1 /* 2 * Copyright © 2014 Red Hat 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/bitfield.h> 24 #include <linux/delay.h> 25 #include <linux/errno.h> 26 #include <linux/i2c.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/random.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/iopoll.h> 33 34 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 35 #include <linux/stacktrace.h> 36 #include <linux/sort.h> 37 #include <linux/timekeeping.h> 38 #include <linux/math64.h> 39 #endif 40 41 #include <drm/display/drm_dp_mst_helper.h> 42 #include <drm/drm_atomic.h> 43 #include <drm/drm_atomic_helper.h> 44 #include <drm/drm_drv.h> 45 #include <drm/drm_edid.h> 46 #include <drm/drm_fixed.h> 47 #include <drm/drm_print.h> 48 #include <drm/drm_probe_helper.h> 49 50 #include "drm_dp_helper_internal.h" 51 #include "drm_dp_mst_topology_internal.h" 52 53 /** 54 * DOC: dp mst helper 55 * 56 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport 57 * protocol. The helpers contain a topology manager and bandwidth manager. 58 * The helpers encapsulate the sending and received of sideband msgs. 59 */ 60 struct drm_dp_pending_up_req { 61 struct drm_dp_sideband_msg_hdr hdr; 62 struct drm_dp_sideband_msg_req_body msg; 63 struct list_head next; 64 }; 65 66 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 67 char *buf); 68 69 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port); 70 71 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 72 int id, u8 start_slot, u8 num_slots); 73 74 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 75 struct drm_dp_mst_port *port, 76 int offset, int size, u8 *bytes); 77 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 78 struct drm_dp_mst_port *port, 79 int offset, int size, u8 *bytes); 80 81 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 82 struct drm_dp_mst_branch *mstb); 83 84 static void 85 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 86 struct drm_dp_mst_branch *mstb); 87 88 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 89 struct drm_dp_mst_branch *mstb, 90 struct drm_dp_mst_port *port); 91 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 92 u8 *guid); 93 94 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port); 95 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port); 96 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr); 97 98 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 99 struct drm_dp_mst_branch *branch); 100 101 #define DBG_PREFIX "[dp_mst]" 102 103 #define DP_STR(x) [DP_ ## x] = #x 104 105 static const char *drm_dp_mst_req_type_str(u8 req_type) 106 { 107 static const char * const req_type_str[] = { 108 DP_STR(GET_MSG_TRANSACTION_VERSION), 109 DP_STR(LINK_ADDRESS), 110 DP_STR(CONNECTION_STATUS_NOTIFY), 111 DP_STR(ENUM_PATH_RESOURCES), 112 DP_STR(ALLOCATE_PAYLOAD), 113 DP_STR(QUERY_PAYLOAD), 114 DP_STR(RESOURCE_STATUS_NOTIFY), 115 DP_STR(CLEAR_PAYLOAD_ID_TABLE), 116 DP_STR(REMOTE_DPCD_READ), 117 DP_STR(REMOTE_DPCD_WRITE), 118 DP_STR(REMOTE_I2C_READ), 119 DP_STR(REMOTE_I2C_WRITE), 120 DP_STR(POWER_UP_PHY), 121 DP_STR(POWER_DOWN_PHY), 122 DP_STR(SINK_EVENT_NOTIFY), 123 DP_STR(QUERY_STREAM_ENC_STATUS), 124 }; 125 126 if (req_type >= ARRAY_SIZE(req_type_str) || 127 !req_type_str[req_type]) 128 return "unknown"; 129 130 return req_type_str[req_type]; 131 } 132 133 #undef DP_STR 134 #define DP_STR(x) [DP_NAK_ ## x] = #x 135 136 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason) 137 { 138 static const char * const nak_reason_str[] = { 139 DP_STR(WRITE_FAILURE), 140 DP_STR(INVALID_READ), 141 DP_STR(CRC_FAILURE), 142 DP_STR(BAD_PARAM), 143 DP_STR(DEFER), 144 DP_STR(LINK_FAILURE), 145 DP_STR(NO_RESOURCES), 146 DP_STR(DPCD_FAIL), 147 DP_STR(I2C_NAK), 148 DP_STR(ALLOCATE_FAIL), 149 }; 150 151 if (nak_reason >= ARRAY_SIZE(nak_reason_str) || 152 !nak_reason_str[nak_reason]) 153 return "unknown"; 154 155 return nak_reason_str[nak_reason]; 156 } 157 158 #undef DP_STR 159 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x 160 161 static const char *drm_dp_mst_sideband_tx_state_str(int state) 162 { 163 static const char * const sideband_reason_str[] = { 164 DP_STR(QUEUED), 165 DP_STR(START_SEND), 166 DP_STR(SENT), 167 DP_STR(RX), 168 DP_STR(TIMEOUT), 169 }; 170 171 if (state >= ARRAY_SIZE(sideband_reason_str) || 172 !sideband_reason_str[state]) 173 return "unknown"; 174 175 return sideband_reason_str[state]; 176 } 177 178 static int 179 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len) 180 { 181 int i; 182 u8 unpacked_rad[16]; 183 184 for (i = 0; i < lct; i++) { 185 if (i % 2) 186 unpacked_rad[i] = rad[i / 2] >> 4; 187 else 188 unpacked_rad[i] = rad[i / 2] & BIT_MASK(4); 189 } 190 191 /* TODO: Eventually add something to printk so we can format the rad 192 * like this: 1.2.3 193 */ 194 return snprintf(out, len, "%*phC", lct, unpacked_rad); 195 } 196 197 /* sideband msg handling */ 198 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles) 199 { 200 u8 bitmask = 0x80; 201 u8 bitshift = 7; 202 u8 array_index = 0; 203 int number_of_bits = num_nibbles * 4; 204 u8 remainder = 0; 205 206 while (number_of_bits != 0) { 207 number_of_bits--; 208 remainder <<= 1; 209 remainder |= (data[array_index] & bitmask) >> bitshift; 210 bitmask >>= 1; 211 bitshift--; 212 if (bitmask == 0) { 213 bitmask = 0x80; 214 bitshift = 7; 215 array_index++; 216 } 217 if ((remainder & 0x10) == 0x10) 218 remainder ^= 0x13; 219 } 220 221 number_of_bits = 4; 222 while (number_of_bits != 0) { 223 number_of_bits--; 224 remainder <<= 1; 225 if ((remainder & 0x10) != 0) 226 remainder ^= 0x13; 227 } 228 229 return remainder; 230 } 231 232 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes) 233 { 234 u8 bitmask = 0x80; 235 u8 bitshift = 7; 236 u8 array_index = 0; 237 int number_of_bits = number_of_bytes * 8; 238 u16 remainder = 0; 239 240 while (number_of_bits != 0) { 241 number_of_bits--; 242 remainder <<= 1; 243 remainder |= (data[array_index] & bitmask) >> bitshift; 244 bitmask >>= 1; 245 bitshift--; 246 if (bitmask == 0) { 247 bitmask = 0x80; 248 bitshift = 7; 249 array_index++; 250 } 251 if ((remainder & 0x100) == 0x100) 252 remainder ^= 0xd5; 253 } 254 255 number_of_bits = 8; 256 while (number_of_bits != 0) { 257 number_of_bits--; 258 remainder <<= 1; 259 if ((remainder & 0x100) != 0) 260 remainder ^= 0xd5; 261 } 262 263 return remainder & 0xff; 264 } 265 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr) 266 { 267 u8 size = 3; 268 269 size += (hdr->lct / 2); 270 return size; 271 } 272 273 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr, 274 u8 *buf, int *len) 275 { 276 int idx = 0; 277 int i; 278 u8 crc4; 279 280 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf); 281 for (i = 0; i < (hdr->lct / 2); i++) 282 buf[idx++] = hdr->rad[i]; 283 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) | 284 (hdr->msg_len & 0x3f); 285 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4); 286 287 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1); 288 buf[idx - 1] |= (crc4 & 0xf); 289 290 *len = idx; 291 } 292 293 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr, 294 struct drm_dp_sideband_msg_hdr *hdr, 295 u8 *buf, int buflen, u8 *hdrlen) 296 { 297 u8 crc4; 298 u8 len; 299 int i; 300 u8 idx; 301 302 if (buf[0] == 0) 303 return false; 304 len = 3; 305 len += ((buf[0] & 0xf0) >> 4) / 2; 306 if (len > buflen) 307 return false; 308 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1); 309 310 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) { 311 drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]); 312 return false; 313 } 314 315 hdr->lct = (buf[0] & 0xf0) >> 4; 316 hdr->lcr = (buf[0] & 0xf); 317 idx = 1; 318 for (i = 0; i < (hdr->lct / 2); i++) 319 hdr->rad[i] = buf[idx++]; 320 hdr->broadcast = (buf[idx] >> 7) & 0x1; 321 hdr->path_msg = (buf[idx] >> 6) & 0x1; 322 hdr->msg_len = buf[idx] & 0x3f; 323 idx++; 324 hdr->somt = (buf[idx] >> 7) & 0x1; 325 hdr->eomt = (buf[idx] >> 6) & 0x1; 326 hdr->seqno = (buf[idx] >> 4) & 0x1; 327 idx++; 328 *hdrlen = idx; 329 return true; 330 } 331 332 void 333 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req, 334 struct drm_dp_sideband_msg_tx *raw) 335 { 336 int idx = 0; 337 int i; 338 u8 *buf = raw->msg; 339 340 buf[idx++] = req->req_type & 0x7f; 341 342 switch (req->req_type) { 343 case DP_ENUM_PATH_RESOURCES: 344 case DP_POWER_DOWN_PHY: 345 case DP_POWER_UP_PHY: 346 buf[idx] = (req->u.port_num.port_number & 0xf) << 4; 347 idx++; 348 break; 349 case DP_ALLOCATE_PAYLOAD: 350 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 | 351 (req->u.allocate_payload.number_sdp_streams & 0xf); 352 idx++; 353 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f); 354 idx++; 355 buf[idx] = (req->u.allocate_payload.pbn >> 8); 356 idx++; 357 buf[idx] = (req->u.allocate_payload.pbn & 0xff); 358 idx++; 359 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) { 360 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) | 361 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf); 362 idx++; 363 } 364 if (req->u.allocate_payload.number_sdp_streams & 1) { 365 i = req->u.allocate_payload.number_sdp_streams - 1; 366 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4; 367 idx++; 368 } 369 break; 370 case DP_QUERY_PAYLOAD: 371 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4; 372 idx++; 373 buf[idx] = (req->u.query_payload.vcpi & 0x7f); 374 idx++; 375 break; 376 case DP_REMOTE_DPCD_READ: 377 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4; 378 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf; 379 idx++; 380 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8; 381 idx++; 382 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff); 383 idx++; 384 buf[idx] = (req->u.dpcd_read.num_bytes); 385 idx++; 386 break; 387 388 case DP_REMOTE_DPCD_WRITE: 389 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4; 390 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf; 391 idx++; 392 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8; 393 idx++; 394 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff); 395 idx++; 396 buf[idx] = (req->u.dpcd_write.num_bytes); 397 idx++; 398 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes); 399 idx += req->u.dpcd_write.num_bytes; 400 break; 401 case DP_REMOTE_I2C_READ: 402 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4; 403 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3); 404 idx++; 405 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) { 406 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f; 407 idx++; 408 buf[idx] = req->u.i2c_read.transactions[i].num_bytes; 409 idx++; 410 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes); 411 idx += req->u.i2c_read.transactions[i].num_bytes; 412 413 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4; 414 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf); 415 idx++; 416 } 417 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f; 418 idx++; 419 buf[idx] = (req->u.i2c_read.num_bytes_read); 420 idx++; 421 break; 422 423 case DP_REMOTE_I2C_WRITE: 424 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4; 425 idx++; 426 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f; 427 idx++; 428 buf[idx] = (req->u.i2c_write.num_bytes); 429 idx++; 430 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes); 431 idx += req->u.i2c_write.num_bytes; 432 break; 433 case DP_QUERY_STREAM_ENC_STATUS: { 434 const struct drm_dp_query_stream_enc_status *msg; 435 436 msg = &req->u.enc_status; 437 buf[idx] = msg->stream_id; 438 idx++; 439 memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id)); 440 idx += sizeof(msg->client_id); 441 buf[idx] = 0; 442 buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event); 443 buf[idx] |= msg->valid_stream_event ? BIT(2) : 0; 444 buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior); 445 buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0; 446 idx++; 447 } 448 break; 449 } 450 raw->cur_len = idx; 451 } 452 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req); 453 454 /* Decode a sideband request we've encoded, mainly used for debugging */ 455 int 456 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw, 457 struct drm_dp_sideband_msg_req_body *req) 458 { 459 const u8 *buf = raw->msg; 460 int i, idx = 0; 461 462 req->req_type = buf[idx++] & 0x7f; 463 switch (req->req_type) { 464 case DP_ENUM_PATH_RESOURCES: 465 case DP_POWER_DOWN_PHY: 466 case DP_POWER_UP_PHY: 467 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf; 468 break; 469 case DP_ALLOCATE_PAYLOAD: 470 { 471 struct drm_dp_allocate_payload *a = 472 &req->u.allocate_payload; 473 474 a->number_sdp_streams = buf[idx] & 0xf; 475 a->port_number = (buf[idx] >> 4) & 0xf; 476 477 WARN_ON(buf[++idx] & 0x80); 478 a->vcpi = buf[idx] & 0x7f; 479 480 a->pbn = buf[++idx] << 8; 481 a->pbn |= buf[++idx]; 482 483 idx++; 484 for (i = 0; i < a->number_sdp_streams; i++) { 485 a->sdp_stream_sink[i] = 486 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf; 487 } 488 } 489 break; 490 case DP_QUERY_PAYLOAD: 491 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf; 492 WARN_ON(buf[++idx] & 0x80); 493 req->u.query_payload.vcpi = buf[idx] & 0x7f; 494 break; 495 case DP_REMOTE_DPCD_READ: 496 { 497 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read; 498 499 r->port_number = (buf[idx] >> 4) & 0xf; 500 501 r->dpcd_address = (buf[idx] << 16) & 0xf0000; 502 r->dpcd_address |= (buf[++idx] << 8) & 0xff00; 503 r->dpcd_address |= buf[++idx] & 0xff; 504 505 r->num_bytes = buf[++idx]; 506 } 507 break; 508 case DP_REMOTE_DPCD_WRITE: 509 { 510 struct drm_dp_remote_dpcd_write *w = 511 &req->u.dpcd_write; 512 513 w->port_number = (buf[idx] >> 4) & 0xf; 514 515 w->dpcd_address = (buf[idx] << 16) & 0xf0000; 516 w->dpcd_address |= (buf[++idx] << 8) & 0xff00; 517 w->dpcd_address |= buf[++idx] & 0xff; 518 519 w->num_bytes = buf[++idx]; 520 521 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 522 GFP_KERNEL); 523 if (!w->bytes) 524 return -ENOMEM; 525 } 526 break; 527 case DP_REMOTE_I2C_READ: 528 { 529 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read; 530 struct drm_dp_remote_i2c_read_tx *tx; 531 bool failed = false; 532 533 r->num_transactions = buf[idx] & 0x3; 534 r->port_number = (buf[idx] >> 4) & 0xf; 535 for (i = 0; i < r->num_transactions; i++) { 536 tx = &r->transactions[i]; 537 538 tx->i2c_dev_id = buf[++idx] & 0x7f; 539 tx->num_bytes = buf[++idx]; 540 tx->bytes = kmemdup(&buf[++idx], 541 tx->num_bytes, 542 GFP_KERNEL); 543 if (!tx->bytes) { 544 failed = true; 545 break; 546 } 547 idx += tx->num_bytes; 548 tx->no_stop_bit = (buf[idx] >> 5) & 0x1; 549 tx->i2c_transaction_delay = buf[idx] & 0xf; 550 } 551 552 if (failed) { 553 for (i = 0; i < r->num_transactions; i++) { 554 tx = &r->transactions[i]; 555 kfree(tx->bytes); 556 } 557 return -ENOMEM; 558 } 559 560 r->read_i2c_device_id = buf[++idx] & 0x7f; 561 r->num_bytes_read = buf[++idx]; 562 } 563 break; 564 case DP_REMOTE_I2C_WRITE: 565 { 566 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write; 567 568 w->port_number = (buf[idx] >> 4) & 0xf; 569 w->write_i2c_device_id = buf[++idx] & 0x7f; 570 w->num_bytes = buf[++idx]; 571 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 572 GFP_KERNEL); 573 if (!w->bytes) 574 return -ENOMEM; 575 } 576 break; 577 case DP_QUERY_STREAM_ENC_STATUS: 578 req->u.enc_status.stream_id = buf[idx++]; 579 for (i = 0; i < sizeof(req->u.enc_status.client_id); i++) 580 req->u.enc_status.client_id[i] = buf[idx++]; 581 582 req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0), 583 buf[idx]); 584 req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2), 585 buf[idx]); 586 req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3), 587 buf[idx]); 588 req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5), 589 buf[idx]); 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req); 596 597 void 598 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req, 599 int indent, struct drm_printer *printer) 600 { 601 int i; 602 603 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__) 604 if (req->req_type == DP_LINK_ADDRESS) { 605 /* No contents to print */ 606 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type)); 607 return; 608 } 609 610 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type)); 611 indent++; 612 613 switch (req->req_type) { 614 case DP_ENUM_PATH_RESOURCES: 615 case DP_POWER_DOWN_PHY: 616 case DP_POWER_UP_PHY: 617 P("port=%d\n", req->u.port_num.port_number); 618 break; 619 case DP_ALLOCATE_PAYLOAD: 620 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n", 621 req->u.allocate_payload.port_number, 622 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn, 623 req->u.allocate_payload.number_sdp_streams, 624 req->u.allocate_payload.number_sdp_streams, 625 req->u.allocate_payload.sdp_stream_sink); 626 break; 627 case DP_QUERY_PAYLOAD: 628 P("port=%d vcpi=%d\n", 629 req->u.query_payload.port_number, 630 req->u.query_payload.vcpi); 631 break; 632 case DP_REMOTE_DPCD_READ: 633 P("port=%d dpcd_addr=%05x len=%d\n", 634 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address, 635 req->u.dpcd_read.num_bytes); 636 break; 637 case DP_REMOTE_DPCD_WRITE: 638 P("port=%d addr=%05x len=%d: %*ph\n", 639 req->u.dpcd_write.port_number, 640 req->u.dpcd_write.dpcd_address, 641 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes, 642 req->u.dpcd_write.bytes); 643 break; 644 case DP_REMOTE_I2C_READ: 645 P("port=%d num_tx=%d id=%d size=%d:\n", 646 req->u.i2c_read.port_number, 647 req->u.i2c_read.num_transactions, 648 req->u.i2c_read.read_i2c_device_id, 649 req->u.i2c_read.num_bytes_read); 650 651 indent++; 652 for (i = 0; i < req->u.i2c_read.num_transactions; i++) { 653 const struct drm_dp_remote_i2c_read_tx *rtx = 654 &req->u.i2c_read.transactions[i]; 655 656 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n", 657 i, rtx->i2c_dev_id, rtx->num_bytes, 658 rtx->no_stop_bit, rtx->i2c_transaction_delay, 659 rtx->num_bytes, rtx->bytes); 660 } 661 break; 662 case DP_REMOTE_I2C_WRITE: 663 P("port=%d id=%d size=%d: %*ph\n", 664 req->u.i2c_write.port_number, 665 req->u.i2c_write.write_i2c_device_id, 666 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes, 667 req->u.i2c_write.bytes); 668 break; 669 case DP_QUERY_STREAM_ENC_STATUS: 670 P("stream_id=%u client_id=%*ph stream_event=%x " 671 "valid_event=%d stream_behavior=%x valid_behavior=%d", 672 req->u.enc_status.stream_id, 673 (int)ARRAY_SIZE(req->u.enc_status.client_id), 674 req->u.enc_status.client_id, req->u.enc_status.stream_event, 675 req->u.enc_status.valid_stream_event, 676 req->u.enc_status.stream_behavior, 677 req->u.enc_status.valid_stream_behavior); 678 break; 679 default: 680 P("???\n"); 681 break; 682 } 683 #undef P 684 } 685 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body); 686 687 static inline void 688 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p, 689 const struct drm_dp_sideband_msg_tx *txmsg) 690 { 691 struct drm_dp_sideband_msg_req_body req; 692 char buf[64]; 693 int ret; 694 int i; 695 696 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf, 697 sizeof(buf)); 698 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n", 699 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno, 700 drm_dp_mst_sideband_tx_state_str(txmsg->state), 701 txmsg->path_msg, buf); 702 703 ret = drm_dp_decode_sideband_req(txmsg, &req); 704 if (ret) { 705 drm_printf(p, "<failed to decode sideband req: %d>\n", ret); 706 return; 707 } 708 drm_dp_dump_sideband_msg_req_body(&req, 1, p); 709 710 switch (req.req_type) { 711 case DP_REMOTE_DPCD_WRITE: 712 kfree(req.u.dpcd_write.bytes); 713 break; 714 case DP_REMOTE_I2C_READ: 715 for (i = 0; i < req.u.i2c_read.num_transactions; i++) 716 kfree(req.u.i2c_read.transactions[i].bytes); 717 break; 718 case DP_REMOTE_I2C_WRITE: 719 kfree(req.u.i2c_write.bytes); 720 break; 721 } 722 } 723 724 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len) 725 { 726 u8 crc4; 727 728 crc4 = drm_dp_msg_data_crc4(msg, len); 729 msg[len] = crc4; 730 } 731 732 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep, 733 struct drm_dp_sideband_msg_tx *raw) 734 { 735 int idx = 0; 736 u8 *buf = raw->msg; 737 738 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f); 739 740 raw->cur_len = idx; 741 } 742 743 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg, 744 struct drm_dp_sideband_msg_hdr *hdr, 745 u8 hdrlen) 746 { 747 /* 748 * ignore out-of-order messages or messages that are part of a 749 * failed transaction 750 */ 751 if (!hdr->somt && !msg->have_somt) 752 return false; 753 754 /* get length contained in this portion */ 755 msg->curchunk_idx = 0; 756 msg->curchunk_len = hdr->msg_len; 757 msg->curchunk_hdrlen = hdrlen; 758 759 /* we have already gotten an somt - don't bother parsing */ 760 if (hdr->somt && msg->have_somt) 761 return false; 762 763 if (hdr->somt) { 764 memcpy(&msg->initial_hdr, hdr, 765 sizeof(struct drm_dp_sideband_msg_hdr)); 766 msg->have_somt = true; 767 } 768 if (hdr->eomt) 769 msg->have_eomt = true; 770 771 return true; 772 } 773 774 /* this adds a chunk of msg to the builder to get the final msg */ 775 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg, 776 u8 *replybuf, u8 replybuflen) 777 { 778 u8 crc4; 779 780 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen); 781 msg->curchunk_idx += replybuflen; 782 783 if (msg->curchunk_idx >= msg->curchunk_len) { 784 /* do CRC */ 785 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1); 786 if (crc4 != msg->chunk[msg->curchunk_len - 1]) 787 print_hex_dump(KERN_DEBUG, "wrong crc", 788 DUMP_PREFIX_NONE, 16, 1, 789 msg->chunk, msg->curchunk_len, false); 790 /* copy chunk into bigger msg */ 791 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1); 792 msg->curlen += msg->curchunk_len - 1; 793 } 794 return true; 795 } 796 797 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr, 798 struct drm_dp_sideband_msg_rx *raw, 799 struct drm_dp_sideband_msg_reply_body *repmsg) 800 { 801 int idx = 1; 802 int i; 803 804 memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16); 805 idx += 16; 806 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf; 807 idx++; 808 if (idx > raw->curlen) 809 goto fail_len; 810 for (i = 0; i < repmsg->u.link_addr.nports; i++) { 811 if (raw->msg[idx] & 0x80) 812 repmsg->u.link_addr.ports[i].input_port = 1; 813 814 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7; 815 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf); 816 817 idx++; 818 if (idx > raw->curlen) 819 goto fail_len; 820 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1; 821 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1; 822 if (repmsg->u.link_addr.ports[i].input_port == 0) 823 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 824 idx++; 825 if (idx > raw->curlen) 826 goto fail_len; 827 if (repmsg->u.link_addr.ports[i].input_port == 0) { 828 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]); 829 idx++; 830 if (idx > raw->curlen) 831 goto fail_len; 832 memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16); 833 idx += 16; 834 if (idx > raw->curlen) 835 goto fail_len; 836 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf; 837 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf); 838 idx++; 839 840 } 841 if (idx > raw->curlen) 842 goto fail_len; 843 } 844 845 return true; 846 fail_len: 847 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 848 return false; 849 } 850 851 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw, 852 struct drm_dp_sideband_msg_reply_body *repmsg) 853 { 854 int idx = 1; 855 856 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf; 857 idx++; 858 if (idx > raw->curlen) 859 goto fail_len; 860 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx]; 861 idx++; 862 if (idx > raw->curlen) 