1 /* 2 * Copyright © 2014 Red Hat 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/bitfield.h> 24 #include <linux/delay.h> 25 #include <linux/errno.h> 26 #include <linux/i2c.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/random.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/iopoll.h> 33 34 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 35 #include <linux/stacktrace.h> 36 #include <linux/sort.h> 37 #include <linux/timekeeping.h> 38 #include <linux/math64.h> 39 #endif 40 41 #include <drm/display/drm_dp_mst_helper.h> 42 #include <drm/drm_atomic.h> 43 #include <drm/drm_atomic_helper.h> 44 #include <drm/drm_drv.h> 45 #include <drm/drm_edid.h> 46 #include <drm/drm_fixed.h> 47 #include <drm/drm_print.h> 48 #include <drm/drm_probe_helper.h> 49 50 #include "drm_dp_helper_internal.h" 51 #include "drm_dp_mst_topology_internal.h" 52 53 /** 54 * DOC: dp mst helper 55 * 56 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport 57 * protocol. The helpers contain a topology manager and bandwidth manager. 58 * The helpers encapsulate the sending and received of sideband msgs. 59 */ 60 struct drm_dp_pending_up_req { 61 struct drm_dp_sideband_msg_hdr hdr; 62 struct drm_dp_sideband_msg_req_body msg; 63 struct list_head next; 64 }; 65 66 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 67 char *buf); 68 69 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port); 70 71 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 72 int id, u8 start_slot, u8 num_slots); 73 74 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 75 struct drm_dp_mst_port *port, 76 int offset, int size, u8 *bytes); 77 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 78 struct drm_dp_mst_port *port, 79 int offset, int size, u8 *bytes); 80 81 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 82 struct drm_dp_mst_branch *mstb); 83 84 static void 85 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 86 struct drm_dp_mst_branch *mstb); 87 88 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 89 struct drm_dp_mst_branch *mstb, 90 struct drm_dp_mst_port *port); 91 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 92 u8 *guid); 93 94 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port); 95 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port); 96 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr); 97 98 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 99 struct drm_dp_mst_branch *branch); 100 101 #define DBG_PREFIX "[dp_mst]" 102 103 #define DP_STR(x) [DP_ ## x] = #x 104 105 static const char *drm_dp_mst_req_type_str(u8 req_type) 106 { 107 static const char * const req_type_str[] = { 108 DP_STR(GET_MSG_TRANSACTION_VERSION), 109 DP_STR(LINK_ADDRESS), 110 DP_STR(CONNECTION_STATUS_NOTIFY), 111 DP_STR(ENUM_PATH_RESOURCES), 112 DP_STR(ALLOCATE_PAYLOAD), 113 DP_STR(QUERY_PAYLOAD), 114 DP_STR(RESOURCE_STATUS_NOTIFY), 115 DP_STR(CLEAR_PAYLOAD_ID_TABLE), 116 DP_STR(REMOTE_DPCD_READ), 117 DP_STR(REMOTE_DPCD_WRITE), 118 DP_STR(REMOTE_I2C_READ), 119 DP_STR(REMOTE_I2C_WRITE), 120 DP_STR(POWER_UP_PHY), 121 DP_STR(POWER_DOWN_PHY), 122 DP_STR(SINK_EVENT_NOTIFY), 123 DP_STR(QUERY_STREAM_ENC_STATUS), 124 }; 125 126 if (req_type >= ARRAY_SIZE(req_type_str) || 127 !req_type_str[req_type]) 128 return "unknown"; 129 130 return req_type_str[req_type]; 131 } 132 133 #undef DP_STR 134 #define DP_STR(x) [DP_NAK_ ## x] = #x 135 136 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason) 137 { 138 static const char * const nak_reason_str[] = { 139 DP_STR(WRITE_FAILURE), 140 DP_STR(INVALID_READ), 141 DP_STR(CRC_FAILURE), 142 DP_STR(BAD_PARAM), 143 DP_STR(DEFER), 144 DP_STR(LINK_FAILURE), 145 DP_STR(NO_RESOURCES), 146 DP_STR(DPCD_FAIL), 147 DP_STR(I2C_NAK), 148 DP_STR(ALLOCATE_FAIL), 149 }; 150 151 if (nak_reason >= ARRAY_SIZE(nak_reason_str) || 152 !nak_reason_str[nak_reason]) 153 return "unknown"; 154 155 return nak_reason_str[nak_reason]; 156 } 157 158 #undef DP_STR 159 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x 160 161 static const char *drm_dp_mst_sideband_tx_state_str(int state) 162 { 163 static const char * const sideband_reason_str[] = { 164 DP_STR(QUEUED), 165 DP_STR(START_SEND), 166 DP_STR(SENT), 167 DP_STR(RX), 168 DP_STR(TIMEOUT), 169 }; 170 171 if (state >= ARRAY_SIZE(sideband_reason_str) || 172 !sideband_reason_str[state]) 173 return "unknown"; 174 175 return sideband_reason_str[state]; 176 } 177 178 static int 179 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len) 180 { 181 int i; 182 u8 unpacked_rad[16]; 183 184 for (i = 0; i < lct; i++) { 185 if (i % 2) 186 unpacked_rad[i] = rad[i / 2] >> 4; 187 else 188 unpacked_rad[i] = rad[i / 2] & BIT_MASK(4); 189 } 190 191 /* TODO: Eventually add something to printk so we can format the rad 192 * like this: 1.2.3 193 */ 194 return snprintf(out, len, "%*phC", lct, unpacked_rad); 195 } 196 197 /* sideband msg handling */ 198 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles) 199 { 200 u8 bitmask = 0x80; 201 u8 bitshift = 7; 202 u8 array_index = 0; 203 int number_of_bits = num_nibbles * 4; 204 u8 remainder = 0; 205 206 while (number_of_bits != 0) { 207 number_of_bits--; 208 remainder <<= 1; 209 remainder |= (data[array_index] & bitmask) >> bitshift; 210 bitmask >>= 1; 211 bitshift--; 212 if (bitmask == 0) { 213 bitmask = 0x80; 214 bitshift = 7; 215 array_index++; 216 } 217 if ((remainder & 0x10) == 0x10) 218 remainder ^= 0x13; 219 } 220 221 number_of_bits = 4; 222 while (number_of_bits != 0) { 223 number_of_bits--; 224 remainder <<= 1; 225 if ((remainder & 0x10) != 0) 226 remainder ^= 0x13; 227 } 228 229 return remainder; 230 } 231 232 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes) 233 { 234 u8 bitmask = 0x80; 235 u8 bitshift = 7; 236 u8 array_index = 0; 237 int number_of_bits = number_of_bytes * 8; 238 u16 remainder = 0; 239 240 while (number_of_bits != 0) { 241 number_of_bits--; 242 remainder <<= 1; 243 remainder |= (data[array_index] & bitmask) >> bitshift; 244 bitmask >>= 1; 245 bitshift--; 246 if (bitmask == 0) { 247 bitmask = 0x80; 248 bitshift = 7; 249 array_index++; 250 } 251 if ((remainder & 0x100) == 0x100) 252 remainder ^= 0xd5; 253 } 254 255 number_of_bits = 8; 256 while (number_of_bits != 0) { 257 number_of_bits--; 258 remainder <<= 1; 259 if ((remainder & 0x100) != 0) 260 remainder ^= 0xd5; 261 } 262 263 return remainder & 0xff; 264 } 265 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr) 266 { 267 u8 size = 3; 268 269 size += (hdr->lct / 2); 270 return size; 271 } 272 273 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr, 274 u8 *buf, int *len) 275 { 276 int idx = 0; 277 int i; 278 u8 crc4; 279 280 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf); 281 for (i = 0; i < (hdr->lct / 2); i++) 282 buf[idx++] = hdr->rad[i]; 283 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) | 284 (hdr->msg_len & 0x3f); 285 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4); 286 287 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1); 288 buf[idx - 1] |= (crc4 & 0xf); 289 290 *len = idx; 291 } 292 293 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr, 294 struct drm_dp_sideband_msg_hdr *hdr, 295 u8 *buf, int buflen, u8 *hdrlen) 296 { 297 u8 crc4; 298 u8 len; 299 int i; 300 u8 idx; 301 302 if (buf[0] == 0) 303 return false; 304 len = 3; 305 len += ((buf[0] & 0xf0) >> 4) / 2; 306 if (len > buflen) 307 return false; 308 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1); 309 310 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) { 311 drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]); 312 return false; 313 } 314 315 hdr->lct = (buf[0] & 0xf0) >> 4; 316 hdr->lcr = (buf[0] & 0xf); 317 idx = 1; 318 for (i = 0; i < (hdr->lct / 2); i++) 319 hdr->rad[i] = buf[idx++]; 320 hdr->broadcast = (buf[idx] >> 7) & 0x1; 321 hdr->path_msg = (buf[idx] >> 6) & 0x1; 322 hdr->msg_len = buf[idx] & 0x3f; 323 idx++; 324 hdr->somt = (buf[idx] >> 7) & 0x1; 325 hdr->eomt = (buf[idx] >> 6) & 0x1; 326 hdr->seqno = (buf[idx] >> 4) & 0x1; 327 idx++; 328 *hdrlen = idx; 329 return true; 330 } 331 332 void 333 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req, 334 struct drm_dp_sideband_msg_tx *raw) 335 { 336 int idx = 0; 337 int i; 338 u8 *buf = raw->msg; 339 340 buf[idx++] = req->req_type & 0x7f; 341 342 switch (req->req_type) { 343 case DP_ENUM_PATH_RESOURCES: 344 case DP_POWER_DOWN_PHY: 345 case DP_POWER_UP_PHY: 346 buf[idx] = (req->u.port_num.port_number & 0xf) << 4; 347 idx++; 348 break; 349 case DP_ALLOCATE_PAYLOAD: 350 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 | 351 (req->u.allocate_payload.number_sdp_streams & 0xf); 352 idx++; 353 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f); 354 idx++; 355 buf[idx] = (req->u.allocate_payload.pbn >> 8); 356 idx++; 357 buf[idx] = (req->u.allocate_payload.pbn & 0xff); 358 idx++; 359 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) { 360 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) | 361 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf); 362 idx++; 363 } 364 if (req->u.allocate_payload.number_sdp_streams & 1) { 365 i = req->u.allocate_payload.number_sdp_streams - 1; 366 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4; 367 idx++; 368 } 369 break; 370 case DP_QUERY_PAYLOAD: 371 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4; 372 idx++; 373 buf[idx] = (req->u.query_payload.vcpi & 0x7f); 374 idx++; 375 break; 376 case DP_REMOTE_DPCD_READ: 377 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4; 378 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf; 379 idx++; 380 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8; 381 idx++; 382 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff); 383 idx++; 384 buf[idx] = (req->u.dpcd_read.num_bytes); 385 idx++; 386 break; 387 388 case DP_REMOTE_DPCD_WRITE: 389 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4; 390 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf; 391 idx++; 392 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8; 393 idx++; 394 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff); 395 idx++; 396 buf[idx] = (req->u.dpcd_write.num_bytes); 397 idx++; 398 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes); 399 idx += req->u.dpcd_write.num_bytes; 400 break; 401 case DP_REMOTE_I2C_READ: 402 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4; 403 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3); 404 idx++; 405 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) { 406 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f; 407 idx++; 408 buf[idx] = req->u.i2c_read.transactions[i].num_bytes; 409 idx++; 410 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes); 411 idx += req->u.i2c_read.transactions[i].num_bytes; 412 413 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4; 414 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf); 415 idx++; 416 } 417 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f; 418 idx++; 419 buf[idx] = (req->u.i2c_read.num_bytes_read); 420 idx++; 421 break; 422 423 case DP_REMOTE_I2C_WRITE: 424 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4; 425 idx++; 426 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f; 427 idx++; 428 buf[idx] = (req->u.i2c_write.num_bytes); 429 idx++; 430 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes); 431 idx += req->u.i2c_write.num_bytes; 432 break; 433 case DP_QUERY_STREAM_ENC_STATUS: { 434 const struct drm_dp_query_stream_enc_status *msg; 435 436 msg = &req->u.enc_status; 437 buf[idx] = msg->stream_id; 438 idx++; 439 memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id)); 440 idx += sizeof(msg->client_id); 441 buf[idx] = 0; 442 buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event); 443 buf[idx] |= msg->valid_stream_event ? BIT(2) : 0; 444 buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior); 445 buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0; 446 idx++; 447 } 448 break; 449 } 450 raw->cur_len = idx; 451 } 452 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req); 453 454 /* Decode a sideband request we've encoded, mainly used for debugging */ 455 int 456 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw, 457 struct drm_dp_sideband_msg_req_body *req) 458 { 459 const u8 *buf = raw->msg; 460 int i, idx = 0; 461 462 req->req_type = buf[idx++] & 0x7f; 463 switch (req->req_type) { 464 case DP_ENUM_PATH_RESOURCES: 465 case DP_POWER_DOWN_PHY: 466 case DP_POWER_UP_PHY: 467 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf; 468 break; 469 case DP_ALLOCATE_PAYLOAD: 470 { 471 struct drm_dp_allocate_payload *a = 472 &req->u.allocate_payload; 473 474 a->number_sdp_streams = buf[idx] & 0xf; 475 a->port_number = (buf[idx] >> 4) & 0xf; 476 477 WARN_ON(buf[++idx] & 0x80); 478 a->vcpi = buf[idx] & 0x7f; 479 480 a->pbn = buf[++idx] << 8; 481 a->pbn |= buf[++idx]; 482 483 idx++; 484 for (i = 0; i < a->number_sdp_streams; i++) { 485 a->sdp_stream_sink[i] = 486 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf; 487 } 488 } 489 break; 490 case DP_QUERY_PAYLOAD: 491 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf; 492 WARN_ON(buf[++idx] & 0x80); 493 req->u.query_payload.vcpi = buf[idx] & 0x7f; 494 break; 495 case DP_REMOTE_DPCD_READ: 496 { 497 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read; 498 499 r->port_number = (buf[idx] >> 4) & 0xf; 500 501 r->dpcd_address = (buf[idx] << 16) & 0xf0000; 502 r->dpcd_address |= (buf[++idx] << 8) & 0xff00; 503 r->dpcd_address |= buf[++idx] & 0xff; 504 505 r->num_bytes = buf[++idx]; 506 } 507 break; 508 case DP_REMOTE_DPCD_WRITE: 509 { 510 struct drm_dp_remote_dpcd_write *w = 511 &req->u.dpcd_write; 512 513 w->port_number = (buf[idx] >> 4) & 0xf; 514 515 w->dpcd_address = (buf[idx] << 16) & 0xf0000; 516 w->dpcd_address |= (buf[++idx] << 8) & 0xff00; 517 w->dpcd_address |= buf[++idx] & 0xff; 518 519 w->num_bytes = buf[++idx]; 520 521 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 522 GFP_KERNEL); 523 if (!w->bytes) 524 return -ENOMEM; 525 } 526 break; 527 case DP_REMOTE_I2C_READ: 528 { 529 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read; 530 struct drm_dp_remote_i2c_read_tx *tx; 531 bool failed = false; 532 533 r->num_transactions = buf[idx] & 0x3; 534 r->port_number = (buf[idx] >> 4) & 0xf; 535 for (i = 0; i < r->num_transactions; i++) { 536 tx = &r->transactions[i]; 537 538 tx->i2c_dev_id = buf[++idx] & 0x7f; 539 tx->num_bytes = buf[++idx]; 540 tx->bytes = kmemdup(&buf[++idx], 541 tx->num_bytes, 542 GFP_KERNEL); 543 if (!tx->bytes) { 544 failed = true; 545 break; 546 } 547 idx += tx->num_bytes; 548 tx->no_stop_bit = (buf[idx] >> 5) & 0x1; 549 tx->i2c_transaction_delay = buf[idx] & 0xf; 550 } 551 552 if (failed) { 553 for (i = 0; i < r->num_transactions; i++) { 554 tx = &r->transactions[i]; 555 kfree(tx->bytes); 556 } 557 return -ENOMEM; 558 } 559 560 r->read_i2c_device_id = buf[++idx] & 0x7f; 561 r->num_bytes_read = buf[++idx]; 562 } 563 break; 564 case DP_REMOTE_I2C_WRITE: 565 { 566 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write; 567 568 w->port_number = (buf[idx] >> 4) & 0xf; 569 w->write_i2c_device_id = buf[++idx] & 0x7f; 570 w->num_bytes = buf[++idx]; 571 w->bytes = kmemdup(&buf[++idx], w->num_bytes, 572 GFP_KERNEL); 573 if (!w->bytes) 574 return -ENOMEM; 575 } 576 break; 577 case DP_QUERY_STREAM_ENC_STATUS: 578 req->u.enc_status.stream_id = buf[idx++]; 579 for (i = 0; i < sizeof(req->u.enc_status.client_id); i++) 580 req->u.enc_status.client_id[i] = buf[idx++]; 581 582 req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0), 583 buf[idx]); 584 req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2), 585 buf[idx]); 586 req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3), 587 buf[idx]); 588 req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5), 589 buf[idx]); 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req); 596 597 void 598 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req, 599 int indent, struct drm_printer *printer) 600 { 601 int i; 602 603 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__) 604 if (req->req_type == DP_LINK_ADDRESS) { 605 /* No contents to print */ 606 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type)); 607 return; 608 } 609 610 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type)); 611 indent++; 612 613 switch (req->req_type) { 614 case DP_ENUM_PATH_RESOURCES: 615 case DP_POWER_DOWN_PHY: 616 case DP_POWER_UP_PHY: 617 P("port=%d\n", req->u.port_num.port_number); 618 break; 619 case DP_ALLOCATE_PAYLOAD: 620 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n", 621 req->u.allocate_payload.port_number, 622 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn, 623 req->u.allocate_payload.number_sdp_streams, 624 req->u.allocate_payload.number_sdp_streams, 625 req->u.allocate_payload.sdp_stream_sink); 626 break; 627 case DP_QUERY_PAYLOAD: 628 P("port=%d vcpi=%d\n", 629 req->u.query_payload.port_number, 630 req->u.query_payload.vcpi); 631 break; 632 case DP_REMOTE_DPCD_READ: 633 P("port=%d dpcd_addr=%05x len=%d\n", 634 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address, 635 req->u.dpcd_read.num_bytes); 636 break; 637 case DP_REMOTE_DPCD_WRITE: 638 P("port=%d addr=%05x len=%d: %*ph\n", 639 req->u.dpcd_write.port_number, 640 req->u.dpcd_write.dpcd_address, 641 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes, 642 req->u.dpcd_write.bytes); 643 break; 644 case DP_REMOTE_I2C_READ: 645 P("port=%d num_tx=%d id=%d size=%d:\n", 646 req->u.i2c_read.port_number, 647 req->u.i2c_read.num_transactions, 648 req->u.i2c_read.read_i2c_device_id, 649 req->u.i2c_read.num_bytes_read); 650 651 indent++; 652 for (i = 0; i < req->u.i2c_read.num_transactions; i++) { 653 const struct drm_dp_remote_i2c_read_tx *rtx = 654 &req->u.i2c_read.transactions[i]; 655 656 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n", 657 i, rtx->i2c_dev_id, rtx->num_bytes, 658 rtx->no_stop_bit, rtx->i2c_transaction_delay, 659 rtx->num_bytes, rtx->bytes); 660 } 661 break; 662 case DP_REMOTE_I2C_WRITE: 663 P("port=%d id=%d size=%d: %*ph\n", 664 req->u.i2c_write.port_number, 665 req->u.i2c_write.write_i2c_device_id, 666 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes, 667 req->u.i2c_write.bytes); 668 break; 669 case DP_QUERY_STREAM_ENC_STATUS: 670 P("stream_id=%u client_id=%*ph stream_event=%x " 671 "valid_event=%d stream_behavior=%x valid_behavior=%d", 672 req->u.enc_status.stream_id, 673 (int)ARRAY_SIZE(req->u.enc_status.client_id), 674 req->u.enc_status.client_id, req->u.enc_status.stream_event, 675 req->u.enc_status.valid_stream_event, 676 req->u.enc_status.stream_behavior, 677 req->u.enc_status.valid_stream_behavior); 678 break; 679 default: 680 P("???\n"); 681 break; 682 } 683 #undef P 684 } 685 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body); 686 687 static inline void 688 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p, 689 const struct drm_dp_sideband_msg_tx *txmsg) 690 { 691 struct drm_dp_sideband_msg_req_body req; 692 char buf[64]; 693 int ret; 694 int i; 695 696 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf, 697 sizeof(buf)); 698 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n", 699 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno, 700 drm_dp_mst_sideband_tx_state_str(txmsg->state), 701 txmsg->path_msg, buf); 702 703 ret = drm_dp_decode_sideband_req(txmsg, &req); 704 if (ret) { 705 drm_printf(p, "<failed to decode sideband req: %d>\n", ret); 706 return; 707 } 708 drm_dp_dump_sideband_msg_req_body(&req, 1, p); 709 710 switch (req.req_type) { 711 case DP_REMOTE_DPCD_WRITE: 712 kfree(req.u.dpcd_write.bytes); 713 break; 714 case DP_REMOTE_I2C_READ: 715 for (i = 0; i < req.u.i2c_read.num_transactions; i++) 716 kfree(req.u.i2c_read.transactions[i].bytes); 717 break; 718 case DP_REMOTE_I2C_WRITE: 719 kfree(req.u.i2c_write.bytes); 720 break; 721 } 722 } 723 724 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len) 725 { 726 u8 crc4; 727 728 crc4 = drm_dp_msg_data_crc4(msg, len); 729 msg[len] = crc4; 730 } 731 732 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep, 733 struct drm_dp_sideband_msg_tx *raw) 734 { 735 int idx = 0; 736 u8 *buf = raw->msg; 737 738 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f); 739 740 raw->cur_len = idx; 741 } 742 743 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg, 744 struct drm_dp_sideband_msg_hdr *hdr, 745 u8 hdrlen) 746 { 747 /* 748 * ignore out-of-order messages or messages that are part of a 749 * failed transaction 750 */ 751 if (!hdr->somt && !msg->have_somt) 752 return false; 753 754 /* get length contained in this portion */ 755 msg->curchunk_idx = 0; 756 msg->curchunk_len = hdr->msg_len; 757 msg->curchunk_hdrlen = hdrlen; 758 759 /* we have already gotten an somt - don't bother parsing */ 760 if (hdr->somt && msg->have_somt) 761 return false; 762 763 if (hdr->somt) { 764 memcpy(&msg->initial_hdr, hdr, 765 sizeof(struct drm_dp_sideband_msg_hdr)); 766 msg->have_somt = true; 767 } 768 if (hdr->eomt) 769 msg->have_eomt = true; 770 771 return true; 772 } 773 774 /* this adds a chunk of msg to the builder to get the final msg */ 775 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg, 776 u8 *replybuf, u8 replybuflen) 777 { 778 u8 crc4; 779 780 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen); 781 msg->curchunk_idx += replybuflen; 782 783 if (msg->curchunk_idx >= msg->curchunk_len) { 784 /* do CRC */ 785 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1); 786 if (crc4 != msg->chunk[msg->curchunk_len - 1]) 787 print_hex_dump(KERN_DEBUG, "wrong crc", 788 DUMP_PREFIX_NONE, 16, 1, 789 msg->chunk, msg->curchunk_len, false); 790 /* copy chunk into bigger msg */ 791 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1); 792 msg->curlen += msg->curchunk_len - 1; 793 } 794 return true; 795 } 796 797 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr, 798 struct drm_dp_sideband_msg_rx *raw, 799 struct drm_dp_sideband_msg_reply_body *repmsg) 800 { 801 int idx = 1; 802 int i; 803 804 memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16); 805 idx += 16; 806 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf; 807 idx++; 808 if (idx > raw->curlen) 809 goto fail_len; 810 for (i = 0; i < repmsg->u.link_addr.nports; i++) { 811 if (raw->msg[idx] & 0x80) 812 repmsg->u.link_addr.ports[i].input_port = 1; 813 814 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7; 815 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf); 816 817 idx++; 818 if (idx > raw->curlen) 819 goto fail_len; 820 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1; 821 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1; 822 if (repmsg->u.link_addr.ports[i].input_port == 0) 823 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 824 idx++; 825 if (idx > raw->curlen) 826 goto fail_len; 827 if (repmsg->u.link_addr.ports[i].input_port == 0) { 828 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]); 829 idx++; 830 if (idx > raw->curlen) 831 goto fail_len; 832 memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16); 833 idx += 16; 834 if (idx > raw->curlen) 835 goto fail_len; 836 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf; 837 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf); 838 idx++; 839 840 } 841 if (idx > raw->curlen) 842 goto fail_len; 843 } 844 845 return true; 846 fail_len: 847 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 848 return false; 849 } 850 851 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw, 852 struct drm_dp_sideband_msg_reply_body *repmsg) 853 { 854 int idx = 1; 855 856 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf; 857 idx++; 858 if (idx > raw->curlen) 859 goto fail_len; 860 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx]; 861 idx++; 862 if (idx > raw->curlen) 863 goto fail_len; 864 865 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes); 866 return true; 867 fail_len: 868 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen); 869 return false; 870 } 871 872 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw, 873 struct drm_dp_sideband_msg_reply_body *repmsg) 874 { 