1 /* 2 * Copyright © 2014 Red Hat 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/bitfield.h> 24 #include <linux/delay.h> 25 #include <linux/errno.h> 26 #include <linux/i2c.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/random.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/iopoll.h> 33 34 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 35 #include <linux/stacktrace.h> 36 #include <linux/sort.h> 37 #include <linux/timekeeping.h> 38 #include <linux/math64.h> 39 #endif 40 41 #include <drm/display/drm_dp_mst_helper.h> 42 #include <drm/drm_atomic.h> 43 #include <drm/drm_atomic_helper.h> 44 #include <drm/drm_drv.h> 45 #include <drm/drm_edid.h> 46 #include <drm/drm_fixed.h> 47 #include <drm/drm_print.h> 48 #include <drm/drm_probe_helper.h> 49 50 #include "drm_dp_helper_internal.h" 51 #include "drm_dp_mst_topology_internal.h" 52 53 /** 54 * DOC: dp mst helper 55 * 56 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport 57 * protocol. The helpers contain a topology manager and bandwidth manager. 58 * The helpers encapsulate the sending and received of sideband msgs. 59 */ 60 struct drm_dp_pending_up_req { 61 struct drm_dp_sideband_msg_hdr hdr; 62 struct drm_dp_sideband_msg_req_body msg; 63 struct list_head next; 64 }; 65 66 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 67 char *buf); 68 69 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port); 70 71 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 72 int id, u8 start_slot, u8 num_slots); 73 74 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 75 struct drm_dp_mst_port *port, 76 int offset, int size, u8 *bytes); 77 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 78 struct drm_dp_mst_port *port, 79 int offset, int size, u8 *bytes); 80 81 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 82 struct drm_dp_mst_branch *mstb); 83 84 static void 85 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 86 struct drm_dp_mst_branch *mstb); 87 88 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 89 struct drm_dp_mst_branch *mstb, 90 struct drm_dp_mst_port *port); 91 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 92 u8 *guid); 93 94 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port); 95 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port); 96 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr); 97 98 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 99 struct drm_dp_mst_branch *branch); 100 101 #define DBG_PREFIX "[dp_mst]" 102 103 #define DP_STR(x) [DP_ ## x] = #x 104 105 static const char *drm_dp_mst_req_type_str(u8 req_type) 106 { 107 static const char * const req_type_str[] = { 108 DP_STR(GET_MSG_TRANSACTION_VERSION), 109 DP_STR(LINK_ADDRESS), 110 DP_STR(CONNECTION_STATUS_NOTIFY), 111 DP_STR(ENUM_PATH_RESOURCES), 112 DP_STR(ALLOCATE_PAYLOAD), 113 DP_STR(QUERY_PAYLOAD), 114 DP_STR(RESOURCE_STATUS_NOTIFY), 115 DP_STR(CLEAR_PAYLOAD_ID_TABLE), 116 DP_STR(REMOTE_DPCD_READ), 117 DP_STR(REMOTE_DPCD_WRITE), 118 DP_STR(REMOTE_I2C_READ), 119 DP_STR(REMOTE_I2C_WRITE), 120 DP_STR(POWER_UP_PHY), 121 DP_STR(POWER_DOWN_PHY), 122 DP_STR(SINK_EVENT_NOTIFY), 123 DP_STR(QUERY_STREAM_ENC_STATUS), 124 }; 125 126 if (req_type >= ARRAY_SIZE(req_type_str) || 127 !req_type_str[req_type]) 128 return "unknown"; 129 130 return req_type_str[req_type]; 131 } 132 133 #undef DP_STR 134 #define DP_STR(x) [DP_NAK_ ## x] = #x 135 136 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason) 137 { 138 static const char * const nak_reason_str[] = { 139 DP_STR(WRITE_FAILURE), 140 DP_STR(INVALID_READ), 141 DP_STR(CRC_FAILURE), 142 DP_STR(BAD_PARAM), 143 DP_STR(DEFER), 144 DP_STR(LINK_FAILURE), 145 DP_STR(NO_RESOURCES), 146 DP_STR(DPCD_FAIL), 147 DP_STR(I2C_NAK), 148 DP_STR(ALLOCATE_FAIL), 149 }; 150 151 if (nak_reason >= ARRAY_SIZE(nak_reason_str) || 152 !nak_reason_str[nak_reason]) 153 return "unknown"; 154 155 return nak_reason_str[nak_reason]; 156 } 157 158 #undef DP_STR 159 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x 160 161 static const char *drm_dp_mst_sideband_tx_state_str(int state) 162 { 163 static const char * const sideband_reason_str[] = { 164 DP_STR(QUEUED), 165 DP_STR(START_SEND), 166 DP_STR(SENT), 167 DP_STR(RX), 168 DP_STR(TIMEOUT), 169 }; 170 171 if (state >= ARRAY_SIZE(sideband_reason_str) || 172 !sideband_reason_str[state]) 173 return "unknown"; 174 175 return sideband_reason_str[state]; 176 } 177 178 static int 179 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len) 180 { 181 int i; 182 u8 unpacked_rad[16]; 183 184 for (i = 0; i < lct; i++) { 185 if (i % 2) 186 unpacked_rad[i] = rad[i / 2] >> 4; 187 else 188 unpacked_rad[i] = rad[i / 2] & BIT_MASK(4); 189 } 190 191 /* TODO: Eventually add something to printk so we can format the rad 192 * like this: 1.2.3 193 */ 194 return snprintf(out, len, "%*phC", lct, unpacked_rad); 195 } 196 197 /* sideband msg handling */ 198 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles) 199 { 200 u8 bitmask = 0x80; 201 u8 bitshift = 7; 202 u8 array_index = 0; 203 int number_of_bits = num_nibbles * 4; 204 u8 remainder = 0; 205 206 while (number_of_bits != 0) { 207 number_of_bits--; 208 remainder <<= 1; 209 remainder |= (data[array_index] & bitmask) >> bitshift; 210 bitmask >>= 1; 211 bitshift--; 212 if (bitmask == 0) { 213 bitmask = 0x80; 214 bitshift = 7; 215 array_index++; 216 } 217 if ((remainder & 0x10) == 0x10) 218 remainder ^= 0x13; 219 } 220 221 number_of_bits = 4; 222 while (number_of_bits != 0) { 223 number_of_bits--; 224 remainder <<= 1; 225 if ((remainder & 0x10) != 0) 226 remainder ^= 0x13; 227 } 228 229 return remainder; 230 } 231 232 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes) 233 { 234 u8 bitmask = 0x80; 235 u8 bitshift = 7; 236 u8 array_index = 0; 237 int number_of_bits = number_of_bytes * 8; 238 u16 remainder = 0; 239 240 while (number_of_bits != 0) { 241 number_of_bits--; 242 remainder <<= 1; 243 remainder |= (data[array_index] & bitmask) >> bitshift; 244 bitmask >>= 1; 245 bitshift--; 246 if (bitmask == 0) { 247 bitmask = 0x80; 248 bitshift = 7; 249 array_index++; 250 } 251 if ((remainder & 0x100) == 0x100) 252 remainder ^= 0xd5; 253 } 254 255 number_of_bits = 8; 256 while (number_of_bits != 0) { 257 number_of_bits--; 258 remainder <<= 1; 259 if ((remainder & 0x100) != 0) 260 remainder ^= 0xd5; 261 } 262 263 return remainder & 0xff; 264 } 265 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr) 266 { 267 u8 size = 3; 268 269 size += (hdr->lct / 2); 270 return size; 271 } 272 273 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr, 274 u8 *buf, int *len) 275 { 276 int idx = 0; 277 int i; 278 u8 crc4; 279 280 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf); 281 for (i = 0; i < (hdr->lct / 2); i++) 282 buf[idx++] = hdr->rad[i]; 283 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) | 284 (hdr->msg_len & 0x3f); 285 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4); 286 287 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1); 288 buf[idx - 1] |= (crc4 & 0xf); 289 290 *len = idx; 291 } 292 293 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr, 294 struct drm_dp_sideband_msg_hdr *hdr, 295 u8 *buf, int buflen, u8 *hdrlen) 296 { 297 u8 crc4; 298 u8 len; 299 int i; 300 u8 idx; 301 302 if (buf[0] == 0) 303 return false; 304 len = 3; 305 len += ((buf[0] & 0xf0) >> 4) / 2; 306 if (len > buflen) 307 return false; 308 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1); 309 310 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) { 311 drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]); 312 return false; 313 } 314 315 hdr->lct = (buf[0] & 0xf0) >> 4; 316 hdr->lcr = (buf[0] & 0xf); 317 idx = 1; 318 for (i = 0; i < (hdr->lct / 2); i++) 319 hdr->rad[i] = buf[idx++]; 320 hdr->broadcast = (buf[idx] >> 7) & 0x1; 321 hdr->path_msg = (buf[idx] >> 6) & 0x1; 322 hdr->msg_len = buf[idx] & 0x3f; 323 idx++; 324 hdr->somt = (buf[idx] >> 7) & 0x1; 325 hdr->eomt = (buf[idx] >> 6) & 0x1; 326 hdr->seqno = (buf[idx] >> 4) & 0x1; 327 idx++; 328 *hdrlen = idx; 329 return true; 330 } 331 332 void 333 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req, 334 struct drm_dp_sideband_msg_tx *raw) 335 { 336 int idx = 0; 337 int i; 338 u8 *buf = raw->msg; 339 340 buf[idx++] = req->req_type & 0x7f; 341 342 switch (req->req_type) { 343 case DP_ENUM_PATH_RESOURCES: 344 case DP_POWER_DOWN_PHY: 345 case DP_POWER_UP_PHY: 346 buf[idx] = (req->u.port_num.port_number & 0xf) << 4; 347 idx++; 348 break; 349 case DP_ALLOCATE_PAYLOAD: 350 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 | 351 (req->u.allocate_payload.number_sdp_streams & 0xf); 352 idx++; 353 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f); 354 idx++; 355 buf[idx] = (req->u.allocate_payload.pbn >> 8); 356 idx++; 357 buf[idx] = (req->u.allocate_payload.pbn & 0xff); 358 idx++; 359 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) { 360 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) | 361 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf); 362 idx++; 363 } 364 if (req->u.allocate_payload.number_sdp_streams & 1) { 365 i = req->u.allocate_payload.number_sdp_streams - 1; 366 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4; 367 idx++; 368 } 369 break; 370 case DP_QUERY_PAYLOAD: 371 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4; 372 idx++; 373 buf[idx] = (req->u.query_payload.vcpi & 0x7f); 374 idx++; 375 break; 376 case DP_REMOTE_DPCD_READ: 377 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4; 378 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf; 379 idx++; 380 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8; 381 idx++; 382 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff); 383 idx++; 384 buf[idx] = (req->u.dpcd_read.num_bytes); 385 idx++; 386 break; 387 388 case DP_REMOTE_DPCD_WRITE: 389 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4; 390 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf; 391 idx++; 392 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8; 393 idx++; 394 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff); 395 idx++; 396 buf[idx] = (req->u.dpcd_write.num_bytes); 397 idx++; 398 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes); 399 idx += req->u.dpcd_write.num_bytes; 400 break; 401 case DP_REMOTE_I2C_READ: 402 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4; 403 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3); 404 idx++; 405 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) { 406 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f; 407 idx++; 408 buf[idx] = req->u.i2c_read.transactions[i].num_bytes; 409 idx++; 410 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes); 411 idx += req->u.i2c_read.transactions[i].num_bytes; 412 413 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4; 414 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf); 415 idx++; 416 } 417 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f; 418 idx++; 419 buf[idx] = (req->u.i2c_read.num_bytes_read); 420 idx++; 421 break; 422 423 case DP_REMOTE_I2C_WRITE: 424 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4; 425 idx++; 426 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f; 427 idx++; 428 buf[idx] = (req->u.i2c_write.num_bytes); 429 idx++; 430 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes); 431 idx += req->u.i2c_write.num_bytes; 432 break; 433 case DP_QUERY_STREAM_ENC_STATUS: { 434 const struct drm_dp_query_stream_enc_status *msg; 435 436 msg = &req->u.enc_status; 437 buf[idx] = msg->stream_id; 438 idx++; 439 memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id)); 440 idx += sizeof(msg->client_id); 441 buf[idx] = 0; 442 buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event); 443 buf[idx] |= msg->valid_stream_event ? BIT(2) : 0; 444 buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior); 445 buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0; 446 idx++; 447 } 448 break; 449 } 450 raw->cur_len = idx; 451 } 452 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req); 453 454 /* Decode a sideband request we've encoded, mainly used for debugging */ 455 int 456 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw, 457 struct drm_dp_sideband_msg_req_body *req) 458 { 459 const u8 *buf = raw->msg; 460 int i, idx = 0; 461 462 req->req_type = buf[idx++] & 0x7f; 463 switch (req->req_type) { 464 case DP_ENUM_PATH_RESOURCES: 465 case DP_POWER_DOWN_PHY: 466 case DP_POWER_UP_PHY: 467 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf; 468 break; 469 case DP_ALLOCATE_PAYLOAD: 470 { 471 struct drm_dp_allocate_payload *a = 472 &req->u.allocate_payload; 473 474 a->number_sdp_streams = buf[idx] & 0xf; 475 a->port_number = (buf[idx] >> 4) & 0xf; 476 477 WARN_ON(buf[++idx] & 0x80); 478 a->vcpi = buf[idx] & 0x7f; 479 480 a->pbn = buf[++idx] << 8; 481 a->pbn |= buf[++idx]; 482 483 idx++; 484 for (i = 0; i < a->number_sdp_streams; i++) { 485 a->sdp_stream_sink[i] = 486 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf; 487 } 488 } 489 break; 490 case DP_QUERY_PAYLOAD: 491 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf; 492 WARN_ON(buf[++idx] & 0x80); 493 req->u.query_payload.vcpi = buf[idx] & 0x7f; 494 break; 495 case DP_REMOTE_DPCD_READ: 496 { 497 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read; 498 499 r->port_number = (buf[idx] >> 4) & 0xf; 500 501 r->dpcd_address = (buf[idx] << 16) & 0xf0000; 502 r->dpcd_address |= (buf[++idx] << 8) & 0xff00; 503 r->dpcd_address |= buf[++idx] & 0xff; 504 505 r->num_bytes = buf[++idx]; 506 } 507 break; 508 case DP_REMOTE_DPCD_WRITE: 509 { 510 struct drm_dp_remote_dpcd_write *w = 511 &req->u.dpcd_write; 512 513 w->port_number = (buf[idx] >> 4) & 0xf; 514 515 w->dpcd_address = (buf[idx] << 16) & 0xf0000; 516 w->dpcd_address |= (buf[++idx] << 8) & 0xff00; 517 w->dpcd_address |= buf[++idx] & 0xff; 518 519 w->num_bytes = buf[++idx]; 520 521 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 522 GFP_KERNEL); 523 if (!w->bytes) 524 return -ENOMEM; 525 } 526 break; 527 case DP_REMOTE_I2C_READ: 528 { 529 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read; 530 struct drm_dp_remote_i2c_read_tx *tx; 531 bool failed = false; 532 533 r->num_transactions = buf[idx] & 0x3; 534 r->port_number = (buf[idx] >> 4) & 0xf; 535 for (i = 0; i < r->num_transactions; i++) { 536 tx = &r->transactions[i]; 537 538 tx->i2c_dev_id = buf[++idx] & 0x7f; 539 tx->num_bytes = buf[++idx]; 540 tx->bytes = kmemdup(&buf[++idx], 541 tx->num_bytes, 542 GFP_KERNEL); 543 if (!tx->bytes) { 544 failed = true; 545 break; 546 } 547 idx += tx->num_bytes; 548 tx->no_stop_bit = (buf[idx] >> 5) & 0x1; 549 tx->i2c_transaction_delay = buf[idx] & 0xf; 550 } 551 552 if (failed) { 553 for (i = 0; i < r->num_transactions; i++) { 554 tx = &r->transactions[i]; 555 kfree(tx->bytes); 556 } 557 return -ENOMEM; 558 } 559 560 r->read_i2c_device_id = buf[++idx] & 0x7f; 561 r->num_bytes_read = buf[++idx]; 562 } 563 break; 564 case DP_REMOTE_I2C_WRITE: 565 { 566 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write; 567 568 w->port_number = (buf[idx] >> 4) & 0xf; 569 w->write_i2c_device_id = buf[++idx] & 0x7f; 570 w->num_bytes = buf[++idx]; 571 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 572 GFP_KERNEL); 573 if (!w->bytes) 574 return -ENOMEM; 575 } 576 break; 577 case DP_QUERY_STREAM_ENC_STATUS: 578 req->u.enc_status.stream_id = buf[idx++]; 579 for (i = 0; i < sizeof(req->u.enc_status.client_id); i++) 580 req->u.enc_status.client_id[i] = buf[idx++]; 581 582 req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0), 583 buf[idx]); 584 req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2), 585 buf[idx]); 586 req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3), 587 buf[idx]); 588 req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5), 589 buf[idx]); 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req); 596 597 void 598 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req, 599 int indent, struct drm_printer *printer) 600 { 601 int i; 602 603 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__) 604 if (req->req_type == DP_LINK_ADDRESS) { 605 /* No contents to print */ 606 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type)); 607 return; 608 } 609 610 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type)); 611 indent++; 612 613 switch (req->req_type) { 614 case DP_ENUM_PATH_RESOURCES: 615 case DP_POWER_DOWN_PHY: 616 case DP_POWER_UP_PHY: 617 P("port=%d\n", req->u.port_num.port_number); 618 break; 619 case DP_ALLOCATE_PAYLOAD: 620 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n", 621 req->u.allocate_payload.port_number, 622 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn, 623 req->u.allocate_payload.number_sdp_streams, 624 req->u.allocate_payload.number_sdp_streams, 625 req->u.allocate_payload.sdp_stream_sink); 626 break; 627 case DP_QUERY_PAYLOAD: 628 P("port=%d vcpi=%d\n", 629 req->u.query_payload.port_number, 630 req->u.query_payload.vcpi); 631 break; 632 case DP_REMOTE_DPCD_READ: 633 P("port=%d dpcd_addr=%05x len=%d\n", 634 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address, 635 req->u.dpcd_read.num_bytes); 636 break; 637 case DP_REMOTE_DPCD_WRITE: 638 P("port=%d addr=%05x len=%d: %*ph\n", 639 req->u.dpcd_write.port_number, 640 req->u.dpcd_write.dpcd_address, 641 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes, 642 req->u.dpcd_write.bytes); 643 break; 644 case DP_REMOTE_I2C_READ: 645 P("port=%d num_tx=%d id=%d size=%d:\n", 646 req->u.i2c_read.port_number, 647 req->u.i2c_read.num_transactions, 648 req->u.i2c_read.read_i2c_device_id, 649 req->u.i2c_read.num_bytes_read); 650 651 indent++; 652 for (i = 0; i < req->u.i2c_read.num_transactions; i++) { 653 const struct drm_dp_remote_i2c_read_tx *rtx = 654 &req->u.i2c_read.transactions[i]; 655 656 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n", 657 i, rtx->i2c_dev_id, rtx->num_bytes, 658 rtx->no_stop_bit, rtx->i2c_transaction_delay, 659 rtx->num_bytes, rtx->bytes); 660 } 661 break; 662 case DP_REMOTE_I2C_WRITE: 663 P("port=%d id=%d size=%d: %*ph\n", 664 req->u.i2c_write.port_number, 665 req->u.i2c_write.write_i2c_device_id, 666 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes, 667 req->u.i2c_write.bytes); 668 break; 669 case DP_QUERY_STREAM_ENC_STATUS: 670 P("stream_id=%u client_id=%*ph stream_event=%x " 671 "valid_event=%d stream_behavior=%x valid_behavior=%d", 672 req->u.enc_status.stream_id, 673 (int)ARRAY_SIZE(req->u.enc_status.client_id), 674 req->u.enc_status.client_id, req->u.enc_status.stream_event, 675 req->u.enc_status.valid_stream_event, 676 req->u.enc_status.stream_behavior, 677 req->u.enc_status.valid_stream_behavior); 678 break; 679 default: 680 P("???\n"); 681 break; 682 } 683 #undef P 684 } 685 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body); 686 687 static inline void 688 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p, 689 const struct drm_dp_sideband_msg_tx *txmsg) 690 { 691 struct drm_dp_sideband_msg_req_body req; 692 char buf[64]; 693 int ret; 694 int i; 695 696 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf, 697 sizeof(buf)); 698 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n", 699 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno, 700 drm_dp_mst_sideband_tx_state_str(txmsg->state), 701 txmsg->path_msg, buf); 702 703 ret = drm_dp_decode_sideband_req(txmsg, &req); 704 if (ret) { 705 drm_printf(p, "<failed to decode sideband req: %d>\n", ret); 706 return; 707 } 708 drm_dp_dump_sideband_msg_req_body(&req, 1, p); 709 710 switch (req.req_type) { 711 case DP_REMOTE_DPCD_WRITE: 712 kfree(req.u.dpcd_write.bytes); 713 break; 714 case DP_REMOTE_I2C_READ: 715 for (i = 0; i < req.u.i2c_read.num_transactions; i++) 716 kfree(req.u.i2c_read.transactions[i].bytes); 717 break; 718 case DP_REMOTE_I2C_WRITE: 719 kfree(req.u.i2c_write.bytes); 720 break; 721 } 722 } 723 724 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len) 725 { 726 u8 crc4; 727 728 crc4 = drm_dp_msg_data_crc4(msg, len); 729 msg[len] = crc4; 730 } 731 732 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep, 733 struct drm_dp_sideband_msg_tx *raw) 734 { 735 int idx = 0; 736 u8 *buf = raw->msg; 737 738 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f); 739 740 raw->cur_len = idx; 741 } 742 743 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg, 744 struct drm_dp_sideband_msg_hdr *hdr, 745 u8 hdrlen) 746 { 747 /* 748 * ignore out-of-order messages or messages that are part of a 749 * failed transaction 750 */ 751 if (!hdr->somt && !msg->have_somt) 752 return false; 753 754 /* get length contained in this portion */ 755 msg->curchunk_idx = 0; 756 msg->curchunk_len = hdr->msg_len; 757 msg->curchunk_hdrlen = hdrlen; 758 759 /* we have already gotten an somt - don't bother parsing */ 760 if (hdr->somt && msg->have_somt) 761 return false; 762 763 if (hdr->somt) { 764 memcpy(&msg->initial_hdr, hdr, 765 sizeof(struct drm_dp_sideband_msg_hdr)); 766 msg->have_somt = true; 767 } 768 if (hdr->eomt) 769 msg->have_eomt = true; 770 771 return true; 772 } 773 774 /* this adds a chunk of msg to the builder to get the final msg */ 775 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg, 776 u8 *replybuf, u8 replybuflen) 777 { 778 u8 crc4; 779 780 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen); 781 msg->curchunk_idx += replybuflen; 782 783 if (msg->curchunk_idx >= msg->curchunk_len) { 784 /* do CRC */ 785 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1); 786 if (crc4 != msg->chunk[msg->curchunk_len - 1]) 787 print_hex_dump(KERN_DEBUG, "wrong crc", 788 DUMP_PREFIX_NONE, 16, 1, 789 msg->chunk, msg->curchunk_len, false); 790 /* copy chunk into bigger msg */ 791 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1); 792 msg->curlen += msg->curchunk_len - 1; 793 } 794 return true; 795 } 796 797 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr, 798 struct drm_dp_sideband_msg_rx *raw, 799 struct drm_dp_sideband_msg_reply_body *repmsg) 800 { 801 int idx = 1; 802 int i; 803 804 memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16); 805 idx += 16; 806 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf; 807 idx++; 808 if (idx > raw->curlen) 809 goto fail_len; 810 for (i = 0; i < repmsg->u.link_addr.nports; i++) { 811 if (raw->msg[idx] & 0x80) 812 repmsg->u.link_addr.ports[i].input_port = 1; 813 814 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7; 815 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf); 816 817 idx++; 818 if (idx > raw->curlen) 819 goto fail_len; 820 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1; 821 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1; 822 if (repmsg->u.link_addr.ports[i].input_port == 0) 823 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 824 idx++; 825 if (idx > raw->curlen) 826 goto fail_len; 827 if (repmsg->u.link_addr.ports[i].input_port == 0) { 828 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]); 829 idx++; 830 if (idx > raw->curlen) 831 goto fail_len; 832 memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16); 833 idx += 16; 834 if (idx > raw->curlen) 835 goto fail_len; 836 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf; 837 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf); 838 idx++; 839 840 } 841 if (idx > raw->curlen) 842 goto fail_len; 843 } 844 845 return true; 846 fail_len: 847 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 848 return false; 849 } 850 851 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw, 852 struct drm_dp_sideband_msg_reply_body *repmsg) 853 { 854 int idx = 1; 855 856 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf; 857 idx++; 858 if (idx > raw->curlen) 859 goto fail_len; 860 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx]; 861 idx++; 862 if (idx > raw->curlen) 863 goto fail_len; 