863 goto fail_len; 864 865 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes); 866 return true; 867 fail_len: 868 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 869 return false; 870 } 871 872 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw, 873 struct drm_dp_sideband_msg_reply_body *repmsg) 874 { 875 int idx = 1; 876 877 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf; 878 idx++; 879 if (idx > raw->curlen) 880 goto fail_len; 881 return true; 882 fail_len: 883 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen); 884 return false; 885 } 886 887 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw, 888 struct drm_dp_sideband_msg_reply_body *repmsg) 889 { 890 int idx = 1; 891 892 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf); 893 idx++; 894 if (idx > raw->curlen) 895 goto fail_len; 896 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx]; 897 idx++; 898 /* TODO check */ 899 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes); 900 return true; 901 fail_len: 902 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen); 903 return false; 904 } 905 906 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw, 907 struct drm_dp_sideband_msg_reply_body *repmsg) 908 { 909 int idx = 1; 910 911 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf; 912 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1; 913 idx++; 914 if (idx > raw->curlen) 915 goto fail_len; 916 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 917 idx += 2; 918 if (idx > raw->curlen) 919 goto fail_len; 920 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 921 idx += 2; 922 if (idx > raw->curlen) 923 goto fail_len; 924 return true; 925 fail_len: 926 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen); 927 return false; 928 } 929 930 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw, 931 struct drm_dp_sideband_msg_reply_body *repmsg) 932 { 933 int idx = 1; 934 935 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 936 idx++; 937 if (idx > raw->curlen) 938 goto fail_len; 939 repmsg->u.allocate_payload.vcpi = raw->msg[idx]; 940 idx++; 941 if (idx > raw->curlen) 942 goto fail_len; 943 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 944 idx += 2; 945 if (idx > raw->curlen) 946 goto fail_len; 947 return true; 948 fail_len: 949 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen); 950 return false; 951 } 952 953 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw, 954 struct drm_dp_sideband_msg_reply_body *repmsg) 955 { 956 int idx = 1; 957 958 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 959 idx++; 960 if (idx > raw->curlen) 961 goto fail_len; 962 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 963 idx += 2; 964 if (idx > raw->curlen) 965 goto fail_len; 966 return true; 967 fail_len: 968 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen); 969 return false; 970 } 971 972 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw, 973 struct drm_dp_sideband_msg_reply_body *repmsg) 974 { 975 int idx = 1; 976 977 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf; 978 idx++; 979 if (idx > raw->curlen) { 980 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n", 981 idx, raw->curlen); 982 return false; 983 } 984 return true; 985 } 986 987 static bool 988 drm_dp_sideband_parse_query_stream_enc_status( 989 struct drm_dp_sideband_msg_rx *raw, 990 struct drm_dp_sideband_msg_reply_body *repmsg) 991 { 992 struct drm_dp_query_stream_enc_status_ack_reply *reply; 993 994 reply = &repmsg->u.enc_status; 995 996 reply->stream_id = raw->msg[3]; 997 998 reply->reply_signed = raw->msg[2] & BIT(0); 999 1000 /* 1001 * NOTE: It's my impression from reading the spec that the below parsing 1002 * is correct. However I noticed while testing with an HDCP 1.4 display 1003 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I 1004 * would expect both bits to be set. So keep the parsing following the 1005 * spec, but beware reality might not match the spec (at least for some 1006 * configurations). 1007 */ 1008 reply->hdcp_1x_device_present = raw->msg[2] & BIT(4); 1009 reply->hdcp_2x_device_present = raw->msg[2] & BIT(3); 1010 1011 reply->query_capable_device_present = raw->msg[2] & BIT(5); 1012 reply->legacy_device_present = raw->msg[2] & BIT(6); 1013 reply->unauthorizable_device_present = raw->msg[2] & BIT(7); 1014 1015 reply->auth_completed = !!(raw->msg[1] & BIT(3)); 1016 reply->encryption_enabled = !!(raw->msg[1] & BIT(4)); 1017 reply->repeater_present = !!(raw->msg[1] & BIT(5)); 1018 reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6; 1019 1020 return true; 1021 } 1022 1023 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr, 1024 struct drm_dp_sideband_msg_rx *raw, 1025 struct drm_dp_sideband_msg_reply_body *msg) 1026 { 1027 memset(msg, 0, sizeof(*msg)); 1028 msg->reply_type = (raw->msg[0] & 0x80) >> 7; 1029 msg->req_type = (raw->msg[0] & 0x7f); 1030 1031 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) { 1032 memcpy(msg->u.nak.guid, &raw->msg[1], 16); 1033 msg->u.nak.reason = raw->msg[17]; 1034 msg->u.nak.nak_data = raw->msg[18]; 1035 return false; 1036 } 1037 1038 switch (msg->req_type) { 1039 case DP_LINK_ADDRESS: 1040 return drm_dp_sideband_parse_link_address(mgr, raw, msg); 1041 case DP_QUERY_PAYLOAD: 1042 return drm_dp_sideband_parse_query_payload_ack(raw, msg); 1043 case DP_REMOTE_DPCD_READ: 1044 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg); 1045 case DP_REMOTE_DPCD_WRITE: 1046 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg); 1047 case DP_REMOTE_I2C_READ: 1048 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg); 1049 case DP_REMOTE_I2C_WRITE: 1050 return true; /* since there's nothing to parse */ 1051 case DP_ENUM_PATH_RESOURCES: 1052 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg); 1053 case DP_ALLOCATE_PAYLOAD: 1054 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg); 1055 case DP_POWER_DOWN_PHY: 1056 case DP_POWER_UP_PHY: 1057 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg); 1058 case DP_CLEAR_PAYLOAD_ID_TABLE: 1059 return true; /* since there's nothing to parse */ 1060 case DP_QUERY_STREAM_ENC_STATUS: 1061 return drm_dp_sideband_parse_query_stream_enc_status(raw, msg); 1062 default: 1063 drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n", 1064 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1065 return false; 1066 } 1067 } 1068 1069 static bool 1070 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1071 struct drm_dp_sideband_msg_rx *raw, 1072 struct drm_dp_sideband_msg_req_body *msg) 1073 { 1074 int idx = 1; 1075 1076 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1077 idx++; 1078 if (idx > raw->curlen) 1079 goto fail_len; 1080 1081 memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16); 1082 idx += 16; 1083 if (idx > raw->curlen) 1084 goto fail_len; 1085 1086 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1; 1087 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 1088 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1; 1089 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1; 1090 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7); 1091 idx++; 1092 return true; 1093 fail_len: 1094 drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n", 1095 idx, raw->curlen); 1096 return false; 1097 } 1098 1099 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1100 struct drm_dp_sideband_msg_rx *raw, 1101 struct drm_dp_sideband_msg_req_body *msg) 1102 { 1103 int idx = 1; 1104 1105 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1106 idx++; 1107 if (idx > raw->curlen) 1108 goto fail_len; 1109 1110 memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16); 1111 idx += 16; 1112 if (idx > raw->curlen) 1113 goto fail_len; 1114 1115 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 1116 idx++; 1117 return true; 1118 fail_len: 1119 drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen); 1120 return false; 1121 } 1122 1123 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr, 1124 struct drm_dp_sideband_msg_rx *raw, 1125 struct drm_dp_sideband_msg_req_body *msg) 1126 { 1127 memset(msg, 0, sizeof(*msg)); 1128 msg->req_type = (raw->msg[0] & 0x7f); 1129 1130 switch (msg->req_type) { 1131 case DP_CONNECTION_STATUS_NOTIFY: 1132 return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg); 1133 case DP_RESOURCE_STATUS_NOTIFY: 1134 return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg); 1135 default: 1136 drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n", 1137 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1138 return false; 1139 } 1140 } 1141 1142 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, 1143 u8 port_num, u32 offset, u8 num_bytes, u8 *bytes) 1144 { 1145 struct drm_dp_sideband_msg_req_body req; 1146 1147 req.req_type = DP_REMOTE_DPCD_WRITE; 1148 req.u.dpcd_write.port_number = port_num; 1149 req.u.dpcd_write.dpcd_address = offset; 1150 req.u.dpcd_write.num_bytes = num_bytes; 1151 req.u.dpcd_write.bytes = bytes; 1152 drm_dp_encode_sideband_req(&req, msg); 1153 } 1154 1155 static void build_link_address(struct drm_dp_sideband_msg_tx *msg) 1156 { 1157 struct drm_dp_sideband_msg_req_body req; 1158 1159 req.req_type = DP_LINK_ADDRESS; 1160 drm_dp_encode_sideband_req(&req, msg); 1161 } 1162 1163 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg) 1164 { 1165 struct drm_dp_sideband_msg_req_body req; 1166 1167 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE; 1168 drm_dp_encode_sideband_req(&req, msg); 1169 msg->path_msg = true; 1170 } 1171 1172 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, 1173 int port_num) 1174 { 1175 struct drm_dp_sideband_msg_req_body req; 1176 1177 req.req_type = DP_ENUM_PATH_RESOURCES; 1178 req.u.port_num.port_number = port_num; 1179 drm_dp_encode_sideband_req(&req, msg); 1180 msg->path_msg = true; 1181 return 0; 1182 } 1183 1184 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, 1185 int port_num, 1186 u8 vcpi, uint16_t pbn, 1187 u8 number_sdp_streams, 1188 u8 *sdp_stream_sink) 1189 { 1190 struct drm_dp_sideband_msg_req_body req; 1191 1192 memset(&req, 0, sizeof(req)); 1193 req.req_type = DP_ALLOCATE_PAYLOAD; 1194 req.u.allocate_payload.port_number = port_num; 1195 req.u.allocate_payload.vcpi = vcpi; 1196 req.u.allocate_payload.pbn = pbn; 1197 req.u.allocate_payload.number_sdp_streams = number_sdp_streams; 1198 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink, 1199 number_sdp_streams); 1200 drm_dp_encode_sideband_req(&req, msg); 1201 msg->path_msg = true; 1202 } 1203 1204 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg, 1205 int port_num, bool power_up) 1206 { 1207 struct drm_dp_sideband_msg_req_body req; 1208 1209 if (power_up) 1210 req.req_type = DP_POWER_UP_PHY; 1211 else 1212 req.req_type = DP_POWER_DOWN_PHY; 1213 1214 req.u.port_num.port_number = port_num; 1215 drm_dp_encode_sideband_req(&req, msg); 1216 msg->path_msg = true; 1217 } 1218 1219 static int 1220 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id, 1221 u8 *q_id) 1222 { 1223 struct drm_dp_sideband_msg_req_body req; 1224 1225 req.req_type = DP_QUERY_STREAM_ENC_STATUS; 1226 req.u.enc_status.stream_id = stream_id; 1227 memcpy(req.u.enc_status.client_id, q_id, 1228 sizeof(req.u.enc_status.client_id)); 1229 req.u.enc_status.stream_event = 0; 1230 req.u.enc_status.valid_stream_event = false; 1231 req.u.enc_status.stream_behavior = 0; 1232 req.u.enc_status.valid_stream_behavior = false; 1233 1234 drm_dp_encode_sideband_req(&req, msg); 1235 return 0; 1236 } 1237 1238 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr, 1239 struct drm_dp_sideband_msg_tx *txmsg) 1240 { 1241 unsigned int state; 1242 1243 /* 1244 * All updates to txmsg->state are protected by mgr->qlock, and the two 1245 * cases we check here are terminal states. For those the barriers 1246 * provided by the wake_up/wait_event pair are enough. 1247 */ 1248 state = READ_ONCE(txmsg->state); 1249 return (state == DRM_DP_SIDEBAND_TX_RX || 1250 state == DRM_DP_SIDEBAND_TX_TIMEOUT); 1251 } 1252 1253 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb, 1254 struct drm_dp_sideband_msg_tx *txmsg) 1255 { 1256 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1257 unsigned long wait_timeout = msecs_to_jiffies(4000); 1258 unsigned long wait_expires = jiffies + wait_timeout; 1259 int ret; 1260 1261 for (;;) { 1262 /* 1263 * If the driver provides a way for this, change to 1264 * poll-waiting for the MST reply interrupt if we didn't receive 1265 * it for 50 msec. This would cater for cases where the HPD 1266 * pulse signal got lost somewhere, even though the sink raised 1267 * the corresponding MST interrupt correctly. One example is the 1268 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason 1269 * filters out short pulses with a duration less than ~540 usec. 1270 * 1271 * The poll period is 50 msec to avoid missing an interrupt 1272 * after the sink has cleared it (after a 110msec timeout 1273 * since it raised the interrupt). 1274 */ 1275 ret = wait_event_timeout(mgr->tx_waitq, 1276 check_txmsg_state(mgr, txmsg), 1277 mgr->cbs->poll_hpd_irq ? 1278 msecs_to_jiffies(50) : 1279 wait_timeout); 1280 1281 if (ret || !mgr->cbs->poll_hpd_irq || 1282 time_after(jiffies, wait_expires)) 1283 break; 1284 1285 mgr->cbs->poll_hpd_irq(mgr); 1286 } 1287 1288 mutex_lock(&mgr->qlock); 1289 if (ret > 0) { 1290 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) { 1291 ret = -EIO; 1292 goto out; 1293 } 1294 } else { 1295 drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n", 1296 txmsg, txmsg->state, txmsg->seqno); 1297 1298 /* dump some state */ 1299 ret = -EIO; 1300 1301 /* remove from q */ 1302 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED || 1303 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 1304 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 1305 list_del(&txmsg->next); 1306 } 1307 out: 1308 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) { 1309 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 1310 1311 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 1312 } 1313 mutex_unlock(&mgr->qlock); 1314 1315 drm_dp_mst_kick_tx(mgr); 1316 return ret; 1317 } 1318 1319 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad) 1320 { 1321 struct drm_dp_mst_branch *mstb; 1322 1323 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL); 1324 if (!mstb) 1325 return NULL; 1326 1327 mstb->lct = lct; 1328 if (lct > 1) 1329 memcpy(mstb->rad, rad, lct / 2); 1330 INIT_LIST_HEAD(&mstb->ports); 1331 kref_init(&mstb->topology_kref); 1332 kref_init(&mstb->malloc_kref); 1333 return mstb; 1334 } 1335 1336 static void drm_dp_free_mst_branch_device(struct kref *kref) 1337 { 1338 struct drm_dp_mst_branch *mstb = 1339 container_of(kref, struct drm_dp_mst_branch, malloc_kref); 1340 1341 if (mstb->port_parent) 1342 drm_dp_mst_put_port_malloc(mstb->port_parent); 1343 1344 kfree(mstb); 1345 } 1346 1347 /** 1348 * DOC: Branch device and port refcounting 1349 * 1350 * Topology refcount overview 1351 * ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1352 * 1353 * The refcounting schemes for &struct drm_dp_mst_branch and &struct 1354 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have 1355 * two different kinds of refcounts: topology refcounts, and malloc refcounts. 1356 * 1357 * Topology refcounts are not exposed to drivers, and are handled internally 1358 * by the DP MST helpers. The helpers use them in order to prevent the 1359 * in-memory topology state from being changed in the middle of critical 1360 * operations like changing the internal state of payload allocations. This 1361 * means each branch and port will be considered to be connected to the rest 1362 * of the topology until its topology refcount reaches zero. Additionally, 1363 * for ports this means that their associated &struct drm_connector will stay 1364 * registered with userspace until the port's refcount reaches 0. 1365 * 1366 * Malloc refcount overview 1367 * ~~~~~~~~~~~~~~~~~~~~~~~~ 1368 * 1369 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct 1370 * drm_dp_mst_branch allocated even after all of its topology references have 1371 * been dropped, so that the driver or MST helpers can safely access each 1372 * branch's last known state before it was disconnected from the topology. 1373 * When the malloc refcount of a port or branch reaches 0, the memory 1374 * allocation containing the &struct drm_dp_mst_branch or &struct 1375 * drm_dp_mst_port respectively will be freed. 1376 * 1377 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed 1378 * to drivers. As of writing this documentation, there are no drivers that 1379 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST 1380 * helpers. Exposing this API to drivers in a race-free manner would take more 1381 * tweaking of the refcounting scheme, however patches are welcome provided 1382 * there is a legitimate driver usecase for this. 1383 * 1384 * Refcount relationships in a topology 1385 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1386 * 1387 * Let's take a look at why the relationship between topology and malloc 1388 * refcounts is designed the way it is. 1389 * 1390 * .. kernel-figure:: dp-mst/topology-figure-1.dot 1391 * 1392 * An example of topology and malloc refs in a DP MST topology with two 1393 * active payloads. Topology refcount increments are indicated by solid 1394 * lines, and malloc refcount increments are indicated by dashed lines. 1395 * Each starts from the branch which incremented the refcount, and ends at 1396 * the branch to which the refcount belongs to, i.e. the arrow points the 1397 * same way as the C pointers used to reference a structure. 1398 * 1399 * As you can see in the above figure, every branch increments the topology 1400 * refcount of its children, and increments the malloc refcount of its 1401 * parent. Additionally, every payload increments the malloc refcount of its 1402 * assigned port by 1. 1403 * 1404 * So, what would happen if MSTB #3 from the above figure was unplugged from 1405 * the system, but the driver hadn't yet removed payload #2 from port #3? The 1406 * topology would start to look like the figure below. 1407 * 1408 * .. kernel-figure:: dp-mst/topology-figure-2.dot 1409 * 1410 * Ports and branch devices which have been released from memory are 1411 * colored grey, and references which have been removed are colored red. 1412 * 1413 * Whenever a port or branch device's topology refcount reaches zero, it will 1414 * decrement the topology refcounts of all its children, the malloc refcount 1415 * of its parent, and finally its own malloc refcount. For MSTB #4 and port 1416 * #4, this means they both have been disconnected from the topology and freed 1417 * from memory. But, because payload #2 is still holding a reference to port 1418 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port 1419 * is still accessible from memory. This also means port #3 has not yet 1420 * decremented the malloc refcount of MSTB #3, so its &struct 1421 * drm_dp_mst_branch will also stay allocated in memory until port #3's 1422 * malloc refcount reaches 0. 1423 * 1424 * This relationship is necessary because in order to release payload #2, we 1425 * need to be able to figure out the last relative of port #3 that's still 1426 * connected to the topology. In this case, we would travel up the topology as 1427 * shown below. 1428 * 1429 * .. kernel-figure:: dp-mst/topology-figure-3.dot 1430 * 1431 * And finally, remove payload #2 by communicating with port #2 through 1432 * sideband transactions. 1433 */ 1434 1435 /** 1436 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch 1437 * device 1438 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of 1439 * 1440 * Increments &drm_dp_mst_branch.malloc_kref. When 1441 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1442 * will be released and @mstb may no longer be used. 1443 * 1444 * See also: drm_dp_mst_put_mstb_malloc() 1445 */ 1446 static void 1447 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb) 1448 { 1449 kref_get(&mstb->malloc_kref); 1450 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref)); 1451 } 1452 1453 /** 1454 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch 1455 * device 1456 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of 1457 * 1458 * Decrements &drm_dp_mst_branch.malloc_kref. When 1459 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1460 * will be released and @mstb may no longer be used. 1461 * 1462 * See also: drm_dp_mst_get_mstb_malloc() 1463 */ 1464 static void 1465 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb) 1466 { 1467 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1); 1468 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device); 1469 } 1470 1471 static void drm_dp_free_mst_port(struct kref *kref) 1472 { 1473 struct drm_dp_mst_port *port = 1474 container_of(kref, struct drm_dp_mst_port, malloc_kref); 1475 1476 drm_dp_mst_put_mstb_malloc(port->parent); 1477 kfree(port); 1478 } 1479 1480 /** 1481 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port 1482 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of 1483 * 1484 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1485 * reaches 0, the memory allocation for @port will be released and @port may 1486 * no longer be used. 1487 * 1488 * Because @port could potentially be freed at any time by the DP MST helpers 1489 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this 1490 * function, drivers that which to make use of &struct drm_dp_mst_port should 1491 * ensure that they grab at least one main malloc reference to their MST ports 1492 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before 1493 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0. 