875 int idx = 1; 876 877 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf; 878 idx++; 879 if (idx > raw->curlen) 880 goto fail_len; 881 return true; 882 fail_len: 883 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen); 884 return false; 885 } 886 887 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw, 888 struct drm_dp_sideband_msg_reply_body *repmsg) 889 { 890 int idx = 1; 891 892 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf); 893 idx++; 894 if (idx > raw->curlen) 895 goto fail_len; 896 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx]; 897 idx++; 898 /* TODO check */ 899 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes); 900 return true; 901 fail_len: 902 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen); 903 return false; 904 } 905 906 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw, 907 struct drm_dp_sideband_msg_reply_body *repmsg) 908 { 909 int idx = 1; 910 911 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf; 912 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1; 913 idx++; 914 if (idx > raw->curlen) 915 goto fail_len; 916 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 917 idx += 2; 918 if (idx > raw->curlen) 919 goto fail_len; 920 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 921 idx += 2; 922 if (idx > raw->curlen) 923 goto fail_len; 924 return true; 925 fail_len: 926 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen); 927 return false; 928 } 929 930 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw, 931 struct drm_dp_sideband_msg_reply_body *repmsg) 932 { 933 int idx = 1; 934 935 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 936 idx++; 937 if (idx > raw->curlen) 938 goto fail_len; 939 repmsg->u.allocate_payload.vcpi = raw->msg[idx]; 940 idx++; 941 if (idx > raw->curlen) 942 goto fail_len; 943 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]); 944 idx += 2; 945 if (idx > raw->curlen) 946 goto fail_len; 947 return true; 948 fail_len: 949 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen); 950 return false; 951 } 952 953 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw, 954 struct drm_dp_sideband_msg_reply_body *repmsg) 955 { 956 int idx = 1; 957 958 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf; 959 idx++; 960 if (idx > raw->curlen) 961 goto fail_len; 962 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 963 idx += 2; 964 if (idx > raw->curlen) 965 goto fail_len; 966 return true; 967 fail_len: 968 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen); 969 return false; 970 } 971 972 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw, 973 struct drm_dp_sideband_msg_reply_body *repmsg) 974 { 975 int idx = 1; 976 977 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf; 978 idx++; 979 if (idx > raw->curlen) { 980 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n", 981 idx, raw->curlen); 982 return false; 983 } 984 return true; 985 } 986 987 static bool 988 drm_dp_sideband_parse_query_stream_enc_status( 989 struct drm_dp_sideband_msg_rx *raw, 990 struct drm_dp_sideband_msg_reply_body *repmsg) 991 { 992 struct drm_dp_query_stream_enc_status_ack_reply *reply; 993 994 reply = &repmsg->u.enc_status; 995 996 reply->stream_id = raw->msg[3]; 997 998 reply->reply_signed = raw->msg[2] & BIT(0); 999 1000 /* 1001 * NOTE: It's my impression from reading the spec that the below parsing 1002 * is correct. However I noticed while testing with an HDCP 1.4 display 1003 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I 1004 * would expect both bits to be set. So keep the parsing following the 1005 * spec, but beware reality might not match the spec (at least for some 1006 * configurations). 1007 */ 1008 reply->hdcp_1x_device_present = raw->msg[2] & BIT(4); 1009 reply->hdcp_2x_device_present = raw->msg[2] & BIT(3); 1010 1011 reply->query_capable_device_present = raw->msg[2] & BIT(5); 1012 reply->legacy_device_present = raw->msg[2] & BIT(6); 1013 reply->unauthorizable_device_present = raw->msg[2] & BIT(7); 1014 1015 reply->auth_completed = !!(raw->msg[1] & BIT(3)); 1016 reply->encryption_enabled = !!(raw->msg[1] & BIT(4)); 1017 reply->repeater_present = !!(raw->msg[1] & BIT(5)); 1018 reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6; 1019 1020 return true; 1021 } 1022 1023 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr, 1024 struct drm_dp_sideband_msg_rx *raw, 1025 struct drm_dp_sideband_msg_reply_body *msg) 1026 { 1027 memset(msg, 0, sizeof(*msg)); 1028 msg->reply_type = (raw->msg[0] & 0x80) >> 7; 1029 msg->req_type = (raw->msg[0] & 0x7f); 1030 1031 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) { 1032 memcpy(msg->u.nak.guid, &raw->msg[1], 16); 1033 msg->u.nak.reason = raw->msg[17]; 1034 msg->u.nak.nak_data = raw->msg[18]; 1035 return false; 1036 } 1037 1038 switch (msg->req_type) { 1039 case DP_LINK_ADDRESS: 1040 return drm_dp_sideband_parse_link_address(mgr, raw, msg); 1041 case DP_QUERY_PAYLOAD: 1042 return drm_dp_sideband_parse_query_payload_ack(raw, msg); 1043 case DP_REMOTE_DPCD_READ: 1044 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg); 1045 case DP_REMOTE_DPCD_WRITE: 1046 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg); 1047 case DP_REMOTE_I2C_READ: 1048 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg); 1049 case DP_REMOTE_I2C_WRITE: 1050 return true; /* since there's nothing to parse */ 1051 case DP_ENUM_PATH_RESOURCES: 1052 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg); 1053 case DP_ALLOCATE_PAYLOAD: 1054 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg); 1055 case DP_POWER_DOWN_PHY: 1056 case DP_POWER_UP_PHY: 1057 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg); 1058 case DP_CLEAR_PAYLOAD_ID_TABLE: 1059 return true; /* since there's nothing to parse */ 1060 case DP_QUERY_STREAM_ENC_STATUS: 1061 return drm_dp_sideband_parse_query_stream_enc_status(raw, msg); 1062 default: 1063 drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n", 1064 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1065 return false; 1066 } 1067 } 1068 1069 static bool 1070 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1071 struct drm_dp_sideband_msg_rx *raw, 1072 struct drm_dp_sideband_msg_req_body *msg) 1073 { 1074 int idx = 1; 1075 1076 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1077 idx++; 1078 if (idx > raw->curlen) 1079 goto fail_len; 1080 1081 memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16); 1082 idx += 16; 1083 if (idx > raw->curlen) 1084 goto fail_len; 1085 1086 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1; 1087 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1; 1088 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1; 1089 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1; 1090 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7); 1091 idx++; 1092 return true; 1093 fail_len: 1094 drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n", 1095 idx, raw->curlen); 1096 return false; 1097 } 1098 1099 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr, 1100 struct drm_dp_sideband_msg_rx *raw, 1101 struct drm_dp_sideband_msg_req_body *msg) 1102 { 1103 int idx = 1; 1104 1105 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4; 1106 idx++; 1107 if (idx > raw->curlen) 1108 goto fail_len; 1109 1110 memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16); 1111 idx += 16; 1112 if (idx > raw->curlen) 1113 goto fail_len; 1114 1115 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]); 1116 idx++; 1117 return true; 1118 fail_len: 1119 drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen); 1120 return false; 1121 } 1122 1123 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr, 1124 struct drm_dp_sideband_msg_rx *raw, 1125 struct drm_dp_sideband_msg_req_body *msg) 1126 { 1127 memset(msg, 0, sizeof(*msg)); 1128 msg->req_type = (raw->msg[0] & 0x7f); 1129 1130 switch (msg->req_type) { 1131 case DP_CONNECTION_STATUS_NOTIFY: 1132 return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg); 1133 case DP_RESOURCE_STATUS_NOTIFY: 1134 return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg); 1135 default: 1136 drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n", 1137 msg->req_type, drm_dp_mst_req_type_str(msg->req_type)); 1138 return false; 1139 } 1140 } 1141 1142 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, 1143 u8 port_num, u32 offset, u8 num_bytes, u8 *bytes) 1144 { 1145 struct drm_dp_sideband_msg_req_body req; 1146 1147 req.req_type = DP_REMOTE_DPCD_WRITE; 1148 req.u.dpcd_write.port_number = port_num; 1149 req.u.dpcd_write.dpcd_address = offset; 1150 req.u.dpcd_write.num_bytes = num_bytes; 1151 req.u.dpcd_write.bytes = bytes; 1152 drm_dp_encode_sideband_req(&req, msg); 1153 } 1154 1155 static void build_link_address(struct drm_dp_sideband_msg_tx *msg) 1156 { 1157 struct drm_dp_sideband_msg_req_body req; 1158 1159 req.req_type = DP_LINK_ADDRESS; 1160 drm_dp_encode_sideband_req(&req, msg); 1161 } 1162 1163 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg) 1164 { 1165 struct drm_dp_sideband_msg_req_body req; 1166 1167 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE; 1168 drm_dp_encode_sideband_req(&req, msg); 1169 msg->path_msg = true; 1170 } 1171 1172 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, 1173 int port_num) 1174 { 1175 struct drm_dp_sideband_msg_req_body req; 1176 1177 req.req_type = DP_ENUM_PATH_RESOURCES; 1178 req.u.port_num.port_number = port_num; 1179 drm_dp_encode_sideband_req(&req, msg); 1180 msg->path_msg = true; 1181 return 0; 1182 } 1183 1184 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, 1185 int port_num, 1186 u8 vcpi, uint16_t pbn, 1187 u8 number_sdp_streams, 1188 u8 *sdp_stream_sink) 1189 { 1190 struct drm_dp_sideband_msg_req_body req; 1191 1192 memset(&req, 0, sizeof(req)); 1193 req.req_type = DP_ALLOCATE_PAYLOAD; 1194 req.u.allocate_payload.port_number = port_num; 1195 req.u.allocate_payload.vcpi = vcpi; 1196 req.u.allocate_payload.pbn = pbn; 1197 req.u.allocate_payload.number_sdp_streams = number_sdp_streams; 1198 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink, 1199 number_sdp_streams); 1200 drm_dp_encode_sideband_req(&req, msg); 1201 msg->path_msg = true; 1202 } 1203 1204 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg, 1205 int port_num, bool power_up) 1206 { 1207 struct drm_dp_sideband_msg_req_body req; 1208 1209 if (power_up) 1210 req.req_type = DP_POWER_UP_PHY; 1211 else 1212 req.req_type = DP_POWER_DOWN_PHY; 1213 1214 req.u.port_num.port_number = port_num; 1215 drm_dp_encode_sideband_req(&req, msg); 1216 msg->path_msg = true; 1217 } 1218 1219 static int 1220 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id, 1221 u8 *q_id) 1222 { 1223 struct drm_dp_sideband_msg_req_body req; 1224 1225 req.req_type = DP_QUERY_STREAM_ENC_STATUS; 1226 req.u.enc_status.stream_id = stream_id; 1227 memcpy(req.u.enc_status.client_id, q_id, 1228 sizeof(req.u.enc_status.client_id)); 1229 req.u.enc_status.stream_event = 0; 1230 req.u.enc_status.valid_stream_event = false; 1231 req.u.enc_status.stream_behavior = 0; 1232 req.u.enc_status.valid_stream_behavior = false; 1233 1234 drm_dp_encode_sideband_req(&req, msg); 1235 return 0; 1236 } 1237 1238 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr, 1239 struct drm_dp_sideband_msg_tx *txmsg) 1240 { 1241 unsigned int state; 1242 1243 /* 1244 * All updates to txmsg->state are protected by mgr->qlock, and the two 1245 * cases we check here are terminal states. For those the barriers 1246 * provided by the wake_up/wait_event pair are enough. 1247 */ 1248 state = READ_ONCE(txmsg->state); 1249 return (state == DRM_DP_SIDEBAND_TX_RX || 1250 state == DRM_DP_SIDEBAND_TX_TIMEOUT); 1251 } 1252 1253 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb, 1254 struct drm_dp_sideband_msg_tx *txmsg) 1255 { 1256 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1257 unsigned long wait_timeout = msecs_to_jiffies(4000); 1258 unsigned long wait_expires = jiffies + wait_timeout; 1259 int ret; 1260 1261 for (;;) { 1262 /* 1263 * If the driver provides a way for this, change to 1264 * poll-waiting for the MST reply interrupt if we didn't receive 1265 * it for 50 msec. This would cater for cases where the HPD 1266 * pulse signal got lost somewhere, even though the sink raised 1267 * the corresponding MST interrupt correctly. One example is the 1268 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason 1269 * filters out short pulses with a duration less than ~540 usec. 1270 * 1271 * The poll period is 50 msec to avoid missing an interrupt 1272 * after the sink has cleared it (after a 110msec timeout 1273 * since it raised the interrupt). 1274 */ 1275 ret = wait_event_timeout(mgr->tx_waitq, 1276 check_txmsg_state(mgr, txmsg), 1277 mgr->cbs->poll_hpd_irq ? 1278 msecs_to_jiffies(50) : 1279 wait_timeout); 1280 1281 if (ret || !mgr->cbs->poll_hpd_irq || 1282 time_after(jiffies, wait_expires)) 1283 break; 1284 1285 mgr->cbs->poll_hpd_irq(mgr); 1286 } 1287 1288 mutex_lock(&mgr->qlock); 1289 if (ret > 0) { 1290 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) { 1291 ret = -EIO; 1292 goto out; 1293 } 1294 } else { 1295 drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n", 1296 txmsg, txmsg->state, txmsg->seqno); 1297 1298 /* dump some state */ 1299 ret = -EIO; 1300 1301 /* remove from q */ 1302 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED || 1303 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 1304 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 1305 list_del(&txmsg->next); 1306 } 1307 out: 1308 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) { 1309 struct drm_printer p = drm_dbg_printer(mgr->dev, DRM_UT_DP, 1310 DBG_PREFIX); 1311 1312 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 1313 } 1314 mutex_unlock(&mgr->qlock); 1315 1316 drm_dp_mst_kick_tx(mgr); 1317 return ret; 1318 } 1319 1320 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad) 1321 { 1322 struct drm_dp_mst_branch *mstb; 1323 1324 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL); 1325 if (!mstb) 1326 return NULL; 1327 1328 mstb->lct = lct; 1329 if (lct > 1) 1330 memcpy(mstb->rad, rad, lct / 2); 1331 INIT_LIST_HEAD(&mstb->ports); 1332 kref_init(&mstb->topology_kref); 1333 kref_init(&mstb->malloc_kref); 1334 return mstb; 1335 } 1336 1337 static void drm_dp_free_mst_branch_device(struct kref *kref) 1338 { 1339 struct drm_dp_mst_branch *mstb = 1340 container_of(kref, struct drm_dp_mst_branch, malloc_kref); 1341 1342 if (mstb->port_parent) 1343 drm_dp_mst_put_port_malloc(mstb->port_parent); 1344 1345 kfree(mstb); 1346 } 1347 1348 /** 1349 * DOC: Branch device and port refcounting 1350 * 1351 * Topology refcount overview 1352 * ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1353 * 1354 * The refcounting schemes for &struct drm_dp_mst_branch and &struct 1355 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have 1356 * two different kinds of refcounts: topology refcounts, and malloc refcounts. 1357 * 1358 * Topology refcounts are not exposed to drivers, and are handled internally 1359 * by the DP MST helpers. The helpers use them in order to prevent the 1360 * in-memory topology state from being changed in the middle of critical 1361 * operations like changing the internal state of payload allocations. This 1362 * means each branch and port will be considered to be connected to the rest 1363 * of the topology until its topology refcount reaches zero. Additionally, 1364 * for ports this means that their associated &struct drm_connector will stay 1365 * registered with userspace until the port's refcount reaches 0. 1366 * 1367 * Malloc refcount overview 1368 * ~~~~~~~~~~~~~~~~~~~~~~~~ 1369 * 1370 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct 1371 * drm_dp_mst_branch allocated even after all of its topology references have 1372 * been dropped, so that the driver or MST helpers can safely access each 1373 * branch's last known state before it was disconnected from the topology. 1374 * When the malloc refcount of a port or branch reaches 0, the memory 1375 * allocation containing the &struct drm_dp_mst_branch or &struct 1376 * drm_dp_mst_port respectively will be freed. 1377 * 1378 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed 1379 * to drivers. As of writing this documentation, there are no drivers that 1380 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST 1381 * helpers. Exposing this API to drivers in a race-free manner would take more 1382 * tweaking of the refcounting scheme, however patches are welcome provided 1383 * there is a legitimate driver usecase for this. 1384 * 1385 * Refcount relationships in a topology 1386 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1387 * 1388 * Let's take a look at why the relationship between topology and malloc 1389 * refcounts is designed the way it is. 1390 * 1391 * .. kernel-figure:: dp-mst/topology-figure-1.dot 1392 * 1393 * An example of topology and malloc refs in a DP MST topology with two 1394 * active payloads. Topology refcount increments are indicated by solid 1395 * lines, and malloc refcount increments are indicated by dashed lines. 1396 * Each starts from the branch which incremented the refcount, and ends at 1397 * the branch to which the refcount belongs to, i.e. the arrow points the 1398 * same way as the C pointers used to reference a structure. 1399 * 1400 * As you can see in the above figure, every branch increments the topology 1401 * refcount of its children, and increments the malloc refcount of its 1402 * parent. Additionally, every payload increments the malloc refcount of its 1403 * assigned port by 1. 1404 * 1405 * So, what would happen if MSTB #3 from the above figure was unplugged from 1406 * the system, but the driver hadn't yet removed payload #2 from port #3? The 1407 * topology would start to look like the figure below. 1408 * 1409 * .. kernel-figure:: dp-mst/topology-figure-2.dot 1410 * 1411 * Ports and branch devices which have been released from memory are 1412 * colored grey, and references which have been removed are colored red. 1413 * 1414 * Whenever a port or branch device's topology refcount reaches zero, it will 1415 * decrement the topology refcounts of all its children, the malloc refcount 1416 * of its parent, and finally its own malloc refcount. For MSTB #4 and port 1417 * #4, this means they both have been disconnected from the topology and freed 1418 * from memory. But, because payload #2 is still holding a reference to port 1419 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port 1420 * is still accessible from memory. This also means port #3 has not yet 1421 * decremented the malloc refcount of MSTB #3, so its &struct 1422 * drm_dp_mst_branch will also stay allocated in memory until port #3's 1423 * malloc refcount reaches 0. 1424 * 1425 * This relationship is necessary because in order to release payload #2, we 1426 * need to be able to figure out the last relative of port #3 that's still 1427 * connected to the topology. In this case, we would travel up the topology as 1428 * shown below. 1429 * 1430 * .. kernel-figure:: dp-mst/topology-figure-3.dot 1431 * 1432 * And finally, remove payload #2 by communicating with port #2 through 1433 * sideband transactions. 1434 */ 1435 1436 /** 1437 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch 1438 * device 1439 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of 1440 * 1441 * Increments &drm_dp_mst_branch.malloc_kref. When 1442 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1443 * will be released and @mstb may no longer be used. 1444 * 1445 * See also: drm_dp_mst_put_mstb_malloc() 1446 */ 1447 static void 1448 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb) 1449 { 1450 kref_get(&mstb->malloc_kref); 1451 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref)); 1452 } 1453 1454 /** 1455 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch 1456 * device 1457 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of 1458 * 1459 * Decrements &drm_dp_mst_branch.malloc_kref. When 1460 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb 1461 * will be released and @mstb may no longer be used. 1462 * 1463 * See also: drm_dp_mst_get_mstb_malloc() 1464 */ 1465 static void 1466 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb) 1467 { 1468 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1); 1469 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device); 1470 } 1471 1472 static void drm_dp_free_mst_port(struct kref *kref) 1473 { 1474 struct drm_dp_mst_port *port = 1475 container_of(kref, struct drm_dp_mst_port, malloc_kref); 1476 1477 drm_dp_mst_put_mstb_malloc(port->parent); 1478 kfree(port); 1479 } 1480 1481 /** 1482 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port 1483 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of 1484 * 1485 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1486 * reaches 0, the memory allocation for @port will be released and @port may 1487 * no longer be used. 1488 * 1489 * Because @port could potentially be freed at any time by the DP MST helpers 1490 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this 1491 * function, drivers that which to make use of &struct drm_dp_mst_port should 1492 * ensure that they grab at least one main malloc reference to their MST ports 1493 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before 1494 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0. 