864 865 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes); 866 return true; 867 fail_len: 868 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 869 return false; 870 } 871 872 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw, 873 struct drm_dp_sideband_msg_reply_body *repmsg) 874 { 875 int idx = 1; 876 877 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf; 878 idx++; 879 if (idx > raw->curlen) 880 goto fail_len; 881 return true; 882 fail_len: 883 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen); 884 return false; 885 } 886 887 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw, 888 struct drm_dp_sideband_msg_reply_body *repmsg) 889 { 890 int idx = 1; 891 892 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf); 893 idx++; 894 if (idx > raw->curlen) 895 goto fail_len; 896 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx]; 897 idx++; 898 /* TODO check */ 899 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes); 900 return true; 901 fail_len: 902 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen); 903 return false; 904 } 905 906 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw, 907 struct drm_dp_sideband_msg_reply_body *repmsg) 908 { 909 int idx = 1; 910 911 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf; 912 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1; 913 idx++; 914 if (idx > raw->curlen) 915 goto fail_len; 916 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 917 idx += 2; 918 if (idx > raw->curlen) 919 goto fail_len; 920 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 921 idx += 2; 922 if (idx > raw->curlen) 923 goto fail_len; 924 return true; 925 fail_len: 926 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen); 927 return false; 928 } 929 930 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw, 931 struct drm_dp_sideband_msg_reply_body *repmsg) 932 { 933 int idx = 1; 934 935 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 936 idx++; 937 if (idx > raw->curlen) 938 goto fail_len; 939 repmsg->u.allocate_payload.vcpi = raw->msg[idx]; 940 idx++; 941 if (idx > raw->curlen) 942 goto fail_len; 943 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 944 idx += 2; 945 if (idx > raw->curlen) 946 goto fail_len; 947 return true; 948 fail_len: 949 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen); 950 return false; 951 } 952 953 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw, 954 struct drm_dp_sideband_msg_reply_body *repmsg) 955 { 956 int idx = 1; 957 958 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 959 idx++; 960 if (idx > raw->curlen) 961 goto fail_len; 962 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 963 idx += 2; 964 if (idx > raw->curlen) 965 goto fail_len; 966 return true; 967 fail_len: 968 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen); 969 return false; 970 } 971 972 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw, 973 struct drm_dp_sideband_msg_reply_body *repmsg) 974 { 975 int idx = 1; 976 977 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf; 978 idx++; 979 if (idx > raw->curlen) { 980 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n", 981 idx, raw->curlen); 982 return false; 983 } 984 return true; 985 } 986 987 static bool 988 drm_dp_sideband_parse_query_stream_enc_status( 989 struct drm_dp_sideband_msg_rx *raw, 990 struct drm_dp_sideband_msg_reply_body *repmsg) 991 { 992 struct drm_dp_query_stream_enc_status_ack_reply *reply; 993 994 reply = &repmsg->u.enc_status; 995 996 reply->stream_id = raw->msg[3]; 997 998 reply->reply_signed = raw->msg[2] & BIT(0); 999 1000 /* 1001 * NOTE: It's my impression from reading the spec that the below parsing 1002 * is correct. However I noticed while testing with an HDCP 1.4 display 1003 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I 1004 * would expect both bits to be set. So keep the parsing following the 1005 * spec, but beware reality might not match the spec (at least for some 1006 * configurations). 1007 */ 1008 reply->hdcp_1x_device_present = raw->msg[2] & BIT(4); 1009 reply->hdcp_2x_device_present = raw->msg[2] & BIT(3); 1010 1011 reply->query_capable_device_present = raw->msg[2] & BIT(5); 1012 reply->legacy_device_present = raw->msg[2] & BIT(6); 1013 reply->unauthorizable_device_present = raw->msg[2] & BIT(7); 1014 1015 reply->auth_completed = !!(raw->msg[1] & BIT(3)); 1016 reply->encryption_enabled = !!(raw->msg[1] & BIT(4)); 1017 reply->repeater_present = !!(raw->msg[1] & BIT(5)); 1018 reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6; 1019 1020 return true; 1021 } 1022 1023 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr, 1024 struct drm_dp_sideband_msg_rx *raw, 1025 struct drm_dp_sideband_msg_reply_body *msg) 1026 { 1027 memset(msg, 0, sizeof(*msg)); 1028 msg->reply_type = (raw->msg[0] & 0x80) >> 7; 1029 msg->req_type = (raw->msg[0] & 0x7f); 1030 1031 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) { 1032 memcpy(msg->u.nak.guid, &raw->msg[1], 16); 1033 msg->u.nak.reason = raw->msg[17]; 1034 msg->u.nak.nak_data = raw->msg[18]; 1035 return false; 1036 } 1037 1038 switch (msg->req_type) { 1039 case DP_LINK_ADDRESS: 1040 return drm_dp_sideband_parse_link_address(mgr, raw, msg); 1041 case DP_QUERY_PAYLOAD: 1042 return drm_dp_sideband_parse_query_payload_ack(raw, msg); 1043 case DP_REMOTE_DPCD_READ: 1044 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg); 1045 case DP_REMOTE_DPCD_WRITE: 1046 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg); 1047 case DP_REMOTE_I2C_READ: 1048 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg); 1049 case DP_REMOTE_I2C_WRITE: 1050 return true; /* since there's nothing to parse */ 1051 case DP_ENUM_PATH_RESOURCES: 1052 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg); 1053 case DP_ALLOCATE_PAYLOAD: 1054 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg); 1055 case DP_POWER_DOWN_PHY: 1056 case DP_POWER_UP_PHY: 1057 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg); 1058 case DP_CLEAR_PAYLOAD_ID_TABLE: 1059 return true; /* since there's nothing to parse */ 1060 case DP_QUERY_STREAM_ENC_STATUS: 1061 return drm_dp_sideband_parse_query_stream_enc_status(raw, msg); 1062 default: 1063 drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n", 1064 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1065 return false; 1066 } 1067 } 1068 1069 static bool 1070 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1071 struct drm_dp_sideband_msg_rx *raw, 1072 struct drm_dp_sideband_msg_req_body *msg) 1073 { 1074 int idx = 1; 1075 1076 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1077 idx++; 1078 if (idx > raw->curlen) 1079 goto fail_len; 1080 1081 memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16); 1082 idx += 16; 1083 if (idx > raw->curlen) 1084 goto fail_len; 1085 1086 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1; 1087 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 1088 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1; 1089 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1; 1090 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7); 1091 idx++; 1092 return true; 1093 fail_len: 1094 drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n", 1095 idx, raw->curlen); 1096 return false; 1097 } 1098 1099 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1100 struct drm_dp_sideband_msg_rx *raw, 1101 struct drm_dp_sideband_msg_req_body *msg) 1102 { 1103 int idx = 1; 1104 1105 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1106 idx++; 1107 if (idx > raw->curlen) 1108 goto fail_len; 1109 1110 memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16); 1111 idx += 16; 1112 if (idx > raw->curlen) 1113 goto fail_len; 1114 1115 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 1116 idx++; 1117 return true; 1118 fail_len: 1119 drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen); 1120 return false; 1121 } 1122 1123 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr, 1124 struct drm_dp_sideband_msg_rx *raw, 1125 struct drm_dp_sideband_msg_req_body *msg) 1126 { 1127 memset(msg, 0, sizeof(*msg)); 1128 msg->req_type = (raw->msg[0] & 0x7f); 1129 1130 switch (msg->req_type) { 1131 case DP_CONNECTION_STATUS_NOTIFY: 1132 return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg); 1133 case DP_RESOURCE_STATUS_NOTIFY: 1134 return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg); 1135 default: 1136 drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n", 1137 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1138 return false; 1139 } 1140 } 1141 1142 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, 1143 u8 port_num, u32 offset, u8 num_bytes, u8 *bytes) 1144 { 1145 struct drm_dp_sideband_msg_req_body req; 1146 1147 req.req_type = DP_REMOTE_DPCD_WRITE; 1148 req.u.dpcd_write.port_number = port_num; 1149 req.u.dpcd_write.dpcd_address = offset; 1150 req.u.dpcd_write.num_bytes = num_bytes; 1151 req.u.dpcd_write.bytes = bytes; 1152 drm_dp_encode_sideband_req(&req, msg); 1153 } 1154 1155 static void build_link_address(struct drm_dp_sideband_msg_tx *msg) 1156 { 1157 struct drm_dp_sideband_msg_req_body req; 1158 1159 req.req_type = DP_LINK_ADDRESS; 1160 drm_dp_encode_sideband_req(&req, msg); 1161 } 1162 1163 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg) 1164 { 1165 struct drm_dp_sideband_msg_req_body req; 1166 1167 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE; 1168 drm_dp_encode_sideband_req(&req, msg); 1169 msg->path_msg = true; 1170 } 1171 1172 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, 1173 int port_num) 1174 { 1175 struct drm_dp_sideband_msg_req_body req; 1176 1177 req.req_type = DP_ENUM_PATH_RESOURCES; 1178 req.u.port_num.port_number = port_num; 1179 drm_dp_encode_sideband_req(&req, msg); 1180 msg->path_msg = true; 1181 return 0; 1182 } 1183 1184 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, 1185 int port_num, 1186 u8 vcpi, uint16_t pbn, 1187 u8 number_sdp_streams, 1188 u8 *sdp_stream_sink) 1189 { 1190 struct drm_dp_sideband_msg_req_body req; 1191 1192 memset(&req, 0, sizeof(req)); 1193 req.req_type = DP_ALLOCATE_PAYLOAD; 1194 req.u.allocate_payload.port_number = port_num; 1195 req.u.allocate_payload.vcpi = vcpi; 1196 req.u.allocate_payload.pbn = pbn; 1197 req.u.allocate_payload.number_sdp_streams = number_sdp_streams; 1198 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink, 1199 number_sdp_streams); 1200 drm_dp_encode_sideband_req(&req, msg); 1201 msg->path_msg = true; 1202 } 1203 1204 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg, 1205 int port_num, bool power_up) 1206 { 1207 struct drm_dp_sideband_msg_req_body req; 1208 1209 if (power_up) 1210 req.req_type = DP_POWER_UP_PHY; 1211 else 1212 req.req_type = DP_POWER_DOWN_PHY; 1213 1214 req.u.port_num.port_number = port_num; 1215 drm_dp_encode_sideband_req(&req, msg); 1216 msg->path_msg = true; 1217 } 1218 1219 static int 1220 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id, 1221 u8 *q_id) 1222 { 1223 struct drm_dp_sideband_msg_req_body req; 1224 1225 req.req_type = DP_QUERY_STREAM_ENC_STATUS; 1226 req.u.enc_status.stream_id = stream_id; 1227 memcpy(req.u.enc_status.client_id, q_id, 1228 sizeof(req.u.enc_status.client_id)); 1229 req.u.enc_status.stream_event = 0; 1230 req.u.enc_status.valid_stream_event = false; 1231 req.u.enc_status.stream_behavior = 0; 1232 req.u.enc_status.valid_stream_behavior = false; 1233 1234 drm_dp_encode_sideband_req(&req, msg); 1235 return 0; 1236 } 1237 1238 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr, 1239 struct drm_dp_sideband_msg_tx *txmsg) 1240 { 1241 unsigned int state; 1242 1243 /* 1244 * All updates to txmsg->state are protected by mgr->qlock, and the two 1245 * cases we check here are terminal states. For those the barriers 1246 * provided by the wake_up/wait_event pair are enough. 1247 */ 1248 state = READ_ONCE(txmsg->state); 1249 return (state == DRM_DP_SIDEBAND_TX_RX || 1250 state == DRM_DP_SIDEBAND_TX_TIMEOUT); 1251 } 1252 1253 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb, 1254 struct drm_dp_sideband_msg_tx *txmsg) 1255 { 1256 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1257 unsigned long wait_timeout = msecs_to_jiffies(4000); 1258 unsigned long wait_expires = jiffies + wait_timeout; 1259 int ret; 1260 1261 for (;;) { 1262 /* 1263 * If the driver provides a way for this, change to 1264 * poll-waiting for the MST reply interrupt if we didn't receive 1265 * it for 50 msec. This would cater for cases where the HPD 1266 * pulse signal got lost somewhere, even though the sink raised 1267 * the corresponding MST interrupt correctly. One example is the 1268 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason 1269 * filters out short pulses with a duration less than ~540 usec. 1270 * 1271 * The poll period is 50 msec to avoid missing an interrupt 1272 * after the sink has cleared it (after a 110msec timeout 1273 * since it raised the interrupt). 1274 */ 1275 ret = wait_event_timeout(mgr->tx_waitq, 1276 check_txmsg_state(mgr, txmsg), 1277 mgr->cbs->poll_hpd_irq ? 1278 msecs_to_jiffies(50) : 1279 wait_timeout); 1280 1281 if (ret || !mgr->cbs->poll_hpd_irq || 1282 time_after(jiffies, wait_expires)) 1283 break; 1284 1285 mgr->cbs->poll_hpd_irq(mgr); 1286 } 1287 1288 mutex_lock(&mgr->qlock); 1289 if (ret > 0) { 1290 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) { 1291 ret = -EIO; 1292 goto out; 1293 } 1294 } else { 1295 drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n", 1296 txmsg, txmsg->state, txmsg->seqno); 1297 1298 /* dump some state */ 1299 ret = -EIO; 1300 1301 /* remove from q */ 1302 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED || 1303 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 1304 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 1305 list_del(&txmsg->next); 1306 } 1307 out: 1308 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) { 1309 struct drm_printer p = drm_dbg_printer(mgr->dev, DRM_UT_DP, 1310 DBG_PREFIX); 1311 1312 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 1313 } 1314 mutex_unlock(&mgr->qlock); 1315 1316 drm_dp_mst_kick_tx(mgr); 1317 return ret; 1318 } 1319 1320 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad) 1321 { 1322 struct drm_dp_mst_branch *mstb; 1323 1324 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL); 1325 if (!mstb) 1326 return NULL; 1327 1328 mstb->lct = lct; 1329 if (lct > 1) 1330 memcpy(mstb->rad, rad, lct / 2); 1331 INIT_LIST_HEAD(&mstb->ports); 1332 kref_init(&mstb->topology_kref); 1333 kref_init(&mstb->malloc_kref); 1334 return mstb; 1335 } 1336 1337 static void drm_dp_free_mst_branch_device(struct kref *kref) 1338 { 1339 struct drm_dp_mst_branch *mstb = 1340 container_of(kref, struct drm_dp_mst_branch, malloc_kref); 1341 1342 if (mstb->port_parent) 1343 drm_dp_mst_put_port_malloc(mstb->port_parent); 1344 1345 kfree(mstb); 1346 } 1347 1348 /** 1349 * DOC: Branch device and port refcounting 1350 * 1351 * Topology refcount overview 1352 * ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1353 * 1354 * The refcounting schemes for &struct drm_dp_mst_branch and &struct 1355 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have 1356 * two different kinds of refcounts: topology refcounts, and malloc refcounts. 1357 * 1358 * Topology refcounts are not exposed to drivers, and are handled internally 1359 * by the DP MST helpers. The helpers use them in order to prevent the 1360 * in-memory topology state from being changed in the middle of critical 1361 * operations like changing the internal state of payload allocations. This 1362 * means each branch and port will be considered to be connected to the rest 1363 * of the topology until its topology refcount reaches zero. Additionally, 1364 * for ports this means that their associated &struct drm_connector will stay 1365 * registered with userspace until the port's refcount reaches 0. 1366 * 1367 * Malloc refcount overview 1368 * ~~~~~~~~~~~~~~~~~~~~~~~~ 1369 * 1370 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct 1371 * drm_dp_mst_branch allocated even after all of its topology references have 1372 * been dropped, so that the driver or MST helpers can safely access each 1373 * branch's last known state before it was disconnected from the topology. 1374 * When the malloc refcount of a port or branch reaches 0, the memory 1375 * allocation containing the &struct drm_dp_mst_branch or &struct 1376 * drm_dp_mst_port respectively will be freed. 1377 * 1378 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed 1379 * to drivers. As of writing this documentation, there are no drivers that 1380 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST 1381 * helpers. Exposing this API to drivers in a race-free manner would take more 1382 * tweaking of the refcounting scheme, however patches are welcome provided 1383 * there is a legitimate driver usecase for this. 1384 * 1385 * Refcount relationships in a topology 1386 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1387 * 1388 * Let's take a look at why the relationship between topology and malloc 1389 * refcounts is designed the way it is. 1390 * 1391 * .. kernel-figure:: dp-mst/topology-figure-1.dot 1392 * 1393 * An example of topology and malloc refs in a DP MST topology with two 1394 * active payloads. Topology refcount increments are indicated by solid 1395 * lines, and malloc refcount increments are indicated by dashed lines. 1396 * Each starts from the branch which incremented the refcount, and ends at 1397 * the branch to which the refcount belongs to, i.e. the arrow points the 1398 * same way as the C pointers used to reference a structure. 1399 * 1400 * As you can see in the above figure, every branch increments the topology 1401 * refcount of its children, and increments the malloc refcount of its 1402 * parent. Additionally, every payload increments the malloc refcount of its 1403 * assigned port by 1. 1404 * 1405 * So, what would happen if MSTB #3 from the above figure was unplugged from 1406 * the system, but the driver hadn't yet removed payload #2 from port #3? The 1407 * topology would start to look like the figure below. 1408 * 1409 * .. kernel-figure:: dp-mst/topology-figure-2.dot 1410 * 1411 * Ports and branch devices which have been released from memory are 1412 * colored grey, and references which have been removed are colored red. 1413 * 1414 * Whenever a port or branch device's topology refcount reaches zero, it will 1415 * decrement the topology refcounts of all its children, the malloc refcount 1416 * of its parent, and finally its own malloc refcount. For MSTB #4 and port 1417 * #4, this means they both have been disconnected from the topology and freed 1418 * from memory. But, because payload #2 is still holding a reference to port 1419 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port 1420 * is still accessible from memory. This also means port #3 has not yet 1421 * decremented the malloc refcount of MSTB #3, so its &struct 1422 * drm_dp_mst_branch will also stay allocated in memory until port #3's 1423 * malloc refcount reaches 0. 1424 * 1425 * This relationship is necessary because in order to release payload #2, we 1426 * need to be able to figure out the last relative of port #3 that's still 1427 * connected to the topology. In this case, we would travel up the topology as 1428 * shown below. 1429 * 1430 * .. kernel-figure:: dp-mst/topology-figure-3.dot 1431 * 1432 * And finally, remove payload #2 by communicating with port #2 through 1433 * sideband transactions. 1434 */ 1435 1436 /** 1437 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch 1438 * device 1439 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of 1440 * 1441 * Increments &drm_dp_mst_branch.malloc_kref. When 1442 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1443 * will be released and @mstb may no longer be used. 1444 * 1445 * See also: drm_dp_mst_put_mstb_malloc() 1446 */ 1447 static void 1448 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb) 1449 { 1450 kref_get(&mstb->malloc_kref); 1451 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref)); 1452 } 1453 1454 /** 1455 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch 1456 * device 1457 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of 1458 * 1459 * Decrements &drm_dp_mst_branch.malloc_kref. When 1460 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1461 * will be released and @mstb may no longer be used. 1462 * 1463 * See also: drm_dp_mst_get_mstb_malloc() 1464 */ 1465 static void 1466 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb) 1467 { 1468 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1); 1469 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device); 1470 } 1471 1472 static void drm_dp_free_mst_port(struct kref *kref) 1473 { 1474 struct drm_dp_mst_port *port = 1475 container_of(kref, struct drm_dp_mst_port, malloc_kref); 1476 1477 drm_dp_mst_put_mstb_malloc(port->parent); 1478 kfree(port); 1479 } 1480 1481 /** 1482 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port 1483 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of 1484 * 1485 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1486 * reaches 0, the memory allocation for @port will be released and @port may 1487 * no longer be used. 1488 * 1489 * Because @port could potentially be freed at any time by the DP MST helpers 1490 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this 1491 * function, drivers that which to make use of &struct drm_dp_mst_port should 1492 * ensure that they grab at least one main malloc reference to their MST ports 1493 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before 1494 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0. 