212 int pnum, 2213 char *proppath, 2214 size_t proppath_size) 2215 { 2216 int i; 2217 char temp[8]; 2218 2219 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id); 2220 for (i = 0; i < (mstb->lct - 1); i++) { 2221 int shift = (i % 2) ? 0 : 4; 2222 int port_num = (mstb->rad[i / 2] >> shift) & 0xf; 2223 2224 snprintf(temp, sizeof(temp), "-%d", port_num); 2225 strlcat(proppath, temp, proppath_size); 2226 } 2227 snprintf(temp, sizeof(temp), "-%d", pnum); 2228 strlcat(proppath, temp, proppath_size); 2229 } 2230 2231 /** 2232 * drm_dp_mst_connector_late_register() - Late MST connector registration 2233 * @connector: The MST connector 2234 * @port: The MST port for this connector 2235 * 2236 * Helper to register the remote aux device for this MST port. Drivers should 2237 * call this from their mst connector's late_register hook to enable MST aux 2238 * devices. 2239 * 2240 * Return: 0 on success, negative error code on failure. 2241 */ 2242 int drm_dp_mst_connector_late_register(struct drm_connector *connector, 2243 struct drm_dp_mst_port *port) 2244 { 2245 drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n", 2246 port->aux.name, connector->kdev->kobj.name); 2247 2248 port->aux.dev = connector->kdev; 2249 return drm_dp_aux_register_devnode(&port->aux); 2250 } 2251 EXPORT_SYMBOL(drm_dp_mst_connector_late_register); 2252 2253 /** 2254 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration 2255 * @connector: The MST connector 2256 * @port: The MST port for this connector 2257 * 2258 * Helper to unregister the remote aux device for this MST port, registered by 2259 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst 2260 * connector's early_unregister hook. 2261 */ 2262 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector, 2263 struct drm_dp_mst_port *port) 2264 { 2265 drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n", 2266 port->aux.name, connector->kdev->kobj.name); 2267 drm_dp_aux_unregister_devnode(&port->aux); 2268 } 2269 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister); 2270 2271 static void 2272 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb, 2273 struct drm_dp_mst_port *port) 2274 { 2275 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2276 char proppath[255]; 2277 int ret; 2278 2279 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath)); 2280 port->connector = mgr->cbs->add_connector(mgr, port, proppath); 2281 if (!port->connector) { 2282 ret = -ENOMEM; 2283 goto error; 2284 } 2285 2286 if (port->pdt != DP_PEER_DEVICE_NONE && 2287 drm_dp_mst_is_end_device(port->pdt, port->mcs) && 2288 drm_dp_mst_port_is_logical(port)) 2289 port->cached_edid = drm_edid_read_ddc(port->connector, 2290 &port->aux.ddc); 2291 2292 drm_connector_dynamic_register(port->connector); 2293 return; 2294 2295 error: 2296 drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret); 2297 } 2298 2299 /* 2300 * Drop a topology reference, and unlink the port from the in-memory topology 2301 * layout 2302 */ 2303 static void 2304 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr, 2305 struct drm_dp_mst_port *port) 2306 { 2307 mutex_lock(&mgr->lock); 2308 port->parent->num_ports--; 2309 list_del(&port->next); 2310 mutex_unlock(&mgr->lock); 2311 drm_dp_mst_topology_put_port(port); 2312 } 2313 2314 static struct drm_dp_mst_port * 2315 drm_dp_mst_add_port(struct drm_device *dev, 2316 struct drm_dp_mst_topology_mgr *mgr, 2317 struct drm_dp_mst_branch *mstb, u8 port_number) 2318 { 2319 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL); 2320 2321 if (!port) 2322 return NULL; 2323 2324 kref_init(&port->topology_kref); 2325 kref_init(&port->malloc_kref); 2326 port->parent = mstb; 2327 port->port_num = port_number; 2328 port->mgr = mgr; 2329 port->aux.name = "DPMST"; 2330 port->aux.dev = dev->dev; 2331 port->aux.is_remote = true; 2332 2333 /* initialize the MST downstream port's AUX crc work queue */ 2334 port->aux.drm_dev = dev; 2335 drm_dp_remote_aux_init(&port->aux); 2336 2337 /* 2338 * Make sure the memory allocation for our parent branch stays 2339 * around until our own memory allocation is released 2340 */ 2341 drm_dp_mst_get_mstb_malloc(mstb); 2342 2343 return port; 2344 } 2345 2346 static int 2347 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb, 2348 struct drm_device *dev, 2349 struct drm_dp_link_addr_reply_port *port_msg) 2350 { 2351 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2352 struct drm_dp_mst_port *port; 2353 int ret; 2354 u8 new_pdt = DP_PEER_DEVICE_NONE; 2355 bool new_mcs = 0; 2356 bool created = false, send_link_addr = false, changed = false; 2357 2358 port = drm_dp_get_port(mstb, port_msg->port_number); 2359 if (!port) { 2360 port = drm_dp_mst_add_port(dev, mgr, mstb, 2361 port_msg->port_number); 2362 if (!port) 2363 return -ENOMEM; 2364 created = true; 2365 changed = true; 2366 } else if (!port->input && port_msg->input_port && port->connector) { 2367 /* Since port->connector can't be changed here, we create a 2368 * new port if input_port changes from 0 to 1 2369 */ 2370 drm_dp_mst_topology_unlink_port(mgr, port); 2371 drm_dp_mst_topology_put_port(port); 2372 port = drm_dp_mst_add_port(dev, mgr, mstb, 2373 port_msg->port_number); 2374 if (!port) 2375 return -ENOMEM; 2376 changed = true; 2377 created = true; 2378 } else if (port->input && !port_msg->input_port) { 2379 changed = true; 2380 } else if (port->connector) { 2381 /* We're updating a port that's exposed to userspace, so do it 2382 * under lock 2383 */ 2384 drm_modeset_lock(&mgr->base.lock, NULL); 2385 2386 changed = port->ddps != port_msg->ddps || 2387 (port->ddps && 2388 (port->ldps != port_msg->legacy_device_plug_status || 2389 port->dpcd_rev != port_msg->dpcd_revision || 2390 port->mcs != port_msg->mcs || 2391 port->pdt != port_msg->peer_device_type || 2392 port->num_sdp_stream_sinks != 2393 port_msg->num_sdp_stream_sinks)); 2394 } 2395 2396 port->input = port_msg->input_port; 2397 if (!port->input) 2398 new_pdt = port_msg->peer_device_type; 2399 new_mcs = port_msg->mcs; 2400 port->ddps = port_msg->ddps; 2401 port->ldps = port_msg->legacy_device_plug_status; 2402 port->dpcd_rev = port_msg->dpcd_revision; 2403 port->num_sdp_streams = port_msg->num_sdp_streams; 2404 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks; 2405 2406 /* manage mstb port lists with mgr lock - take a reference 2407 for this list */ 2408 if (created) { 2409 mutex_lock(&mgr->lock); 2410 drm_dp_mst_topology_get_port(port); 2411 list_add(&port->next, &mstb->ports); 2412 mstb->num_ports++; 2413 mutex_unlock(&mgr->lock); 2414 } 2415 2416 /* 2417 * Reprobe PBN caps on both hotplug, and when re-probing the link 2418 * for our parent mstb 2419 */ 2420 if (port->ddps && !port->input) { 2421 ret = drm_dp_send_enum_path_resources(mgr, mstb, 2422 port); 2423 if (ret == 1) 2424 changed = true; 2425 } else { 2426 port->full_pbn = 0; 2427 } 2428 2429 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2430 if (ret == 1) { 2431 send_link_addr = true; 2432 } else if (ret < 0) { 2433 drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret); 2434 goto fail; 2435 } 2436 2437 /* 2438 * If this port wasn't just created, then we're reprobing because 2439 * we're coming out of suspend. In this case, always resend the link 2440 * address if there's an MSTB on this port 2441 */ 2442 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 2443 port->mcs) 2444 send_link_addr = true; 2445 2446 if (port->connector) 2447 drm_modeset_unlock(&mgr->base.lock); 2448 else if (!port->input) 2449 drm_dp_mst_port_add_connector(mstb, port); 2450 2451 if (send_link_addr && port->mstb) { 2452 ret = drm_dp_send_link_address(mgr, port->mstb); 2453 if (ret == 1) /* MSTB below us changed */ 2454 changed = true; 2455 else if (ret < 0) 2456 goto fail_put; 2457 } 2458 2459 /* put reference to this port */ 2460 drm_dp_mst_topology_put_port(port); 2461 return changed; 2462 2463 fail: 2464 drm_dp_mst_topology_unlink_port(mgr, port); 2465 if (port->connector) 2466 drm_modeset_unlock(&mgr->base.lock); 2467 fail_put: 2468 drm_dp_mst_topology_put_port(port); 2469 return ret; 2470 } 2471 2472 static int 2473 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb, 2474 struct drm_dp_connection_status_notify *conn_stat) 2475 { 2476 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2477 struct drm_dp_mst_port *port; 2478 int old_ddps, ret; 2479 u8 new_pdt; 2480 bool new_mcs; 2481 bool dowork = false, create_connector = false; 2482 2483 port = drm_dp_get_port(mstb, conn_stat->port_number); 2484 if (!port) 2485 return 0; 2486 2487 if (port->connector) { 2488 if (!port->input && conn_stat->input_port) { 2489 /* 2490 * We can't remove a connector from an already exposed 2491 * port, so just throw the port out and make sure we 2492 * reprobe the link address of it's parent MSTB 2493 */ 2494 drm_dp_mst_topology_unlink_port(mgr, port); 2495 mstb->link_address_sent = false; 2496 dowork = true; 2497 goto out; 2498 } 2499 2500 /* Locking is only needed if the port's exposed to userspace */ 2501 drm_modeset_lock(&mgr->base.lock, NULL); 2502 } else if (port->input && !conn_stat->input_port) { 2503 create_connector = true; 2504 /* Reprobe link address so we get num_sdp_streams */ 2505 mstb->link_address_sent = false; 2506 dowork = true; 2507 } 2508 2509 old_ddps = port->ddps; 2510 port->input = conn_stat->input_port; 2511 port->ldps = conn_stat->legacy_device_plug_status; 2512 port->ddps = conn_stat->displayport_device_plug_status; 2513 2514 if (old_ddps != port->ddps) { 2515 if (port->ddps && !port->input) 2516 drm_dp_send_enum_path_resources(mgr, mstb, port); 2517 else 2518 port->full_pbn = 0; 2519 } 2520 2521 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type; 2522 new_mcs = conn_stat->message_capability_status; 2523 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2524 if (ret == 1) { 2525 dowork = true; 2526 } else if (ret < 0) { 2527 drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret); 2528 dowork = false; 2529 } 2530 2531 if (port->connector) 2532 drm_modeset_unlock(&mgr->base.lock); 2533 else if (create_connector) 2534 drm_dp_mst_port_add_connector(mstb, port); 2535 2536 out: 2537 drm_dp_mst_topology_put_port(port); 2538 return dowork; 2539 } 2540 2541 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr, 2542 u8 lct, u8 *rad) 2543 { 2544 struct drm_dp_mst_branch *mstb; 2545 struct drm_dp_mst_port *port; 2546 int i, ret; 2547 /* find the port by iterating down */ 2548 2549 mutex_lock(&mgr->lock); 2550 mstb = mgr->mst_primary; 2551 2552 if (!mstb) 2553 goto out; 2554 2555 for (i = 1; i < lct; i++) { 2556 int port_num = drm_dp_mst_get_ufp_num_at_lct_from_rad(i + 1, rad); 2557 2558 list_for_each_entry(port, &mstb->ports, next) { 2559 if (port->port_num == port_num) { 2560 mstb = port->mstb; 2561 if (!mstb) { 2562 drm_err(mgr->dev, 2563 "failed to lookup MSTB with lct %d, rad %02x\n", 2564 lct, rad[0]); 2565 goto out; 2566 } 2567 2568 break; 2569 } 2570 } 2571 } 2572 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2573 if (!ret) 2574 mstb = NULL; 2575 out: 2576 mutex_unlock(&mgr->lock); 2577 return mstb; 2578 } 2579 2580 static struct drm_dp_mst_branch * 2581 get_mst_branch_device_by_guid_helper(struct drm_dp_mst_branch *mstb, 2582 const guid_t *guid) 2583 { 2584 struct drm_dp_mst_branch *found_mstb; 2585 struct drm_dp_mst_port *port; 2586 2587 if (!mstb) 2588 return NULL; 2589 2590 if (guid_equal(&mstb->guid, guid)) 2591 return mstb; 2592 2593 list_for_each_entry(port, &mstb->ports, next) { 2594 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid); 2595 2596 if (found_mstb) 2597 return found_mstb; 2598 } 2599 2600 return NULL; 2601 } 2602 2603 static struct drm_dp_mst_branch * 2604 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr, 2605 const guid_t *guid) 2606 { 2607 struct drm_dp_mst_branch *mstb; 2608 int ret; 2609 2610 /* find the port by iterating down */ 2611 mutex_lock(&mgr->lock); 2612 2613 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid); 2614 if (mstb) { 2615 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2616 if (!ret) 2617 mstb = NULL; 2618 } 2619 2620 mutex_unlock(&mgr->lock); 2621 return mstb; 2622 } 2623 2624 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2625 struct drm_dp_mst_branch *mstb) 2626 { 2627 struct drm_dp_mst_port *port; 2628 int ret; 2629 bool changed = false; 2630 2631 if (!mstb->link_address_sent) { 2632 ret = drm_dp_send_link_address(mgr, mstb); 2633 if (ret == 1) 2634 changed = true; 2635 else if (ret < 0) 2636 return ret; 2637 } 2638 2639 list_for_each_entry(port, &mstb->ports, next) { 2640 if (port->input || !port->ddps || !port->mstb) 2641 continue; 2642 2643 ret = drm_dp_check_and_send_link_address(mgr, port->mstb); 2644 if (ret == 1) 2645 changed = true; 2646 else if (ret < 0) 2647 return ret; 2648 } 2649 2650 return changed; 2651 } 2652 2653 static void drm_dp_mst_link_probe_work(struct work_struct *work) 2654 { 2655 struct drm_dp_mst_topology_mgr *mgr = 2656 container_of(work, struct drm_dp_mst_topology_mgr, work); 2657 struct drm_device *dev = mgr->dev; 2658 struct drm_dp_mst_branch *mstb; 2659 int ret; 2660 bool clear_payload_id_table; 2661 2662 mutex_lock(&mgr->probe_lock); 2663 2664 mutex_lock(&mgr->lock); 2665 clear_payload_id_table = !mgr->payload_id_table_cleared; 2666 mgr->payload_id_table_cleared = true; 2667 2668 mstb = mgr->mst_primary; 2669 if (mstb) { 2670 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2671 if (!ret) 2672 mstb = NULL; 2673 } 2674 mutex_unlock(&mgr->lock); 2675 if (!mstb) { 2676 mutex_unlock(&mgr->probe_lock); 2677 return; 2678 } 2679 2680 /* 2681 * Certain branch devices seem to incorrectly report an available_pbn 2682 * of 0 on downstream sinks, even after clearing the 2683 * DP_PAYLOAD_ALLOCATE_* registers in 2684 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C 2685 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make 2686 * things work again. 