1495 * 1496 * See also: drm_dp_mst_put_port_malloc() 1497 */ 1498 void 1499 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port) 1500 { 1501 kref_get(&port->malloc_kref); 1502 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref)); 1503 } 1504 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc); 1505 1506 /** 1507 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port 1508 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of 1509 * 1510 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref 1511 * reaches 0, the memory allocation for @port will be released and @port may 1512 * no longer be used. 1513 * 1514 * See also: drm_dp_mst_get_port_malloc() 1515 */ 1516 void 1517 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port) 1518 { 1519 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1); 1520 kref_put(&port->malloc_kref, drm_dp_free_mst_port); 1521 } 1522 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc); 1523 1524 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 1525 1526 #define STACK_DEPTH 8 1527 1528 static noinline void 1529 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr, 1530 struct drm_dp_mst_topology_ref_history *history, 1531 enum drm_dp_mst_topology_ref_type type) 1532 { 1533 struct drm_dp_mst_topology_ref_entry *entry = NULL; 1534 depot_stack_handle_t backtrace; 1535 ulong stack_entries[STACK_DEPTH]; 1536 uint n; 1537 int i; 1538 1539 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1); 1540 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL); 1541 if (!backtrace) 1542 return; 1543 1544 /* Try to find an existing entry for this backtrace */ 1545 for (i = 0; i < history->len; i++) { 1546 if (history->entries[i].backtrace == backtrace) { 1547 entry = &history->entries[i]; 1548 break; 1549 } 1550 } 1551 1552 /* Otherwise add one */ 1553 if (!entry) { 1554 struct drm_dp_mst_topology_ref_entry *new; 1555 int new_len = history->len + 1; 1556 1557 new = krealloc(history->entries, sizeof(*new) * new_len, 1558 GFP_KERNEL); 1559 if (!new) 1560 return; 1561 1562 entry = &new[history->len]; 1563 history->len = new_len; 1564 history->entries = new; 1565 1566 entry->backtrace = backtrace; 1567 entry->type = type; 1568 entry->count = 0; 1569 } 1570 entry->count++; 1571 entry->ts_nsec = ktime_get_ns(); 1572 } 1573 1574 static int 1575 topology_ref_history_cmp(const void *a, const void *b) 1576 { 1577 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b; 1578 1579 if (entry_a->ts_nsec > entry_b->ts_nsec) 1580 return 1; 1581 else if (entry_a->ts_nsec < entry_b->ts_nsec) 1582 return -1; 1583 else 1584 return 0; 1585 } 1586 1587 static inline const char * 1588 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type) 1589 { 1590 if (type == DRM_DP_MST_TOPOLOGY_REF_GET) 1591 return "get"; 1592 else 1593 return "put"; 1594 } 1595 1596 static void 1597 __dump_topology_ref_history(struct drm_device *drm, 1598 struct drm_dp_mst_topology_ref_history *history, 1599 void *ptr, const char *type_str) 1600 { 1601 struct drm_printer p = drm_dbg_printer(drm, DRM_UT_DP, DBG_PREFIX); 1602 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 1603 int i; 1604 1605 if (!buf) 1606 return; 1607 1608 if (!history->len) 1609 goto out; 1610 1611 /* First, sort the list so that it goes from oldest to newest 1612 * reference entry 1613 */ 1614 sort(history->entries, history->len, sizeof(*history->entries), 1615 topology_ref_history_cmp, NULL); 1616 1617 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n", 1618 type_str, ptr); 1619 1620 for (i = 0; i < history->len; i++) { 1621 const struct drm_dp_mst_topology_ref_entry *entry = 1622 &history->entries[i]; 1623 u64 ts_nsec = entry->ts_nsec; 1624 u32 rem_nsec = do_div(ts_nsec, 1000000000); 1625 1626 stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4); 1627 1628 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s", 1629 entry->count, 1630 topology_ref_type_to_str(entry->type), 1631 ts_nsec, rem_nsec / 1000, buf); 1632 } 1633 1634 /* Now free the history, since this is the only time we expose it */ 1635 kfree(history->entries); 1636 out: 1637 kfree(buf); 1638 } 1639 1640 static __always_inline void 1641 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) 1642 { 1643 __dump_topology_ref_history(mstb->mgr->dev, &mstb->topology_ref_history, 1644 mstb, "MSTB"); 1645 } 1646 1647 static __always_inline void 1648 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) 1649 { 1650 __dump_topology_ref_history(port->mgr->dev, &port->topology_ref_history, 1651 port, "Port"); 1652 } 1653 1654 static __always_inline void 1655 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb, 1656 enum drm_dp_mst_topology_ref_type type) 1657 { 1658 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type); 1659 } 1660 1661 static __always_inline void 1662 save_port_topology_ref(struct drm_dp_mst_port *port, 1663 enum drm_dp_mst_topology_ref_type type) 1664 { 1665 __topology_ref_save(port->mgr, &port->topology_ref_history, type); 1666 } 1667 1668 static inline void 1669 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) 1670 { 1671 mutex_lock(&mgr->topology_ref_history_lock); 1672 } 1673 1674 static inline void 1675 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) 1676 { 1677 mutex_unlock(&mgr->topology_ref_history_lock); 1678 } 1679 #else 1680 static inline void 1681 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {} 1682 static inline void 1683 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {} 1684 static inline void 1685 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {} 1686 static inline void 1687 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {} 1688 #define save_mstb_topology_ref(mstb, type) 1689 #define save_port_topology_ref(port, type) 1690 #endif 1691 1692 struct drm_dp_mst_atomic_payload * 1693 drm_atomic_get_mst_payload_state(struct drm_dp_mst_topology_state *state, 1694 struct drm_dp_mst_port *port) 1695 { 1696 struct drm_dp_mst_atomic_payload *payload; 1697 1698 list_for_each_entry(payload, &state->payloads, next) 1699 if (payload->port == port) 1700 return payload; 1701 1702 return NULL; 1703 } 1704 EXPORT_SYMBOL(drm_atomic_get_mst_payload_state); 1705 1706 static void drm_dp_destroy_mst_branch_device(struct kref *kref) 1707 { 1708 struct drm_dp_mst_branch *mstb = 1709 container_of(kref, struct drm_dp_mst_branch, topology_kref); 1710 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 1711 1712 drm_dp_mst_dump_mstb_topology_history(mstb); 1713 1714 INIT_LIST_HEAD(&mstb->destroy_next); 1715 1716 /* 1717 * This can get called under mgr->mutex, so we need to perform the 1718 * actual destruction of the mstb in another worker 1719 */ 1720 mutex_lock(&mgr->delayed_destroy_lock); 1721 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list); 1722 mutex_unlock(&mgr->delayed_destroy_lock); 1723 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1724 } 1725 1726 /** 1727 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a 1728 * branch device unless it's zero 1729 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of 1730 * 1731 * Attempts to grab a topology reference to @mstb, if it hasn't yet been 1732 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has 1733 * reached 0). Holding a topology reference implies that a malloc reference 1734 * will be held to @mstb as long as the user holds the topology reference. 1735 * 1736 * Care should be taken to ensure that the user has at least one malloc 1737 * reference to @mstb. If you already have a topology reference to @mstb, you 1738 * should use drm_dp_mst_topology_get_mstb() instead. 1739 * 1740 * See also: 1741 * drm_dp_mst_topology_get_mstb() 1742 * drm_dp_mst_topology_put_mstb() 1743 * 1744 * Returns: 1745 * * 1: A topology reference was grabbed successfully 1746 * * 0: @port is no longer in the topology, no reference was grabbed 1747 */ 1748 static int __must_check 1749 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb) 1750 { 1751 int ret; 1752 1753 topology_ref_history_lock(mstb->mgr); 1754 ret = kref_get_unless_zero(&mstb->topology_kref); 1755 if (ret) { 1756 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1757 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1758 } 1759 1760 topology_ref_history_unlock(mstb->mgr); 1761 1762 return ret; 1763 } 1764 1765 /** 1766 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a 1767 * branch device 1768 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of 1769 * 1770 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or 1771 * not it's already reached 0. This is only valid to use in scenarios where 1772 * you are already guaranteed to have at least one active topology reference 1773 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used. 1774 * 1775 * See also: 1776 * drm_dp_mst_topology_try_get_mstb() 1777 * drm_dp_mst_topology_put_mstb() 1778 */ 1779 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb) 1780 { 1781 topology_ref_history_lock(mstb->mgr); 1782 1783 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET); 1784 WARN_ON(kref_read(&mstb->topology_kref) == 0); 1785 kref_get(&mstb->topology_kref); 1786 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref)); 1787 1788 topology_ref_history_unlock(mstb->mgr); 1789 } 1790 1791 /** 1792 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch 1793 * device 1794 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from 1795 * 1796 * Releases a topology reference from @mstb by decrementing 1797 * &drm_dp_mst_branch.topology_kref. 1798 * 1799 * See also: 1800 * drm_dp_mst_topology_try_get_mstb() 1801 * drm_dp_mst_topology_get_mstb() 1802 */ 1803 static void 1804 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb) 1805 { 1806 topology_ref_history_lock(mstb->mgr); 1807 1808 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1); 1809 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT); 1810 1811 topology_ref_history_unlock(mstb->mgr); 1812 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device); 1813 } 1814 1815 static void drm_dp_destroy_port(struct kref *kref) 1816 { 1817 struct drm_dp_mst_port *port = 1818 container_of(kref, struct drm_dp_mst_port, topology_kref); 1819 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 1820 1821 drm_dp_mst_dump_port_topology_history(port); 1822 1823 /* There's nothing that needs locking to destroy an input port yet */ 1824 if (port->input) { 1825 drm_dp_mst_put_port_malloc(port); 1826 return; 1827 } 1828 1829 drm_edid_free(port->cached_edid); 1830 1831 /* 1832 * we can't destroy the connector here, as we might be holding the 1833 * mode_config.mutex from an EDID retrieval 1834 */ 1835 mutex_lock(&mgr->delayed_destroy_lock); 1836 list_add(&port->next, &mgr->destroy_port_list); 1837 mutex_unlock(&mgr->delayed_destroy_lock); 1838 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work); 1839 } 1840 1841 /** 1842 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a 1843 * port unless it's zero 1844 * @port: &struct drm_dp_mst_port to increment the topology refcount of 1845 * 1846 * Attempts to grab a topology reference to @port, if it hasn't yet been 1847 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached 1848 * 0). Holding a topology reference implies that a malloc reference will be 1849 * held to @port as long as the user holds the topology reference. 1850 * 1851 * Care should be taken to ensure that the user has at least one malloc 1852 * reference to @port. If you already have a topology reference to @port, you 1853 * should use drm_dp_mst_topology_get_port() instead. 1854 * 1855 * See also: 1856 * drm_dp_mst_topology_get_port() 1857 * drm_dp_mst_topology_put_port() 1858 * 1859 * Returns: 1860 * * 1: A topology reference was grabbed successfully 1861 * * 0: @port is no longer in the topology, no reference was grabbed 1862 */ 1863 static int __must_check 1864 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port) 1865 { 1866 int ret; 1867 1868 topology_ref_history_lock(port->mgr); 1869 ret = kref_get_unless_zero(&port->topology_kref); 1870 if (ret) { 1871 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1872 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1873 } 1874 1875 topology_ref_history_unlock(port->mgr); 1876 return ret; 1877 } 1878 1879 /** 1880 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port 1881 * @port: The &struct drm_dp_mst_port to increment the topology refcount of 1882 * 1883 * Increments &drm_dp_mst_port.topology_refcount without checking whether or 1884 * not it's already reached 0. This is only valid to use in scenarios where 1885 * you are already guaranteed to have at least one active topology reference 1886 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used. 1887 * 1888 * See also: 1889 * drm_dp_mst_topology_try_get_port() 1890 * drm_dp_mst_topology_put_port() 1891 */ 1892 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port) 1893 { 1894 topology_ref_history_lock(port->mgr); 1895 1896 WARN_ON(kref_read(&port->topology_kref) == 0); 1897 kref_get(&port->topology_kref); 1898 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref)); 1899 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET); 1900 1901 topology_ref_history_unlock(port->mgr); 1902 } 1903 1904 /** 1905 * drm_dp_mst_topology_put_port() - release a topology reference to a port 1906 * @port: The &struct drm_dp_mst_port to release the topology reference from 1907 * 1908 * Releases a topology reference from @port by decrementing 1909 * &drm_dp_mst_port.topology_kref. 1910 * 1911 * See also: 1912 * drm_dp_mst_topology_try_get_port() 1913 * drm_dp_mst_topology_get_port() 1914 */ 1915 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port) 1916 { 1917 topology_ref_history_lock(port->mgr); 1918 1919 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1); 1920 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT); 1921 1922 topology_ref_history_unlock(port->mgr); 1923 kref_put(&port->topology_kref, drm_dp_destroy_port); 1924 } 1925 1926 static struct drm_dp_mst_branch * 1927 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb, 1928 struct drm_dp_mst_branch *to_find) 1929 { 1930 struct drm_dp_mst_port *port; 1931 struct drm_dp_mst_branch *rmstb; 1932 1933 if (to_find == mstb) 1934 return mstb; 1935 1936 list_for_each_entry(port, &mstb->ports, next) { 1937 if (port->mstb) { 1938 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1939 port->mstb, to_find); 1940 if (rmstb) 1941 return rmstb; 1942 } 1943 } 1944 return NULL; 1945 } 1946 1947 static struct drm_dp_mst_branch * 1948 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr, 1949 struct drm_dp_mst_branch *mstb) 1950 { 1951 struct drm_dp_mst_branch *rmstb = NULL; 1952 1953 mutex_lock(&mgr->lock); 1954 if (mgr->mst_primary) { 1955 rmstb = drm_dp_mst_topology_get_mstb_validated_locked( 1956 mgr->mst_primary, mstb); 1957 1958 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb)) 1959 rmstb = NULL; 1960 } 1961 mutex_unlock(&mgr->lock); 1962 return rmstb; 1963 } 1964 1965 static struct drm_dp_mst_port * 1966 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb, 1967 struct drm_dp_mst_port *to_find) 1968 { 1969 struct drm_dp_mst_port *port, *mport; 1970 1971 list_for_each_entry(port, &mstb->ports, next) { 1972 if (port == to_find) 1973 return port; 1974 1975 if (port->mstb) { 1976 mport = drm_dp_mst_topology_get_port_validated_locked( 1977 port->mstb, to_find); 1978 if (mport) 1979 return mport; 1980 } 1981 } 1982 return NULL; 1983 } 1984 1985 static struct drm_dp_mst_port * 1986 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr, 1987 struct drm_dp_mst_port *port) 1988 { 1989 struct drm_dp_mst_port *rport = NULL; 1990 1991 mutex_lock(&mgr->lock); 1992 if (mgr->mst_primary) { 1993 rport = drm_dp_mst_topology_get_port_validated_locked( 1994 mgr->mst_primary, port); 1995 1996 if (rport && !drm_dp_mst_topology_try_get_port(rport)) 1997 rport = NULL; 1998 } 1999 mutex_unlock(&mgr->lock); 2000 return rport; 2001 } 2002 2003 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num) 2004 { 2005 struct drm_dp_mst_port *port; 2006 int ret; 2007 2008 list_for_each_entry(port, &mstb->ports, next) { 2009 if (port->port_num == port_num) { 2010 ret = drm_dp_mst_topology_try_get_port(port); 2011 return ret ? port : NULL; 2012 } 2013 } 2014 2015 return NULL; 2016 } 2017 2018 /* 2019 * calculate a new RAD for this MST branch device 2020 * if parent has an LCT of 2 then it has 1 nibble of RAD, 2021 * if parent has an LCT of 3 then it has 2 nibbles of RAD, 2022 */ 2023 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port, 2024 u8 *rad) 2025 { 2026 int parent_lct = port->parent->lct; 2027 int shift = 4; 2028 int idx = (parent_lct - 1) / 2; 2029 2030 if (parent_lct > 1) { 2031 memcpy(rad, port->parent->rad, idx + 1); 2032 shift = (parent_lct % 2) ? 4 : 0; 2033 } else 2034 rad[0] = 0; 2035 2036 rad[idx] |= port->port_num << shift; 2037 return parent_lct + 1; 2038 } 2039 2040 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs) 2041 { 2042 switch (pdt) { 2043 case DP_PEER_DEVICE_DP_LEGACY_CONV: 2044 case DP_PEER_DEVICE_SST_SINK: 2045 return true; 2046 case DP_PEER_DEVICE_MST_BRANCHING: 2047 /* For sst branch device */ 2048 if (!mcs) 2049 return true; 2050 2051 return false; 2052 } 2053 return true; 2054 } 2055 2056 static int 2057 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt, 2058 bool new_mcs) 2059 { 2060 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2061 struct drm_dp_mst_branch *mstb; 2062 u8 rad[8], lct; 2063 int ret = 0; 2064 2065 if (port->pdt == new_pdt && port->mcs == new_mcs) 2066 return 0; 2067 2068 /* Teardown the old pdt, if there is one */ 2069 if (port->pdt != DP_PEER_DEVICE_NONE) { 2070 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2071 /* 2072 * If the new PDT would also have an i2c bus, 2073 * don't bother with reregistering it 2074 */ 2075 if (new_pdt != DP_PEER_DEVICE_NONE && 2076 drm_dp_mst_is_end_device(new_pdt, new_mcs)) { 2077 port->pdt = new_pdt; 2078 port->mcs = new_mcs; 2079 return 0; 2080 } 2081 2082 /* remove i2c over sideband */ 2083 drm_dp_mst_unregister_i2c_bus(port); 2084 } else { 2085 mutex_lock(&mgr->lock); 2086 drm_dp_mst_topology_put_mstb(port->mstb); 2087 port->mstb = NULL; 2088 mutex_unlock(&mgr->lock); 2089 } 2090 } 2091 2092 port->pdt = new_pdt; 2093 port->mcs = new_mcs; 2094 2095 if (port->pdt != DP_PEER_DEVICE_NONE) { 2096 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 2097 /* add i2c over sideband */ 2098 ret = drm_dp_mst_register_i2c_bus(port); 2099 } else { 2100 lct = drm_dp_calculate_rad(port, rad); 2101 mstb = drm_dp_add_mst_branch_device(lct, rad); 2102 if (!mstb) { 2103 ret = -ENOMEM; 2104 drm_err(mgr->dev, "Failed to create MSTB for port %p", port); 2105 goto out; 2106 } 2107 2108 mutex_lock(&mgr->lock); 2109 port->mstb = mstb; 2110 mstb->mgr = port->mgr; 2111 mstb->port_parent = port; 2112 2113 /* 2114 * Make sure this port's memory allocation stays 2115 * around until its child MSTB releases it 2116 */ 2117 drm_dp_mst_get_port_malloc(port); 2118 mutex_unlock(&mgr->lock); 2119 2120 /* And make sure we send a link address for this */ 2121 ret = 1; 2122 } 2123 } 2124 2125 out: 2126 if (ret < 0) 2127 port->pdt = DP_PEER_DEVICE_NONE; 2128 return ret; 2129 } 2130 2131 /** 2132 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband 2133 * @aux: Fake sideband AUX CH 2134 * @offset: address of the (first) register to read 2135 * @buffer: buffer to store the register values 2136 * @size: number of bytes in @buffer 2137 * 2138 * Performs the same functionality for remote devices via 2139 * sideband messaging as drm_dp_dpcd_read() does for local 2140 * devices via actual AUX CH. 2141 * 2142 * Return: Number of bytes read, or negative error code on failure. 2143 */ 2144 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux, 2145 unsigned int offset, void *buffer, size_t size) 2146 { 2147 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2148 aux); 2149 2150 return drm_dp_send_dpcd_read(port->mgr, port, 2151 offset, size, buffer); 2152 } 2153 2154 /** 2155 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband 2156 * @aux: Fake sideband AUX CH 2157 * @offset: address of the (first) register to write 2158 * @buffer: buffer containing the values to write 2159 * @size: number of bytes in @buffer 2160 * 2161 * Performs the same functionality for remote devices via 2162 * sideband messaging as drm_dp_dpcd_write() does for local 2163 * devices via actual AUX CH. 2164 * 2165 * Return: number of bytes written on success, negative error code on failure. 2166 */ 2167 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux, 2168 unsigned int offset, void *buffer, size_t size) 2169 { 2170 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, 2171 aux); 2172 2173 return drm_dp_send_dpcd_write(port->mgr, port, 2174 offset, size, buffer); 2175 } 2176 2177 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid) 2178 { 2179 int ret = 0; 2180 2181 memcpy(mstb->guid, guid, 16); 2182 2183 if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) { 2184 if (mstb->port_parent) { 2185 ret = drm_dp_send_dpcd_write(mstb->mgr, 2186 mstb->port_parent, 2187 DP_GUID, 16, mstb->guid); 2188 } else { 2189 ret = drm_dp_dpcd_write(mstb->mgr->aux, 2190 DP_GUID, mstb->guid, 16); 2191 } 2192 } 2193 2194 if (ret < 16 && ret > 0) 2195 return -EPROTO; 2196 2197 return ret == 16 ? 0 : ret; 2198 } 2199 2200 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb, 2201 int pnum, 2202 char *proppath, 2203 size_t proppath_size) 2204 { 2205 int i; 2206 char temp[8]; 2207 2208 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id); 2209 for (i = 0; i < (mstb->lct - 1); i++) { 2210 int shift = (i % 2) ? 0 : 4; 2211 int port_num = (mstb->rad[i / 2] >> shift) & 0xf; 2212 2213 snprintf(temp, sizeof(temp), "-%d", port_num); 2214 strlcat(proppath, temp, proppath_size); 2215 } 2216 snprintf(temp, sizeof(temp), "-%d", pnum); 2217 strlcat(proppath, temp, proppath_size); 2218 } 2219 2220 /** 2221 * drm_dp_mst_connector_late_register() - Late MST connector registration 2222 * @connector: The MST connector 2223 * @port: The MST port for this connector 2224 * 2225 * Helper to register the remote aux device for this MST port. Drivers should 2226 * call this from their mst connector's late_register hook to enable MST aux 2227 * devices. 2228 * 2229 * Return: 0 on success, negative error code on failure. 2230 */ 2231 int drm_dp_mst_connector_late_register(struct drm_connector *connector, 2232 struct drm_dp_mst_port *port) 2233 { 2234 drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n", 2235 port->aux.name, connector->kdev->kobj.name); 2236 2237 port->aux.dev = connector->kdev; 2238 return drm_dp_aux_register_devnode(&port->aux); 2239 } 2240 EXPORT_SYMBOL(drm_dp_mst_connector_late_register); 2241 2242 /** 2243 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration 2244 * @connector: The MST connector 2245 * @port: The MST port for this connector 2246 * 2247 * Helper to unregister the remote aux device for this MST port, registered by 2248 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst 2249 * connector's early_unregister hook. 2250 */ 2251 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector, 2252 struct drm_dp_mst_port *port) 2253 { 2254 drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n", 2255 port->aux.name, connector->kdev->kobj.name); 2256 drm_dp_aux_unregister_devnode(&port->aux); 2257 } 2258 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister); 2259 2260 static void 2261 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb, 2262 struct drm_dp_mst_port *port) 2263 { 2264 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 2265 char proppath[255]; 2266 int ret; 2267 2268 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath)); 2269 port->connector = mgr->cbs->add_connector(mgr, port, proppath); 2270 if (!port->connector) { 2271 ret = -ENOMEM; 2272 goto error; 2273 } 2274 2275 if (port->pdt != DP_PEER_DEVICE_NONE && 2276 drm_dp_mst_is_end_device(port->pdt, port->mcs) && 2277 drm_dp_mst_port_is_logical(port)) 2278 port->cached_edid = drm_edid_read_ddc(port->connector, 2279 &port->aux.ddc); 2280 2281 drm_connector_register(port->connector); 2282 return; 2283 2284 error: 2285 drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret); 2286 } 2287 2288 /* 2289 * Drop a topology reference, and unlink the port from the in-memory topology 2290 * layout 2291 */ 2292 static void 2293 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr, 2294 struct drm_dp_mst_port *port) 2295 { 2296 mutex_lock(&mgr->lock); 2297 port->parent->num_ports--; 2298 list_del(&port->next); 2299 mutex_unlock(&mgr->lock); 2300 drm_dp_mst_topology_put_port(port); 2301 } 2302 2303 static struct drm_dp_mst_port * 2304 drm_dp_mst_add_port(struct drm_device *dev, 2305 struct drm_dp_mst_topology_mgr *mgr, 2306 struct drm_dp_mst_branch *mstb, u8 port_number) 2307 { 2308 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL); 2309 2310 if (!port) 2311 return NULL; 2312 2313 kref_init(&port->topology_kref); 2314 kref_init(&port->malloc_kref); 2315 port->parent = mstb; 2316 port->port_num = port_number; 2317 port->mgr = mgr; 2318 port->aux.name = "DPMST"; 2319 port->aux.dev = dev->dev; 2320 port->aux.is_remote = true; 2321 2322 /* initialize the MST downstream port's AUX crc work queue */ 2323 port->aux.drm_dev = dev; 2324 drm_dp_remote_aux_init(&port->aux); 2325 2326 /* 2327 * Make sure the memory allocation for our parent branch stays 2328 * around until our own memory allocation is released 2329 */ 2330 drm_dp_mst_get_mstb_malloc(mstb); 2331 2332 return port; 2333 } 2334 2335 static int 2336 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb, 2337 struct drm_device *dev, 2338 struct drm_dp_link_addr_reply_port *port_msg) 2339 { 2340 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2341 struct drm_dp_mst_port *port; 2342 int ret; 2343 u8 new_pdt = DP_PEER_DEVICE_NONE; 2344 bool new_mcs = 0; 2345 bool created = false, send_link_addr = false, changed = false; 2346 2347 port = drm_dp_get_port(mstb, port_msg->port_number); 2348 if (!port) { 2349 port = drm_dp_mst_add_port(dev, mgr, mstb, 2350 port_msg->port_number); 2351 if (!port) 2352 return -ENOMEM; 2353 created = true; 2354 changed = true; 2355 } else if (!port->input && port_msg->input_port && port->connector) { 2356 /* Since port->connector can't be changed here, we create a 2357 * new port if input_port changes from 0 to 1 2358 */ 2359 drm_dp_mst_topology_unlink_port(mgr, port); 2360 drm_dp_mst_topology_put_port(port); 2361 port = drm_dp_mst_add_port(dev, mgr, mstb, 2362 port_msg->port_number); 2363 if (!port) 2364 return -ENOMEM; 2365 changed = true; 