1495 * 1496 * See also: drm_dp_mst_put_port_malloc() 1497 */ 1498 void 1499 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port) 1500 { 1501 kref_get(&port->malloc_kref); 1502 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref)); 1503 } 1504 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc); 1505 1506 /** 1507 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port 1508 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of 1509 * 1510 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1511 * reaches 0, the memory allocation for @port will be released and @port may 1512 * no longer be used. 1513 * 1514 * See also: drm_dp_mst_get_port_malloc() 1515 */ 1516 void 1517 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port) 1518 { 1519 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1); 1520 kref_put(&port->malloc_kref, drm_dp_free_mst_port); 1521 } 1522 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc); 1523 1524 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 1525 1526 #define STACK_DEPTH 8 1527 1528 static noinline void 1529 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr, 1530 struct drm_dp_mst_topology_ref_history *history, 1531 enum drm_dp_mst_topology_ref_type type) 1532 { 1533 struct drm_dp_mst_topology_ref_entry *entry = NULL; 1534 depot_stack_handle_t backtrace; 1535 ulong stack_entries[STACK_DEPTH]; 1536 uint n; 1537 int i; 1538 1539 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1); 1540 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL); 1541 if (!backtrace) 1542 return; 1543 1544 /* Try to find an existing entry for this backtrace */ 1545 for (i = 0; i < history->len; i++) { 1546 if (history->entries[i].backtrace == backtrace) { 1547 entry = &history->entries[i]; 1548 break; 1549 } 1550 } 1551 1552 /* Otherwise add one */ 1553 if (!entry) { 1554 struct drm_dp_mst_topology_ref_entry *new; 1555 int new_len = history->len + 1; 1556 1557 new = krealloc(history->entries, sizeof(*new) * new_len, 1558 GFP_KERNEL); 1559 if (!new) 1560 return; 1561 1562 entry = &new[history->len]; 1563 history->len = new_len; 1564 history->entries = new; 1565 1566 entry->backtrace = backtrace; 1567 entry->type = type; 1568 entry->count = 0; 1569 } 1570 entry->count++; 1571 entry->ts_nsec = ktime_get_ns(); 1572 } 1573 1574 static int 1575 topology_ref_history_cmp(const void *a, const void *b) 1576 { 1577 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b; 1578 1579 if (entry_a->ts_nsec > entry_b->ts_nsec) 1580 return 1; 1581 else if (entry_a->ts_nsec < entry_b->ts_nsec) 1582 return -1; 1583 else 1584 return 0; 1585 } 1586 1587 static inline const char * 1588 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type) 1589 { 1590 if (type == DRM_DP_MST_TOPOLOGY_REF_GET) 1591 return "get"; 1592 else 1593 return "put"; 1594 } 1595 1596 static void 1597 __dump_topology_ref_history(struct drm_device *drm, 1598 struct drm_dp_mst_topology_ref_history *history, 1599 void *ptr, const char *type_str) 1600 { 1601 struct drm_printer p = drm_dbg_printer(drm, DRM_UT_DP, DBG_PREFIX); 1602 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 1603 int i; 1604 1605 if (!buf) 1606 return; 1607 1608 if (!history->len) 1609 goto out; 1610 1611 /* First, sort the list so that it goes from oldest to newest 1612 * reference entry 1613 */ 1614 sort(history->entries, history->len, sizeof(*history->entries), 1615 topology_ref_history_cmp, NULL); 1616 1617 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n", 1618 type_str, ptr); 1619 1620 for (i = 0; i < history->len; i++) { 1621 const struct drm_dp_mst_topology_ref_entry *entry = 1622 &history->entries[i]; 1623 u64 ts_nsec = entry->ts_nsec; 1624 u32 rem_nsec = do_div(ts_nsec, 1000000000); 1625 1626 stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4); 1627 1628 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s", 1629 entry->count, 1630 topology_ref_type_to_str(entry->type), 1631 ts_nsec, rem_nsec / 1000, buf); 1632 } 1633 1634 /* Now free the history, since this is the only time we expose it */ 1635 kfree(history->entries); 1636 out: 1637 kfree(buf); 1638 } 1639 1640 static __always_inline void 1641 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) 1642 { 1643 __dump_topology_ref_history(mstb->mgr->dev, &mstb->topology_ref_history, 1644 mstb, "MSTB"); 1645 } 1646 1647 static __always_inline void 1648 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) 1649 { 1650 __dump_topology_ref_history(port->mgr->dev, &port->topology_ref_history, 1651 port, "Port"); 1652 } 1653 1654 static __always_inline void 1655 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb, 1656 enum drm_dp_mst_topology_ref_type type) 1657 { 1658 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type); 1659 } 1660 1661 static __always_inline void 1662 save_port_topology_ref(struct drm_dp_mst_port *port, 1663 enum drm_dp_mst_topology_ref_type type) 1664 { 1665 __topology_ref_save(port->mgr, &port->topology_ref_history, type); 1666 } 1667 1668 static inline void 1669 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) 1670 { 1671 mutex_lock(&mgr->topology_ref_history_lock); 1672 } 1673 1674 static inline void 1675 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) 1676 { 1677 mutex_unlock(&mgr->topology_ref_history_lock); 1678 } 1679 #else 1680 static inline void 1681 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {} 1682 static inline void 1683 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {} 1684 static inline void 1685 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {} 1686 static inline void 1687 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {} 1688 #define save_mstb_topology_ref(mstb, type) 1689 #define save_port_topology_ref(port, type) 1690 #endif 1691 1692 struct drm_dp_mst_atomic_payload * 1693 drm_atomic_get_mst_payload_state(struct drm_dp_mst_topology_state *state, 1694 struct drm_dp_mst_port *port) 1695 { 1696 struct drm_dp_mst_atomic_payload *payload; 1697 1698 list_for_each_entry(payload, &state->payloads, next) 1699 if (payload->port == port) 1700 return payload; 1701 1702 return NULL; 1703 } 1704 EXPORT_SYMBOL(drm_atomic_get_mst_payload_state); 1705 1706 static void drm_dp_destroy_mst_branch_device(struct kref *kref) 1707 { 1708 struct drm_dp_mst_branch *mstb = 1709 container_of(kref, struct drm_dp_mst_branch, topology_kref); 1710 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1711 1712 drm_dp_mst_dump_mstb_topology_history(mstb); 1713 1714 INIT_LIST_HEAD(&mstb->destroy_next); 1715 1716 /* 1717 * This can get called under mgr->mutex, so we need to perform the 1718 * actual destruction of the mstb in another worker 1719 */ 1720 mutex_lock(&mgr->delayed_destroy_lock); 1721 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list); 1722 mutex_unlock(&mgr->delayed_destroy_lock); 1723 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1724 } 1725 1726 /** 1727 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a 1728 * branch device unless it's zero 1729 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of 1730 * 1731 * Attempts to grab a topology reference to @mstb, if it hasn't yet been 1732 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has 1733 * reached 0). Holding a topology reference implies that a malloc reference 1734 * will be held to @mstb as long as the user holds the topology reference. 1735 * 1736 * Care should be taken to ensure that the user has at least one malloc 1737 * reference to @mstb. If you already have a topology reference to @mstb, you 1738 * should use drm_dp_mst_topology_get_mstb() instead. 1739 * 1740 * See also: 1741 * drm_dp_mst_topology_get_mstb() 1742 * drm_dp_mst_topology_put_mstb() 1743 * 1744 * Returns: 1745 * * 1: A topology reference was grabbed successfully 1746 * * 0: @port is no longer in the topology, no reference was grabbed 1747 */ 1748 static int __must_check 1749 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb) 1750 { 1751 int ret; 1752 1753 topology_ref_history_lock(mstb->mgr); 1754 ret = kref_get_unless_zero(&mstb->topology_kref); 1755 if (ret) { 1756 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1757 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1758 } 1759 1760 topology_ref_history_unlock(mstb->mgr); 1761 1762 return ret; 1763 } 1764 1765 /** 1766 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a 1767 * branch device 1768 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of 1769 * 1770 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or 1771 * not it's already reached 0. This is only valid to use in scenarios where 1772 * you are already guaranteed to have at least one active topology reference 1773 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used. 1774 * 1775 * See also: 1776 * drm_dp_mst_topology_try_get_mstb() 1777 * drm_dp_mst_topology_put_mstb() 1778 */ 1779 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb) 1780 { 1781 topology_ref_history_lock(mstb->mgr); 1782 1783 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1784 WARN_ON(kref_read(&mstb->topology_kref) == 0); 1785 kref_get(&mstb->topology_kref); 1786 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1787 1788 topology_ref_history_unlock(mstb->mgr); 1789 } 1790 1791 /** 1792 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch 1793 * device 1794 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from 1795 * 1796 * Releases a topology reference from @mstb by decrementing 1797 * &drm_dp_mst_branch.topology_kref. 1798 * 1799 * See also: 1800 * drm_dp_mst_topology_try_get_mstb() 1801 * drm_dp_mst_topology_get_mstb() 1802 */ 1803 static void 1804 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb) 1805 { 1806 topology_ref_history_lock(mstb->mgr); 1807 1808 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1); 1809 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT); 1810 1811 topology_ref_history_unlock(mstb->mgr); 1812 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device); 1813 } 1814 1815 static void drm_dp_destroy_port(struct kref *kref) 1816 { 1817 struct drm_dp_mst_port *port = 1818 container_of(kref, struct drm_dp_mst_port, topology_kref); 1819 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 1820 1821 drm_dp_mst_dump_port_topology_history(port); 1822 1823 /* There's nothing that needs locking to destroy an input port yet */ 1824 if (port->input) { 1825 drm_dp_mst_put_port_malloc(port); 1826 return; 1827 } 1828 1829 drm_edid_free(port->cached_edid); 1830 1831 /* 1832 * we can't destroy the connector here, as we might be holding the 1833 * mode_config.mutex from an EDID retrieval 1834 */ 1835 mutex_lock(&mgr->delayed_destroy_lock); 1836 list_add(&port->next, &mgr->destroy_port_list); 1837 mutex_unlock(&mgr->delayed_destroy_lock); 1838 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1839 } 1840 1841 /** 1842 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a 1843 * port unless it's zero 1844 * @port: &struct drm_dp_mst_port to increment the topology refcount of 1845 * 1846 * Attempts to grab a topology reference to @port, if it hasn't yet been 1847 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached 1848 * 0). Holding a topology reference implies that a malloc reference will be 1849 * held to @port as long as the user holds the topology reference. 1850 * 1851 * Care should be taken to ensure that the user has at least one malloc 1852 * reference to @port. If you already have a topology reference to @port, you 1853 * should use drm_dp_mst_topology_get_port() instead. 1854 * 1855 * See also: 1856 * drm_dp_mst_topology_get_port() 1857 * drm_dp_mst_topology_put_port() 1858 * 1859 * Returns: 1860 * * 1: A topology reference was grabbed successfully 1861 * * 0: @port is no longer in the topology, no reference was grabbed 1862 */ 1863 static int __must_check 1864 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port) 1865 { 1866 int ret; 1867 1868 topology_ref_history_lock(port->mgr); 1869 ret = kref_get_unless_zero(&port->topology_kref); 1870 if (ret) { 1871 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1872 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1873 } 1874 1875 topology_ref_history_unlock(port->mgr); 1876 return ret; 1877 } 1878 1879 /** 1880 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port 1881 * @port: The &struct drm_dp_mst_port to increment the topology refcount of 1882 * 1883 * Increments &drm_dp_mst_port.topology_refcount without checking whether or 1884 * not it's already reached 0. This is only valid to use in scenarios where 1885 * you are already guaranteed to have at least one active topology reference 1886 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used. 1887 * 1888 * See also: 1889 * drm_dp_mst_topology_try_get_port() 1890 * drm_dp_mst_topology_put_port() 1891 */ 1892 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port) 1893 { 1894 topology_ref_history_lock(port->mgr); 1895 1896 WARN_ON(kref_read(&port->topology_kref) == 0); 1897 kref_get(&port->topology_kref); 1898 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1899 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1900 1901 topology_ref_history_unlock(port->mgr); 1902 } 1903 1904 /** 1905 * drm_dp_mst_topology_put_port() - release a topology reference to a port 1906 * @port: The &struct drm_dp_mst_port to release the topology reference from 1907 * 1908 * Releases a topology reference from @port by decrementing 1909 * &drm_dp_mst_port.topology_kref. 1910 * 1911 * See also: 1912 * drm_dp_mst_topology_try_get_port() 1913 * drm_dp_mst_topology_get_port() 1914 */ 1915 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port) 1916 { 1917 topology_ref_history_lock(port->mgr); 1918 1919 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1); 1920 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT); 1921 1922 topology_ref_history_unlock(port->mgr); 1923 kref_put(&port->topology_kref, drm_dp_destroy_port); 1924 } 1925 1926 static struct drm_dp_mst_branch * 1927 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb, 1928 struct drm_dp_mst_branch *to_find) 1929 { 1930 struct drm_dp_mst_port *port; 1931 struct drm_dp_mst_branch *rmstb; 1932 1933 if (to_find == mstb) 1934 return mstb; 1935 1936 list_for_each_entry(port, &mstb->ports, next) { 1937 if (port->mstb) { 1938 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1939 port->mstb, to_find); 1940 if (rmstb) 1941 return rmstb; 1942 } 1943 } 1944 return NULL; 1945 } 1946 1947 static struct drm_dp_mst_branch * 1948 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr, 1949 struct drm_dp_mst_branch *mstb) 1950 { 1951 struct drm_dp_mst_branch *rmstb = NULL; 1952 1953 mutex_lock(&mgr->lock); 1954 if (mgr->mst_primary) { 1955 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1956 mgr->mst_primary, mstb); 1957 1958 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb)) 1959 rmstb = NULL; 1960 } 1961 mutex_unlock(&mgr->lock); 1962 return rmstb; 1963 } 1964 1965 static struct drm_dp_mst_port * 1966 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb, 1967 struct drm_dp_mst_port *to_find) 1968 { 1969 struct drm_dp_mst_port *port, *mport; 1970 1971 list_for_each_entry(port, &mstb->ports, next) { 1972 if (port == to_find) 1973 return port; 1974 1975 if (port->mstb) { 1976 mport = drm_dp_mst_topology_get_port_validated_locked( 1977 port->mstb, to_find); 1978 if (mport) 1979 return mport; 1980 } 1981 } 1982 return NULL; 1983 } 1984 1985 static struct drm_dp_mst_port * 1986 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr, 1987 struct drm_dp_mst_port *port) 1988 { 1989 struct drm_dp_mst_port *rport = NULL; 1990 1991 mutex_lock(&mgr->lock); 1992 if (mgr->mst_primary) { 1993 rport = drm_dp_mst_topology_get_port_validated_locked( 1994 mgr->mst_primary, port); 1995 1996 if (rport && !drm_dp_mst_topology_try_get_port(rport)) 1997 rport = NULL; 1998 } 1999 mutex_unlock(&mgr->lock); 2000 return rport; 2001 } 2002 2003 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num) 2004 { 2005 struct drm_dp_mst_port *port; 2006 int ret; 2007 2008 list_for_each_entry(port, &mstb->ports, next) { 2009 if (port->port_num == port_num) { 2010 ret = drm_dp_mst_topology_try_get_port(port); 2011 return ret ? port : NULL; 2012 } 2013 } 2014 2015 return NULL; 2016 } 2017 2018 /* 2019 * calculate a new RAD for this MST branch device 2020 * if parent has an LCT of 2 then it has 1 nibble of RAD, 2021 * if parent has an LCT of 3 then it has 2 nibbles of RAD, 2022 */ 2023 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port, 2024 u8 *rad) 2025 { 2026 int parent_lct = port->parent->lct; 2027 int shift = 4; 2028 int idx = (parent_lct - 1) / 2; 2029 2030 if (parent_lct > 1) { 2031 memcpy(rad, port->parent->rad, idx + 1); 2032 shift = (parent_lct % 2) ? 4 : 0; 2033 } else 2034 rad[0] = 0; 2035 2036 rad[idx] |= port->port_num << shift; 2037 return parent_lct + 1; 2038 } 2039 2040 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs) 2041 { 2042 switch (pdt) { 2043 case DP_PEER_DEVICE_DP_LEGACY_CONV: 2044 case DP_PEER_DEVICE_SST_SINK: 2045 return true; 2046 case DP_PEER_DEVICE_MST_BRANCHING: 2047 /* For sst branch device */ 2048 if (!mcs) 2049 return true; 2050 2051 return false; 2052 } 2053 return true; 2054 } 2055 2056 static int 2057 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt, 2058 bool new_mcs) 2059 { 2060 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2061 struct drm_dp_mst_branch *mstb; 2062 u8 rad[8], lct; 2063 int ret = 0; 2064 2065 if (port->pdt == new_pdt && port->mcs == new_mcs) 2066 return 0; 2067 2068 /* Teardown the old pdt, if there is one */ 2069 if (port->pdt != DP_PEER_DEVICE_NONE) { 2070 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2071 /* 2072 * If the new PDT would also have an i2c bus, 2073 * don't bother with reregistering it 2074 */ 2075 if (new_pdt != DP_PEER_DEVICE_NONE && 2076 drm_dp_mst_is_end_device(new_pdt, new_mcs)) { 2077 port->pdt = new_pdt; 2078 port->mcs = new_mcs; 2079 return 0; 2080 } 2081 2082 /* remove i2c over sideband */ 2083 drm_dp_mst_unregister_i2c_bus(port); 2084 } else { 2085 mutex_lock(&mgr->lock); 2086 drm_dp_mst_topology_put_mstb(port->mstb); 2087 port->mstb = NULL; 2088 mutex_unlock(&mgr->lock); 2089 } 2090 } 2091 2092 port->pdt = new_pdt; 2093 port->mcs = new_mcs; 2094 2095 if (port->pdt != DP_PEER_DEVICE_NONE) { 2096 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2097 /* add i2c over sideband */ 2098 ret = drm_dp_mst_register_i2c_bus(port); 2099 } else { 2100 lct = drm_dp_calculate_rad(port, rad); 2101 mstb = drm_dp_add_mst_branch_device(lct, rad); 2102 if (!mstb) { 2103 ret = -ENOMEM; 2104 drm_err(mgr->dev, "Failed to create MSTB for port %p", port); 2105 goto out; 2106 } 2107 2108 mutex_lock(&mgr->lock); 2109 port->mstb = mstb; 2110 mstb->mgr = port->mgr; 2111 mstb->port_parent = port; 2112 2113 /* 2114 * Make sure this port's memory allocation stays 2115 * around until its child MSTB releases it 2116 */ 2117 drm_dp_mst_get_port_malloc(port); 2118 mutex_unlock(&mgr->lock); 2119 2120 /* And make sure we send a link address for this */ 2121 ret = 1; 2122 } 2123 } 2124 2125 out: 2126 if (ret < 0) 2127 port->pdt = DP_PEER_DEVICE_NONE; 2128 return ret; 2129 } 2130 2131 /** 2132 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband 2133 * @aux: Fake sideband AUX CH 2134 * @offset: address of the (first) register to read 2135 * @buffer: buffer to store the register values 2136 * @size: number of bytes in @buffer 2137 * 2138 * Performs the same functionality for remote devices via 2139 * sideband messaging as drm_dp_dpcd_read() does for local 2140 * devices via actual AUX CH. 2141 * 2142 * Return: Number of bytes read, or negative error code on failure. 2143 */ 2144 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux, 2145 unsigned int offset, void *buffer, size_t size) 2146 { 2147 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2148 aux); 2149 2150 return drm_dp_send_dpcd_read(port->mgr, port, 2151 offset, size, buffer); 2152 } 2153 2154 /** 2155 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband 2156 * @aux: Fake sideband AUX CH 2157 * @offset: address of the (first) register to write 2158 * @buffer: buffer containing the values to write 2159 * @size: number of bytes in @buffer 2160 * 2161 * Performs the same functionality for remote devices via 2162 * sideband messaging as drm_dp_dpcd_write() does for local 2163 * devices via actual AUX CH. 2164 * 2165 * Return: number of bytes written on success, negative error code on failure. 2166 */ 2167 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux, 2168 unsigned int offset, void *buffer, size_t size) 2169 { 2170 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2171 aux); 2172 2173 return drm_dp_send_dpcd_write(port->mgr, port, 2174 offset, size, buffer); 2175 } 2176 2177 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid) 2178 { 2179 int ret = 0; 2180 2181 memcpy(mstb->guid, guid, 16); 2182 2183 if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) { 2184 if (mstb->port_parent) { 2185 ret = drm_dp_send_dpcd_write(mstb->mgr, 2186 mstb->port_parent, 2187 DP_GUID, 16, mstb->guid); 2188 } else { 2189 ret = drm_dp_dpcd_write(mstb->mgr->aux, 2190 DP_GUID, mstb->guid, 16); 2191 } 2192 } 2193 2194 if (ret < 16 && ret > 0) 2195 return -EPROTO; 2196 2197 return ret == 16 ? 0 : ret; 2198 } 2199 2200 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb, 2201 int pnum, 2202 char *proppath, 2203 size_t proppath_size) 2204 { 2205 int i; 2206 char temp[8]; 2207 2208 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id); 2209 for (i = 0; i < (mstb->lct - 1); i++) { 2210 int shift = (i % 2) ? 0 : 4; 2211 int port_num = (mstb->rad[i / 2] >> shift) & 0xf; 2212 2213 snprintf(temp, sizeof(temp), "-%d", port_num); 2214 strlcat(proppath, temp, proppath_size); 2215 } 2216 snprintf(temp, sizeof(temp), "-%d", pnum); 2217 strlcat(proppath, temp, proppath_size); 2218 } 2219 2220 /** 2221 * drm_dp_mst_connector_late_register() - Late MST connector registration 2222 * @connector: The MST connector 2223 * @port: The MST port for this connector 2224 * 2225 * Helper to register the remote aux device for this MST port. Drivers should 2226 * call this from their mst connector's late_register hook to enable MST aux 2227 * devices. 2228 * 2229 * Return: 0 on success, negative error code on failure. 