2687 */ 2688 if (clear_payload_id_table) { 2689 drm_dbg_kms(dev, "Clearing payload ID table\n"); 2690 drm_dp_send_clear_payload_id_table(mgr, mstb); 2691 } 2692 2693 ret = drm_dp_check_and_send_link_address(mgr, mstb); 2694 drm_dp_mst_topology_put_mstb(mstb); 2695 2696 mutex_unlock(&mgr->probe_lock); 2697 if (ret > 0) 2698 drm_kms_helper_hotplug_event(dev); 2699 } 2700 2701 static void drm_dp_mst_queue_probe_work(struct drm_dp_mst_topology_mgr *mgr) 2702 { 2703 queue_work(system_long_wq, &mgr->work); 2704 } 2705 2706 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 2707 guid_t *guid) 2708 { 2709 if (!guid_is_null(guid)) 2710 return true; 2711 2712 guid_gen(guid); 2713 2714 return false; 2715 } 2716 2717 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, 2718 u8 port_num, u32 offset, u8 num_bytes) 2719 { 2720 struct drm_dp_sideband_msg_req_body req; 2721 2722 req.req_type = DP_REMOTE_DPCD_READ; 2723 req.u.dpcd_read.port_number = port_num; 2724 req.u.dpcd_read.dpcd_address = offset; 2725 req.u.dpcd_read.num_bytes = num_bytes; 2726 drm_dp_encode_sideband_req(&req, msg); 2727 } 2728 2729 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr, 2730 bool up, u8 *msg, int len) 2731 { 2732 int ret; 2733 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE; 2734 int tosend, total, offset; 2735 int retries = 0; 2736 2737 retry: 2738 total = len; 2739 offset = 0; 2740 do { 2741 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total); 2742 2743 ret = drm_dp_dpcd_write_data(mgr->aux, regbase + offset, 2744 &msg[offset], 2745 tosend); 2746 if (ret == -EIO && retries < 5) { 2747 retries++; 2748 goto retry; 2749 } else if (ret < 0) { 2750 drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret); 2751 2752 return -EIO; 2753 } 2754 offset += tosend; 2755 total -= tosend; 2756 } while (total > 0); 2757 return 0; 2758 } 2759 2760 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr, 2761 struct drm_dp_sideband_msg_tx *txmsg) 2762 { 2763 struct drm_dp_mst_branch *mstb = txmsg->dst; 2764 u8 req_type; 2765 2766 req_type = txmsg->msg[0] & 0x7f; 2767 if (req_type == DP_CONNECTION_STATUS_NOTIFY || 2768 req_type == DP_RESOURCE_STATUS_NOTIFY || 2769 req_type == DP_CLEAR_PAYLOAD_ID_TABLE) 2770 hdr->broadcast = 1; 2771 else 2772 hdr->broadcast = 0; 2773 hdr->path_msg = txmsg->path_msg; 2774 if (hdr->broadcast) { 2775 hdr->lct = 1; 2776 hdr->lcr = 6; 2777 } else { 2778 hdr->lct = mstb->lct; 2779 hdr->lcr = mstb->lct - 1; 2780 } 2781 2782 memcpy(hdr->rad, mstb->rad, hdr->lct / 2); 2783 2784 return 0; 2785 } 2786 /* 2787 * process a single block of the next message in the sideband queue 2788 */ 2789 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr, 2790 struct drm_dp_sideband_msg_tx *txmsg, 2791 bool up) 2792 { 2793 u8 chunk[48]; 2794 struct drm_dp_sideband_msg_hdr hdr; 2795 int len, space, idx, tosend; 2796 int ret; 2797 2798 if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 2799 return 0; 2800 2801 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr)); 2802 2803 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) 2804 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND; 2805 2806 /* make hdr from dst mst */ 2807 ret = set_hdr_from_dst_qlock(&hdr, txmsg); 2808 if (ret < 0) 2809 return ret; 2810 2811 /* amount left to send in this message */ 2812 len = txmsg->cur_len - txmsg->cur_offset; 2813 2814 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */ 2815 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr); 2816 2817 tosend = min(len, space); 2818 if (len == txmsg->cur_len) 2819 hdr.somt = 1; 2820 if (space >= len) 2821 hdr.eomt = 1; 2822 2823 2824 hdr.msg_len = tosend + 1; 2825 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx); 2826 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend); 2827 /* add crc at end */ 2828 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend); 2829 idx += tosend + 1; 2830 2831 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx); 2832 if (ret) { 2833 if (drm_debug_enabled(DRM_UT_DP)) { 2834 struct drm_printer p = drm_dbg_printer(mgr->dev, 2835 DRM_UT_DP, 2836 DBG_PREFIX); 2837 2838 drm_printf(&p, "sideband msg failed to send\n"); 2839 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2840 } 2841 return ret; 2842 } 2843 2844 txmsg->cur_offset += tosend; 2845 if (txmsg->cur_offset == txmsg->cur_len) { 2846 txmsg->state = DRM_DP_SIDEBAND_TX_SENT; 2847 return 1; 2848 } 2849 return 0; 2850 } 2851 2852 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr) 2853 { 2854 struct drm_dp_sideband_msg_tx *txmsg; 2855 int ret; 2856 2857 WARN_ON(!mutex_is_locked(&mgr->qlock)); 2858 2859 /* construct a chunk from the first msg in the tx_msg queue */ 2860 if (list_empty(&mgr->tx_msg_downq)) 2861 return; 2862 2863 txmsg = list_first_entry(&mgr->tx_msg_downq, 2864 struct drm_dp_sideband_msg_tx, next); 2865 ret = process_single_tx_qlock(mgr, txmsg, false); 2866 if (ret < 0) { 2867 drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret); 2868 list_del(&txmsg->next); 2869 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 2870 wake_up_all(&mgr->tx_waitq); 2871 } 2872 } 2873 2874 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr, 2875 struct drm_dp_sideband_msg_tx *txmsg) 2876 { 2877 mutex_lock(&mgr->qlock); 2878 list_add_tail(&txmsg->next, &mgr->tx_msg_downq); 2879 2880 if (drm_debug_enabled(DRM_UT_DP)) { 2881 struct drm_printer p = drm_dbg_printer(mgr->dev, DRM_UT_DP, 2882 DBG_PREFIX); 2883 2884 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2885 } 2886 2887 if (list_is_singular(&mgr->tx_msg_downq)) 2888 process_single_down_tx_qlock(mgr); 2889 mutex_unlock(&mgr->qlock); 2890 } 2891 2892 static void 2893 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr, 2894 struct drm_dp_link_address_ack_reply *reply) 2895 { 2896 struct drm_dp_link_addr_reply_port *port_reply; 2897 int i; 2898 2899 for (i = 0; i < reply->nports; i++) { 2900 port_reply = &reply->ports[i]; 2901 drm_dbg_kms(mgr->dev, 2902 "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n", 2903 i, 2904 port_reply->input_port, 2905 port_reply->peer_device_type, 2906 port_reply->port_number, 2907 port_reply->dpcd_revision, 2908 port_reply->mcs, 2909 port_reply->ddps, 2910 port_reply->legacy_device_plug_status, 2911 port_reply->num_sdp_streams, 2912 port_reply->num_sdp_stream_sinks); 2913 } 2914 } 2915 2916 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2917 struct drm_dp_mst_branch *mstb) 2918 { 2919 struct drm_dp_sideband_msg_tx *txmsg; 2920 struct drm_dp_link_address_ack_reply *reply; 2921 struct drm_dp_mst_port *port, *tmp; 2922 int i, ret, port_mask = 0; 2923 bool changed = false; 2924 2925 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 2926 if (!txmsg) 2927 return -ENOMEM; 2928 2929 txmsg->dst = mstb; 2930 build_link_address(txmsg); 2931 2932 mstb->link_address_sent = true; 2933 drm_dp_queue_down_tx(mgr, txmsg); 2934 2935 /* FIXME: Actually do some real error handling here */ 2936 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 2937 if (ret < 0) { 2938 drm_err(mgr->dev, "Sending link address failed with %d\n", ret); 2939 goto out; 2940 } 2941 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 2942 drm_err(mgr->dev, "link address NAK received\n"); 2943 ret = -EIO; 2944 goto out; 2945 } 2946 2947 reply = &txmsg->reply.u.link_addr; 2948 drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports); 2949 drm_dp_dump_link_address(mgr, reply); 2950 2951 ret = drm_dp_check_mstb_guid(mstb, &reply->guid); 2952 if (ret) { 2953 char buf[64]; 2954 2955 drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf)); 2956 drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret); 2957 goto out; 2958 } 2959 2960 for (i = 0; i < reply->nports; i++) { 2961 port_mask |= BIT(reply->ports[i].port_number); 2962 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev, 2963 &reply->ports[i]); 2964 if (ret == 1) 2965 changed = true; 2966 else if (ret < 0) 2967 goto out; 2968 } 2969 2970 /* Prune any ports that are currently a part of mstb in our in-memory 2971 * topology, but were not seen in this link address. Usually this 2972 * means that they were removed while the topology was out of sync, 2973 * e.g. during suspend/resume 2974 */ 2975 mutex_lock(&mgr->lock); 2976 list_for_each_entry_safe(port, tmp, &mstb->ports, next) { 2977 if (port_mask & BIT(port->port_num)) 2978 continue; 2979 2980 drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n", 2981 port->port_num); 2982 list_del(&port->next); 2983 drm_dp_mst_topology_put_port(port); 2984 changed = true; 2985 } 2986 mutex_unlock(&mgr->lock); 2987 2988 out: 2989 if (ret < 0) 2990 mstb->link_address_sent = false; 2991 kfree(txmsg); 2992 return ret < 0 ? ret : changed; 2993 } 2994 2995 static void 2996 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 2997 struct drm_dp_mst_branch *mstb) 2998 { 2999 struct drm_dp_sideband_msg_tx *txmsg; 3000 int ret; 3001 3002 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3003 if (!txmsg) 3004 return; 3005 3006 txmsg->dst = mstb; 3007 build_clear_payload_id_table(txmsg); 3008 3009 drm_dp_queue_down_tx(mgr, txmsg); 3010 3011 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3012 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3013 drm_dbg_kms(mgr->dev, "clear payload table id nak received\n"); 3014 3015 kfree(txmsg); 3016 } 3017 3018 static int 3019 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 3020 struct drm_dp_mst_branch *mstb, 3021 struct drm_dp_mst_port *port) 3022 { 3023 struct drm_dp_enum_path_resources_ack_reply *path_res; 3024 struct drm_dp_sideband_msg_tx *txmsg; 3025 int ret; 3026 3027 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3028 if (!txmsg) 3029 return -ENOMEM; 3030 3031 txmsg->dst = mstb; 3032 build_enum_path_resources(txmsg, port->port_num); 3033 3034 drm_dp_queue_down_tx(mgr, txmsg); 3035 3036 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3037 if (ret > 0) { 3038 ret = 0; 3039 path_res = &txmsg->reply.u.path_resources; 3040 3041 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3042 drm_dbg_kms(mgr->dev, "enum path resources nak received\n"); 3043 } else { 3044 if (port->port_num != path_res->port_number) 3045 DRM_ERROR("got incorrect port in response\n"); 3046 3047 drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n", 3048 path_res->port_number, 3049 path_res->full_payload_bw_number, 3050 path_res->avail_payload_bw_number); 3051 3052 /* 3053 * If something changed, make sure we send a 3054 * hotplug 3055 */ 3056 if (port->full_pbn != path_res->full_payload_bw_number || 3057 port->fec_capable != path_res->fec_capable) 3058 ret = 1; 3059 3060 port->full_pbn = path_res->full_payload_bw_number; 3061 port->fec_capable = path_res->fec_capable; 3062 } 3063 } 3064 3065 kfree(txmsg); 3066 return ret; 3067 } 3068 3069 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb) 3070 { 3071 if (!mstb->port_parent) 3072 return NULL; 3073 3074 if (mstb->port_parent->mstb != mstb) 3075 return mstb->port_parent; 3076 3077 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent); 3078 } 3079 3080 /* 3081 * Searches upwards in the topology starting from mstb to try to find the 3082 * closest available parent of mstb that's still connected to the rest of the 3083 * topology. This can be used in order to perform operations like releasing 3084 * payloads, where the branch device which owned the payload may no longer be 3085 * around and thus would require that the payload on the last living relative 3086 * be freed instead. 3087 */ 3088 static struct drm_dp_mst_branch * 3089 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr, 3090 struct drm_dp_mst_branch *mstb, 3091 int *port_num) 3092 { 3093 struct drm_dp_mst_branch *rmstb = NULL; 3094 struct drm_dp_mst_port *found_port; 3095 3096 mutex_lock(&mgr->lock); 3097 if (!mgr->mst_primary) 3098 goto out; 3099 3100 do { 3101 found_port = drm_dp_get_last_connected_port_to_mstb(mstb); 3102 if (!found_port) 3103 break; 3104 3105 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) { 3106 rmstb = found_port->parent; 3107 *port_num = found_port->port_num; 3108 } else { 3109 /* Search again, starting from this parent */ 3110 mstb = found_port->parent; 3111 } 3112 } while (!rmstb); 3113 out: 3114 mutex_unlock(&mgr->lock); 3115 return rmstb; 3116 } 3117 3118 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr, 3119 struct drm_dp_mst_port *port, 3120 int id, 3121 int pbn) 3122 { 3123 struct drm_dp_sideband_msg_tx *txmsg; 3124 struct drm_dp_mst_branch *mstb; 3125 int ret, port_num; 3126 u8 sinks[DRM_DP_MAX_SDP_STREAMS]; 3127 int i; 3128 3129 port_num = port->port_num; 3130 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3131 if (!mstb) { 3132 mstb = drm_dp_get_last_connected_port_and_mstb(mgr, 3133 port->parent, 3134 &port_num); 3135 3136 if (!mstb) 3137 return -EINVAL; 3138 } 3139 3140 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3141 if (!txmsg) { 3142 ret = -ENOMEM; 3143 goto fail_put; 3144 } 3145 3146 for (i = 0; i < port->num_sdp_streams; i++) 3147 sinks[i] = i; 3148 3149 txmsg->dst = mstb; 3150 build_allocate_payload(txmsg, port_num, 3151 id, 3152 pbn, port->num_sdp_streams, sinks); 3153 3154 drm_dp_queue_down_tx(mgr, txmsg); 3155 3156 /* 3157 * FIXME: there is a small chance that between getting the last 3158 * connected mstb and sending the payload message, the last connected 3159 * mstb could also be removed from the topology. In the future, this 3160 * needs to be fixed by restarting the 3161 * drm_dp_get_last_connected_port_and_mstb() search in the event of a 3162 * timeout if the topology is still connected to the system. 3163 */ 3164 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3165 if (ret > 0) { 3166 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3167 ret = -EINVAL; 3168 else 3169 ret = 0; 3170 } 3171 kfree(txmsg); 3172 fail_put: 3173 drm_dp_mst_topology_put_mstb(mstb); 3174 return ret; 3175 } 3176 3177 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr, 3178 struct drm_dp_mst_port *port, bool power_up) 3179 { 3180 struct drm_dp_sideband_msg_tx *txmsg; 3181 int ret; 3182 3183 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3184 if (!port) 3185 return -EINVAL; 3186 3187 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3188 if (!txmsg) { 3189 drm_dp_mst_topology_put_port(port); 3190 return -ENOMEM; 3191 } 3192 3193 txmsg->dst = port->parent; 3194 build_power_updown_phy(txmsg, port->port_num, power_up); 3195 drm_dp_queue_down_tx(mgr, txmsg); 3196 3197 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg); 3198 if (ret > 0) { 3199 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3200 ret = -EINVAL; 3201 else 3202 ret = 0; 3203 } 3204 kfree(txmsg); 3205 drm_dp_mst_topology_put_port(port); 3206 3207 return ret; 3208 } 3209 EXPORT_SYMBOL(drm_dp_send_power_updown_phy); 3210 3211 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr, 3212 struct drm_dp_mst_port *port, 3213 struct drm_dp_query_stream_enc_status_ack_reply *status) 3214 { 3215 struct drm_dp_mst_topology_state *state; 3216 struct drm_dp_mst_atomic_payload *payload; 3217 struct drm_dp_sideband_msg_tx *txmsg; 3218 u8 nonce[7]; 3219 int ret; 3220 3221 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3222 if (!txmsg) 3223 return -ENOMEM; 3224 3225 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3226 if (!port) { 3227 ret = -EINVAL; 3228 goto out_get_port; 3229 } 3230 3231 get_random_bytes(nonce, sizeof(nonce)); 3232 3233 drm_modeset_lock(&mgr->base.lock, NULL); 3234 state = to_drm_dp_mst_topology_state(mgr->base.state); 3235 payload = drm_atomic_get_mst_payload_state(state, port); 3236 3237 /* 3238 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message 3239 * transaction at the MST Branch device directly connected to the 3240 * Source" 3241 */ 3242 txmsg->dst = mgr->mst_primary; 3243 3244 build_query_stream_enc_status(txmsg, payload->vcpi, nonce); 3245 3246 drm_dp_queue_down_tx(mgr, txmsg); 3247 3248 ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg); 3249 if (ret < 0) { 3250 goto out; 3251 } else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3252 drm_dbg_kms(mgr->dev, "query encryption status nak received\n"); 3253 ret = -ENXIO; 3254 goto out; 3255 } 3256 3257 ret = 0; 3258 memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status)); 3259 3260 out: 3261 drm_modeset_unlock(&mgr->base.lock); 3262 drm_dp_mst_topology_put_port(port); 3263 out_get_port: 3264 kfree(txmsg); 3265 return ret; 3266 } 3267 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status); 3268 3269 static int drm_dp_create_payload_at_dfp(struct drm_dp_mst_topology_mgr *mgr, 3270 struct drm_dp_mst_atomic_payload *payload) 3271 { 3272 return drm_dp_dpcd_write_payload(mgr->aux, payload->vcpi, payload->vc_start_slot, 3273 payload->time_slots); 3274 } 3275 3276 static int drm_dp_create_payload_to_remote(struct drm_dp_mst_topology_mgr *mgr, 3277 struct drm_dp_mst_atomic_payload *payload) 3278 { 3279 int ret; 3280 struct drm_dp_mst_port *port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3281 3282 if (!port) 3283 return -EIO; 3284 3285 ret = drm_dp_payload_send_msg(mgr, port, payload->vcpi, payload->pbn); 3286 drm_dp_mst_topology_put_port(port); 3287 return ret; 3288 } 3289 3290 static void drm_dp_destroy_payload_at_remote_and_dfp(struct drm_dp_mst_topology_mgr *mgr, 3291 struct drm_dp_mst_topology_state *mst_state, 3292 struct drm_dp_mst_atomic_payload *payload) 3293 { 3294 drm_dbg_kms(mgr->dev, "\n"); 3295 3296 /* it's okay for these to fail */ 3297 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE) { 3298 drm_dp_payload_send_msg(mgr, payload->port, payload->vcpi, 0); 3299 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3300 } 3301 3302 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) 3303 drm_dp_dpcd_write_payload(mgr->aux, payload->vcpi, payload->vc_start_slot, 0); 3304 } 3305 3306 /** 3307 * drm_dp_add_payload_part1() - Execute payload update part 1 3308 * @mgr: Manager to use. 3309 * @mst_state: The MST atomic state 3310 * @payload: The payload to write 3311 * 3312 * Determines the starting time slot for the given payload, and programs the VCPI for this payload 3313 * into the DPCD of DPRX. After calling this, the driver should generate ACT and payload packets. 