1494 * 1495 * See also: drm_dp_mst_put_port_malloc() 1496 */ 1497 void 1498 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port) 1499 { 1500 kref_get(&port->malloc_kref); 1501 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref)); 1502 } 1503 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc); 1504 1505 /** 1506 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port 1507 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of 1508 * 1509 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1510 * reaches 0, the memory allocation for @port will be released and @port may 1511 * no longer be used. 1512 * 1513 * See also: drm_dp_mst_get_port_malloc() 1514 */ 1515 void 1516 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port) 1517 { 1518 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1); 1519 kref_put(&port->malloc_kref, drm_dp_free_mst_port); 1520 } 1521 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc); 1522 1523 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 1524 1525 #define STACK_DEPTH 8 1526 1527 static noinline void 1528 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr, 1529 struct drm_dp_mst_topology_ref_history *history, 1530 enum drm_dp_mst_topology_ref_type type) 1531 { 1532 struct drm_dp_mst_topology_ref_entry *entry = NULL; 1533 depot_stack_handle_t backtrace; 1534 ulong stack_entries[STACK_DEPTH]; 1535 uint n; 1536 int i; 1537 1538 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1); 1539 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL); 1540 if (!backtrace) 1541 return; 1542 1543 /* Try to find an existing entry for this backtrace */ 1544 for (i = 0; i < history->len; i++) { 1545 if (history->entries[i].backtrace == backtrace) { 1546 entry = &history->entries[i]; 1547 break; 1548 } 1549 } 1550 1551 /* Otherwise add one */ 1552 if (!entry) { 1553 struct drm_dp_mst_topology_ref_entry *new; 1554 int new_len = history->len + 1; 1555 1556 new = krealloc(history->entries, sizeof(*new) * new_len, 1557 GFP_KERNEL); 1558 if (!new) 1559 return; 1560 1561 entry = &new[history->len]; 1562 history->len = new_len; 1563 history->entries = new; 1564 1565 entry->backtrace = backtrace; 1566 entry->type = type; 1567 entry->count = 0; 1568 } 1569 entry->count++; 1570 entry->ts_nsec = ktime_get_ns(); 1571 } 1572 1573 static int 1574 topology_ref_history_cmp(const void *a, const void *b) 1575 { 1576 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b; 1577 1578 if (entry_a->ts_nsec > entry_b->ts_nsec) 1579 return 1; 1580 else if (entry_a->ts_nsec < entry_b->ts_nsec) 1581 return -1; 1582 else 1583 return 0; 1584 } 1585 1586 static inline const char * 1587 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type) 1588 { 1589 if (type == DRM_DP_MST_TOPOLOGY_REF_GET) 1590 return "get"; 1591 else 1592 return "put"; 1593 } 1594 1595 static void 1596 __dump_topology_ref_history(struct drm_dp_mst_topology_ref_history *history, 1597 void *ptr, const char *type_str) 1598 { 1599 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 1600 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 1601 int i; 1602 1603 if (!buf) 1604 return; 1605 1606 if (!history->len) 1607 goto out; 1608 1609 /* First, sort the list so that it goes from oldest to newest 1610 * reference entry 1611 */ 1612 sort(history->entries, history->len, sizeof(*history->entries), 1613 topology_ref_history_cmp, NULL); 1614 1615 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n", 1616 type_str, ptr); 1617 1618 for (i = 0; i < history->len; i++) { 1619 const struct drm_dp_mst_topology_ref_entry *entry = 1620 &history->entries[i]; 1621 u64 ts_nsec = entry->ts_nsec; 1622 u32 rem_nsec = do_div(ts_nsec, 1000000000); 1623 1624 stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4); 1625 1626 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s", 1627 entry->count, 1628 topology_ref_type_to_str(entry->type), 1629 ts_nsec, rem_nsec / 1000, buf); 1630 } 1631 1632 /* Now free the history, since this is the only time we expose it */ 1633 kfree(history->entries); 1634 out: 1635 kfree(buf); 1636 } 1637 1638 static __always_inline void 1639 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) 1640 { 1641 __dump_topology_ref_history(&mstb->topology_ref_history, mstb, 1642 "MSTB"); 1643 } 1644 1645 static __always_inline void 1646 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) 1647 { 1648 __dump_topology_ref_history(&port->topology_ref_history, port, 1649 "Port"); 1650 } 1651 1652 static __always_inline void 1653 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb, 1654 enum drm_dp_mst_topology_ref_type type) 1655 { 1656 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type); 1657 } 1658 1659 static __always_inline void 1660 save_port_topology_ref(struct drm_dp_mst_port *port, 1661 enum drm_dp_mst_topology_ref_type type) 1662 { 1663 __topology_ref_save(port->mgr, &port->topology_ref_history, type); 1664 } 1665 1666 static inline void 1667 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) 1668 { 1669 mutex_lock(&mgr->topology_ref_history_lock); 1670 } 1671 1672 static inline void 1673 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) 1674 { 1675 mutex_unlock(&mgr->topology_ref_history_lock); 1676 } 1677 #else 1678 static inline void 1679 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {} 1680 static inline void 1681 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {} 1682 static inline void 1683 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {} 1684 static inline void 1685 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {} 1686 #define save_mstb_topology_ref(mstb, type) 1687 #define save_port_topology_ref(port, type) 1688 #endif 1689 1690 struct drm_dp_mst_atomic_payload * 1691 drm_atomic_get_mst_payload_state(struct drm_dp_mst_topology_state *state, 1692 struct drm_dp_mst_port *port) 1693 { 1694 struct drm_dp_mst_atomic_payload *payload; 1695 1696 list_for_each_entry(payload, &state->payloads, next) 1697 if (payload->port == port) 1698 return payload; 1699 1700 return NULL; 1701 } 1702 EXPORT_SYMBOL(drm_atomic_get_mst_payload_state); 1703 1704 static void drm_dp_destroy_mst_branch_device(struct kref *kref) 1705 { 1706 struct drm_dp_mst_branch *mstb = 1707 container_of(kref, struct drm_dp_mst_branch, topology_kref); 1708 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1709 1710 drm_dp_mst_dump_mstb_topology_history(mstb); 1711 1712 INIT_LIST_HEAD(&mstb->destroy_next); 1713 1714 /* 1715 * This can get called under mgr->mutex, so we need to perform the 1716 * actual destruction of the mstb in another worker 1717 */ 1718 mutex_lock(&mgr->delayed_destroy_lock); 1719 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list); 1720 mutex_unlock(&mgr->delayed_destroy_lock); 1721 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1722 } 1723 1724 /** 1725 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a 1726 * branch device unless it's zero 1727 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of 1728 * 1729 * Attempts to grab a topology reference to @mstb, if it hasn't yet been 1730 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has 1731 * reached 0). Holding a topology reference implies that a malloc reference 1732 * will be held to @mstb as long as the user holds the topology reference. 1733 * 1734 * Care should be taken to ensure that the user has at least one malloc 1735 * reference to @mstb. If you already have a topology reference to @mstb, you 1736 * should use drm_dp_mst_topology_get_mstb() instead. 1737 * 1738 * See also: 1739 * drm_dp_mst_topology_get_mstb() 1740 * drm_dp_mst_topology_put_mstb() 1741 * 1742 * Returns: 1743 * * 1: A topology reference was grabbed successfully 1744 * * 0: @port is no longer in the topology, no reference was grabbed 1745 */ 1746 static int __must_check 1747 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb) 1748 { 1749 int ret; 1750 1751 topology_ref_history_lock(mstb->mgr); 1752 ret = kref_get_unless_zero(&mstb->topology_kref); 1753 if (ret) { 1754 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1755 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1756 } 1757 1758 topology_ref_history_unlock(mstb->mgr); 1759 1760 return ret; 1761 } 1762 1763 /** 1764 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a 1765 * branch device 1766 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of 1767 * 1768 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or 1769 * not it's already reached 0. This is only valid to use in scenarios where 1770 * you are already guaranteed to have at least one active topology reference 1771 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used. 1772 * 1773 * See also: 1774 * drm_dp_mst_topology_try_get_mstb() 1775 * drm_dp_mst_topology_put_mstb() 1776 */ 1777 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb) 1778 { 1779 topology_ref_history_lock(mstb->mgr); 1780 1781 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1782 WARN_ON(kref_read(&mstb->topology_kref) == 0); 1783 kref_get(&mstb->topology_kref); 1784 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1785 1786 topology_ref_history_unlock(mstb->mgr); 1787 } 1788 1789 /** 1790 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch 1791 * device 1792 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from 1793 * 1794 * Releases a topology reference from @mstb by decrementing 1795 * &drm_dp_mst_branch.topology_kref. 1796 * 1797 * See also: 1798 * drm_dp_mst_topology_try_get_mstb() 1799 * drm_dp_mst_topology_get_mstb() 1800 */ 1801 static void 1802 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb) 1803 { 1804 topology_ref_history_lock(mstb->mgr); 1805 1806 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1); 1807 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT); 1808 1809 topology_ref_history_unlock(mstb->mgr); 1810 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device); 1811 } 1812 1813 static void drm_dp_destroy_port(struct kref *kref) 1814 { 1815 struct drm_dp_mst_port *port = 1816 container_of(kref, struct drm_dp_mst_port, topology_kref); 1817 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 1818 1819 drm_dp_mst_dump_port_topology_history(port); 1820 1821 /* There's nothing that needs locking to destroy an input port yet */ 1822 if (port->input) { 1823 drm_dp_mst_put_port_malloc(port); 1824 return; 1825 } 1826 1827 drm_edid_free(port->cached_edid); 1828 1829 /* 1830 * we can't destroy the connector here, as we might be holding the 1831 * mode_config.mutex from an EDID retrieval 1832 */ 1833 mutex_lock(&mgr->delayed_destroy_lock); 1834 list_add(&port->next, &mgr->destroy_port_list); 1835 mutex_unlock(&mgr->delayed_destroy_lock); 1836 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1837 } 1838 1839 /** 1840 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a 1841 * port unless it's zero 1842 * @port: &struct drm_dp_mst_port to increment the topology refcount of 1843 * 1844 * Attempts to grab a topology reference to @port, if it hasn't yet been 1845 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached 1846 * 0). Holding a topology reference implies that a malloc reference will be 1847 * held to @port as long as the user holds the topology reference. 1848 * 1849 * Care should be taken to ensure that the user has at least one malloc 1850 * reference to @port. If you already have a topology reference to @port, you 1851 * should use drm_dp_mst_topology_get_port() instead. 1852 * 1853 * See also: 1854 * drm_dp_mst_topology_get_port() 1855 * drm_dp_mst_topology_put_port() 1856 * 1857 * Returns: 1858 * * 1: A topology reference was grabbed successfully 1859 * * 0: @port is no longer in the topology, no reference was grabbed 1860 */ 1861 static int __must_check 1862 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port) 1863 { 1864 int ret; 1865 1866 topology_ref_history_lock(port->mgr); 1867 ret = kref_get_unless_zero(&port->topology_kref); 1868 if (ret) { 1869 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1870 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1871 } 1872 1873 topology_ref_history_unlock(port->mgr); 1874 return ret; 1875 } 1876 1877 /** 1878 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port 1879 * @port: The &struct drm_dp_mst_port to increment the topology refcount of 1880 * 1881 * Increments &drm_dp_mst_port.topology_refcount without checking whether or 1882 * not it's already reached 0. This is only valid to use in scenarios where 1883 * you are already guaranteed to have at least one active topology reference 1884 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used. 1885 * 1886 * See also: 1887 * drm_dp_mst_topology_try_get_port() 1888 * drm_dp_mst_topology_put_port() 1889 */ 1890 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port) 1891 { 1892 topology_ref_history_lock(port->mgr); 1893 1894 WARN_ON(kref_read(&port->topology_kref) == 0); 1895 kref_get(&port->topology_kref); 1896 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1897 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1898 1899 topology_ref_history_unlock(port->mgr); 1900 } 1901 1902 /** 1903 * drm_dp_mst_topology_put_port() - release a topology reference to a port 1904 * @port: The &struct drm_dp_mst_port to release the topology reference from 1905 * 1906 * Releases a topology reference from @port by decrementing 1907 * &drm_dp_mst_port.topology_kref. 1908 * 1909 * See also: 1910 * drm_dp_mst_topology_try_get_port() 1911 * drm_dp_mst_topology_get_port() 1912 */ 1913 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port) 1914 { 1915 topology_ref_history_lock(port->mgr); 1916 1917 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1); 1918 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT); 1919 1920 topology_ref_history_unlock(port->mgr); 1921 kref_put(&port->topology_kref, drm_dp_destroy_port); 1922 } 1923 1924 static struct drm_dp_mst_branch * 1925 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb, 1926 struct drm_dp_mst_branch *to_find) 1927 { 1928 struct drm_dp_mst_port *port; 1929 struct drm_dp_mst_branch *rmstb; 1930 1931 if (to_find == mstb) 1932 return mstb; 1933 1934 list_for_each_entry(port, &mstb->ports, next) { 1935 if (port->mstb) { 1936 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1937 port->mstb, to_find); 1938 if (rmstb) 1939 return rmstb; 1940 } 1941 } 1942 return NULL; 1943 } 1944 1945 static struct drm_dp_mst_branch * 1946 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr, 1947 struct drm_dp_mst_branch *mstb) 1948 { 1949 struct drm_dp_mst_branch *rmstb = NULL; 1950 1951 mutex_lock(&mgr->lock); 1952 if (mgr->mst_primary) { 1953 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1954 mgr->mst_primary, mstb); 1955 1956 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb)) 1957 rmstb = NULL; 1958 } 1959 mutex_unlock(&mgr->lock); 1960 return rmstb; 1961 } 1962 1963 static struct drm_dp_mst_port * 1964 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb, 1965 struct drm_dp_mst_port *to_find) 1966 { 1967 struct drm_dp_mst_port *port, *mport; 1968 1969 list_for_each_entry(port, &mstb->ports, next) { 1970 if (port == to_find) 1971 return port; 1972 1973 if (port->mstb) { 1974 mport = drm_dp_mst_topology_get_port_validated_locked( 1975 port->mstb, to_find); 1976 if (mport) 1977 return mport; 1978 } 1979 } 1980 return NULL; 1981 } 1982 1983 static struct drm_dp_mst_port * 1984 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr, 1985 struct drm_dp_mst_port *port) 1986 { 1987 struct drm_dp_mst_port *rport = NULL; 1988 1989 mutex_lock(&mgr->lock); 1990 if (mgr->mst_primary) { 1991 rport = drm_dp_mst_topology_get_port_validated_locked( 1992 mgr->mst_primary, port); 1993 1994 if (rport && !drm_dp_mst_topology_try_get_port(rport)) 1995 rport = NULL; 1996 } 1997 mutex_unlock(&mgr->lock); 1998 return rport; 1999 } 2000 2001 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num) 2002 { 2003 struct drm_dp_mst_port *port; 2004 int ret; 2005 2006 list_for_each_entry(port, &mstb->ports, next) { 2007 if (port->port_num == port_num) { 2008 ret = drm_dp_mst_topology_try_get_port(port); 2009 return ret ? port : NULL; 2010 } 2011 } 2012 2013 return NULL; 2014 } 2015 2016 /* 2017 * calculate a new RAD for this MST branch device 2018 * if parent has an LCT of 2 then it has 1 nibble of RAD, 2019 * if parent has an LCT of 3 then it has 2 nibbles of RAD, 2020 */ 2021 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port, 2022 u8 *rad) 2023 { 2024 int parent_lct = port->parent->lct; 2025 int shift = 4; 2026 int idx = (parent_lct - 1) / 2; 2027 2028 if (parent_lct > 1) { 2029 memcpy(rad, port->parent->rad, idx + 1); 2030 shift = (parent_lct % 2) ? 4 : 0; 2031 } else 2032 rad[0] = 0; 2033 2034 rad[idx] |= port->port_num << shift; 2035 return parent_lct + 1; 2036 } 2037 2038 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs) 2039 { 2040 switch (pdt) { 2041 case DP_PEER_DEVICE_DP_LEGACY_CONV: 2042 case DP_PEER_DEVICE_SST_SINK: 2043 return true; 2044 case DP_PEER_DEVICE_MST_BRANCHING: 2045 /* For sst branch device */ 2046 if (!mcs) 2047 return true; 2048 2049 return false; 2050 } 2051 return true; 2052 } 2053 2054 static int 2055 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt, 2056 bool new_mcs) 2057 { 2058 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2059 struct drm_dp_mst_branch *mstb; 2060 u8 rad[8], lct; 2061 int ret = 0; 2062 2063 if (port->pdt == new_pdt && port->mcs == new_mcs) 2064 return 0; 2065 2066 /* Teardown the old pdt, if there is one */ 2067 if (port->pdt != DP_PEER_DEVICE_NONE) { 2068 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2069 /* 2070 * If the new PDT would also have an i2c bus, 2071 * don't bother with reregistering it 2072 */ 2073 if (new_pdt != DP_PEER_DEVICE_NONE && 2074 drm_dp_mst_is_end_device(new_pdt, new_mcs)) { 2075 port->pdt = new_pdt; 2076 port->mcs = new_mcs; 2077 return 0; 2078 } 2079 2080 /* remove i2c over sideband */ 2081 drm_dp_mst_unregister_i2c_bus(port); 2082 } else { 2083 mutex_lock(&mgr->lock); 2084 drm_dp_mst_topology_put_mstb(port->mstb); 2085 port->mstb = NULL; 2086 mutex_unlock(&mgr->lock); 2087 } 2088 } 2089 2090 port->pdt = new_pdt; 2091 port->mcs = new_mcs; 2092 2093 if (port->pdt != DP_PEER_DEVICE_NONE) { 2094 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2095 /* add i2c over sideband */ 2096 ret = drm_dp_mst_register_i2c_bus(port); 2097 } else { 2098 lct = drm_dp_calculate_rad(port, rad); 2099 mstb = drm_dp_add_mst_branch_device(lct, rad); 2100 if (!mstb) { 2101 ret = -ENOMEM; 2102 drm_err(mgr->dev, "Failed to create MSTB for port %p", port); 2103 goto out; 2104 } 2105 2106 mutex_lock(&mgr->lock); 2107 port->mstb = mstb; 2108 mstb->mgr = port->mgr; 2109 mstb->port_parent = port; 2110 2111 /* 2112 * Make sure this port's memory allocation stays 2113 * around until its child MSTB releases it 2114 */ 2115 drm_dp_mst_get_port_malloc(port); 2116 mutex_unlock(&mgr->lock); 2117 2118 /* And make sure we send a link address for this */ 2119 ret = 1; 2120 } 2121 } 2122 2123 out: 2124 if (ret < 0) 2125 port->pdt = DP_PEER_DEVICE_NONE; 2126 return ret; 2127 } 2128 2129 /** 2130 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband 2131 * @aux: Fake sideband AUX CH 2132 * @offset: address of the (first) register to read 2133 * @buffer: buffer to store the register values 2134 * @size: number of bytes in @buffer 2135 * 2136 * Performs the same functionality for remote devices via 2137 * sideband messaging as drm_dp_dpcd_read() does for local 2138 * devices via actual AUX CH. 2139 * 2140 * Return: Number of bytes read, or negative error code on failure. 2141 */ 2142 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux, 2143 unsigned int offset, void *buffer, size_t size) 2144 { 2145 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2146 aux); 2147 2148 return drm_dp_send_dpcd_read(port->mgr, port, 2149 offset, size, buffer); 2150 } 2151 2152 /** 2153 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband 2154 * @aux: Fake sideband AUX CH 2155 * @offset: address of the (first) register to write 2156 * @buffer: buffer containing the values to write 2157 * @size: number of bytes in @buffer 2158 * 2159 * Performs the same functionality for remote devices via 2160 * sideband messaging as drm_dp_dpcd_write() does for local 2161 * devices via actual AUX CH. 2162 * 2163 * Return: number of bytes written on success, negative error code on failure. 2164 */ 2165 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux, 2166 unsigned int offset, void *buffer, size_t size) 2167 { 2168 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2169 aux); 2170 2171 return drm_dp_send_dpcd_write(port->mgr, port, 2172 offset, size, buffer); 2173 } 2174 2175 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid) 2176 { 2177 int ret = 0; 2178 2179 memcpy(mstb->guid, guid, 16); 2180 2181 if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) { 2182 if (mstb->port_parent) { 2183 ret = drm_dp_send_dpcd_write(mstb->mgr, 2184 mstb->port_parent, 2185 DP_GUID, 16, mstb->guid); 2186 } else { 2187 ret = drm_dp_dpcd_write(mstb->mgr->aux, 2188 DP_GUID, mstb->guid, 16); 2189 } 2190 } 2191 2192 if (ret < 16 && ret > 0) 2193 return -EPROTO; 2194 2195 return ret == 16 ? 0 : ret; 2196 } 2197 2198 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb, 2199 int pnum, 2200 char *proppath, 2201 size_t proppath_size) 2202 { 2203 int i; 2204 char temp[8]; 2205 2206 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id); 2207 for (i = 0; i < (mstb->lct - 1); i++) { 2208 int shift = (i % 2) ? 0 : 4; 2209 int port_num = (mstb->rad[i / 2] >> shift) & 0xf; 2210 2211 snprintf(temp, sizeof(temp), "-%d", port_num); 2212 strlcat(proppath, temp, proppath_size); 2213 } 2214 snprintf(temp, sizeof(temp), "-%d", pnum); 2215 strlcat(proppath, temp, proppath_size); 2216 } 2217 2218 /** 2219 * drm_dp_mst_connector_late_register() - Late MST connector registration 2220 * @connector: The MST connector 2221 * @port: The MST port for this connector 2222 * 2223 * Helper to register the remote aux device for this MST port. Drivers should 2224 * call this from their mst connector's late_register hook to enable MST aux 2225 * devices. 2226 * 2227 * Return: 0 on success, negative error code on failure. 