2366 created = true; 2367 } else if (port->input && !port_msg->input_port) { 2368 changed = true; 2369 } else if (port->connector) { 2370 /* We're updating a port that's exposed to userspace, so do it 2371 * under lock 2372 */ 2373 drm_modeset_lock(&mgr->base.lock, NULL); 2374 2375 changed = port->ddps != port_msg->ddps || 2376 (port->ddps && 2377 (port->ldps != port_msg->legacy_device_plug_status || 2378 port->dpcd_rev != port_msg->dpcd_revision || 2379 port->mcs != port_msg->mcs || 2380 port->pdt != port_msg->peer_device_type || 2381 port->num_sdp_stream_sinks != 2382 port_msg->num_sdp_stream_sinks)); 2383 } 2384 2385 port->input = port_msg->input_port; 2386 if (!port->input) 2387 new_pdt = port_msg->peer_device_type; 2388 new_mcs = port_msg->mcs; 2389 port->ddps = port_msg->ddps; 2390 port->ldps = port_msg->legacy_device_plug_status; 2391 port->dpcd_rev = port_msg->dpcd_revision; 2392 port->num_sdp_streams = port_msg->num_sdp_streams; 2393 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks; 2394 2395 /* manage mstb port lists with mgr lock - take a reference 2396 for this list */ 2397 if (created) { 2398 mutex_lock(&mgr->lock); 2399 drm_dp_mst_topology_get_port(port); 2400 list_add(&port->next, &mstb->ports); 2401 mstb->num_ports++; 2402 mutex_unlock(&mgr->lock); 2403 } 2404 2405 /* 2406 * Reprobe PBN caps on both hotplug, and when re-probing the link 2407 * for our parent mstb 2408 */ 2409 if (port->ddps && !port->input) { 2410 ret = drm_dp_send_enum_path_resources(mgr, mstb, 2411 port); 2412 if (ret == 1) 2413 changed = true; 2414 } else { 2415 port->full_pbn = 0; 2416 } 2417 2418 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2419 if (ret == 1) { 2420 send_link_addr = true; 2421 } else if (ret < 0) { 2422 drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret); 2423 goto fail; 2424 } 2425 2426 /* 2427 * If this port wasn't just created, then we're reprobing because 2428 * we're coming out of suspend. In this case, always resend the link 2429 * address if there's an MSTB on this port 2430 */ 2431 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 2432 port->mcs) 2433 send_link_addr = true; 2434 2435 if (port->connector) 2436 drm_modeset_unlock(&mgr->base.lock); 2437 else if (!port->input) 2438 drm_dp_mst_port_add_connector(mstb, port); 2439 2440 if (send_link_addr && port->mstb) { 2441 ret = drm_dp_send_link_address(mgr, port->mstb); 2442 if (ret == 1) /* MSTB below us changed */ 2443 changed = true; 2444 else if (ret < 0) 2445 goto fail_put; 2446 } 2447 2448 /* put reference to this port */ 2449 drm_dp_mst_topology_put_port(port); 2450 return changed; 2451 2452 fail: 2453 drm_dp_mst_topology_unlink_port(mgr, port); 2454 if (port->connector) 2455 drm_modeset_unlock(&mgr->base.lock); 2456 fail_put: 2457 drm_dp_mst_topology_put_port(port); 2458 return ret; 2459 } 2460 2461 static int 2462 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb, 2463 struct drm_dp_connection_status_notify *conn_stat) 2464 { 2465 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 2466 struct drm_dp_mst_port *port; 2467 int old_ddps, ret; 2468 u8 new_pdt; 2469 bool new_mcs; 2470 bool dowork = false, create_connector = false; 2471 2472 port = drm_dp_get_port(mstb, conn_stat->port_number); 2473 if (!port) 2474 return 0; 2475 2476 if (port->connector) { 2477 if (!port->input && conn_stat->input_port) { 2478 /* 2479 * We can't remove a connector from an already exposed 2480 * port, so just throw the port out and make sure we 2481 * reprobe the link address of it's parent MSTB 2482 */ 2483 drm_dp_mst_topology_unlink_port(mgr, port); 2484 mstb->link_address_sent = false; 2485 dowork = true; 2486 goto out; 2487 } 2488 2489 /* Locking is only needed if the port's exposed to userspace */ 2490 drm_modeset_lock(&mgr->base.lock, NULL); 2491 } else if (port->input && !conn_stat->input_port) { 2492 create_connector = true; 2493 /* Reprobe link address so we get num_sdp_streams */ 2494 mstb->link_address_sent = false; 2495 dowork = true; 2496 } 2497 2498 old_ddps = port->ddps; 2499 port->input = conn_stat->input_port; 2500 port->ldps = conn_stat->legacy_device_plug_status; 2501 port->ddps = conn_stat->displayport_device_plug_status; 2502 2503 if (old_ddps != port->ddps) { 2504 if (port->ddps && !port->input) 2505 drm_dp_send_enum_path_resources(mgr, mstb, port); 2506 else 2507 port->full_pbn = 0; 2508 } 2509 2510 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type; 2511 new_mcs = conn_stat->message_capability_status; 2512 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs); 2513 if (ret == 1) { 2514 dowork = true; 2515 } else if (ret < 0) { 2516 drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret); 2517 dowork = false; 2518 } 2519 2520 if (port->connector) 2521 drm_modeset_unlock(&mgr->base.lock); 2522 else if (create_connector) 2523 drm_dp_mst_port_add_connector(mstb, port); 2524 2525 out: 2526 drm_dp_mst_topology_put_port(port); 2527 return dowork; 2528 } 2529 2530 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr, 2531 u8 lct, u8 *rad) 2532 { 2533 struct drm_dp_mst_branch *mstb; 2534 struct drm_dp_mst_port *port; 2535 int i, ret; 2536 /* find the port by iterating down */ 2537 2538 mutex_lock(&mgr->lock); 2539 mstb = mgr->mst_primary; 2540 2541 if (!mstb) 2542 goto out; 2543 2544 for (i = 0; i < lct - 1; i++) { 2545 int shift = (i % 2) ? 0 : 4; 2546 int port_num = (rad[i / 2] >> shift) & 0xf; 2547 2548 list_for_each_entry(port, &mstb->ports, next) { 2549 if (port->port_num == port_num) { 2550 mstb = port->mstb; 2551 if (!mstb) { 2552 drm_err(mgr->dev, 2553 "failed to lookup MSTB with lct %d, rad %02x\n", 2554 lct, rad[0]); 2555 goto out; 2556 } 2557 2558 break; 2559 } 2560 } 2561 } 2562 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2563 if (!ret) 2564 mstb = NULL; 2565 out: 2566 mutex_unlock(&mgr->lock); 2567 return mstb; 2568 } 2569 2570 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper( 2571 struct drm_dp_mst_branch *mstb, 2572 const uint8_t *guid) 2573 { 2574 struct drm_dp_mst_branch *found_mstb; 2575 struct drm_dp_mst_port *port; 2576 2577 if (!mstb) 2578 return NULL; 2579 2580 if (memcmp(mstb->guid, guid, 16) == 0) 2581 return mstb; 2582 2583 2584 list_for_each_entry(port, &mstb->ports, next) { 2585 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid); 2586 2587 if (found_mstb) 2588 return found_mstb; 2589 } 2590 2591 return NULL; 2592 } 2593 2594 static struct drm_dp_mst_branch * 2595 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr, 2596 const uint8_t *guid) 2597 { 2598 struct drm_dp_mst_branch *mstb; 2599 int ret; 2600 2601 /* find the port by iterating down */ 2602 mutex_lock(&mgr->lock); 2603 2604 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid); 2605 if (mstb) { 2606 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2607 if (!ret) 2608 mstb = NULL; 2609 } 2610 2611 mutex_unlock(&mgr->lock); 2612 return mstb; 2613 } 2614 2615 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2616 struct drm_dp_mst_branch *mstb) 2617 { 2618 struct drm_dp_mst_port *port; 2619 int ret; 2620 bool changed = false; 2621 2622 if (!mstb->link_address_sent) { 2623 ret = drm_dp_send_link_address(mgr, mstb); 2624 if (ret == 1) 2625 changed = true; 2626 else if (ret < 0) 2627 return ret; 2628 } 2629 2630 list_for_each_entry(port, &mstb->ports, next) { 2631 if (port->input || !port->ddps || !port->mstb) 2632 continue; 2633 2634 ret = drm_dp_check_and_send_link_address(mgr, port->mstb); 2635 if (ret == 1) 2636 changed = true; 2637 else if (ret < 0) 2638 return ret; 2639 } 2640 2641 return changed; 2642 } 2643 2644 static void drm_dp_mst_link_probe_work(struct work_struct *work) 2645 { 2646 struct drm_dp_mst_topology_mgr *mgr = 2647 container_of(work, struct drm_dp_mst_topology_mgr, work); 2648 struct drm_device *dev = mgr->dev; 2649 struct drm_dp_mst_branch *mstb; 2650 int ret; 2651 bool clear_payload_id_table; 2652 2653 mutex_lock(&mgr->probe_lock); 2654 2655 mutex_lock(&mgr->lock); 2656 clear_payload_id_table = !mgr->payload_id_table_cleared; 2657 mgr->payload_id_table_cleared = true; 2658 2659 mstb = mgr->mst_primary; 2660 if (mstb) { 2661 ret = drm_dp_mst_topology_try_get_mstb(mstb); 2662 if (!ret) 2663 mstb = NULL; 2664 } 2665 mutex_unlock(&mgr->lock); 2666 if (!mstb) { 2667 mutex_unlock(&mgr->probe_lock); 2668 return; 2669 } 2670 2671 /* 2672 * Certain branch devices seem to incorrectly report an available_pbn 2673 * of 0 on downstream sinks, even after clearing the 2674 * DP_PAYLOAD_ALLOCATE_* registers in 2675 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C 2676 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make 2677 * things work again. 2678 */ 2679 if (clear_payload_id_table) { 2680 drm_dbg_kms(dev, "Clearing payload ID table\n"); 2681 drm_dp_send_clear_payload_id_table(mgr, mstb); 2682 } 2683 2684 ret = drm_dp_check_and_send_link_address(mgr, mstb); 2685 drm_dp_mst_topology_put_mstb(mstb); 2686 2687 mutex_unlock(&mgr->probe_lock); 2688 if (ret > 0) 2689 drm_kms_helper_hotplug_event(dev); 2690 } 2691 2692 static void drm_dp_mst_queue_probe_work(struct drm_dp_mst_topology_mgr *mgr) 2693 { 2694 queue_work(system_long_wq, &mgr->work); 2695 } 2696 2697 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr, 2698 u8 *guid) 2699 { 2700 u64 salt; 2701 2702 if (memchr_inv(guid, 0, 16)) 2703 return true; 2704 2705 salt = get_jiffies_64(); 2706 2707 memcpy(&guid[0], &salt, sizeof(u64)); 2708 memcpy(&guid[8], &salt, sizeof(u64)); 2709 2710 return false; 2711 } 2712 2713 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, 2714 u8 port_num, u32 offset, u8 num_bytes) 2715 { 2716 struct drm_dp_sideband_msg_req_body req; 2717 2718 req.req_type = DP_REMOTE_DPCD_READ; 2719 req.u.dpcd_read.port_number = port_num; 2720 req.u.dpcd_read.dpcd_address = offset; 2721 req.u.dpcd_read.num_bytes = num_bytes; 2722 drm_dp_encode_sideband_req(&req, msg); 2723 } 2724 2725 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr, 2726 bool up, u8 *msg, int len) 2727 { 2728 int ret; 2729 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE; 2730 int tosend, total, offset; 2731 int retries = 0; 2732 2733 retry: 2734 total = len; 2735 offset = 0; 2736 do { 2737 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total); 2738 2739 ret = drm_dp_dpcd_write(mgr->aux, regbase + offset, 2740 &msg[offset], 2741 tosend); 2742 if (ret != tosend) { 2743 if (ret == -EIO && retries < 5) { 2744 retries++; 2745 goto retry; 2746 } 2747 drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret); 2748 2749 return -EIO; 2750 } 2751 offset += tosend; 2752 total -= tosend; 2753 } while (total > 0); 2754 return 0; 2755 } 2756 2757 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr, 2758 struct drm_dp_sideband_msg_tx *txmsg) 2759 { 2760 struct drm_dp_mst_branch *mstb = txmsg->dst; 2761 u8 req_type; 2762 2763 req_type = txmsg->msg[0] & 0x7f; 2764 if (req_type == DP_CONNECTION_STATUS_NOTIFY || 2765 req_type == DP_RESOURCE_STATUS_NOTIFY || 2766 req_type == DP_CLEAR_PAYLOAD_ID_TABLE) 2767 hdr->broadcast = 1; 2768 else 2769 hdr->broadcast = 0; 2770 hdr->path_msg = txmsg->path_msg; 2771 if (hdr->broadcast) { 2772 hdr->lct = 1; 2773 hdr->lcr = 6; 2774 } else { 2775 hdr->lct = mstb->lct; 2776 hdr->lcr = mstb->lct - 1; 2777 } 2778 2779 memcpy(hdr->rad, mstb->rad, hdr->lct / 2); 2780 2781 return 0; 2782 } 2783 /* 2784 * process a single block of the next message in the sideband queue 2785 */ 2786 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr, 2787 struct drm_dp_sideband_msg_tx *txmsg, 2788 bool up) 2789 { 2790 u8 chunk[48]; 2791 struct drm_dp_sideband_msg_hdr hdr; 2792 int len, space, idx, tosend; 2793 int ret; 2794 2795 if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 2796 return 0; 2797 2798 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr)); 2799 2800 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) 2801 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND; 2802 2803 /* make hdr from dst mst */ 2804 ret = set_hdr_from_dst_qlock(&hdr, txmsg); 2805 if (ret < 0) 2806 return ret; 2807 2808 /* amount left to send in this message */ 2809 len = txmsg->cur_len - txmsg->cur_offset; 2810 2811 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */ 2812 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr); 2813 2814 tosend = min(len, space); 2815 if (len == txmsg->cur_len) 2816 hdr.somt = 1; 2817 if (space >= len) 2818 hdr.eomt = 1; 2819 2820 2821 hdr.msg_len = tosend + 1; 2822 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx); 2823 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend); 2824 /* add crc at end */ 2825 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend); 2826 idx += tosend + 1; 2827 2828 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx); 2829 if (ret) { 2830 if (drm_debug_enabled(DRM_UT_DP)) { 2831 struct drm_printer p = drm_dbg_printer(mgr->dev, 2832 DRM_UT_DP, 2833 DBG_PREFIX); 2834 2835 drm_printf(&p, "sideband msg failed to send\n"); 2836 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2837 } 2838 return ret; 2839 } 2840 2841 txmsg->cur_offset += tosend; 2842 if (txmsg->cur_offset == txmsg->cur_len) { 2843 txmsg->state = DRM_DP_SIDEBAND_TX_SENT; 2844 return 1; 2845 } 2846 return 0; 2847 } 2848 2849 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr) 2850 { 2851 struct drm_dp_sideband_msg_tx *txmsg; 2852 int ret; 2853 2854 WARN_ON(!mutex_is_locked(&mgr->qlock)); 2855 2856 /* construct a chunk from the first msg in the tx_msg queue */ 2857 if (list_empty(&mgr->tx_msg_downq)) 2858 return; 2859 2860 txmsg = list_first_entry(&mgr->tx_msg_downq, 2861 struct drm_dp_sideband_msg_tx, next); 2862 ret = process_single_tx_qlock(mgr, txmsg, false); 2863 if (ret < 0) { 2864 drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret); 2865 list_del(&txmsg->next); 2866 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 2867 wake_up_all(&mgr->tx_waitq); 2868 } 2869 } 2870 2871 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr, 2872 struct drm_dp_sideband_msg_tx *txmsg) 2873 { 2874 mutex_lock(&mgr->qlock); 2875 list_add_tail(&txmsg->next, &mgr->tx_msg_downq); 2876 2877 if (drm_debug_enabled(DRM_UT_DP)) { 2878 struct drm_printer p = drm_dbg_printer(mgr->dev, DRM_UT_DP, 2879 DBG_PREFIX); 2880 2881 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg); 2882 } 2883 2884 if (list_is_singular(&mgr->tx_msg_downq)) 2885 process_single_down_tx_qlock(mgr); 2886 mutex_unlock(&mgr->qlock); 2887 } 2888 2889 static void 2890 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr, 2891 struct drm_dp_link_address_ack_reply *reply) 2892 { 2893 struct drm_dp_link_addr_reply_port *port_reply; 2894 int i; 2895 2896 for (i = 0; i < reply->nports; i++) { 2897 port_reply = &reply->ports[i]; 2898 drm_dbg_kms(mgr->dev, 2899 "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n", 2900 i, 2901 port_reply->input_port, 2902 port_reply->peer_device_type, 2903 port_reply->port_number, 2904 port_reply->dpcd_revision, 2905 port_reply->mcs, 2906 port_reply->ddps, 2907 port_reply->legacy_device_plug_status, 2908 port_reply->num_sdp_streams, 2909 port_reply->num_sdp_stream_sinks); 2910 } 2911 } 2912 2913 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr, 2914 struct drm_dp_mst_branch *mstb) 2915 { 2916 struct drm_dp_sideband_msg_tx *txmsg; 2917 struct drm_dp_link_address_ack_reply *reply; 2918 struct drm_dp_mst_port *port, *tmp; 2919 int i, ret, port_mask = 0; 2920 bool changed = false; 2921 2922 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 2923 if (!txmsg) 2924 return -ENOMEM; 2925 2926 txmsg->dst = mstb; 2927 build_link_address(txmsg); 2928 2929 mstb->link_address_sent = true; 2930 drm_dp_queue_down_tx(mgr, txmsg); 2931 2932 /* FIXME: Actually do some real error handling here */ 2933 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 2934 if (ret < 0) { 2935 drm_err(mgr->dev, "Sending link address failed with %d\n", ret); 2936 goto out; 2937 } 2938 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 2939 drm_err(mgr->dev, "link address NAK received\n"); 2940 ret = -EIO; 2941 goto out; 2942 } 2943 2944 reply = &txmsg->reply.u.link_addr; 2945 drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports); 2946 drm_dp_dump_link_address(mgr, reply); 2947 2948 ret = drm_dp_check_mstb_guid(mstb, reply->guid); 2949 if (ret) { 2950 char buf[64]; 2951 2952 drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf)); 2953 drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret); 2954 goto out; 2955 } 2956 2957 for (i = 0; i < reply->nports; i++) { 2958 port_mask |= BIT(reply->ports[i].port_number); 2959 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev, 2960 &reply->ports[i]); 2961 if (ret == 1) 2962 changed = true; 2963 else if (ret < 0) 2964 goto out; 2965 } 2966 2967 /* Prune any ports that are currently a part of mstb in our in-memory 2968 * topology, but were not seen in this link address. Usually this 2969 * means that they were removed while the topology was out of sync, 2970 * e.g. during suspend/resume 2971 */ 2972 mutex_lock(&mgr->lock); 2973 list_for_each_entry_safe(port, tmp, &mstb->ports, next) { 2974 if (port_mask & BIT(port->port_num)) 2975 continue; 2976 2977 drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n", 2978 port->port_num); 2979 list_del(&port->next); 2980 drm_dp_mst_topology_put_port(port); 2981 changed = true; 2982 } 2983 mutex_unlock(&mgr->lock); 2984 2985 out: 2986 if (ret < 0) 2987 mstb->link_address_sent = false; 2988 kfree(txmsg); 2989 return ret < 0 ? ret : changed; 2990 } 2991 2992 static void 2993 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr, 2994 struct drm_dp_mst_branch *mstb) 2995 { 2996 struct drm_dp_sideband_msg_tx *txmsg; 2997 int ret; 2998 2999 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3000 if (!txmsg) 3001 return; 3002 3003 txmsg->dst = mstb; 3004 build_clear_payload_id_table(txmsg); 3005 3006 drm_dp_queue_down_tx(mgr, txmsg); 3007 3008 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3009 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3010 drm_dbg_kms(mgr->dev, "clear payload table id nak received\n"); 3011 3012 kfree(txmsg); 3013 } 3014 3015 static int 3016 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr, 3017 struct drm_dp_mst_branch *mstb, 3018 struct drm_dp_mst_port *port) 3019 { 3020 struct drm_dp_enum_path_resources_ack_reply *path_res; 3021 struct drm_dp_sideband_msg_tx *txmsg; 3022 int ret; 3023 3024 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3025 if (!txmsg) 3026 return -ENOMEM; 3027 3028 txmsg->dst = mstb; 3029 build_enum_path_resources(txmsg, port->port_num); 3030 3031 drm_dp_queue_down_tx(mgr, txmsg); 3032 3033 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3034 if (ret > 0) { 3035 ret = 0; 3036 path_res = &txmsg->reply.u.path_resources; 3037 3038 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3039 drm_dbg_kms(mgr->dev, "enum path resources nak received\n"); 3040 } else { 3041 if (port->port_num != path_res->port_number) 3042 DRM_ERROR("got incorrect port in response\n"); 3043 3044 drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n", 3045 path_res->port_number, 3046 path_res->full_payload_bw_number, 3047 path_res->avail_payload_bw_number); 3048 3049 /* 3050 * If something changed, make sure we send a 3051 * hotplug 3052 */ 3053 if (port->full_pbn != path_res->full_payload_bw_number || 3054 port->fec_capable != path_res->fec_capable) 3055 ret = 1; 3056 3057 port->full_pbn = path_res->full_payload_bw_number; 3058 port->fec_capable = path_res->fec_capable; 3059 } 3060 } 3061 3062 kfree(txmsg); 3063 return ret; 3064 } 3065 3066 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb) 3067 { 3068 if (!mstb->port_parent) 3069 return NULL; 3070 3071 if (mstb->port_parent->mstb != mstb) 3072 return mstb->port_parent; 3073 3074 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent); 3075 } 3076 3077 /* 3078 * Searches upwards in the topology starting from mstb to try to find the 3079 * closest available parent of mstb that's still connected to the rest of the 3080 * topology. This can be used in order to perform operations like releasing 3081 * payloads, where the branch device which owned the payload may no longer be 3082 * around and thus would require that the payload on the last living relative 3083 * be freed instead. 3084 */ 3085 static struct drm_dp_mst_branch * 3086 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr, 3087 struct drm_dp_mst_branch *mstb, 3088 int *port_num) 3089 { 3090 struct drm_dp_mst_branch *rmstb = NULL; 3091 struct drm_dp_mst_port *found_port; 3092 3093 mutex_lock(&mgr->lock); 3094 if (!mgr->mst_primary) 3095 goto out; 3096 3097 do { 3098 found_port = drm_dp_get_last_connected_port_to_mstb(mstb); 3099 if (!found_port) 3100 break; 3101 3102 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) { 3103 rmstb = found_port->parent; 3104 *port_num = found_port->port_num; 3105 } else { 3106 /* Search again, starting from this parent */ 3107 mstb = found_port->parent; 3108 } 3109 } while (!rmstb); 3110 out: 3111 mutex_unlock(&mgr->lock); 3112 return rmstb; 3113 } 3114 3115 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr, 3116 struct drm_dp_mst_port *port, 3117 int id, 3118 int pbn) 3119 { 3120 struct drm_dp_sideband_msg_tx *txmsg; 3121 struct drm_dp_mst_branch *mstb; 3122 int ret, port_num; 3123 u8 sinks[DRM_DP_MAX_SDP_STREAMS]; 3124 int i; 3125 3126 port_num = port->port_num; 3127 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3128 if (!mstb) { 3129 mstb = drm_dp_get_last_connected_port_and_mstb(mgr, 3130 port->parent, 3131 &port_num); 3132 3133 if (!mstb) 3134 return -EINVAL; 3135 } 3136 3137 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3138 if (!txmsg) { 3139 ret = -ENOMEM; 3140 goto fail_put; 3141 } 3142 3143 for (i = 0; i < port->num_sdp_streams; i++) 3144 sinks[i] = i; 3145 3146 txmsg->dst = mstb; 3147 build_allocate_payload(txmsg, port_num, 3148 id, 3149 pbn, port->num_sdp_streams, sinks); 3150 3151 drm_dp_queue_down_tx(mgr, txmsg); 3152 3153 /* 3154 * FIXME: there is a small chance that between getting the last 3155 * connected mstb and sending the payload message, the last connected 3156 * mstb could also be removed from the topology. In the future, this 3157 * needs to be fixed by restarting the 3158 * drm_dp_get_last_connected_port_and_mstb() search in the event of a 3159 * timeout if the topology is still connected to the system. 