3314 * 3315 * Returns: 0 on success, error code on failure. 3316 */ 3317 int drm_dp_add_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3318 struct drm_dp_mst_topology_state *mst_state, 3319 struct drm_dp_mst_atomic_payload *payload) 3320 { 3321 struct drm_dp_mst_port *port; 3322 int ret; 3323 3324 /* Update mst mgr info */ 3325 if (mgr->payload_count == 0) 3326 mgr->next_start_slot = mst_state->start_slot; 3327 3328 payload->vc_start_slot = mgr->next_start_slot; 3329 3330 mgr->payload_count++; 3331 mgr->next_start_slot += payload->time_slots; 3332 3333 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3334 3335 /* Allocate payload to immediate downstream facing port */ 3336 port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3337 if (!port) { 3338 drm_dbg_kms(mgr->dev, 3339 "VCPI %d for port %p not in topology, not creating a payload to remote\n", 3340 payload->vcpi, payload->port); 3341 return -EIO; 3342 } 3343 3344 ret = drm_dp_create_payload_at_dfp(mgr, payload); 3345 if (ret < 0) { 3346 drm_dbg_kms(mgr->dev, "Failed to create MST payload for port %p: %d\n", 3347 payload->port, ret); 3348 goto put_port; 3349 } 3350 3351 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3352 3353 put_port: 3354 drm_dp_mst_topology_put_port(port); 3355 3356 return ret; 3357 } 3358 EXPORT_SYMBOL(drm_dp_add_payload_part1); 3359 3360 /** 3361 * drm_dp_remove_payload_part1() - Remove an MST payload along the virtual channel 3362 * @mgr: Manager to use. 3363 * @mst_state: The MST atomic state 3364 * @payload: The payload to remove 3365 * 3366 * Removes a payload along the virtual channel if it was successfully allocated. 3367 * After calling this, the driver should set HW to generate ACT and then switch to new 3368 * payload allocation state. 3369 */ 3370 void drm_dp_remove_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3371 struct drm_dp_mst_topology_state *mst_state, 3372 struct drm_dp_mst_atomic_payload *payload) 3373 { 3374 /* Remove remote payload allocation */ 3375 bool send_remove = false; 3376 3377 mutex_lock(&mgr->lock); 3378 send_remove = drm_dp_mst_port_downstream_of_branch(payload->port, mgr->mst_primary); 3379 mutex_unlock(&mgr->lock); 3380 3381 if (send_remove) 3382 drm_dp_destroy_payload_at_remote_and_dfp(mgr, mst_state, payload); 3383 else 3384 drm_dbg_kms(mgr->dev, "Payload for VCPI %d not in topology, not sending remove\n", 3385 payload->vcpi); 3386 3387 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3388 } 3389 EXPORT_SYMBOL(drm_dp_remove_payload_part1); 3390 3391 /** 3392 * drm_dp_remove_payload_part2() - Remove an MST payload locally 3393 * @mgr: Manager to use. 3394 * @mst_state: The MST atomic state 3395 * @old_payload: The payload with its old state 3396 * @new_payload: The payload with its latest state 3397 * 3398 * Updates the starting time slots of all other payloads which would have been shifted towards 3399 * the start of the payload ID table as a result of removing a payload. Driver should call this 3400 * function whenever it removes a payload in its HW. It's independent to the result of payload 3401 * allocation/deallocation at branch devices along the virtual channel. 3402 */ 3403 void drm_dp_remove_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3404 struct drm_dp_mst_topology_state *mst_state, 3405 const struct drm_dp_mst_atomic_payload *old_payload, 3406 struct drm_dp_mst_atomic_payload *new_payload) 3407 { 3408 struct drm_dp_mst_atomic_payload *pos; 3409 3410 /* Remove local payload allocation */ 3411 list_for_each_entry(pos, &mst_state->payloads, next) { 3412 if (pos != new_payload && pos->vc_start_slot > new_payload->vc_start_slot) 3413 pos->vc_start_slot -= old_payload->time_slots; 3414 } 3415 new_payload->vc_start_slot = -1; 3416 3417 mgr->payload_count--; 3418 mgr->next_start_slot -= old_payload->time_slots; 3419 3420 if (new_payload->delete) 3421 drm_dp_mst_put_port_malloc(new_payload->port); 3422 3423 new_payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 3424 } 3425 EXPORT_SYMBOL(drm_dp_remove_payload_part2); 3426 /** 3427 * drm_dp_add_payload_part2() - Execute payload update part 2 3428 * @mgr: Manager to use. 3429 * @payload: The payload to update 3430 * 3431 * If @payload was successfully assigned a starting time slot by drm_dp_add_payload_part1(), this 3432 * function will send the sideband messages to finish allocating this payload. 3433 * 3434 * Returns: 0 on success, negative error code on failure. 3435 */ 3436 int drm_dp_add_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3437 struct drm_dp_mst_atomic_payload *payload) 3438 { 3439 int ret = 0; 3440 3441 /* Skip failed payloads */ 3442 if (payload->payload_allocation_status != DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) { 3443 drm_dbg_kms(mgr->dev, "Part 1 of payload creation for %s failed, skipping part 2\n", 3444 payload->port->connector->name); 3445 return -EIO; 3446 } 3447 3448 /* Allocate payload to remote end */ 3449 ret = drm_dp_create_payload_to_remote(mgr, payload); 3450 if (ret < 0) 3451 drm_err(mgr->dev, "Step 2 of creating MST payload for %p failed: %d\n", 3452 payload->port, ret); 3453 else 3454 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE; 3455 3456 return ret; 3457 } 3458 EXPORT_SYMBOL(drm_dp_add_payload_part2); 3459 3460 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 3461 struct drm_dp_mst_port *port, 3462 int offset, int size, u8 *bytes) 3463 { 3464 int ret = 0; 3465 struct drm_dp_sideband_msg_tx *txmsg; 3466 struct drm_dp_mst_branch *mstb; 3467 3468 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3469 if (!mstb) 3470 return -EINVAL; 3471 3472 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3473 if (!txmsg) { 3474 ret = -ENOMEM; 3475 goto fail_put; 3476 } 3477 3478 build_dpcd_read(txmsg, port->port_num, offset, size); 3479 txmsg->dst = port->parent; 3480 3481 drm_dp_queue_down_tx(mgr, txmsg); 3482 3483 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3484 if (ret < 0) 3485 goto fail_free; 3486 3487 if (txmsg->reply.reply_type == 1) { 3488 drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n", 3489 mstb, port->port_num, offset, size); 3490 ret = -EIO; 3491 goto fail_free; 3492 } 3493 3494 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) { 3495 ret = -EPROTO; 3496 goto fail_free; 3497 } 3498 3499 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes, 3500 size); 3501 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret); 3502 3503 fail_free: 3504 kfree(txmsg); 3505 fail_put: 3506 drm_dp_mst_topology_put_mstb(mstb); 3507 3508 return ret; 3509 } 3510 3511 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 3512 struct drm_dp_mst_port *port, 3513 int offset, int size, u8 *bytes) 3514 { 3515 int ret; 3516 struct drm_dp_sideband_msg_tx *txmsg; 3517 struct drm_dp_mst_branch *mstb; 3518 3519 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3520 if (!mstb) 3521 return -EINVAL; 3522 3523 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3524 if (!txmsg) { 3525 ret = -ENOMEM; 3526 goto fail_put; 3527 } 3528 3529 build_dpcd_write(txmsg, port->port_num, offset, size, bytes); 3530 txmsg->dst = mstb; 3531 3532 drm_dp_queue_down_tx(mgr, txmsg); 3533 3534 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3535 if (ret > 0) { 3536 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3537 ret = -EIO; 3538 else 3539 ret = size; 3540 } 3541 3542 kfree(txmsg); 3543 fail_put: 3544 drm_dp_mst_topology_put_mstb(mstb); 3545 return ret; 3546 } 3547 3548 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type) 3549 { 3550 struct drm_dp_sideband_msg_reply_body reply; 3551 3552 reply.reply_type = DP_SIDEBAND_REPLY_ACK; 3553 reply.req_type = req_type; 3554 drm_dp_encode_sideband_reply(&reply, msg); 3555 return 0; 3556 } 3557 3558 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr, 3559 struct drm_dp_mst_branch *mstb, 3560 int req_type, bool broadcast) 3561 { 3562 struct drm_dp_sideband_msg_tx *txmsg; 3563 3564 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3565 if (!txmsg) 3566 return -ENOMEM; 3567 3568 txmsg->dst = mstb; 3569 drm_dp_encode_up_ack_reply(txmsg, req_type); 3570 3571 mutex_lock(&mgr->qlock); 3572 /* construct a chunk from the first msg in the tx_msg queue */ 3573 process_single_tx_qlock(mgr, txmsg, true); 3574 mutex_unlock(&mgr->qlock); 3575 3576 kfree(txmsg); 3577 return 0; 3578 } 3579 3580 /** 3581 * drm_dp_get_vc_payload_bw - get the VC payload BW for an MTP link 3582 * @link_rate: link rate in 10kbits/s units 3583 * @link_lane_count: lane count 3584 * 3585 * Calculate the total bandwidth of a MultiStream Transport link. The returned 3586 * value is in units of PBNs/(timeslots/1 MTP). This value can be used to 3587 * convert the number of PBNs required for a given stream to the number of 3588 * timeslots this stream requires in each MTP. 3589 * 3590 * Returns the BW / timeslot value in 20.12 fixed point format. 3591 */ 3592 fixed20_12 drm_dp_get_vc_payload_bw(int link_rate, int link_lane_count) 3593 { 3594 int ch_coding_efficiency = 3595 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(link_rate)); 3596 fixed20_12 ret; 3597 3598 /* See DP v2.0 2.6.4.2, 2.7.6.3 VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */ 3599 ret.full = DIV_ROUND_DOWN_ULL(mul_u32_u32(link_rate * link_lane_count, 3600 ch_coding_efficiency), 3601 (1000000ULL * 8 * 5400) >> 12); 3602 3603 return ret; 3604 } 3605 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw); 3606 3607 /** 3608 * drm_dp_read_mst_cap() - Read the sink's MST mode capability 3609 * @aux: The DP AUX channel to use 3610 * @dpcd: A cached copy of the DPCD capabilities for this sink 3611 * 3612 * Returns: enum drm_dp_mst_mode to indicate MST mode capability 3613 */ 3614 enum drm_dp_mst_mode drm_dp_read_mst_cap(struct drm_dp_aux *aux, 3615 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3616 { 3617 u8 mstm_cap; 3618 3619 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12) 3620 return DRM_DP_SST; 3621 3622 if (drm_dp_dpcd_read_byte(aux, DP_MSTM_CAP, &mstm_cap) < 0) 3623 return DRM_DP_SST; 3624 3625 if (mstm_cap & DP_MST_CAP) 3626 return DRM_DP_MST; 3627 3628 if (mstm_cap & DP_SINGLE_STREAM_SIDEBAND_MSG) 3629 return DRM_DP_SST_SIDEBAND_MSG; 3630 3631 return DRM_DP_SST; 3632 } 3633 EXPORT_SYMBOL(drm_dp_read_mst_cap); 3634 3635 /** 3636 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager 3637 * @mgr: manager to set state for 3638 * @mst_state: true to enable MST on this connector - false to disable. 3639 * 3640 * This is called by the driver when it detects an MST capable device plugged 3641 * into a DP MST capable port, or when a DP MST capable device is unplugged. 3642 */ 3643 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state) 3644 { 3645 int ret = 0; 3646 struct drm_dp_mst_branch *mstb = NULL; 3647 3648 mutex_lock(&mgr->lock); 3649 if (mst_state == mgr->mst_state) 3650 goto out_unlock; 3651 3652 mgr->mst_state = mst_state; 3653 /* set the device into MST mode */ 3654 if (mst_state) { 3655 WARN_ON(mgr->mst_primary); 3656 3657 /* get dpcd info */ 3658 ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd); 3659 if (ret < 0) { 3660 drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n", 3661 mgr->aux->name, ret); 3662 goto out_unlock; 3663 } 3664 3665 /* add initial branch device at LCT 1 */ 3666 mstb = drm_dp_add_mst_branch_device(1, NULL); 3667 if (mstb == NULL) { 3668 ret = -ENOMEM; 3669 goto out_unlock; 3670 } 3671 mstb->mgr = mgr; 3672 3673 /* give this the main reference */ 3674 mgr->mst_primary = mstb; 3675 drm_dp_mst_topology_get_mstb(mgr->mst_primary); 3676 3677 ret = drm_dp_dpcd_write_byte(mgr->aux, DP_MSTM_CTRL, 3678 DP_MST_EN | 3679 DP_UP_REQ_EN | 3680 DP_UPSTREAM_IS_SRC); 3681 if (ret < 0) 3682 goto out_unlock; 3683 3684 /* Write reset payload */ 3685 drm_dp_dpcd_clear_payload(mgr->aux); 3686 3687 drm_dp_mst_queue_probe_work(mgr); 3688 3689 ret = 0; 3690 } else { 3691 /* disable MST on the device */ 3692 mstb = mgr->mst_primary; 3693 mgr->mst_primary = NULL; 3694 /* this can fail if the device is gone */ 3695 drm_dp_dpcd_write_byte(mgr->aux, DP_MSTM_CTRL, 0); 3696 ret = 0; 3697 mgr->payload_id_table_cleared = false; 3698 3699 mgr->reset_rx_state = true; 3700 } 3701 3702 out_unlock: 3703 mutex_unlock(&mgr->lock); 3704 if (mstb) 3705 drm_dp_mst_topology_put_mstb(mstb); 3706 return ret; 3707 3708 } 3709 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst); 3710 3711 static void 3712 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb) 3713 { 3714 struct drm_dp_mst_port *port; 3715 3716 /* The link address will need to be re-sent on resume */ 3717 mstb->link_address_sent = false; 3718 3719 list_for_each_entry(port, &mstb->ports, next) 3720 if (port->mstb) 3721 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb); 3722 } 3723 3724 /** 3725 * drm_dp_mst_topology_queue_probe - Queue a topology probe 3726 * @mgr: manager to probe 3727 * 3728 * Queue a work to probe the MST topology. Driver's should call this only to 3729 * sync the topology's HW->SW state after the MST link's parameters have 3730 * changed in a way the state could've become out-of-sync. This is the case 3731 * for instance when the link rate between the source and first downstream 3732 * branch device has switched between UHBR and non-UHBR rates. Except of those 3733 * cases - for instance when a sink gets plugged/unplugged to a port - the SW 3734 * state will get updated automatically via MST UP message notifications. 3735 */ 3736 void drm_dp_mst_topology_queue_probe(struct drm_dp_mst_topology_mgr *mgr) 3737 { 3738 mutex_lock(&mgr->lock); 3739 3740 if (drm_WARN_ON(mgr->dev, !mgr->mst_state || !mgr->mst_primary)) 3741 goto out_unlock; 3742 3743 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary); 3744 drm_dp_mst_queue_probe_work(mgr); 3745 3746 out_unlock: 3747 mutex_unlock(&mgr->lock); 3748 } 3749 EXPORT_SYMBOL(drm_dp_mst_topology_queue_probe); 3750 3751 /** 3752 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager 3753 * @mgr: manager to suspend 3754 * 3755 * This function tells the MST device that we can't handle UP messages 3756 * anymore. This should stop it from sending any since we are suspended. 3757 */ 3758 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr) 3759 { 3760 mutex_lock(&mgr->lock); 3761 drm_dp_dpcd_write_byte(mgr->aux, DP_MSTM_CTRL, 3762 DP_MST_EN | DP_UPSTREAM_IS_SRC); 3763 mutex_unlock(&mgr->lock); 3764 flush_work(&mgr->up_req_work); 3765 flush_work(&mgr->work); 3766 flush_work(&mgr->delayed_destroy_work); 3767 3768 mutex_lock(&mgr->lock); 3769 if (mgr->mst_state && mgr->mst_primary) 3770 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary); 3771 mutex_unlock(&mgr->lock); 3772 } 3773 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend); 3774 3775 /** 3776 * drm_dp_mst_topology_mgr_resume() - resume the MST manager 3777 * @mgr: manager to resume 3778 * @sync: whether or not to perform topology reprobing synchronously 3779 * 3780 * This will fetch DPCD and see if the device is still there, 3781 * if it is, it will rewrite the MSTM control bits, and return. 