2228 */ 2229 int drm_dp_mst_connector_late_register(struct drm_connector *connector, 2230 struct drm_dp_mst_port *port) 2231 { 2232 drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n", 2233 port->aux.name, connector->kdev->kobj.name); 2234 2235 port->aux.dev = connector->kdev; 2236 return drm_dp_aux_register_devnode(&port->aux); 2237 } 2238 EXPORT_SYMBOL(drm_dp_mst_connector_late_register); 2239 2240 /** 2241 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration 2242 * @connector: The MST connector 2243 * @port: The MST port for this connector 2244 * 2245 * Helper to unregister the remote aux device for this MST port, registered by 2246 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst 2247 * connector's early_unregister hook. 2248 */ 2249 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector, 2250 struct drm_dp_mst_port *port) 2251 { 2252 drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n", 2253 port->aux.name, connector->kdev->kobj.name); 2254 drm_dp_aux_unregister_devnode(&port->aux); 2255 } 2256 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister); 2257 2258 static void 2259 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb, 2260 struct drm_dp_mst_port *port) 2261 { 2262 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2263 char proppath[255]; 2264 int ret; 2265 2266 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath)); 2267 port->connector = mgr->cbs->add_connector(mgr, port, proppath); 2268 if (!port->connector) { 2269 ret = -ENOMEM; 2270 goto error; 2271 } 2272 2273 if (port->pdt != DP_PEER_DEVICE_NONE && 2274 drm_dp_mst_is_end_device(port->pdt, port->mcs) && 2275 port->port_num >= DP_MST_LOGICAL_PORT_0) 2276 port->cached_edid = drm_edid_read_ddc(port->connector, 2277 &port->aux.ddc); 2278 2279 drm_connector_register(port->connector); 2280 return; 2281 2282 error: 2283 drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret); 2284 } 2285 2286 /* 2287 * Drop a topology reference, and unlink the port from the in-memory topology 2288 * layout 2289 */ 2290 static void 2291 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr, 2292 struct drm_dp_mst_port *port) 2293 { 2294 mutex_lock(&mgr->lock); 2295 port->parent->num_ports--; 2296 list_del(&port->next); 2297 mutex_unlock(&mgr->lock); 2298 drm_dp_mst_topology_put_port(port); 2299 } 2300 2301 static struct drm_dp_mst_port * 2302 drm_dp_mst_add_port(struct drm_device *dev, 2303 struct drm_dp_mst_topology_mgr *mgr, 2304 struct drm_dp_mst_branch *mstb, u8 port_number) 2305 { 2306 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL); 2307 2308 if (!port) 2309 return NULL; 2310 2311 kref_init(&port->topology_kref); 2312 kref_init(&port->malloc_kref); 2313 port->parent = mstb; 2314 port->port_num = port_number; 2315 port->mgr = mgr; 2316 port->aux.name = "DPMST"; 2317 port->aux.dev = dev->dev; 2318 port->aux.is_remote = true; 2319 2320 /* initialize the MST downstream port's AUX crc work queue */ 2321 port->aux.drm_dev = dev; 2322 drm_dp_remote_aux_init(&port->aux); 2323 2324 /* 2325 * Make sure the memory allocation for our parent branch stays 2326 * around until our own memory allocation is released 2327 */ 2328 drm_dp_mst_get_mstb_malloc(mstb); 2329 2330 return port; 2331 } 2332 2333 static int 2334 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb, 2335 struct drm_device *dev, 2336 struct drm_dp_link_addr_reply_port *port_msg) 2337 { 2338 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2339 struct drm_dp_mst_port *port; 2340 int old_ddps = 0, ret; 2341 u8 new_pdt = DP_PEER_DEVICE_NONE; 2342 bool new_mcs = 0; 2343 bool created = false, send_link_addr = false, changed = false; 2344 2345 port = drm_dp_get_port(mstb, port_msg->port_number); 2346 if (!port) { 2347 port = drm_dp_mst_add_port(dev, mgr, mstb, 2348 port_msg->port_number); 2349 if (!port) 2350 return -ENOMEM; 2351 created = true; 2352 changed = true; 2353 } else if (!port->input && port_msg->input_port && port->connector) { 2354 /* Since port->connector can't be changed here, we create a 2355 * new port if input_port changes from 0 to 1 2356 */ 2357 drm_dp_mst_topology_unlink_port(mgr, port); 2358 drm_dp_mst_topology_put_port(port); 2359 port = drm_dp_mst_add_port(dev, mgr, mstb, 2360 port_msg->port_number); 2361 if (!port) 2362 return -ENOMEM; 2363 changed = true; 2364 created = true; 2365 } else if (port->input && !port_msg->input_port) { 2366 changed = true; 2367 } else if (port->connector) { 2368 /* We're updating a port that's exposed to userspace, so do it 2369 * under lock 2370 */ 2371 drm_modeset_lock(&mgr->base.lock, NULL); 2372 2373 old_ddps = port->ddps; 2374 changed = port->ddps != port_msg->ddps || 2375 (port->ddps && 2376 (port->ldps != port_msg->legacy_device_plug_status || 2377 port->dpcd_rev != port_msg->dpcd_revision || 2378 port->mcs != port_msg->mcs || 2379 port->pdt != port_msg->peer_device_type || 2380 port->num_sdp_stream_sinks != 2381 port_msg->num_sdp_stream_sinks)); 2382 } 2383 2384 port->input = port_msg->input_port; 2385 if (!port->input) 2386 new_pdt = port_msg->peer_device_type; 2387 new_mcs = port_msg->mcs; 2388 port->ddps = port_msg->ddps; 2389 port->ldps = port_msg->legacy_device_plug_status; 2390 port->dpcd_rev = port_msg->dpcd_revision; 2391 port->num_sdp_streams = port_msg->num_sdp_streams; 2392 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks; 2393 2394 /* manage mstb port lists with mgr lock - take a reference 2395 for this list */ 2396 if (created) { 2397 mutex_lock(&mgr->lock); 2398 drm_dp_mst_topology_get_port(port); 2399 list_add(&port->next, &mstb->ports); 2400 mstb->num_ports++; 2401 mutex_unlock(&mgr->lock); 2402 } 2403 2404 /* 2405 * Reprobe PBN caps on both hotplug, and when re-probing the link 2406 * for our parent mstb 2407 */ 2408 if (old_ddps != port->ddps || !created) { 2409 if (port->ddps && !port->input) { 2410 ret = drm_dp_send_enum_path_resources(mgr, mstb, 2411 port); 2412 if (ret == 1) 2413 changed = true; 2414 } else { 2415 port->full_pbn = 0; 2416 } 2417 } 2418 2419 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2420 if (ret == 1) { 2421 send_link_addr = true; 2422 } else if (ret < 0) { 2423 drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret); 2424 goto fail; 2425 } 2426 2427 /* 2428 * If this port wasn't just created, then we're reprobing because 2429 * we're coming out of suspend. In this case, always resend the link 2430 * address if there's an MSTB on this port 2431 */ 2432 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 2433 port->mcs) 2434 send_link_addr = true; 2435 2436 if (port->connector) 2437 drm_modeset_unlock(&mgr->base.lock); 2438 else if (!port->input) 2439 drm_dp_mst_port_add_connector(mstb, port); 2440 2441 if (send_link_addr && port->mstb) { 2442 ret = drm_dp_send_link_address(mgr, port->mstb); 2443 if (ret == 1) /* MSTB below us changed */ 2444 changed = true; 2445 else if (ret < 0) 2446 goto fail_put; 2447 } 2448 2449 /* put reference to this port */ 2450 drm_dp_mst_topology_put_port(port); 2451 return changed; 2452 2453 fail: 2454 drm_dp_mst_topology_unlink_port(mgr, port); 2455 if (port->connector) 2456 drm_modeset_unlock(&mgr->base.lock); 2457 fail_put: 2458 drm_dp_mst_topology_put_port(port); 2459 return ret; 2460 } 2461 2462 static int 2463 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb, 2464 struct drm_dp_connection_status_notify *conn_stat) 2465 { 2466 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2467 struct drm_dp_mst_port *port; 2468 int old_ddps, ret; 2469 u8 new_pdt; 2470 bool new_mcs; 2471 bool dowork = false, create_connector = false; 2472 2473 port = drm_dp_get_port(mstb, conn_stat->port_number); 2474 if (!port) 2475 return 0; 2476 2477 if (port->connector) { 2478 if (!port->input && conn_stat->input_port) { 2479 /* 2480 * We can't remove a connector from an already exposed 2481 * port, so just throw the port out and make sure we 2482 * reprobe the link address of it's parent MSTB 2483 */ 2484 drm_dp_mst_topology_unlink_port(mgr, port); 2485 mstb->link_address_sent = false; 2486 dowork = true; 2487 goto out; 2488 } 2489 2490 /* Locking is only needed if the port's exposed to userspace */ 2491 drm_modeset_lock(&mgr->base.lock, NULL); 2492 } else if (port->input && !conn_stat->input_port) { 2493 create_connector = true; 2494 /* Reprobe link address so we get num_sdp_streams */ 2495 mstb->link_address_sent = false; 2496 dowork = true; 2497 } 2498 2499 old_ddps = port->ddps; 2500 port->input = conn_stat->input_port; 2501 port->ldps = conn_stat->legacy_device_plug_status; 2502 port->ddps = conn_stat->displayport_device_plug_status; 2503 2504 if (old_ddps != port->ddps) { 2505 if (port->ddps && !port->input) 2506 drm_dp_send_enum_path_resources(mgr, mstb, port); 2507 else 2508 port->full_pbn = 0; 2509 } 2510 2511 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type; 2512 new_mcs = conn_stat->message_capability_status; 2513 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2514 if (ret == 1) { 2515 dowork = true; 2516 } else if (ret < 0) { 2517 drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret); 2518 dowork = false; 2519 } 2520 2521 if (port->connector) 2522 drm_modeset_unlock(&mgr->base.lock); 2523 else if (create_connector) 2524 drm_dp_mst_port_add_connector(mstb, port); 2525 2526 out: 2527 drm_dp_mst_topology_put_port(port); 2528 return dowork; 2529 } 2530 2531 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr, 2532 u8 lct, u8 *rad) 2533 { 2534 struct drm_dp_mst_branch *mstb; 2535 struct drm_dp_mst_port *port; 2536 int i, ret; 2537 /* find the port by iterating down */ 2538 2539 mutex_lock(&mgr->lock); 2540 mstb = mgr->mst_primary; 2541 2542 if (!mstb) 2543 goto out; 2544 2545 for (i = 0; i < lct - 1; i++) { 2546 int shift = (i % 2) ? 0 : 4; 2547 int port_num = (rad[i / 2] >> shift) & 0xf; 2548 2549 list_for_each_entry(port, &mstb->ports, next) { 2550 if (port->port_num == port_num) { 2551 mstb = port->mstb; 2552 if (!mstb) { 2553 drm_err(mgr->dev, 2554 "failed to lookup MSTB with lct %d, rad %02x\n", 2555 lct, rad[0]); 2556 goto out; 2557 } 2558 2559 break; 2560 } 2561 } 2562 } 2563 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2564 if (!ret) 2565 mstb = NULL; 2566 out: 2567 mutex_unlock(&mgr->lock); 2568 return mstb; 2569 } 2570 2571 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper( 2572 struct drm_dp_mst_branch *mstb, 2573 const uint8_t *guid) 2574 { 2575 struct drm_dp_mst_branch *found_mstb; 2576 struct drm_dp_mst_port *port; 2577 2578 if (!mstb) 2579 return NULL; 2580 2581 if (memcmp(mstb->guid, guid, 16) == 0) 2582 return mstb; 2583 2584 2585 list_for_each_entry(port, &mstb->ports, next) { 2586 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid); 2587 2588 if (found_mstb) 2589 return found_mstb; 2590 } 2591 2592 return NULL; 2593 } 2594 2595 static struct drm_dp_mst_branch * 2596 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr, 2597 const uint8_t *guid) 2598 { 2599 struct drm_dp_mst_branch *mstb; 2600 int ret; 2601 2602 /* find the port by iterating down */ 2603 mutex_lock(&mgr->lock); 2604 2605 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid); 2606 if (mstb) { 2607 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2608 if (!ret) 2609 mstb = NULL; 2610 } 2611 2612 mutex_unlock(&mgr->lock); 2613 return mstb; 2614 } 2615 2616 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2617 struct drm_dp_mst_branch *mstb) 2618 { 2619 struct drm_dp_mst_port *port; 2620 int ret; 2621 bool changed = false; 2622 2623 if (!mstb->link_address_sent) { 2624 ret = drm_dp_send_link_address(mgr, mstb); 2625 if (ret == 1) 2626 changed = true; 2627 else if (ret < 0) 2628 return ret; 2629 } 2630 2631 list_for_each_entry(port, &mstb->ports, next) { 2632 if (port->input || !port->ddps || !port->mstb) 2633 continue; 2634 2635 ret = drm_dp_check_and_send_link_address(mgr, port->mstb); 2636 if (ret == 1) 2637 changed = true; 2638 else if (ret < 0) 2639 return ret; 2640 } 2641 2642 return changed; 2643 } 2644 2645 static void drm_dp_mst_link_probe_work(struct work_struct *work) 2646 { 2647 struct drm_dp_mst_topology_mgr *mgr = 2648 container_of(work, struct drm_dp_mst_topology_mgr, work); 2649 struct drm_device *dev = mgr->dev; 2650 struct drm_dp_mst_branch *mstb; 2651 int ret; 2652 bool clear_payload_id_table; 2653 2654 mutex_lock(&mgr->probe_lock); 2655 2656 mutex_lock(&mgr->lock); 2657 clear_payload_id_table = !mgr->payload_id_table_cleared; 2658 mgr->payload_id_table_cleared = true; 2659 2660 mstb = mgr->mst_primary; 2661 if (mstb) { 2662 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2663 if (!ret) 2664 mstb = NULL; 2665 } 2666 mutex_unlock(&mgr->lock); 2667 if (!mstb) { 2668 mutex_unlock(&mgr->probe_lock); 2669 return; 2670 } 2671 2672 /* 2673 * Certain branch devices seem to incorrectly report an available_pbn 2674 * of 0 on downstream sinks, even after clearing the 2675 * DP_PAYLOAD_ALLOCATE_* registers in 2676 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C 2677 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make 2678 * things work again. 2679 */ 2680 if (clear_payload_id_table) { 2681 drm_dbg_kms(dev, "Clearing payload ID table\n"); 2682 drm_dp_send_clear_payload_id_table(mgr, mstb); 2683 } 2684 2685 ret = drm_dp_check_and_send_link_address(mgr, mstb); 2686 drm_dp_mst_topology_put_mstb(mstb); 2687 2688 mutex_unlock(&mgr->probe_lock); 2689 if (ret > 0) 2690 drm_kms_helper_hotplug_event(dev); 2691 } 2692 2693 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 2694 u8 *guid) 2695 { 2696 u64 salt; 2697 2698 if (memchr_inv(guid, 0, 16)) 2699 return true; 2700 2701 salt = get_jiffies_64(); 2702 2703 memcpy(&guid[0], &salt, sizeof(u64)); 2704 memcpy(&guid[8], &salt, sizeof(u64)); 2705 2706 return false; 2707 } 2708 2709 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, 2710 u8 port_num, u32 offset, u8 num_bytes) 2711 { 2712 struct drm_dp_sideband_msg_req_body req; 2713 2714 req.req_type = DP_REMOTE_DPCD_READ; 2715 req.u.dpcd_read.port_number = port_num; 2716 req.u.dpcd_read.dpcd_address = offset; 2717 req.u.dpcd_read.num_bytes = num_bytes; 2718 drm_dp_encode_sideband_req(&req, msg); 2719 } 2720 2721 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr, 2722 bool up, u8 *msg, int len) 2723 { 2724 int ret; 2725 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE; 2726 int tosend, total, offset; 2727 int retries = 0; 2728 2729 retry: 2730 total = len; 2731 offset = 0; 2732 do { 2733 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total); 2734 2735 ret = drm_dp_dpcd_write(mgr->aux, regbase + offset, 2736 &msg[offset], 2737 tosend); 2738 if (ret != tosend) { 2739 if (ret == -EIO && retries < 5) { 2740 retries++; 2741 goto retry; 2742 } 2743 drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret); 2744 2745 return -EIO; 2746 } 2747 offset += tosend; 2748 total -= tosend; 2749 } while (total > 0); 2750 return 0; 2751 } 2752 2753 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr, 2754 struct drm_dp_sideband_msg_tx *txmsg) 2755 { 2756 struct drm_dp_mst_branch *mstb = txmsg->dst; 2757 u8 req_type; 2758 2759 req_type = txmsg->msg[0] & 0x7f; 2760 if (req_type == DP_CONNECTION_STATUS_NOTIFY || 2761 req_type == DP_RESOURCE_STATUS_NOTIFY || 2762 req_type == DP_CLEAR_PAYLOAD_ID_TABLE) 2763 hdr->broadcast = 1; 2764 else 2765 hdr->broadcast = 0; 2766 hdr->path_msg = txmsg->path_msg; 2767 if (hdr->broadcast) { 2768 hdr->lct = 1; 2769 hdr->lcr = 6; 2770 } else { 2771 hdr->lct = mstb->lct; 2772 hdr->lcr = mstb->lct - 1; 2773 } 2774 2775 memcpy(hdr->rad, mstb->rad, hdr->lct / 2); 2776 2777 return 0; 2778 } 2779 /* 2780 * process a single block of the next message in the sideband queue 2781 */ 2782 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr, 2783 struct drm_dp_sideband_msg_tx *txmsg, 2784 bool up) 2785 { 2786 u8 chunk[48]; 2787 struct drm_dp_sideband_msg_hdr hdr; 2788 int len, space, idx, tosend; 2789 int ret; 2790 2791 if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 2792 return 0; 2793 2794 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr)); 2795 2796 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) 2797 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND; 2798 2799 /* make hdr from dst mst */ 2800 ret = set_hdr_from_dst_qlock(&hdr, txmsg); 2801 if (ret < 0) 2802 return ret; 2803 2804 /* amount left to send in this message */ 2805 len = txmsg->cur_len - txmsg->cur_offset; 2806 2807 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */ 2808 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr); 2809 2810 tosend = min(len, space); 2811 if (len == txmsg->cur_len) 2812 hdr.somt = 1; 2813 if (space >= len) 2814 hdr.eomt = 1; 2815 2816 2817 hdr.msg_len = tosend + 1; 2818 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx); 2819 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend); 2820 /* add crc at end */ 2821 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend); 2822 idx += tosend + 1; 2823 2824 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx); 2825 if (ret) { 2826 if (drm_debug_enabled(DRM_UT_DP)) { 2827 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 2828 2829 drm_printf(&p, "sideband msg failed to send\n"); 2830 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2831 } 2832 return ret; 2833 } 2834 2835 txmsg->cur_offset += tosend; 2836 if (txmsg->cur_offset == txmsg->cur_len) { 2837 txmsg->state = DRM_DP_SIDEBAND_TX_SENT; 2838 return 1; 2839 } 2840 return 0; 2841 } 2842 2843 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr) 2844 { 2845 struct drm_dp_sideband_msg_tx *txmsg; 2846 int ret; 2847 2848 WARN_ON(!mutex_is_locked(&mgr->qlock)); 2849 2850 /* construct a chunk from the first msg in the tx_msg queue */ 2851 if (list_empty(&mgr->tx_msg_downq)) 2852 return; 2853 2854 txmsg = list_first_entry(&mgr->tx_msg_downq, 2855 struct drm_dp_sideband_msg_tx, next); 2856 ret = process_single_tx_qlock(mgr, txmsg, false); 2857 if (ret < 0) { 2858 drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret); 2859 list_del(&txmsg->next); 2860 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 2861 wake_up_all(&mgr->tx_waitq); 2862 } 2863 } 2864 2865 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr, 2866 struct drm_dp_sideband_msg_tx *txmsg) 2867 { 2868 mutex_lock(&mgr->qlock); 2869 list_add_tail(&txmsg->next, &mgr->tx_msg_downq); 2870 2871 if (drm_debug_enabled(DRM_UT_DP)) { 2872 struct drm_printer p = drm_debug_printer(DBG_PREFIX); 2873 2874 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2875 } 2876 2877 if (list_is_singular(&mgr->tx_msg_downq)) 2878 process_single_down_tx_qlock(mgr); 2879 mutex_unlock(&mgr->qlock); 2880 } 2881 2882 static void 2883 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr, 2884 struct drm_dp_link_address_ack_reply *reply) 2885 { 2886 struct drm_dp_link_addr_reply_port *port_reply; 2887 int i; 2888 2889 for (i = 0; i < reply->nports; i++) { 2890 port_reply = &reply->ports[i]; 2891 drm_dbg_kms(mgr->dev, 2892 "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n", 2893 i, 2894 port_reply->input_port, 2895 port_reply->peer_device_type, 2896 port_reply->port_number, 2897 port_reply->dpcd_revision, 2898 port_reply->mcs, 2899 port_reply->ddps, 2900 port_reply->legacy_device_plug_status, 2901 port_reply->num_sdp_streams, 2902 port_reply->num_sdp_stream_sinks); 2903 } 2904 } 2905 2906 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2907 struct drm_dp_mst_branch *mstb) 2908 { 2909 struct drm_dp_sideband_msg_tx *txmsg; 2910 struct drm_dp_link_address_ack_reply *reply; 2911 struct drm_dp_mst_port *port, *tmp; 2912 int i, ret, port_mask = 0; 2913 bool changed = false; 2914 2915 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 2916 if (!txmsg) 2917 return -ENOMEM; 2918 2919 txmsg->dst = mstb; 2920 build_link_address(txmsg); 2921 2922 mstb->link_address_sent = true; 2923 drm_dp_queue_down_tx(mgr, txmsg); 2924 2925 /* FIXME: Actually do some real error handling here */ 2926 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 2927 if (ret <= 0) { 2928 drm_err(mgr->dev, "Sending link address failed with %d\n", ret); 2929 goto out; 2930 } 2931 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 2932 drm_err(mgr->dev, "link address NAK received\n"); 2933 ret = -EIO; 2934 goto out; 2935 } 2936 2937 reply = &txmsg->reply.u.link_addr; 2938 drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports); 2939 drm_dp_dump_link_address(mgr, reply); 2940 2941 ret = drm_dp_check_mstb_guid(mstb, reply->guid); 2942 if (ret) { 2943 char buf[64]; 2944 2945 drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf)); 2946 drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret); 2947 goto out; 2948 } 2949 2950 for (i = 0; i < reply->nports; i++) { 2951 port_mask |= BIT(reply->ports[i].port_number); 2952 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev, 2953 &reply->ports[i]); 2954 if (ret == 1) 2955 changed = true; 2956 else if (ret < 0) 2957 goto out; 2958 } 2959 2960 /* Prune any ports that are currently a part of mstb in our in-memory 2961 * topology, but were not seen in this link address. Usually this 2962 * means that they were removed while the topology was out of sync, 2963 * e.g. during suspend/resume 2964 */ 2965 mutex_lock(&mgr->lock); 2966 list_for_each_entry_safe(port, tmp, &mstb->ports, next) { 2967 if (port_mask & BIT(port->port_num)) 2968 continue; 2969 2970 drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n", 2971 port->port_num); 2972 list_del(&port->next); 2973 drm_dp_mst_topology_put_port(port); 2974 changed = true; 2975 } 2976 mutex_unlock(&mgr->lock); 2977 2978 out: 2979 if (ret <= 0) 2980 mstb->link_address_sent = false; 2981 kfree(txmsg); 2982 return ret < 0 ? ret : changed; 2983 } 2984 2985 static void 2986 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 2987 struct drm_dp_mst_branch *mstb) 2988 { 2989 struct drm_dp_sideband_msg_tx *txmsg; 2990 int ret; 2991 2992 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 2993 if (!txmsg) 2994 return; 2995 2996 txmsg->dst = mstb; 2997 build_clear_payload_id_table(txmsg); 2998 2999 drm_dp_queue_down_tx(mgr, txmsg); 3000 3001 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3002 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3003 drm_dbg_kms(mgr->dev, "clear payload table id nak received\n"); 3004 3005 kfree(txmsg); 3006 } 3007 3008 static int 3009 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 3010 struct drm_dp_mst_branch *mstb, 3011 struct drm_dp_mst_port *port) 3012 { 3013 struct drm_dp_enum_path_resources_ack_reply *path_res; 3014 struct drm_dp_sideband_msg_tx *txmsg; 3015 int ret; 3016 3017 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3018 if (!txmsg) 3019 return -ENOMEM; 3020 3021 txmsg->dst = mstb; 3022 build_enum_path_resources(txmsg, port->port_num); 3023 3024 drm_dp_queue_down_tx(mgr, txmsg); 3025 3026 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3027 if (ret > 0) { 3028 ret = 0; 3029 path_res = &txmsg->reply.u.path_resources; 3030 3031 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3032 drm_dbg_kms(mgr->dev, "enum path resources nak received\n"); 3033 } else { 3034 if (port->port_num != path_res->port_number) 3035 DRM_ERROR("got incorrect port in response\n"); 3036 3037 drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n", 3038 path_res->port_number, 3039 path_res->full_payload_bw_number, 3040 path_res->avail_payload_bw_number); 3041 3042 /* 3043 * If something changed, make sure we send a 3044 * hotplug 3045 */ 3046 if (port->full_pbn != path_res->full_payload_bw_number || 3047 port->fec_capable != path_res->fec_capable) 3048 ret = 1; 3049 3050 port->full_pbn = path_res->full_payload_bw_number; 3051 port->fec_capable = path_res->fec_capable; 3052 } 3053 } 3054 3055 kfree(txmsg); 3056 return ret; 3057 } 3058 3059 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb) 3060 { 3061 if (!mstb->port_parent) 3062 return NULL; 3063 3064 if (mstb->port_parent->mstb != mstb) 3065 return mstb->port_parent; 3066 3067 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent); 3068 } 3069 3070 /* 3071 * Searches upwards in the topology starting from mstb to try to find the 3072 * closest available parent of mstb that's still connected to the rest of the 3073 * topology. This can be used in order to perform operations like releasing 3074 * payloads, where the branch device which owned the payload may no longer be 3075 * around and thus would require that the payload on the last living relative 3076 * be freed instead. 3077 */ 3078 static struct drm_dp_mst_branch * 3079 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr, 3080 struct drm_dp_mst_branch *mstb, 3081 int *port_num) 3082 { 3083 struct drm_dp_mst_branch *rmstb = NULL; 3084 struct drm_dp_mst_port *found_port; 3085 3086 mutex_lock(&mgr->lock); 3087 if (!mgr->mst_primary) 3088 goto out; 3089 3090 do { 3091 found_port = drm_dp_get_last_connected_port_to_mstb(mstb); 3092 if (!found_port) 3093 break; 3094 3095 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) { 3096 rmstb = found_port->parent; 3097 *port_num = found_port->port_num; 3098 } else { 3099 /* Search again, starting from this parent */ 3100 mstb = found_port->parent; 3101 } 3102 } while (!rmstb); 3103 out: 3104 mutex_unlock(&mgr->lock); 3105 return rmstb; 3106 } 3107 3108 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr, 3109 struct drm_dp_mst_port *port, 3110 int id, 3111 int pbn) 3112 { 3113 struct drm_dp_sideband_msg_tx *txmsg; 3114 struct drm_dp_mst_branch *mstb; 3115 int ret, port_num; 3116 u8 sinks[DRM_DP_MAX_SDP_STREAMS]; 3117 int i; 3118 3119 port_num = port->port_num; 3120 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3121 if (!mstb) { 3122 mstb = drm_dp_get_last_connected_port_and_mstb(mgr, 3123 port->parent, 3124 &port_num); 3125 3126 if (!mstb) 3127 return -EINVAL; 3128 } 3129 3130 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3131 if (!txmsg) { 3132 ret = -ENOMEM; 3133 goto fail_put; 3134 } 3135 3136 for (i = 0; i < port->num_sdp_streams; i++) 3137 sinks[i] = i; 3138 3139 txmsg->dst = mstb; 3140 build_allocate_payload(txmsg, port_num, 3141 id, 3142 pbn, port->num_sdp_streams, sinks); 3143 3144 drm_dp_queue_down_tx(mgr, txmsg); 3145 3146 /* 3147 * FIXME: there is a small chance that between getting the last 3148 * connected mstb and sending the payload message, the last connected 3149 * mstb could also be removed from the topology. In the future, this 3150 * needs to be fixed by restarting the 3151 * drm_dp_get_last_connected_port_and_mstb() search in the event of a 3152 * timeout if the topology is still connected to the system. 