3160 */ 3161 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3162 if (ret > 0) { 3163 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3164 ret = -EINVAL; 3165 else 3166 ret = 0; 3167 } 3168 kfree(txmsg); 3169 fail_put: 3170 drm_dp_mst_topology_put_mstb(mstb); 3171 return ret; 3172 } 3173 3174 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr, 3175 struct drm_dp_mst_port *port, bool power_up) 3176 { 3177 struct drm_dp_sideband_msg_tx *txmsg; 3178 int ret; 3179 3180 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3181 if (!port) 3182 return -EINVAL; 3183 3184 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3185 if (!txmsg) { 3186 drm_dp_mst_topology_put_port(port); 3187 return -ENOMEM; 3188 } 3189 3190 txmsg->dst = port->parent; 3191 build_power_updown_phy(txmsg, port->port_num, power_up); 3192 drm_dp_queue_down_tx(mgr, txmsg); 3193 3194 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg); 3195 if (ret > 0) { 3196 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3197 ret = -EINVAL; 3198 else 3199 ret = 0; 3200 } 3201 kfree(txmsg); 3202 drm_dp_mst_topology_put_port(port); 3203 3204 return ret; 3205 } 3206 EXPORT_SYMBOL(drm_dp_send_power_updown_phy); 3207 3208 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr, 3209 struct drm_dp_mst_port *port, 3210 struct drm_dp_query_stream_enc_status_ack_reply *status) 3211 { 3212 struct drm_dp_mst_topology_state *state; 3213 struct drm_dp_mst_atomic_payload *payload; 3214 struct drm_dp_sideband_msg_tx *txmsg; 3215 u8 nonce[7]; 3216 int ret; 3217 3218 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3219 if (!txmsg) 3220 return -ENOMEM; 3221 3222 port = drm_dp_mst_topology_get_port_validated(mgr, port); 3223 if (!port) { 3224 ret = -EINVAL; 3225 goto out_get_port; 3226 } 3227 3228 get_random_bytes(nonce, sizeof(nonce)); 3229 3230 drm_modeset_lock(&mgr->base.lock, NULL); 3231 state = to_drm_dp_mst_topology_state(mgr->base.state); 3232 payload = drm_atomic_get_mst_payload_state(state, port); 3233 3234 /* 3235 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message 3236 * transaction at the MST Branch device directly connected to the 3237 * Source" 3238 */ 3239 txmsg->dst = mgr->mst_primary; 3240 3241 build_query_stream_enc_status(txmsg, payload->vcpi, nonce); 3242 3243 drm_dp_queue_down_tx(mgr, txmsg); 3244 3245 ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg); 3246 if (ret < 0) { 3247 goto out; 3248 } else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3249 drm_dbg_kms(mgr->dev, "query encryption status nak received\n"); 3250 ret = -ENXIO; 3251 goto out; 3252 } 3253 3254 ret = 0; 3255 memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status)); 3256 3257 out: 3258 drm_modeset_unlock(&mgr->base.lock); 3259 drm_dp_mst_topology_put_port(port); 3260 out_get_port: 3261 kfree(txmsg); 3262 return ret; 3263 } 3264 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status); 3265 3266 static int drm_dp_create_payload_at_dfp(struct drm_dp_mst_topology_mgr *mgr, 3267 struct drm_dp_mst_atomic_payload *payload) 3268 { 3269 return drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot, 3270 payload->time_slots); 3271 } 3272 3273 static int drm_dp_create_payload_to_remote(struct drm_dp_mst_topology_mgr *mgr, 3274 struct drm_dp_mst_atomic_payload *payload) 3275 { 3276 int ret; 3277 struct drm_dp_mst_port *port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3278 3279 if (!port) 3280 return -EIO; 3281 3282 ret = drm_dp_payload_send_msg(mgr, port, payload->vcpi, payload->pbn); 3283 drm_dp_mst_topology_put_port(port); 3284 return ret; 3285 } 3286 3287 static void drm_dp_destroy_payload_at_remote_and_dfp(struct drm_dp_mst_topology_mgr *mgr, 3288 struct drm_dp_mst_topology_state *mst_state, 3289 struct drm_dp_mst_atomic_payload *payload) 3290 { 3291 drm_dbg_kms(mgr->dev, "\n"); 3292 3293 /* it's okay for these to fail */ 3294 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE) { 3295 drm_dp_payload_send_msg(mgr, payload->port, payload->vcpi, 0); 3296 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3297 } 3298 3299 if (payload->payload_allocation_status == DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) 3300 drm_dp_dpcd_write_payload(mgr, payload->vcpi, payload->vc_start_slot, 0); 3301 } 3302 3303 /** 3304 * drm_dp_add_payload_part1() - Execute payload update part 1 3305 * @mgr: Manager to use. 3306 * @mst_state: The MST atomic state 3307 * @payload: The payload to write 3308 * 3309 * Determines the starting time slot for the given payload, and programs the VCPI for this payload 3310 * into the DPCD of DPRX. After calling this, the driver should generate ACT and payload packets. 3311 * 3312 * Returns: 0 on success, error code on failure. 3313 */ 3314 int drm_dp_add_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3315 struct drm_dp_mst_topology_state *mst_state, 3316 struct drm_dp_mst_atomic_payload *payload) 3317 { 3318 struct drm_dp_mst_port *port; 3319 int ret; 3320 3321 /* Update mst mgr info */ 3322 if (mgr->payload_count == 0) 3323 mgr->next_start_slot = mst_state->start_slot; 3324 3325 payload->vc_start_slot = mgr->next_start_slot; 3326 3327 mgr->payload_count++; 3328 mgr->next_start_slot += payload->time_slots; 3329 3330 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3331 3332 /* Allocate payload to immediate downstream facing port */ 3333 port = drm_dp_mst_topology_get_port_validated(mgr, payload->port); 3334 if (!port) { 3335 drm_dbg_kms(mgr->dev, 3336 "VCPI %d for port %p not in topology, not creating a payload to remote\n", 3337 payload->vcpi, payload->port); 3338 return -EIO; 3339 } 3340 3341 ret = drm_dp_create_payload_at_dfp(mgr, payload); 3342 if (ret < 0) { 3343 drm_dbg_kms(mgr->dev, "Failed to create MST payload for port %p: %d\n", 3344 payload->port, ret); 3345 goto put_port; 3346 } 3347 3348 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_DFP; 3349 3350 put_port: 3351 drm_dp_mst_topology_put_port(port); 3352 3353 return ret; 3354 } 3355 EXPORT_SYMBOL(drm_dp_add_payload_part1); 3356 3357 /** 3358 * drm_dp_remove_payload_part1() - Remove an MST payload along the virtual channel 3359 * @mgr: Manager to use. 3360 * @mst_state: The MST atomic state 3361 * @payload: The payload to remove 3362 * 3363 * Removes a payload along the virtual channel if it was successfully allocated. 3364 * After calling this, the driver should set HW to generate ACT and then switch to new 3365 * payload allocation state. 3366 */ 3367 void drm_dp_remove_payload_part1(struct drm_dp_mst_topology_mgr *mgr, 3368 struct drm_dp_mst_topology_state *mst_state, 3369 struct drm_dp_mst_atomic_payload *payload) 3370 { 3371 /* Remove remote payload allocation */ 3372 bool send_remove = false; 3373 3374 mutex_lock(&mgr->lock); 3375 send_remove = drm_dp_mst_port_downstream_of_branch(payload->port, mgr->mst_primary); 3376 mutex_unlock(&mgr->lock); 3377 3378 if (send_remove) 3379 drm_dp_destroy_payload_at_remote_and_dfp(mgr, mst_state, payload); 3380 else 3381 drm_dbg_kms(mgr->dev, "Payload for VCPI %d not in topology, not sending remove\n", 3382 payload->vcpi); 3383 3384 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_LOCAL; 3385 } 3386 EXPORT_SYMBOL(drm_dp_remove_payload_part1); 3387 3388 /** 3389 * drm_dp_remove_payload_part2() - Remove an MST payload locally 3390 * @mgr: Manager to use. 3391 * @mst_state: The MST atomic state 3392 * @old_payload: The payload with its old state 3393 * @new_payload: The payload with its latest state 3394 * 3395 * Updates the starting time slots of all other payloads which would have been shifted towards 3396 * the start of the payload ID table as a result of removing a payload. Driver should call this 3397 * function whenever it removes a payload in its HW. It's independent to the result of payload 3398 * allocation/deallocation at branch devices along the virtual channel. 3399 */ 3400 void drm_dp_remove_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3401 struct drm_dp_mst_topology_state *mst_state, 3402 const struct drm_dp_mst_atomic_payload *old_payload, 3403 struct drm_dp_mst_atomic_payload *new_payload) 3404 { 3405 struct drm_dp_mst_atomic_payload *pos; 3406 3407 /* Remove local payload allocation */ 3408 list_for_each_entry(pos, &mst_state->payloads, next) { 3409 if (pos != new_payload && pos->vc_start_slot > new_payload->vc_start_slot) 3410 pos->vc_start_slot -= old_payload->time_slots; 3411 } 3412 new_payload->vc_start_slot = -1; 3413 3414 mgr->payload_count--; 3415 mgr->next_start_slot -= old_payload->time_slots; 3416 3417 if (new_payload->delete) 3418 drm_dp_mst_put_port_malloc(new_payload->port); 3419 3420 new_payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 3421 } 3422 EXPORT_SYMBOL(drm_dp_remove_payload_part2); 3423 /** 3424 * drm_dp_add_payload_part2() - Execute payload update part 2 3425 * @mgr: Manager to use. 3426 * @payload: The payload to update 3427 * 3428 * If @payload was successfully assigned a starting time slot by drm_dp_add_payload_part1(), this 3429 * function will send the sideband messages to finish allocating this payload. 3430 * 3431 * Returns: 0 on success, negative error code on failure. 3432 */ 3433 int drm_dp_add_payload_part2(struct drm_dp_mst_topology_mgr *mgr, 3434 struct drm_dp_mst_atomic_payload *payload) 3435 { 3436 int ret = 0; 3437 3438 /* Skip failed payloads */ 3439 if (payload->payload_allocation_status != DRM_DP_MST_PAYLOAD_ALLOCATION_DFP) { 3440 drm_dbg_kms(mgr->dev, "Part 1 of payload creation for %s failed, skipping part 2\n", 3441 payload->port->connector->name); 3442 return -EIO; 3443 } 3444 3445 /* Allocate payload to remote end */ 3446 ret = drm_dp_create_payload_to_remote(mgr, payload); 3447 if (ret < 0) 3448 drm_err(mgr->dev, "Step 2 of creating MST payload for %p failed: %d\n", 3449 payload->port, ret); 3450 else 3451 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_REMOTE; 3452 3453 return ret; 3454 } 3455 EXPORT_SYMBOL(drm_dp_add_payload_part2); 3456 3457 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr, 3458 struct drm_dp_mst_port *port, 3459 int offset, int size, u8 *bytes) 3460 { 3461 int ret = 0; 3462 struct drm_dp_sideband_msg_tx *txmsg; 3463 struct drm_dp_mst_branch *mstb; 3464 3465 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3466 if (!mstb) 3467 return -EINVAL; 3468 3469 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3470 if (!txmsg) { 3471 ret = -ENOMEM; 3472 goto fail_put; 3473 } 3474 3475 build_dpcd_read(txmsg, port->port_num, offset, size); 3476 txmsg->dst = port->parent; 3477 3478 drm_dp_queue_down_tx(mgr, txmsg); 3479 3480 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3481 if (ret < 0) 3482 goto fail_free; 3483 3484 if (txmsg->reply.reply_type == 1) { 3485 drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n", 3486 mstb, port->port_num, offset, size); 3487 ret = -EIO; 3488 goto fail_free; 3489 } 3490 3491 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) { 3492 ret = -EPROTO; 3493 goto fail_free; 3494 } 3495 3496 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes, 3497 size); 3498 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret); 3499 3500 fail_free: 3501 kfree(txmsg); 3502 fail_put: 3503 drm_dp_mst_topology_put_mstb(mstb); 3504 3505 return ret; 3506 } 3507 3508 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr, 3509 struct drm_dp_mst_port *port, 3510 int offset, int size, u8 *bytes) 3511 { 3512 int ret; 3513 struct drm_dp_sideband_msg_tx *txmsg; 3514 struct drm_dp_mst_branch *mstb; 3515 3516 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 3517 if (!mstb) 3518 return -EINVAL; 3519 3520 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3521 if (!txmsg) { 3522 ret = -ENOMEM; 3523 goto fail_put; 3524 } 3525 3526 build_dpcd_write(txmsg, port->port_num, offset, size, bytes); 3527 txmsg->dst = mstb; 3528 3529 drm_dp_queue_down_tx(mgr, txmsg); 3530 3531 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 3532 if (ret > 0) { 3533 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) 3534 ret = -EIO; 3535 else 3536 ret = size; 3537 } 3538 3539 kfree(txmsg); 3540 fail_put: 3541 drm_dp_mst_topology_put_mstb(mstb); 3542 return ret; 3543 } 3544 3545 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type) 3546 { 3547 struct drm_dp_sideband_msg_reply_body reply; 3548 3549 reply.reply_type = DP_SIDEBAND_REPLY_ACK; 3550 reply.req_type = req_type; 3551 drm_dp_encode_sideband_reply(&reply, msg); 3552 return 0; 3553 } 3554 3555 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr, 3556 struct drm_dp_mst_branch *mstb, 3557 int req_type, bool broadcast) 3558 { 3559 struct drm_dp_sideband_msg_tx *txmsg; 3560 3561 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 3562 if (!txmsg) 3563 return -ENOMEM; 3564 3565 txmsg->dst = mstb; 3566 drm_dp_encode_up_ack_reply(txmsg, req_type); 3567 3568 mutex_lock(&mgr->qlock); 3569 /* construct a chunk from the first msg in the tx_msg queue */ 3570 process_single_tx_qlock(mgr, txmsg, true); 3571 mutex_unlock(&mgr->qlock); 3572 3573 kfree(txmsg); 3574 return 0; 3575 } 3576 3577 /** 3578 * drm_dp_get_vc_payload_bw - get the VC payload BW for an MST link 3579 * @mgr: The &drm_dp_mst_topology_mgr to use 3580 * @link_rate: link rate in 10kbits/s units 3581 * @link_lane_count: lane count 3582 * 3583 * Calculate the total bandwidth of a MultiStream Transport link. The returned 3584 * value is in units of PBNs/(timeslots/1 MTP). This value can be used to 3585 * convert the number of PBNs required for a given stream to the number of 3586 * timeslots this stream requires in each MTP. 3587 * 3588 * Returns the BW / timeslot value in 20.12 fixed point format. 3589 */ 3590 fixed20_12 drm_dp_get_vc_payload_bw(const struct drm_dp_mst_topology_mgr *mgr, 3591 int link_rate, int link_lane_count) 3592 { 3593 int ch_coding_efficiency = 3594 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(link_rate)); 3595 fixed20_12 ret; 3596 3597 if (link_rate == 0 || link_lane_count == 0) 3598 drm_dbg_kms(mgr->dev, "invalid link rate/lane count: (%d / %d)\n", 3599 link_rate, link_lane_count); 3600 3601 /* See DP v2.0 2.6.4.2, 2.7.6.3 VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */ 3602 ret.full = DIV_ROUND_DOWN_ULL(mul_u32_u32(link_rate * link_lane_count, 3603 ch_coding_efficiency), 3604 (1000000ULL * 8 * 5400) >> 12); 3605 3606 return ret; 3607 } 3608 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw); 3609 3610 /** 3611 * drm_dp_read_mst_cap() - Read the sink's MST mode capability 3612 * @aux: The DP AUX channel to use 3613 * @dpcd: A cached copy of the DPCD capabilities for this sink 3614 * 3615 * Returns: enum drm_dp_mst_mode to indicate MST mode capability 3616 */ 3617 enum drm_dp_mst_mode drm_dp_read_mst_cap(struct drm_dp_aux *aux, 3618 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3619 { 3620 u8 mstm_cap; 3621 3622 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12) 3623 return DRM_DP_SST; 3624 3625 if (drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &mstm_cap) != 1) 3626 return DRM_DP_SST; 3627 3628 if (mstm_cap & DP_MST_CAP) 3629 return DRM_DP_MST; 3630 3631 if (mstm_cap & DP_SINGLE_STREAM_SIDEBAND_MSG) 3632 return DRM_DP_SST_SIDEBAND_MSG; 3633 3634 return DRM_DP_SST; 3635 } 3636 EXPORT_SYMBOL(drm_dp_read_mst_cap); 3637 3638 /** 3639 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager 3640 * @mgr: manager to set state for 3641 * @mst_state: true to enable MST on this connector - false to disable. 3642 * 3643 * This is called by the driver when it detects an MST capable device plugged 3644 * into a DP MST capable port, or when a DP MST capable device is unplugged. 3645 */ 3646 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state) 3647 { 3648 int ret = 0; 3649 struct drm_dp_mst_branch *mstb = NULL; 3650 3651 mutex_lock(&mgr->lock); 3652 if (mst_state == mgr->mst_state) 3653 goto out_unlock; 3654 3655 mgr->mst_state = mst_state; 3656 /* set the device into MST mode */ 3657 if (mst_state) { 3658 WARN_ON(mgr->mst_primary); 3659 3660 /* get dpcd info */ 3661 ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd); 3662 if (ret < 0) { 3663 drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n", 3664 mgr->aux->name, ret); 3665 goto out_unlock; 3666 } 3667 3668 /* add initial branch device at LCT 1 */ 3669 mstb = drm_dp_add_mst_branch_device(1, NULL); 3670 if (mstb == NULL) { 3671 ret = -ENOMEM; 3672 goto out_unlock; 3673 } 3674 mstb->mgr = mgr; 3675 3676 /* give this the main reference */ 3677 mgr->mst_primary = mstb; 3678 drm_dp_mst_topology_get_mstb(mgr->mst_primary); 3679 3680 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3681 DP_MST_EN | 3682 DP_UP_REQ_EN | 3683 DP_UPSTREAM_IS_SRC); 3684 if (ret < 0) 3685 goto out_unlock; 3686 3687 /* Write reset payload */ 3688 drm_dp_dpcd_write_payload(mgr, 0, 0, 0x3f); 3689 3690 drm_dp_mst_queue_probe_work(mgr); 3691 3692 ret = 0; 3693 } else { 3694 /* disable MST on the device */ 3695 mstb = mgr->mst_primary; 3696 mgr->mst_primary = NULL; 3697 /* this can fail if the device is gone */ 3698 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0); 3699 ret = 0; 3700 mgr->payload_id_table_cleared = false; 3701 3702 memset(&mgr->down_rep_recv, 0, sizeof(mgr->down_rep_recv)); 3703 memset(&mgr->up_req_recv, 0, sizeof(mgr->up_req_recv)); 3704 } 3705 3706 out_unlock: 3707 mutex_unlock(&mgr->lock); 3708 if (mstb) 3709 drm_dp_mst_topology_put_mstb(mstb); 3710 return ret; 3711 3712 } 3713 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst); 3714 3715 static void 3716 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb) 3717 { 3718 struct drm_dp_mst_port *port; 3719 3720 /* The link address will need to be re-sent on resume */ 3721 mstb->link_address_sent = false; 3722 3723 list_for_each_entry(port, &mstb->ports, next) 3724 if (port->mstb) 3725 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb); 3726 } 3727 3728 /** 3729 * drm_dp_mst_topology_queue_probe - Queue a topology probe 3730 * @mgr: manager to probe 3731 * 3732 * Queue a work to probe the MST topology. Driver's should call this only to 3733 * sync the topology's HW->SW state after the MST link's parameters have 3734 * changed in a way the state could've become out-of-sync. This is the case 3735 * for instance when the link rate between the source and first downstream 3736 * branch device has switched between UHBR and non-UHBR rates. Except of those 3737 * cases - for instance when a sink gets plugged/unplugged to a port - the SW 3738 * state will get updated automatically via MST UP message notifications. 3739 */ 3740 void drm_dp_mst_topology_queue_probe(struct drm_dp_mst_topology_mgr *mgr) 3741 { 3742 mutex_lock(&mgr->lock); 3743 3744 if (drm_WARN_ON(mgr->dev, !mgr->mst_state || !mgr->mst_primary)) 3745 goto out_unlock; 3746 3747 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary); 3748 drm_dp_mst_queue_probe_work(mgr); 3749 3750 out_unlock: 3751 mutex_unlock(&mgr->lock); 3752 } 3753 EXPORT_SYMBOL(drm_dp_mst_topology_queue_probe); 3754 3755 /** 3756 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager 3757 * @mgr: manager to suspend 3758 * 3759 * This function tells the MST device that we can't handle UP messages 3760 * anymore. This should stop it from sending any since we are suspended. 3761 */ 3762 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr) 3763 { 3764 mutex_lock(&mgr->lock); 3765 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3766 DP_MST_EN | DP_UPSTREAM_IS_SRC); 3767 mutex_unlock(&mgr->lock); 3768 flush_work(&mgr->up_req_work); 3769 flush_work(&mgr->work); 3770 flush_work(&mgr->delayed_destroy_work); 3771 3772 mutex_lock(&mgr->lock); 3773 if (mgr->mst_state && mgr->mst_primary) 3774 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary); 3775 mutex_unlock(&mgr->lock); 3776 } 3777 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend); 3778 3779 /** 3780 * drm_dp_mst_topology_mgr_resume() - resume the MST manager 3781 * @mgr: manager to resume 3782 * @sync: whether or not to perform topology reprobing synchronously 3783 * 3784 * This will fetch DPCD and see if the device is still there, 3785 * if it is, it will rewrite the MSTM control bits, and return. 3786 * 3787 * If the device fails this returns -1, and the driver should do 3788 * a full MST reprobe, in case we were undocked. 3789 * 3790 * During system resume (where it is assumed that the driver will be calling 3791 * drm_atomic_helper_resume()) this function should be called beforehand with 3792 * @sync set to true. In contexts like runtime resume where the driver is not 3793 * expected to be calling drm_atomic_helper_resume(), this function should be 3794 * called with @sync set to false in order to avoid deadlocking. 3795 * 3796 * Returns: -1 if the MST topology was removed while we were suspended, 0 3797 * otherwise. 3798 */ 3799 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr, 3800 bool sync) 3801 { 3802 int ret; 3803 u8 guid[16]; 3804 3805 mutex_lock(&mgr->lock); 3806 if (!mgr->mst_primary) 3807 goto out_fail; 3808 3809 if (drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd) < 0) { 3810 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3811 goto out_fail; 3812 } 3813 3814 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 3815 DP_MST_EN | 3816 DP_UP_REQ_EN | 3817 DP_UPSTREAM_IS_SRC); 3818 if (ret < 0) { 3819 drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n"); 3820 goto out_fail; 3821 } 3822 3823 /* Some hubs forget their guids after they resume */ 3824 ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16); 3825 if (ret != 16) { 3826 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n"); 3827 goto out_fail; 3828 } 3829 3830 ret = drm_dp_check_mstb_guid(mgr->mst_primary, guid); 3831 if (ret) { 3832 drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n"); 3833 goto out_fail; 3834 } 3835 3836 /* 3837 * For the final step of resuming the topology, we need to bring the 3838 * state of our in-memory topology back into sync with reality. So, 3839 * restart the probing process as if we're probing a new hub 3840 */ 3841 drm_dp_mst_queue_probe_work(mgr); 3842 mutex_unlock(&mgr->lock); 3843 3844 if (sync) { 3845 drm_dbg_kms(mgr->dev, 3846 "Waiting for link probe work to finish re-syncing topology...\n"); 3847 flush_work(&mgr->work); 3848 } 3849 3850 return 0; 3851 3852 out_fail: 3853 mutex_unlock(&mgr->lock); 3854 return -1; 3855 } 3856 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume); 3857 3858 static bool 3859 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up, 3860 struct drm_dp_mst_branch **mstb) 3861 { 3862 int len; 3863 u8 replyblock[32]; 3864 int replylen, curreply; 3865 int ret; 3866 u8 hdrlen; 3867 struct drm_dp_sideband_msg_hdr hdr; 3868 struct drm_dp_sideband_msg_rx *msg = 3869 up ? &mgr->up_req_recv : &mgr->down_rep_recv; 3870 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : 3871 DP_SIDEBAND_MSG_DOWN_REP_BASE; 3872 3873 if (!up) 3874 *mstb = NULL; 3875 3876 len = min(mgr->max_dpcd_transaction_bytes, 16); 3877 ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len); 3878 if (ret != len) { 3879 drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret); 3880 return false; 3881 } 3882 3883 ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen); 3884 if (ret == false) { 3885 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 3886 1, replyblock, len, false); 3887 drm_dbg_kms(mgr->dev, "ERROR: failed header\n"); 3888 return false; 3889 } 3890 3891 if (!up) { 3892 /* Caller is responsible for giving back this reference */ 3893 *mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad); 3894 if (!