3782 * 3783 * If the device fails this returns -1, and the driver should do 3784 * a full MST reprobe, in case we were undocked. 3785 * 3786 * During system resume (where it is assumed that the driver will be calling 3787 * drm_atomic_helper_resume()) this function should be called beforehand with 3788 * @sync set to true. In contexts like runtime resume where the driver is not 3789 * expected to be calling drm_atomic_helper_resume(), this function should be 3790 * called with @sync set to false in order to avoid deadlocking. 3791 * 3792 * Returns: -1 if the MST topology was removed while we were suspended, 0 3793 * otherwise. 3794 */ 3795 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr, 3796 bool sync) 3797 { 3798 u8 buf[UUID_SIZE]; 3799 guid_t guid; 3800 int ret; 3801 3802 mutex_lock(&mgr->lock); 3803 if (!mgr->mst_primary) 3804 goto out_fail; 3805 3806 if (drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd) < 0) { 3807 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3808 goto out_fail; 3809 } 3810 3811 ret = drm_dp_dpcd_write_byte(mgr->aux, DP_MSTM_CTRL, 3812 DP_MST_EN | 3813 DP_UP_REQ_EN | 3814 DP_UPSTREAM_IS_SRC); 3815 if (ret < 0) { 3816 drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n"); 3817 goto out_fail; 3818 } 3819 3820 /* Some hubs forget their guids after they resume */ 3821 ret = drm_dp_dpcd_read_data(mgr->aux, DP_GUID, buf, sizeof(buf)); 3822 if (ret < 0) { 3823 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3824 goto out_fail; 3825 } 3826 3827 import_guid(&guid, buf); 3828 3829 ret = drm_dp_check_mstb_guid(mgr->mst_primary, &guid); 3830 if (ret) { 3831 drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n"); 3832 goto out_fail; 3833 } 3834 3835 /* 3836 * For the final step of resuming the topology, we need to bring the 3837 * state of our in-memory topology back into sync with reality. So, 3838 * restart the probing process as if we're probing a new hub 3839 */ 3840 drm_dp_mst_queue_probe_work(mgr); 3841 mutex_unlock(&mgr->lock); 3842 3843 if (sync) { 3844 drm_dbg_kms(mgr->dev, 3845 "Waiting for link probe work to finish re-syncing topology...\n"); 3846 flush_work(&mgr->work); 3847 } 3848 3849 return 0; 3850 3851 out_fail: 3852 mutex_unlock(&mgr->lock); 3853 return -1; 3854 } 3855 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume); 3856 3857 static void reset_msg_rx_state(struct drm_dp_sideband_msg_rx *msg) 3858 { 3859 memset(msg, 0, sizeof(*msg)); 3860 } 3861 3862 static bool 3863 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up, 3864 struct drm_dp_mst_branch **mstb) 3865 { 3866 int len; 3867 u8 replyblock[32]; 3868 int replylen, curreply; 3869 int ret; 3870 u8 hdrlen; 3871 struct drm_dp_sideband_msg_hdr hdr; 3872 struct drm_dp_sideband_msg_rx *msg = 3873 up ? &mgr->up_req_recv : &mgr->down_rep_recv; 3874 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : 3875 DP_SIDEBAND_MSG_DOWN_REP_BASE; 3876 3877 if (!up) 3878 *mstb = NULL; 3879 3880 len = min(mgr->max_dpcd_transaction_bytes, 16); 3881 ret = drm_dp_dpcd_read_data(mgr->aux, basereg, replyblock, len); 3882 if (ret < 0) { 3883 drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret); 3884 return false; 3885 } 3886 3887 ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen); 3888 if (ret == false) { 3889 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 3890 1, replyblock, len, false); 3891 drm_dbg_kms(mgr->dev, "ERROR: failed header\n"); 3892 return false; 3893 } 3894 3895 if (!up) { 3896 /* Caller is responsible for giving back this reference */ 3897 *mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad); 3898 if (!*mstb) { 3899 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct); 3900 return false; 3901 } 3902 } 3903 3904 if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) { 3905 drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]); 3906 return false; 3907 } 3908 3909 replylen = min(msg->curchunk_len, (u8)(len - hdrlen)); 3910 ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen); 3911 if (!ret) { 3912 drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]); 3913 return false; 3914 } 3915 3916 replylen = msg->curchunk_len + msg->curchunk_hdrlen - len; 3917 curreply = len; 3918 while (replylen > 0) { 3919 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16); 3920 ret = drm_dp_dpcd_read_data(mgr->aux, basereg + curreply, 3921 replyblock, len); 3922 if (ret < 0) { 3923 drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n", 3924 len, ret); 3925 return false; 3926 } 3927 3928 ret = drm_dp_sideband_append_payload(msg, replyblock, len); 3929 if (!ret) { 3930 drm_dbg_kms(mgr->dev, "failed to build sideband msg\n"); 3931 return false; 3932 } 3933 3934 curreply += len; 3935 replylen -= len; 3936 } 3937 return true; 3938 } 3939 3940 static int get_msg_request_type(u8 data) 3941 { 3942 return data & 0x7f; 3943 } 3944 3945 static bool verify_rx_request_type(struct drm_dp_mst_topology_mgr *mgr, 3946 const struct drm_dp_sideband_msg_tx *txmsg, 3947 const struct drm_dp_sideband_msg_rx *rxmsg) 3948 { 3949 const struct drm_dp_sideband_msg_hdr *hdr = &rxmsg->initial_hdr; 3950 const struct drm_dp_mst_branch *mstb = txmsg->dst; 3951 int tx_req_type = get_msg_request_type(txmsg->msg[0]); 3952 int rx_req_type = get_msg_request_type(rxmsg->msg[0]); 3953 char rad_str[64]; 3954 3955 if (tx_req_type == rx_req_type) 3956 return true; 3957 3958 drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, rad_str, sizeof(rad_str)); 3959 drm_dbg_kms(mgr->dev, 3960 "Got unexpected MST reply, mstb: %p seqno: %d lct: %d rad: %s rx_req_type: %s (%02x) != tx_req_type: %s (%02x)\n", 3961 mstb, hdr->seqno, mstb->lct, rad_str, 3962 drm_dp_mst_req_type_str(rx_req_type), rx_req_type, 3963 drm_dp_mst_req_type_str(tx_req_type), tx_req_type); 3964 3965 return false; 3966 } 3967 3968 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr) 3969 { 3970 struct drm_dp_sideband_msg_tx *txmsg; 3971 struct drm_dp_mst_branch *mstb = NULL; 3972 struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv; 3973 3974 if (!drm_dp_get_one_sb_msg(mgr, false, &mstb)) 3975 goto out_clear_reply; 3976 3977 /* Multi-packet message transmission, don't clear the reply */ 3978 if (!msg->have_eomt) 3979 goto out; 3980 3981 /* find the message */ 3982 mutex_lock(&mgr->qlock); 3983 3984 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 3985 struct drm_dp_sideband_msg_tx, next); 3986 3987 /* Were we actually expecting a response, and from this mstb? */ 3988 if (!txmsg || txmsg->dst != mstb) { 3989 struct drm_dp_sideband_msg_hdr *hdr; 3990 3991 hdr = &msg->initial_hdr; 3992 drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n", 3993 mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]); 3994 3995 mutex_unlock(&mgr->qlock); 3996 3997 goto out_clear_reply; 3998 } 3999 4000 if (!verify_rx_request_type(mgr, txmsg, msg)) { 4001 mutex_unlock(&mgr->qlock); 4002 4003 goto out_clear_reply; 4004 } 4005 4006 drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply); 4007 4008 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 4009 drm_dbg_kms(mgr->dev, 4010 "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n", 4011 txmsg->reply.req_type, 4012 drm_dp_mst_req_type_str(txmsg->reply.req_type), 4013 txmsg->reply.u.nak.reason, 4014 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason), 4015 txmsg->reply.u.nak.nak_data); 4016 } 4017 4018 txmsg->state = DRM_DP_SIDEBAND_TX_RX; 4019 list_del(&txmsg->next); 4020 4021 mutex_unlock(&mgr->qlock); 4022 4023 wake_up_all(&mgr->tx_waitq); 4024 4025 out_clear_reply: 4026 reset_msg_rx_state(msg); 4027 out: 4028 if (mstb) 4029 drm_dp_mst_topology_put_mstb(mstb); 4030 4031 return 0; 4032 } 4033 4034 static bool primary_mstb_probing_is_done(struct drm_dp_mst_topology_mgr *mgr) 4035 { 4036 bool probing_done = false; 4037 4038 mutex_lock(&mgr->lock); 4039 4040 if (mgr->mst_primary && drm_dp_mst_topology_try_get_mstb(mgr->mst_primary)) { 4041 probing_done = mgr->mst_primary->link_address_sent; 4042 drm_dp_mst_topology_put_mstb(mgr->mst_primary); 4043 } 4044 4045 mutex_unlock(&mgr->lock); 4046 4047 return probing_done; 4048 } 4049 4050 static inline bool 4051 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr, 4052 struct drm_dp_pending_up_req *up_req) 4053 { 4054 struct drm_dp_mst_branch *mstb = NULL; 4055 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg; 4056 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr; 4057 bool hotplug = false, dowork = false; 4058 4059 if (hdr->broadcast) { 4060 const guid_t *guid = NULL; 4061 4062 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) 4063 guid = &msg->u.conn_stat.guid; 4064 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY) 4065 guid = &msg->u.resource_stat.guid; 4066 4067 if (guid) 4068 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid); 4069 } else { 4070 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad); 4071 } 4072 4073 if (!mstb) { 4074 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct); 4075 return false; 4076 } 4077 4078 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */ 4079 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) { 4080 if (!primary_mstb_probing_is_done(mgr)) { 4081 drm_dbg_kms(mgr->dev, "Got CSN before finish topology probing. Skip it.\n"); 4082 } else { 4083 dowork = drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat); 4084 hotplug = true; 4085 } 4086 } 4087 4088 drm_dp_mst_topology_put_mstb(mstb); 4089 4090 if (dowork) 4091 queue_work(system_long_wq, &mgr->work); 4092 return hotplug; 4093 } 4094 4095 static void drm_dp_mst_up_req_work(struct work_struct *work) 4096 { 4097 struct drm_dp_mst_topology_mgr *mgr = 4098 container_of(work, struct drm_dp_mst_topology_mgr, 4099 up_req_work); 4100 struct drm_dp_pending_up_req *up_req; 4101 bool send_hotplug = false; 4102 4103 mutex_lock(&mgr->probe_lock); 4104 while (true) { 4105 mutex_lock(&mgr->up_req_lock); 4106 up_req = list_first_entry_or_null(&mgr->up_req_list, 4107 struct drm_dp_pending_up_req, 4108 next); 4109 if (up_req) 4110 list_del(&up_req->next); 4111 mutex_unlock(&mgr->up_req_lock); 4112 4113 if (!up_req) 4114 break; 4115 4116 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req); 4117 kfree(up_req); 4118 } 4119 mutex_unlock(&mgr->probe_lock); 4120 4121 if (send_hotplug) 4122 drm_kms_helper_hotplug_event(mgr->dev); 4123 } 4124 4125 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr) 4126 { 4127 struct drm_dp_pending_up_req *up_req; 4128 struct drm_dp_mst_branch *mst_primary; 4129 int ret = 0; 4130 4131 if (!drm_dp_get_one_sb_msg(mgr, true, NULL)) 4132 goto out_clear_reply; 4133 4134 if (!mgr->up_req_recv.have_eomt) 4135 return 0; 4136 4137 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL); 4138 if (!up_req) { 4139 ret = -ENOMEM; 4140 goto out_clear_reply; 4141 } 4142 4143 INIT_LIST_HEAD(&up_req->next); 4144 4145 drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg); 4146 4147 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY && 4148 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) { 4149 drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n", 4150 up_req->msg.req_type); 4151 kfree(up_req); 4152 goto out_clear_reply; 4153 } 4154 4155 mutex_lock(&mgr->lock); 4156 mst_primary = mgr->mst_primary; 4157 if (!mst_primary || !drm_dp_mst_topology_try_get_mstb(mst_primary)) { 4158 mutex_unlock(&mgr->lock); 4159 kfree(up_req); 4160 goto out_clear_reply; 4161 } 4162 mutex_unlock(&mgr->lock); 4163 4164 drm_dp_send_up_ack_reply(mgr, mst_primary, up_req->msg.req_type, 4165 false); 4166 4167 drm_dp_mst_topology_put_mstb(mst_primary); 4168 4169 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) { 4170 const struct drm_dp_connection_status_notify *conn_stat = 4171 &up_req->msg.u.conn_stat; 4172 4173 drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n", 4174 conn_stat->port_number, 4175 conn_stat->legacy_device_plug_status, 4176 conn_stat->displayport_device_plug_status, 4177 conn_stat->message_capability_status, 4178 conn_stat->input_port, 4179 conn_stat->peer_device_type); 4180 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) { 4181 const struct drm_dp_resource_status_notify *res_stat = 4182 &up_req->msg.u.resource_stat; 4183 4184 drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n", 4185 res_stat->port_number, 4186 res_stat->available_pbn); 4187 } 4188 4189 up_req->hdr = mgr->up_req_recv.initial_hdr; 4190 mutex_lock(&mgr->up_req_lock); 4191 list_add_tail(&up_req->next, &mgr->up_req_list); 4192 mutex_unlock(&mgr->up_req_lock); 4193 queue_work(system_long_wq, &mgr->up_req_work); 4194 out_clear_reply: 4195 reset_msg_rx_state(&mgr->up_req_recv); 4196 return ret; 4197 } 4198 4199 static void update_msg_rx_state(struct drm_dp_mst_topology_mgr *mgr) 4200 { 4201 mutex_lock(&mgr->lock); 4202 if (mgr->reset_rx_state) { 4203 mgr->reset_rx_state = false; 4204 reset_msg_rx_state(&mgr->down_rep_recv); 4205 reset_msg_rx_state(&mgr->up_req_recv); 4206 } 4207 mutex_unlock(&mgr->lock); 4208 } 4209 4210 /** 4211 * drm_dp_mst_hpd_irq_handle_event() - MST hotplug IRQ handle MST event 4212 * @mgr: manager to notify irq for. 4213 * @esi: 4 bytes from SINK_COUNT_ESI 4214 * @ack: 4 bytes used to ack events starting from SINK_COUNT_ESI 4215 * @handled: whether the hpd interrupt was consumed or not 4216 * 4217 * This should be called from the driver when it detects a HPD IRQ, 4218 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The 4219 * topology manager will process the sideband messages received 4220 * as indicated in the DEVICE_SERVICE_IRQ_VECTOR_ESI0 and set the 4221 * corresponding flags that Driver has to ack the DP receiver later. 4222 * 4223 * Note that driver shall also call 4224 * drm_dp_mst_hpd_irq_send_new_request() if the 'handled' is set 4225 * after calling this function, to try to kick off a new request in 4226 * the queue if the previous message transaction is completed. 4227 * 4228 * See also: 4229 * drm_dp_mst_hpd_irq_send_new_request() 4230 */ 4231 int drm_dp_mst_hpd_irq_handle_event(struct drm_dp_mst_topology_mgr *mgr, const u8 *esi, 4232 u8 *ack, bool *handled) 4233 { 4234 int ret = 0; 4235 int sc; 4236 *handled = false; 4237 sc = DP_GET_SINK_COUNT(esi[0]); 4238 4239 if (sc != mgr->sink_count) { 4240 mgr->sink_count = sc; 4241 *handled = true; 4242 } 4243 4244 update_msg_rx_state(mgr); 4245 4246 if (esi[1] & DP_DOWN_REP_MSG_RDY) { 4247 ret = drm_dp_mst_handle_down_rep(mgr); 4248 *handled = true; 4249 ack[1] |= DP_DOWN_REP_MSG_RDY; 4250 } 4251 4252 if (esi[1] & DP_UP_REQ_MSG_RDY) { 4253 ret |= drm_dp_mst_handle_up_req(mgr); 4254 *handled = true; 4255 ack[1] |= DP_UP_REQ_MSG_RDY; 4256 } 4257 4258 return ret; 4259 } 4260 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_handle_event); 4261 4262 /** 4263 * drm_dp_mst_hpd_irq_send_new_request() - MST hotplug IRQ kick off new request 4264 * @mgr: manager to notify irq for. 4265 * 4266 * This should be called from the driver when mst irq event is handled 4267 * and acked. Note that new down request should only be sent when 4268 * previous message transaction is completed. Source is not supposed to generate 4269 * interleaved message transactions. 