3153 */ 3154 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3155 if (ret > 0) { 3156 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3157 ret = -EINVAL; 3158 else 3159 ret = 0; 3160 } 3161 kfree(txmsg); 3162 fail_put: 3163 drm_dp_mst_topology_put_mstb(mstb); 3164 return ret; 3165 } 3166 3167 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr, 3168 struct drm_dp_mst_port *port, bool power_up) 3169 { 3170 struct drm_dp_sideband_msg_tx *txmsg; 3171 int ret; 3172 3173 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3174 if (!port) 3175 return -EINVAL; 3176 3177 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3178 if (!txmsg) { 3179 drm_dp_mst_topology_put_port(port); 3180 return -ENOMEM; 3181 } 3182 3183 txmsg->dst = port->parent; 3184 build_power_updown_phy(txmsg, port->port_num, power_up); 3185 drm_dp_queue_down_tx(mgr, txmsg); 3186 3187 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg); 3188 if (ret > 0) { 3189 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3190 ret = -EINVAL; 3191 else 3192 ret = 0; 3193 } 3194 kfree(txmsg); 3195 drm_dp_mst_topology_put_port(port); 3196 3197 return ret; 3198 } 3199 EXPORT_SYMBOL(drm_dp_send_power_updown_phy); 3200 3201 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr, 3202 struct drm_dp_mst_port *port, 3203 struct drm_dp_query_stream_enc_status_ack_reply *status) 3204 { 3205 struct drm_dp_mst_topology_state *state; 3206 struct drm_dp_mst_atomic_payload *payload; 3207 struct drm_dp_sideband_msg_tx *txmsg; 3208 u8 nonce[7]; 3209 int ret; 3210 3211 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3212 if (!txmsg) 3213 return -ENOMEM; 3214 3215 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3216 if (!port) { 3217 ret = -EINVAL; 3218 goto out_get_port; 3219 } 3220 3221 get_random_bytes(nonce, sizeof(nonce)); 3222 3223 drm_modeset_lock(&mgr->base.lock, NULL); 3224 state = to_drm_dp_mst_topology_state(mgr->base.state); 3225 payload = drm_atomic_get_mst_payload_state(state, port); 3226 3227 /* 3228 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message 3229 * transaction at the MST Branch device directly connected to the 3230 * Source" 3231 */ 3232 txmsg->dst = mgr->mst_primary; 3233 3234 build_query_stream_enc_status(txmsg, payload->vcpi, nonce); 3235 3236 drm_dp_queue_down_tx(mgr, txmsg); 3237 3238 ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg); 3239 if (ret < 0) { 3240 goto out; 3241 } else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3242 drm_dbg_kms(mgr->dev, "query encryption status nak received\n"); 3243 ret = -ENXIO; 3244 goto out; 3245 } 3246 3247 ret = 0; 3248 memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status)); 3249 3250 out: 3251 drm_modeset_unlock(&mgr->base.lock); 3252 drm_dp_mst_topology_put_port(port); 3253 out_get_port: 3254 kfree(txmsg); 3255 return ret; 3256 } 3257 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status); 3258 3259 static int drm_dp_create_payload_at_dfp(struct drm_dp_mst_topology_mgr *mgr, 3260 struct drm_dp_mst_atomic_payload *payload) 3261 { 3262 return drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot, 3263 payload->time_slots); 3264 } 3265 3266 static int drm_dp_create_payload_to_remote(struct drm_dp_mst_topology_mgr *mgr, 3267 struct drm_dp_mst_atomic_payload *payload) 3268 { 3269 int ret; 3270 struct drm_dp_mst_port *port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3271 3272 if (!port) 3273 return -EIO; 3274 3275 ret = drm_dp_payload_send_msg(mgr, port, payload->vcpi, payload->pbn); 3276 drm_dp_mst_topology_put_port(port); 3277 return ret; 3278 } 3279 3280 static void drm_dp_destroy_payload_at_remote_and_dfp(struct drm_dp_mst_topology_mgr *mgr, 3281 struct drm_dp_mst_topology_state *mst_state, 3282 struct drm_dp_mst_atomic_payload *payload) 3283 { 3284 drm_dbg_kms(mgr->dev, "\n"); 3285 3286 /* it's okay for these to fail */ 3287 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE) { 3288 drm_dp_payload_send_msg(mgr, payload->port, payload->vcpi, 0); 3289 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3290 } 3291 3292 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) 3293 drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot, 0); 3294 } 3295 3296 /** 3297 * drm_dp_add_payload_part1() - Execute payload update part 1 3298 * @mgr: Manager to use. 3299 * @mst_state: The MST atomic state 3300 * @payload: The payload to write 3301 * 3302 * Determines the starting time slot for the given payload, and programs the VCPI for this payload 3303 * into the DPCD of DPRX. After calling this, the driver should generate ACT and payload packets. 3304 * 3305 * Returns: 0 on success, error code on failure. 3306 */ 3307 int drm_dp_add_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3308 struct drm_dp_mst_topology_state *mst_state, 3309 struct drm_dp_mst_atomic_payload *payload) 3310 { 3311 struct drm_dp_mst_port *port; 3312 int ret; 3313 3314 /* Update mst mgr info */ 3315 if (mgr->payload_count == 0) 3316 mgr->next_start_slot = mst_state->start_slot; 3317 3318 payload->vc_start_slot = mgr->next_start_slot; 3319 3320 mgr->payload_count++; 3321 mgr->next_start_slot += payload->time_slots; 3322 3323 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3324 3325 /* Allocate payload to immediate downstream facing port */ 3326 port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3327 if (!port) { 3328 drm_dbg_kms(mgr->dev, 3329 "VCPI %d for port %p not in topology, not creating a payload to remote\n", 3330 payload->vcpi, payload->port); 3331 return -EIO; 3332 } 3333 3334 ret = drm_dp_create_payload_at_dfp(mgr, payload); 3335 if (ret < 0) { 3336 drm_dbg_kms(mgr->dev, "Failed to create MST payload for port %p: %d\n", 3337 payload->port, ret); 3338 goto put_port; 3339 } 3340 3341 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3342 3343 put_port: 3344 drm_dp_mst_topology_put_port(port); 3345 3346 return ret; 3347 } 3348 EXPORT_SYMBOL(drm_dp_add_payload_part1); 3349 3350 /** 3351 * drm_dp_remove_payload_part1() - Remove an MST payload along the virtual channel 3352 * @mgr: Manager to use. 3353 * @mst_state: The MST atomic state 3354 * @payload: The payload to remove 3355 * 3356 * Removes a payload along the virtual channel if it was successfully allocated. 3357 * After calling this, the driver should set HW to generate ACT and then switch to new 3358 * payload allocation state. 3359 */ 3360 void drm_dp_remove_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3361 struct drm_dp_mst_topology_state *mst_state, 3362 struct drm_dp_mst_atomic_payload *payload) 3363 { 3364 /* Remove remote payload allocation */ 3365 bool send_remove = false; 3366 3367 mutex_lock(&mgr->lock); 3368 send_remove = drm_dp_mst_port_downstream_of_branch(payload->port, mgr->mst_primary); 3369 mutex_unlock(&mgr->lock); 3370 3371 if (send_remove) 3372 drm_dp_destroy_payload_at_remote_and_dfp(mgr, mst_state, payload); 3373 else 3374 drm_dbg_kms(mgr->dev, "Payload for VCPI %d not in topology, not sending remove\n", 3375 payload->vcpi); 3376 3377 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3378 } 3379 EXPORT_SYMBOL(drm_dp_remove_payload_part1); 3380 3381 /** 3382 * drm_dp_remove_payload_part2() - Remove an MST payload locally 3383 * @mgr: Manager to use. 3384 * @mst_state: The MST atomic state 3385 * @old_payload: The payload with its old state 3386 * @new_payload: The payload with its latest state 3387 * 3388 * Updates the starting time slots of all other payloads which would have been shifted towards 3389 * the start of the payload ID table as a result of removing a payload. Driver should call this 3390 * function whenever it removes a payload in its HW. It's independent to the result of payload 3391 * allocation/deallocation at branch devices along the virtual channel. 3392 */ 3393 void drm_dp_remove_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3394 struct drm_dp_mst_topology_state *mst_state, 3395 const struct drm_dp_mst_atomic_payload *old_payload, 3396 struct drm_dp_mst_atomic_payload *new_payload) 3397 { 3398 struct drm_dp_mst_atomic_payload *pos; 3399 3400 /* Remove local payload allocation */ 3401 list_for_each_entry(pos, &mst_state->payloads, next) { 3402 if (pos != new_payload && pos->vc_start_slot > new_payload->vc_start_slot) 3403 pos->vc_start_slot -= old_payload->time_slots; 3404 } 3405 new_payload->vc_start_slot = -1; 3406 3407 mgr->payload_count--; 3408 mgr->next_start_slot -= old_payload->time_slots; 3409 3410 if (new_payload->delete) 3411 drm_dp_mst_put_port_malloc(new_payload->port); 3412 3413 new_payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 3414 } 3415 EXPORT_SYMBOL(drm_dp_remove_payload_part2); 3416 /** 3417 * drm_dp_add_payload_part2() - Execute payload update part 2 3418 * @mgr: Manager to use. 3419 * @state: The global atomic state 3420 * @payload: The payload to update 3421 * 3422 * If @payload was successfully assigned a starting time slot by drm_dp_add_payload_part1(), this 3423 * function will send the sideband messages to finish allocating this payload. 3424 * 3425 * Returns: 0 on success, negative error code on failure. 3426 */ 3427 int drm_dp_add_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3428 struct drm_atomic_state *state, 3429 struct drm_dp_mst_atomic_payload *payload) 3430 { 3431 int ret = 0; 3432 3433 /* Skip failed payloads */ 3434 if (payload->payload_allocation_status != DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) { 3435 drm_dbg_kms(state->dev, "Part 1 of payload creation for %s failed, skipping part 2\n", 3436 payload->port->connector->name); 3437 return -EIO; 3438 } 3439 3440 /* Allocate payload to remote end */ 3441 ret = drm_dp_create_payload_to_remote(mgr, payload); 3442 if (ret < 0) 3443 drm_err(mgr->dev, "Step 2 of creating MST payload for %p failed: %d\n", 3444 payload->port, ret); 3445 else 3446 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE; 3447 3448 return ret; 3449 } 3450 EXPORT_SYMBOL(drm_dp_add_payload_part2); 3451 3452 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 3453 struct drm_dp_mst_port *port, 3454 int offset, int size, u8 *bytes) 3455 { 3456 int ret = 0; 3457 struct drm_dp_sideband_msg_tx *txmsg; 3458 struct drm_dp_mst_branch *mstb; 3459 3460 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3461 if (!mstb) 3462 return -EINVAL; 3463 3464 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3465 if (!txmsg) { 3466 ret = -ENOMEM; 3467 goto fail_put; 3468 } 3469 3470 build_dpcd_read(txmsg, port->port_num, offset, size); 3471 txmsg->dst = port->parent; 3472 3473 drm_dp_queue_down_tx(mgr, txmsg); 3474 3475 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3476 if (ret < 0) 3477 goto fail_free; 3478 3479 if (txmsg->reply.reply_type == 1) { 3480 drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n", 3481 mstb, port->port_num, offset, size); 3482 ret = -EIO; 3483 goto fail_free; 3484 } 3485 3486 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) { 3487 ret = -EPROTO; 3488 goto fail_free; 3489 } 3490 3491 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes, 3492 size); 3493 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret); 3494 3495 fail_free: 3496 kfree(txmsg); 3497 fail_put: 3498 drm_dp_mst_topology_put_mstb(mstb); 3499 3500 return ret; 3501 } 3502 3503 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 3504 struct drm_dp_mst_port *port, 3505 int offset, int size, u8 *bytes) 3506 { 3507 int ret; 3508 struct drm_dp_sideband_msg_tx *txmsg; 3509 struct drm_dp_mst_branch *mstb; 3510 3511 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3512 if (!mstb) 3513 return -EINVAL; 3514 3515 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3516 if (!txmsg) { 3517 ret = -ENOMEM; 3518 goto fail_put; 3519 } 3520 3521 build_dpcd_write(txmsg, port->port_num, offset, size, bytes); 3522 txmsg->dst = mstb; 3523 3524 drm_dp_queue_down_tx(mgr, txmsg); 3525 3526 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3527 if (ret > 0) { 3528 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3529 ret = -EIO; 3530 else 3531 ret = size; 3532 } 3533 3534 kfree(txmsg); 3535 fail_put: 3536 drm_dp_mst_topology_put_mstb(mstb); 3537 return ret; 3538 } 3539 3540 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type) 3541 { 3542 struct drm_dp_sideband_msg_reply_body reply; 3543 3544 reply.reply_type = DP_SIDEBAND_REPLY_ACK; 3545 reply.req_type = req_type; 3546 drm_dp_encode_sideband_reply(&reply, msg); 3547 return 0; 3548 } 3549 3550 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr, 3551 struct drm_dp_mst_branch *mstb, 3552 int req_type, bool broadcast) 3553 { 3554 struct drm_dp_sideband_msg_tx *txmsg; 3555 3556 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3557 if (!txmsg) 3558 return -ENOMEM; 3559 3560 txmsg->dst = mstb; 3561 drm_dp_encode_up_ack_reply(txmsg, req_type); 3562 3563 mutex_lock(&mgr->qlock); 3564 /* construct a chunk from the first msg in the tx_msg queue */ 3565 process_single_tx_qlock(mgr, txmsg, true); 3566 mutex_unlock(&mgr->qlock); 3567 3568 kfree(txmsg); 3569 return 0; 3570 } 3571 3572 /** 3573 * drm_dp_get_vc_payload_bw - get the VC payload BW for an MST link 3574 * @mgr: The &drm_dp_mst_topology_mgr to use 3575 * @link_rate: link rate in 10kbits/s units 3576 * @link_lane_count: lane count 3577 * 3578 * Calculate the total bandwidth of a MultiStream Transport link. The returned 3579 * value is in units of PBNs/(timeslots/1 MTP). This value can be used to 3580 * convert the number of PBNs required for a given stream to the number of 3581 * timeslots this stream requires in each MTP. 3582 * 3583 * Returns the BW / timeslot value in 20.12 fixed point format. 3584 */ 3585 fixed20_12 drm_dp_get_vc_payload_bw(const struct drm_dp_mst_topology_mgr *mgr, 3586 int link_rate, int link_lane_count) 3587 { 3588 int ch_coding_efficiency = 3589 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(link_rate)); 3590 fixed20_12 ret; 3591 3592 if (link_rate == 0 || link_lane_count == 0) 3593 drm_dbg_kms(mgr->dev, "invalid link rate/lane count: (%d / %d)\n", 3594 link_rate, link_lane_count); 3595 3596 /* See DP v2.0 2.6.4.2, 2.7.6.3 VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */ 3597 ret.full = DIV_ROUND_DOWN_ULL(mul_u32_u32(link_rate * link_lane_count, 3598 ch_coding_efficiency), 3599 (1000000ULL * 8 * 5400) >> 12); 3600 3601 return ret; 3602 } 3603 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw); 3604 3605 /** 3606 * drm_dp_read_mst_cap() - check whether or not a sink supports MST 3607 * @aux: The DP AUX channel to use 3608 * @dpcd: A cached copy of the DPCD capabilities for this sink 3609 * 3610 * Returns: %True if the sink supports MST, %false otherwise 3611 */ 3612 bool drm_dp_read_mst_cap(struct drm_dp_aux *aux, 3613 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3614 { 3615 u8 mstm_cap; 3616 3617 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12) 3618 return false; 3619 3620 if (drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &mstm_cap) != 1) 3621 return false; 3622 3623 return mstm_cap & DP_MST_CAP; 3624 } 3625 EXPORT_SYMBOL(drm_dp_read_mst_cap); 3626 3627 /** 3628 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager 3629 * @mgr: manager to set state for 3630 * @mst_state: true to enable MST on this connector - false to disable. 3631 * 3632 * This is called by the driver when it detects an MST capable device plugged 3633 * into a DP MST capable port, or when a DP MST capable device is unplugged. 3634 */ 3635 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state) 3636 { 3637 int ret = 0; 3638 struct drm_dp_mst_branch *mstb = NULL; 3639 3640 mutex_lock(&mgr->lock); 3641 if (mst_state == mgr->mst_state) 3642 goto out_unlock; 3643 3644 mgr->mst_state = mst_state; 3645 /* set the device into MST mode */ 3646 if (mst_state) { 3647 WARN_ON(mgr->mst_primary); 3648 3649 /* get dpcd info */ 3650 ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd); 3651 if (ret < 0) { 3652 drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n", 3653 mgr->aux->name, ret); 3654 goto out_unlock; 3655 } 3656 3657 /* add initial branch device at LCT 1 */ 3658 mstb = drm_dp_add_mst_branch_device(1, NULL); 3659 if (mstb == NULL) { 3660 ret = -ENOMEM; 3661 goto out_unlock; 3662 } 3663 mstb->mgr = mgr; 3664 3665 /* give this the main reference */ 3666 mgr->mst_primary = mstb; 3667 drm_dp_mst_topology_get_mstb(mgr->mst_primary); 3668 3669 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3670 DP_MST_EN | 3671 DP_UP_REQ_EN | 3672 DP_UPSTREAM_IS_SRC); 3673 if (ret < 0) 3674 goto out_unlock; 3675 3676 /* Write reset payload */ 3677 drm_dp_dpcd_write_payload(mgr, 0, 0, 0x3f); 3678 3679 queue_work(system_long_wq, &mgr->work); 3680 3681 ret = 0; 3682 } else { 3683 /* disable MST on the device */ 3684 mstb = mgr->mst_primary; 3685 mgr->mst_primary = NULL; 3686 /* this can fail if the device is gone */ 3687 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0); 3688 ret = 0; 3689 mgr->payload_id_table_cleared = false; 3690 3691 memset(&mgr->down_rep_recv, 0, sizeof(mgr->down_rep_recv)); 3692 memset(&mgr->up_req_recv, 0, sizeof(mgr->up_req_recv)); 3693 } 3694 3695 out_unlock: 3696 mutex_unlock(&mgr->lock); 3697 if (mstb) 3698 drm_dp_mst_topology_put_mstb(mstb); 3699 return ret; 3700 3701 } 3702 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst); 3703 3704 static void 3705 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb) 3706 { 3707 struct drm_dp_mst_port *port; 3708 3709 /* The link address will need to be re-sent on resume */ 3710 mstb->link_address_sent = false; 3711 3712 list_for_each_entry(port, &mstb->ports, next) 3713 if (port->mstb) 3714 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb); 3715 } 3716 3717 /** 3718 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager 3719 * @mgr: manager to suspend 3720 * 3721 * This function tells the MST device that we can't handle UP messages 3722 * anymore. This should stop it from sending any since we are suspended. 3723 */ 3724 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr) 3725 { 3726 mutex_lock(&mgr->lock); 3727 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3728 DP_MST_EN | DP_UPSTREAM_IS_SRC); 3729 mutex_unlock(&mgr->lock); 3730 flush_work(&mgr->up_req_work); 3731 flush_work(&mgr->work); 3732 flush_work(&mgr->delayed_destroy_work); 3733 3734 mutex_lock(&mgr->lock); 3735 if (mgr->mst_state && mgr->mst_primary) 3736 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary); 3737 mutex_unlock(&mgr->lock); 3738 } 3739 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend); 3740 3741 /** 3742 * drm_dp_mst_topology_mgr_resume() - resume the MST manager 3743 * @mgr: manager to resume 3744 * @sync: whether or not to perform topology reprobing synchronously 3745 * 3746 * This will fetch DPCD and see if the device is still there, 3747 * if it is, it will rewrite the MSTM control bits, and return. 3748 * 3749 * If the device fails this returns -1, and the driver should do 3750 * a full MST reprobe, in case we were undocked. 3751 * 3752 * During system resume (where it is assumed that the driver will be calling 3753 * drm_atomic_helper_resume()) this function should be called beforehand with 3754 * @sync set to true. In contexts like runtime resume where the driver is not 3755 * expected to be calling drm_atomic_helper_resume(), this function should be 3756 * called with @sync set to false in order to avoid deadlocking. 3757 * 3758 * Returns: -1 if the MST topology was removed while we were suspended, 0 3759 * otherwise. 3760 */ 3761 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr, 3762 bool sync) 3763 { 3764 int ret; 3765 u8 guid[16]; 3766 3767 mutex_lock(&mgr->lock); 3768 if (!mgr->mst_primary) 3769 goto out_fail; 3770 3771 if (drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd) < 0) { 3772 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3773 goto out_fail; 3774 } 3775 3776 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3777 DP_MST_EN | 3778 DP_UP_REQ_EN | 3779 DP_UPSTREAM_IS_SRC); 3780 if (ret < 0) { 3781 drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n"); 3782 goto out_fail; 3783 } 3784 3785 /* Some hubs forget their guids after they resume */ 3786 ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16); 3787 if (ret != 16) { 3788 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3789 goto out_fail; 3790 } 3791 3792 ret = drm_dp_check_mstb_guid(mgr->mst_primary, guid); 3793 if (ret) { 3794 drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n"); 3795 goto out_fail; 3796 } 3797 3798 /* 3799 * For the final step of resuming the topology, we need to bring the 3800 * state of our in-memory topology back into sync with reality. So, 3801 * restart the probing process as if we're probing a new hub 3802 */ 3803 queue_work(system_long_wq, &mgr->work); 3804 mutex_unlock(&mgr->lock); 3805 3806 if (sync) { 3807 drm_dbg_kms(mgr->dev, 3808 "Waiting for link probe work to finish re-syncing topology...\n"); 3809 flush_work(&mgr->work); 3810 } 3811 3812 return 0; 3813 3814 out_fail: 3815 mutex_unlock(&mgr->lock); 3816 return -1; 3817 } 3818 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume); 3819 3820 static bool 3821 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up, 3822 struct drm_dp_mst_branch **mstb) 3823 { 3824 int len; 3825 u8 replyblock[32]; 3826 int replylen, curreply; 3827 int ret; 3828 u8 hdrlen; 3829 struct drm_dp_sideband_msg_hdr hdr; 3830 struct drm_dp_sideband_msg_rx *msg = 3831 up ? &mgr->up_req_recv : &mgr->down_rep_recv; 3832 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : 3833 DP_SIDEBAND_MSG_DOWN_REP_BASE; 3834 3835 if (!up) 3836 *mstb = NULL; 3837 3838 len = min(mgr->max_dpcd_transaction_bytes, 16); 3839 ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len); 3840 if (ret != len) { 3841 drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret); 3842 return false; 3843 } 3844 3845 ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen); 3846 if (ret == false) { 3847 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 3848 1, replyblock, len, false); 3849 drm_dbg_kms(mgr->dev, "ERROR: failed header\n"); 3850 return false; 3851 } 3852 3853 if (!up) { 3854 /* Caller is responsible for giving back this reference */ 3855 *mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad); 3856 if (!