*mstb) { 3895 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct); 3896 return false; 3897 } 3898 } 3899 3900 if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) { 3901 drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]); 3902 return false; 3903 } 3904 3905 replylen = min(msg->curchunk_len, (u8)(len - hdrlen)); 3906 ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen); 3907 if (!ret) { 3908 drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]); 3909 return false; 3910 } 3911 3912 replylen = msg->curchunk_len + msg->curchunk_hdrlen - len; 3913 curreply = len; 3914 while (replylen > 0) { 3915 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16); 3916 ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply, 3917 replyblock, len); 3918 if (ret != len) { 3919 drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n", 3920 len, ret); 3921 return false; 3922 } 3923 3924 ret = drm_dp_sideband_append_payload(msg, replyblock, len); 3925 if (!ret) { 3926 drm_dbg_kms(mgr->dev, "failed to build sideband msg\n"); 3927 return false; 3928 } 3929 3930 curreply += len; 3931 replylen -= len; 3932 } 3933 return true; 3934 } 3935 3936 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr) 3937 { 3938 struct drm_dp_sideband_msg_tx *txmsg; 3939 struct drm_dp_mst_branch *mstb = NULL; 3940 struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv; 3941 3942 if (!drm_dp_get_one_sb_msg(mgr, false, &mstb)) 3943 goto out_clear_reply; 3944 3945 /* Multi-packet message transmission, don't clear the reply */ 3946 if (!msg->have_eomt) 3947 goto out; 3948 3949 /* find the message */ 3950 mutex_lock(&mgr->qlock); 3951 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 3952 struct drm_dp_sideband_msg_tx, next); 3953 mutex_unlock(&mgr->qlock); 3954 3955 /* Were we actually expecting a response, and from this mstb? */ 3956 if (!txmsg || txmsg->dst != mstb) { 3957 struct drm_dp_sideband_msg_hdr *hdr; 3958 3959 hdr = &msg->initial_hdr; 3960 drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n", 3961 mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]); 3962 goto out_clear_reply; 3963 } 3964 3965 drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply); 3966 3967 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 3968 drm_dbg_kms(mgr->dev, 3969 "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n", 3970 txmsg->reply.req_type, 3971 drm_dp_mst_req_type_str(txmsg->reply.req_type), 3972 txmsg->reply.u.nak.reason, 3973 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason), 3974 txmsg->reply.u.nak.nak_data); 3975 } 3976 3977 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 3978 drm_dp_mst_topology_put_mstb(mstb); 3979 3980 mutex_lock(&mgr->qlock); 3981 txmsg->state = DRM_DP_SIDEBAND_TX_RX; 3982 list_del(&txmsg->next); 3983 mutex_unlock(&mgr->qlock); 3984 3985 wake_up_all(&mgr->tx_waitq); 3986 3987 return 0; 3988 3989 out_clear_reply: 3990 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx)); 3991 out: 3992 if (mstb) 3993 drm_dp_mst_topology_put_mstb(mstb); 3994 3995 return 0; 3996 } 3997 3998 static inline bool 3999 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr, 4000 struct drm_dp_pending_up_req *up_req) 4001 { 4002 struct drm_dp_mst_branch *mstb = NULL; 4003 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg; 4004 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr; 4005 bool hotplug = false, dowork = false; 4006 4007 if (hdr->broadcast) { 4008 const u8 *guid = NULL; 4009 4010 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) 4011 guid = msg->u.conn_stat.guid; 4012 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY) 4013 guid = msg->u.resource_stat.guid; 4014 4015 if (guid) 4016 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid); 4017 } else { 4018 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad); 4019 } 4020 4021 if (!mstb) { 4022 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct); 4023 return false; 4024 } 4025 4026 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */ 4027 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) { 4028 dowork = drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat); 4029 hotplug = true; 4030 } 4031 4032 drm_dp_mst_topology_put_mstb(mstb); 4033 4034 if (dowork) 4035 queue_work(system_long_wq, &mgr->work); 4036 return hotplug; 4037 } 4038 4039 static void drm_dp_mst_up_req_work(struct work_struct *work) 4040 { 4041 struct drm_dp_mst_topology_mgr *mgr = 4042 container_of(work, struct drm_dp_mst_topology_mgr, 4043 up_req_work); 4044 struct drm_dp_pending_up_req *up_req; 4045 bool send_hotplug = false; 4046 4047 mutex_lock(&mgr->probe_lock); 4048 while (true) { 4049 mutex_lock(&mgr->up_req_lock); 4050 up_req = list_first_entry_or_null(&mgr->up_req_list, 4051 struct drm_dp_pending_up_req, 4052 next); 4053 if (up_req) 4054 list_del(&up_req->next); 4055 mutex_unlock(&mgr->up_req_lock); 4056 4057 if (!up_req) 4058 break; 4059 4060 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req); 4061 kfree(up_req); 4062 } 4063 mutex_unlock(&mgr->probe_lock); 4064 4065 if (send_hotplug) 4066 drm_kms_helper_hotplug_event(mgr->dev); 4067 } 4068 4069 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr) 4070 { 4071 struct drm_dp_pending_up_req *up_req; 4072 4073 if (!drm_dp_get_one_sb_msg(mgr, true, NULL)) 4074 goto out; 4075 4076 if (!mgr->up_req_recv.have_eomt) 4077 return 0; 4078 4079 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL); 4080 if (!up_req) 4081 return -ENOMEM; 4082 4083 INIT_LIST_HEAD(&up_req->next); 4084 4085 drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg); 4086 4087 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY && 4088 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) { 4089 drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n", 4090 up_req->msg.req_type); 4091 kfree(up_req); 4092 goto out; 4093 } 4094 4095 drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type, 4096 false); 4097 4098 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) { 4099 const struct drm_dp_connection_status_notify *conn_stat = 4100 &up_req->msg.u.conn_stat; 4101 bool handle_csn; 4102 4103 drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n", 4104 conn_stat->port_number, 4105 conn_stat->legacy_device_plug_status, 4106 conn_stat->displayport_device_plug_status, 4107 conn_stat->message_capability_status, 4108 conn_stat->input_port, 4109 conn_stat->peer_device_type); 4110 4111 mutex_lock(&mgr->probe_lock); 4112 handle_csn = mgr->mst_primary->link_address_sent; 4113 mutex_unlock(&mgr->probe_lock); 4114 4115 if (!handle_csn) { 4116 drm_dbg_kms(mgr->dev, "Got CSN before finish topology probing. Skip it."); 4117 kfree(up_req); 4118 goto out; 4119 } 4120 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) { 4121 const struct drm_dp_resource_status_notify *res_stat = 4122 &up_req->msg.u.resource_stat; 4123 4124 drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n", 4125 res_stat->port_number, 4126 res_stat->available_pbn); 4127 } 4128 4129 up_req->hdr = mgr->up_req_recv.initial_hdr; 4130 mutex_lock(&mgr->up_req_lock); 4131 list_add_tail(&up_req->next, &mgr->up_req_list); 4132 mutex_unlock(&mgr->up_req_lock); 4133 queue_work(system_long_wq, &mgr->up_req_work); 4134 4135 out: 4136 memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx)); 4137 return 0; 4138 } 4139 4140 /** 4141 * drm_dp_mst_hpd_irq_handle_event() - MST hotplug IRQ handle MST event 4142 * @mgr: manager to notify irq for. 4143 * @esi: 4 bytes from SINK_COUNT_ESI 4144 * @ack: 4 bytes used to ack events starting from SINK_COUNT_ESI 4145 * @handled: whether the hpd interrupt was consumed or not 4146 * 4147 * This should be called from the driver when it detects a HPD IRQ, 4148 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The 4149 * topology manager will process the sideband messages received 4150 * as indicated in the DEVICE_SERVICE_IRQ_VECTOR_ESI0 and set the 4151 * corresponding flags that Driver has to ack the DP receiver later. 4152 * 4153 * Note that driver shall also call 4154 * drm_dp_mst_hpd_irq_send_new_request() if the 'handled' is set 4155 * after calling this function, to try to kick off a new request in 4156 * the queue if the previous message transaction is completed. 4157 * 4158 * See also: 4159 * drm_dp_mst_hpd_irq_send_new_request() 4160 */ 4161 int drm_dp_mst_hpd_irq_handle_event(struct drm_dp_mst_topology_mgr *mgr, const u8 *esi, 4162 u8 *ack, bool *handled) 4163 { 4164 int ret = 0; 4165 int sc; 4166 *handled = false; 4167 sc = DP_GET_SINK_COUNT(esi[0]); 4168 4169 if (sc != mgr->sink_count) { 4170 mgr->sink_count = sc; 4171 *handled = true; 4172 } 4173 4174 if (esi[1] & DP_DOWN_REP_MSG_RDY) { 4175 ret = drm_dp_mst_handle_down_rep(mgr); 4176 *handled = true; 4177 ack[1] |= DP_DOWN_REP_MSG_RDY; 4178 } 4179 4180 if (esi[1] & DP_UP_REQ_MSG_RDY) { 4181 ret |= drm_dp_mst_handle_up_req(mgr); 4182 *handled = true; 4183 ack[1] |= DP_UP_REQ_MSG_RDY; 4184 } 4185 4186 return ret; 4187 } 4188 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_handle_event); 4189 4190 /** 4191 * drm_dp_mst_hpd_irq_send_new_request() - MST hotplug IRQ kick off new request 4192 * @mgr: manager to notify irq for. 4193 * 4194 * This should be called from the driver when mst irq event is handled 4195 * and acked. Note that new down request should only be sent when 4196 * previous message transaction is completed. Source is not supposed to generate 4197 * interleaved message transactions. 4198 */ 4199 void drm_dp_mst_hpd_irq_send_new_request(struct drm_dp_mst_topology_mgr *mgr) 4200 { 4201 struct drm_dp_sideband_msg_tx *txmsg; 4202 bool kick = true; 4203 4204 mutex_lock(&mgr->qlock); 4205 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq, 4206 struct drm_dp_sideband_msg_tx, next); 4207 /* If last transaction is not completed yet*/ 4208 if (!txmsg || 4209 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND || 4210 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) 4211 kick = false; 4212 mutex_unlock(&mgr->qlock); 4213 4214 if (kick) 4215 drm_dp_mst_kick_tx(mgr); 4216 } 4217 EXPORT_SYMBOL(drm_dp_mst_hpd_irq_send_new_request); 4218 /** 4219 * drm_dp_mst_detect_port() - get connection status for an MST port 4220 * @connector: DRM connector for this port 4221 * @ctx: The acquisition context to use for grabbing locks 4222 * @mgr: manager for this port 4223 * @port: pointer to a port 4224 * 4225 * This returns the current connection state for a port. 4226 */ 4227 int 4228 drm_dp_mst_detect_port(struct drm_connector *connector, 4229 struct drm_modeset_acquire_ctx *ctx, 4230 struct drm_dp_mst_topology_mgr *mgr, 4231 struct drm_dp_mst_port *port) 4232 { 4233 int ret; 4234 4235 /* we need to search for the port in the mgr in case it's gone */ 4236 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4237 if (!port) 4238 return connector_status_disconnected; 4239 4240 ret = drm_modeset_lock(&mgr->base.lock, ctx); 4241 if (ret) 4242 goto out; 4243 4244 ret = connector_status_disconnected; 4245 4246 if (!port->ddps) 4247 goto out; 4248 4249 switch (port->pdt) { 4250 case DP_PEER_DEVICE_NONE: 4251 break; 4252 case DP_PEER_DEVICE_MST_BRANCHING: 4253 if (!port->mcs) 4254 ret = connector_status_connected; 4255 break; 4256 4257 case DP_PEER_DEVICE_SST_SINK: 4258 ret = connector_status_connected; 4259 /* for logical ports - cache the EDID */ 4260 if (drm_dp_mst_port_is_logical(port) && !port->cached_edid) 4261 port->cached_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4262 break; 4263 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4264 if (port->ldps) 4265 ret = connector_status_connected; 4266 break; 4267 } 4268 out: 4269 drm_dp_mst_topology_put_port(port); 4270 return ret; 4271 } 4272 EXPORT_SYMBOL(drm_dp_mst_detect_port); 4273 4274 /** 4275 * drm_dp_mst_edid_read() - get EDID for an MST port 4276 * @connector: toplevel connector to get EDID for 4277 * @mgr: manager for this port 4278 * @port: unverified pointer to a port. 4279 * 4280 * This returns an EDID for the port connected to a connector, 4281 * It validates the pointer still exists so the caller doesn't require a 4282 * reference. 4283 */ 4284 const struct drm_edid *drm_dp_mst_edid_read(struct drm_connector *connector, 4285 struct drm_dp_mst_topology_mgr *mgr, 4286 struct drm_dp_mst_port *port) 4287 { 4288 const struct drm_edid *drm_edid; 4289 4290 /* we need to search for the port in the mgr in case it's gone */ 4291 port = drm_dp_mst_topology_get_port_validated(mgr, port); 4292 if (!port) 4293 return NULL; 4294 4295 if (port->cached_edid) 4296 drm_edid = drm_edid_dup(port->cached_edid); 4297 else 4298 drm_edid = drm_edid_read_ddc(connector, &port->aux.ddc); 4299 4300 drm_dp_mst_topology_put_port(port); 4301 4302 return drm_edid; 4303 } 4304 EXPORT_SYMBOL(drm_dp_mst_edid_read); 4305 4306 /** 4307 * drm_dp_mst_get_edid() - get EDID for an MST port 4308 * @connector: toplevel connector to get EDID for 4309 * @mgr: manager for this port 4310 * @port: unverified pointer to a port. 4311 * 4312 * This function is deprecated; please use drm_dp_mst_edid_read() instead. 4313 * 4314 * This returns an EDID for the port connected to a connector, 4315 * It validates the pointer still exists so the caller doesn't require a 4316 * reference. 4317 */ 4318 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, 4319 struct drm_dp_mst_topology_mgr *mgr, 4320 struct drm_dp_mst_port *port) 4321 { 4322 const struct drm_edid *drm_edid; 4323 struct edid *edid; 4324 4325 drm_edid = drm_dp_mst_edid_read(connector, mgr, port); 4326 4327 edid = drm_edid_duplicate(drm_edid_raw(drm_edid)); 4328 4329 drm_edid_free(drm_edid); 4330 4331 return edid; 4332 } 4333 EXPORT_SYMBOL(drm_dp_mst_get_edid); 4334 4335 /** 4336 * drm_dp_atomic_find_time_slots() - Find and add time slots to the state 4337 * @state: global atomic state 4338 * @mgr: MST topology manager for the port 4339 * @port: port to find time slots for 4340 * @pbn: bandwidth required for the mode in PBN 4341 * 4342 * Allocates time slots to @port, replacing any previous time slot allocations it may 4343 * have had. Any atomic drivers which support MST must call this function in 4344 * their &drm_encoder_helper_funcs.atomic_check() callback unconditionally to 4345 * change the current time slot allocation for the new state, and ensure the MST 4346 * atomic state is added whenever the state of payloads in the topology changes. 4347 * 4348 * Allocations set by this function are not checked against the bandwidth 4349 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check(). 4350 * 4351 * Additionally, it is OK to call this function multiple times on the same 4352 * @port as needed. It is not OK however, to call this function and 4353 * drm_dp_atomic_release_time_slots() in the same atomic check phase. 4354 * 4355 * See also: 4356 * drm_dp_atomic_release_time_slots() 4357 * drm_dp_mst_atomic_check() 4358 * 4359 * Returns: 4360 * Total slots in the atomic state assigned for this port, or a negative error 4361 * code if the port no longer exists 4362 */ 4363 int drm_dp_atomic_find_time_slots(struct drm_atomic_state *state, 4364 struct drm_dp_mst_topology_mgr *mgr, 4365 struct drm_dp_mst_port *port, int pbn) 4366 { 4367 struct drm_dp_mst_topology_state *topology_state; 4368 struct drm_dp_mst_atomic_payload *payload = NULL; 4369 struct drm_connector_state *conn_state; 4370 int prev_slots = 0, prev_bw = 0, req_slots; 4371 4372 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4373 if (IS_ERR(topology_state)) 4374 return PTR_ERR(topology_state); 4375 4376 conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4377 topology_state->pending_crtc_mask |= drm_crtc_mask(conn_state->crtc); 4378 4379 /* Find the current allocation for this port, if any */ 4380 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4381 if (payload) { 4382 prev_slots = payload->time_slots; 4383 prev_bw = payload->pbn; 4384 4385 /* 4386 * This should never happen, unless the driver tries 4387 * releasing and allocating the same timeslot allocation, 4388 * which is an error 4389 */ 4390 if (drm_WARN_ON(mgr->dev, payload->delete)) { 4391 drm_err(mgr->dev, 4392 "cannot allocate and release time slots on [MST PORT:%p] in the same state\n", 4393 port); 4394 return -EINVAL; 4395 } 4396 } 4397 4398 req_slots = DIV_ROUND_UP(dfixed_const(pbn), topology_state->pbn_div.full); 4399 4400 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] TU %d -> %d\n", 4401 port->connector->base.id, port->connector->name, 4402 port, prev_slots, req_slots); 4403 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n", 4404 port->connector->base.id, port->connector->name, 4405 port, prev_bw, pbn); 4406 4407 /* Add the new allocation to the state, note the VCPI isn't assigned until the end */ 4408 if (!payload) { 4409 payload = kzalloc(sizeof(*payload), GFP_KERNEL); 4410 if (!payload) 4411 return -ENOMEM; 4412 4413 drm_dp_mst_get_port_malloc(port); 4414 payload->port = port; 4415 payload->vc_start_slot = -1; 4416 payload->payload_allocation_status = DRM_DP_MST_PAYLOAD_ALLOCATION_NONE; 4417 list_add(&payload->next, &topology_state->payloads); 4418 } 4419 payload->time_slots = req_slots; 4420 payload->pbn = pbn; 4421 4422 return req_slots; 4423 } 4424 EXPORT_SYMBOL(drm_dp_atomic_find_time_slots); 4425 4426 /** 4427 * drm_dp_atomic_release_time_slots() - Release allocated time slots 4428 * @state: global atomic state 4429 * @mgr: MST topology manager for the port 4430 * @port: The port to release the time slots from 4431 * 4432 * Releases any time slots that have been allocated to a port in the atomic 4433 * state. Any atomic drivers which support MST must call this function 4434 * unconditionally in their &drm_connector_helper_funcs.atomic_check() callback. 4435 * This helper will check whether time slots would be released by the new state and 4436 * respond accordingly, along with ensuring the MST state is always added to the 4437 * atomic state whenever a new state would modify the state of payloads on the 4438 * topology. 4439 * 4440 * It is OK to call this even if @port has been removed from the system. 4441 * Additionally, it is OK to call this function multiple times on the same 4442 * @port as needed. It is not OK however, to call this function and 4443 * drm_dp_atomic_find_time_slots() on the same @port in a single atomic check 4444 * phase. 4445 * 4446 * See also: 4447 * drm_dp_atomic_find_time_slots() 4448 * drm_dp_mst_atomic_check() 4449 * 4450 * Returns: 4451 * 0 on success, negative error code otherwise 4452 */ 4453 int drm_dp_atomic_release_time_slots(struct drm_atomic_state *state, 4454 struct drm_dp_mst_topology_mgr *mgr, 4455 struct drm_dp_mst_port *port) 4456 { 4457 struct drm_dp_mst_topology_state *topology_state; 4458 struct drm_dp_mst_atomic_payload *payload; 4459 struct drm_connector_state *old_conn_state, *new_conn_state; 4460 bool update_payload = true; 4461 4462 old_conn_state = drm_atomic_get_old_connector_state(state, port->connector); 4463 if (!old_conn_state->crtc) 4464 return 0; 4465 4466 /* If the CRTC isn't disabled by this state, don't release it's payload */ 4467 new_conn_state = drm_atomic_get_new_connector_state(state, port->connector); 4468 if (new_conn_state->crtc) { 4469 struct drm_crtc_state *crtc_state = 4470 drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4471 4472 /* No modeset means no payload changes, so it's safe to not pull in the MST state */ 4473 if (!crtc_state || !drm_atomic_crtc_needs_modeset(crtc_state)) 4474 return 0; 4475 4476 if (!crtc_state->mode_changed && !crtc_state->connectors_changed) 4477 update_payload = false; 4478 } 4479 4480 topology_state = drm_atomic_get_mst_topology_state(state, mgr); 4481 if (IS_ERR(topology_state)) 4482 return PTR_ERR(topology_state); 4483 4484 topology_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4485 if (!update_payload) 4486 return 0; 4487 4488 payload = drm_atomic_get_mst_payload_state(topology_state, port); 4489 if (WARN_ON(!payload)) { 4490 drm_err(mgr->dev, "No payload for [MST PORT:%p] found in mst state %p\n", 4491 port, &topology_state->base); 4492 return -EINVAL; 4493 } 4494 4495 if (new_conn_state->crtc) 4496 return 0; 4497 4498 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] TU %d -> 0\n", port, payload->time_slots); 4499 if (!payload->delete) { 4500 payload->pbn = 0; 4501 payload->delete = true; 4502 topology_state->payload_mask &= ~BIT(payload->vcpi - 1); 4503 } 4504 4505 return 0; 4506 } 4507 EXPORT_SYMBOL(drm_dp_atomic_release_time_slots); 4508 4509 /** 4510 * drm_dp_mst_atomic_setup_commit() - setup_commit hook for MST helpers 4511 * @state: global atomic state 4512 * 4513 * This function saves all of the &drm_crtc_commit structs in an atomic state that touch any CRTCs 4514 * currently assigned to an MST topology. Drivers must call this hook from their 4515 * &drm_mode_config_helper_funcs.atomic_commit_setup hook. 4516 * 4517 * Returns: 4518 * 0 if all CRTC commits were retrieved successfully, negative error code otherwise 4519 */ 4520 int drm_dp_mst_atomic_setup_commit(struct drm_atomic_state *state) 4521 { 4522 struct drm_dp_mst_topology_mgr *mgr; 4523 struct drm_dp_mst_topology_state *mst_state; 4524 struct drm_crtc *crtc; 4525 struct drm_crtc_state *crtc_state; 4526 int i, j, commit_idx, num_commit_deps; 4527 4528 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 4529 if (!mst_state->pending_crtc_mask) 4530 continue; 4531 4532 num_commit_deps = hweight32(mst_state->pending_crtc_mask); 4533 mst_state->commit_deps = kmalloc_array(num_commit_deps, 4534 sizeof(*mst_state->commit_deps), GFP_KERNEL); 4535 if (!mst_state->commit_deps) 4536 return -ENOMEM; 4537 mst_state->num_commit_deps = num_commit_deps; 4538 4539 commit_idx = 0; 4540 for_each_new_crtc_in_state(state, crtc, crtc_state, j) { 4541 if (mst_state->pending_crtc_mask & drm_crtc_mask(crtc)) { 4542 mst_state->commit_deps[commit_idx++] = 4543 drm_crtc_commit_get(crtc_state->commit); 4544 } 4545 } 4546 } 4547 4548 return 0; 4549 } 4550 EXPORT_SYMBOL(drm_dp_mst_atomic_setup_commit); 4551 4552 /** 4553 * drm_dp_mst_atomic_wait_for_dependencies() - Wait for all pending commits on MST topologies, 4554 * prepare new MST state for commit 4555 * @state: global atomic state 4556 * 4557 * Goes through any MST topologies in this atomic state, and waits for any pending commits which 4558 * touched CRTCs that were/are on an MST topology to be programmed to hardware and flipped to before 4559 * returning. This is to prevent multiple non-blocking commits affecting an MST topology from racing 4560 * with eachother by forcing them to be executed sequentially in situations where the only resources 4561 * the modeset objects in these commits share are an MST topology. 4562 * 4563 * This function also prepares the new MST state for commit by performing some state preparation 4564 * which can't be done until this point, such as reading back the final VC start slots (which are 4565 * determined at commit-time) from the previous state. 4566 * 4567 * All MST drivers must call this function after calling drm_atomic_helper_wait_for_dependencies(), 4568 * or whatever their equivalent of that is. 4569 */ 4570 void drm_dp_mst_atomic_wait_for_dependencies(struct drm_atomic_state *state) 4571 { 4572 struct drm_dp_mst_topology_state *old_mst_state, *new_mst_state; 4573 struct drm_dp_mst_topology_mgr *mgr; 4574 struct drm_dp_mst_atomic_payload *old_payload, *new_payload; 4575 int i, j, ret; 4576 4577 for_each_oldnew_mst_mgr_in_state(state, mgr, old_mst_state, new_mst_state, i) { 4578 for (j = 0; j < old_mst_state->num_commit_deps; j++) { 4579 ret = drm_crtc_commit_wait(old_mst_state->commit_deps[j]); 4580 if (ret < 0) 4581 drm_err(state->dev, "Failed to wait for %s: %d\n", 4582 old_mst_state->commit_deps[j]->crtc->name, ret); 4583 } 4584 4585 /* Now that previous state is committed, it's safe to copy over the start slot 4586 * and allocation status assignments 4587 */ 4588 list_for_each_entry(old_payload, &old_mst_state->payloads, next) { 4589 if (old_payload->delete) 4590 continue; 4591 4592 new_payload = drm_atomic_get_mst_payload_state(new_mst_state, 4593 old_payload->port); 4594 new_payload->vc_start_slot = old_payload->vc_start_slot; 4595 new_payload->payload_allocation_status = 4596 old_payload->payload_allocation_status; 4597 } 4598 } 4599 } 4600 EXPORT_SYMBOL(drm_dp_mst_atomic_wait_for_dependencies); 4601 4602 /** 4603 * drm_dp_mst_root_conn_atomic_check() - Serialize CRTC commits on MST-capable connectors operating 4604 * in SST mode 4605 * @new_conn_state: The new connector state of the &drm_connector 4606 * @mgr: The MST topology manager for the &drm_connector 4607 * 4608 * Since MST uses fake &drm_encoder structs, the generic atomic modesetting code isn't able to 4609 * serialize non-blocking commits happening on the real DP connector of an MST topology switching 4610 * into/away from MST mode - as the CRTC on the real DP connector and the CRTCs on the connector's 4611 * MST topology will never share the same &drm_encoder. 4612 * 4613 * This function takes care of this serialization issue, by checking a root MST connector's atomic 4614 * state to determine if it is about to have a modeset - and then pulling in the MST topology state 4615 * if so, along with adding any relevant CRTCs to &drm_dp_mst_topology_state.pending_crtc_mask. 4616 * 4617 * Drivers implementing MST must call this function from the 4618 * &drm_connector_helper_funcs.atomic_check hook of any physical DP &drm_connector capable of 4619 * driving MST sinks. 