4270 */ 4271 void drm_dp_mst_hpd_irq_send_new_request(struct drm_dp_mst_topology_mgr *mgr) 4272 { 4273 struct drm_dp_sideband_msg_tx *txmsg; 4274 bool kick = true; 4275 4276 mutex_lock(&mgr->qlock); 4277 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 4278 struct drm_dp_sideband_msg_tx, next); 4279 /* If last transaction is not completed yet*/ 4280 if (!txmsg || 4281 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 4282 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 4283 kick = false; 4284 mutex_unlock(&mgr->qlock); 4285 4286 if (kick) 4287 drm_dp_mst_kick_tx(mgr); 4288 } 4289 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_send_new_request); 4290 /** 4291 * drm_dp_mst_detect_port() - get connection status for an MST port 4292 * @connector: DRM connector for this port 4293 * @ctx: The acquisition context to use for grabbing locks 4294 * @mgr: manager for this port 4295 * @port: pointer to a port 4296 * 4297 * This returns the current connection state for a port. 4298 */ 4299 int 4300 drm_dp_mst_detect_port(struct drm_connector *connector, 4301 struct drm_modeset_acquire_ctx *ctx, 4302 struct drm_dp_mst_topology_mgr *mgr, 4303 struct drm_dp_mst_port *port) 4304 { 4305 int ret; 4306 4307 /* we need to search for the port in the mgr in case it's gone */ 4308 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4309 if (!port) 4310 return connector_status_disconnected; 4311 4312 ret = drm_modeset_lock(&mgr->base.lock, ctx); 4313 if (ret) 4314 goto out; 4315 4316 ret = connector_status_disconnected; 4317 4318 if (!port->ddps) 4319 goto out; 4320 4321 switch (port->pdt) { 4322 case DP_PEER_DEVICE_NONE: 4323 break; 4324 case DP_PEER_DEVICE_MST_BRANCHING: 4325 if (!port->mcs) 4326 ret = connector_status_connected; 4327 break; 4328 4329 case DP_PEER_DEVICE_SST_SINK: 4330 ret = connector_status_connected; 4331 /* for logical ports - cache the EDID */ 4332 if (drm_dp_mst_port_is_logical(port) && !port->cached_edid) 4333 port->cached_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4334 break; 4335 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4336 if (port->ldps) 4337 ret = connector_status_connected; 4338 break; 4339 } 4340 out: 4341 drm_dp_mst_topology_put_port(port); 4342 return ret; 4343 } 4344 EXPORT_SYMBOL(drm_dp_mst_detect_port); 4345 4346 /** 4347 * drm_dp_mst_edid_read() - get EDID for an MST port 4348 * @connector: toplevel connector to get EDID for 4349 * @mgr: manager for this port 4350 * @port: unverified pointer to a port. 4351 * 4352 * This returns an EDID for the port connected to a connector, 4353 * It validates the pointer still exists so the caller doesn't require a 4354 * reference. 4355 */ 4356 const struct drm_edid *drm_dp_mst_edid_read(struct drm_connector *connector, 4357 struct drm_dp_mst_topology_mgr *mgr, 4358 struct drm_dp_mst_port *port) 4359 { 4360 const struct drm_edid *drm_edid; 4361 4362 /* we need to search for the port in the mgr in case it's gone */ 4363 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4364 if (!port) 4365 return NULL; 4366 4367 if (port->cached_edid) 4368 drm_edid = drm_edid_dup(port->cached_edid); 4369 else 4370 drm_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4371 4372 drm_dp_mst_topology_put_port(port); 4373 4374 return drm_edid; 4375 } 4376 EXPORT_SYMBOL(drm_dp_mst_edid_read); 4377 4378 /** 4379 * drm_dp_mst_get_edid() - get EDID for an MST port 4380 * @connector: toplevel connector to get EDID for 4381 * @mgr: manager for this port 4382 * @port: unverified pointer to a port. 4383 * 4384 * This function is deprecated; please use drm_dp_mst_edid_read() instead. 4385 * 4386 * This returns an EDID for the port connected to a connector, 4387 * It validates the pointer still exists so the caller doesn't require a 4388 * reference. 4389 */ 4390 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, 4391 struct drm_dp_mst_topology_mgr *mgr, 4392 struct drm_dp_mst_port *port) 4393 { 4394 const struct drm_edid *drm_edid; 4395 struct edid *edid; 4396 4397 drm_edid = drm_dp_mst_edid_read(connector, mgr, port); 4398 4399 edid = drm_edid_duplicate(drm_edid_raw(drm_edid)); 4400 4401 drm_edid_free(drm_edid); 4402 4403 return edid; 4404 } 4405 EXPORT_SYMBOL(drm_dp_mst_get_edid); 4406 4407 /** 4408 * drm_dp_atomic_find_time_slots() - Find and add time slots to the state 4409 * @state: global atomic state 4410 * @mgr: MST topology manager for the port 4411 * @port: port to find time slots for 4412 * @pbn: bandwidth required for the mode in PBN 4413 * 4414 * Allocates time slots to @port, replacing any previous time slot allocations it may 4415 * have had. Any atomic drivers which support MST must call this function in 4416 * their &drm_encoder_helper_funcs.atomic_check() callback unconditionally to 4417 * change the current time slot allocation for the new state, and ensure the MST 4418 * atomic state is added whenever the state of payloads in the topology changes. 4419 * 4420 * Allocations set by this function are not checked against the bandwidth 4421 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check(). 4422 * 4423 * Additionally, it is OK to call this function multiple times on the same 4424 * @port as needed. It is not OK however, to call this function and 4425 * drm_dp_atomic_release_time_slots() in the same atomic check phase. 4426 * 4427 * See also: 4428 * drm_dp_atomic_release_time_slots() 4429 * drm_dp_mst_atomic_check() 4430 * 4431 * Returns: 4432 * Total slots in the atomic state assigned for this port, or a negative error 4433 * code if the port no longer exists 4434 */ 4435 int drm_dp_atomic_find_time_slots(struct drm_atomic_state *state, 4436 struct drm_dp_mst_topology_mgr *mgr, 4437 struct drm_dp_mst_port *port, int pbn) 4438 { 4439 struct drm_dp_mst_topology_state *topology_state; 4440 struct drm_dp_mst_atomic_payload *payload = NULL; 4441 struct drm_connector_state *conn_state; 4442 int prev_slots = 0, prev_bw = 0, req_slots; 4443 4444 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4445 if (IS_ERR(topology_state)) 4446 return PTR_ERR(topology_state); 4447 4448 conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4449 topology_state->pending_crtc_mask |= drm_crtc_mask(conn_state->crtc); 4450 4451 /* Find the current allocation for this port, if any */ 4452 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4453 if (payload) { 4454 prev_slots = payload->time_slots; 4455 prev_bw = payload->pbn; 4456 4457 /* 4458 * This should never happen, unless the driver tries 4459 * releasing and allocating the same timeslot allocation, 4460 * which is an error 4461 */ 4462 if (drm_WARN_ON(mgr->dev, payload->delete)) { 4463 drm_err(mgr->dev, 4464 "cannot allocate and release time slots on [MST PORT:%p] in the same state\n", 4465 port); 4466 return -EINVAL; 4467 } 4468 } 4469 4470 req_slots = DIV_ROUND_UP(dfixed_const(pbn), topology_state->pbn_div.full); 4471 4472 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] TU %d -> %d\n", 4473 port->connector->base.id, port->connector->name, 4474 port, prev_slots, req_slots); 4475 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n", 4476 port->connector->base.id, port->connector->name, 4477 port, prev_bw, pbn); 4478 4479 /* Add the new allocation to the state, note the VCPI isn't assigned until the end */ 4480 if (!payload) { 4481 payload = kzalloc(sizeof(*payload), GFP_KERNEL); 4482 if (!payload) 4483 return -ENOMEM; 4484 4485 drm_dp_mst_get_port_malloc(port); 4486 payload->port = port; 4487 payload->vc_start_slot = -1; 4488 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 4489 list_add(&payload->next, &topology_state->payloads); 4490 } 4491 payload->time_slots = req_slots; 4492 payload->pbn = pbn; 4493 4494 return req_slots; 4495 } 4496 EXPORT_SYMBOL(drm_dp_atomic_find_time_slots); 4497 4498 /** 4499 * drm_dp_atomic_release_time_slots() - Release allocated time slots 4500 * @state: global atomic state 4501 * @mgr: MST topology manager for the port 4502 * @port: The port to release the time slots from 4503 * 4504 * Releases any time slots that have been allocated to a port in the atomic 4505 * state. Any atomic drivers which support MST must call this function 4506 * unconditionally in their &drm_connector_helper_funcs.atomic_check() callback. 4507 * This helper will check whether time slots would be released by the new state and 4508 * respond accordingly, along with ensuring the MST state is always added to the 4509 * atomic state whenever a new state would modify the state of payloads on the 4510 * topology. 4511 * 4512 * It is OK to call this even if @port has been removed from the system. 4513 * Additionally, it is OK to call this function multiple times on the same 4514 * @port as needed. It is not OK however, to call this function and 4515 * drm_dp_atomic_find_time_slots() on the same @port in a single atomic check 4516 * phase. 4517 * 4518 * See also: 4519 * drm_dp_atomic_find_time_slots() 4520 * drm_dp_mst_atomic_check() 4521 * 4522 * Returns: 4523 * 0 on success, negative error code otherwise 4524 */ 4525 int drm_dp_atomic_release_time_slots(struct drm_atomic_state *state, 4526 struct drm_dp_mst_topology_mgr *mgr, 4527 struct drm_dp_mst_port *port) 4528 { 4529 struct drm_dp_mst_topology_state *topology_state; 4530 struct drm_dp_mst_atomic_payload *payload; 4531 struct drm_connector_state *old_conn_state, *new_conn_state; 4532 bool update_payload = true; 4533 4534 old_conn_state = drm_atomic_get_old_connector_state(state, port->connector); 4535 if (!old_conn_state->crtc) 4536 return 0; 4537 4538 /* If the CRTC isn't disabled by this state, don't release it's payload */ 4539 new_conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4540 if (new_conn_state->crtc) { 4541 struct drm_crtc_state *crtc_state = 4542 drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4543 4544 /* No modeset means no payload changes, so it's safe to not pull in the MST state */ 4545 if (!crtc_state || !drm_atomic_crtc_needs_modeset(crtc_state)) 4546 return 0; 4547 4548 if (!crtc_state->mode_changed && !crtc_state->connectors_changed) 4549 update_payload = false; 4550 } 4551 4552 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4553 if (IS_ERR(topology_state)) 4554 return PTR_ERR(topology_state); 4555 4556 topology_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4557 if (!update_payload) 4558 return 0; 4559 4560 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4561 if (WARN_ON(!payload)) { 4562 drm_err(mgr->dev, "No payload for [MST PORT:%p] found in mst state %p\n", 4563 port, &topology_state->base); 4564 return -EINVAL; 4565 } 4566 4567 if (new_conn_state->crtc) 4568 return 0; 4569 4570 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] TU %d -> 0\n", port, payload->time_slots); 4571 if (!payload->delete) { 4572 payload->pbn = 0; 4573 payload->delete = true; 4574 topology_state->payload_mask &= ~BIT(payload->vcpi - 1); 4575 } 4576 4577 return 0; 4578 } 4579 EXPORT_SYMBOL(drm_dp_atomic_release_time_slots); 4580 4581 /** 4582 * drm_dp_mst_atomic_setup_commit() - setup_commit hook for MST helpers 4583 * @state: global atomic state 4584 * 4585 * This function saves all of the &drm_crtc_commit structs in an atomic state that touch any CRTCs 4586 * currently assigned to an MST topology. Drivers must call this hook from their 4587 * &drm_mode_config_helper_funcs.atomic_commit_setup hook. 4588 * 4589 * Returns: 4590 * 0 if all CRTC commits were retrieved successfully, negative error code otherwise 4591 */ 4592 int drm_dp_mst_atomic_setup_commit(struct drm_atomic_state *state) 4593 { 4594 struct drm_dp_mst_topology_mgr *mgr; 4595 struct drm_dp_mst_topology_state *mst_state; 4596 struct drm_crtc *crtc; 4597 struct drm_crtc_state *crtc_state; 4598 int i, j, commit_idx, num_commit_deps; 4599 4600 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 4601 if (!mst_state->pending_crtc_mask) 4602 continue; 4603 4604 num_commit_deps = hweight32(mst_state->pending_crtc_mask); 4605 mst_state->commit_deps = kmalloc_array(num_commit_deps, 4606 sizeof(*mst_state->commit_deps), GFP_KERNEL); 4607 if (!mst_state->commit_deps) 4608 return -ENOMEM; 4609 mst_state->num_commit_deps = num_commit_deps; 4610 4611 commit_idx = 0; 4612 for_each_new_crtc_in_state(state, crtc, crtc_state, j) { 4613 if (mst_state->pending_crtc_mask & drm_crtc_mask(crtc)) { 4614 mst_state->commit_deps[commit_idx++] = 4615 drm_crtc_commit_get(crtc_state->commit); 4616 } 4617 } 4618 } 4619 4620 return 0; 4621 } 4622 EXPORT_SYMBOL(drm_dp_mst_atomic_setup_commit); 4623 4624 /** 4625 * drm_dp_mst_atomic_wait_for_dependencies() - Wait for all pending commits on MST topologies, 4626 * prepare new MST state for commit 4627 * @state: global atomic state 4628 * 4629 * Goes through any MST topologies in this atomic state, and waits for any pending commits which 4630 * touched CRTCs that were/are on an MST topology to be programmed to hardware and flipped to before 4631 * returning. This is to prevent multiple non-blocking commits affecting an MST topology from racing 4632 * with eachother by forcing them to be executed sequentially in situations where the only resources 4633 * the modeset objects in these commits share are an MST topology. 4634 * 4635 * This function also prepares the new MST state for commit by performing some state preparation 4636 * which can't be done until this point, such as reading back the final VC start slots (which are 4637 * determined at commit-time) from the previous state. 4638 * 4639 * All MST drivers must call this function after calling drm_atomic_helper_wait_for_dependencies(), 4640 * or whatever their equivalent of that is. 4641 */ 4642 void drm_dp_mst_atomic_wait_for_dependencies(struct drm_atomic_state *state) 4643 { 4644 struct drm_dp_mst_topology_state *old_mst_state, *new_mst_state; 4645 struct drm_dp_mst_topology_mgr *mgr; 4646 struct drm_dp_mst_atomic_payload *old_payload, *new_payload; 4647 int i, j, ret; 4648 4649 for_each_oldnew_mst_mgr_in_state(state, mgr, old_mst_state, new_mst_state, i) { 4650 for (j = 0; j < old_mst_state->num_commit_deps; j++) { 4651 ret = drm_crtc_commit_wait(old_mst_state->commit_deps[j]); 4652 if (ret < 0) 4653 drm_err(state->dev, "Failed to wait for %s: %d\n", 4654 old_mst_state->commit_deps[j]->crtc->name, ret); 4655 } 4656 4657 /* Now that previous state is committed, it's safe to copy over the start slot 4658 * and allocation status assignments 4659 */ 4660 list_for_each_entry(old_payload, &old_mst_state->payloads, next) { 4661 if (old_payload->delete) 4662 continue; 4663 4664 new_payload = drm_atomic_get_mst_payload_state(new_mst_state, 4665 old_payload->port); 4666 new_payload->vc_start_slot = old_payload->vc_start_slot; 4667 new_payload->payload_allocation_status = 4668 old_payload->payload_allocation_status; 4669 } 4670 } 4671 } 4672 EXPORT_SYMBOL(drm_dp_mst_atomic_wait_for_dependencies); 4673 4674 /** 4675 * drm_dp_mst_root_conn_atomic_check() - Serialize CRTC commits on MST-capable connectors operating 4676 * in SST mode 4677 * @new_conn_state: The new connector state of the &drm_connector 4678 * @mgr: The MST topology manager for the &drm_connector 4679 * 4680 * Since MST uses fake &drm_encoder structs, the generic atomic modesetting code isn't able to 4681 * serialize non-blocking commits happening on the real DP connector of an MST topology switching 4682 * into/away from MST mode - as the CRTC on the real DP connector and the CRTCs on the connector's 4683 * MST topology will never share the same &drm_encoder. 4684 * 4685 * This function takes care of this serialization issue, by checking a root MST connector's atomic 4686 * state to determine if it is about to have a modeset - and then pulling in the MST topology state 4687 * if so, along with adding any relevant CRTCs to &drm_dp_mst_topology_state.pending_crtc_mask. 4688 * 4689 * Drivers implementing MST must call this function from the 4690 * &drm_connector_helper_funcs.atomic_check hook of any physical DP &drm_connector capable of 4691 * driving MST sinks. 