*mstb) { 3857 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct); 3858 return false; 3859 } 3860 } 3861 3862 if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) { 3863 drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]); 3864 return false; 3865 } 3866 3867 replylen = min(msg->curchunk_len, (u8)(len - hdrlen)); 3868 ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen); 3869 if (!ret) { 3870 drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]); 3871 return false; 3872 } 3873 3874 replylen = msg->curchunk_len + msg->curchunk_hdrlen - len; 3875 curreply = len; 3876 while (replylen > 0) { 3877 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16); 3878 ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply, 3879 replyblock, len); 3880 if (ret != len) { 3881 drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n", 3882 len, ret); 3883 return false; 3884 } 3885 3886 ret = drm_dp_sideband_append_payload(msg, replyblock, len); 3887 if (!ret) { 3888 drm_dbg_kms(mgr->dev, "failed to build sideband msg\n"); 3889 return false; 3890 } 3891 3892 curreply += len; 3893 replylen -= len; 3894 } 3895 return true; 3896 } 3897 3898 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr) 3899 { 3900 struct drm_dp_sideband_msg_tx *txmsg; 3901 struct drm_dp_mst_branch *mstb = NULL; 3902 struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv; 3903 3904 if (!drm_dp_get_one_sb_msg(mgr, false, &mstb)) 3905 goto out_clear_reply; 3906 3907 /* Multi-packet message transmission, don't clear the reply */ 3908 if (!msg->have_eomt) 3909 goto out; 3910 3911 /* find the message */ 3912 mutex_lock(&mgr->qlock); 3913 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 3914 struct drm_dp_sideband_msg_tx, next); 3915 mutex_unlock(&mgr->qlock); 3916 3917 /* Were we actually expecting a response, and from this mstb? */ 3918 if (!txmsg || txmsg->dst != mstb) { 3919 struct drm_dp_sideband_msg_hdr *hdr; 3920 3921 hdr = &msg->initial_hdr; 3922 drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n", 3923 mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]); 3924 goto out_clear_reply; 3925 } 3926 3927 drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply); 3928 3929 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3930 drm_dbg_kms(mgr->dev, 3931 "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n", 3932 txmsg->reply.req_type, 3933 drm_dp_mst_req_type_str(txmsg->reply.req_type), 3934 txmsg->reply.u.nak.reason, 3935 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason), 3936 txmsg->reply.u.nak.nak_data); 3937 } 3938 3939 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 3940 drm_dp_mst_topology_put_mstb(mstb); 3941 3942 mutex_lock(&mgr->qlock); 3943 txmsg->state = DRM_DP_SIDEBAND_TX_RX; 3944 list_del(&txmsg->next); 3945 mutex_unlock(&mgr->qlock); 3946 3947 wake_up_all(&mgr->tx_waitq); 3948 3949 return 0; 3950 3951 out_clear_reply: 3952 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 3953 out: 3954 if (mstb) 3955 drm_dp_mst_topology_put_mstb(mstb); 3956 3957 return 0; 3958 } 3959 3960 static inline bool 3961 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr, 3962 struct drm_dp_pending_up_req *up_req) 3963 { 3964 struct drm_dp_mst_branch *mstb = NULL; 3965 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg; 3966 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr; 3967 bool hotplug = false, dowork = false; 3968 3969 if (hdr->broadcast) { 3970 const u8 *guid = NULL; 3971 3972 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) 3973 guid = msg->u.conn_stat.guid; 3974 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY) 3975 guid = msg->u.resource_stat.guid; 3976 3977 if (guid) 3978 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid); 3979 } else { 3980 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad); 3981 } 3982 3983 if (!mstb) { 3984 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct); 3985 return false; 3986 } 3987 3988 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */ 3989 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) { 3990 dowork = drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat); 3991 hotplug = true; 3992 } 3993 3994 drm_dp_mst_topology_put_mstb(mstb); 3995 3996 if (dowork) 3997 queue_work(system_long_wq, &mgr->work); 3998 return hotplug; 3999 } 4000 4001 static void drm_dp_mst_up_req_work(struct work_struct *work) 4002 { 4003 struct drm_dp_mst_topology_mgr *mgr = 4004 container_of(work, struct drm_dp_mst_topology_mgr, 4005 up_req_work); 4006 struct drm_dp_pending_up_req *up_req; 4007 bool send_hotplug = false; 4008 4009 mutex_lock(&mgr->probe_lock); 4010 while (true) { 4011 mutex_lock(&mgr->up_req_lock); 4012 up_req = list_first_entry_or_null(&mgr->up_req_list, 4013 struct drm_dp_pending_up_req, 4014 next); 4015 if (up_req) 4016 list_del(&up_req->next); 4017 mutex_unlock(&mgr->up_req_lock); 4018 4019 if (!up_req) 4020 break; 4021 4022 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req); 4023 kfree(up_req); 4024 } 4025 mutex_unlock(&mgr->probe_lock); 4026 4027 if (send_hotplug) 4028 drm_kms_helper_hotplug_event(mgr->dev); 4029 } 4030 4031 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr) 4032 { 4033 struct drm_dp_pending_up_req *up_req; 4034 4035 if (!drm_dp_get_one_sb_msg(mgr, true, NULL)) 4036 goto out; 4037 4038 if (!mgr->up_req_recv.have_eomt) 4039 return 0; 4040 4041 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL); 4042 if (!up_req) 4043 return -ENOMEM; 4044 4045 INIT_LIST_HEAD(&up_req->next); 4046 4047 drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg); 4048 4049 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY && 4050 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) { 4051 drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n", 4052 up_req->msg.req_type); 4053 kfree(up_req); 4054 goto out; 4055 } 4056 4057 drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type, 4058 false); 4059 4060 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) { 4061 const struct drm_dp_connection_status_notify *conn_stat = 4062 &up_req->msg.u.conn_stat; 4063 4064 drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n", 4065 conn_stat->port_number, 4066 conn_stat->legacy_device_plug_status, 4067 conn_stat->displayport_device_plug_status, 4068 conn_stat->message_capability_status, 4069 conn_stat->input_port, 4070 conn_stat->peer_device_type); 4071 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) { 4072 const struct drm_dp_resource_status_notify *res_stat = 4073 &up_req->msg.u.resource_stat; 4074 4075 drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n", 4076 res_stat->port_number, 4077 res_stat->available_pbn); 4078 } 4079 4080 up_req->hdr = mgr->up_req_recv.initial_hdr; 4081 mutex_lock(&mgr->up_req_lock); 4082 list_add_tail(&up_req->next, &mgr->up_req_list); 4083 mutex_unlock(&mgr->up_req_lock); 4084 queue_work(system_long_wq, &mgr->up_req_work); 4085 4086 out: 4087 memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); 4088 return 0; 4089 } 4090 4091 /** 4092 * drm_dp_mst_hpd_irq_handle_event() - MST hotplug IRQ handle MST event 4093 * @mgr: manager to notify irq for. 4094 * @esi: 4 bytes from SINK_COUNT_ESI 4095 * @ack: 4 bytes used to ack events starting from SINK_COUNT_ESI 4096 * @handled: whether the hpd interrupt was consumed or not 4097 * 4098 * This should be called from the driver when it detects a HPD IRQ, 4099 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The 4100 * topology manager will process the sideband messages received 4101 * as indicated in the DEVICE_SERVICE_IRQ_VECTOR_ESI0 and set the 4102 * corresponding flags that Driver has to ack the DP receiver later. 4103 * 4104 * Note that driver shall also call 4105 * drm_dp_mst_hpd_irq_send_new_request() if the 'handled' is set 4106 * after calling this function, to try to kick off a new request in 4107 * the queue if the previous message transaction is completed. 4108 * 4109 * See also: 4110 * drm_dp_mst_hpd_irq_send_new_request() 4111 */ 4112 int drm_dp_mst_hpd_irq_handle_event(struct drm_dp_mst_topology_mgr *mgr, const u8 *esi, 4113 u8 *ack, bool *handled) 4114 { 4115 int ret = 0; 4116 int sc; 4117 *handled = false; 4118 sc = DP_GET_SINK_COUNT(esi[0]); 4119 4120 if (sc != mgr->sink_count) { 4121 mgr->sink_count = sc; 4122 *handled = true; 4123 } 4124 4125 if (esi[1] & DP_DOWN_REP_MSG_RDY) { 4126 ret = drm_dp_mst_handle_down_rep(mgr); 4127 *handled = true; 4128 ack[1] |= DP_DOWN_REP_MSG_RDY; 4129 } 4130 4131 if (esi[1] & DP_UP_REQ_MSG_RDY) { 4132 ret |= drm_dp_mst_handle_up_req(mgr); 4133 *handled = true; 4134 ack[1] |= DP_UP_REQ_MSG_RDY; 4135 } 4136 4137 return ret; 4138 } 4139 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_handle_event); 4140 4141 /** 4142 * drm_dp_mst_hpd_irq_send_new_request() - MST hotplug IRQ kick off new request 4143 * @mgr: manager to notify irq for. 4144 * 4145 * This should be called from the driver when mst irq event is handled 4146 * and acked. Note that new down request should only be sent when 4147 * previous message transaction is completed. Source is not supposed to generate 4148 * interleaved message transactions. 4149 */ 4150 void drm_dp_mst_hpd_irq_send_new_request(struct drm_dp_mst_topology_mgr *mgr) 4151 { 4152 struct drm_dp_sideband_msg_tx *txmsg; 4153 bool kick = true; 4154 4155 mutex_lock(&mgr->qlock); 4156 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 4157 struct drm_dp_sideband_msg_tx, next); 4158 /* If last transaction is not completed yet*/ 4159 if (!txmsg || 4160 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 4161 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 4162 kick = false; 4163 mutex_unlock(&mgr->qlock); 4164 4165 if (kick) 4166 drm_dp_mst_kick_tx(mgr); 4167 } 4168 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_send_new_request); 4169 /** 4170 * drm_dp_mst_detect_port() - get connection status for an MST port 4171 * @connector: DRM connector for this port 4172 * @ctx: The acquisition context to use for grabbing locks 4173 * @mgr: manager for this port 4174 * @port: pointer to a port 4175 * 4176 * This returns the current connection state for a port. 4177 */ 4178 int 4179 drm_dp_mst_detect_port(struct drm_connector *connector, 4180 struct drm_modeset_acquire_ctx *ctx, 4181 struct drm_dp_mst_topology_mgr *mgr, 4182 struct drm_dp_mst_port *port) 4183 { 4184 int ret; 4185 4186 /* we need to search for the port in the mgr in case it's gone */ 4187 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4188 if (!port) 4189 return connector_status_disconnected; 4190 4191 ret = drm_modeset_lock(&mgr->base.lock, ctx); 4192 if (ret) 4193 goto out; 4194 4195 ret = connector_status_disconnected; 4196 4197 if (!port->ddps) 4198 goto out; 4199 4200 switch (port->pdt) { 4201 case DP_PEER_DEVICE_NONE: 4202 break; 4203 case DP_PEER_DEVICE_MST_BRANCHING: 4204 if (!port->mcs) 4205 ret = connector_status_connected; 4206 break; 4207 4208 case DP_PEER_DEVICE_SST_SINK: 4209 ret = connector_status_connected; 4210 /* for logical ports - cache the EDID */ 4211 if (port->port_num >= DP_MST_LOGICAL_PORT_0 && !port->cached_edid) 4212 port->cached_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4213 break; 4214 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4215 if (port->ldps) 4216 ret = connector_status_connected; 4217 break; 4218 } 4219 out: 4220 drm_dp_mst_topology_put_port(port); 4221 return ret; 4222 } 4223 EXPORT_SYMBOL(drm_dp_mst_detect_port); 4224 4225 /** 4226 * drm_dp_mst_edid_read() - get EDID for an MST port 4227 * @connector: toplevel connector to get EDID for 4228 * @mgr: manager for this port 4229 * @port: unverified pointer to a port. 4230 * 4231 * This returns an EDID for the port connected to a connector, 4232 * It validates the pointer still exists so the caller doesn't require a 4233 * reference. 4234 */ 4235 const struct drm_edid *drm_dp_mst_edid_read(struct drm_connector *connector, 4236 struct drm_dp_mst_topology_mgr *mgr, 4237 struct drm_dp_mst_port *port) 4238 { 4239 const struct drm_edid *drm_edid; 4240 4241 /* we need to search for the port in the mgr in case it's gone */ 4242 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4243 if (!port) 4244 return NULL; 4245 4246 if (port->cached_edid) 4247 drm_edid = drm_edid_dup(port->cached_edid); 4248 else 4249 drm_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4250 4251 drm_dp_mst_topology_put_port(port); 4252 4253 return drm_edid; 4254 } 4255 EXPORT_SYMBOL(drm_dp_mst_edid_read); 4256 4257 /** 4258 * drm_dp_mst_get_edid() - get EDID for an MST port 4259 * @connector: toplevel connector to get EDID for 4260 * @mgr: manager for this port 4261 * @port: unverified pointer to a port. 4262 * 4263 * This function is deprecated; please use drm_dp_mst_edid_read() instead. 4264 * 4265 * This returns an EDID for the port connected to a connector, 4266 * It validates the pointer still exists so the caller doesn't require a 4267 * reference. 4268 */ 4269 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, 4270 struct drm_dp_mst_topology_mgr *mgr, 4271 struct drm_dp_mst_port *port) 4272 { 4273 const struct drm_edid *drm_edid; 4274 struct edid *edid; 4275 4276 drm_edid = drm_dp_mst_edid_read(connector, mgr, port); 4277 4278 edid = drm_edid_duplicate(drm_edid_raw(drm_edid)); 4279 4280 drm_edid_free(drm_edid); 4281 4282 return edid; 4283 } 4284 EXPORT_SYMBOL(drm_dp_mst_get_edid); 4285 4286 /** 4287 * drm_dp_atomic_find_time_slots() - Find and add time slots to the state 4288 * @state: global atomic state 4289 * @mgr: MST topology manager for the port 4290 * @port: port to find time slots for 4291 * @pbn: bandwidth required for the mode in PBN 4292 * 4293 * Allocates time slots to @port, replacing any previous time slot allocations it may 4294 * have had. Any atomic drivers which support MST must call this function in 4295 * their &drm_encoder_helper_funcs.atomic_check() callback unconditionally to 4296 * change the current time slot allocation for the new state, and ensure the MST 4297 * atomic state is added whenever the state of payloads in the topology changes. 4298 * 4299 * Allocations set by this function are not checked against the bandwidth 4300 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check(). 4301 * 4302 * Additionally, it is OK to call this function multiple times on the same 4303 * @port as needed. It is not OK however, to call this function and 4304 * drm_dp_atomic_release_time_slots() in the same atomic check phase. 4305 * 4306 * See also: 4307 * drm_dp_atomic_release_time_slots() 4308 * drm_dp_mst_atomic_check() 4309 * 4310 * Returns: 4311 * Total slots in the atomic state assigned for this port, or a negative error 4312 * code if the port no longer exists 4313 */ 4314 int drm_dp_atomic_find_time_slots(struct drm_atomic_state *state, 4315 struct drm_dp_mst_topology_mgr *mgr, 4316 struct drm_dp_mst_port *port, int pbn) 4317 { 4318 struct drm_dp_mst_topology_state *topology_state; 4319 struct drm_dp_mst_atomic_payload *payload = NULL; 4320 struct drm_connector_state *conn_state; 4321 int prev_slots = 0, prev_bw = 0, req_slots; 4322 4323 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4324 if (IS_ERR(topology_state)) 4325 return PTR_ERR(topology_state); 4326 4327 conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4328 topology_state->pending_crtc_mask |= drm_crtc_mask(conn_state->crtc); 4329 4330 /* Find the current allocation for this port, if any */ 4331 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4332 if (payload) { 4333 prev_slots = payload->time_slots; 4334 prev_bw = payload->pbn; 4335 4336 /* 4337 * This should never happen, unless the driver tries 4338 * releasing and allocating the same timeslot allocation, 4339 * which is an error 4340 */ 4341 if (drm_WARN_ON(mgr->dev, payload->delete)) { 4342 drm_err(mgr->dev, 4343 "cannot allocate and release time slots on [MST PORT:%p] in the same state\n", 4344 port); 4345 return -EINVAL; 4346 } 4347 } 4348 4349 req_slots = DIV_ROUND_UP(dfixed_const(pbn), topology_state->pbn_div.full); 4350 4351 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] TU %d -> %d\n", 4352 port->connector->base.id, port->connector->name, 4353 port, prev_slots, req_slots); 4354 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n", 4355 port->connector->base.id, port->connector->name, 4356 port, prev_bw, pbn); 4357 4358 /* Add the new allocation to the state, note the VCPI isn't assigned until the end */ 4359 if (!payload) { 4360 payload = kzalloc(sizeof(*payload), GFP_KERNEL); 4361 if (!payload) 4362 return -ENOMEM; 4363 4364 drm_dp_mst_get_port_malloc(port); 4365 payload->port = port; 4366 payload->vc_start_slot = -1; 4367 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 4368 list_add(&payload->next, &topology_state->payloads); 4369 } 4370 payload->time_slots = req_slots; 4371 payload->pbn = pbn; 4372 4373 return req_slots; 4374 } 4375 EXPORT_SYMBOL(drm_dp_atomic_find_time_slots); 4376 4377 /** 4378 * drm_dp_atomic_release_time_slots() - Release allocated time slots 4379 * @state: global atomic state 4380 * @mgr: MST topology manager for the port 4381 * @port: The port to release the time slots from 4382 * 4383 * Releases any time slots that have been allocated to a port in the atomic 4384 * state. Any atomic drivers which support MST must call this function 4385 * unconditionally in their &drm_connector_helper_funcs.atomic_check() callback. 4386 * This helper will check whether time slots would be released by the new state and 4387 * respond accordingly, along with ensuring the MST state is always added to the 4388 * atomic state whenever a new state would modify the state of payloads on the 4389 * topology. 4390 * 4391 * It is OK to call this even if @port has been removed from the system. 4392 * Additionally, it is OK to call this function multiple times on the same 4393 * @port as needed. It is not OK however, to call this function and 4394 * drm_dp_atomic_find_time_slots() on the same @port in a single atomic check 4395 * phase. 4396 * 4397 * See also: 4398 * drm_dp_atomic_find_time_slots() 4399 * drm_dp_mst_atomic_check() 4400 * 4401 * Returns: 4402 * 0 on success, negative error code otherwise 4403 */ 4404 int drm_dp_atomic_release_time_slots(struct drm_atomic_state *state, 4405 struct drm_dp_mst_topology_mgr *mgr, 4406 struct drm_dp_mst_port *port) 4407 { 4408 struct drm_dp_mst_topology_state *topology_state; 4409 struct drm_dp_mst_atomic_payload *payload; 4410 struct drm_connector_state *old_conn_state, *new_conn_state; 4411 bool update_payload = true; 4412 4413 old_conn_state = drm_atomic_get_old_connector_state(state, port->connector); 4414 if (!old_conn_state->crtc) 4415 return 0; 4416 4417 /* If the CRTC isn't disabled by this state, don't release it's payload */ 4418 new_conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4419 if (new_conn_state->crtc) { 4420 struct drm_crtc_state *crtc_state = 4421 drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4422 4423 /* No modeset means no payload changes, so it's safe to not pull in the MST state */ 4424 if (!crtc_state || !drm_atomic_crtc_needs_modeset(crtc_state)) 4425 return 0; 4426 4427 if (!crtc_state->mode_changed && !crtc_state->connectors_changed) 4428 update_payload = false; 4429 } 4430 4431 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4432 if (IS_ERR(topology_state)) 4433 return PTR_ERR(topology_state); 4434 4435 topology_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4436 if (!update_payload) 4437 return 0; 4438 4439 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4440 if (WARN_ON(!payload)) { 4441 drm_err(mgr->dev, "No payload for [MST PORT:%p] found in mst state %p\n", 4442 port, &topology_state->base); 4443 return -EINVAL; 4444 } 4445 4446 if (new_conn_state->crtc) 4447 return 0; 4448 4449 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] TU %d -> 0\n", port, payload->time_slots); 4450 if (!payload->delete) { 4451 payload->pbn = 0; 4452 payload->delete = true; 4453 topology_state->payload_mask &= ~BIT(payload->vcpi - 1); 4454 } 4455 4456 return 0; 4457 } 4458 EXPORT_SYMBOL(drm_dp_atomic_release_time_slots); 4459 4460 /** 4461 * drm_dp_mst_atomic_setup_commit() - setup_commit hook for MST helpers 4462 * @state: global atomic state 4463 * 4464 * This function saves all of the &drm_crtc_commit structs in an atomic state that touch any CRTCs 4465 * currently assigned to an MST topology. Drivers must call this hook from their 4466 * &drm_mode_config_helper_funcs.atomic_commit_setup hook. 4467 * 4468 * Returns: 4469 * 0 if all CRTC commits were retrieved successfully, negative error code otherwise 4470 */ 4471 int drm_dp_mst_atomic_setup_commit(struct drm_atomic_state *state) 4472 { 4473 struct drm_dp_mst_topology_mgr *mgr; 4474 struct drm_dp_mst_topology_state *mst_state; 4475 struct drm_crtc *crtc; 4476 struct drm_crtc_state *crtc_state; 4477 int i, j, commit_idx, num_commit_deps; 4478 4479 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 4480 if (!mst_state->pending_crtc_mask) 4481 continue; 4482 4483 num_commit_deps = hweight32(mst_state->pending_crtc_mask); 4484 mst_state->commit_deps = kmalloc_array(num_commit_deps, 4485 sizeof(*mst_state->commit_deps), GFP_KERNEL); 4486 if (!mst_state->commit_deps) 4487 return -ENOMEM; 4488 mst_state->num_commit_deps = num_commit_deps; 4489 4490 commit_idx = 0; 4491 for_each_new_crtc_in_state(state, crtc, crtc_state, j) { 4492 if (mst_state->pending_crtc_mask & drm_crtc_mask(crtc)) { 4493 mst_state->commit_deps[commit_idx++] = 4494 drm_crtc_commit_get(crtc_state->commit); 4495 } 4496 } 4497 } 4498 4499 return 0; 4500 } 4501 EXPORT_SYMBOL(drm_dp_mst_atomic_setup_commit); 4502 4503 /** 4504 * drm_dp_mst_atomic_wait_for_dependencies() - Wait for all pending commits on MST topologies, 4505 * prepare new MST state for commit 4506 * @state: global atomic state 4507 * 4508 * Goes through any MST topologies in this atomic state, and waits for any pending commits which 4509 * touched CRTCs that were/are on an MST topology to be programmed to hardware and flipped to before 4510 * returning. This is to prevent multiple non-blocking commits affecting an MST topology from racing 4511 * with eachother by forcing them to be executed sequentially in situations where the only resources 4512 * the modeset objects in these commits share are an MST topology. 4513 * 4514 * This function also prepares the new MST state for commit by performing some state preparation 4515 * which can't be done until this point, such as reading back the final VC start slots (which are 4516 * determined at commit-time) from the previous state. 4517 * 4518 * All MST drivers must call this function after calling drm_atomic_helper_wait_for_dependencies(), 4519 * or whatever their equivalent of that is. 4520 */ 4521 void drm_dp_mst_atomic_wait_for_dependencies(struct drm_atomic_state *state) 4522 { 4523 struct drm_dp_mst_topology_state *old_mst_state, *new_mst_state; 4524 struct drm_dp_mst_topology_mgr *mgr; 4525 struct drm_dp_mst_atomic_payload *old_payload, *new_payload; 4526 int i, j, ret; 4527 4528 for_each_oldnew_mst_mgr_in_state(state, mgr, old_mst_state, new_mst_state, i) { 4529 for (j = 0; j < old_mst_state->num_commit_deps; j++) { 4530 ret = drm_crtc_commit_wait(old_mst_state->commit_deps[j]); 4531 if (ret < 0) 4532 drm_err(state->dev, "Failed to wait for %s: %d\n", 4533 old_mst_state->commit_deps[j]->crtc->name, ret); 4534 } 4535 4536 /* Now that previous state is committed, it's safe to copy over the start slot 4537 * and allocation status assignments 4538 */ 4539 list_for_each_entry(old_payload, &old_mst_state->payloads, next) { 4540 if (old_payload->delete) 4541 continue; 4542 4543 new_payload = drm_atomic_get_mst_payload_state(new_mst_state, 4544 old_payload->port); 4545 new_payload->vc_start_slot = old_payload->vc_start_slot; 4546 new_payload->payload_allocation_status = 4547 old_payload->payload_allocation_status; 4548 } 4549 } 4550 } 4551 EXPORT_SYMBOL(drm_dp_mst_atomic_wait_for_dependencies); 4552 4553 /** 4554 * drm_dp_mst_root_conn_atomic_check() - Serialize CRTC commits on MST-capable connectors operating 4555 * in SST mode 4556 * @new_conn_state: The new connector state of the &drm_connector 4557 * @mgr: The MST topology manager for the &drm_connector 4558 * 4559 * Since MST uses fake &drm_encoder structs, the generic atomic modesetting code isn't able to 4560 * serialize non-blocking commits happening on the real DP connector of an MST topology switching 4561 * into/away from MST mode - as the CRTC on the real DP connector and the CRTCs on the connector's 4562 * MST topology will never share the same &drm_encoder. 4563 * 4564 * This function takes care of this serialization issue, by checking a root MST connector's atomic 4565 * state to determine if it is about to have a modeset - and then pulling in the MST topology state 4566 * if so, along with adding any relevant CRTCs to &drm_dp_mst_topology_state.pending_crtc_mask. 4567 * 4568 * Drivers implementing MST must call this function from the 4569 * &drm_connector_helper_funcs.atomic_check hook of any physical DP &drm_connector capable of 4570 * driving MST sinks. 