2230 */ 2231 int drm_dp_mst_connector_late_register(struct drm_connector *connector, 2232 struct drm_dp_mst_port *port) 2233 { 2234 drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n", 2235 port->aux.name, connector->kdev->kobj.name); 2236 2237 port->aux.dev = connector->kdev; 2238 return drm_dp_aux_register_devnode(&port->aux); 2239 } 2240 EXPORT_SYMBOL(drm_dp_mst_connector_late_register); 2241 2242 /** 2243 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration 2244 * @connector: The MST connector 2245 * @port: The MST port for this connector 2246 * 2247 * Helper to unregister the remote aux device for this MST port, registered by 2248 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst 2249 * connector's early_unregister hook. 2250 */ 2251 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector, 2252 struct drm_dp_mst_port *port) 2253 { 2254 drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n", 2255 port->aux.name, connector->kdev->kobj.name); 2256 drm_dp_aux_unregister_devnode(&port->aux); 2257 } 2258 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister); 2259 2260 static void 2261 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb, 2262 struct drm_dp_mst_port *port) 2263 { 2264 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2265 char proppath[255]; 2266 int ret; 2267 2268 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath)); 2269 port->connector = mgr->cbs->add_connector(mgr, port, proppath); 2270 if (!port->connector) { 2271 ret = -ENOMEM; 2272 goto error; 2273 } 2274 2275 if (port->pdt != DP_PEER_DEVICE_NONE && 2276 drm_dp_mst_is_end_device(port->pdt, port->mcs) && 2277 port->port_num >= DP_MST_LOGICAL_PORT_0) 2278 port->cached_edid = drm_edid_read_ddc(port->connector, 2279 &port->aux.ddc); 2280 2281 drm_connector_register(port->connector); 2282 return; 2283 2284 error: 2285 drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret); 2286 } 2287 2288 /* 2289 * Drop a topology reference, and unlink the port from the in-memory topology 2290 * layout 2291 */ 2292 static void 2293 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr, 2294 struct drm_dp_mst_port *port) 2295 { 2296 mutex_lock(&mgr->lock); 2297 port->parent->num_ports--; 2298 list_del(&port->next); 2299 mutex_unlock(&mgr->lock); 2300 drm_dp_mst_topology_put_port(port); 2301 } 2302 2303 static struct drm_dp_mst_port * 2304 drm_dp_mst_add_port(struct drm_device *dev, 2305 struct drm_dp_mst_topology_mgr *mgr, 2306 struct drm_dp_mst_branch *mstb, u8 port_number) 2307 { 2308 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL); 2309 2310 if (!port) 2311 return NULL; 2312 2313 kref_init(&port->topology_kref); 2314 kref_init(&port->malloc_kref); 2315 port->parent = mstb; 2316 port->port_num = port_number; 2317 port->mgr = mgr; 2318 port->aux.name = "DPMST"; 2319 port->aux.dev = dev->dev; 2320 port->aux.is_remote = true; 2321 2322 /* initialize the MST downstream port's AUX crc work queue */ 2323 port->aux.drm_dev = dev; 2324 drm_dp_remote_aux_init(&port->aux); 2325 2326 /* 2327 * Make sure the memory allocation for our parent branch stays 2328 * around until our own memory allocation is released 2329 */ 2330 drm_dp_mst_get_mstb_malloc(mstb); 2331 2332 return port; 2333 } 2334 2335 static int 2336 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb, 2337 struct drm_device *dev, 2338 struct drm_dp_link_addr_reply_port *port_msg) 2339 { 2340 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2341 struct drm_dp_mst_port *port; 2342 int old_ddps = 0, ret; 2343 u8 new_pdt = DP_PEER_DEVICE_NONE; 2344 bool new_mcs = 0; 2345 bool created = false, send_link_addr = false, changed = false; 2346 2347 port = drm_dp_get_port(mstb, port_msg->port_number); 2348 if (!port) { 2349 port = drm_dp_mst_add_port(dev, mgr, mstb, 2350 port_msg->port_number); 2351 if (!port) 2352 return -ENOMEM; 2353 created = true; 2354 changed = true; 2355 } else if (!port->input && port_msg->input_port && port->connector) { 2356 /* Since port->connector can't be changed here, we create a 2357 * new port if input_port changes from 0 to 1 2358 */ 2359 drm_dp_mst_topology_unlink_port(mgr, port); 2360 drm_dp_mst_topology_put_port(port); 2361 port = drm_dp_mst_add_port(dev, mgr, mstb, 2362 port_msg->port_number); 2363 if (!port) 2364 return -ENOMEM; 2365 changed = true; 2366 created = true; 2367 } else if (port->input && !port_msg->input_port) { 2368 changed = true; 2369 } else if (port->connector) { 2370 /* We're updating a port that's exposed to userspace, so do it 2371 * under lock 2372 */ 2373 drm_modeset_lock(&mgr->base.lock, NULL); 2374 2375 old_ddps = port->ddps; 2376 changed = port->ddps != port_msg->ddps || 2377 (port->ddps && 2378 (port->ldps != port_msg->legacy_device_plug_status || 2379 port->dpcd_rev != port_msg->dpcd_revision || 2380 port->mcs != port_msg->mcs || 2381 port->pdt != port_msg->peer_device_type || 2382 port->num_sdp_stream_sinks != 2383 port_msg->num_sdp_stream_sinks)); 2384 } 2385 2386 port->input = port_msg->input_port; 2387 if (!port->input) 2388 new_pdt = port_msg->peer_device_type; 2389 new_mcs = port_msg->mcs; 2390 port->ddps = port_msg->ddps; 2391 port->ldps = port_msg->legacy_device_plug_status; 2392 port->dpcd_rev = port_msg->dpcd_revision; 2393 port->num_sdp_streams = port_msg->num_sdp_streams; 2394 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks; 2395 2396 /* manage mstb port lists with mgr lock - take a reference 2397 for this list */ 2398 if (created) { 2399 mutex_lock(&mgr->lock); 2400 drm_dp_mst_topology_get_port(port); 2401 list_add(&port->next, &mstb->ports); 2402 mstb->num_ports++; 2403 mutex_unlock(&mgr->lock); 2404 } 2405 2406 /* 2407 * Reprobe PBN caps on both hotplug, and when re-probing the link 2408 * for our parent mstb 2409 */ 2410 if (old_ddps != port->ddps || !created) { 2411 if (port->ddps && !port->input) { 2412 ret = drm_dp_send_enum_path_resources(mgr, mstb, 2413 port); 2414 if (ret == 1) 2415 changed = true; 2416 } else { 2417 port->full_pbn = 0; 2418 } 2419 } 2420 2421 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2422 if (ret == 1) { 2423 send_link_addr = true; 2424 } else if (ret < 0) { 2425 drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret); 2426 goto fail; 2427 } 2428 2429 /* 2430 * If this port wasn't just created, then we're reprobing because 2431 * we're coming out of suspend. In this case, always resend the link 2432 * address if there's an MSTB on this port 2433 */ 2434 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 2435 port->mcs) 2436 send_link_addr = true; 2437 2438 if (port->connector) 2439 drm_modeset_unlock(&mgr->base.lock); 2440 else if (!port->input) 2441 drm_dp_mst_port_add_connector(mstb, port); 2442 2443 if (send_link_addr && port->mstb) { 2444 ret = drm_dp_send_link_address(mgr, port->mstb); 2445 if (ret == 1) /* MSTB below us changed */ 2446 changed = true; 2447 else if (ret < 0) 2448 goto fail_put; 2449 } 2450 2451 /* put reference to this port */ 2452 drm_dp_mst_topology_put_port(port); 2453 return changed; 2454 2455 fail: 2456 drm_dp_mst_topology_unlink_port(mgr, port); 2457 if (port->connector) 2458 drm_modeset_unlock(&mgr->base.lock); 2459 fail_put: 2460 drm_dp_mst_topology_put_port(port); 2461 return ret; 2462 } 2463 2464 static int 2465 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb, 2466 struct drm_dp_connection_status_notify *conn_stat) 2467 { 2468 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2469 struct drm_dp_mst_port *port; 2470 int old_ddps, ret; 2471 u8 new_pdt; 2472 bool new_mcs; 2473 bool dowork = false, create_connector = false; 2474 2475 port = drm_dp_get_port(mstb, conn_stat->port_number); 2476 if (!port) 2477 return 0; 2478 2479 if (port->connector) { 2480 if (!port->input && conn_stat->input_port) { 2481 /* 2482 * We can't remove a connector from an already exposed 2483 * port, so just throw the port out and make sure we 2484 * reprobe the link address of it's parent MSTB 2485 */ 2486 drm_dp_mst_topology_unlink_port(mgr, port); 2487 mstb->link_address_sent = false; 2488 dowork = true; 2489 goto out; 2490 } 2491 2492 /* Locking is only needed if the port's exposed to userspace */ 2493 drm_modeset_lock(&mgr->base.lock, NULL); 2494 } else if (port->input && !conn_stat->input_port) { 2495 create_connector = true; 2496 /* Reprobe link address so we get num_sdp_streams */ 2497 mstb->link_address_sent = false; 2498 dowork = true; 2499 } 2500 2501 old_ddps = port->ddps; 2502 port->input = conn_stat->input_port; 2503 port->ldps = conn_stat->legacy_device_plug_status; 2504 port->ddps = conn_stat->displayport_device_plug_status; 2505 2506 if (old_ddps != port->ddps) { 2507 if (port->ddps && !port->input) 2508 drm_dp_send_enum_path_resources(mgr, mstb, port); 2509 else 2510 port->full_pbn = 0; 2511 } 2512 2513 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type; 2514 new_mcs = conn_stat->message_capability_status; 2515 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2516 if (ret == 1) { 2517 dowork = true; 2518 } else if (ret < 0) { 2519 drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret); 2520 dowork = false; 2521 } 2522 2523 if (port->connector) 2524 drm_modeset_unlock(&mgr->base.lock); 2525 else if (create_connector) 2526 drm_dp_mst_port_add_connector(mstb, port); 2527 2528 out: 2529 drm_dp_mst_topology_put_port(port); 2530 return dowork; 2531 } 2532 2533 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr, 2534 u8 lct, u8 *rad) 2535 { 2536 struct drm_dp_mst_branch *mstb; 2537 struct drm_dp_mst_port *port; 2538 int i, ret; 2539 /* find the port by iterating down */ 2540 2541 mutex_lock(&mgr->lock); 2542 mstb = mgr->mst_primary; 2543 2544 if (!mstb) 2545 goto out; 2546 2547 for (i = 0; i < lct - 1; i++) { 2548 int shift = (i % 2) ? 0 : 4; 2549 int port_num = (rad[i / 2] >> shift) & 0xf; 2550 2551 list_for_each_entry(port, &mstb->ports, next) { 2552 if (port->port_num == port_num) { 2553 mstb = port->mstb; 2554 if (!mstb) { 2555 drm_err(mgr->dev, 2556 "failed to lookup MSTB with lct %d, rad %02x\n", 2557 lct, rad[0]); 2558 goto out; 2559 } 2560 2561 break; 2562 } 2563 } 2564 } 2565 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2566 if (!ret) 2567 mstb = NULL; 2568 out: 2569 mutex_unlock(&mgr->lock); 2570 return mstb; 2571 } 2572 2573 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper( 2574 struct drm_dp_mst_branch *mstb, 2575 const uint8_t *guid) 2576 { 2577 struct drm_dp_mst_branch *found_mstb; 2578 struct drm_dp_mst_port *port; 2579 2580 if (!mstb) 2581 return NULL; 2582 2583 if (memcmp(mstb->guid, guid, 16) == 0) 2584 return mstb; 2585 2586 2587 list_for_each_entry(port, &mstb->ports, next) { 2588 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid); 2589 2590 if (found_mstb) 2591 return found_mstb; 2592 } 2593 2594 return NULL; 2595 } 2596 2597 static struct drm_dp_mst_branch * 2598 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr, 2599 const uint8_t *guid) 2600 { 2601 struct drm_dp_mst_branch *mstb; 2602 int ret; 2603 2604 /* find the port by iterating down */ 2605 mutex_lock(&mgr->lock); 2606 2607 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid); 2608 if (mstb) { 2609 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2610 if (!ret) 2611 mstb = NULL; 2612 } 2613 2614 mutex_unlock(&mgr->lock); 2615 return mstb; 2616 } 2617 2618 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2619 struct drm_dp_mst_branch *mstb) 2620 { 2621 struct drm_dp_mst_port *port; 2622 int ret; 2623 bool changed = false; 2624 2625 if (!mstb->link_address_sent) { 2626 ret = drm_dp_send_link_address(mgr, mstb); 2627 if (ret == 1) 2628 changed = true; 2629 else if (ret < 0) 2630 return ret; 2631 } 2632 2633 list_for_each_entry(port, &mstb->ports, next) { 2634 if (port->input || !port->ddps || !port->mstb) 2635 continue; 2636 2637 ret = drm_dp_check_and_send_link_address(mgr, port->mstb); 2638 if (ret == 1) 2639 changed = true; 2640 else if (ret < 0) 2641 return ret; 2642 } 2643 2644 return changed; 2645 } 2646 2647 static void drm_dp_mst_link_probe_work(struct work_struct *work) 2648 { 2649 struct drm_dp_mst_topology_mgr *mgr = 2650 container_of(work, struct drm_dp_mst_topology_mgr, work); 2651 struct drm_device *dev = mgr->dev; 2652 struct drm_dp_mst_branch *mstb; 2653 int ret; 2654 bool clear_payload_id_table; 2655 2656 mutex_lock(&mgr->probe_lock); 2657 2658 mutex_lock(&mgr->lock); 2659 clear_payload_id_table = !mgr->payload_id_table_cleared; 2660 mgr->payload_id_table_cleared = true; 2661 2662 mstb = mgr->mst_primary; 2663 if (mstb) { 2664 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2665 if (!ret) 2666 mstb = NULL; 2667 } 2668 mutex_unlock(&mgr->lock); 2669 if (!mstb) { 2670 mutex_unlock(&mgr->probe_lock); 2671 return; 2672 } 2673 2674 /* 2675 * Certain branch devices seem to incorrectly report an available_pbn 2676 * of 0 on downstream sinks, even after clearing the 2677 * DP_PAYLOAD_ALLOCATE_* registers in 2678 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C 2679 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make 2680 * things work again. 2681 */ 2682 if (clear_payload_id_table) { 2683 drm_dbg_kms(dev, "Clearing payload ID table\n"); 2684 drm_dp_send_clear_payload_id_table(mgr, mstb); 2685 } 2686 2687 ret = drm_dp_check_and_send_link_address(mgr, mstb); 2688 drm_dp_mst_topology_put_mstb(mstb); 2689 2690 mutex_unlock(&mgr->probe_lock); 2691 if (ret > 0) 2692 drm_kms_helper_hotplug_event(dev); 2693 } 2694 2695 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 2696 u8 *guid) 2697 { 2698 u64 salt; 2699 2700 if (memchr_inv(guid, 0, 16)) 2701 return true; 2702 2703 salt = get_jiffies_64(); 2704 2705 memcpy(&guid[0], &salt, sizeof(u64)); 2706 memcpy(&guid[8], &salt, sizeof(u64)); 2707 2708 return false; 2709 } 2710 2711 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, 2712 u8 port_num, u32 offset, u8 num_bytes) 2713 { 2714 struct drm_dp_sideband_msg_req_body req; 2715 2716 req.req_type = DP_REMOTE_DPCD_READ; 2717 req.u.dpcd_read.port_number = port_num; 2718 req.u.dpcd_read.dpcd_address = offset; 2719 req.u.dpcd_read.num_bytes = num_bytes; 2720 drm_dp_encode_sideband_req(&req, msg); 2721 } 2722 2723 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr, 2724 bool up, u8 *msg, int len) 2725 { 2726 int ret; 2727 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE; 2728 int tosend, total, offset; 2729 int retries = 0; 2730 2731 retry: 2732 total = len; 2733 offset = 0; 2734 do { 2735 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total); 2736 2737 ret = drm_dp_dpcd_write(mgr->aux, regbase + offset, 2738 &msg[offset], 2739 tosend); 2740 if (ret != tosend) { 2741 if (ret == -EIO && retries < 5) { 2742 retries++; 2743 goto retry; 2744 } 2745 drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret); 2746 2747 return -EIO; 2748 } 2749 offset += tosend; 2750 total -= tosend; 2751 } while (total > 0); 2752 return 0; 2753 } 2754 2755 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr, 2756 struct drm_dp_sideband_msg_tx *txmsg) 2757 { 2758 struct drm_dp_mst_branch *mstb = txmsg->dst; 2759 u8 req_type; 2760 2761 req_type = txmsg->msg[0] & 0x7f; 2762 if (req_type == DP_CONNECTION_STATUS_NOTIFY || 2763 req_type == DP_RESOURCE_STATUS_NOTIFY || 2764 req_type == DP_CLEAR_PAYLOAD_ID_TABLE) 2765 hdr->broadcast = 1; 2766 else 2767 hdr->broadcast = 0; 2768 hdr->path_msg = txmsg->path_msg; 2769 if (hdr->broadcast) { 2770 hdr->lct = 1; 2771 hdr->lcr = 6; 2772 } else { 2773 hdr->lct = mstb->lct; 2774 hdr->lcr = mstb->lct - 1; 2775 } 2776 2777 memcpy(hdr->rad, mstb->rad, hdr->lct / 2); 2778 2779 return 0; 2780 } 2781 /* 2782 * process a single block of the next message in the sideband queue 2783 */ 2784 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr, 2785 struct drm_dp_sideband_msg_tx *txmsg, 2786 bool up) 2787 { 2788 u8 chunk[48]; 2789 struct drm_dp_sideband_msg_hdr hdr; 2790 int len, space, idx, tosend; 2791 int ret; 2792 2793 if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 2794 return 0; 2795 2796 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr)); 2797 2798 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) 2799 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND; 2800 2801 /* make hdr from dst mst */ 2802 ret = set_hdr_from_dst_qlock(&hdr, txmsg); 2803 if (ret < 0) 2804 return ret; 2805 2806 /* amount left to send in this message */ 2807 len = txmsg->cur_len - txmsg->cur_offset; 2808 2809 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */ 2810 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr); 2811 2812 tosend = min(len, space); 2813 if (len == txmsg->cur_len) 2814 hdr.somt = 1; 2815 if (space >= len) 2816 hdr.eomt = 1; 2817 2818 2819 hdr.msg_len = tosend + 1; 2820 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx); 2821 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend); 2822 /* add crc at end */ 2823 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend); 2824 idx += tosend + 1; 2825 2826 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx); 2827 if (ret) { 2828 if (drm_debug_enabled(DRM_UT_DP)) { 2829 struct drm_printer p = drm_dbg_printer(mgr->dev, 2830 DRM_UT_DP, 2831 DBG_PREFIX); 2832 2833 drm_printf(&p, "sideband msg failed to send\n"); 2834 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2835 } 2836 return ret; 2837 } 2838 2839 txmsg->cur_offset += tosend; 2840 if (txmsg->cur_offset == txmsg->cur_len) { 2841 txmsg->state = DRM_DP_SIDEBAND_TX_SENT; 2842 return 1; 2843 } 2844 return 0; 2845 } 2846 2847 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr) 2848 { 2849 struct drm_dp_sideband_msg_tx *txmsg; 2850 int ret; 2851 2852 WARN_ON(!mutex_is_locked(&mgr->qlock)); 2853 2854 /* construct a chunk from the first msg in the tx_msg queue */ 2855 if (list_empty(&mgr->tx_msg_downq)) 2856 return; 2857 2858 txmsg = list_first_entry(&mgr->tx_msg_downq, 2859 struct drm_dp_sideband_msg_tx, next); 2860 ret = process_single_tx_qlock(mgr, txmsg, false); 2861 if (ret < 0) { 2862 drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret); 2863 list_del(&txmsg->next); 2864 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 2865 wake_up_all(&mgr->tx_waitq); 2866 } 2867 } 2868 2869 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr, 2870 struct drm_dp_sideband_msg_tx *txmsg) 2871 { 2872 mutex_lock(&mgr->qlock); 2873 list_add_tail(&txmsg->next, &mgr->tx_msg_downq); 2874 2875 if (drm_debug_enabled(DRM_UT_DP)) { 2876 struct drm_printer p = drm_dbg_printer(mgr->dev, DRM_UT_DP, 2877 DBG_PREFIX); 2878 2879 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2880 } 2881 2882 if (list_is_singular(&mgr->tx_msg_downq)) 2883 process_single_down_tx_qlock(mgr); 2884 mutex_unlock(&mgr->qlock); 2885 } 2886 2887 static void 2888 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr, 2889 struct drm_dp_link_address_ack_reply *reply) 2890 { 2891 struct drm_dp_link_addr_reply_port *port_reply; 2892 int i; 2893 2894 for (i = 0; i < reply->nports; i++) { 2895 port_reply = &reply->ports[i]; 2896 drm_dbg_kms(mgr->dev, 2897 "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n", 2898 i, 2899 port_reply->input_port, 2900 port_reply->peer_device_type, 2901 port_reply->port_number, 2902 port_reply->dpcd_revision, 2903 port_reply->mcs, 2904 port_reply->ddps, 2905 port_reply->legacy_device_plug_status, 2906 port_reply->num_sdp_streams, 2907 port_reply->num_sdp_stream_sinks); 2908 } 2909 } 2910 2911 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2912 struct drm_dp_mst_branch *mstb) 2913 { 2914 struct drm_dp_sideband_msg_tx *txmsg; 2915 struct drm_dp_link_address_ack_reply *reply; 2916 struct drm_dp_mst_port *port, *tmp; 2917 int i, ret, port_mask = 0; 2918 bool changed = false; 2919 2920 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 2921 if (!txmsg) 2922 return -ENOMEM; 2923 2924 txmsg->dst = mstb; 2925 build_link_address(txmsg); 2926 2927 mstb->link_address_sent = true; 2928 drm_dp_queue_down_tx(mgr, txmsg); 2929 2930 /* FIXME: Actually do some real error handling here */ 2931 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 2932 if (ret <= 0) { 2933 drm_err(mgr->dev, "Sending link address failed with %d\n", ret); 2934 goto out; 2935 } 2936 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 2937 drm_err(mgr->dev, "link address NAK received\n"); 2938 ret = -EIO; 2939 goto out; 2940 } 2941 2942 reply = &txmsg->reply.u.link_addr; 2943 drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports); 2944 drm_dp_dump_link_address(mgr, reply); 2945 2946 ret = drm_dp_check_mstb_guid(mstb, reply->guid); 2947 if (ret) { 2948 char buf[64]; 2949 2950 drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf)); 2951 drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret); 2952 goto out; 2953 } 2954 2955 for (i = 0; i < reply->nports; i++) { 2956 port_mask |= BIT(reply->ports[i].port_number); 2957 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev, 2958 &reply->ports[i]); 2959 if (ret == 1) 2960 changed = true; 2961 else if (ret < 0) 2962 goto out; 2963 } 2964 2965 /* Prune any ports that are currently a part of mstb in our in-memory 2966 * topology, but were not seen in this link address. Usually this 2967 * means that they were removed while the topology was out of sync, 2968 * e.g. during suspend/resume 2969 */ 2970 mutex_lock(&mgr->lock); 2971 list_for_each_entry_safe(port, tmp, &mstb->ports, next) { 2972 if (port_mask & BIT(port->port_num)) 2973 continue; 2974 2975 drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n", 2976 port->port_num); 2977 list_del(&port->next); 2978 drm_dp_mst_topology_put_port(port); 2979 changed = true; 2980 } 2981 mutex_unlock(&mgr->lock); 2982 2983 out: 2984 if (ret <= 0) 2985 mstb->link_address_sent = false; 2986 kfree(txmsg); 2987 return ret < 0 ? ret : changed; 2988 } 2989 2990 static void 2991 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 2992 struct drm_dp_mst_branch *mstb) 2993 { 2994 struct drm_dp_sideband_msg_tx *txmsg; 2995 int ret; 2996 2997 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 2998 if (!txmsg) 2999 return; 3000 3001 txmsg->dst = mstb; 3002 build_clear_payload_id_table(txmsg); 3003 3004 drm_dp_queue_down_tx(mgr, txmsg); 3005 3006 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3007 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3008 drm_dbg_kms(mgr->dev, "clear payload table id nak received\n"); 3009 3010 kfree(txmsg); 3011 } 3012 3013 static int 3014 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 3015 struct drm_dp_mst_branch *mstb, 3016 struct drm_dp_mst_port *port) 3017 { 3018 struct drm_dp_enum_path_resources_ack_reply *path_res; 3019 struct drm_dp_sideband_msg_tx *txmsg; 3020 int ret; 3021 3022 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3023 if (!txmsg) 3024 return -ENOMEM; 3025 3026 txmsg->dst = mstb; 3027 build_enum_path_resources(txmsg, port->port_num); 3028 3029 drm_dp_queue_down_tx(mgr, txmsg); 3030 3031 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3032 if (ret > 0) { 3033 ret = 0; 3034 path_res = &txmsg->reply.u.path_resources; 3035 3036 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3037 drm_dbg_kms(mgr->dev, "enum path resources nak received\n"); 3038 } else { 3039 if (port->port_num != path_res->port_number) 3040 DRM_ERROR("got incorrect port in response\n"); 3041 3042 drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n", 3043 path_res->port_number, 3044 path_res->full_payload_bw_number, 3045 path_res->avail_payload_bw_number); 3046 3047 /* 3048 * If something changed, make sure we send a 3049 * hotplug 3050 */ 3051 if (port->full_pbn != path_res->full_payload_bw_number || 3052 port->fec_capable != path_res->fec_capable) 3053 ret = 1; 3054 3055 port->full_pbn = path_res->full_payload_bw_number; 3056 port->fec_capable = path_res->fec_capable; 3057 } 3058 } 3059 3060 kfree(txmsg); 3061 return ret; 3062 } 3063 3064 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb) 3065 { 3066 if (!mstb->port_parent) 3067 return NULL; 3068 3069 if (mstb->port_parent->mstb != mstb) 3070 return mstb->port_parent; 3071 3072 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent); 3073 } 3074 3075 /* 3076 * Searches upwards in the topology starting from mstb to try to find the 3077 * closest available parent of mstb that's still connected to the rest of the 3078 * topology. This can be used in order to perform operations like releasing 3079 * payloads, where the branch device which owned the payload may no longer be 3080 * around and thus would require that the payload on the last living relative 3081 * be freed instead. 3082 */ 3083 static struct drm_dp_mst_branch * 3084 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr, 3085 struct drm_dp_mst_branch *mstb, 3086 int *port_num) 3087 { 3088 struct drm_dp_mst_branch *rmstb = NULL; 3089 struct drm_dp_mst_port *found_port; 3090 3091 mutex_lock(&mgr->lock); 3092 if (!mgr->mst_primary) 3093 goto out; 3094 3095 do { 3096 found_port = drm_dp_get_last_connected_port_to_mstb(mstb); 3097 if (!found_port) 3098 break; 3099 3100 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) { 3101 rmstb = found_port->parent; 3102 *port_num = found_port->port_num; 3103 } else { 3104 /* Search again, starting from this parent */ 3105 mstb = found_port->parent; 3106 } 3107 } while (!rmstb); 3108 out: 3109 mutex_unlock(&mgr->lock); 3110 return rmstb; 3111 } 3112 3113 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr, 3114 struct drm_dp_mst_port *port, 3115 int id, 3116 int pbn) 3117 { 3118 struct drm_dp_sideband_msg_tx *txmsg; 3119 struct drm_dp_mst_branch *mstb; 3120 int ret, port_num; 3121 u8 sinks[DRM_DP_MAX_SDP_STREAMS]; 3122 int i; 3123 3124 port_num = port->port_num; 3125 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3126 if (!mstb) { 3127 mstb = drm_dp_get_last_connected_port_and_mstb(mgr, 3128 port->parent, 3129 &port_num); 3130 3131 if (!mstb) 3132 return -EINVAL; 3133 } 3134 3135 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3136 if (!txmsg) { 3137 ret = -ENOMEM; 3138 goto fail_put; 3139 } 3140 3141 for (i = 0; i < port->num_sdp_streams; i++) 3142 sinks[i] = i; 3143 3144 txmsg->dst = mstb; 3145 build_allocate_payload(txmsg, port_num, 3146 id, 3147 pbn, port->num_sdp_streams, sinks); 3148 3149 drm_dp_queue_down_tx(mgr, txmsg); 3150 3151 /* 3152 * FIXME: there is a small chance that between getting the last 3153 * connected mstb and sending the payload message, the last connected 3154 * mstb could also be removed from the topology. In the future, this 3155 * needs to be fixed by restarting the 3156 * drm_dp_get_last_connected_port_and_mstb() search in the event of a 3157 * timeout if the topology is still connected to the system. 