4692 * 4693 * Returns: 4694 * 0 on success, negative error code otherwise 4695 */ 4696 int drm_dp_mst_root_conn_atomic_check(struct drm_connector_state *new_conn_state, 4697 struct drm_dp_mst_topology_mgr *mgr) 4698 { 4699 struct drm_atomic_state *state = new_conn_state->state; 4700 struct drm_connector_state *old_conn_state = 4701 drm_atomic_get_old_connector_state(state, new_conn_state->connector); 4702 struct drm_crtc_state *crtc_state; 4703 struct drm_dp_mst_topology_state *mst_state = NULL; 4704 4705 if (new_conn_state->crtc) { 4706 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4707 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4708 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4709 if (IS_ERR(mst_state)) 4710 return PTR_ERR(mst_state); 4711 4712 mst_state->pending_crtc_mask |= drm_crtc_mask(new_conn_state->crtc); 4713 } 4714 } 4715 4716 if (old_conn_state->crtc) { 4717 crtc_state = drm_atomic_get_new_crtc_state(state, old_conn_state->crtc); 4718 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4719 if (!mst_state) { 4720 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4721 if (IS_ERR(mst_state)) 4722 return PTR_ERR(mst_state); 4723 } 4724 4725 mst_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4726 } 4727 } 4728 4729 return 0; 4730 } 4731 EXPORT_SYMBOL(drm_dp_mst_root_conn_atomic_check); 4732 4733 /** 4734 * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format 4735 * @mst_state: mst_state to update 4736 * @link_encoding_cap: the ecoding format on the link 4737 */ 4738 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap) 4739 { 4740 if (link_encoding_cap == DP_CAP_ANSI_128B132B) { 4741 mst_state->total_avail_slots = 64; 4742 mst_state->start_slot = 0; 4743 } else { 4744 mst_state->total_avail_slots = 63; 4745 mst_state->start_slot = 1; 4746 } 4747 4748 DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n", 4749 (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b", 4750 mst_state); 4751 } 4752 EXPORT_SYMBOL(drm_dp_mst_update_slots); 4753 4754 /** 4755 * drm_dp_check_act_status() - Polls for ACT handled status. 4756 * @mgr: manager to use 4757 * 4758 * Tries waiting for the MST hub to finish updating it's payload table by 4759 * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really 4760 * take that long). 4761 * 4762 * Returns: 4763 * 0 if the ACT was handled in time, negative error code on failure. 4764 */ 4765 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr) 4766 { 4767 /* 4768 * There doesn't seem to be any recommended retry count or timeout in 4769 * the MST specification. Since some hubs have been observed to take 4770 * over 1 second to update their payload allocations under certain 4771 * conditions, we use a rather large timeout value of 3 seconds. 4772 */ 4773 return drm_dp_dpcd_poll_act_handled(mgr->aux, 3000); 4774 } 4775 EXPORT_SYMBOL(drm_dp_check_act_status); 4776 4777 /** 4778 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode. 4779 * @clock: dot clock 4780 * @bpp: bpp as .4 binary fixed point 4781 * 4782 * This uses the formula in the spec to calculate the PBN value for a mode. 4783 */ 4784 int drm_dp_calc_pbn_mode(int clock, int bpp) 4785 { 4786 /* 4787 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on 4788 * common multiplier to render an integer PBN for all link rate/lane 4789 * counts combinations 4790 * calculate 4791 * peak_kbps = clock * bpp / 16 4792 * peak_kbps *= SSC overhead / 1000000 4793 * peak_kbps /= 8 convert to Kbytes 4794 * peak_kBps *= (64/54) / 1000 convert to PBN 4795 */ 4796 /* 4797 * TODO: Use the actual link and mode parameters to calculate 4798 * the overhead. For now it's assumed that these are 4799 * 4 link lanes, 4096 hactive pixels, which don't add any 4800 * significant data padding overhead and that there is no DSC 4801 * or FEC overhead. 4802 */ 4803 int overhead = drm_dp_bw_overhead(4, 4096, 0, bpp, 4804 DRM_DP_BW_OVERHEAD_MST | 4805 DRM_DP_BW_OVERHEAD_SSC_REF_CLK); 4806 4807 return DIV64_U64_ROUND_UP(mul_u32_u32(clock * bpp, 64 * overhead >> 4), 4808 1000000ULL * 8 * 54 * 1000); 4809 } 4810 EXPORT_SYMBOL(drm_dp_calc_pbn_mode); 4811 4812 /* we want to kick the TX after we've ack the up/down IRQs. */ 4813 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr) 4814 { 4815 queue_work(system_long_wq, &mgr->tx_work); 4816 } 4817 4818 /* 4819 * Helper function for parsing DP device types into convenient strings 4820 * for use with dp_mst_topology 4821 */ 4822 static const char *pdt_to_string(u8 pdt) 4823 { 4824 switch (pdt) { 4825 case DP_PEER_DEVICE_NONE: 4826 return "NONE"; 4827 case DP_PEER_DEVICE_SOURCE_OR_SST: 4828 return "SOURCE OR SST"; 4829 case DP_PEER_DEVICE_MST_BRANCHING: 4830 return "MST BRANCHING"; 4831 case DP_PEER_DEVICE_SST_SINK: 4832 return "SST SINK"; 4833 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4834 return "DP LEGACY CONV"; 4835 default: 4836 return "ERR"; 4837 } 4838 } 4839 4840 static void drm_dp_mst_dump_mstb(struct seq_file *m, 4841 struct drm_dp_mst_branch *mstb) 4842 { 4843 struct drm_dp_mst_port *port; 4844 int tabs = mstb->lct; 4845 char prefix[10]; 4846 int i; 4847 4848 for (i = 0; i < tabs; i++) 4849 prefix[i] = '\t'; 4850 prefix[i] = '\0'; 4851 4852 seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports); 4853 list_for_each_entry(port, &mstb->ports, next) { 4854 seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n", 4855 prefix, 4856 port->port_num, 4857 port, 4858 port->input ? "input" : "output", 4859 pdt_to_string(port->pdt), 4860 port->ddps, 4861 port->ldps, 4862 port->num_sdp_streams, 4863 port->num_sdp_stream_sinks, 4864 port->fec_capable ? "true" : "false", 4865 port->connector); 4866 if (port->mstb) 4867 drm_dp_mst_dump_mstb(m, port->mstb); 4868 } 4869 } 4870 4871 #define DP_PAYLOAD_TABLE_SIZE 64 4872 4873 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 4874 char *buf) 4875 { 4876 int i; 4877 4878 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) { 4879 if (drm_dp_dpcd_read_data(mgr->aux, 4880 DP_PAYLOAD_TABLE_UPDATE_STATUS + i, 4881 &buf[i], 16) < 0) 4882 return false; 4883 } 4884 return true; 4885 } 4886 4887 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr, 4888 struct drm_dp_mst_port *port, char *name, 4889 int namelen) 4890 { 4891 struct edid *mst_edid; 4892 4893 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port); 4894 drm_edid_get_monitor_name(mst_edid, name, namelen); 4895 kfree(mst_edid); 4896 } 4897 4898 /** 4899 * drm_dp_mst_dump_topology(): dump topology to seq file. 4900 * @m: seq_file to dump output to 4901 * @mgr: manager to dump current topology for. 4902 * 4903 * helper to dump MST topology to a seq file for debugfs. 4904 */ 4905 void drm_dp_mst_dump_topology(struct seq_file *m, 4906 struct drm_dp_mst_topology_mgr *mgr) 4907 { 4908 struct drm_dp_mst_topology_state *state; 4909 struct drm_dp_mst_atomic_payload *payload; 4910 int i, ret; 4911 4912 static const char *const status[] = { 4913 "None", 4914 "Local", 4915 "DFP", 4916 "Remote", 4917 }; 4918 4919 mutex_lock(&mgr->lock); 4920 if (mgr->mst_primary) 4921 drm_dp_mst_dump_mstb(m, mgr->mst_primary); 4922 4923 /* dump VCPIs */ 4924 mutex_unlock(&mgr->lock); 4925 4926 ret = drm_modeset_lock_single_interruptible(&mgr->base.lock); 4927 if (ret < 0) 4928 return; 4929 4930 state = to_drm_dp_mst_topology_state(mgr->base.state); 4931 seq_printf(m, "\n*** Atomic state info ***\n"); 4932 seq_printf(m, "payload_mask: %x, max_payloads: %d, start_slot: %u, pbn_div: %d\n", 4933 state->payload_mask, mgr->max_payloads, state->start_slot, 4934 dfixed_trunc(state->pbn_div)); 4935 4936 seq_printf(m, "\n| idx | port | vcpi | slots | pbn | dsc | status | sink name |\n"); 4937 for (i = 0; i < mgr->max_payloads; i++) { 4938 list_for_each_entry(payload, &state->payloads, next) { 4939 char name[14]; 4940 4941 if (payload->vcpi != i || payload->delete) 4942 continue; 4943 4944 fetch_monitor_name(mgr, payload->port, name, sizeof(name)); 4945 seq_printf(m, " %5d %6d %6d %02d - %02d %5d %5s %8s %19s\n", 4946 i, 4947 payload->port->port_num, 4948 payload->vcpi, 4949 payload->vc_start_slot, 4950 payload->vc_start_slot + payload->time_slots - 1, 4951 payload->pbn, 4952 payload->dsc_enabled ? "Y" : "N", 4953 status[payload->payload_allocation_status], 4954 (*name != 0) ? name : "Unknown"); 4955 } 4956 } 4957 4958 seq_printf(m, "\n*** DPCD Info ***\n"); 4959 mutex_lock(&mgr->lock); 4960 if (mgr->mst_primary) { 4961 u8 buf[DP_PAYLOAD_TABLE_SIZE]; 4962 int ret; 4963 4964 if (drm_dp_read_dpcd_caps(mgr->aux, buf) < 0) { 4965 seq_printf(m, "dpcd read failed\n"); 4966 goto out; 4967 } 4968 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf); 4969 4970 ret = drm_dp_dpcd_read_data(mgr->aux, DP_FAUX_CAP, buf, 2); 4971 if (ret < 0) { 4972 seq_printf(m, "faux/mst read failed\n"); 4973 goto out; 4974 } 4975 seq_printf(m, "faux/mst: %*ph\n", 2, buf); 4976 4977 ret = drm_dp_dpcd_read_data(mgr->aux, DP_MSTM_CTRL, buf, 1); 4978 if (ret < 0) { 4979 seq_printf(m, "mst ctrl read failed\n"); 4980 goto out; 4981 } 4982 seq_printf(m, "mst ctrl: %*ph\n", 1, buf); 4983 4984 /* dump the standard OUI branch header */ 4985 ret = drm_dp_dpcd_read_data(mgr->aux, DP_BRANCH_OUI, buf, 4986 DP_BRANCH_OUI_HEADER_SIZE); 4987 if (ret < 0) { 4988 seq_printf(m, "branch oui read failed\n"); 4989 goto out; 4990 } 4991 seq_printf(m, "branch oui: %*phN devid: ", 3, buf); 4992 4993 for (i = 0x3; i < 0x8 && buf[i]; i++) 4994 seq_putc(m, buf[i]); 4995 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n", 4996 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]); 4997 if (dump_dp_payload_table(mgr, buf)) 4998 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf); 4999 } 5000 5001 out: 5002 mutex_unlock(&mgr->lock); 5003 drm_modeset_unlock(&mgr->base.lock); 5004 } 5005 EXPORT_SYMBOL(drm_dp_mst_dump_topology); 5006 5007 static void drm_dp_tx_work(struct work_struct *work) 5008 { 5009 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work); 5010 5011 mutex_lock(&mgr->qlock); 5012 if (!list_empty(&mgr->tx_msg_downq)) 5013 process_single_down_tx_qlock(mgr); 5014 mutex_unlock(&mgr->qlock); 5015 } 5016 5017 static inline void 5018 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port) 5019 { 5020 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs); 5021 5022 if (port->connector) { 5023 drm_connector_unregister(port->connector); 5024 drm_connector_put(port->connector); 5025 } 5026 5027 drm_dp_mst_put_port_malloc(port); 5028 } 5029 5030 static inline void 5031 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb) 5032 { 5033 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 5034 struct drm_dp_mst_port *port, *port_tmp; 5035 struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp; 5036 bool wake_tx = false; 5037 5038 mutex_lock(&mgr->lock); 5039 list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) { 5040 list_del(&port->next); 5041 drm_dp_mst_topology_put_port(port); 5042 } 5043 mutex_unlock(&mgr->lock); 5044 5045 /* drop any tx slot msg */ 5046 mutex_lock(&mstb->mgr->qlock); 5047 list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) { 5048 if (txmsg->dst != mstb) 5049 continue; 5050 5051 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 5052 list_del(&txmsg->next); 5053 wake_tx = true; 5054 } 5055 mutex_unlock(&mstb->mgr->qlock); 5056 5057 if (wake_tx) 5058 wake_up_all(&mstb->mgr->tx_waitq); 5059 5060 drm_dp_mst_put_mstb_malloc(mstb); 5061 } 5062 5063 static void drm_dp_delayed_destroy_work(struct work_struct *work) 5064 { 5065 struct drm_dp_mst_topology_mgr *mgr = 5066 container_of(work, struct drm_dp_mst_topology_mgr, 5067 delayed_destroy_work); 5068 bool send_hotplug = false, go_again; 5069 5070 /* 5071 * Not a regular list traverse as we have to drop the destroy 5072 * connector lock before destroying the mstb/port, to avoid AB->BA 5073 * ordering between this lock and the config mutex. 5074 */ 5075 do { 5076 go_again = false; 5077 5078 for (;;) { 5079 struct drm_dp_mst_branch *mstb; 5080 5081 mutex_lock(&mgr->delayed_destroy_lock); 5082 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list, 5083 struct drm_dp_mst_branch, 5084 destroy_next); 5085 if (mstb) 5086 list_del(&mstb->destroy_next); 5087 mutex_unlock(&mgr->delayed_destroy_lock); 5088 5089 if (!mstb) 5090 break; 5091 5092 drm_dp_delayed_destroy_mstb(mstb); 5093 go_again = true; 5094 } 5095 5096 for (;;) { 5097 struct drm_dp_mst_port *port; 5098 5099 mutex_lock(&mgr->delayed_destroy_lock); 5100 port = list_first_entry_or_null(&mgr->destroy_port_list, 5101 struct drm_dp_mst_port, 5102 next); 5103 if (port) 5104 list_del(&port->next); 5105 mutex_unlock(&mgr->delayed_destroy_lock); 5106 5107 if (!port) 5108 break; 5109 5110 drm_dp_delayed_destroy_port(port); 5111 send_hotplug = true; 5112 go_again = true; 5113 } 5114 } while (go_again); 5115 5116 if (send_hotplug) 5117 drm_kms_helper_hotplug_event(mgr->dev); 5118 } 5119 5120 static struct drm_private_state * 5121 drm_dp_mst_duplicate_state(struct drm_private_obj *obj) 5122 { 5123 struct drm_dp_mst_topology_state *state, *old_state = 5124 to_dp_mst_topology_state(obj->state); 5125 struct drm_dp_mst_atomic_payload *pos, *payload; 5126 5127 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL); 5128 if (!state) 5129 return NULL; 5130 5131 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 5132 5133 INIT_LIST_HEAD(&state->payloads); 5134 state->commit_deps = NULL; 5135 state->num_commit_deps = 0; 5136 state->pending_crtc_mask = 0; 5137 5138 list_for_each_entry(pos, &old_state->payloads, next) { 5139 /* Prune leftover freed timeslot allocations */ 5140 if (pos->delete) 5141 continue; 5142 5143 payload = kmemdup(pos, sizeof(*payload), GFP_KERNEL); 5144 if (!payload) 5145 goto fail; 5146 5147 drm_dp_mst_get_port_malloc(payload->port); 5148 list_add(&payload->next, &state->payloads); 5149 } 5150 5151 return &state->base; 5152 5153 fail: 5154 list_for_each_entry_safe(pos, payload, &state->payloads, next) { 5155 drm_dp_mst_put_port_malloc(pos->port); 5156 kfree(pos); 5157 } 5158 kfree(state); 5159 5160 return NULL; 5161 } 5162 5163 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj, 5164 struct drm_private_state *state) 5165 { 5166 struct drm_dp_mst_topology_state *mst_state = 5167 to_dp_mst_topology_state(state); 5168 struct drm_dp_mst_atomic_payload *pos, *tmp; 5169 int i; 5170 5171 list_for_each_entry_safe(pos, tmp, &mst_state->payloads, next) { 5172 /* We only keep references to ports with active payloads */ 5173 if (!pos->delete) 5174 drm_dp_mst_put_port_malloc(pos->port); 5175 kfree(pos); 5176 } 5177 5178 for (i = 0; i < mst_state->num_commit_deps; i++) 5179 drm_crtc_commit_put(mst_state->commit_deps[i]); 5180 5181 kfree(mst_state->commit_deps); 5182 kfree(mst_state); 5183 } 5184 5185 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 5186 struct drm_dp_mst_branch *branch) 5187 { 5188 while (port->parent) { 5189 if (port->parent == branch) 5190 return true; 5191 5192 if (port->parent->port_parent) 5193 port = port->parent->port_parent; 5194 else 5195 break; 5196 } 5197 return false; 5198 } 5199 5200 static bool 5201 drm_dp_mst_port_downstream_of_parent_locked(struct drm_dp_mst_topology_mgr *mgr, 5202 struct drm_dp_mst_port *port, 5203 struct drm_dp_mst_port *parent) 5204 { 5205 if (!mgr->mst_primary) 5206 return false; 5207 5208 port = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5209 port); 5210 if (!port) 5211 return false; 5212 5213 if (!parent) 5214 return true; 5215 5216 parent = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5217 parent); 5218 if (!parent) 5219 return false; 5220 5221 if (!parent->mstb) 5222 return false; 5223 5224 return drm_dp_mst_port_downstream_of_branch(port, parent->mstb); 5225 } 5226 5227 /** 5228 * drm_dp_mst_port_downstream_of_parent - check if a port is downstream of a parent port 5229 * @mgr: MST topology manager 5230 * @port: the port being looked up 5231 * @parent: the parent port 5232 * 5233 * The function returns %true if @port is downstream of @parent. If @parent is 5234 * %NULL - denoting the root port - the function returns %true if @port is in 5235 * @mgr's topology. 