4571 * 4572 * Returns: 4573 * 0 on success, negative error code otherwise 4574 */ 4575 int drm_dp_mst_root_conn_atomic_check(struct drm_connector_state *new_conn_state, 4576 struct drm_dp_mst_topology_mgr *mgr) 4577 { 4578 struct drm_atomic_state *state = new_conn_state->state; 4579 struct drm_connector_state *old_conn_state = 4580 drm_atomic_get_old_connector_state(state, new_conn_state->connector); 4581 struct drm_crtc_state *crtc_state; 4582 struct drm_dp_mst_topology_state *mst_state = NULL; 4583 4584 if (new_conn_state->crtc) { 4585 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4586 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4587 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4588 if (IS_ERR(mst_state)) 4589 return PTR_ERR(mst_state); 4590 4591 mst_state->pending_crtc_mask |= drm_crtc_mask(new_conn_state->crtc); 4592 } 4593 } 4594 4595 if (old_conn_state->crtc) { 4596 crtc_state = drm_atomic_get_new_crtc_state(state, old_conn_state->crtc); 4597 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4598 if (!mst_state) { 4599 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4600 if (IS_ERR(mst_state)) 4601 return PTR_ERR(mst_state); 4602 } 4603 4604 mst_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4605 } 4606 } 4607 4608 return 0; 4609 } 4610 EXPORT_SYMBOL(drm_dp_mst_root_conn_atomic_check); 4611 4612 /** 4613 * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format 4614 * @mst_state: mst_state to update 4615 * @link_encoding_cap: the ecoding format on the link 4616 */ 4617 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap) 4618 { 4619 if (link_encoding_cap == DP_CAP_ANSI_128B132B) { 4620 mst_state->total_avail_slots = 64; 4621 mst_state->start_slot = 0; 4622 } else { 4623 mst_state->total_avail_slots = 63; 4624 mst_state->start_slot = 1; 4625 } 4626 4627 DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n", 4628 (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b", 4629 mst_state); 4630 } 4631 EXPORT_SYMBOL(drm_dp_mst_update_slots); 4632 4633 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 4634 int id, u8 start_slot, u8 num_slots) 4635 { 4636 u8 payload_alloc[3], status; 4637 int ret; 4638 int retries = 0; 4639 4640 drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, 4641 DP_PAYLOAD_TABLE_UPDATED); 4642 4643 payload_alloc[0] = id; 4644 payload_alloc[1] = start_slot; 4645 payload_alloc[2] = num_slots; 4646 4647 ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3); 4648 if (ret != 3) { 4649 drm_dbg_kms(mgr->dev, "failed to write payload allocation %d\n", ret); 4650 goto fail; 4651 } 4652 4653 retry: 4654 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4655 if (ret < 0) { 4656 drm_dbg_kms(mgr->dev, "failed to read payload table status %d\n", ret); 4657 goto fail; 4658 } 4659 4660 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) { 4661 retries++; 4662 if (retries < 20) { 4663 usleep_range(10000, 20000); 4664 goto retry; 4665 } 4666 drm_dbg_kms(mgr->dev, "status not set after read payload table status %d\n", 4667 status); 4668 ret = -EINVAL; 4669 goto fail; 4670 } 4671 ret = 0; 4672 fail: 4673 return ret; 4674 } 4675 4676 static int do_get_act_status(struct drm_dp_aux *aux) 4677 { 4678 int ret; 4679 u8 status; 4680 4681 ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4682 if (ret < 0) 4683 return ret; 4684 4685 return status; 4686 } 4687 4688 /** 4689 * drm_dp_check_act_status() - Polls for ACT handled status. 4690 * @mgr: manager to use 4691 * 4692 * Tries waiting for the MST hub to finish updating it's payload table by 4693 * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really 4694 * take that long). 4695 * 4696 * Returns: 4697 * 0 if the ACT was handled in time, negative error code on failure. 4698 */ 4699 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr) 4700 { 4701 /* 4702 * There doesn't seem to be any recommended retry count or timeout in 4703 * the MST specification. Since some hubs have been observed to take 4704 * over 1 second to update their payload allocations under certain 4705 * conditions, we use a rather large timeout value. 4706 */ 4707 const int timeout_ms = 3000; 4708 int ret, status; 4709 4710 ret = readx_poll_timeout(do_get_act_status, mgr->aux, status, 4711 status & DP_PAYLOAD_ACT_HANDLED || status < 0, 4712 200, timeout_ms * USEC_PER_MSEC); 4713 if (ret < 0 && status >= 0) { 4714 drm_err(mgr->dev, "Failed to get ACT after %dms, last status: %02x\n", 4715 timeout_ms, status); 4716 return -EINVAL; 4717 } else if (status < 0) { 4718 /* 4719 * Failure here isn't unexpected - the hub may have 4720 * just been unplugged 4721 */ 4722 drm_dbg_kms(mgr->dev, "Failed to read payload table status: %d\n", status); 4723 return status; 4724 } 4725 4726 return 0; 4727 } 4728 EXPORT_SYMBOL(drm_dp_check_act_status); 4729 4730 /** 4731 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode. 4732 * @clock: dot clock 4733 * @bpp: bpp as .4 binary fixed point 4734 * 4735 * This uses the formula in the spec to calculate the PBN value for a mode. 4736 */ 4737 int drm_dp_calc_pbn_mode(int clock, int bpp) 4738 { 4739 /* 4740 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on 4741 * common multiplier to render an integer PBN for all link rate/lane 4742 * counts combinations 4743 * calculate 4744 * peak_kbps = clock * bpp / 16 4745 * peak_kbps *= SSC overhead / 1000000 4746 * peak_kbps /= 8 convert to Kbytes 4747 * peak_kBps *= (64/54) / 1000 convert to PBN 4748 */ 4749 /* 4750 * TODO: Use the actual link and mode parameters to calculate 4751 * the overhead. For now it's assumed that these are 4752 * 4 link lanes, 4096 hactive pixels, which don't add any 4753 * significant data padding overhead and that there is no DSC 4754 * or FEC overhead. 4755 */ 4756 int overhead = drm_dp_bw_overhead(4, 4096, 0, bpp, 4757 DRM_DP_BW_OVERHEAD_MST | 4758 DRM_DP_BW_OVERHEAD_SSC_REF_CLK); 4759 4760 return DIV64_U64_ROUND_UP(mul_u32_u32(clock * bpp, 64 * overhead >> 4), 4761 1000000ULL * 8 * 54 * 1000); 4762 } 4763 EXPORT_SYMBOL(drm_dp_calc_pbn_mode); 4764 4765 /* we want to kick the TX after we've ack the up/down IRQs. */ 4766 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr) 4767 { 4768 queue_work(system_long_wq, &mgr->tx_work); 4769 } 4770 4771 /* 4772 * Helper function for parsing DP device types into convenient strings 4773 * for use with dp_mst_topology 4774 */ 4775 static const char *pdt_to_string(u8 pdt) 4776 { 4777 switch (pdt) { 4778 case DP_PEER_DEVICE_NONE: 4779 return "NONE"; 4780 case DP_PEER_DEVICE_SOURCE_OR_SST: 4781 return "SOURCE OR SST"; 4782 case DP_PEER_DEVICE_MST_BRANCHING: 4783 return "MST BRANCHING"; 4784 case DP_PEER_DEVICE_SST_SINK: 4785 return "SST SINK"; 4786 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4787 return "DP LEGACY CONV"; 4788 default: 4789 return "ERR"; 4790 } 4791 } 4792 4793 static void drm_dp_mst_dump_mstb(struct seq_file *m, 4794 struct drm_dp_mst_branch *mstb) 4795 { 4796 struct drm_dp_mst_port *port; 4797 int tabs = mstb->lct; 4798 char prefix[10]; 4799 int i; 4800 4801 for (i = 0; i < tabs; i++) 4802 prefix[i] = '\t'; 4803 prefix[i] = '\0'; 4804 4805 seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports); 4806 list_for_each_entry(port, &mstb->ports, next) { 4807 seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n", 4808 prefix, 4809 port->port_num, 4810 port, 4811 port->input ? "input" : "output", 4812 pdt_to_string(port->pdt), 4813 port->ddps, 4814 port->ldps, 4815 port->num_sdp_streams, 4816 port->num_sdp_stream_sinks, 4817 port->fec_capable ? "true" : "false", 4818 port->connector); 4819 if (port->mstb) 4820 drm_dp_mst_dump_mstb(m, port->mstb); 4821 } 4822 } 4823 4824 #define DP_PAYLOAD_TABLE_SIZE 64 4825 4826 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 4827 char *buf) 4828 { 4829 int i; 4830 4831 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) { 4832 if (drm_dp_dpcd_read(mgr->aux, 4833 DP_PAYLOAD_TABLE_UPDATE_STATUS + i, 4834 &buf[i], 16) != 16) 4835 return false; 4836 } 4837 return true; 4838 } 4839 4840 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr, 4841 struct drm_dp_mst_port *port, char *name, 4842 int namelen) 4843 { 4844 struct edid *mst_edid; 4845 4846 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port); 4847 drm_edid_get_monitor_name(mst_edid, name, namelen); 4848 kfree(mst_edid); 4849 } 4850 4851 /** 4852 * drm_dp_mst_dump_topology(): dump topology to seq file. 4853 * @m: seq_file to dump output to 4854 * @mgr: manager to dump current topology for. 4855 * 4856 * helper to dump MST topology to a seq file for debugfs. 4857 */ 4858 void drm_dp_mst_dump_topology(struct seq_file *m, 4859 struct drm_dp_mst_topology_mgr *mgr) 4860 { 4861 struct drm_dp_mst_topology_state *state; 4862 struct drm_dp_mst_atomic_payload *payload; 4863 int i, ret; 4864 4865 static const char *const status[] = { 4866 "None", 4867 "Local", 4868 "DFP", 4869 "Remote", 4870 }; 4871 4872 mutex_lock(&mgr->lock); 4873 if (mgr->mst_primary) 4874 drm_dp_mst_dump_mstb(m, mgr->mst_primary); 4875 4876 /* dump VCPIs */ 4877 mutex_unlock(&mgr->lock); 4878 4879 ret = drm_modeset_lock_single_interruptible(&mgr->base.lock); 4880 if (ret < 0) 4881 return; 4882 4883 state = to_drm_dp_mst_topology_state(mgr->base.state); 4884 seq_printf(m, "\n*** Atomic state info ***\n"); 4885 seq_printf(m, "payload_mask: %x, max_payloads: %d, start_slot: %u, pbn_div: %d\n", 4886 state->payload_mask, mgr->max_payloads, state->start_slot, 4887 dfixed_trunc(state->pbn_div)); 4888 4889 seq_printf(m, "\n| idx | port | vcpi | slots | pbn | dsc | status | sink name |\n"); 4890 for (i = 0; i < mgr->max_payloads; i++) { 4891 list_for_each_entry(payload, &state->payloads, next) { 4892 char name[14]; 4893 4894 if (payload->vcpi != i || payload->delete) 4895 continue; 4896 4897 fetch_monitor_name(mgr, payload->port, name, sizeof(name)); 4898 seq_printf(m, " %5d %6d %6d %02d - %02d %5d %5s %8s %19s\n", 4899 i, 4900 payload->port->port_num, 4901 payload->vcpi, 4902 payload->vc_start_slot, 4903 payload->vc_start_slot + payload->time_slots - 1, 4904 payload->pbn, 4905 payload->dsc_enabled ? "Y" : "N", 4906 status[payload->payload_allocation_status], 4907 (*name != 0) ? name : "Unknown"); 4908 } 4909 } 4910 4911 seq_printf(m, "\n*** DPCD Info ***\n"); 4912 mutex_lock(&mgr->lock); 4913 if (mgr->mst_primary) { 4914 u8 buf[DP_PAYLOAD_TABLE_SIZE]; 4915 int ret; 4916 4917 if (drm_dp_read_dpcd_caps(mgr->aux, buf) < 0) { 4918 seq_printf(m, "dpcd read failed\n"); 4919 goto out; 4920 } 4921 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf); 4922 4923 ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2); 4924 if (ret != 2) { 4925 seq_printf(m, "faux/mst read failed\n"); 4926 goto out; 4927 } 4928 seq_printf(m, "faux/mst: %*ph\n", 2, buf); 4929 4930 ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1); 4931 if (ret != 1) { 4932 seq_printf(m, "mst ctrl read failed\n"); 4933 goto out; 4934 } 4935 seq_printf(m, "mst ctrl: %*ph\n", 1, buf); 4936 4937 /* dump the standard OUI branch header */ 4938 ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE); 4939 if (ret != DP_BRANCH_OUI_HEADER_SIZE) { 4940 seq_printf(m, "branch oui read failed\n"); 4941 goto out; 4942 } 4943 seq_printf(m, "branch oui: %*phN devid: ", 3, buf); 4944 4945 for (i = 0x3; i < 0x8 && buf[i]; i++) 4946 seq_printf(m, "%c", buf[i]); 4947 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n", 4948 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]); 4949 if (dump_dp_payload_table(mgr, buf)) 4950 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf); 4951 } 4952 4953 out: 4954 mutex_unlock(&mgr->lock); 4955 drm_modeset_unlock(&mgr->base.lock); 4956 } 4957 EXPORT_SYMBOL(drm_dp_mst_dump_topology); 4958 4959 static void drm_dp_tx_work(struct work_struct *work) 4960 { 4961 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work); 4962 4963 mutex_lock(&mgr->qlock); 4964 if (!list_empty(&mgr->tx_msg_downq)) 4965 process_single_down_tx_qlock(mgr); 4966 mutex_unlock(&mgr->qlock); 4967 } 4968 4969 static inline void 4970 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port) 4971 { 4972 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs); 4973 4974 if (port->connector) { 4975 drm_connector_unregister(port->connector); 4976 drm_connector_put(port->connector); 4977 } 4978 4979 drm_dp_mst_put_port_malloc(port); 4980 } 4981 4982 static inline void 4983 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb) 4984 { 4985 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 4986 struct drm_dp_mst_port *port, *port_tmp; 4987 struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp; 4988 bool wake_tx = false; 4989 4990 mutex_lock(&mgr->lock); 4991 list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) { 4992 list_del(&port->next); 4993 drm_dp_mst_topology_put_port(port); 4994 } 4995 mutex_unlock(&mgr->lock); 4996 4997 /* drop any tx slot msg */ 4998 mutex_lock(&mstb->mgr->qlock); 4999 list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) { 5000 if (txmsg->dst != mstb) 5001 continue; 5002 5003 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 5004 list_del(&txmsg->next); 5005 wake_tx = true; 5006 } 5007 mutex_unlock(&mstb->mgr->qlock); 5008 5009 if (wake_tx) 5010 wake_up_all(&mstb->mgr->tx_waitq); 5011 5012 drm_dp_mst_put_mstb_malloc(mstb); 5013 } 5014 5015 static void drm_dp_delayed_destroy_work(struct work_struct *work) 5016 { 5017 struct drm_dp_mst_topology_mgr *mgr = 5018 container_of(work, struct drm_dp_mst_topology_mgr, 5019 delayed_destroy_work); 5020 bool send_hotplug = false, go_again; 5021 5022 /* 5023 * Not a regular list traverse as we have to drop the destroy 5024 * connector lock before destroying the mstb/port, to avoid AB->BA 5025 * ordering between this lock and the config mutex. 5026 */ 5027 do { 5028 go_again = false; 5029 5030 for (;;) { 5031 struct drm_dp_mst_branch *mstb; 5032 5033 mutex_lock(&mgr->delayed_destroy_lock); 5034 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list, 5035 struct drm_dp_mst_branch, 5036 destroy_next); 5037 if (mstb) 5038 list_del(&mstb->destroy_next); 5039 mutex_unlock(&mgr->delayed_destroy_lock); 5040 5041 if (!mstb) 5042 break; 5043 5044 drm_dp_delayed_destroy_mstb(mstb); 5045 go_again = true; 5046 } 5047 5048 for (;;) { 5049 struct drm_dp_mst_port *port; 5050 5051 mutex_lock(&mgr->delayed_destroy_lock); 5052 port = list_first_entry_or_null(&mgr->destroy_port_list, 5053 struct drm_dp_mst_port, 5054 next); 5055 if (port) 5056 list_del(&port->next); 5057 mutex_unlock(&mgr->delayed_destroy_lock); 5058 5059 if (!port) 5060 break; 5061 5062 drm_dp_delayed_destroy_port(port); 5063 send_hotplug = true; 5064 go_again = true; 5065 } 5066 } while (go_again); 5067 5068 if (send_hotplug) 5069 drm_kms_helper_hotplug_event(mgr->dev); 5070 } 5071 5072 static struct drm_private_state * 5073 drm_dp_mst_duplicate_state(struct drm_private_obj *obj) 5074 { 5075 struct drm_dp_mst_topology_state *state, *old_state = 5076 to_dp_mst_topology_state(obj->state); 5077 struct drm_dp_mst_atomic_payload *pos, *payload; 5078 5079 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL); 5080 if (!state) 5081 return NULL; 5082 5083 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 5084 5085 INIT_LIST_HEAD(&state->payloads); 5086 state->commit_deps = NULL; 5087 state->num_commit_deps = 0; 5088 state->pending_crtc_mask = 0; 5089 5090 list_for_each_entry(pos, &old_state->payloads, next) { 5091 /* Prune leftover freed timeslot allocations */ 5092 if (pos->delete) 5093 continue; 5094 5095 payload = kmemdup(pos, sizeof(*payload), GFP_KERNEL); 5096 if (!payload) 5097 goto fail; 5098 5099 drm_dp_mst_get_port_malloc(payload->port); 5100 list_add(&payload->next, &state->payloads); 5101 } 5102 5103 return &state->base; 5104 5105 fail: 5106 list_for_each_entry_safe(pos, payload, &state->payloads, next) { 5107 drm_dp_mst_put_port_malloc(pos->port); 5108 kfree(pos); 5109 } 5110 kfree(state); 5111 5112 return NULL; 5113 } 5114 5115 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj, 5116 struct drm_private_state *state) 5117 { 5118 struct drm_dp_mst_topology_state *mst_state = 5119 to_dp_mst_topology_state(state); 5120 struct drm_dp_mst_atomic_payload *pos, *tmp; 5121 int i; 5122 5123 list_for_each_entry_safe(pos, tmp, &mst_state->payloads, next) { 5124 /* We only keep references to ports with active payloads */ 5125 if (!pos->delete) 5126 drm_dp_mst_put_port_malloc(pos->port); 5127 kfree(pos); 5128 } 5129 5130 for (i = 0; i < mst_state->num_commit_deps; i++) 5131 drm_crtc_commit_put(mst_state->commit_deps[i]); 5132 5133 kfree(mst_state->commit_deps); 5134 kfree(mst_state); 5135 } 5136 5137 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 5138 struct drm_dp_mst_branch *branch) 5139 { 5140 while (port->parent) { 5141 if (port->parent == branch) 5142 return true; 5143 5144 if (port->parent->port_parent) 5145 port = port->parent->port_parent; 5146 else 5147 break; 5148 } 5149 return false; 5150 } 5151 5152 static bool 5153 drm_dp_mst_port_downstream_of_parent_locked(struct drm_dp_mst_topology_mgr *mgr, 5154 struct drm_dp_mst_port *port, 5155 struct drm_dp_mst_port *parent) 5156 { 5157 if (!mgr->mst_primary) 5158 return false; 5159 5160 port = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5161 port); 5162 if (!port) 5163 return false; 5164 5165 if (!parent) 5166 return true; 5167 5168 parent = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5169 parent); 5170 if (!parent) 5171 return false; 5172 5173 if (!parent->mstb) 5174 return false; 5175 5176 return drm_dp_mst_port_downstream_of_branch(port, parent->mstb); 5177 } 5178 5179 /** 5180 * drm_dp_mst_port_downstream_of_parent - check if a port is downstream of a parent port 5181 * @mgr: MST topology manager 5182 * @port: the port being looked up 5183 * @parent: the parent port 5184 * 5185 * The function returns %true if @port is downstream of @parent. If @parent is 5186 * %NULL - denoting the root port - the function returns %true if @port is in 5187 * @mgr's topology. 5188 */ 5189 bool 5190 drm_dp_mst_port_downstream_of_parent(struct drm_dp_mst_topology_mgr *mgr, 5191 struct drm_dp_mst_port *port, 5192 struct drm_dp_mst_port *parent) 5193 { 5194 bool ret; 5195 5196 mutex_lock(&mgr->lock); 5197 ret = drm_dp_mst_port_downstream_of_parent_locked(mgr, port, parent); 5198 mutex_unlock(&mgr->lock); 5199 5200 return ret; 5201 } 5202 EXPORT_SYMBOL(drm_dp_mst_port_downstream_of_parent); 5203 5204 static int 5205 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5206 struct drm_dp_mst_topology_state *state, 5207 struct drm_dp_mst_port **failing_port); 5208 5209 static int 5210 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb, 5211 struct drm_dp_mst_topology_state *state, 5212 struct drm_dp_mst_port **failing_port) 5213 { 5214 struct drm_dp_mst_atomic_payload *payload; 5215 struct drm_dp_mst_port *port; 5216 int pbn_used = 0, ret; 5217 bool found = false; 5218 5219 /* Check that we have at least one port in our state that's downstream 5220 * of this branch, otherwise we can skip this branch 5221 */ 5222 list_for_each_entry(payload, &state->payloads, next) { 5223 if (!payload->pbn || 5224 !drm_dp_mst_port_downstream_of_branch(payload->port, mstb)) 5225 continue; 5226 5227 found = true; 5228 break; 5229 } 5230 if (!found) 5231 return 0; 5232 5233 if (mstb->port_parent) 5234 drm_dbg_atomic(mstb->mgr->dev, 5235 "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n", 5236 mstb->port_parent->parent, mstb->port_parent, mstb); 5237 else 5238 drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb); 5239 5240 list_for_each_entry(port, &mstb->ports, next) { 5241 ret = drm_dp_mst_atomic_check_port_bw_limit(port, state, failing_port); 5242 if (ret < 0) 5243 return ret; 5244 5245 pbn_used += ret; 5246 } 5247 5248 return pbn_used; 5249 } 5250 5251 static int 5252 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5253 struct drm_dp_mst_topology_state *state, 5254 struct drm_dp_mst_port **failing_port) 5255 { 5256 struct drm_dp_mst_atomic_payload *payload; 5257 int pbn_used = 0; 5258 5259 if (port->pdt == DP_PEER_DEVICE_NONE) 5260 return 0; 5261 5262 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 5263 payload = drm_atomic_get_mst_payload_state(state, port); 5264 if (!payload) 5265 return 0; 5266 5267 /* 5268 * This could happen if the sink deasserted its HPD line, but 5269 * the branch device still reports it as attached (PDT != NONE). 5270 */ 5271 if (!port->full_pbn) { 5272 drm_dbg_atomic(port->mgr->dev, 5273 "[MSTB:%p] [MST PORT:%p] no BW available for the port\n", 5274 port->parent, port); 5275 *failing_port = port; 5276 return -EINVAL; 5277 } 5278 5279 pbn_used = payload->pbn; 5280 } else { 5281 pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb, 5282 state, 5283 failing_port); 5284 if (pbn_used <= 0) 5285 return pbn_used; 5286 } 5287 5288 if (pbn_used > port->full_pbn) { 5289 drm_dbg_atomic(port->mgr->dev, 5290 "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n", 5291 port->parent, port, pbn_used, port->full_pbn); 5292 *failing_port = port; 5293 return -ENOSPC; 5294 } 5295 5296 drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n", 5297 port->parent, port, pbn_used, port->full_pbn); 5298 5299 return pbn_used; 5300 } 5301 5302 static inline int 5303 drm_dp_mst_atomic_check_payload_alloc_limits(struct drm_dp_mst_topology_mgr *mgr, 5304 struct drm_dp_mst_topology_state *mst_state) 5305 { 5306 struct drm_dp_mst_atomic_payload *payload; 5307 int avail_slots = mst_state->total_avail_slots, payload_count = 0; 5308 5309 list_for_each_entry(payload, &mst_state->payloads, next) { 5310 /* Releasing payloads is always OK-even if the port is gone */ 5311 if (payload->delete) { 5312 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all time slots\n", 5313 payload->port); 5314 continue; 5315 } 5316 5317 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d time slots\n", 5318 payload->port, payload->time_slots); 5319 5320 avail_slots -= payload->time_slots; 5321 if (avail_slots < 0) { 5322 drm_dbg_atomic(mgr->dev, 5323 "[MST PORT:%p] not enough time slots in mst state %p (avail=%d)\n", 5324 payload->port, mst_state, avail_slots + payload->time_slots); 5325 return -ENOSPC; 5326 } 5327 5328 if (++payload_count > mgr->max_payloads) { 5329 drm_dbg_atomic(mgr->dev, 5330 "[MST MGR:%p] state %p has too many payloads (max=%d)\n", 5331 mgr, mst_state, mgr->max_payloads); 5332 return -EINVAL; 5333 } 5334 5335 /* Assign a VCPI */ 5336 if (!payload->vcpi) { 5337 payload->vcpi = ffz(mst_state->payload_mask) + 1; 5338 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] assigned VCPI #%d\n", 5339 payload->port, payload->vcpi); 5340 mst_state->payload_mask |= BIT(payload->vcpi - 1); 5341 } 5342 } 5343 5344 if (!payload_count) 5345 mst_state->pbn_div.full = dfixed_const(0); 5346 5347 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p TU pbn_div=%d avail=%d used=%d\n", 5348 mgr, mst_state, dfixed_trunc(mst_state->pbn_div), avail_slots, 5349 mst_state->total_avail_slots - avail_slots); 5350 5351 return 0; 5352 } 5353 5354 /** 5355 * drm_dp_mst_add_affected_dsc_crtcs 5356 * @state: Pointer to the new struct drm_dp_mst_topology_state 5357 * @mgr: MST topology manager 5358 * 5359 * Whenever there is a change in mst topology 5360 * DSC configuration would have to be recalculated 5361 * therefore we need to trigger modeset on all affected 5362 * CRTCs in that topology 5363 * 5364 * See also: 5365 * drm_dp_mst_atomic_enable_dsc() 5366 */ 5367 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr) 5368 { 5369 struct drm_dp_mst_topology_state *mst_state; 5370 struct drm_dp_mst_atomic_payload *pos; 5371 struct drm_connector *connector; 5372 struct drm_connector_state *conn_state; 5373 struct drm_crtc *crtc; 5374 struct drm_crtc_state *crtc_state; 5375 5376 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 5377 5378 if (IS_ERR(mst_state)) 5379 return PTR_ERR(mst_state); 5380 5381 list_for_each_entry(pos, &mst_state->payloads, next) { 5382 5383 connector = pos->port->connector; 5384 5385 if (!connector) 5386 return -EINVAL; 5387 5388 conn_state = drm_atomic_get_connector_state(state, connector); 5389 5390 if (IS_ERR(conn_state)) 5391 return PTR_ERR(conn_state); 5392 5393 crtc = conn_state->crtc; 5394 5395 if (!crtc) 5396 continue; 5397 5398 if (!drm_dp_mst_dsc_aux_for_port(pos->port)) 5399 continue; 5400 5401 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc); 5402 5403 if (IS_ERR(crtc_state)) 5404 return PTR_ERR(crtc_state); 5405 5406 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n", 5407 mgr, crtc); 5408 5409 crtc_state->mode_changed = true; 5410 } 5411 return 0; 5412 } 5413 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs); 5414 5415 /** 5416 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off 5417 * @state: Pointer to the new drm_atomic_state 5418 * @port: Pointer to the affected MST Port 5419 * @pbn: Newly recalculated bw required for link with DSC enabled 5420 * @enable: Boolean flag to enable or disable DSC on the port 5421 * 5422 * This function enables DSC on the given Port 5423 * by recalculating its vcpi from pbn provided 5424 * and sets dsc_enable flag to keep track of which 5425 * ports have DSC enabled 5426 * 5427 */ 5428 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state, 5429 struct drm_dp_mst_port *port, 5430 int pbn, bool enable) 5431 { 5432 struct drm_dp_mst_topology_state *mst_state; 5433 struct drm_dp_mst_atomic_payload *payload; 5434 int time_slots = 0; 5435 5436 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr); 5437 if (IS_ERR(mst_state)) 5438 return PTR_ERR(mst_state); 5439 5440 payload = drm_atomic_get_mst_payload_state(mst_state, port); 5441 if (!payload) { 5442 drm_dbg_atomic(state->dev, 5443 "[MST PORT:%p] Couldn't find payload in mst state %p\n", 5444 port, mst_state); 5445 return -EINVAL; 5446 } 5447 5448 if (payload->dsc_enabled == enable) { 5449 drm_dbg_atomic(state->dev, 5450 "[MST PORT:%p] DSC flag is already set to %d, returning %d time slots\n", 5451 port, enable, payload->time_slots); 5452 time_slots = payload->time_slots; 5453 } 5454 5455 if (enable) { 5456 time_slots = drm_dp_atomic_find_time_slots(state, port->mgr, port, pbn); 5457 drm_dbg_atomic(state->dev, 5458 "[MST PORT:%p] Enabling DSC flag, reallocating %d time slots on the port\n", 5459 port, time_slots); 5460 if (time_slots < 0) 5461 return -EINVAL; 5462 } 5463 5464 payload->dsc_enabled = enable; 5465 5466 return time_slots; 5467 } 5468 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc); 5469 5470 /** 5471 * drm_dp_mst_atomic_check_mgr - Check the atomic state of an MST topology manager 5472 * @state: The global atomic state 5473 * @mgr: Manager to check 5474 * @mst_state: The MST atomic state for @mgr 5475 * @failing_port: Returns the port with a BW limitation 5476 * 5477 * Checks the given MST manager's topology state for an atomic update to ensure 5478 * that it's valid. This includes checking whether there's enough bandwidth to 5479 * support the new timeslot allocations in the atomic update. 