3158 */ 3159 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3160 if (ret > 0) { 3161 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3162 ret = -EINVAL; 3163 else 3164 ret = 0; 3165 } 3166 kfree(txmsg); 3167 fail_put: 3168 drm_dp_mst_topology_put_mstb(mstb); 3169 return ret; 3170 } 3171 3172 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr, 3173 struct drm_dp_mst_port *port, bool power_up) 3174 { 3175 struct drm_dp_sideband_msg_tx *txmsg; 3176 int ret; 3177 3178 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3179 if (!port) 3180 return -EINVAL; 3181 3182 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3183 if (!txmsg) { 3184 drm_dp_mst_topology_put_port(port); 3185 return -ENOMEM; 3186 } 3187 3188 txmsg->dst = port->parent; 3189 build_power_updown_phy(txmsg, port->port_num, power_up); 3190 drm_dp_queue_down_tx(mgr, txmsg); 3191 3192 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg); 3193 if (ret > 0) { 3194 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3195 ret = -EINVAL; 3196 else 3197 ret = 0; 3198 } 3199 kfree(txmsg); 3200 drm_dp_mst_topology_put_port(port); 3201 3202 return ret; 3203 } 3204 EXPORT_SYMBOL(drm_dp_send_power_updown_phy); 3205 3206 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr, 3207 struct drm_dp_mst_port *port, 3208 struct drm_dp_query_stream_enc_status_ack_reply *status) 3209 { 3210 struct drm_dp_mst_topology_state *state; 3211 struct drm_dp_mst_atomic_payload *payload; 3212 struct drm_dp_sideband_msg_tx *txmsg; 3213 u8 nonce[7]; 3214 int ret; 3215 3216 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3217 if (!txmsg) 3218 return -ENOMEM; 3219 3220 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3221 if (!port) { 3222 ret = -EINVAL; 3223 goto out_get_port; 3224 } 3225 3226 get_random_bytes(nonce, sizeof(nonce)); 3227 3228 drm_modeset_lock(&mgr->base.lock, NULL); 3229 state = to_drm_dp_mst_topology_state(mgr->base.state); 3230 payload = drm_atomic_get_mst_payload_state(state, port); 3231 3232 /* 3233 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message 3234 * transaction at the MST Branch device directly connected to the 3235 * Source" 3236 */ 3237 txmsg->dst = mgr->mst_primary; 3238 3239 build_query_stream_enc_status(txmsg, payload->vcpi, nonce); 3240 3241 drm_dp_queue_down_tx(mgr, txmsg); 3242 3243 ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg); 3244 if (ret < 0) { 3245 goto out; 3246 } else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3247 drm_dbg_kms(mgr->dev, "query encryption status nak received\n"); 3248 ret = -ENXIO; 3249 goto out; 3250 } 3251 3252 ret = 0; 3253 memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status)); 3254 3255 out: 3256 drm_modeset_unlock(&mgr->base.lock); 3257 drm_dp_mst_topology_put_port(port); 3258 out_get_port: 3259 kfree(txmsg); 3260 return ret; 3261 } 3262 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status); 3263 3264 static int drm_dp_create_payload_at_dfp(struct drm_dp_mst_topology_mgr *mgr, 3265 struct drm_dp_mst_atomic_payload *payload) 3266 { 3267 return drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot, 3268 payload->time_slots); 3269 } 3270 3271 static int drm_dp_create_payload_to_remote(struct drm_dp_mst_topology_mgr *mgr, 3272 struct drm_dp_mst_atomic_payload *payload) 3273 { 3274 int ret; 3275 struct drm_dp_mst_port *port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3276 3277 if (!port) 3278 return -EIO; 3279 3280 ret = drm_dp_payload_send_msg(mgr, port, payload->vcpi, payload->pbn); 3281 drm_dp_mst_topology_put_port(port); 3282 return ret; 3283 } 3284 3285 static void drm_dp_destroy_payload_at_remote_and_dfp(struct drm_dp_mst_topology_mgr *mgr, 3286 struct drm_dp_mst_topology_state *mst_state, 3287 struct drm_dp_mst_atomic_payload *payload) 3288 { 3289 drm_dbg_kms(mgr->dev, "\n"); 3290 3291 /* it's okay for these to fail */ 3292 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE) { 3293 drm_dp_payload_send_msg(mgr, payload->port, payload->vcpi, 0); 3294 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3295 } 3296 3297 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) 3298 drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot, 0); 3299 } 3300 3301 /** 3302 * drm_dp_add_payload_part1() - Execute payload update part 1 3303 * @mgr: Manager to use. 3304 * @mst_state: The MST atomic state 3305 * @payload: The payload to write 3306 * 3307 * Determines the starting time slot for the given payload, and programs the VCPI for this payload 3308 * into the DPCD of DPRX. After calling this, the driver should generate ACT and payload packets. 3309 * 3310 * Returns: 0 on success, error code on failure. 3311 */ 3312 int drm_dp_add_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3313 struct drm_dp_mst_topology_state *mst_state, 3314 struct drm_dp_mst_atomic_payload *payload) 3315 { 3316 struct drm_dp_mst_port *port; 3317 int ret; 3318 3319 /* Update mst mgr info */ 3320 if (mgr->payload_count == 0) 3321 mgr->next_start_slot = mst_state->start_slot; 3322 3323 payload->vc_start_slot = mgr->next_start_slot; 3324 3325 mgr->payload_count++; 3326 mgr->next_start_slot += payload->time_slots; 3327 3328 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3329 3330 /* Allocate payload to immediate downstream facing port */ 3331 port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3332 if (!port) { 3333 drm_dbg_kms(mgr->dev, 3334 "VCPI %d for port %p not in topology, not creating a payload to remote\n", 3335 payload->vcpi, payload->port); 3336 return -EIO; 3337 } 3338 3339 ret = drm_dp_create_payload_at_dfp(mgr, payload); 3340 if (ret < 0) { 3341 drm_dbg_kms(mgr->dev, "Failed to create MST payload for port %p: %d\n", 3342 payload->port, ret); 3343 goto put_port; 3344 } 3345 3346 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3347 3348 put_port: 3349 drm_dp_mst_topology_put_port(port); 3350 3351 return ret; 3352 } 3353 EXPORT_SYMBOL(drm_dp_add_payload_part1); 3354 3355 /** 3356 * drm_dp_remove_payload_part1() - Remove an MST payload along the virtual channel 3357 * @mgr: Manager to use. 3358 * @mst_state: The MST atomic state 3359 * @payload: The payload to remove 3360 * 3361 * Removes a payload along the virtual channel if it was successfully allocated. 3362 * After calling this, the driver should set HW to generate ACT and then switch to new 3363 * payload allocation state. 3364 */ 3365 void drm_dp_remove_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3366 struct drm_dp_mst_topology_state *mst_state, 3367 struct drm_dp_mst_atomic_payload *payload) 3368 { 3369 /* Remove remote payload allocation */ 3370 bool send_remove = false; 3371 3372 mutex_lock(&mgr->lock); 3373 send_remove = drm_dp_mst_port_downstream_of_branch(payload->port, mgr->mst_primary); 3374 mutex_unlock(&mgr->lock); 3375 3376 if (send_remove) 3377 drm_dp_destroy_payload_at_remote_and_dfp(mgr, mst_state, payload); 3378 else 3379 drm_dbg_kms(mgr->dev, "Payload for VCPI %d not in topology, not sending remove\n", 3380 payload->vcpi); 3381 3382 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3383 } 3384 EXPORT_SYMBOL(drm_dp_remove_payload_part1); 3385 3386 /** 3387 * drm_dp_remove_payload_part2() - Remove an MST payload locally 3388 * @mgr: Manager to use. 3389 * @mst_state: The MST atomic state 3390 * @old_payload: The payload with its old state 3391 * @new_payload: The payload with its latest state 3392 * 3393 * Updates the starting time slots of all other payloads which would have been shifted towards 3394 * the start of the payload ID table as a result of removing a payload. Driver should call this 3395 * function whenever it removes a payload in its HW. It's independent to the result of payload 3396 * allocation/deallocation at branch devices along the virtual channel. 3397 */ 3398 void drm_dp_remove_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3399 struct drm_dp_mst_topology_state *mst_state, 3400 const struct drm_dp_mst_atomic_payload *old_payload, 3401 struct drm_dp_mst_atomic_payload *new_payload) 3402 { 3403 struct drm_dp_mst_atomic_payload *pos; 3404 3405 /* Remove local payload allocation */ 3406 list_for_each_entry(pos, &mst_state->payloads, next) { 3407 if (pos != new_payload && pos->vc_start_slot > new_payload->vc_start_slot) 3408 pos->vc_start_slot -= old_payload->time_slots; 3409 } 3410 new_payload->vc_start_slot = -1; 3411 3412 mgr->payload_count--; 3413 mgr->next_start_slot -= old_payload->time_slots; 3414 3415 if (new_payload->delete) 3416 drm_dp_mst_put_port_malloc(new_payload->port); 3417 3418 new_payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 3419 } 3420 EXPORT_SYMBOL(drm_dp_remove_payload_part2); 3421 /** 3422 * drm_dp_add_payload_part2() - Execute payload update part 2 3423 * @mgr: Manager to use. 3424 * @state: The global atomic state 3425 * @payload: The payload to update 3426 * 3427 * If @payload was successfully assigned a starting time slot by drm_dp_add_payload_part1(), this 3428 * function will send the sideband messages to finish allocating this payload. 3429 * 3430 * Returns: 0 on success, negative error code on failure. 3431 */ 3432 int drm_dp_add_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3433 struct drm_atomic_state *state, 3434 struct drm_dp_mst_atomic_payload *payload) 3435 { 3436 int ret = 0; 3437 3438 /* Skip failed payloads */ 3439 if (payload->payload_allocation_status != DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) { 3440 drm_dbg_kms(state->dev, "Part 1 of payload creation for %s failed, skipping part 2\n", 3441 payload->port->connector->name); 3442 return -EIO; 3443 } 3444 3445 /* Allocate payload to remote end */ 3446 ret = drm_dp_create_payload_to_remote(mgr, payload); 3447 if (ret < 0) 3448 drm_err(mgr->dev, "Step 2 of creating MST payload for %p failed: %d\n", 3449 payload->port, ret); 3450 else 3451 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE; 3452 3453 return ret; 3454 } 3455 EXPORT_SYMBOL(drm_dp_add_payload_part2); 3456 3457 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 3458 struct drm_dp_mst_port *port, 3459 int offset, int size, u8 *bytes) 3460 { 3461 int ret = 0; 3462 struct drm_dp_sideband_msg_tx *txmsg; 3463 struct drm_dp_mst_branch *mstb; 3464 3465 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3466 if (!mstb) 3467 return -EINVAL; 3468 3469 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3470 if (!txmsg) { 3471 ret = -ENOMEM; 3472 goto fail_put; 3473 } 3474 3475 build_dpcd_read(txmsg, port->port_num, offset, size); 3476 txmsg->dst = port->parent; 3477 3478 drm_dp_queue_down_tx(mgr, txmsg); 3479 3480 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3481 if (ret < 0) 3482 goto fail_free; 3483 3484 if (txmsg->reply.reply_type == 1) { 3485 drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n", 3486 mstb, port->port_num, offset, size); 3487 ret = -EIO; 3488 goto fail_free; 3489 } 3490 3491 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) { 3492 ret = -EPROTO; 3493 goto fail_free; 3494 } 3495 3496 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes, 3497 size); 3498 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret); 3499 3500 fail_free: 3501 kfree(txmsg); 3502 fail_put: 3503 drm_dp_mst_topology_put_mstb(mstb); 3504 3505 return ret; 3506 } 3507 3508 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 3509 struct drm_dp_mst_port *port, 3510 int offset, int size, u8 *bytes) 3511 { 3512 int ret; 3513 struct drm_dp_sideband_msg_tx *txmsg; 3514 struct drm_dp_mst_branch *mstb; 3515 3516 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3517 if (!mstb) 3518 return -EINVAL; 3519 3520 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3521 if (!txmsg) { 3522 ret = -ENOMEM; 3523 goto fail_put; 3524 } 3525 3526 build_dpcd_write(txmsg, port->port_num, offset, size, bytes); 3527 txmsg->dst = mstb; 3528 3529 drm_dp_queue_down_tx(mgr, txmsg); 3530 3531 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3532 if (ret > 0) { 3533 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3534 ret = -EIO; 3535 else 3536 ret = size; 3537 } 3538 3539 kfree(txmsg); 3540 fail_put: 3541 drm_dp_mst_topology_put_mstb(mstb); 3542 return ret; 3543 } 3544 3545 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type) 3546 { 3547 struct drm_dp_sideband_msg_reply_body reply; 3548 3549 reply.reply_type = DP_SIDEBAND_REPLY_ACK; 3550 reply.req_type = req_type; 3551 drm_dp_encode_sideband_reply(&reply, msg); 3552 return 0; 3553 } 3554 3555 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr, 3556 struct drm_dp_mst_branch *mstb, 3557 int req_type, bool broadcast) 3558 { 3559 struct drm_dp_sideband_msg_tx *txmsg; 3560 3561 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3562 if (!txmsg) 3563 return -ENOMEM; 3564 3565 txmsg->dst = mstb; 3566 drm_dp_encode_up_ack_reply(txmsg, req_type); 3567 3568 mutex_lock(&mgr->qlock); 3569 /* construct a chunk from the first msg in the tx_msg queue */ 3570 process_single_tx_qlock(mgr, txmsg, true); 3571 mutex_unlock(&mgr->qlock); 3572 3573 kfree(txmsg); 3574 return 0; 3575 } 3576 3577 /** 3578 * drm_dp_get_vc_payload_bw - get the VC payload BW for an MST link 3579 * @mgr: The &drm_dp_mst_topology_mgr to use 3580 * @link_rate: link rate in 10kbits/s units 3581 * @link_lane_count: lane count 3582 * 3583 * Calculate the total bandwidth of a MultiStream Transport link. The returned 3584 * value is in units of PBNs/(timeslots/1 MTP). This value can be used to 3585 * convert the number of PBNs required for a given stream to the number of 3586 * timeslots this stream requires in each MTP. 3587 * 3588 * Returns the BW / timeslot value in 20.12 fixed point format. 3589 */ 3590 fixed20_12 drm_dp_get_vc_payload_bw(const struct drm_dp_mst_topology_mgr *mgr, 3591 int link_rate, int link_lane_count) 3592 { 3593 int ch_coding_efficiency = 3594 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(link_rate)); 3595 fixed20_12 ret; 3596 3597 if (link_rate == 0 || link_lane_count == 0) 3598 drm_dbg_kms(mgr->dev, "invalid link rate/lane count: (%d / %d)\n", 3599 link_rate, link_lane_count); 3600 3601 /* See DP v2.0 2.6.4.2, 2.7.6.3 VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */ 3602 ret.full = DIV_ROUND_DOWN_ULL(mul_u32_u32(link_rate * link_lane_count, 3603 ch_coding_efficiency), 3604 (1000000ULL * 8 * 5400) >> 12); 3605 3606 return ret; 3607 } 3608 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw); 3609 3610 /** 3611 * drm_dp_read_mst_cap() - check whether or not a sink supports MST 3612 * @aux: The DP AUX channel to use 3613 * @dpcd: A cached copy of the DPCD capabilities for this sink 3614 * 3615 * Returns: %True if the sink supports MST, %false otherwise 3616 */ 3617 bool drm_dp_read_mst_cap(struct drm_dp_aux *aux, 3618 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3619 { 3620 u8 mstm_cap; 3621 3622 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12) 3623 return false; 3624 3625 if (drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &mstm_cap) != 1) 3626 return false; 3627 3628 return mstm_cap & DP_MST_CAP; 3629 } 3630 EXPORT_SYMBOL(drm_dp_read_mst_cap); 3631 3632 /** 3633 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager 3634 * @mgr: manager to set state for 3635 * @mst_state: true to enable MST on this connector - false to disable. 3636 * 3637 * This is called by the driver when it detects an MST capable device plugged 3638 * into a DP MST capable port, or when a DP MST capable device is unplugged. 3639 */ 3640 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state) 3641 { 3642 int ret = 0; 3643 struct drm_dp_mst_branch *mstb = NULL; 3644 3645 mutex_lock(&mgr->lock); 3646 if (mst_state == mgr->mst_state) 3647 goto out_unlock; 3648 3649 mgr->mst_state = mst_state; 3650 /* set the device into MST mode */ 3651 if (mst_state) { 3652 WARN_ON(mgr->mst_primary); 3653 3654 /* get dpcd info */ 3655 ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd); 3656 if (ret < 0) { 3657 drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n", 3658 mgr->aux->name, ret); 3659 goto out_unlock; 3660 } 3661 3662 /* add initial branch device at LCT 1 */ 3663 mstb = drm_dp_add_mst_branch_device(1, NULL); 3664 if (mstb == NULL) { 3665 ret = -ENOMEM; 3666 goto out_unlock; 3667 } 3668 mstb->mgr = mgr; 3669 3670 /* give this the main reference */ 3671 mgr->mst_primary = mstb; 3672 drm_dp_mst_topology_get_mstb(mgr->mst_primary); 3673 3674 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3675 DP_MST_EN | 3676 DP_UP_REQ_EN | 3677 DP_UPSTREAM_IS_SRC); 3678 if (ret < 0) 3679 goto out_unlock; 3680 3681 /* Write reset payload */ 3682 drm_dp_dpcd_write_payload(mgr, 0, 0, 0x3f); 3683 3684 queue_work(system_long_wq, &mgr->work); 3685 3686 ret = 0; 3687 } else { 3688 /* disable MST on the device */ 3689 mstb = mgr->mst_primary; 3690 mgr->mst_primary = NULL; 3691 /* this can fail if the device is gone */ 3692 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0); 3693 ret = 0; 3694 mgr->payload_id_table_cleared = false; 3695 3696 memset(&mgr->down_rep_recv, 0, sizeof(mgr->down_rep_recv)); 3697 memset(&mgr->up_req_recv, 0, sizeof(mgr->up_req_recv)); 3698 } 3699 3700 out_unlock: 3701 mutex_unlock(&mgr->lock); 3702 if (mstb) 3703 drm_dp_mst_topology_put_mstb(mstb); 3704 return ret; 3705 3706 } 3707 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst); 3708 3709 static void 3710 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb) 3711 { 3712 struct drm_dp_mst_port *port; 3713 3714 /* The link address will need to be re-sent on resume */ 3715 mstb->link_address_sent = false; 3716 3717 list_for_each_entry(port, &mstb->ports, next) 3718 if (port->mstb) 3719 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb); 3720 } 3721 3722 /** 3723 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager 3724 * @mgr: manager to suspend 3725 * 3726 * This function tells the MST device that we can't handle UP messages 3727 * anymore. This should stop it from sending any since we are suspended. 3728 */ 3729 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr) 3730 { 3731 mutex_lock(&mgr->lock); 3732 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3733 DP_MST_EN | DP_UPSTREAM_IS_SRC); 3734 mutex_unlock(&mgr->lock); 3735 flush_work(&mgr->up_req_work); 3736 flush_work(&mgr->work); 3737 flush_work(&mgr->delayed_destroy_work); 3738 3739 mutex_lock(&mgr->lock); 3740 if (mgr->mst_state && mgr->mst_primary) 3741 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary); 3742 mutex_unlock(&mgr->lock); 3743 } 3744 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend); 3745 3746 /** 3747 * drm_dp_mst_topology_mgr_resume() - resume the MST manager 3748 * @mgr: manager to resume 3749 * @sync: whether or not to perform topology reprobing synchronously 3750 * 3751 * This will fetch DPCD and see if the device is still there, 3752 * if it is, it will rewrite the MSTM control bits, and return. 3753 * 3754 * If the device fails this returns -1, and the driver should do 3755 * a full MST reprobe, in case we were undocked. 3756 * 3757 * During system resume (where it is assumed that the driver will be calling 3758 * drm_atomic_helper_resume()) this function should be called beforehand with 3759 * @sync set to true. In contexts like runtime resume where the driver is not 3760 * expected to be calling drm_atomic_helper_resume(), this function should be 3761 * called with @sync set to false in order to avoid deadlocking. 3762 * 3763 * Returns: -1 if the MST topology was removed while we were suspended, 0 3764 * otherwise. 3765 */ 3766 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr, 3767 bool sync) 3768 { 3769 int ret; 3770 u8 guid[16]; 3771 3772 mutex_lock(&mgr->lock); 3773 if (!mgr->mst_primary) 3774 goto out_fail; 3775 3776 if (drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd) < 0) { 3777 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3778 goto out_fail; 3779 } 3780 3781 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3782 DP_MST_EN | 3783 DP_UP_REQ_EN | 3784 DP_UPSTREAM_IS_SRC); 3785 if (ret < 0) { 3786 drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n"); 3787 goto out_fail; 3788 } 3789 3790 /* Some hubs forget their guids after they resume */ 3791 ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16); 3792 if (ret != 16) { 3793 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3794 goto out_fail; 3795 } 3796 3797 ret = drm_dp_check_mstb_guid(mgr->mst_primary, guid); 3798 if (ret) { 3799 drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n"); 3800 goto out_fail; 3801 } 3802 3803 /* 3804 * For the final step of resuming the topology, we need to bring the 3805 * state of our in-memory topology back into sync with reality. So, 3806 * restart the probing process as if we're probing a new hub 3807 */ 3808 queue_work(system_long_wq, &mgr->work); 3809 mutex_unlock(&mgr->lock); 3810 3811 if (sync) { 3812 drm_dbg_kms(mgr->dev, 3813 "Waiting for link probe work to finish re-syncing topology...\n"); 3814 flush_work(&mgr->work); 3815 } 3816 3817 return 0; 3818 3819 out_fail: 3820 mutex_unlock(&mgr->lock); 3821 return -1; 3822 } 3823 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume); 3824 3825 static bool 3826 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up, 3827 struct drm_dp_mst_branch **mstb) 3828 { 3829 int len; 3830 u8 replyblock[32]; 3831 int replylen, curreply; 3832 int ret; 3833 u8 hdrlen; 3834 struct drm_dp_sideband_msg_hdr hdr; 3835 struct drm_dp_sideband_msg_rx *msg = 3836 up ? &mgr->up_req_recv : &mgr->down_rep_recv; 3837 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : 3838 DP_SIDEBAND_MSG_DOWN_REP_BASE; 3839 3840 if (!up) 3841 *mstb = NULL; 3842 3843 len = min(mgr->max_dpcd_transaction_bytes, 16); 3844 ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len); 3845 if (ret != len) { 3846 drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret); 3847 return false; 3848 } 3849 3850 ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen); 3851 if (ret == false) { 3852 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 3853 1, replyblock, len, false); 3854 drm_dbg_kms(mgr->dev, "ERROR: failed header\n"); 3855 return false; 3856 } 3857 3858 if (!up) { 3859 /* Caller is responsible for giving back this reference */ 3860 *mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad); 3861 if (!