5236 */ 5237 bool 5238 drm_dp_mst_port_downstream_of_parent(struct drm_dp_mst_topology_mgr *mgr, 5239 struct drm_dp_mst_port *port, 5240 struct drm_dp_mst_port *parent) 5241 { 5242 bool ret; 5243 5244 mutex_lock(&mgr->lock); 5245 ret = drm_dp_mst_port_downstream_of_parent_locked(mgr, port, parent); 5246 mutex_unlock(&mgr->lock); 5247 5248 return ret; 5249 } 5250 EXPORT_SYMBOL(drm_dp_mst_port_downstream_of_parent); 5251 5252 static int 5253 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5254 struct drm_dp_mst_topology_state *state, 5255 struct drm_dp_mst_port **failing_port); 5256 5257 static int 5258 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb, 5259 struct drm_dp_mst_topology_state *state, 5260 struct drm_dp_mst_port **failing_port) 5261 { 5262 struct drm_dp_mst_atomic_payload *payload; 5263 struct drm_dp_mst_port *port; 5264 int pbn_used = 0, ret; 5265 bool found = false; 5266 5267 /* Check that we have at least one port in our state that's downstream 5268 * of this branch, otherwise we can skip this branch 5269 */ 5270 list_for_each_entry(payload, &state->payloads, next) { 5271 if (!payload->pbn || 5272 !drm_dp_mst_port_downstream_of_branch(payload->port, mstb)) 5273 continue; 5274 5275 found = true; 5276 break; 5277 } 5278 if (!found) 5279 return 0; 5280 5281 if (mstb->port_parent) 5282 drm_dbg_atomic(mstb->mgr->dev, 5283 "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n", 5284 mstb->port_parent->parent, mstb->port_parent, mstb); 5285 else 5286 drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb); 5287 5288 list_for_each_entry(port, &mstb->ports, next) { 5289 ret = drm_dp_mst_atomic_check_port_bw_limit(port, state, failing_port); 5290 if (ret < 0) 5291 return ret; 5292 5293 pbn_used += ret; 5294 } 5295 5296 return pbn_used; 5297 } 5298 5299 static int 5300 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5301 struct drm_dp_mst_topology_state *state, 5302 struct drm_dp_mst_port **failing_port) 5303 { 5304 struct drm_dp_mst_atomic_payload *payload; 5305 int pbn_used = 0; 5306 5307 if (port->pdt == DP_PEER_DEVICE_NONE) 5308 return 0; 5309 5310 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 5311 payload = drm_atomic_get_mst_payload_state(state, port); 5312 if (!payload) 5313 return 0; 5314 5315 /* 5316 * This could happen if the sink deasserted its HPD line, but 5317 * the branch device still reports it as attached (PDT != NONE). 5318 */ 5319 if (!port->full_pbn) { 5320 drm_dbg_atomic(port->mgr->dev, 5321 "[MSTB:%p] [MST PORT:%p] no BW available for the port\n", 5322 port->parent, port); 5323 *failing_port = port; 5324 return -EINVAL; 5325 } 5326 5327 pbn_used = payload->pbn; 5328 } else { 5329 pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb, 5330 state, 5331 failing_port); 5332 if (pbn_used <= 0) 5333 return pbn_used; 5334 } 5335 5336 if (pbn_used > port->full_pbn) { 5337 drm_dbg_atomic(port->mgr->dev, 5338 "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n", 5339 port->parent, port, pbn_used, port->full_pbn); 5340 *failing_port = port; 5341 return -ENOSPC; 5342 } 5343 5344 drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n", 5345 port->parent, port, pbn_used, port->full_pbn); 5346 5347 return pbn_used; 5348 } 5349 5350 static inline int 5351 drm_dp_mst_atomic_check_payload_alloc_limits(struct drm_dp_mst_topology_mgr *mgr, 5352 struct drm_dp_mst_topology_state *mst_state) 5353 { 5354 struct drm_dp_mst_atomic_payload *payload; 5355 int avail_slots = mst_state->total_avail_slots, payload_count = 0; 5356 5357 list_for_each_entry(payload, &mst_state->payloads, next) { 5358 /* Releasing payloads is always OK-even if the port is gone */ 5359 if (payload->delete) { 5360 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all time slots\n", 5361 payload->port); 5362 continue; 5363 } 5364 5365 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d time slots\n", 5366 payload->port, payload->time_slots); 5367 5368 avail_slots -= payload->time_slots; 5369 if (avail_slots < 0) { 5370 drm_dbg_atomic(mgr->dev, 5371 "[MST PORT:%p] not enough time slots in mst state %p (avail=%d)\n", 5372 payload->port, mst_state, avail_slots + payload->time_slots); 5373 return -ENOSPC; 5374 } 5375 5376 if (++payload_count > mgr->max_payloads) { 5377 drm_dbg_atomic(mgr->dev, 5378 "[MST MGR:%p] state %p has too many payloads (max=%d)\n", 5379 mgr, mst_state, mgr->max_payloads); 5380 return -EINVAL; 5381 } 5382 5383 /* Assign a VCPI */ 5384 if (!payload->vcpi) { 5385 payload->vcpi = ffz(mst_state->payload_mask) + 1; 5386 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] assigned VCPI #%d\n", 5387 payload->port, payload->vcpi); 5388 mst_state->payload_mask |= BIT(payload->vcpi - 1); 5389 } 5390 } 5391 5392 if (!payload_count) 5393 mst_state->pbn_div.full = dfixed_const(0); 5394 5395 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p TU pbn_div=%d avail=%d used=%d\n", 5396 mgr, mst_state, dfixed_trunc(mst_state->pbn_div), avail_slots, 5397 mst_state->total_avail_slots - avail_slots); 5398 5399 return 0; 5400 } 5401 5402 /** 5403 * drm_dp_mst_add_affected_dsc_crtcs 5404 * @state: Pointer to the new struct drm_dp_mst_topology_state 5405 * @mgr: MST topology manager 5406 * 5407 * Whenever there is a change in mst topology 5408 * DSC configuration would have to be recalculated 5409 * therefore we need to trigger modeset on all affected 5410 * CRTCs in that topology 5411 * 5412 * See also: 5413 * drm_dp_mst_atomic_enable_dsc() 5414 */ 5415 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr) 5416 { 5417 struct drm_dp_mst_topology_state *mst_state; 5418 struct drm_dp_mst_atomic_payload *pos; 5419 struct drm_connector *connector; 5420 struct drm_connector_state *conn_state; 5421 struct drm_crtc *crtc; 5422 struct drm_crtc_state *crtc_state; 5423 5424 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 5425 5426 if (IS_ERR(mst_state)) 5427 return PTR_ERR(mst_state); 5428 5429 list_for_each_entry(pos, &mst_state->payloads, next) { 5430 5431 connector = pos->port->connector; 5432 5433 if (!connector) 5434 return -EINVAL; 5435 5436 conn_state = drm_atomic_get_connector_state(state, connector); 5437 5438 if (IS_ERR(conn_state)) 5439 return PTR_ERR(conn_state); 5440 5441 crtc = conn_state->crtc; 5442 5443 if (!crtc) 5444 continue; 5445 5446 if (!drm_dp_mst_dsc_aux_for_port(pos->port)) 5447 continue; 5448 5449 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc); 5450 5451 if (IS_ERR(crtc_state)) 5452 return PTR_ERR(crtc_state); 5453 5454 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n", 5455 mgr, crtc); 5456 5457 crtc_state->mode_changed = true; 5458 } 5459 return 0; 5460 } 5461 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs); 5462 5463 /** 5464 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off 5465 * @state: Pointer to the new drm_atomic_state 5466 * @port: Pointer to the affected MST Port 5467 * @pbn: Newly recalculated bw required for link with DSC enabled 5468 * @enable: Boolean flag to enable or disable DSC on the port 5469 * 5470 * This function enables DSC on the given Port 5471 * by recalculating its vcpi from pbn provided 5472 * and sets dsc_enable flag to keep track of which 5473 * ports have DSC enabled 5474 * 5475 */ 5476 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state, 5477 struct drm_dp_mst_port *port, 5478 int pbn, bool enable) 5479 { 5480 struct drm_dp_mst_topology_state *mst_state; 5481 struct drm_dp_mst_atomic_payload *payload; 5482 int time_slots = 0; 5483 5484 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr); 5485 if (IS_ERR(mst_state)) 5486 return PTR_ERR(mst_state); 5487 5488 payload = drm_atomic_get_mst_payload_state(mst_state, port); 5489 if (!payload) { 5490 drm_dbg_atomic(state->dev, 5491 "[MST PORT:%p] Couldn't find payload in mst state %p\n", 5492 port, mst_state); 5493 return -EINVAL; 5494 } 5495 5496 if (payload->dsc_enabled == enable) { 5497 drm_dbg_atomic(state->dev, 5498 "[MST PORT:%p] DSC flag is already set to %d, returning %d time slots\n", 5499 port, enable, payload->time_slots); 5500 time_slots = payload->time_slots; 5501 } 5502 5503 if (enable) { 5504 time_slots = drm_dp_atomic_find_time_slots(state, port->mgr, port, pbn); 5505 drm_dbg_atomic(state->dev, 5506 "[MST PORT:%p] Enabling DSC flag, reallocating %d time slots on the port\n", 5507 port, time_slots); 5508 if (time_slots < 0) 5509 return -EINVAL; 5510 } 5511 5512 payload->dsc_enabled = enable; 5513 5514 return time_slots; 5515 } 5516 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc); 5517 5518 /** 5519 * drm_dp_mst_atomic_check_mgr - Check the atomic state of an MST topology manager 5520 * @state: The global atomic state 5521 * @mgr: Manager to check 5522 * @mst_state: The MST atomic state for @mgr 5523 * @failing_port: Returns the port with a BW limitation 5524 * 5525 * Checks the given MST manager's topology state for an atomic update to ensure 5526 * that it's valid. This includes checking whether there's enough bandwidth to 5527 * support the new timeslot allocations in the atomic update. 5528 * 5529 * Any atomic drivers supporting DP MST must make sure to call this or 5530 * the drm_dp_mst_atomic_check() function after checking the rest of their state 5531 * in their &drm_mode_config_funcs.atomic_check() callback. 5532 * 5533 * See also: 5534 * drm_dp_mst_atomic_check() 5535 * drm_dp_atomic_find_time_slots() 5536 * drm_dp_atomic_release_time_slots() 5537 * 5538 * Returns: 5539 * - 0 if the new state is valid 5540 * - %-ENOSPC, if the new state is invalid, because of BW limitation 5541 * @failing_port is set to: 5542 * 5543 * - The non-root port where a BW limit check failed 5544 * with all the ports downstream of @failing_port passing 5545 * the BW limit check. 5546 * The returned port pointer is valid until at least 5547 * one payload downstream of it exists. 5548 * - %NULL if the BW limit check failed at the root port 5549 * with all the ports downstream of the root port passing 5550 * the BW limit check. 5551 * 5552 * - %-EINVAL, if the new state is invalid, because the root port has 5553 * too many payloads. 5554 */ 5555 int drm_dp_mst_atomic_check_mgr(struct drm_atomic_state *state, 5556 struct drm_dp_mst_topology_mgr *mgr, 5557 struct drm_dp_mst_topology_state *mst_state, 5558 struct drm_dp_mst_port **failing_port) 5559 { 5560 int ret; 5561 5562 *failing_port = NULL; 5563 5564 if (!mgr->mst_state) 5565 return 0; 5566 5567 mutex_lock(&mgr->lock); 5568 ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary, 5569 mst_state, 5570 failing_port); 5571 mutex_unlock(&mgr->lock); 5572 5573 if (ret < 0) 5574 return ret; 5575 5576 return drm_dp_mst_atomic_check_payload_alloc_limits(mgr, mst_state); 5577 } 5578 EXPORT_SYMBOL(drm_dp_mst_atomic_check_mgr); 5579 5580 /** 5581 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an 5582 * atomic update is valid 5583 * @state: Pointer to the new &struct drm_dp_mst_topology_state 5584 * 5585 * Checks the given topology state for an atomic update to ensure that it's 5586 * valid, calling drm_dp_mst_atomic_check_mgr() for all MST manager in the 5587 * atomic state. This includes checking whether there's enough bandwidth to 5588 * support the new timeslot allocations in the atomic update. 5589 * 5590 * Any atomic drivers supporting DP MST must make sure to call this after 5591 * checking the rest of their state in their 5592 * &drm_mode_config_funcs.atomic_check() callback. 5593 * 5594 * See also: 5595 * drm_dp_mst_atomic_check_mgr() 5596 * drm_dp_atomic_find_time_slots() 5597 * drm_dp_atomic_release_time_slots() 5598 * 5599 * Returns: 5600 * 0 if the new state is valid, negative error code otherwise. 5601 */ 5602 int drm_dp_mst_atomic_check(struct drm_atomic_state *state) 5603 { 5604 struct drm_dp_mst_topology_mgr *mgr; 5605 struct drm_dp_mst_topology_state *mst_state; 5606 int i, ret = 0; 5607 5608 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 5609 struct drm_dp_mst_port *tmp_port; 5610 5611 ret = drm_dp_mst_atomic_check_mgr(state, mgr, mst_state, &tmp_port); 5612 if (ret) 5613 break; 5614 } 5615 5616 return ret; 5617 } 5618 EXPORT_SYMBOL(drm_dp_mst_atomic_check); 5619 5620 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = { 5621 .atomic_duplicate_state = drm_dp_mst_duplicate_state, 5622 .atomic_destroy_state = drm_dp_mst_destroy_state, 5623 }; 5624 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs); 5625 5626 /** 5627 * drm_atomic_get_mst_topology_state: get MST topology state 5628 * @state: global atomic state 5629 * @mgr: MST topology manager, also the private object in this case 5630 * 5631 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic 5632 * state vtable so that the private object state returned is that of a MST 5633 * topology object. 5634 * 5635 * RETURNS: 5636 * The MST topology state or error pointer. 5637 */ 5638 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state, 5639 struct drm_dp_mst_topology_mgr *mgr) 5640 { 5641 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base)); 5642 } 5643 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state); 5644 5645 /** 5646 * drm_atomic_get_old_mst_topology_state: get old MST topology state in atomic state, if any 5647 * @state: global atomic state 5648 * @mgr: MST topology manager, also the private object in this case 5649 * 5650 * This function wraps drm_atomic_get_old_private_obj_state() passing in the MST atomic 5651 * state vtable so that the private object state returned is that of a MST 5652 * topology object. 5653 * 5654 * Returns: 5655 * The old MST topology state, or NULL if there's no topology state for this MST mgr 5656 * in the global atomic state 5657 */ 5658 struct drm_dp_mst_topology_state * 5659 drm_atomic_get_old_mst_topology_state(struct drm_atomic_state *state, 5660 struct drm_dp_mst_topology_mgr *mgr) 5661 { 5662 struct drm_private_state *old_priv_state = 5663 drm_atomic_get_old_private_obj_state(state, &mgr->base); 5664 5665 return old_priv_state ? to_dp_mst_topology_state(old_priv_state) : NULL; 5666 } 5667 EXPORT_SYMBOL(drm_atomic_get_old_mst_topology_state); 5668 5669 /** 5670 * drm_atomic_get_new_mst_topology_state: get new MST topology state in atomic state, if any 5671 * @state: global atomic state 5672 * @mgr: MST topology manager, also the private object in this case 5673 * 5674 * This function wraps drm_atomic_get_new_private_obj_state() passing in the MST atomic 5675 * state vtable so that the private object state returned is that of a MST 5676 * topology object. 5677 * 5678 * Returns: 5679 * The new MST topology state, or NULL if there's no topology state for this MST mgr 5680 * in the global atomic state 5681 */ 5682 struct drm_dp_mst_topology_state * 5683 drm_atomic_get_new_mst_topology_state(struct drm_atomic_state *state, 5684 struct drm_dp_mst_topology_mgr *mgr) 5685 { 5686 struct drm_private_state *new_priv_state = 5687 drm_atomic_get_new_private_obj_state(state, &mgr->base); 5688 5689 return new_priv_state ? to_dp_mst_topology_state(new_priv_state) : NULL; 5690 } 5691 EXPORT_SYMBOL(drm_atomic_get_new_mst_topology_state); 5692 5693 /** 5694 * drm_dp_mst_topology_mgr_init - initialise a topology manager 5695 * @mgr: manager struct to initialise 5696 * @dev: device providing this structure - for i2c addition. 