5480 * 5481 * Any atomic drivers supporting DP MST must make sure to call this or 5482 * the drm_dp_mst_atomic_check() function after checking the rest of their state 5483 * in their &drm_mode_config_funcs.atomic_check() callback. 5484 * 5485 * See also: 5486 * drm_dp_mst_atomic_check() 5487 * drm_dp_atomic_find_time_slots() 5488 * drm_dp_atomic_release_time_slots() 5489 * 5490 * Returns: 5491 * - 0 if the new state is valid 5492 * - %-ENOSPC, if the new state is invalid, because of BW limitation 5493 * @failing_port is set to: 5494 * 5495 * - The non-root port where a BW limit check failed 5496 * with all the ports downstream of @failing_port passing 5497 * the BW limit check. 5498 * The returned port pointer is valid until at least 5499 * one payload downstream of it exists. 5500 * - %NULL if the BW limit check failed at the root port 5501 * with all the ports downstream of the root port passing 5502 * the BW limit check. 5503 * 5504 * - %-EINVAL, if the new state is invalid, because the root port has 5505 * too many payloads. 5506 */ 5507 int drm_dp_mst_atomic_check_mgr(struct drm_atomic_state *state, 5508 struct drm_dp_mst_topology_mgr *mgr, 5509 struct drm_dp_mst_topology_state *mst_state, 5510 struct drm_dp_mst_port **failing_port) 5511 { 5512 int ret; 5513 5514 *failing_port = NULL; 5515 5516 if (!mgr->mst_state) 5517 return 0; 5518 5519 mutex_lock(&mgr->lock); 5520 ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary, 5521 mst_state, 5522 failing_port); 5523 mutex_unlock(&mgr->lock); 5524 5525 if (ret < 0) 5526 return ret; 5527 5528 return drm_dp_mst_atomic_check_payload_alloc_limits(mgr, mst_state); 5529 } 5530 EXPORT_SYMBOL(drm_dp_mst_atomic_check_mgr); 5531 5532 /** 5533 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an 5534 * atomic update is valid 5535 * @state: Pointer to the new &struct drm_dp_mst_topology_state 5536 * 5537 * Checks the given topology state for an atomic update to ensure that it's 5538 * valid, calling drm_dp_mst_atomic_check_mgr() for all MST manager in the 5539 * atomic state. This includes checking whether there's enough bandwidth to 5540 * support the new timeslot allocations in the atomic update. 5541 * 5542 * Any atomic drivers supporting DP MST must make sure to call this after 5543 * checking the rest of their state in their 5544 * &drm_mode_config_funcs.atomic_check() callback. 5545 * 5546 * See also: 5547 * drm_dp_mst_atomic_check_mgr() 5548 * drm_dp_atomic_find_time_slots() 5549 * drm_dp_atomic_release_time_slots() 5550 * 5551 * Returns: 5552 * 5553 * 0 if the new state is valid, negative error code otherwise. 5554 */ 5555 int drm_dp_mst_atomic_check(struct drm_atomic_state *state) 5556 { 5557 struct drm_dp_mst_topology_mgr *mgr; 5558 struct drm_dp_mst_topology_state *mst_state; 5559 int i, ret = 0; 5560 5561 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 5562 struct drm_dp_mst_port *tmp_port; 5563 5564 ret = drm_dp_mst_atomic_check_mgr(state, mgr, mst_state, &tmp_port); 5565 if (ret) 5566 break; 5567 } 5568 5569 return ret; 5570 } 5571 EXPORT_SYMBOL(drm_dp_mst_atomic_check); 5572 5573 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = { 5574 .atomic_duplicate_state = drm_dp_mst_duplicate_state, 5575 .atomic_destroy_state = drm_dp_mst_destroy_state, 5576 }; 5577 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs); 5578 5579 /** 5580 * drm_atomic_get_mst_topology_state: get MST topology state 5581 * @state: global atomic state 5582 * @mgr: MST topology manager, also the private object in this case 5583 * 5584 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic 5585 * state vtable so that the private object state returned is that of a MST 5586 * topology object. 5587 * 5588 * RETURNS: 5589 * 5590 * The MST topology state or error pointer. 5591 */ 5592 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state, 5593 struct drm_dp_mst_topology_mgr *mgr) 5594 { 5595 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base)); 5596 } 5597 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state); 5598 5599 /** 5600 * drm_atomic_get_old_mst_topology_state: get old MST topology state in atomic state, if any 5601 * @state: global atomic state 5602 * @mgr: MST topology manager, also the private object in this case 5603 * 5604 * This function wraps drm_atomic_get_old_private_obj_state() passing in the MST atomic 5605 * state vtable so that the private object state returned is that of a MST 5606 * topology object. 5607 * 5608 * Returns: 5609 * 5610 * The old MST topology state, or NULL if there's no topology state for this MST mgr 5611 * in the global atomic state 5612 */ 5613 struct drm_dp_mst_topology_state * 5614 drm_atomic_get_old_mst_topology_state(struct drm_atomic_state *state, 5615 struct drm_dp_mst_topology_mgr *mgr) 5616 { 5617 struct drm_private_state *old_priv_state = 5618 drm_atomic_get_old_private_obj_state(state, &mgr->base); 5619 5620 return old_priv_state ? to_dp_mst_topology_state(old_priv_state) : NULL; 5621 } 5622 EXPORT_SYMBOL(drm_atomic_get_old_mst_topology_state); 5623 5624 /** 5625 * drm_atomic_get_new_mst_topology_state: get new MST topology state in atomic state, if any 5626 * @state: global atomic state 5627 * @mgr: MST topology manager, also the private object in this case 5628 * 5629 * This function wraps drm_atomic_get_new_private_obj_state() passing in the MST atomic 5630 * state vtable so that the private object state returned is that of a MST 5631 * topology object. 5632 * 5633 * Returns: 5634 * 5635 * The new MST topology state, or NULL if there's no topology state for this MST mgr 5636 * in the global atomic state 5637 */ 5638 struct drm_dp_mst_topology_state * 5639 drm_atomic_get_new_mst_topology_state(struct drm_atomic_state *state, 5640 struct drm_dp_mst_topology_mgr *mgr) 5641 { 5642 struct drm_private_state *new_priv_state = 5643 drm_atomic_get_new_private_obj_state(state, &mgr->base); 5644 5645 return new_priv_state ? to_dp_mst_topology_state(new_priv_state) : NULL; 5646 } 5647 EXPORT_SYMBOL(drm_atomic_get_new_mst_topology_state); 5648 5649 /** 5650 * drm_dp_mst_topology_mgr_init - initialise a topology manager 5651 * @mgr: manager struct to initialise 5652 * @dev: device providing this structure - for i2c addition. 5653 * @aux: DP helper aux channel to talk to this device 5654 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit 5655 * @max_payloads: maximum number of payloads this GPU can source 5656 * @conn_base_id: the connector object ID the MST device is connected to. 5657 * 5658 * Return 0 for success, or negative error code on failure 5659 */ 5660 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr, 5661 struct drm_device *dev, struct drm_dp_aux *aux, 5662 int max_dpcd_transaction_bytes, int max_payloads, 5663 int conn_base_id) 5664 { 5665 struct drm_dp_mst_topology_state *mst_state; 5666 5667 mutex_init(&mgr->lock); 5668 mutex_init(&mgr->qlock); 5669 mutex_init(&mgr->delayed_destroy_lock); 5670 mutex_init(&mgr->up_req_lock); 5671 mutex_init(&mgr->probe_lock); 5672 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5673 mutex_init(&mgr->topology_ref_history_lock); 5674 stack_depot_init(); 5675 #endif 5676 INIT_LIST_HEAD(&mgr->tx_msg_downq); 5677 INIT_LIST_HEAD(&mgr->destroy_port_list); 5678 INIT_LIST_HEAD(&mgr->destroy_branch_device_list); 5679 INIT_LIST_HEAD(&mgr->up_req_list); 5680 5681 /* 5682 * delayed_destroy_work will be queued on a dedicated WQ, so that any 5683 * requeuing will be also flushed when deiniting the topology manager. 5684 */ 5685 mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0); 5686 if (mgr->delayed_destroy_wq == NULL) 5687 return -ENOMEM; 5688 5689 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work); 5690 INIT_WORK(&mgr->tx_work, drm_dp_tx_work); 5691 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work); 5692 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work); 5693 init_waitqueue_head(&mgr->tx_waitq); 5694 mgr->dev = dev; 5695 mgr->aux = aux; 5696 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes; 5697 mgr->max_payloads = max_payloads; 5698 mgr->conn_base_id = conn_base_id; 5699 5700 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL); 5701 if (mst_state == NULL) 5702 return -ENOMEM; 5703 5704 mst_state->total_avail_slots = 63; 5705 mst_state->start_slot = 1; 5706 5707 mst_state->mgr = mgr; 5708 INIT_LIST_HEAD(&mst_state->payloads); 5709 5710 drm_atomic_private_obj_init(dev, &mgr->base, 5711 &mst_state->base, 5712 &drm_dp_mst_topology_state_funcs); 5713 5714 return 0; 5715 } 5716 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init); 5717 5718 /** 5719 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager. 5720 * @mgr: manager to destroy 5721 */ 5722 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr) 5723 { 5724 drm_dp_mst_topology_mgr_set_mst(mgr, false); 5725 flush_work(&mgr->work); 5726 /* The following will also drain any requeued work on the WQ. */ 5727 if (mgr->delayed_destroy_wq) { 5728 destroy_workqueue(mgr->delayed_destroy_wq); 5729 mgr->delayed_destroy_wq = NULL; 5730 } 5731 mgr->dev = NULL; 5732 mgr->aux = NULL; 5733 drm_atomic_private_obj_fini(&mgr->base); 5734 mgr->funcs = NULL; 5735 5736 mutex_destroy(&mgr->delayed_destroy_lock); 5737 mutex_destroy(&mgr->qlock); 5738 mutex_destroy(&mgr->lock); 5739 mutex_destroy(&mgr->up_req_lock); 5740 mutex_destroy(&mgr->probe_lock); 5741 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5742 mutex_destroy(&mgr->topology_ref_history_lock); 5743 #endif 5744 } 5745 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy); 5746 5747 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num) 5748 { 5749 int i; 5750 5751 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS) 5752 return false; 5753 5754 for (i = 0; i < num - 1; i++) { 5755 if (msgs[i].flags & I2C_M_RD || 5756 msgs[i].len > 0xff) 5757 return false; 5758 } 5759 5760 return msgs[num - 1].flags & I2C_M_RD && 5761 msgs[num - 1].len <= 0xff; 5762 } 5763 5764 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num) 5765 { 5766 int i; 5767 5768 for (i = 0; i < num - 1; i++) { 5769 if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) || 5770 msgs[i].len > 0xff) 5771 return false; 5772 } 5773 5774 return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff; 5775 } 5776 5777 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb, 5778 struct drm_dp_mst_port *port, 5779 struct i2c_msg *msgs, int num) 5780 { 5781 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5782 unsigned int i; 5783 struct drm_dp_sideband_msg_req_body msg; 5784 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5785 int ret; 5786 5787 memset(&msg, 0, sizeof(msg)); 5788 msg.req_type = DP_REMOTE_I2C_READ; 5789 msg.u.i2c_read.num_transactions = num - 1; 5790 msg.u.i2c_read.port_number = port->port_num; 5791 for (i = 0; i < num - 1; i++) { 5792 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr; 5793 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len; 5794 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf; 5795 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP); 5796 } 5797 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr; 5798 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len; 5799 5800 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5801 if (!txmsg) { 5802 ret = -ENOMEM; 5803 goto out; 5804 } 5805 5806 txmsg->dst = mstb; 5807 drm_dp_encode_sideband_req(&msg, txmsg); 5808 5809 drm_dp_queue_down_tx(mgr, txmsg); 5810 5811 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5812 if (ret > 0) { 5813 5814 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5815 ret = -EREMOTEIO; 5816 goto out; 5817 } 5818 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) { 5819 ret = -EIO; 5820 goto out; 5821 } 5822 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len); 5823 ret = num; 5824 } 5825 out: 5826 kfree(txmsg); 5827 return ret; 5828 } 5829 5830 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb, 5831 struct drm_dp_mst_port *port, 5832 struct i2c_msg *msgs, int num) 5833 { 5834 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5835 unsigned int i; 5836 struct drm_dp_sideband_msg_req_body msg; 5837 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5838 int ret; 5839 5840 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5841 if (!txmsg) { 5842 ret = -ENOMEM; 5843 goto out; 5844 } 5845 for (i = 0; i < num; i++) { 5846 memset(&msg, 0, sizeof(msg)); 5847 msg.req_type = DP_REMOTE_I2C_WRITE; 5848 msg.u.i2c_write.port_number = port->port_num; 5849 msg.u.i2c_write.write_i2c_device_id = msgs[i].addr; 5850 msg.u.i2c_write.num_bytes = msgs[i].len; 5851 msg.u.i2c_write.bytes = msgs[i].buf; 5852 5853 memset(txmsg, 0, sizeof(*txmsg)); 5854 txmsg->dst = mstb; 5855 5856 drm_dp_encode_sideband_req(&msg, txmsg); 5857 drm_dp_queue_down_tx(mgr, txmsg); 5858 5859 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5860 if (ret > 0) { 5861 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5862 ret = -EREMOTEIO; 5863 goto out; 5864 } 5865 } else { 5866 goto out; 5867 } 5868 } 5869 ret = num; 5870 out: 5871 kfree(txmsg); 5872 return ret; 5873 } 5874 5875 /* I2C device */ 5876 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, 5877 struct i2c_msg *msgs, int num) 5878 { 5879 struct drm_dp_aux *aux = adapter->algo_data; 5880 struct drm_dp_mst_port *port = 5881 container_of(aux, struct drm_dp_mst_port, aux); 5882 struct drm_dp_mst_branch *mstb; 5883 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5884 int ret; 5885 5886 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 5887 if (!mstb) 5888 return -EREMOTEIO; 5889 5890 if (remote_i2c_read_ok(msgs, num)) { 5891 ret = drm_dp_mst_i2c_read(mstb, port, msgs, num); 5892 } else if (remote_i2c_write_ok(msgs, num)) { 5893 ret = drm_dp_mst_i2c_write(mstb, port, msgs, num); 5894 } else { 5895 drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n"); 5896 ret = -EIO; 5897 } 5898 5899 drm_dp_mst_topology_put_mstb(mstb); 5900 return ret; 5901 } 5902 5903 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter) 5904 { 5905 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 5906 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 5907 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 5908 I2C_FUNC_10BIT_ADDR; 5909 } 5910 5911 static const struct i2c_algorithm drm_dp_mst_i2c_algo = { 5912 .functionality = drm_dp_mst_i2c_functionality, 5913 .master_xfer = drm_dp_mst_i2c_xfer, 5914 }; 5915 5916 /** 5917 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX 5918 * @port: The port to add the I2C bus on 5919 * 5920 * Returns 0 on success or a negative error code on failure. 5921 */ 5922 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port) 5923 { 5924 struct drm_dp_aux *aux = &port->aux; 5925 struct device *parent_dev = port->mgr->dev->dev; 5926 5927 aux->ddc.algo = &drm_dp_mst_i2c_algo; 5928 aux->ddc.algo_data = aux; 5929 aux->ddc.retries = 3; 5930 5931 aux->ddc.owner = THIS_MODULE; 5932 /* FIXME: set the kdev of the port's connector as parent */ 5933 aux->ddc.dev.parent = parent_dev; 5934 aux->ddc.dev.of_node = parent_dev->of_node; 5935 5936 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev), 5937 sizeof(aux->ddc.name)); 5938 5939 return i2c_add_adapter(&aux->ddc); 5940 } 5941 5942 /** 5943 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter 5944 * @port: The port to remove the I2C bus from 5945 */ 5946 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port) 5947 { 5948 i2c_del_adapter(&port->aux.ddc); 5949 } 5950 5951 /** 5952 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device 5953 * @port: The port to check 5954 * 5955 * A single physical MST hub object can be represented in the topology 5956 * by multiple branches, with virtual ports between those branches. 5957 * 5958 * As of DP1.4, An MST hub with internal (virtual) ports must expose 5959 * certain DPCD registers over those ports. See sections 2.6.1.1.1 5960 * and 2.6.1.1.2 of Display Port specification v1.4 for details. 5961 * 5962 * May acquire mgr->lock 5963 * 5964 * Returns: 5965 * true if the port is a virtual DP peer device, false otherwise 5966 */ 5967 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port) 5968 { 5969 struct drm_dp_mst_port *downstream_port; 5970 5971 if (!port || port->dpcd_rev < DP_DPCD_REV_14) 5972 return false; 5973 5974 /* Virtual DP Sink (Internal Display Panel) */ 5975 if (port->port_num >= 8) 5976 return true; 5977 5978 /* DP-to-HDMI Protocol Converter */ 5979 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV && 5980 !port->mcs && 5981 port->ldps) 5982 return true; 5983 5984 /* DP-to-DP */ 5985 mutex_lock(&port->mgr->lock); 5986 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 5987 port->mstb && 5988 port->mstb->num_ports == 2) { 5989 list_for_each_entry(downstream_port, &port->mstb->ports, next) { 5990 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK && 5991 !downstream_port->input) { 5992 mutex_unlock(&port->mgr->lock); 5993 return true; 5994 } 5995 } 5996 } 5997 mutex_unlock(&port->mgr->lock); 5998 5999 return false; 6000 } 6001 6002 /** 6003 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC 6004 * @port: The port to check. A leaf of the MST tree with an attached display. 6005 * 6006 * Depending on the situation, DSC may be enabled via the endpoint aux, 6007 * the immediately upstream aux, or the connector's physical aux. 6008 * 6009 * This is both the correct aux to read DSC_CAPABILITY and the 6010 * correct aux to write DSC_ENABLED. 6011 * 6012 * This operation can be expensive (up to four aux reads), so 6013 * the caller should cache the return. 6014 * 6015 * Returns: 6016 * NULL if DSC cannot be enabled on this port, otherwise the aux device 6017 */ 6018 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port) 6019 { 6020 struct drm_dp_mst_port *immediate_upstream_port; 6021 struct drm_dp_aux *immediate_upstream_aux; 6022 struct drm_dp_mst_port *fec_port; 6023 struct drm_dp_desc desc = {}; 6024 u8 endpoint_fec; 6025 u8 endpoint_dsc; 6026 6027 if (!port) 6028 return NULL; 6029 6030 if (port->parent->port_parent) 6031 immediate_upstream_port = port->parent->port_parent; 6032 else 6033 immediate_upstream_port = NULL; 6034 6035 fec_port = immediate_upstream_port; 6036 while (fec_port) { 6037 /* 6038 * Each physical link (i.e. not a virtual port) between the 6039 * output and the primary device must support FEC 6040 */ 6041 if (!drm_dp_mst_is_virtual_dpcd(fec_port) && 6042 !fec_port->fec_capable) 6043 return NULL; 6044 6045 fec_port = fec_port->parent->port_parent; 6046 } 6047 6048 /* DP-to-DP peer device */ 6049 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) { 6050 u8 upstream_dsc; 6051 6052 if (drm_dp_dpcd_read(&port->aux, 6053 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 6054 return NULL; 6055 if (drm_dp_dpcd_read(&port->aux, 6056 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 6057 return NULL; 6058 if (drm_dp_dpcd_read(&immediate_upstream_port->aux, 6059 DP_DSC_SUPPORT, &upstream_dsc, 1) != 1) 6060 return NULL; 6061 6062 /* Enpoint decompression with DP-to-DP peer device */ 6063 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6064 (endpoint_fec & DP_FEC_CAPABLE) && 6065 (upstream_dsc & DP_DSC_PASSTHROUGH_IS_SUPPORTED)) { 6066 port->passthrough_aux = &immediate_upstream_port->aux; 6067 return &port->aux; 6068 } 6069 6070 /* Virtual DPCD decompression with DP-to-DP peer device */ 6071 return &immediate_upstream_port->aux; 6072 } 6073 6074 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */ 6075 if (drm_dp_mst_is_virtual_dpcd(port)) 6076 return &port->aux; 6077 6078 /* 6079 * Synaptics quirk 6080 * Applies to ports for which: 6081 * - Physical aux has Synaptics OUI 6082 * - DPv1.4 or higher 6083 * - Port is on primary branch device 6084 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG) 6085 */ 6086 if (immediate_upstream_port) 6087 immediate_upstream_aux = &immediate_upstream_port->aux; 6088 else 6089 immediate_upstream_aux = port->mgr->aux; 6090 6091 if (drm_dp_read_desc(immediate_upstream_aux, &desc, true)) 6092 return NULL; 6093 6094 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD)) { 6095 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 6096 6097 if (drm_dp_read_dpcd_caps(immediate_upstream_aux, dpcd_ext) < 0) 6098 return NULL; 6099 6100 if (dpcd_ext[DP_DPCD_REV] >= DP_DPCD_REV_14 && 6101 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) && 6102 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) 6103 != DP_DWN_STRM_PORT_TYPE_ANALOG))) 6104 return immediate_upstream_aux; 6105 } 6106 6107 /* 6108 * The check below verifies if the MST sink 6109 * connected to the GPU is capable of DSC - 6110 * therefore the endpoint needs to be 6111 * both DSC and FEC capable. 6112 */ 6113 if (drm_dp_dpcd_read(&port->aux, 6114 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 6115 return NULL; 6116 if (drm_dp_dpcd_read(&port->aux, 6117 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 6118 return NULL; 6119 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6120 (endpoint_fec & DP_FEC_CAPABLE)) 6121 return &port->aux; 6122 6123 return NULL; 6124 } 6125 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port); 6126