4620 * 4621 * Returns: 4622 * 0 on success, negative error code otherwise 4623 */ 4624 int drm_dp_mst_root_conn_atomic_check(struct drm_connector_state *new_conn_state, 4625 struct drm_dp_mst_topology_mgr *mgr) 4626 { 4627 struct drm_atomic_state *state = new_conn_state->state; 4628 struct drm_connector_state *old_conn_state = 4629 drm_atomic_get_old_connector_state(state, new_conn_state->connector); 4630 struct drm_crtc_state *crtc_state; 4631 struct drm_dp_mst_topology_state *mst_state = NULL; 4632 4633 if (new_conn_state->crtc) { 4634 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); 4635 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4636 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4637 if (IS_ERR(mst_state)) 4638 return PTR_ERR(mst_state); 4639 4640 mst_state->pending_crtc_mask |= drm_crtc_mask(new_conn_state->crtc); 4641 } 4642 } 4643 4644 if (old_conn_state->crtc) { 4645 crtc_state = drm_atomic_get_new_crtc_state(state, old_conn_state->crtc); 4646 if (crtc_state && drm_atomic_crtc_needs_modeset(crtc_state)) { 4647 if (!mst_state) { 4648 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 4649 if (IS_ERR(mst_state)) 4650 return PTR_ERR(mst_state); 4651 } 4652 4653 mst_state->pending_crtc_mask |= drm_crtc_mask(old_conn_state->crtc); 4654 } 4655 } 4656 4657 return 0; 4658 } 4659 EXPORT_SYMBOL(drm_dp_mst_root_conn_atomic_check); 4660 4661 /** 4662 * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format 4663 * @mst_state: mst_state to update 4664 * @link_encoding_cap: the ecoding format on the link 4665 */ 4666 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap) 4667 { 4668 if (link_encoding_cap == DP_CAP_ANSI_128B132B) { 4669 mst_state->total_avail_slots = 64; 4670 mst_state->start_slot = 0; 4671 } else { 4672 mst_state->total_avail_slots = 63; 4673 mst_state->start_slot = 1; 4674 } 4675 4676 DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n", 4677 (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b", 4678 mst_state); 4679 } 4680 EXPORT_SYMBOL(drm_dp_mst_update_slots); 4681 4682 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr, 4683 int id, u8 start_slot, u8 num_slots) 4684 { 4685 u8 payload_alloc[3], status; 4686 int ret; 4687 int retries = 0; 4688 4689 drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, 4690 DP_PAYLOAD_TABLE_UPDATED); 4691 4692 payload_alloc[0] = id; 4693 payload_alloc[1] = start_slot; 4694 payload_alloc[2] = num_slots; 4695 4696 ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3); 4697 if (ret != 3) { 4698 drm_dbg_kms(mgr->dev, "failed to write payload allocation %d\n", ret); 4699 goto fail; 4700 } 4701 4702 retry: 4703 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4704 if (ret < 0) { 4705 drm_dbg_kms(mgr->dev, "failed to read payload table status %d\n", ret); 4706 goto fail; 4707 } 4708 4709 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) { 4710 retries++; 4711 if (retries < 20) { 4712 usleep_range(10000, 20000); 4713 goto retry; 4714 } 4715 drm_dbg_kms(mgr->dev, "status not set after read payload table status %d\n", 4716 status); 4717 ret = -EINVAL; 4718 goto fail; 4719 } 4720 ret = 0; 4721 fail: 4722 return ret; 4723 } 4724 4725 static int do_get_act_status(struct drm_dp_aux *aux) 4726 { 4727 int ret; 4728 u8 status; 4729 4730 ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status); 4731 if (ret < 0) 4732 return ret; 4733 4734 return status; 4735 } 4736 4737 /** 4738 * drm_dp_check_act_status() - Polls for ACT handled status. 4739 * @mgr: manager to use 4740 * 4741 * Tries waiting for the MST hub to finish updating it's payload table by 4742 * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really 4743 * take that long). 4744 * 4745 * Returns: 4746 * 0 if the ACT was handled in time, negative error code on failure. 4747 */ 4748 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr) 4749 { 4750 /* 4751 * There doesn't seem to be any recommended retry count or timeout in 4752 * the MST specification. Since some hubs have been observed to take 4753 * over 1 second to update their payload allocations under certain 4754 * conditions, we use a rather large timeout value. 4755 */ 4756 const int timeout_ms = 3000; 4757 int ret, status; 4758 4759 ret = readx_poll_timeout(do_get_act_status, mgr->aux, status, 4760 status & DP_PAYLOAD_ACT_HANDLED || status < 0, 4761 200, timeout_ms * USEC_PER_MSEC); 4762 if (ret < 0 && status >= 0) { 4763 drm_err(mgr->dev, "Failed to get ACT after %dms, last status: %02x\n", 4764 timeout_ms, status); 4765 return -EINVAL; 4766 } else if (status < 0) { 4767 /* 4768 * Failure here isn't unexpected - the hub may have 4769 * just been unplugged 4770 */ 4771 drm_dbg_kms(mgr->dev, "Failed to read payload table status: %d\n", status); 4772 return status; 4773 } 4774 4775 return 0; 4776 } 4777 EXPORT_SYMBOL(drm_dp_check_act_status); 4778 4779 /** 4780 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode. 4781 * @clock: dot clock 4782 * @bpp: bpp as .4 binary fixed point 4783 * 4784 * This uses the formula in the spec to calculate the PBN value for a mode. 4785 */ 4786 int drm_dp_calc_pbn_mode(int clock, int bpp) 4787 { 4788 /* 4789 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on 4790 * common multiplier to render an integer PBN for all link rate/lane 4791 * counts combinations 4792 * calculate 4793 * peak_kbps = clock * bpp / 16 4794 * peak_kbps *= SSC overhead / 1000000 4795 * peak_kbps /= 8 convert to Kbytes 4796 * peak_kBps *= (64/54) / 1000 convert to PBN 4797 */ 4798 /* 4799 * TODO: Use the actual link and mode parameters to calculate 4800 * the overhead. For now it's assumed that these are 4801 * 4 link lanes, 4096 hactive pixels, which don't add any 4802 * significant data padding overhead and that there is no DSC 4803 * or FEC overhead. 4804 */ 4805 int overhead = drm_dp_bw_overhead(4, 4096, 0, bpp, 4806 DRM_DP_BW_OVERHEAD_MST | 4807 DRM_DP_BW_OVERHEAD_SSC_REF_CLK); 4808 4809 return DIV64_U64_ROUND_UP(mul_u32_u32(clock * bpp, 64 * overhead >> 4), 4810 1000000ULL * 8 * 54 * 1000); 4811 } 4812 EXPORT_SYMBOL(drm_dp_calc_pbn_mode); 4813 4814 /* we want to kick the TX after we've ack the up/down IRQs. */ 4815 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr) 4816 { 4817 queue_work(system_long_wq, &mgr->tx_work); 4818 } 4819 4820 /* 4821 * Helper function for parsing DP device types into convenient strings 4822 * for use with dp_mst_topology 4823 */ 4824 static const char *pdt_to_string(u8 pdt) 4825 { 4826 switch (pdt) { 4827 case DP_PEER_DEVICE_NONE: 4828 return "NONE"; 4829 case DP_PEER_DEVICE_SOURCE_OR_SST: 4830 return "SOURCE OR SST"; 4831 case DP_PEER_DEVICE_MST_BRANCHING: 4832 return "MST BRANCHING"; 4833 case DP_PEER_DEVICE_SST_SINK: 4834 return "SST SINK"; 4835 case DP_PEER_DEVICE_DP_LEGACY_CONV: 4836 return "DP LEGACY CONV"; 4837 default: 4838 return "ERR"; 4839 } 4840 } 4841 4842 static void drm_dp_mst_dump_mstb(struct seq_file *m, 4843 struct drm_dp_mst_branch *mstb) 4844 { 4845 struct drm_dp_mst_port *port; 4846 int tabs = mstb->lct; 4847 char prefix[10]; 4848 int i; 4849 4850 for (i = 0; i < tabs; i++) 4851 prefix[i] = '\t'; 4852 prefix[i] = '\0'; 4853 4854 seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports); 4855 list_for_each_entry(port, &mstb->ports, next) { 4856 seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n", 4857 prefix, 4858 port->port_num, 4859 port, 4860 port->input ? "input" : "output", 4861 pdt_to_string(port->pdt), 4862 port->ddps, 4863 port->ldps, 4864 port->num_sdp_streams, 4865 port->num_sdp_stream_sinks, 4866 port->fec_capable ? "true" : "false", 4867 port->connector); 4868 if (port->mstb) 4869 drm_dp_mst_dump_mstb(m, port->mstb); 4870 } 4871 } 4872 4873 #define DP_PAYLOAD_TABLE_SIZE 64 4874 4875 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr, 4876 char *buf) 4877 { 4878 int i; 4879 4880 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) { 4881 if (drm_dp_dpcd_read(mgr->aux, 4882 DP_PAYLOAD_TABLE_UPDATE_STATUS + i, 4883 &buf[i], 16) != 16) 4884 return false; 4885 } 4886 return true; 4887 } 4888 4889 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr, 4890 struct drm_dp_mst_port *port, char *name, 4891 int namelen) 4892 { 4893 struct edid *mst_edid; 4894 4895 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port); 4896 drm_edid_get_monitor_name(mst_edid, name, namelen); 4897 kfree(mst_edid); 4898 } 4899 4900 /** 4901 * drm_dp_mst_dump_topology(): dump topology to seq file. 4902 * @m: seq_file to dump output to 4903 * @mgr: manager to dump current topology for. 4904 * 4905 * helper to dump MST topology to a seq file for debugfs. 4906 */ 4907 void drm_dp_mst_dump_topology(struct seq_file *m, 4908 struct drm_dp_mst_topology_mgr *mgr) 4909 { 4910 struct drm_dp_mst_topology_state *state; 4911 struct drm_dp_mst_atomic_payload *payload; 4912 int i, ret; 4913 4914 static const char *const status[] = { 4915 "None", 4916 "Local", 4917 "DFP", 4918 "Remote", 4919 }; 4920 4921 mutex_lock(&mgr->lock); 4922 if (mgr->mst_primary) 4923 drm_dp_mst_dump_mstb(m, mgr->mst_primary); 4924 4925 /* dump VCPIs */ 4926 mutex_unlock(&mgr->lock); 4927 4928 ret = drm_modeset_lock_single_interruptible(&mgr->base.lock); 4929 if (ret < 0) 4930 return; 4931 4932 state = to_drm_dp_mst_topology_state(mgr->base.state); 4933 seq_printf(m, "\n*** Atomic state info ***\n"); 4934 seq_printf(m, "payload_mask: %x, max_payloads: %d, start_slot: %u, pbn_div: %d\n", 4935 state->payload_mask, mgr->max_payloads, state->start_slot, 4936 dfixed_trunc(state->pbn_div)); 4937 4938 seq_printf(m, "\n| idx | port | vcpi | slots | pbn | dsc | status | sink name |\n"); 4939 for (i = 0; i < mgr->max_payloads; i++) { 4940 list_for_each_entry(payload, &state->payloads, next) { 4941 char name[14]; 4942 4943 if (payload->vcpi != i || payload->delete) 4944 continue; 4945 4946 fetch_monitor_name(mgr, payload->port, name, sizeof(name)); 4947 seq_printf(m, " %5d %6d %6d %02d - %02d %5d %5s %8s %19s\n", 4948 i, 4949 payload->port->port_num, 4950 payload->vcpi, 4951 payload->vc_start_slot, 4952 payload->vc_start_slot + payload->time_slots - 1, 4953 payload->pbn, 4954 payload->dsc_enabled ? "Y" : "N", 4955 status[payload->payload_allocation_status], 4956 (*name != 0) ? name : "Unknown"); 4957 } 4958 } 4959 4960 seq_printf(m, "\n*** DPCD Info ***\n"); 4961 mutex_lock(&mgr->lock); 4962 if (mgr->mst_primary) { 4963 u8 buf[DP_PAYLOAD_TABLE_SIZE]; 4964 int ret; 4965 4966 if (drm_dp_read_dpcd_caps(mgr->aux, buf) < 0) { 4967 seq_printf(m, "dpcd read failed\n"); 4968 goto out; 4969 } 4970 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf); 4971 4972 ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2); 4973 if (ret != 2) { 4974 seq_printf(m, "faux/mst read failed\n"); 4975 goto out; 4976 } 4977 seq_printf(m, "faux/mst: %*ph\n", 2, buf); 4978 4979 ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1); 4980 if (ret != 1) { 4981 seq_printf(m, "mst ctrl read failed\n"); 4982 goto out; 4983 } 4984 seq_printf(m, "mst ctrl: %*ph\n", 1, buf); 4985 4986 /* dump the standard OUI branch header */ 4987 ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE); 4988 if (ret != DP_BRANCH_OUI_HEADER_SIZE) { 4989 seq_printf(m, "branch oui read failed\n"); 4990 goto out; 4991 } 4992 seq_printf(m, "branch oui: %*phN devid: ", 3, buf); 4993 4994 for (i = 0x3; i < 0x8 && buf[i]; i++) 4995 seq_printf(m, "%c", buf[i]); 4996 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n", 4997 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]); 4998 if (dump_dp_payload_table(mgr, buf)) 4999 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf); 5000 } 5001 5002 out: 5003 mutex_unlock(&mgr->lock); 5004 drm_modeset_unlock(&mgr->base.lock); 5005 } 5006 EXPORT_SYMBOL(drm_dp_mst_dump_topology); 5007 5008 static void drm_dp_tx_work(struct work_struct *work) 5009 { 5010 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work); 5011 5012 mutex_lock(&mgr->qlock); 5013 if (!list_empty(&mgr->tx_msg_downq)) 5014 process_single_down_tx_qlock(mgr); 5015 mutex_unlock(&mgr->qlock); 5016 } 5017 5018 static inline void 5019 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port) 5020 { 5021 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs); 5022 5023 if (port->connector) { 5024 drm_connector_unregister(port->connector); 5025 drm_connector_put(port->connector); 5026 } 5027 5028 drm_dp_mst_put_port_malloc(port); 5029 } 5030 5031 static inline void 5032 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb) 5033 { 5034 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr; 5035 struct drm_dp_mst_port *port, *port_tmp; 5036 struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp; 5037 bool wake_tx = false; 5038 5039 mutex_lock(&mgr->lock); 5040 list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) { 5041 list_del(&port->next); 5042 drm_dp_mst_topology_put_port(port); 5043 } 5044 mutex_unlock(&mgr->lock); 5045 5046 /* drop any tx slot msg */ 5047 mutex_lock(&mstb->mgr->qlock); 5048 list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) { 5049 if (txmsg->dst != mstb) 5050 continue; 5051 5052 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT; 5053 list_del(&txmsg->next); 5054 wake_tx = true; 5055 } 5056 mutex_unlock(&mstb->mgr->qlock); 5057 5058 if (wake_tx) 5059 wake_up_all(&mstb->mgr->tx_waitq); 5060 5061 drm_dp_mst_put_mstb_malloc(mstb); 5062 } 5063 5064 static void drm_dp_delayed_destroy_work(struct work_struct *work) 5065 { 5066 struct drm_dp_mst_topology_mgr *mgr = 5067 container_of(work, struct drm_dp_mst_topology_mgr, 5068 delayed_destroy_work); 5069 bool send_hotplug = false, go_again; 5070 5071 /* 5072 * Not a regular list traverse as we have to drop the destroy 5073 * connector lock before destroying the mstb/port, to avoid AB->BA 5074 * ordering between this lock and the config mutex. 5075 */ 5076 do { 5077 go_again = false; 5078 5079 for (;;) { 5080 struct drm_dp_mst_branch *mstb; 5081 5082 mutex_lock(&mgr->delayed_destroy_lock); 5083 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list, 5084 struct drm_dp_mst_branch, 5085 destroy_next); 5086 if (mstb) 5087 list_del(&mstb->destroy_next); 5088 mutex_unlock(&mgr->delayed_destroy_lock); 5089 5090 if (!mstb) 5091 break; 5092 5093 drm_dp_delayed_destroy_mstb(mstb); 5094 go_again = true; 5095 } 5096 5097 for (;;) { 5098 struct drm_dp_mst_port *port; 5099 5100 mutex_lock(&mgr->delayed_destroy_lock); 5101 port = list_first_entry_or_null(&mgr->destroy_port_list, 5102 struct drm_dp_mst_port, 5103 next); 5104 if (port) 5105 list_del(&port->next); 5106 mutex_unlock(&mgr->delayed_destroy_lock); 5107 5108 if (!port) 5109 break; 5110 5111 drm_dp_delayed_destroy_port(port); 5112 send_hotplug = true; 5113 go_again = true; 5114 } 5115 } while (go_again); 5116 5117 if (send_hotplug) 5118 drm_kms_helper_hotplug_event(mgr->dev); 5119 } 5120 5121 static struct drm_private_state * 5122 drm_dp_mst_duplicate_state(struct drm_private_obj *obj) 5123 { 5124 struct drm_dp_mst_topology_state *state, *old_state = 5125 to_dp_mst_topology_state(obj->state); 5126 struct drm_dp_mst_atomic_payload *pos, *payload; 5127 5128 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL); 5129 if (!state) 5130 return NULL; 5131 5132 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 5133 5134 INIT_LIST_HEAD(&state->payloads); 5135 state->commit_deps = NULL; 5136 state->num_commit_deps = 0; 5137 state->pending_crtc_mask = 0; 5138 5139 list_for_each_entry(pos, &old_state->payloads, next) { 5140 /* Prune leftover freed timeslot allocations */ 5141 if (pos->delete) 5142 continue; 5143 5144 payload = kmemdup(pos, sizeof(*payload), GFP_KERNEL); 5145 if (!payload) 5146 goto fail; 5147 5148 drm_dp_mst_get_port_malloc(payload->port); 5149 list_add(&payload->next, &state->payloads); 5150 } 5151 5152 return &state->base; 5153 5154 fail: 5155 list_for_each_entry_safe(pos, payload, &state->payloads, next) { 5156 drm_dp_mst_put_port_malloc(pos->port); 5157 kfree(pos); 5158 } 5159 kfree(state); 5160 5161 return NULL; 5162 } 5163 5164 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj, 5165 struct drm_private_state *state) 5166 { 5167 struct drm_dp_mst_topology_state *mst_state = 5168 to_dp_mst_topology_state(state); 5169 struct drm_dp_mst_atomic_payload *pos, *tmp; 5170 int i; 5171 5172 list_for_each_entry_safe(pos, tmp, &mst_state->payloads, next) { 5173 /* We only keep references to ports with active payloads */ 5174 if (!pos->delete) 5175 drm_dp_mst_put_port_malloc(pos->port); 5176 kfree(pos); 5177 } 5178 5179 for (i = 0; i < mst_state->num_commit_deps; i++) 5180 drm_crtc_commit_put(mst_state->commit_deps[i]); 5181 5182 kfree(mst_state->commit_deps); 5183 kfree(mst_state); 5184 } 5185 5186 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port, 5187 struct drm_dp_mst_branch *branch) 5188 { 5189 while (port->parent) { 5190 if (port->parent == branch) 5191 return true; 5192 5193 if (port->parent->port_parent) 5194 port = port->parent->port_parent; 5195 else 5196 break; 5197 } 5198 return false; 5199 } 5200 5201 static bool 5202 drm_dp_mst_port_downstream_of_parent_locked(struct drm_dp_mst_topology_mgr *mgr, 5203 struct drm_dp_mst_port *port, 5204 struct drm_dp_mst_port *parent) 5205 { 5206 if (!mgr->mst_primary) 5207 return false; 5208 5209 port = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5210 port); 5211 if (!port) 5212 return false; 5213 5214 if (!parent) 5215 return true; 5216 5217 parent = drm_dp_mst_topology_get_port_validated_locked(mgr->mst_primary, 5218 parent); 5219 if (!parent) 5220 return false; 5221 5222 if (!parent->mstb) 5223 return false; 5224 5225 return drm_dp_mst_port_downstream_of_branch(port, parent->mstb); 5226 } 5227 5228 /** 5229 * drm_dp_mst_port_downstream_of_parent - check if a port is downstream of a parent port 5230 * @mgr: MST topology manager 5231 * @port: the port being looked up 5232 * @parent: the parent port 5233 * 5234 * The function returns %true if @port is downstream of @parent. If @parent is 5235 * %NULL - denoting the root port - the function returns %true if @port is in 5236 * @mgr's topology. 5237 */ 5238 bool 5239 drm_dp_mst_port_downstream_of_parent(struct drm_dp_mst_topology_mgr *mgr, 5240 struct drm_dp_mst_port *port, 5241 struct drm_dp_mst_port *parent) 5242 { 5243 bool ret; 5244 5245 mutex_lock(&mgr->lock); 5246 ret = drm_dp_mst_port_downstream_of_parent_locked(mgr, port, parent); 5247 mutex_unlock(&mgr->lock); 5248 5249 return ret; 5250 } 5251 EXPORT_SYMBOL(drm_dp_mst_port_downstream_of_parent); 5252 5253 static int 5254 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5255 struct drm_dp_mst_topology_state *state, 5256 struct drm_dp_mst_port **failing_port); 5257 5258 static int 5259 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb, 5260 struct drm_dp_mst_topology_state *state, 5261 struct drm_dp_mst_port **failing_port) 5262 { 5263 struct drm_dp_mst_atomic_payload *payload; 5264 struct drm_dp_mst_port *port; 5265 int pbn_used = 0, ret; 5266 bool found = false; 5267 5268 /* Check that we have at least one port in our state that's downstream 5269 * of this branch, otherwise we can skip this branch 5270 */ 5271 list_for_each_entry(payload, &state->payloads, next) { 5272 if (!payload->pbn || 5273 !drm_dp_mst_port_downstream_of_branch(payload->port, mstb)) 5274 continue; 5275 5276 found = true; 5277 break; 5278 } 5279 if (!found) 5280 return 0; 5281 5282 if (mstb->port_parent) 5283 drm_dbg_atomic(mstb->mgr->dev, 5284 "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n", 5285 mstb->port_parent->parent, mstb->port_parent, mstb); 5286 else 5287 drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb); 5288 5289 list_for_each_entry(port, &mstb->ports, next) { 5290 ret = drm_dp_mst_atomic_check_port_bw_limit(port, state, failing_port); 5291 if (ret < 0) 5292 return ret; 5293 5294 pbn_used += ret; 5295 } 5296 5297 return pbn_used; 5298 } 5299 5300 static int 5301 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port, 5302 struct drm_dp_mst_topology_state *state, 5303 struct drm_dp_mst_port **failing_port) 5304 { 5305 struct drm_dp_mst_atomic_payload *payload; 5306 int pbn_used = 0; 5307 5308 if (port->pdt == DP_PEER_DEVICE_NONE) 5309 return 0; 5310 5311 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) { 5312 payload = drm_atomic_get_mst_payload_state(state, port); 5313 if (!payload) 5314 return 0; 5315 5316 /* 5317 * This could happen if the sink deasserted its HPD line, but 5318 * the branch device still reports it as attached (PDT != NONE). 5319 */ 5320 if (!port->full_pbn) { 5321 drm_dbg_atomic(port->mgr->dev, 5322 "[MSTB:%p] [MST PORT:%p] no BW available for the port\n", 5323 port->parent, port); 5324 *failing_port = port; 5325 return -EINVAL; 5326 } 5327 5328 pbn_used = payload->pbn; 5329 } else { 5330 pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb, 5331 state, 5332 failing_port); 5333 if (pbn_used <= 0) 5334 return pbn_used; 5335 } 5336 5337 if (pbn_used > port->full_pbn) { 5338 drm_dbg_atomic(port->mgr->dev, 5339 "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n", 5340 port->parent, port, pbn_used, port->full_pbn); 5341 *failing_port = port; 5342 return -ENOSPC; 5343 } 5344 5345 drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n", 5346 port->parent, port, pbn_used, port->full_pbn); 5347 5348 return pbn_used; 5349 } 5350 5351 static inline int 5352 drm_dp_mst_atomic_check_payload_alloc_limits(struct drm_dp_mst_topology_mgr *mgr, 5353 struct drm_dp_mst_topology_state *mst_state) 5354 { 5355 struct drm_dp_mst_atomic_payload *payload; 5356 int avail_slots = mst_state->total_avail_slots, payload_count = 0; 5357 5358 list_for_each_entry(payload, &mst_state->payloads, next) { 5359 /* Releasing payloads is always OK-even if the port is gone */ 5360 if (payload->delete) { 5361 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all time slots\n", 5362 payload->port); 5363 continue; 5364 } 5365 5366 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d time slots\n", 5367 payload->port, payload->time_slots); 5368 5369 avail_slots -= payload->time_slots; 5370 if (avail_slots < 0) { 5371 drm_dbg_atomic(mgr->dev, 5372 "[MST PORT:%p] not enough time slots in mst state %p (avail=%d)\n", 5373 payload->port, mst_state, avail_slots + payload->time_slots); 5374 return -ENOSPC; 5375 } 5376 5377 if (++payload_count > mgr->max_payloads) { 5378 drm_dbg_atomic(mgr->dev, 5379 "[MST MGR:%p] state %p has too many payloads (max=%d)\n", 5380 mgr, mst_state, mgr->max_payloads); 5381 return -EINVAL; 5382 } 5383 5384 /* Assign a VCPI */ 5385 if (!payload->vcpi) { 5386 payload->vcpi = ffz(mst_state->payload_mask) + 1; 5387 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] assigned VCPI #%d\n", 5388 payload->port, payload->vcpi); 5389 mst_state->payload_mask |= BIT(payload->vcpi - 1); 5390 } 5391 } 5392 5393 if (!payload_count) 5394 mst_state->pbn_div.full = dfixed_const(0); 5395 5396 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p TU pbn_div=%d avail=%d used=%d\n", 5397 mgr, mst_state, dfixed_trunc(mst_state->pbn_div), avail_slots, 5398 mst_state->total_avail_slots - avail_slots); 5399 5400 return 0; 5401 } 5402 5403 /** 5404 * drm_dp_mst_add_affected_dsc_crtcs 5405 * @state: Pointer to the new struct drm_dp_mst_topology_state 5406 * @mgr: MST topology manager 5407 * 5408 * Whenever there is a change in mst topology 5409 * DSC configuration would have to be recalculated 5410 * therefore we need to trigger modeset on all affected 5411 * CRTCs in that topology 5412 * 5413 * See also: 5414 * drm_dp_mst_atomic_enable_dsc() 5415 */ 5416 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr) 5417 { 5418 struct drm_dp_mst_topology_state *mst_state; 5419 struct drm_dp_mst_atomic_payload *pos; 5420 struct drm_connector *connector; 5421 struct drm_connector_state *conn_state; 5422 struct drm_crtc *crtc; 5423 struct drm_crtc_state *crtc_state; 5424 5425 mst_state = drm_atomic_get_mst_topology_state(state, mgr); 5426 5427 if (IS_ERR(mst_state)) 5428 return PTR_ERR(mst_state); 5429 5430 list_for_each_entry(pos, &mst_state->payloads, next) { 5431 5432 connector = pos->port->connector; 5433 5434 if (!connector) 5435 return -EINVAL; 5436 5437 conn_state = drm_atomic_get_connector_state(state, connector); 5438 5439 if (IS_ERR(conn_state)) 5440 return PTR_ERR(conn_state); 5441 5442 crtc = conn_state->crtc; 5443 5444 if (!crtc) 5445 continue; 5446 5447 if (!drm_dp_mst_dsc_aux_for_port(pos->port)) 5448 continue; 5449 5450 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc); 5451 5452 if (IS_ERR(crtc_state)) 5453 return PTR_ERR(crtc_state); 5454 5455 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n", 5456 mgr, crtc); 5457 5458 crtc_state->mode_changed = true; 5459 } 5460 return 0; 5461 } 5462 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs); 5463 5464 /** 5465 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off 5466 * @state: Pointer to the new drm_atomic_state 5467 * @port: Pointer to the affected MST Port 5468 * @pbn: Newly recalculated bw required for link with DSC enabled 5469 * @enable: Boolean flag to enable or disable DSC on the port 5470 * 5471 * This function enables DSC on the given Port 5472 * by recalculating its vcpi from pbn provided 5473 * and sets dsc_enable flag to keep track of which 5474 * ports have DSC enabled 5475 * 5476 */ 5477 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state, 5478 struct drm_dp_mst_port *port, 5479 int pbn, bool enable) 5480 { 5481 struct drm_dp_mst_topology_state *mst_state; 5482 struct drm_dp_mst_atomic_payload *payload; 5483 int time_slots = 0; 5484 5485 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr); 5486 if (IS_ERR(mst_state)) 5487 return PTR_ERR(mst_state); 5488 5489 payload = drm_atomic_get_mst_payload_state(mst_state, port); 5490 if (!payload) { 5491 drm_dbg_atomic(state->dev, 5492 "[MST PORT:%p] Couldn't find payload in mst state %p\n", 5493 port, mst_state); 5494 return -EINVAL; 5495 } 5496 5497 if (payload->dsc_enabled == enable) { 5498 drm_dbg_atomic(state->dev, 5499 "[MST PORT:%p] DSC flag is already set to %d, returning %d time slots\n", 5500 port, enable, payload->time_slots); 5501 time_slots = payload->time_slots; 5502 } 5503 5504 if (enable) { 5505 time_slots = drm_dp_atomic_find_time_slots(state, port->mgr, port, pbn); 5506 drm_dbg_atomic(state->dev, 5507 "[MST PORT:%p] Enabling DSC flag, reallocating %d time slots on the port\n", 5508 port, time_slots); 5509 if (time_slots < 0) 5510 return -EINVAL; 5511 } 5512 5513 payload->dsc_enabled = enable; 5514 5515 return time_slots; 5516 } 5517 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc); 5518 5519 /** 5520 * drm_dp_mst_atomic_check_mgr - Check the atomic state of an MST topology manager 5521 * @state: The global atomic state 5522 * @mgr: Manager to check 5523 * @mst_state: The MST atomic state for @mgr 5524 * @failing_port: Returns the port with a BW limitation 5525 * 5526 * Checks the given MST manager's topology state for an atomic update to ensure 5527 * that it's valid. This includes checking whether there's enough bandwidth to 5528 * support the new timeslot allocations in the atomic update. 