*mstb) { 3862 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct); 3863 return false; 3864 } 3865 } 3866 3867 if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) { 3868 drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]); 3869 return false; 3870 } 3871 3872 replylen = min(msg->curchunk_len, (u8)(len - hdrlen)); 3873 ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen); 3874 if (!ret) { 3875 drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]); 3876 return false; 3877 } 3878 3879 replylen = msg->curchunk_len + msg->curchunk_hdrlen - len; 3880 curreply = len; 3881 while (replylen > 0) { 3882 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16); 3883 ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply, 3884 replyblock, len); 3885 if (ret != len) { 3886 drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n", 3887 len, ret); 3888 return false; 3889 } 3890 3891 ret = drm_dp_sideband_append_payload(msg, replyblock, len); 3892 if (!ret) { 3893 drm_dbg_kms(mgr->dev, "failed to build sideband msg\n"); 3894 return false; 3895 } 3896 3897 curreply += len; 3898 replylen -= len; 3899 } 3900 return true; 3901 } 3902 3903 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr) 3904 { 3905 struct drm_dp_sideband_msg_tx *txmsg; 3906 struct drm_dp_mst_branch *mstb = NULL; 3907 struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv; 3908 3909 if (!drm_dp_get_one_sb_msg(mgr, false, &mstb)) 3910 goto out_clear_reply; 3911 3912 /* Multi-packet message transmission, don't clear the reply */ 3913 if (!msg->have_eomt) 3914 goto out; 3915 3916 /* find the message */ 3917 mutex_lock(&mgr->qlock); 3918 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 3919 struct drm_dp_sideband_msg_tx, next); 3920 mutex_unlock(&mgr->qlock); 3921 3922 /* Were we actually expecting a response, and from this mstb? */ 3923 if (!txmsg || txmsg->dst != mstb) { 3924 struct drm_dp_sideband_msg_hdr *hdr; 3925 3926 hdr = &msg->initial_hdr; 3927 drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n", 3928 mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]); 3929 goto out_clear_reply; 3930 } 3931 3932 drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply); 3933 3934 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3935 drm_dbg_kms(mgr->dev, 3936 "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n", 3937 txmsg->reply.req_type, 3938 drm_dp_mst_req_type_str(txmsg->reply.req_type), 3939 txmsg->reply.u.nak.reason, 3940 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason), 3941 txmsg->reply.u.nak.nak_data); 3942 } 3943 3944 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 3945 drm_dp_mst_topology_put_mstb(mstb); 3946 3947 mutex_lock(&mgr->qlock); 3948 txmsg->state = DRM_DP_SIDEBAND_TX_RX; 3949 list_del(&txmsg->next); 3950 mutex_unlock(&mgr->qlock); 3951 3952 wake_up_all(&mgr->tx_waitq); 3953 3954 return 0; 3955 3956 out_clear_reply: 3957 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 3958 out: 3959 if (mstb) 3960 drm_dp_mst_topology_put_mstb(mstb); 3961 3962 return 0; 3963 } 3964 3965 static inline bool 3966 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr, 3967 struct drm_dp_pending_up_req *up_req) 3968 { 3969 struct drm_dp_mst_branch *mstb = NULL; 3970 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg; 3971 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr; 3972 bool hotplug = false, dowork = false; 3973 3974 if (hdr->broadcast) { 3975 const u8 *guid = NULL; 3976 3977 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) 3978 guid = msg->u.conn_stat.guid; 3979 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY) 3980 guid = msg->u.resource_stat.guid; 3981 3982 if (guid) 3983 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid); 3984 } else { 3985 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad); 3986 } 3987 3988 if (!mstb) { 3989 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct); 3990 return false; 3991 } 3992 3993 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */ 3994 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) { 3995 dowork = drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat); 3996 hotplug = true; 3997 } 3998 3999 drm_dp_mst_topology_put_mstb(mstb); 4000 4001 if (dowork) 4002 queue_work(system_long_wq, &mgr->work); 4003 return hotplug; 4004 } 4005 4006 static void drm_dp_mst_up_req_work(struct work_struct *work) 4007 { 4008 struct drm_dp_mst_topology_mgr *mgr = 4009 container_of(work, struct drm_dp_mst_topology_mgr, 4010 up_req_work); 4011 struct drm_dp_pending_up_req *up_req; 4012 bool send_hotplug = false; 4013 4014 mutex_lock(&mgr->probe_lock); 4015 while (true) { 4016 mutex_lock(&mgr->up_req_lock); 4017 up_req = list_first_entry_or_null(&mgr->up_req_list, 4018 struct drm_dp_pending_up_req, 4019 next); 4020 if (up_req) 4021 list_del(&up_req->next); 4022 mutex_unlock(&mgr->up_req_lock); 4023 4024 if (!up_req) 4025 break; 4026 4027 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req); 4028 kfree(up_req); 4029 } 4030 mutex_unlock(&mgr->probe_lock); 4031 4032 if (send_hotplug) 4033 drm_kms_helper_hotplug_event(mgr->dev); 4034 } 4035 4036 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr) 4037 { 4038 struct drm_dp_pending_up_req *up_req; 4039 4040 if (!drm_dp_get_one_sb_msg(mgr, true, NULL)) 4041 goto out; 4042 4043 if (!mgr->up_req_recv.have_eomt) 4044 return 0; 4045 4046 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL); 4047 if (!up_req) 4048 return -ENOMEM; 4049 4050 INIT_LIST_HEAD(&up_req->next); 4051 4052 drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg); 4053 4054 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY && 4055 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) { 4056 drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n", 4057 up_req->msg.req_type); 4058 kfree(up_req); 4059 goto out; 4060 } 4061 4062 drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type, 4063 false); 4064 4065 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) { 4066 const struct drm_dp_connection_status_notify *conn_stat = 4067 &up_req->msg.u.conn_stat; 4068 4069 drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n", 4070 conn_stat->port_number, 4071 conn_stat->legacy_device_plug_status, 4072 conn_stat->displayport_device_plug_status, 4073 conn_stat->message_capability_status, 4074 conn_stat->input_port, 4075 conn_stat->peer_device_type); 4076 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) { 4077 const struct drm_dp_resource_status_notify *res_stat = 4078 &up_req->msg.u.resource_stat; 4079 4080 drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n", 4081 res_stat->port_number, 4082 res_stat->available_pbn); 4083 } 4084 4085 up_req->hdr = mgr->up_req_recv.initial_hdr; 4086 mutex_lock(&mgr->up_req_lock); 4087 list_add_tail(&up_req->next, &mgr->up_req_list); 4088 mutex_unlock(&mgr->up_req_lock); 4089 queue_work(system_long_wq, &mgr->up_req_work); 4090 4091 out: 4092 memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); 4093 return 0; 4094 } 4095 4096 /** 4097 * drm_dp_mst_hpd_irq_handle_event() - MST hotplug IRQ handle MST event 4098 * @mgr: manager to notify irq for. 4099 * @esi: 4 bytes from SINK_COUNT_ESI 4100 * @ack: 4 bytes used to ack events starting from SINK_COUNT_ESI 4101 * @handled: whether the hpd interrupt was consumed or not 4102 * 4103 * This should be called from the driver when it detects a HPD IRQ, 4104 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The 4105 * topology manager will process the sideband messages received 4106 * as indicated in the DEVICE_SERVICE_IRQ_VECTOR_ESI0 and set the 4107 * corresponding flags that Driver has to ack the DP receiver later. 4108 * 4109 * Note that driver shall also call 4110 * drm_dp_mst_hpd_irq_send_new_request() if the 'handled' is set 4111 * after calling this function, to try to kick off a new request in 4112 * the queue if the previous message transaction is completed. 4113 * 4114 * See also: 4115 * drm_dp_mst_hpd_irq_send_new_request() 4116 */ 4117 int drm_dp_mst_hpd_irq_handle_event(struct drm_dp_mst_topology_mgr *mgr, const u8 *esi, 4118 u8 *ack, bool *handled) 4119 { 4120 int ret = 0; 4121 int sc; 4122 *handled = false; 4123 sc = DP_GET_SINK_COUNT(esi[0]); 4124 4125 if (sc != mgr->sink_count) { 4126 mgr->sink_count = sc; 4127 *handled = true; 4128 } 4129 4130 if (esi[1] & DP_DOWN_REP_MSG_RDY) { 4131 ret = drm_dp_mst_handle_down_rep(mgr); 4132 *handled = true; 4133 ack[1] |= DP_DOWN_REP_MSG_RDY; 4134 } 4135 4136 if (esi[1] & DP_UP_REQ_MSG_RDY) { 4137 ret |= drm_dp_mst_handle_up_req(mgr); 4138 *handled = true; 4139 ack[1] |= DP_UP_REQ_MSG_RDY; 4140 } 4141 4142 return ret; 4143 } 4144 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_handle_event); 4145 4146 /** 4147 * drm_dp_mst_hpd_irq_send_new_request() - MST hotplug IRQ kick off new request 4148 * @mgr: manager to notify irq for. 4149 * 4150 * This should be called from the driver when mst irq event is handled 4151 * and acked. Note that new down request should only be sent when 4152 * previous message transaction is completed. Source is not supposed to generate 4153 * interleaved message transactions. 4154 */ 4155 void drm_dp_mst_hpd_irq_send_new_request(struct drm_dp_mst_topology_mgr *mgr) 4156 { 4157 struct drm_dp_sideband_msg_tx *txmsg; 4158 bool kick = true; 4159 4160 mutex_lock(&mgr->qlock); 4161 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 4162 struct drm_dp_sideband_msg_tx, next); 4163 /* If last transaction is not completed yet*/ 4164 if (!txmsg || 4165 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 4166 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 4167 kick = false; 4168 mutex_unlock(&mgr->qlock); 4169 4170 if (kick) 4171 drm_dp_mst_kick_tx(mgr); 4172 } 4173 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_send_new_request); 4174 /** 4175 * drm_dp_mst_detect_port() - get connection status for an MST port 4176 * @connector: DRM connector for this port 4177 * @ctx: The acquisition context to use for grabbing locks 4178 * @mgr: manager for this port 4179 * @port: pointer to a port 4180 * 4181 * This returns the current connection state for a port. 4182 */ 4183 int 4184 drm_dp_mst_detect_port(struct drm_connector *connector, 4185 struct drm_modeset_acquire_ctx *ctx, 4186 struct drm_dp_mst_topology_mgr *mgr, 4187 struct drm_dp_mst_port *port) 4188 { 4189 int ret; 4190 4191 /* we need to search for the port in the mgr in case it's gone */ 4192 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4193 if (!port) 4194 return connector_status_disconnected; 4195 4196 ret = drm_modeset_lock(&mgr->base.lock, ctx); 4197 if (ret) 4198 goto out; 4199 4200 ret = connector_status_disconnected; 4201 4202 if (!port->ddps) 4203 goto out; 4204 4205 switch (port->pdt) { 4206 case DP_PEER_DEVICE_NONE: 4207 break; 4208 case DP_PEER_DEVICE_MST_BRANCHING: 4209 if (!port->mcs) 4210 ret = connector_status_connected; 4211 break; 4212 4213 case DP_PEER_DEVICE_SST_SINK: 4214 ret = connector_status_connected; 4215 /* for logical ports - cache the EDID */ 4216 if (port->port_num >= DP_MST_LOGICAL_PORT_0 && !port->cached_edid) 4217 port->cached_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4218 break; 4219 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4220 if (port->ldps) 4221 ret = connector_status_connected; 4222 break; 4223 } 4224 out: 4225 drm_dp_mst_topology_put_port(port); 4226 return ret; 4227 } 4228 EXPORT_SYMBOL(drm_dp_mst_detect_port); 4229 4230 /** 4231 * drm_dp_mst_edid_read() - get EDID for an MST port 4232 * @connector: toplevel connector to get EDID for 4233 * @mgr: manager for this port 4234 * @port: unverified pointer to a port. 4235 * 4236 * This returns an EDID for the port connected to a connector, 4237 * It validates the pointer still exists so the caller doesn't require a 4238 * reference. 4239 */ 4240 const struct drm_edid *drm_dp_mst_edid_read(struct drm_connector *connector, 4241 struct drm_dp_mst_topology_mgr *mgr, 4242 struct drm_dp_mst_port *port) 4243 { 4244 const struct drm_edid *drm_edid; 4245 4246 /* we need to search for the port in the mgr in case it's gone */ 4247 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4248 if (!port) 4249 return NULL; 4250 4251 if (port->cached_edid) 4252 drm_edid = drm_edid_dup(port->cached_edid); 4253 else 4254 drm_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4255 4256 drm_dp_mst_topology_put_port(port); 4257 4258 return drm_edid; 4259 } 4260 EXPORT_SYMBOL(drm_dp_mst_edid_read); 4261 4262 /** 4263 * drm_dp_mst_get_edid() - get EDID for an MST port 4264 * @connector: toplevel connector to get EDID for 4265 * @mgr: manager for this port 4266 * @port: unverified pointer to a port. 4267 * 4268 * This function is deprecated; please use drm_dp_mst_edid_read() instead. 4269 * 4270 * This returns an EDID for the port connected to a connector, 4271 * It validates the pointer still exists so the caller doesn't require a 4272 * reference. 4273 */ 4274 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, 4275 struct drm_dp_mst_topology_mgr *mgr, 4276 struct drm_dp_mst_port *port) 4277 { 4278 const struct drm_edid *drm_edid; 4279 struct edid *edid; 4280 4281 drm_edid = drm_dp_mst_edid_read(connector, mgr, port); 4282 4283 edid = drm_edid_duplicate(drm_edid_raw(drm_edid)); 4284 4285 drm_edid_free(drm_edid); 4286 4287 return edid; 4288 } 4289 EXPORT_SYMBOL(drm_dp_mst_get_edid); 4290 4291 /** 4292 * drm_dp_atomic_find_time_slots() - Find and add time slots to the state 4293 * @state: global atomic state 4294 * @mgr: MST topology manager for the port 4295 * @port: port to find time slots for 4296 * @pbn: bandwidth required for the mode in PBN 4297 * 4298 * Allocates time slots to @port, replacing any previous time slot allocations it may 4299 * have had. Any atomic drivers which support MST must call this function in 4300 * their &drm_encoder_helper_funcs.atomic_check() callback unconditionally to 4301 * change the current time slot allocation for the new state, and ensure the MST 4302 * atomic state is added whenever the state of payloads in the topology changes. 4303 * 4304 * Allocations set by this function are not checked against the bandwidth 4305 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check(). 4306 * 4307 * Additionally, it is OK to call this function multiple times on the same 4308 * @port as needed. It is not OK however, to call this function and 4309 * drm_dp_atomic_release_time_slots() in the same atomic check phase. 4310 * 4311 * See also: 4312 * drm_dp_atomic_release_time_slots() 4313 * drm_dp_mst_atomic_check() 4314 * 4315 * Returns: 4316 * Total slots in the atomic state assigned for this port, or a negative error 4317 * code if the port no longer exists 4318 */ 4319 int drm_dp_atomic_find_time_slots(struct drm_atomic_state *state, 4320 struct drm_dp_mst_topology_mgr *mgr, 4321 struct drm_dp_mst_port *port, int pbn) 4322 { 4323 struct drm_dp_mst_topology_state *topology_state; 4324 struct drm_dp_mst_atomic_payload *payload = NULL; 4325 struct drm_connector_state *conn_state; 4326 int prev_slots = 0, prev_bw = 0, req_slots; 4327 4328 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4329 if (IS_ERR(topology_state)) 4330 return PTR_ERR(topology_state); 4331 4332 conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4333 topology_state->pending_crtc_mask |= drm_crtc_mask(conn_state->crtc); 4334 4335 /* Find the current allocation for this port, if any */ 4336 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4337 if (payload) { 4338 prev_slots = payload->time_slots; 4339 prev_bw = payload->pbn; 4340 4341 /* 4342 * This should never happen, unless the driver tries 4343 * releasing and allocating the same timeslot allocation, 4344 * which is an error 4345 */ 4346 if (drm_WARN_ON(mgr->dev, payload->delete)) { 4347 drm_err(mgr->dev, 4348 "cannot allocate and release time slots on [MST PORT:%p] in the same state\n", 4349 port); 4350 return -EINVAL; 4351 } 4352 } 4353 4354 req_slots = DIV_ROUND_UP(dfixed_const(pbn), topology_state->pbn_div.full); 4355 4356 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] TU %d -> %d\n", 4357 port->connector->base.id, port->connector->name, 4358 port, prev_slots, req_slots); 4359 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n", 4360 port->connector->base.id, port->connector->name, 4361 port, prev_bw, pbn); 4362 4363 /* Add the new allocation to the state, note the VCPI isn't assigned until the end */ 4364 if (!payload) { 4365 payload = kzalloc(sizeof(*payload), GFP_KERNEL); 4366 if (!payload) 4367 return -ENOMEM; 4368 4369 drm_dp_mst_get_port_malloc(port); 4370 payload->port = port; 4371 payload->vc_start_slot = -1; 4372 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 4373 list_add(&payload->next, &topology_state->payloads); 4374 } 4375 payload->time_slots = req_slots; 4376 payload->pbn = pbn; 4377 4378 return req_slots; 4379 } 4380 EXPORT_SYMBOL(drm_dp_atomic_find_time_slots); 4381 4382 /** 4383 * drm_dp_atomic_release_time_slots() - Release allocated time slots 4384 * @state: global atomic state 4385 * @mgr: MST topology manager for the port 4386 * @port: The port to release the time slots from 4387 * 4388 * Releases any time slots that have been allocated to a port in the atomic 4389 * state. Any atomic drivers which support MST must call this function 4390 * unconditionally in their &drm_connector_helper_funcs.atomic_check() callback. 4391 * This helper will check whether time slots would be released by the new state and 4392 * respond accordingly, along with ensuring the MST state is always added to the 4393 * atomic state whenever a new state would modify the state of payloads on the 4394 * topology. 4395 * 4396 * It is OK to call this even if @port has been removed from the system. 4397 * Additionally, it is OK to call this function multiple times on the same 4398 * @port as needed. It is not OK however, to call this function and 4399 * drm_dp_atomic_find_time_slots() on the same @port in a single atomic check 4400 * phase. 4401 * 4402 * See also: 4403 * drm_dp_atomic_find_time_slots() 4404 * drm_dp_mst_atomic_check() 4405 * 4406 * Returns: 4407 * 0 on success, negative error code otherwise 4408 */ 4409 int drm_dp_atomic_release_time_slots(struct drm_atomic_state *state, 4410 struct drm_dp_mst_topology_mgr *mgr, 4411 struct drm_dp_mst_port *port) 4412 { 4413 struct drm_dp_mst_topology_state *topology_state; 4414 struct drm_dp_mst_atomic_payload *payload; 4415 struct drm_connector_state *old_conn_state, *new_conn_state; 4416 bool update_payload = true; 4417 4418 old_conn_state = drm_atomic_get_old_connector_state(state, port->connector); 4419 if (!old_conn_state->crtc) 4420 return 0; 4421 4422 /* If the CRTC isn't disabled by this state, don't release it's payload */ 4423 new_conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4424 if (new_conn_state->crtc) { 4425 struct drm_crtc_state *crtc_state = 4426 drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4427 4428 /* No modeset means no payload changes, so it's safe to not pull in the MST state */ 4429 if (!crtc_state || !drm_atomic_crtc_needs_modeset(crtc_state)) 4430 return 0; 4431 4432 if (!crtc_state->mode_changed && !crtc_state->connectors_changed) 4433 update_payload = false; 4434 } 4435 4436 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4437 if (IS_ERR(topology_state)) 4438 return PTR_ERR(topology_state); 4439 4440 topology_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4441 if (!update_payload) 4442 return 0; 4443 4444 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4445 if (WARN_ON(!payload)) { 4446 drm_err(mgr->dev, "No payload for [MST PORT:%p] found in mst state %p\n", 4447 port, &topology_state->base); 4448 return -EINVAL; 4449 } 4450 4451 if (new_conn_state->crtc) 4452 return 0; 4453 4454 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] TU %d -> 0\n", port, payload->time_slots); 4455 if (!payload->delete) { 4456 payload->pbn = 0; 4457 payload->delete = true; 4458 topology_state->payload_mask &= ~BIT(payload->vcpi - 1); 4459 } 4460 4461 return 0; 4462 } 4463 EXPORT_SYMBOL(drm_dp_atomic_release_time_slots); 4464 4465 /** 4466 * drm_dp_mst_atomic_setup_commit() - setup_commit hook for MST helpers 4467 * @state: global atomic state 4468 * 4469 * This function saves all of the &drm_crtc_commit structs in an atomic state that touch any CRTCs 4470 * currently assigned to an MST topology. Drivers must call this hook from their 4471 * &drm_mode_config_helper_funcs.atomic_commit_setup hook. 4472 * 4473 * Returns: 4474 * 0 if all CRTC commits were retrieved successfully, negative error code otherwise 4475 */ 4476 int drm_dp_mst_atomic_setup_commit(struct drm_atomic_state *state) 4477 { 4478 struct drm_dp_mst_topology_mgr *mgr; 4479 struct drm_dp_mst_topology_state *mst_state; 4480 struct drm_crtc *crtc; 4481 struct drm_crtc_state *crtc_state; 4482 int i, j, commit_idx, num_commit_deps; 4483 4484 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 4485 if (!mst_state->pending_crtc_mask) 4486 continue; 4487 4488 num_commit_deps = hweight32(mst_state->pending_crtc_mask); 4489 mst_state->commit_deps = kmalloc_array(num_commit_deps, 4490 sizeof(*mst_state->commit_deps), GFP_KERNEL); 4491 if (!mst_state->commit_deps) 4492 return -ENOMEM; 4493 mst_state->num_commit_deps = num_commit_deps; 4494 4495 commit_idx = 0; 4496 for_each_new_crtc_in_state(state, crtc, crtc_state, j) { 4497 if (mst_state->pending_crtc_mask & drm_crtc_mask(crtc)) { 4498 mst_state->commit_deps[commit_idx++] = 4499 drm_crtc_commit_get(crtc_state->commit); 4500 } 4501 } 4502 } 4503 4504 return 0; 4505 } 4506 EXPORT_SYMBOL(drm_dp_mst_atomic_setup_commit); 4507 4508 /** 4509 * drm_dp_mst_atomic_wait_for_dependencies() - Wait for all pending commits on MST topologies, 4510 * prepare new MST state for commit 4511 * @state: global atomic state 4512 * 4513 * Goes through any MST topologies in this atomic state, and waits for any pending commits which 4514 * touched CRTCs that were/are on an MST topology to be programmed to hardware and flipped to before 4515 * returning. This is to prevent multiple non-blocking commits affecting an MST topology from racing 4516 * with eachother by forcing them to be executed sequentially in situations where the only resources 4517 * the modeset objects in these commits share are an MST topology. 4518 * 4519 * This function also prepares the new MST state for commit by performing some state preparation 4520 * which can't be done until this point, such as reading back the final VC start slots (which are 4521 * determined at commit-time) from the previous state. 4522 * 4523 * All MST drivers must call this function after calling drm_atomic_helper_wait_for_dependencies(), 4524 * or whatever their equivalent of that is. 4525 */ 4526 void drm_dp_mst_atomic_wait_for_dependencies(struct drm_atomic_state *state) 4527 { 4528 struct drm_dp_mst_topology_state *old_mst_state, *new_mst_state; 4529 struct drm_dp_mst_topology_mgr *mgr; 4530 struct drm_dp_mst_atomic_payload *old_payload, *new_payload; 4531 int i, j, ret; 4532 4533 for_each_oldnew_mst_mgr_in_state(state, mgr, old_mst_state, new_mst_state, i) { 4534 for (j = 0; j < old_mst_state->num_commit_deps; j++) { 4535 ret = drm_crtc_commit_wait(old_mst_state->commit_deps[j]); 4536 if (ret < 0) 4537 drm_err(state->dev, "Failed to wait for %s: %d\n", 4538 old_mst_state->commit_deps[j]->crtc->name, ret); 4539 } 4540 4541 /* Now that previous state is committed, it's safe to copy over the start slot 4542 * and allocation status assignments 4543 */ 4544 list_for_each_entry(old_payload, &old_mst_state->payloads, next) { 4545 if (old_payload->delete) 4546 continue; 4547 4548 new_payload = drm_atomic_get_mst_payload_state(new_mst_state, 4549 old_payload->port); 4550 new_payload->vc_start_slot = old_payload->vc_start_slot; 4551 new_payload->payload_allocation_status = 4552 old_payload->payload_allocation_status; 4553 } 4554 } 4555 } 4556 EXPORT_SYMBOL(drm_dp_mst_atomic_wait_for_dependencies); 4557 4558 /** 4559 * drm_dp_mst_root_conn_atomic_check() - Serialize CRTC commits on MST-capable connectors operating 4560 * in SST mode 4561 * @new_conn_state: The new connector state of the &drm_connector 4562 * @mgr: The MST topology manager for the &drm_connector 4563 * 4564 * Since MST uses fake &drm_encoder structs, the generic atomic modesetting code isn't able to 4565 * serialize non-blocking commits happening on the real DP connector of an MST topology switching 4566 * into/away from MST mode - as the CRTC on the real DP connector and the CRTCs on the connector's 4567 * MST topology will never share the same &drm_encoder. 4568 * 4569 * This function takes care of this serialization issue, by checking a root MST connector's atomic 4570 * state to determine if it is about to have a modeset - and then pulling in the MST topology state 4571 * if so, along with adding any relevant CRTCs to &drm_dp_mst_topology_state.pending_crtc_mask. 4572 * 4573 * Drivers implementing MST must call this function from the 4574 * &drm_connector_helper_funcs.atomic_check hook of any physical DP &drm_connector capable of 4575 * driving MST sinks. 