5697 * @aux: DP helper aux channel to talk to this device 5698 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit 5699 * @max_payloads: maximum number of payloads this GPU can source 5700 * @conn_base_id: the connector object ID the MST device is connected to. 5701 * 5702 * Return 0 for success, or negative error code on failure 5703 */ 5704 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr, 5705 struct drm_device *dev, struct drm_dp_aux *aux, 5706 int max_dpcd_transaction_bytes, int max_payloads, 5707 int conn_base_id) 5708 { 5709 struct drm_dp_mst_topology_state *mst_state; 5710 5711 mutex_init(&mgr->lock); 5712 mutex_init(&mgr->qlock); 5713 mutex_init(&mgr->delayed_destroy_lock); 5714 mutex_init(&mgr->up_req_lock); 5715 mutex_init(&mgr->probe_lock); 5716 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5717 mutex_init(&mgr->topology_ref_history_lock); 5718 stack_depot_init(); 5719 #endif 5720 INIT_LIST_HEAD(&mgr->tx_msg_downq); 5721 INIT_LIST_HEAD(&mgr->destroy_port_list); 5722 INIT_LIST_HEAD(&mgr->destroy_branch_device_list); 5723 INIT_LIST_HEAD(&mgr->up_req_list); 5724 5725 /* 5726 * delayed_destroy_work will be queued on a dedicated WQ, so that any 5727 * requeuing will be also flushed when deiniting the topology manager. 5728 */ 5729 mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0); 5730 if (mgr->delayed_destroy_wq == NULL) 5731 return -ENOMEM; 5732 5733 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work); 5734 INIT_WORK(&mgr->tx_work, drm_dp_tx_work); 5735 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work); 5736 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work); 5737 init_waitqueue_head(&mgr->tx_waitq); 5738 mgr->dev = dev; 5739 mgr->aux = aux; 5740 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes; 5741 mgr->max_payloads = max_payloads; 5742 mgr->conn_base_id = conn_base_id; 5743 5744 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL); 5745 if (mst_state == NULL) 5746 return -ENOMEM; 5747 5748 mst_state->total_avail_slots = 63; 5749 mst_state->start_slot = 1; 5750 5751 mst_state->mgr = mgr; 5752 INIT_LIST_HEAD(&mst_state->payloads); 5753 5754 drm_atomic_private_obj_init(dev, &mgr->base, 5755 &mst_state->base, 5756 &drm_dp_mst_topology_state_funcs); 5757 5758 return 0; 5759 } 5760 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init); 5761 5762 /** 5763 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager. 5764 * @mgr: manager to destroy 5765 */ 5766 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr) 5767 { 5768 drm_dp_mst_topology_mgr_set_mst(mgr, false); 5769 flush_work(&mgr->work); 5770 /* The following will also drain any requeued work on the WQ. */ 5771 if (mgr->delayed_destroy_wq) { 5772 destroy_workqueue(mgr->delayed_destroy_wq); 5773 mgr->delayed_destroy_wq = NULL; 5774 } 5775 mgr->dev = NULL; 5776 mgr->aux = NULL; 5777 drm_atomic_private_obj_fini(&mgr->base); 5778 mgr->funcs = NULL; 5779 5780 mutex_destroy(&mgr->delayed_destroy_lock); 5781 mutex_destroy(&mgr->qlock); 5782 mutex_destroy(&mgr->lock); 5783 mutex_destroy(&mgr->up_req_lock); 5784 mutex_destroy(&mgr->probe_lock); 5785 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5786 mutex_destroy(&mgr->topology_ref_history_lock); 5787 #endif 5788 } 5789 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy); 5790 5791 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num) 5792 { 5793 int i; 5794 5795 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS) 5796 return false; 5797 5798 for (i = 0; i < num - 1; i++) { 5799 if (msgs[i].flags & I2C_M_RD || 5800 msgs[i].len > 0xff) 5801 return false; 5802 } 5803 5804 return msgs[num - 1].flags & I2C_M_RD && 5805 msgs[num - 1].len <= 0xff; 5806 } 5807 5808 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num) 5809 { 5810 int i; 5811 5812 for (i = 0; i < num - 1; i++) { 5813 if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) || 5814 msgs[i].len > 0xff) 5815 return false; 5816 } 5817 5818 return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff; 5819 } 5820 5821 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb, 5822 struct drm_dp_mst_port *port, 5823 struct i2c_msg *msgs, int num) 5824 { 5825 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5826 unsigned int i; 5827 struct drm_dp_sideband_msg_req_body msg; 5828 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5829 int ret; 5830 5831 memset(&msg, 0, sizeof(msg)); 5832 msg.req_type = DP_REMOTE_I2C_READ; 5833 msg.u.i2c_read.num_transactions = num - 1; 5834 msg.u.i2c_read.port_number = port->port_num; 5835 for (i = 0; i < num - 1; i++) { 5836 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr; 5837 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len; 5838 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf; 5839 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP); 5840 } 5841 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr; 5842 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len; 5843 5844 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5845 if (!txmsg) { 5846 ret = -ENOMEM; 5847 goto out; 5848 } 5849 5850 txmsg->dst = mstb; 5851 drm_dp_encode_sideband_req(&msg, txmsg); 5852 5853 drm_dp_queue_down_tx(mgr, txmsg); 5854 5855 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5856 if (ret > 0) { 5857 5858 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5859 ret = -EREMOTEIO; 5860 goto out; 5861 } 5862 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) { 5863 ret = -EIO; 5864 goto out; 5865 } 5866 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len); 5867 ret = num; 5868 } 5869 out: 5870 kfree(txmsg); 5871 return ret; 5872 } 5873 5874 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb, 5875 struct drm_dp_mst_port *port, 5876 struct i2c_msg *msgs, int num) 5877 { 5878 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5879 unsigned int i; 5880 struct drm_dp_sideband_msg_req_body msg; 5881 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5882 int ret; 5883 5884 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5885 if (!txmsg) { 5886 ret = -ENOMEM; 5887 goto out; 5888 } 5889 for (i = 0; i < num; i++) { 5890 memset(&msg, 0, sizeof(msg)); 5891 msg.req_type = DP_REMOTE_I2C_WRITE; 5892 msg.u.i2c_write.port_number = port->port_num; 5893 msg.u.i2c_write.write_i2c_device_id = msgs[i].addr; 5894 msg.u.i2c_write.num_bytes = msgs[i].len; 5895 msg.u.i2c_write.bytes = msgs[i].buf; 5896 5897 memset(txmsg, 0, sizeof(*txmsg)); 5898 txmsg->dst = mstb; 5899 5900 drm_dp_encode_sideband_req(&msg, txmsg); 5901 drm_dp_queue_down_tx(mgr, txmsg); 5902 5903 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5904 if (ret > 0) { 5905 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5906 ret = -EREMOTEIO; 5907 goto out; 5908 } 5909 } else { 5910 goto out; 5911 } 5912 } 5913 ret = num; 5914 out: 5915 kfree(txmsg); 5916 return ret; 5917 } 5918 5919 /* I2C device */ 5920 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, 5921 struct i2c_msg *msgs, int num) 5922 { 5923 struct drm_dp_aux *aux = adapter->algo_data; 5924 struct drm_dp_mst_port *port = 5925 container_of(aux, struct drm_dp_mst_port, aux); 5926 struct drm_dp_mst_branch *mstb; 5927 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5928 int ret; 5929 5930 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 5931 if (!mstb) 5932 return -EREMOTEIO; 5933 5934 if (remote_i2c_read_ok(msgs, num)) { 5935 ret = drm_dp_mst_i2c_read(mstb, port, msgs, num); 5936 } else if (remote_i2c_write_ok(msgs, num)) { 5937 ret = drm_dp_mst_i2c_write(mstb, port, msgs, num); 5938 } else { 5939 drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n"); 5940 ret = -EIO; 5941 } 5942 5943 drm_dp_mst_topology_put_mstb(mstb); 5944 return ret; 5945 } 5946 5947 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter) 5948 { 5949 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 5950 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 5951 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 5952 I2C_FUNC_10BIT_ADDR; 5953 } 5954 5955 static const struct i2c_algorithm drm_dp_mst_i2c_algo = { 5956 .functionality = drm_dp_mst_i2c_functionality, 5957 .master_xfer = drm_dp_mst_i2c_xfer, 5958 }; 5959 5960 /** 5961 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX 5962 * @port: The port to add the I2C bus on 5963 * 5964 * Returns 0 on success or a negative error code on failure. 5965 */ 5966 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port) 5967 { 5968 struct drm_dp_aux *aux = &port->aux; 5969 struct device *parent_dev = port->mgr->dev->dev; 5970 5971 aux->ddc.algo = &drm_dp_mst_i2c_algo; 5972 aux->ddc.algo_data = aux; 5973 aux->ddc.retries = 3; 5974 5975 aux->ddc.owner = THIS_MODULE; 5976 /* FIXME: set the kdev of the port's connector as parent */ 5977 aux->ddc.dev.parent = parent_dev; 5978 aux->ddc.dev.of_node = parent_dev->of_node; 5979 5980 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev), 5981 sizeof(aux->ddc.name)); 5982 5983 return i2c_add_adapter(&aux->ddc); 5984 } 5985 5986 /** 5987 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter 5988 * @port: The port to remove the I2C bus from 5989 */ 5990 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port) 5991 { 5992 i2c_del_adapter(&port->aux.ddc); 5993 } 5994 5995 /** 5996 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device 5997 * @port: The port to check 5998 * 5999 * A single physical MST hub object can be represented in the topology 6000 * by multiple branches, with virtual ports between those branches. 6001 * 6002 * As of DP1.4, An MST hub with internal (virtual) ports must expose 6003 * certain DPCD registers over those ports. See sections 2.6.1.1.1 6004 * and 2.6.1.1.2 of Display Port specification v1.4 for details. 6005 * 6006 * May acquire mgr->lock 6007 * 6008 * Returns: 6009 * true if the port is a virtual DP peer device, false otherwise 6010 */ 6011 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port) 6012 { 6013 struct drm_dp_mst_port *downstream_port; 6014 6015 if (!port || port->dpcd_rev < DP_DPCD_REV_14) 6016 return false; 6017 6018 /* Virtual DP Sink (Internal Display Panel) */ 6019 if (drm_dp_mst_port_is_logical(port)) 6020 return true; 6021 6022 /* DP-to-HDMI Protocol Converter */ 6023 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV && 6024 !port->mcs && 6025 port->ldps) 6026 return true; 6027 6028 /* DP-to-DP */ 6029 mutex_lock(&port->mgr->lock); 6030 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 6031 port->mstb && 6032 port->mstb->num_ports == 2) { 6033 list_for_each_entry(downstream_port, &port->mstb->ports, next) { 6034 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK && 6035 !downstream_port->input) { 6036 mutex_unlock(&port->mgr->lock); 6037 return true; 6038 } 6039 } 6040 } 6041 mutex_unlock(&port->mgr->lock); 6042 6043 return false; 6044 } 6045 6046 /** 6047 * drm_dp_mst_aux_for_parent() - Get the AUX device for an MST port's parent 6048 * @port: MST port whose parent's AUX device is returned 6049 * 6050 * Return the AUX device for @port's parent or NULL if port's parent is the 6051 * root port. 6052 */ 6053 struct drm_dp_aux *drm_dp_mst_aux_for_parent(struct drm_dp_mst_port *port) 6054 { 6055 if (!port->parent || !port->parent->port_parent) 6056 return NULL; 6057 6058 return &port->parent->port_parent->aux; 6059 } 6060 EXPORT_SYMBOL(drm_dp_mst_aux_for_parent); 6061 6062 /** 6063 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC 6064 * @port: The port to check. A leaf of the MST tree with an attached display. 6065 * 6066 * Depending on the situation, DSC may be enabled via the endpoint aux, 6067 * the immediately upstream aux, or the connector's physical aux. 6068 * 6069 * This is both the correct aux to read DSC_CAPABILITY and the 6070 * correct aux to write DSC_ENABLED. 6071 * 6072 * This operation can be expensive (up to four aux reads), so 6073 * the caller should cache the return. 6074 * 6075 * Returns: 6076 * NULL if DSC cannot be enabled on this port, otherwise the aux device 6077 */ 6078 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port) 6079 { 6080 struct drm_dp_mst_port *immediate_upstream_port; 6081 struct drm_dp_aux *immediate_upstream_aux; 6082 struct drm_dp_mst_port *fec_port; 6083 struct drm_dp_desc desc = {}; 6084 u8 upstream_dsc; 6085 u8 endpoint_fec; 6086 u8 endpoint_dsc; 6087 6088 if (!port) 6089 return NULL; 6090 6091 if (port->parent->port_parent) 6092 immediate_upstream_port = port->parent->port_parent; 6093 else 6094 immediate_upstream_port = NULL; 6095 6096 fec_port = immediate_upstream_port; 6097 while (fec_port) { 6098 /* 6099 * Each physical link (i.e. not a virtual port) between the 6100 * output and the primary device must support FEC 6101 */ 6102 if (!drm_dp_mst_is_virtual_dpcd(fec_port) && 6103 !fec_port->fec_capable) 6104 return NULL; 6105 6106 fec_port = fec_port->parent->port_parent; 6107 } 6108 6109 /* DP-to-DP peer device */ 6110 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) { 6111 if (drm_dp_dpcd_read_data(&port->aux, 6112 DP_DSC_SUPPORT, &endpoint_dsc, 1) < 0) 6113 return NULL; 6114 if (drm_dp_dpcd_read_data(&port->aux, 6115 DP_FEC_CAPABILITY, &endpoint_fec, 1) < 0) 6116 return NULL; 6117 if (drm_dp_dpcd_read_data(&immediate_upstream_port->aux, 6118 DP_DSC_SUPPORT, &upstream_dsc, 1) < 0) 6119 return NULL; 6120 6121 /* Enpoint decompression with DP-to-DP peer device */ 6122 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6123 (endpoint_fec & DP_FEC_CAPABLE) && 6124 (upstream_dsc & DP_DSC_PASSTHROUGH_IS_SUPPORTED)) { 6125 port->passthrough_aux = &immediate_upstream_port->aux; 6126 return &port->aux; 6127 } 6128 6129 /* Virtual DPCD decompression with DP-to-DP peer device */ 6130 return &immediate_upstream_port->aux; 6131 } 6132 6133 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */ 6134 if (drm_dp_mst_is_virtual_dpcd(port)) 6135 return &port->aux; 6136 6137 /* 6138 * Synaptics quirk 6139 * Applies to ports for which: 6140 * - Physical aux has Synaptics OUI 6141 * - DPv1.4 or higher 6142 * - Port is on primary branch device 6143 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG) 6144 */ 6145 if (immediate_upstream_port) 6146 immediate_upstream_aux = &immediate_upstream_port->aux; 6147 else 6148 immediate_upstream_aux = port->mgr->aux; 6149 6150 if (drm_dp_read_desc(immediate_upstream_aux, &desc, true)) 6151 return NULL; 6152 6153 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD)) { 6154 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 6155 6156 if (drm_dp_dpcd_read_data(immediate_upstream_aux, 6157 DP_DSC_SUPPORT, &upstream_dsc, 1) < 0) 6158 return NULL; 6159 6160 if (!(upstream_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED)) 6161 return NULL; 6162 6163 if (drm_dp_read_dpcd_caps(immediate_upstream_aux, dpcd_ext) < 0) 6164 return NULL; 6165 6166 if (dpcd_ext[DP_DPCD_REV] >= DP_DPCD_REV_14 && 6167 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) && 6168 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) 6169 != DP_DWN_STRM_PORT_TYPE_ANALOG))) 6170 return immediate_upstream_aux; 6171 } 6172 6173 /* 6174 * The check below verifies if the MST sink 6175 * connected to the GPU is capable of DSC - 6176 * therefore the endpoint needs to be 6177 * both DSC and FEC capable. 6178 */ 6179 if (drm_dp_dpcd_read_data(&port->aux, 6180 DP_DSC_SUPPORT, &endpoint_dsc, 1) < 0) 6181 return NULL; 6182 if (drm_dp_dpcd_read_data(&port->aux, 6183 DP_FEC_CAPABILITY, &endpoint_fec, 1) < 0) 6184 return NULL; 6185 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6186 (endpoint_fec & DP_FEC_CAPABLE)) 6187 return &port->aux; 6188 6189 return NULL; 6190 } 6191 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port); 6192