5529 * 5530 * Any atomic drivers supporting DP MST must make sure to call this or 5531 * the drm_dp_mst_atomic_check() function after checking the rest of their state 5532 * in their &drm_mode_config_funcs.atomic_check() callback. 5533 * 5534 * See also: 5535 * drm_dp_mst_atomic_check() 5536 * drm_dp_atomic_find_time_slots() 5537 * drm_dp_atomic_release_time_slots() 5538 * 5539 * Returns: 5540 * - 0 if the new state is valid 5541 * - %-ENOSPC, if the new state is invalid, because of BW limitation 5542 * @failing_port is set to: 5543 * 5544 * - The non-root port where a BW limit check failed 5545 * with all the ports downstream of @failing_port passing 5546 * the BW limit check. 5547 * The returned port pointer is valid until at least 5548 * one payload downstream of it exists. 5549 * - %NULL if the BW limit check failed at the root port 5550 * with all the ports downstream of the root port passing 5551 * the BW limit check. 5552 * 5553 * - %-EINVAL, if the new state is invalid, because the root port has 5554 * too many payloads. 5555 */ 5556 int drm_dp_mst_atomic_check_mgr(struct drm_atomic_state *state, 5557 struct drm_dp_mst_topology_mgr *mgr, 5558 struct drm_dp_mst_topology_state *mst_state, 5559 struct drm_dp_mst_port **failing_port) 5560 { 5561 int ret; 5562 5563 *failing_port = NULL; 5564 5565 if (!mgr->mst_state) 5566 return 0; 5567 5568 mutex_lock(&mgr->lock); 5569 ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary, 5570 mst_state, 5571 failing_port); 5572 mutex_unlock(&mgr->lock); 5573 5574 if (ret < 0) 5575 return ret; 5576 5577 return drm_dp_mst_atomic_check_payload_alloc_limits(mgr, mst_state); 5578 } 5579 EXPORT_SYMBOL(drm_dp_mst_atomic_check_mgr); 5580 5581 /** 5582 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an 5583 * atomic update is valid 5584 * @state: Pointer to the new &struct drm_dp_mst_topology_state 5585 * 5586 * Checks the given topology state for an atomic update to ensure that it's 5587 * valid, calling drm_dp_mst_atomic_check_mgr() for all MST manager in the 5588 * atomic state. This includes checking whether there's enough bandwidth to 5589 * support the new timeslot allocations in the atomic update. 5590 * 5591 * Any atomic drivers supporting DP MST must make sure to call this after 5592 * checking the rest of their state in their 5593 * &drm_mode_config_funcs.atomic_check() callback. 5594 * 5595 * See also: 5596 * drm_dp_mst_atomic_check_mgr() 5597 * drm_dp_atomic_find_time_slots() 5598 * drm_dp_atomic_release_time_slots() 5599 * 5600 * Returns: 5601 * 5602 * 0 if the new state is valid, negative error code otherwise. 5603 */ 5604 int drm_dp_mst_atomic_check(struct drm_atomic_state *state) 5605 { 5606 struct drm_dp_mst_topology_mgr *mgr; 5607 struct drm_dp_mst_topology_state *mst_state; 5608 int i, ret = 0; 5609 5610 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 5611 struct drm_dp_mst_port *tmp_port; 5612 5613 ret = drm_dp_mst_atomic_check_mgr(state, mgr, mst_state, &tmp_port); 5614 if (ret) 5615 break; 5616 } 5617 5618 return ret; 5619 } 5620 EXPORT_SYMBOL(drm_dp_mst_atomic_check); 5621 5622 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = { 5623 .atomic_duplicate_state = drm_dp_mst_duplicate_state, 5624 .atomic_destroy_state = drm_dp_mst_destroy_state, 5625 }; 5626 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs); 5627 5628 /** 5629 * drm_atomic_get_mst_topology_state: get MST topology state 5630 * @state: global atomic state 5631 * @mgr: MST topology manager, also the private object in this case 5632 * 5633 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic 5634 * state vtable so that the private object state returned is that of a MST 5635 * topology object. 5636 * 5637 * RETURNS: 5638 * 5639 * The MST topology state or error pointer. 5640 */ 5641 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state, 5642 struct drm_dp_mst_topology_mgr *mgr) 5643 { 5644 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base)); 5645 } 5646 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state); 5647 5648 /** 5649 * drm_atomic_get_old_mst_topology_state: get old MST topology state in atomic state, if any 5650 * @state: global atomic state 5651 * @mgr: MST topology manager, also the private object in this case 5652 * 5653 * This function wraps drm_atomic_get_old_private_obj_state() passing in the MST atomic 5654 * state vtable so that the private object state returned is that of a MST 5655 * topology object. 5656 * 5657 * Returns: 5658 * 5659 * The old MST topology state, or NULL if there's no topology state for this MST mgr 5660 * in the global atomic state 5661 */ 5662 struct drm_dp_mst_topology_state * 5663 drm_atomic_get_old_mst_topology_state(struct drm_atomic_state *state, 5664 struct drm_dp_mst_topology_mgr *mgr) 5665 { 5666 struct drm_private_state *old_priv_state = 5667 drm_atomic_get_old_private_obj_state(state, &mgr->base); 5668 5669 return old_priv_state ? to_dp_mst_topology_state(old_priv_state) : NULL; 5670 } 5671 EXPORT_SYMBOL(drm_atomic_get_old_mst_topology_state); 5672 5673 /** 5674 * drm_atomic_get_new_mst_topology_state: get new MST topology state in atomic state, if any 5675 * @state: global atomic state 5676 * @mgr: MST topology manager, also the private object in this case 5677 * 5678 * This function wraps drm_atomic_get_new_private_obj_state() passing in the MST atomic 5679 * state vtable so that the private object state returned is that of a MST 5680 * topology object. 5681 * 5682 * Returns: 5683 * 5684 * The new MST topology state, or NULL if there's no topology state for this MST mgr 5685 * in the global atomic state 5686 */ 5687 struct drm_dp_mst_topology_state * 5688 drm_atomic_get_new_mst_topology_state(struct drm_atomic_state *state, 5689 struct drm_dp_mst_topology_mgr *mgr) 5690 { 5691 struct drm_private_state *new_priv_state = 5692 drm_atomic_get_new_private_obj_state(state, &mgr->base); 5693 5694 return new_priv_state ? to_dp_mst_topology_state(new_priv_state) : NULL; 5695 } 5696 EXPORT_SYMBOL(drm_atomic_get_new_mst_topology_state); 5697 5698 /** 5699 * drm_dp_mst_topology_mgr_init - initialise a topology manager 5700 * @mgr: manager struct to initialise 5701 * @dev: device providing this structure - for i2c addition. 5702 * @aux: DP helper aux channel to talk to this device 5703 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit 5704 * @max_payloads: maximum number of payloads this GPU can source 5705 * @conn_base_id: the connector object ID the MST device is connected to. 5706 * 5707 * Return 0 for success, or negative error code on failure 5708 */ 5709 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr, 5710 struct drm_device *dev, struct drm_dp_aux *aux, 5711 int max_dpcd_transaction_bytes, int max_payloads, 5712 int conn_base_id) 5713 { 5714 struct drm_dp_mst_topology_state *mst_state; 5715 5716 mutex_init(&mgr->lock); 5717 mutex_init(&mgr->qlock); 5718 mutex_init(&mgr->delayed_destroy_lock); 5719 mutex_init(&mgr->up_req_lock); 5720 mutex_init(&mgr->probe_lock); 5721 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5722 mutex_init(&mgr->topology_ref_history_lock); 5723 stack_depot_init(); 5724 #endif 5725 INIT_LIST_HEAD(&mgr->tx_msg_downq); 5726 INIT_LIST_HEAD(&mgr->destroy_port_list); 5727 INIT_LIST_HEAD(&mgr->destroy_branch_device_list); 5728 INIT_LIST_HEAD(&mgr->up_req_list); 5729 5730 /* 5731 * delayed_destroy_work will be queued on a dedicated WQ, so that any 5732 * requeuing will be also flushed when deiniting the topology manager. 5733 */ 5734 mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0); 5735 if (mgr->delayed_destroy_wq == NULL) 5736 return -ENOMEM; 5737 5738 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work); 5739 INIT_WORK(&mgr->tx_work, drm_dp_tx_work); 5740 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work); 5741 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work); 5742 init_waitqueue_head(&mgr->tx_waitq); 5743 mgr->dev = dev; 5744 mgr->aux = aux; 5745 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes; 5746 mgr->max_payloads = max_payloads; 5747 mgr->conn_base_id = conn_base_id; 5748 5749 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL); 5750 if (mst_state == NULL) 5751 return -ENOMEM; 5752 5753 mst_state->total_avail_slots = 63; 5754 mst_state->start_slot = 1; 5755 5756 mst_state->mgr = mgr; 5757 INIT_LIST_HEAD(&mst_state->payloads); 5758 5759 drm_atomic_private_obj_init(dev, &mgr->base, 5760 &mst_state->base, 5761 &drm_dp_mst_topology_state_funcs); 5762 5763 return 0; 5764 } 5765 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init); 5766 5767 /** 5768 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager. 5769 * @mgr: manager to destroy 5770 */ 5771 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr) 5772 { 5773 drm_dp_mst_topology_mgr_set_mst(mgr, false); 5774 flush_work(&mgr->work); 5775 /* The following will also drain any requeued work on the WQ. */ 5776 if (mgr->delayed_destroy_wq) { 5777 destroy_workqueue(mgr->delayed_destroy_wq); 5778 mgr->delayed_destroy_wq = NULL; 5779 } 5780 mgr->dev = NULL; 5781 mgr->aux = NULL; 5782 drm_atomic_private_obj_fini(&mgr->base); 5783 mgr->funcs = NULL; 5784 5785 mutex_destroy(&mgr->delayed_destroy_lock); 5786 mutex_destroy(&mgr->qlock); 5787 mutex_destroy(&mgr->lock); 5788 mutex_destroy(&mgr->up_req_lock); 5789 mutex_destroy(&mgr->probe_lock); 5790 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS) 5791 mutex_destroy(&mgr->topology_ref_history_lock); 5792 #endif 5793 } 5794 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy); 5795 5796 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num) 5797 { 5798 int i; 5799 5800 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS) 5801 return false; 5802 5803 for (i = 0; i < num - 1; i++) { 5804 if (msgs[i].flags & I2C_M_RD || 5805 msgs[i].len > 0xff) 5806 return false; 5807 } 5808 5809 return msgs[num - 1].flags & I2C_M_RD && 5810 msgs[num - 1].len <= 0xff; 5811 } 5812 5813 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num) 5814 { 5815 int i; 5816 5817 for (i = 0; i < num - 1; i++) { 5818 if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) || 5819 msgs[i].len > 0xff) 5820 return false; 5821 } 5822 5823 return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff; 5824 } 5825 5826 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb, 5827 struct drm_dp_mst_port *port, 5828 struct i2c_msg *msgs, int num) 5829 { 5830 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5831 unsigned int i; 5832 struct drm_dp_sideband_msg_req_body msg; 5833 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5834 int ret; 5835 5836 memset(&msg, 0, sizeof(msg)); 5837 msg.req_type = DP_REMOTE_I2C_READ; 5838 msg.u.i2c_read.num_transactions = num - 1; 5839 msg.u.i2c_read.port_number = port->port_num; 5840 for (i = 0; i < num - 1; i++) { 5841 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr; 5842 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len; 5843 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf; 5844 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP); 5845 } 5846 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr; 5847 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len; 5848 5849 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5850 if (!txmsg) { 5851 ret = -ENOMEM; 5852 goto out; 5853 } 5854 5855 txmsg->dst = mstb; 5856 drm_dp_encode_sideband_req(&msg, txmsg); 5857 5858 drm_dp_queue_down_tx(mgr, txmsg); 5859 5860 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5861 if (ret > 0) { 5862 5863 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5864 ret = -EREMOTEIO; 5865 goto out; 5866 } 5867 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) { 5868 ret = -EIO; 5869 goto out; 5870 } 5871 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len); 5872 ret = num; 5873 } 5874 out: 5875 kfree(txmsg); 5876 return ret; 5877 } 5878 5879 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb, 5880 struct drm_dp_mst_port *port, 5881 struct i2c_msg *msgs, int num) 5882 { 5883 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5884 unsigned int i; 5885 struct drm_dp_sideband_msg_req_body msg; 5886 struct drm_dp_sideband_msg_tx *txmsg = NULL; 5887 int ret; 5888 5889 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL); 5890 if (!txmsg) { 5891 ret = -ENOMEM; 5892 goto out; 5893 } 5894 for (i = 0; i < num; i++) { 5895 memset(&msg, 0, sizeof(msg)); 5896 msg.req_type = DP_REMOTE_I2C_WRITE; 5897 msg.u.i2c_write.port_number = port->port_num; 5898 msg.u.i2c_write.write_i2c_device_id = msgs[i].addr; 5899 msg.u.i2c_write.num_bytes = msgs[i].len; 5900 msg.u.i2c_write.bytes = msgs[i].buf; 5901 5902 memset(txmsg, 0, sizeof(*txmsg)); 5903 txmsg->dst = mstb; 5904 5905 drm_dp_encode_sideband_req(&msg, txmsg); 5906 drm_dp_queue_down_tx(mgr, txmsg); 5907 5908 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg); 5909 if (ret > 0) { 5910 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) { 5911 ret = -EREMOTEIO; 5912 goto out; 5913 } 5914 } else { 5915 goto out; 5916 } 5917 } 5918 ret = num; 5919 out: 5920 kfree(txmsg); 5921 return ret; 5922 } 5923 5924 /* I2C device */ 5925 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, 5926 struct i2c_msg *msgs, int num) 5927 { 5928 struct drm_dp_aux *aux = adapter->algo_data; 5929 struct drm_dp_mst_port *port = 5930 container_of(aux, struct drm_dp_mst_port, aux); 5931 struct drm_dp_mst_branch *mstb; 5932 struct drm_dp_mst_topology_mgr *mgr = port->mgr; 5933 int ret; 5934 5935 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent); 5936 if (!mstb) 5937 return -EREMOTEIO; 5938 5939 if (remote_i2c_read_ok(msgs, num)) { 5940 ret = drm_dp_mst_i2c_read(mstb, port, msgs, num); 5941 } else if (remote_i2c_write_ok(msgs, num)) { 5942 ret = drm_dp_mst_i2c_write(mstb, port, msgs, num); 5943 } else { 5944 drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n"); 5945 ret = -EIO; 5946 } 5947 5948 drm_dp_mst_topology_put_mstb(mstb); 5949 return ret; 5950 } 5951 5952 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter) 5953 { 5954 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 5955 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 5956 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 5957 I2C_FUNC_10BIT_ADDR; 5958 } 5959 5960 static const struct i2c_algorithm drm_dp_mst_i2c_algo = { 5961 .functionality = drm_dp_mst_i2c_functionality, 5962 .master_xfer = drm_dp_mst_i2c_xfer, 5963 }; 5964 5965 /** 5966 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX 5967 * @port: The port to add the I2C bus on 5968 * 5969 * Returns 0 on success or a negative error code on failure. 5970 */ 5971 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port) 5972 { 5973 struct drm_dp_aux *aux = &port->aux; 5974 struct device *parent_dev = port->mgr->dev->dev; 5975 5976 aux->ddc.algo = &drm_dp_mst_i2c_algo; 5977 aux->ddc.algo_data = aux; 5978 aux->ddc.retries = 3; 5979 5980 aux->ddc.owner = THIS_MODULE; 5981 /* FIXME: set the kdev of the port's connector as parent */ 5982 aux->ddc.dev.parent = parent_dev; 5983 aux->ddc.dev.of_node = parent_dev->of_node; 5984 5985 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev), 5986 sizeof(aux->ddc.name)); 5987 5988 return i2c_add_adapter(&aux->ddc); 5989 } 5990 5991 /** 5992 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter 5993 * @port: The port to remove the I2C bus from 5994 */ 5995 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port) 5996 { 5997 i2c_del_adapter(&port->aux.ddc); 5998 } 5999 6000 /** 6001 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device 6002 * @port: The port to check 6003 * 6004 * A single physical MST hub object can be represented in the topology 6005 * by multiple branches, with virtual ports between those branches. 6006 * 6007 * As of DP1.4, An MST hub with internal (virtual) ports must expose 6008 * certain DPCD registers over those ports. See sections 2.6.1.1.1 6009 * and 2.6.1.1.2 of Display Port specification v1.4 for details. 6010 * 6011 * May acquire mgr->lock 6012 * 6013 * Returns: 6014 * true if the port is a virtual DP peer device, false otherwise 6015 */ 6016 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port) 6017 { 6018 struct drm_dp_mst_port *downstream_port; 6019 6020 if (!port || port->dpcd_rev < DP_DPCD_REV_14) 6021 return false; 6022 6023 /* Virtual DP Sink (Internal Display Panel) */ 6024 if (drm_dp_mst_port_is_logical(port)) 6025 return true; 6026 6027 /* DP-to-HDMI Protocol Converter */ 6028 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV && 6029 !port->mcs && 6030 port->ldps) 6031 return true; 6032 6033 /* DP-to-DP */ 6034 mutex_lock(&port->mgr->lock); 6035 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING && 6036 port->mstb && 6037 port->mstb->num_ports == 2) { 6038 list_for_each_entry(downstream_port, &port->mstb->ports, next) { 6039 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK && 6040 !downstream_port->input) { 6041 mutex_unlock(&port->mgr->lock); 6042 return true; 6043 } 6044 } 6045 } 6046 mutex_unlock(&port->mgr->lock); 6047 6048 return false; 6049 } 6050 6051 /** 6052 * drm_dp_mst_aux_for_parent() - Get the AUX device for an MST port's parent 6053 * @port: MST port whose parent's AUX device is returned 6054 * 6055 * Return the AUX device for @port's parent or NULL if port's parent is the 6056 * root port. 6057 */ 6058 struct drm_dp_aux *drm_dp_mst_aux_for_parent(struct drm_dp_mst_port *port) 6059 { 6060 if (!port->parent || !port->parent->port_parent) 6061 return NULL; 6062 6063 return &port->parent->port_parent->aux; 6064 } 6065 EXPORT_SYMBOL(drm_dp_mst_aux_for_parent); 6066 6067 /** 6068 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC 6069 * @port: The port to check. A leaf of the MST tree with an attached display. 6070 * 6071 * Depending on the situation, DSC may be enabled via the endpoint aux, 6072 * the immediately upstream aux, or the connector's physical aux. 6073 * 6074 * This is both the correct aux to read DSC_CAPABILITY and the 6075 * correct aux to write DSC_ENABLED. 6076 * 6077 * This operation can be expensive (up to four aux reads), so 6078 * the caller should cache the return. 6079 * 6080 * Returns: 6081 * NULL if DSC cannot be enabled on this port, otherwise the aux device 6082 */ 6083 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port) 6084 { 6085 struct drm_dp_mst_port *immediate_upstream_port; 6086 struct drm_dp_aux *immediate_upstream_aux; 6087 struct drm_dp_mst_port *fec_port; 6088 struct drm_dp_desc desc = {}; 6089 u8 endpoint_fec; 6090 u8 endpoint_dsc; 6091 6092 if (!port) 6093 return NULL; 6094 6095 if (port->parent->port_parent) 6096 immediate_upstream_port = port->parent->port_parent; 6097 else 6098 immediate_upstream_port = NULL; 6099 6100 fec_port = immediate_upstream_port; 6101 while (fec_port) { 6102 /* 6103 * Each physical link (i.e. not a virtual port) between the 6104 * output and the primary device must support FEC 6105 */ 6106 if (!drm_dp_mst_is_virtual_dpcd(fec_port) && 6107 !fec_port->fec_capable) 6108 return NULL; 6109 6110 fec_port = fec_port->parent->port_parent; 6111 } 6112 6113 /* DP-to-DP peer device */ 6114 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) { 6115 u8 upstream_dsc; 6116 6117 if (drm_dp_dpcd_read(&port->aux, 6118 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 6119 return NULL; 6120 if (drm_dp_dpcd_read(&port->aux, 6121 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 6122 return NULL; 6123 if (drm_dp_dpcd_read(&immediate_upstream_port->aux, 6124 DP_DSC_SUPPORT, &upstream_dsc, 1) != 1) 6125 return NULL; 6126 6127 /* Enpoint decompression with DP-to-DP peer device */ 6128 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6129 (endpoint_fec & DP_FEC_CAPABLE) && 6130 (upstream_dsc & DP_DSC_PASSTHROUGH_IS_SUPPORTED)) { 6131 port->passthrough_aux = &immediate_upstream_port->aux; 6132 return &port->aux; 6133 } 6134 6135 /* Virtual DPCD decompression with DP-to-DP peer device */ 6136 return &immediate_upstream_port->aux; 6137 } 6138 6139 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */ 6140 if (drm_dp_mst_is_virtual_dpcd(port)) 6141 return &port->aux; 6142 6143 /* 6144 * Synaptics quirk 6145 * Applies to ports for which: 6146 * - Physical aux has Synaptics OUI 6147 * - DPv1.4 or higher 6148 * - Port is on primary branch device 6149 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG) 6150 */ 6151 if (immediate_upstream_port) 6152 immediate_upstream_aux = &immediate_upstream_port->aux; 6153 else 6154 immediate_upstream_aux = port->mgr->aux; 6155 6156 if (drm_dp_read_desc(immediate_upstream_aux, &desc, true)) 6157 return NULL; 6158 6159 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD)) { 6160 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 6161 6162 if (drm_dp_read_dpcd_caps(immediate_upstream_aux, dpcd_ext) < 0) 6163 return NULL; 6164 6165 if (dpcd_ext[DP_DPCD_REV] >= DP_DPCD_REV_14 && 6166 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) && 6167 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) 6168 != DP_DWN_STRM_PORT_TYPE_ANALOG))) 6169 return immediate_upstream_aux; 6170 } 6171 6172 /* 6173 * The check below verifies if the MST sink 6174 * connected to the GPU is capable of DSC - 6175 * therefore the endpoint needs to be 6176 * both DSC and FEC capable. 6177 */ 6178 if (drm_dp_dpcd_read(&port->aux, 6179 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1) 6180 return NULL; 6181 if (drm_dp_dpcd_read(&port->aux, 6182 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1) 6183 return NULL; 6184 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) && 6185 (endpoint_fec & DP_FEC_CAPABLE)) 6186 return &port->aux; 6187 6188 return NULL; 6189 } 6190 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port); 6191