4576 * 4577 * Returns: 4578 * 0 on success, negative error code otherwise 4579 */ 4580 int drm_dp_mst_root_conn_atomic_check(struct drm_connector_state *new_conn_state, 4581 struct drm_dp_mst_topology_mgr *mgr) 4582 { 4583 struct drm_atomic_state *state = new_conn_state->state; 4584 struct drm_connector_state *old_conn_state = 4585 drm_atomic_get_old_connector_state(state, new_conn_state->connector); 4586 struct drm_crtc_state *crtc_state; 4587 struct drm_dp_mst_topology_state *mst_state = NULL; 4588 4589 if (new_conn_state->crtc) { 4590 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4591 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4592 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4593 if (IS_ERR(mst_state)) 4594 return PTR_ERR(mst_state); 4595 4596 mst_state->pending_crtc_mask |= drm_crtc_mask(new_conn_state->crtc); 4597 } 4598 } 4599 4600 if (old_conn_state->crtc) { 4601 crtc_state = drm_atomic_get_new_crtc_state(state, old_conn_state->crtc); 4602 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4603 if (!mst_state) { 4604 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4605 if (IS_ERR(mst_state)) 4606 return PTR_ERR(mst_state); 4607 } 4608 4609 mst_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4610 } 4611 } 4612 4613 return 0; 4614 } 4615 EXPORT_SYMBOL(drm_dp_mst_root_conn_atomic_check); 4616 4617 /** 4618 * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format 4619 * @mst_state: mst_state to update 4620 * @link_encoding_cap: the ecoding format on the link 4621 */ 4622 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap) 4623 { 4624 if (link_encoding_cap == DP_CAP_ANSI_128B132B) { 4625 mst_state->total_avail_slots = 64; 4626 mst_state->start_slot = 0; 4627 } else { 4628 mst_state->total_avail_slots = 63; 4629 mst_state->start_slot = 1; 4630 } 4631 4632 DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n", 4633 (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b", 4634 mst_state); 4635 } 4636 EXPORT_SYMBOL(drm_dp_mst_update_slots); 4637 4638 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 4639 int id, u8 start_slot, u8 num_slots) 4640 { 4641 u8 payload_alloc[3], status; 4642 int ret; 4643 int retries = 0; 4644 4645 drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, 4646 DP_PAYLOAD_TABLE_UPDATED); 4647 4648 payload_alloc[0] = id; 4649 payload_alloc[1] = start_slot; 4650 payload_alloc[2] = num_slots; 4651 4652 ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3); 4653 if (ret != 3) { 4654 drm_dbg_kms(mgr->dev, "failed to write payload allocation %d\n", ret); 4655 goto fail; 4656 } 4657 4658 retry: 4659 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4660 if (ret < 0) { 4661 drm_dbg_kms(mgr->dev, "failed to read payload table status %d\n", ret); 4662 goto fail; 4663 } 4664 4665 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) { 4666 retries++; 4667 if (retries < 20) { 4668 usleep_range(10000, 20000); 4669 goto retry; 4670 } 4671 drm_dbg_kms(mgr->dev, "status not set after read payload table status %d\n", 4672 status); 4673 ret = -EINVAL; 4674 goto fail; 4675 } 4676 ret = 0; 4677 fail: 4678 return ret; 4679 } 4680 4681 static int do_get_act_status(struct drm_dp_aux *aux) 4682 { 4683 int ret; 4684 u8 status; 4685 4686 ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4687 if (ret < 0) 4688 return ret; 4689 4690 return status; 4691 } 4692 4693 /** 4694 * drm_dp_check_act_status() - Polls for ACT handled status. 4695 * @mgr: manager to use 4696 * 4697 * Tries waiting for the MST hub to finish updating it's payload table by 4698 * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really 4699 * take that long). 4700 * 4701 * Returns: 4702 * 0 if the ACT was handled in time, negative error code on failure. 4703 */ 4704 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr) 4705 { 4706 /* 4707 * There doesn't seem to be any recommended retry count or timeout in 4708 * the MST specification. Since some hubs have been observed to take 4709 * over 1 second to update their payload allocations under certain 4710 * conditions, we use a rather large timeout value. 4711 */ 4712 const int timeout_ms = 3000; 4713 int ret, status; 4714 4715 ret = readx_poll_timeout(do_get_act_status, mgr->aux, status, 4716 status & DP_PAYLOAD_ACT_HANDLED || status < 0, 4717 200, timeout_ms * USEC_PER_MSEC); 4718 if (ret < 0 && status >= 0) { 4719 drm_err(mgr->dev, "Failed to get ACT after %dms, last status: %02x\n", 4720 timeout_ms, status); 4721 return -EINVAL; 4722 } else if (status < 0) { 4723 /* 4724 * Failure here isn't unexpected - the hub may have 4725 * just been unplugged 4726 */ 4727 drm_dbg_kms(mgr->dev, "Failed to read payload table status: %d\n", status); 4728 return status; 4729 } 4730 4731 return 0; 4732 } 4733 EXPORT_SYMBOL(drm_dp_check_act_status); 4734 4735 /** 4736 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode. 4737 * @clock: dot clock 4738 * @bpp: bpp as .4 binary fixed point 4739 * 4740 * This uses the formula in the spec to calculate the PBN value for a mode. 4741 */ 4742 int drm_dp_calc_pbn_mode(int clock, int bpp) 4743 { 4744 /* 4745 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on 4746 * common multiplier to render an integer PBN for all link rate/lane 4747 * counts combinations 4748 * calculate 4749 * peak_kbps = clock * bpp / 16 4750 * peak_kbps *= SSC overhead / 1000000 4751 * peak_kbps /= 8 convert to Kbytes 4752 * peak_kBps *= (64/54) / 1000 convert to PBN 4753 */ 4754 /* 4755 * TODO: Use the actual link and mode parameters to calculate 4756 * the overhead. For now it's assumed that these are 4757 * 4 link lanes, 4096 hactive pixels, which don't add any 4758 * significant data padding overhead and that there is no DSC 4759 * or FEC overhead. 4760 */ 4761 int overhead = drm_dp_bw_overhead(4, 4096, 0, bpp, 4762 DRM_DP_BW_OVERHEAD_MST | 4763 DRM_DP_BW_OVERHEAD_SSC_REF_CLK); 4764 4765 return DIV64_U64_ROUND_UP(mul_u32_u32(clock * bpp, 64 * overhead >> 4), 4766 1000000ULL * 8 * 54 * 1000); 4767 } 4768 EXPORT_SYMBOL(drm_dp_calc_pbn_mode); 4769 4770 /* we want to kick the TX after we've ack the up/down IRQs. */ 4771 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr) 4772 { 4773 queue_work(system_long_wq, &mgr->tx_work); 4774 } 4775 4776 /* 4777 * Helper function for parsing DP device types into convenient strings 4778 * for use with dp_mst_topology 4779 */ 4780 static const char *pdt_to_string(u8 pdt) 4781 { 4782 switch (pdt) { 4783 case DP_PEER_DEVICE_NONE: 4784 return "NONE"; 4785 case DP_PEER_DEVICE_SOURCE_OR_SST: 4786 return "SOURCE OR SST"; 4787 case DP_PEER_DEVICE_MST_BRANCHING: 4788 return "MST BRANCHING"; 4789 case DP_PEER_DEVICE_SST_SINK: 4790 return "SST SINK"; 4791 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4792 return "DP LEGACY CONV"; 4793 default: 4794 return "ERR"; 4795 } 4796 } 4797 4798 static void drm_dp_mst_dump_mstb(struct seq_file *m, 4799 struct drm_dp_mst_branch *mstb) 4800 { 4801 struct drm_dp_mst_port *port; 4802 int tabs = mstb->lct; 4803 char prefix[10]; 4804 int i; 4805 4806 for (i = 0; i < tabs; i++) 4807 prefix[i] = '\t'; 4808 prefix[i] = '\0'; 4809 4810 seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports); 4811 list_for_each_entry(port, &mstb->ports, next) { 4812 seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n", 4813 prefix, 4814 port->port_num, 4815 port, 4816 port->input ? "input" : "output", 4817 pdt_to_string(port->pdt), 4818 port->ddps, 4819 port->ldps, 4820 port->num_sdp_streams, 4821 port->num_sdp_stream_sinks, 4822 port->fec_capable ? "true" : "false", 4823 port->connector); 4824 if (port->mstb) 4825 drm_dp_mst_dump_mstb(m, port->mstb); 4826 } 4827 } 4828 4829 #define DP_PAYLOAD_TABLE_SIZE 64 4830 4831 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 4832 char *buf) 4833 { 4834 int i; 4835 4836 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) { 4837 if (drm_dp_dpcd_read(mgr->aux, 4838 DP_PAYLOAD_TABLE_UPDATE_STATUS + i, 4839 &buf[i], 16) != 16) 4840 return false; 4841 } 4842 return true; 4843 } 4844 4845 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr, 4846 struct drm_dp_mst_port *port, char *name, 4847 int namelen) 4848 { 4849 struct edid *mst_edid; 4850 4851 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port); 4852 drm_edid_get_monitor_name(mst_edid, name, namelen); 4853 kfree(mst_edid); 4854 } 4855 4856 /** 4857 * drm_dp_mst_dump_topology(): dump topology to seq file. 4858 * @m: seq_file to dump output to 4859 * @mgr: manager to dump current topology for. 4860 * 4861 * helper to dump MST topology to a seq file for debugfs. 4862 */ 4863 void drm_dp_mst_dump_topology(struct seq_file *m, 4864 struct drm_dp_mst_topology_mgr *mgr) 4865 { 4866 struct drm_dp_mst_topology_state *state; 4867 struct drm_dp_mst_atomic_payload *payload; 4868 int i, ret; 4869 4870 static const char *const status[] = { 4871 "None", 4872 "Local", 4873 "DFP", 4874 "Remote", 4875 }; 4876 4877 mutex_lock(&mgr->lock); 4878 if (mgr->mst_primary) 4879 drm_dp_mst_dump_mstb(m, mgr->mst_primary); 4880 4881 /* dump VCPIs */ 4882 mutex_unlock(&mgr->lock); 4883 4884 ret = drm_modeset_lock_single_interruptible(&mgr->base.lock); 4885 if (ret < 0) 4886 return; 4887 4888 state = to_drm_dp_mst_topology_state(mgr->base.state); 4889 seq_printf(m, "\n*** Atomic state info ***\n"); 4890 seq_printf(m, "payload_mask: %x, max_payloads: %d, start_slot: %u, pbn_div: %d\n", 4891 state->payload_mask, mgr->max_payloads, state->start_slot, 4892 dfixed_trunc(state->pbn_div)); 4893 4894 seq_printf(m, "\n| idx | port | vcpi | slots | pbn | dsc | status | sink name |\n"); 4895 for (i = 0; i < mgr->max_payloads; i++) { 4896 list_for_each_entry(payload, &state->payloads, next) { 4897 char name[14]; 4898 4899 if (payload->vcpi != i || payload->delete) 4900 continue; 4901 4902 fetch_monitor_name(mgr, payload->port, name, sizeof(name)); 4903 seq_printf(m, " %5d %6d %6d %02d - %02d %5d %5s %8s %19s\n", 4904 i, 4905 payload->port->port_num, 4906 payload->vcpi, 4907 payload->vc_start_slot, 4908 payload->vc_start_slot + payload->time_slots - 1, 4909 payload->pbn, 4910 payload->dsc_enabled ? "Y" : "N", 4911 status[payload->payload_allocation_status], 4912 (*name != 0) ? name : "Unknown"); 4913 } 4914 } 4915 4916 seq_printf(m, "\n*** DPCD Info ***\n"); 4917 mutex_lock(&mgr->lock); 4918 if (mgr->mst_primary) { 4919 u8 buf[DP_PAYLOAD_TABLE_SIZE]; 4920 int ret; 4921 4922 if (drm_dp_read_dpcd_caps(mgr->aux, buf) < 0) { 4923 seq_printf(m, "dpcd read failed\n"); 4924 goto out; 4925 } 4926 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf); 4927 4928 ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2); 4929 if (ret != 2) { 4930 seq_printf(m, "faux/mst read failed\n"); 4931 goto out; 4932 } 4933 seq_printf(m, "faux/mst: %*ph\n", 2, buf); 4934 4935 ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1); 4936 if (ret != 1) { 4937 seq_printf(m, "mst ctrl read failed\n"); 4938 goto out; 4939 } 4940 seq_printf(m, "mst ctrl: %*ph\n", 1, buf); 4941 4942 /* dump the standard OUI branch header */ 4943 ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE); 4944 if (ret != DP_BRANCH_OUI_HEADER_SIZE) { 4945 seq_printf(m, "branch oui read failed\n"); 4946 goto out; 4947 } 4948 seq_printf(m, "branch oui: %*phN devid: ", 3, buf); 4949 4950 for (i = 0x3; i < 0x8 && buf[i]; i++) 4951 seq_printf(m, "%c", buf[i]); 4952 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n", 4953 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]); 4954 if (dump_dp_payload_table(mgr, buf)) 4955 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf); 4956 } 4957 4958 out: 4959 mutex_unlock(&mgr->lock); 4960 drm_modeset_unlock(&mgr->base.lock); 4961 } 4962 EXPORT_SYMBOL(drm_dp_mst_dump_topology); 4963 4964 static void drm_dp_tx_work(struct work_struct *work) 4965 { 4966 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work); 4967 4968 mutex_lock(&mgr->qlock); 4969 if (!list_empty(&mgr->tx_msg_downq)) 4970 process_single_down_tx_qlock(mgr); 4971 mutex_unlock(&mgr->qlock); 4972 } 4973 4974 static inline void 4975 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port) 4976 { 4977 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs); 4978 4979 if (port->connector) { 4980 drm_connector_unregister(port->connector); 4981 drm_connector_put(port->connector); 4982 } 4983 4984 drm_dp_mst_put_port_malloc(port); 4985 } 4986 4987 static inline void 4988 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb) 4989 { 4990 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 4991 struct drm_dp_mst_port *port, *port_tmp; 4992 struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp; 4993 bool wake_tx = false; 4994 4995 mutex_lock(&mgr->lock); 4996 list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) { 4997 list_del(&port->next); 4998 drm_dp_mst_topology_put_port(port); 4999 } 5000 mutex_unlock(&mgr->lock); 5001 5002 /* drop any tx slot msg */ 5003 mutex_lock(&mstb->mgr->qlock); 5004 list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) { 5005 if (txmsg->dst != mstb) 5006 continue; 5007 5008 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 5009 list_del(&txmsg->next); 5010 wake_tx = true; 5011 } 5012 mutex_unlock(&mstb->mgr->qlock); 5013 5014 if (wake_tx) 5015 wake_up_all(&mstb->mgr->tx_waitq); 5016 5017 drm_dp_mst_put_mstb_malloc(mstb); 5018 } 5019 5020 static void drm_dp_delayed_destroy_work(struct work_struct *work) 5021 { 5022 struct drm_dp_mst_topology_mgr *mgr = 5023 container_of(work, struct drm_dp_mst_topology_mgr, 5024 delayed_destroy_work); 5025 bool send_hotplug = false, go_again; 5026 5027 /* 5028 * Not a regular list traverse as we have to drop the destroy 5029 * connector lock before destroying the mstb/port, to avoid AB->BA 5030 * ordering between this lock and the config mutex. 5031 */ 5032 do { 5033 go_again = false; 5034 5035 for (;;) { 5036 struct drm_dp_mst_branch *mstb; 5037 5038 mutex_lock(&mgr->delayed_destroy_lock); 5039 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list, 5040 struct drm_dp_mst_branch, 5041 destroy_next); 5042 if (mstb) 5043 list_del(&mstb->destroy_next); 5044 mutex_unlock(&mgr->delayed_destroy_lock); 5045 5046 if (!mstb) 5047 break; 5048 5049 drm_dp_delayed_destroy_mstb(mstb); 5050 go_again = true; 5051 } 5052 5053 for (;;) { 5054 struct drm_dp_mst_port *port; 5055 5056 mutex_lock(&mgr->delayed_destroy_lock); 5057 port = list_first_entry_or_null(&mgr->destroy_port_list, 5058 struct drm_dp_mst_port, 5059 next); 5060 if (port) 5061 list_del(&port->next); 5062 mutex_unlock(&mgr->delayed_destroy_lock); 5063 5064 if (!port) 5065 break; 5066 5067 drm_dp_delayed_destroy_port(port); 5068 send_hotplug = true; 5069 go_again = true; 5070 } 5071 } while (go_again); 5072 5073 if (send_hotplug) 5074 drm_kms_helper_hotplug_event(mgr->dev); 5075 } 5076 5077 static struct drm_private_state * 5078 drm_dp_mst_duplicate_state(struct drm_private_obj *obj) 5079 { 5080 struct drm_dp_mst_topology_state *state, *old_state = 5081 to_dp_mst_topology_state(obj->state); 5082 struct drm_dp_mst_atomic_payload *pos, *payload; 5083 5084 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL); 5085 if (!state) 5086 return NULL; 5087 5088 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 5089 5090 INIT_LIST_HEAD(&state->payloads); 5091 state->commit_deps = NULL; 5092 state->num_commit_deps = 0; 5093 state->pending_crtc_mask = 0; 5094 5095 list_for_each_entry(pos, &old_state->payloads, next) { 5096 /* Prune leftover freed timeslot allocations */ 5097 if (pos->delete) 5098 continue; 5099 5100 payload = kmemdup(pos, sizeof(*payload), GFP_KERNEL); 5101 if (!payload) 5102 goto fail; 5103 5104 drm_dp_mst_get_port_malloc(payload->port); 5105 list_add(&payload->next, &state->payloads); 5106 } 5107 5108 return &state->base; 5109 5110 fail: 5111 list_for_each_entry_safe(pos, payload, &state->payloads, next) { 5112 drm_dp_mst_put_port_malloc(pos->port); 5113 kfree(pos); 5114 } 5115 kfree(state); 5116 5117 return NULL; 5118 } 5119 5120 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj, 5121 struct drm_private_state *state) 5122 { 5123 struct drm_dp_mst_topology_state *mst_state = 5124 to_dp_mst_topology_state(state); 5125 struct drm_dp_mst_atomic_payload *pos, *tmp; 5126 int i; 5127 5128 list_for_each_entry_safe(pos, tmp, &mst_state->payloads, next) { 5129 /* We only keep references to ports with active payloads */ 5130 if (!pos->delete) 5131 drm_dp_mst_put_port_malloc(pos->port); 5132 kfree(pos); 5133 } 5134 5135 for (i = 0; i < mst_state->num_commit_deps; i++) 5136 drm_crtc_commit_put(mst_state->commit_deps[i]); 5137 5138 kfree(mst_state->commit_deps); 5139 kfree(mst_state); 5140 } 5141 5142 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 5143 struct drm_dp_mst_branch *branch) 5144 { 5145 while (port->parent) { 5146 if (port->parent == branch) 5147 return true; 5148 5149 if (port->parent->port_parent) 5150 port = port->parent->port_parent; 5151 else 5152 break; 5153 } 5154 return false; 5155 } 5156 5157 static bool 5158 drm_dp_mst_port_downstream_of_parent_locked(struct drm_dp_mst_topology_mgr *mgr, 5159 struct drm_dp_mst_port *port, 5160 struct drm_dp_mst_port *parent) 5161 { 5162 if (!mgr->mst_primary) 5163 return false; 5164 5165 port = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5166 port); 5167 if (!port) 5168 return false; 5169 5170 if (!parent) 5171 return true; 5172 5173 parent = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5174 parent); 5175 if (!parent) 5176 return false; 5177 5178 if (!parent->mstb) 5179 return false; 5180 5181 return drm_dp_mst_port_downstream_of_branch(port, parent->mstb); 5182 } 5183 5184 /** 5185 * drm_dp_mst_port_downstream_of_parent - check if a port is downstream of a parent port 5186 * @mgr: MST topology manager 5187 * @port: the port being looked up 5188 * @parent: the parent port 5189 * 5190 * The function returns %true if @port is downstream of @parent. If @parent is 5191 * %NULL - denoting the root port - the function returns %true if @port is in 5192 * @mgr's topology. 5193 */ 5194 bool 5195 drm_dp_mst_port_downstream_of_parent(struct drm_dp_mst_topology_mgr *mgr, 5196 struct drm_dp_mst_port *port, 5197 struct drm_dp_mst_port *parent) 5198 { 5199 bool ret; 5200 5201 mutex_lock(&mgr->lock); 5202 ret = drm_dp_mst_port_downstream_of_parent_locked(mgr, port, parent); 5203 mutex_unlock(&mgr->lock); 5204 5205 return ret; 5206 } 5207 EXPORT_SYMBOL(drm_dp_mst_port_downstream_of_parent); 5208 5209 static int 5210 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5211 struct drm_dp_mst_topology_state *state, 5212 struct drm_dp_mst_port **failing_port); 5213 5214 static int 5215 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb, 5216 struct drm_dp_mst_topology_state *state, 5217 struct drm_dp_mst_port **failing_port) 5218 { 5219 struct drm_dp_mst_atomic_payload *payload; 5220 struct drm_dp_mst_port *port; 5221 int pbn_used = 0, ret; 5222 bool found = false; 5223 5224 /* Check that we have at least one port in our state that's downstream 5225 * of this branch, otherwise we can skip this branch 5226 */ 5227 list_for_each_entry(payload, &state->payloads, next) { 5228 if (!payload->pbn || 5229 !drm_dp_mst_port_downstream_of_branch(payload->port, mstb)) 5230 continue; 5231 5232 found = true; 5233 break; 5234 } 5235 if (!found) 5236 return 0; 5237 5238 if (mstb->port_parent) 5239 drm_dbg_atomic(mstb->mgr->dev, 5240 "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n", 5241 mstb->port_parent->parent, mstb->port_parent, mstb); 5242 else 5243 drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb); 5244 5245 list_for_each_entry(port, &mstb->ports, next) { 5246 ret = drm_dp_mst_atomic_check_port_bw_limit(port, state, failing_port); 5247 if (ret < 0) 5248 return ret; 5249 5250 pbn_used += ret; 5251 } 5252 5253 return pbn_used; 5254 } 5255 5256 static int 5257 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5258 struct drm_dp_mst_topology_state *state, 5259 struct drm_dp_mst_port **failing_port) 5260 { 5261 struct drm_dp_mst_atomic_payload *payload; 5262 int pbn_used = 0; 5263 5264 if (port->pdt == DP_PEER_DEVICE_NONE) 5265 return 0; 5266 5267 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 5268 payload = drm_atomic_get_mst_payload_state(state, port); 5269 if (!payload) 5270 return 0; 5271 5272 /* 5273 * This could happen if the sink deasserted its HPD line, but 5274 * the branch device still reports it as attached (PDT != NONE). 5275 */ 5276 if (!port->full_pbn) { 5277 drm_dbg_atomic(port->mgr->dev, 5278 "[MSTB:%p] [MST PORT:%p] no BW available for the port\n", 5279 port->parent, port); 5280 *failing_port = port; 5281 return -EINVAL; 5282 } 5283 5284 pbn_used = payload->pbn; 5285 } else { 5286 pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb, 5287 state, 5288 failing_port); 5289 if (pbn_used <= 0) 5290 return pbn_used; 5291 } 5292 5293 if (pbn_used > port->full_pbn) { 5294 drm_dbg_atomic(port->mgr->dev, 5295 "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n", 5296 port->parent, port, pbn_used, port->full_pbn); 5297 *failing_port = port; 5298 return -ENOSPC; 5299 } 5300 5301 drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n", 5302 port->parent, port, pbn_used, port->full_pbn); 5303 5304 return pbn_used; 5305 } 5306 5307 static inline int 5308 drm_dp_mst_atomic_check_payload_alloc_limits(struct drm_dp_mst_topology_mgr *mgr, 5309 struct drm_dp_mst_topology_state *mst_state) 5310 { 5311 struct drm_dp_mst_atomic_payload *payload; 5312 int avail_slots = mst_state->total_avail_slots, payload_count = 0; 5313 5314 list_for_each_entry(payload, &mst_state->payloads, next) { 5315 /* Releasing payloads is always OK-even if the port is gone */ 5316 if (payload->delete) { 5317 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all time slots\n", 5318 payload->port); 5319 continue; 5320 } 5321 5322 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d time slots\n", 5323 payload->port, payload->time_slots); 5324 5325 avail_slots -= payload->time_slots; 5326 if (avail_slots < 0) { 5327 drm_dbg_atomic(mgr->dev, 5328 "[MST PORT:%p] not enough time slots in mst state %p (avail=%d)\n", 5329 payload->port, mst_state, avail_slots + payload->time_slots); 5330 return -ENOSPC; 5331 } 5332 5333 if (++payload_count > mgr->max_payloads) { 5334 drm_dbg_atomic(mgr->dev, 5335 "[MST MGR:%p] state %p has too many payloads (max=%d)\n", 5336 mgr, mst_state, mgr->max_payloads); 5337 return -EINVAL; 5338 } 5339 5340 /* Assign a VCPI */ 5341 if (!payload->vcpi) { 5342 payload->vcpi = ffz(mst_state->payload_mask) + 1; 5343 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] assigned VCPI #%d\n", 5344 payload->port, payload->vcpi); 5345 mst_state->payload_mask |= BIT(payload->vcpi - 1); 5346 } 5347 } 5348 5349 if (!payload_count) 5350 mst_state->pbn_div.full = dfixed_const(0); 5351 5352 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p TU pbn_div=%d avail=%d used=%d\n", 5353 mgr, mst_state, dfixed_trunc(mst_state->pbn_div), avail_slots, 5354 mst_state->total_avail_slots - avail_slots); 5355 5356 return 0; 5357 } 5358 5359 /** 5360 * drm_dp_mst_add_affected_dsc_crtcs 5361 * @state: Pointer to the new struct drm_dp_mst_topology_state 5362 * @mgr: MST topology manager 5363 * 5364 * Whenever there is a change in mst topology 5365 * DSC configuration would have to be recalculated 5366 * therefore we need to trigger modeset on all affected 5367 * CRTCs in that topology 5368 * 5369 * See also: 5370 * drm_dp_mst_atomic_enable_dsc() 5371 */ 5372 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr) 5373 { 5374 struct drm_dp_mst_topology_state *mst_state; 5375 struct drm_dp_mst_atomic_payload *pos; 5376 struct drm_connector *connector; 5377 struct drm_connector_state *conn_state; 5378 struct drm_crtc *crtc; 5379 struct drm_crtc_state *crtc_state; 5380 5381 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 5382 5383 if (IS_ERR(mst_state)) 5384 return PTR_ERR(mst_state); 5385 5386 list_for_each_entry(pos, &mst_state->payloads, next) { 5387 5388 connector = pos->port->connector; 5389 5390 if (!connector) 5391 return -EINVAL; 5392 5393 conn_state = drm_atomic_get_connector_state(state, connector); 5394 5395 if (IS_ERR(conn_state)) 5396 return PTR_ERR(conn_state); 5397 5398 crtc = conn_state->crtc; 5399 5400 if (!crtc) 5401 continue; 5402 5403 if (!drm_dp_mst_dsc_aux_for_port(pos->port)) 5404 continue; 5405 5406 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc); 5407 5408 if (IS_ERR(crtc_state)) 5409 return PTR_ERR(crtc_state); 5410 5411 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n", 5412 mgr, crtc); 5413 5414 crtc_state->mode_changed = true; 5415 } 5416 return 0; 5417 } 5418 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs); 5419 5420 /** 5421 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off 5422 * @state: Pointer to the new drm_atomic_state 5423 * @port: Pointer to the affected MST Port 5424 * @pbn: Newly recalculated bw required for link with DSC enabled 5425 * @enable: Boolean flag to enable or disable DSC on the port 5426 * 5427 * This function enables DSC on the given Port 5428 * by recalculating its vcpi from pbn provided 5429 * and sets dsc_enable flag to keep track of which 5430 * ports have DSC enabled 5431 * 5432 */ 5433 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state, 5434 struct drm_dp_mst_port *port, 5435 int pbn, bool enable) 5436 { 5437 struct drm_dp_mst_topology_state *mst_state; 5438 struct drm_dp_mst_atomic_payload *payload; 5439 int time_slots = 0; 5440 5441 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr); 5442 if (IS_ERR(mst_state)) 5443 return PTR_ERR(mst_state); 5444 5445 payload = drm_atomic_get_mst_payload_state(mst_state, port); 5446 if (!payload) { 5447 drm_dbg_atomic(state->dev, 5448 "[MST PORT:%p] Couldn't find payload in mst state %p\n", 5449 port, mst_state); 5450 return -EINVAL; 5451 } 5452 5453 if (payload->dsc_enabled == enable) { 5454 drm_dbg_atomic(state->dev, 5455 "[MST PORT:%p] DSC flag is already set to %d, returning %d time slots\n", 5456 port, enable, payload->time_slots); 5457 time_slots = payload->time_slots; 5458 } 5459 5460 if (enable) { 5461 time_slots = drm_dp_atomic_find_time_slots(state, port->mgr, port, pbn); 5462 drm_dbg_atomic(state->dev, 5463 "[MST PORT:%p] Enabling DSC flag, reallocating %d time slots on the port\n", 5464 port, time_slots); 5465 if (time_slots < 0) 5466 return -EINVAL; 5467 } 5468 5469 payload->dsc_enabled = enable; 5470 5471 return time_slots; 5472 } 5473 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc); 5474 5475 /** 5476 * drm_dp_mst_atomic_check_mgr - Check the atomic state of an MST topology manager 5477 * @state: The global atomic state 5478 * @mgr: Manager to check 5479 * @mst_state: The MST atomic state for @mgr 5480 * @failing_port: Returns the port with a BW limitation 5481 * 5482 * Checks the given MST manager's topology state for an atomic update to ensure 5483 * that it's valid. This includes checking whether there's enough bandwidth to 5484 * support the new timeslot allocations in the atomic update. 5485 * 5486 * Any atomic drivers supporting DP MST must make sure to call this or 5487 * the drm_dp_mst_atomic_check() function after checking the rest of their state 5488 * in their &drm_mode_config_funcs.atomic_check() callback. 5489 * 5490 * See also: 5491 * drm_dp_mst_atomic_check() 5492 * drm_dp_atomic_find_time_slots() 5493 * drm_dp_atomic_release_time_slots() 5494 * 5495 * Returns: 5496 * - 0 if the new state is valid 5497 * - %-ENOSPC, if the new state is invalid, because of BW limitation 5498 * @failing_port is set to: 5499 * 5500 * - The non-root port where a BW limit check failed 5501 * with all the ports downstream of @failing_port passing 5502 * the BW limit check. 5503 * The returned port pointer is valid until at least 5504 * one payload downstream of it exists. 5505 * - %NULL if the BW limit check failed at the root port 5506 * with all the ports downstream of the root port passing 5507 * the BW limit check. 5508 * 5509 * - %-EINVAL, if the new state is invalid, because the root port has 5510 * too many payloads. 5511 */ 5512 int drm_dp_mst_atomic_check_mgr(struct drm_atomic_state *state, 5513 struct drm_dp_mst_topology_mgr *mgr, 5514 struct drm_dp_mst_topology_state *mst_state, 5515 struct drm_dp_mst_port **failing_port) 5516 { 5517 int ret; 5518 5519 *failing_port = NULL; 5520 5521 if (!mgr->mst_state) 5522 return 0; 5523 5524 mutex_lock(&mgr->lock); 5525 ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary, 5526 mst_state, 5527 failing_port); 5528 mutex_unlock(&mgr->lock); 5529 5530 if (ret < 0) 5531 return ret; 5532 5533 return drm_dp_mst_atomic_check_payload_alloc_limits(mgr, mst_state); 5534 } 5535 EXPORT_SYMBOL(drm_dp_mst_atomic_check_mgr); 5536 5537 /** 5538 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an 5539 * atomic update is valid 5540 * @state: Pointer to the new &struct drm_dp_mst_topology_state 5541 * 5542 * Checks the given topology state for an atomic update to ensure that it's 5543 * valid, calling drm_dp_mst_atomic_check_mgr() for all MST manager in the 5544 * atomic state. This includes checking whether there's enough bandwidth to 5545 * support the new timeslot allocations in the atomic update. 5546 * 5547 * Any atomic drivers supporting DP MST must make sure to call this after 5548 * checking the rest of their state in their 5549 * &drm_mode_config_funcs.atomic_check() callback. 5550 * 5551 * See also: 5552 * drm_dp_mst_atomic_check_mgr() 5553 * drm_dp_atomic_find_time_slots() 5554 * drm_dp_atomic_release_time_slots() 5555 * 5556 * Returns: 5557 * 5558 * 0 if the new state is valid, negative error code otherwise. 5559 */ 5560 int drm_dp_mst_atomic_check(struct drm_atomic_state *state) 5561 { 5562 struct drm_dp_mst_topology_mgr *mgr; 5563 struct drm_dp_mst_topology_state *mst_state; 5564 int i, ret = 0; 5565 5566 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 5567 struct drm_dp_mst_port *tmp_port; 5568 5569 ret = drm_dp_mst_atomic_check_mgr(state, mgr, mst_state, &tmp_port); 5570 if (ret) 5571 break; 5572 } 5573 5574 return ret; 5575 } 5576 EXPORT_SYMBOL(drm_dp_mst_atomic_check); 5577 5578 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = { 5579 .atomic_duplicate_state = drm_dp_mst_duplicate_state, 5580 .atomic_destroy_state = drm_dp_mst_destroy_state, 5581 }; 5582 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs); 5583 5584 /** 5585 * drm_atomic_get_mst_topology_state: get MST topology state 5586 * @state: global atomic state 5587 * @mgr: MST topology manager, also the private object in this case 5588 * 5589 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic 5590 * state vtable so that the private object state returned is that of a MST 5591 * topology object. 5592 * 5593 * RETURNS: 5594 * 5595 * The MST topology state or error pointer. 5596 */ 5597 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state, 5598 struct drm_dp_mst_topology_mgr *mgr) 5599 { 5600 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base)); 5601 } 5602 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state); 5603 5604 /** 5605 * drm_atomic_get_old_mst_topology_state: get old MST topology state in atomic state, if any 5606 * @state: global atomic state 5607 * @mgr: MST topology manager, also the private object in this case 5608 * 5609 * This function wraps drm_atomic_get_old_private_obj_state() passing in the MST atomic 5610 * state vtable so that the private object state returned is that of a MST 5611 * topology object. 5612 * 5613 * Returns: 5614 * 5615 * The old MST topology state, or NULL if there's no topology state for this MST mgr 5616 * in the global atomic state 5617 */ 5618 struct drm_dp_mst_topology_state * 5619 drm_atomic_get_old_mst_topology_state(struct drm_atomic_state *state, 5620 struct drm_dp_mst_topology_mgr *mgr) 5621 { 5622 struct drm_private_state *old_priv_state = 5623 drm_atomic_get_old_private_obj_state(state, &mgr->base); 5624 5625 return old_priv_state ? to_dp_mst_topology_state(old_priv_state) : NULL; 5626 } 5627 EXPORT_SYMBOL(drm_atomic_get_old_mst_topology_state); 5628 5629 /** 5630 * drm_atomic_get_new_mst_topology_state: get new MST topology state in atomic state, if any 5631 * @state: global atomic state 5632 * @mgr: MST topology manager, also the private object in this case 5633 * 5634 * This function wraps drm_atomic_get_new_private_obj_state() passing in the MST atomic 5635 * state vtable so that the private object state returned is that of a MST 5636 * topology object. 5637 * 5638 * Returns: 5639 * 5640 * The new MST topology state, or NULL if there's no topology state for this MST mgr 5641 * in the global atomic state 5642 */ 5643 struct drm_dp_mst_topology_state * 5644 drm_atomic_get_new_mst_topology_state(struct drm_atomic_state *state, 5645 struct drm_dp_mst_topology_mgr *mgr) 5646 { 5647 struct drm_private_state *new_priv_state = 5648 drm_atomic_get_new_private_obj_state(state, &mgr->base); 5649 5650 return new_priv_state ? to_dp_mst_topology_state(new_priv_state) : NULL; 5651 } 5652 EXPORT_SYMBOL(drm_atomic_get_new_mst_topology_state); 5653 5654 /** 5655 * drm_dp_mst_topology_mgr_init - initialise a topology manager 5656 * @mgr: manager struct to initialise 5657 * @dev: device providing this structure - for i2c addition. 5658 * @aux: DP helper aux channel to talk to this device 5659 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit 5660 * @max_payloads: maximum number of payloads this GPU can source 5661 * @conn_base_id: the connector object ID the MST device is connected to. 5662 * 5663 * Return 0 for success, or negative error code on failure 5664 */ 5665 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr, 5666 struct drm_device *dev, struct drm_dp_aux *aux, 5667 int max_dpcd_transaction_bytes, int max_payloads, 5668 int conn_base_id) 5669 { 5670 struct drm_dp_mst_topology_state *mst_state; 5671 5672 mutex_init(&mgr->lock); 5673 mutex_init(&mgr->qlock); 5674 mutex_init(&mgr->delayed_destroy_lock); 5675 mutex_init(&mgr->up_req_lock); 5676 mutex_init(&mgr->probe_lock); 5677 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5678 mutex_init(&mgr->topology_ref_history_lock); 5679 stack_depot_init(); 5680 #endif 5681 INIT_LIST_HEAD(&mgr->tx_msg_downq); 5682 INIT_LIST_HEAD(&mgr->destroy_port_list); 5683 INIT_LIST_HEAD(&mgr->destroy_branch_device_list); 5684 INIT_LIST_HEAD(&mgr->up_req_list); 5685 5686 /* 5687 * delayed_destroy_work will be queued on a dedicated WQ, so that any 5688 * requeuing will be also flushed when deiniting the topology manager. 5689 */ 5690 mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0); 5691 if (mgr->delayed_destroy_wq == NULL) 5692 return -ENOMEM; 5693 5694 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work); 5695 INIT_WORK(&mgr->tx_work, drm_dp_tx_work); 5696 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work); 5697 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work); 5698 init_waitqueue_head(&mgr->tx_waitq); 5699 mgr->dev = dev; 5700 mgr->aux = aux; 5701 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes; 5702 mgr->max_payloads = max_payloads; 5703 mgr->conn_base_id = conn_base_id; 5704 5705 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL); 5706 if (mst_state == NULL) 5707 return -ENOMEM; 5708 5709 mst_state->total_avail_slots = 63; 5710 mst_state->start_slot = 1; 5711 5712 mst_state->mgr = mgr; 5713 INIT_LIST_HEAD(&mst_state->payloads); 5714 5715 drm_atomic_private_obj_init(dev, &mgr->base, 5716 &mst_state->base, 5717 &drm_dp_mst_topology_state_funcs); 5718 5719 return 0; 5720 } 5721 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init); 5722 5723 /** 5724 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager. 5725 * @mgr: manager to destroy 5726 */ 5727 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr) 5728 { 5729 drm_dp_mst_topology_mgr_set_mst(mgr, false); 5730 flush_work(&mgr->work); 5731 /* The following will also drain any requeued work on the WQ. */ 5732 if (mgr->delayed_destroy_wq) { 5733 destroy_workqueue(mgr->delayed_destroy_wq); 5734 mgr->delayed_destroy_wq = NULL; 5735 } 5736 mgr->dev = NULL; 5737 mgr->aux = NULL; 5738 drm_atomic_private_obj_fini(&mgr->base); 5739 mgr->funcs = NULL; 5740 5741 mutex_destroy(&mgr->delayed_destroy_lock); 5742 mutex_destroy(&mgr->qlock); 5743 mutex_destroy(&mgr->lock); 5744 mutex_destroy(&mgr->up_req_lock); 5745 mutex_destroy(&mgr->probe_lock); 5746 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5747 mutex_destroy(&mgr->topology_ref_history_lock); 5748 #endif 5749 } 5750 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy); 5751 5752 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num) 5753 { 5754 int i; 5755 5756 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS) 5757 return false; 5758 5759 for (i = 0; i < num - 1; i++) { 5760 if (msgs[i].flags & I2C_M_RD || 5761 msgs[i].len > 0xff) 5762 return false; 5763 } 5764 5765 return msgs[num - 1].flags & I2C_M_RD && 5766 msgs[num - 1].len <= 0xff; 5767 } 5768 5769 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num) 5770 { 5771 int i; 5772 5773 for (i = 0; i < num - 1; i++) { 5774 if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) || 5775 msgs[i].len > 0xff) 5776 return false; 5777 } 5778 5779 return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff; 5780 } 5781 5782 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb, 5783 struct drm_dp_mst_port *port, 5784 struct i2c_msg *msgs, int num) 5785 { 5786 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5787 unsigned int i; 5788 struct drm_dp_sideband_msg_req_body msg; 5789 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5790 int ret; 5791 5792 memset(&msg, 0, sizeof(msg)); 5793 msg.req_type = DP_REMOTE_I2C_READ; 5794 msg.u.i2c_read.num_transactions = num - 1; 5795 msg.u.i2c_read.port_number = port->port_num; 5796 for (i = 0; i < num - 1; i++) { 5797 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr; 5798 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len; 5799 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf; 5800 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP); 5801 } 5802 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr; 5803 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len; 5804 5805 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5806 if (!txmsg) { 5807 ret = -ENOMEM; 5808 goto out; 5809 } 5810 5811 txmsg->dst = mstb; 5812 drm_dp_encode_sideband_req(&msg, txmsg); 5813 5814 drm_dp_queue_down_tx(mgr, txmsg); 5815 5816 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5817 if (ret > 0) { 5818 5819 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5820 ret = -EREMOTEIO; 5821 goto out; 5822 } 5823 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) { 5824 ret = -EIO; 5825 goto out; 5826 } 5827 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len); 5828 ret = num; 5829 } 5830 out: 5831 kfree(txmsg); 5832 return ret; 5833 } 5834 5835 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb, 5836 struct drm_dp_mst_port *port, 5837 struct i2c_msg *msgs, int num) 5838 { 5839 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5840 unsigned int i; 5841 struct drm_dp_sideband_msg_req_body msg; 5842 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5843 int ret; 5844 5845 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5846 if (!txmsg) { 5847 ret = -ENOMEM; 5848 goto out; 5849 } 5850 for (i = 0; i < num; i++) { 5851 memset(&msg, 0, sizeof(msg)); 5852 msg.req_type = DP_REMOTE_I2C_WRITE; 5853 msg.u.i2c_write.port_number = port->port_num; 5854 msg.u.i2c_write.write_i2c_device_id = msgs[i].addr; 5855 msg.u.i2c_write.num_bytes = msgs[i].len; 5856 msg.u.i2c_write.bytes = msgs[i].buf; 5857 5858 memset(txmsg, 0, sizeof(*txmsg)); 5859 txmsg->dst = mstb; 5860 5861 drm_dp_encode_sideband_req(&msg, txmsg); 5862 drm_dp_queue_down_tx(mgr, txmsg); 5863 5864 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5865 if (ret > 0) { 5866 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5867 ret = -EREMOTEIO; 5868 goto out; 5869 } 5870 } else { 5871 goto out; 5872 } 5873 } 5874 ret = num; 5875 out: 5876 kfree(txmsg); 5877 return ret; 5878 } 5879 5880 /* I2C device */ 5881 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, 5882 struct i2c_msg *msgs, int num) 5883 { 5884 struct drm_dp_aux *aux = adapter->algo_data; 5885 struct drm_dp_mst_port *port = 5886 container_of(aux, struct drm_dp_mst_port, aux); 5887 struct drm_dp_mst_branch *mstb; 5888 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5889 int ret; 5890 5891 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 5892 if (!mstb) 5893 return -EREMOTEIO; 5894 5895 if (remote_i2c_read_ok(msgs, num)) { 5896 ret = drm_dp_mst_i2c_read(mstb, port, msgs, num); 5897 } else if (remote_i2c_write_ok(msgs, num)) { 5898 ret = drm_dp_mst_i2c_write(mstb, port, msgs, num); 5899 } else { 5900 drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n"); 5901 ret = -EIO; 5902 } 5903 5904 drm_dp_mst_topology_put_mstb(mstb); 5905 return ret; 5906 } 5907 5908 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter) 5909 { 5910 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 5911 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 5912 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 5913 I2C_FUNC_10BIT_ADDR; 5914 } 5915 5916 static const struct i2c_algorithm drm_dp_mst_i2c_algo = { 5917 .functionality = drm_dp_mst_i2c_functionality, 5918 .master_xfer = drm_dp_mst_i2c_xfer, 5919 }; 5920 5921 /** 5922 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX 5923 * @port: The port to add the I2C bus on 5924 * 5925 * Returns 0 on success or a negative error code on failure. 5926 */ 5927 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port) 5928 { 5929 struct drm_dp_aux *aux = &port->aux; 5930 struct device *parent_dev = port->mgr->dev->dev; 5931 5932 aux->ddc.algo = &drm_dp_mst_i2c_algo; 5933 aux->ddc.algo_data = aux; 5934 aux->ddc.retries = 3; 5935 5936 aux->ddc.owner = THIS_MODULE; 5937 /* FIXME: set the kdev of the port's connector as parent */ 5938 aux->ddc.dev.parent = parent_dev; 5939 aux->ddc.dev.of_node = parent_dev->of_node; 5940 5941 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev), 5942 sizeof(aux->ddc.name)); 5943 5944 return i2c_add_adapter(&aux->ddc); 5945 } 5946 5947 /** 5948 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter 5949 * @port: The port to remove the I2C bus from 5950 */ 5951 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port) 5952 { 5953 i2c_del_adapter(&port->aux.ddc); 5954 } 5955 5956 /** 5957 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device 5958 * @port: The port to check 5959 * 5960 * A single physical MST hub object can be represented in the topology 5961 * by multiple branches, with virtual ports between those branches. 5962 * 5963 * As of DP1.4, An MST hub with internal (virtual) ports must expose 5964 * certain DPCD registers over those ports. See sections 2.6.1.1.1 5965 * and 2.6.1.1.2 of Display Port specification v1.4 for details. 5966 * 5967 * May acquire mgr->lock 5968 * 5969 * Returns: 5970 * true if the port is a virtual DP peer device, false otherwise 5971 */ 5972 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port) 5973 { 5974 struct drm_dp_mst_port *downstream_port; 5975 5976 if (!port || port->dpcd_rev < DP_DPCD_REV_14) 5977 return false; 5978 5979 /* Virtual DP Sink (Internal Display Panel) */ 5980 if (port->port_num >= 8) 5981 return true; 5982 5983 /* DP-to-HDMI Protocol Converter */ 5984 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV && 5985 !port->mcs && 5986 port->ldps) 5987 return true; 5988 5989 /* DP-to-DP */ 5990 mutex_lock(&port->mgr->lock); 5991 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 5992 port->mstb && 5993 port->mstb->num_ports == 2) { 5994 list_for_each_entry(downstream_port, &port->mstb->ports, next) { 5995 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK && 5996 !downstream_port->input) { 5997 mutex_unlock(&port->mgr->lock); 5998 return true; 5999 } 6000 } 6001 } 6002 mutex_unlock(&port->mgr->lock); 6003 6004 return false; 6005 } 6006 6007 /** 6008 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC 6009 * @port: The port to check. A leaf of the MST tree with an attached display. 6010 * 6011 * Depending on the situation, DSC may be enabled via the endpoint aux, 6012 * the immediately upstream aux, or the connector's physical aux. 6013 * 6014 * This is both the correct aux to read DSC_CAPABILITY and the 6015 * correct aux to write DSC_ENABLED. 6016 * 6017 * This operation can be expensive (up to four aux reads), so 6018 * the caller should cache the return. 6019 * 6020 * Returns: 6021 * NULL if DSC cannot be enabled on this port, otherwise the aux device 6022 */ 6023 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port) 6024 { 6025 struct drm_dp_mst_port *immediate_upstream_port; 6026 struct drm_dp_aux *immediate_upstream_aux; 6027 struct drm_dp_mst_port *fec_port; 6028 struct drm_dp_desc desc = {}; 6029 u8 endpoint_fec; 6030 u8 endpoint_dsc; 6031 6032 if (!port) 6033 return NULL; 6034 6035 if (port->parent->port_parent) 6036 immediate_upstream_port = port->parent->port_parent; 6037 else 6038 immediate_upstream_port = NULL; 6039 6040 fec_port = immediate_upstream_port; 6041 while (fec_port) { 6042 /* 6043 * Each physical link (i.e. not a virtual port) between the 6044 * output and the primary device must support FEC 6045 */ 6046 if (!drm_dp_mst_is_virtual_dpcd(fec_port) && 6047 !fec_port->fec_capable) 6048 return NULL; 6049 6050 fec_port = fec_port->parent->port_parent; 6051 } 6052 6053 /* DP-to-DP peer device */ 6054 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) { 6055 u8 upstream_dsc; 6056 6057 if (drm_dp_dpcd_read(&port->aux, 6058 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 6059 return NULL; 6060 if (drm_dp_dpcd_read(&port->aux, 6061 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 6062 return NULL; 6063 if (drm_dp_dpcd_read(&immediate_upstream_port->aux, 6064 DP_DSC_SUPPORT, &upstream_dsc, 1) != 1) 6065 return NULL; 6066 6067 /* Enpoint decompression with DP-to-DP peer device */ 6068 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6069 (endpoint_fec & DP_FEC_CAPABLE) && 6070 (upstream_dsc & DP_DSC_PASSTHROUGH_IS_SUPPORTED)) { 6071 port->passthrough_aux = &immediate_upstream_port->aux; 6072 return &port->aux; 6073 } 6074 6075 /* Virtual DPCD decompression with DP-to-DP peer device */ 6076 return &immediate_upstream_port->aux; 6077 } 6078 6079 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */ 6080 if (drm_dp_mst_is_virtual_dpcd(port)) 6081 return &port->aux; 6082 6083 /* 6084 * Synaptics quirk 6085 * Applies to ports for which: 6086 * - Physical aux has Synaptics OUI 6087 * - DPv1.4 or higher 6088 * - Port is on primary branch device 6089 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG) 6090 */ 6091 if (immediate_upstream_port) 6092 immediate_upstream_aux = &immediate_upstream_port->aux; 6093 else 6094 immediate_upstream_aux = port->mgr->aux; 6095 6096 if (drm_dp_read_desc(immediate_upstream_aux, &desc, true)) 6097 return NULL; 6098 6099 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD)) { 6100 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 6101 6102 if (drm_dp_read_dpcd_caps(immediate_upstream_aux, dpcd_ext) < 0) 6103 return NULL; 6104 6105 if (dpcd_ext[DP_DPCD_REV] >= DP_DPCD_REV_14 && 6106 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) && 6107 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) 6108 != DP_DWN_STRM_PORT_TYPE_ANALOG))) 6109 return immediate_upstream_aux; 6110 } 6111 6112 /* 6113 * The check below verifies if the MST sink 6114 * connected to the GPU is capable of DSC - 6115 * therefore the endpoint needs to be 6116 * both DSC and FEC capable. 6117 */ 6118 if (drm_dp_dpcd_read(&port->aux, 6119 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 6120 return NULL; 6121 if (drm_dp_dpcd_read(&port->aux, 6122 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 6123 return NULL; 6124 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6125 (endpoint_fec & DP_FEC_CAPABLE)) 6126 return &port->aux; 6127 6128 return NULL; 6129 } 6130 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port); 6131