xref: /linux/drivers/gpu/drm/display/drm_dp_helper.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/dynamic_debug.h>
26 #include <linux/errno.h>
27 #include <linux/i2c.h>
28 #include <linux/init.h>
29 #include <linux/iopoll.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/seq_file.h>
34 #include <linux/string_helpers.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_dp_mst_helper.h>
38 #include <drm/drm_edid.h>
39 #include <drm/drm_fixed.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_vblank.h>
42 #include <drm/drm_panel.h>
43 
44 #include "drm_dp_helper_internal.h"
45 
46 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
47 			"DRM_UT_CORE",
48 			"DRM_UT_DRIVER",
49 			"DRM_UT_KMS",
50 			"DRM_UT_PRIME",
51 			"DRM_UT_ATOMIC",
52 			"DRM_UT_VBL",
53 			"DRM_UT_STATE",
54 			"DRM_UT_LEASE",
55 			"DRM_UT_DP",
56 			"DRM_UT_DRMRES");
57 
58 struct dp_aux_backlight {
59 	struct backlight_device *base;
60 	struct drm_dp_aux *aux;
61 	struct drm_edp_backlight_info info;
62 	bool enabled;
63 };
64 
65 /**
66  * DOC: dp helpers
67  *
68  * These functions contain some common logic and helpers at various abstraction
69  * levels to deal with Display Port sink devices and related things like DP aux
70  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
71  * blocks, ...
72  */
73 
74 /* Helpers for DP link training */
75 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
76 {
77 	return link_status[r - DP_LANE0_1_STATUS];
78 }
79 
80 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
81 			     int lane)
82 {
83 	int i = DP_LANE0_1_STATUS + (lane >> 1);
84 	int s = (lane & 1) * 4;
85 	u8 l = dp_link_status(link_status, i);
86 
87 	return (l >> s) & 0xf;
88 }
89 
90 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
91 			  int lane_count)
92 {
93 	u8 lane_align;
94 	u8 lane_status;
95 	int lane;
96 
97 	lane_align = dp_link_status(link_status,
98 				    DP_LANE_ALIGN_STATUS_UPDATED);
99 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
100 		return false;
101 	for (lane = 0; lane < lane_count; lane++) {
102 		lane_status = dp_get_lane_status(link_status, lane);
103 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
104 			return false;
105 	}
106 	return true;
107 }
108 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
109 
110 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
111 			      int lane_count)
112 {
113 	int lane;
114 	u8 lane_status;
115 
116 	for (lane = 0; lane < lane_count; lane++) {
117 		lane_status = dp_get_lane_status(link_status, lane);
118 		if ((lane_status & DP_LANE_CR_DONE) == 0)
119 			return false;
120 	}
121 	return true;
122 }
123 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
124 
125 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
126 				     int lane)
127 {
128 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
129 	int s = ((lane & 1) ?
130 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
131 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
132 	u8 l = dp_link_status(link_status, i);
133 
134 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
135 }
136 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
137 
138 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
139 					  int lane)
140 {
141 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
142 	int s = ((lane & 1) ?
143 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
144 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
145 	u8 l = dp_link_status(link_status, i);
146 
147 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
148 }
149 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
150 
151 /* DP 2.0 128b/132b */
152 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
153 				   int lane)
154 {
155 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
156 	int s = ((lane & 1) ?
157 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
158 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
159 	u8 l = dp_link_status(link_status, i);
160 
161 	return (l >> s) & 0xf;
162 }
163 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
164 
165 /* DP 2.0 errata for 128b/132b */
166 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
167 					  int lane_count)
168 {
169 	u8 lane_align, lane_status;
170 	int lane;
171 
172 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
173 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
174 		return false;
175 
176 	for (lane = 0; lane < lane_count; lane++) {
177 		lane_status = dp_get_lane_status(link_status, lane);
178 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
179 			return false;
180 	}
181 	return true;
182 }
183 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
184 
185 /* DP 2.0 errata for 128b/132b */
186 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
187 					int lane_count)
188 {
189 	u8 lane_status;
190 	int lane;
191 
192 	for (lane = 0; lane < lane_count; lane++) {
193 		lane_status = dp_get_lane_status(link_status, lane);
194 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
195 			return false;
196 	}
197 	return true;
198 }
199 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
200 
201 /* DP 2.0 errata for 128b/132b */
202 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
203 {
204 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
205 
206 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
207 }
208 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
209 
210 /* DP 2.0 errata for 128b/132b */
211 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
212 {
213 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
214 
215 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
216 }
217 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
218 
219 /* DP 2.0 errata for 128b/132b */
220 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
221 {
222 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
223 
224 	return status & DP_128B132B_LT_FAILED;
225 }
226 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
227 
228 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
229 {
230 	if (rd_interval > 4)
231 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
232 			    aux->name, rd_interval);
233 
234 	if (rd_interval == 0)
235 		return 100;
236 
237 	return rd_interval * 4 * USEC_PER_MSEC;
238 }
239 
240 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
241 {
242 	if (rd_interval > 4)
243 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
244 			    aux->name, rd_interval);
245 
246 	if (rd_interval == 0)
247 		return 400;
248 
249 	return rd_interval * 4 * USEC_PER_MSEC;
250 }
251 
252 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
253 {
254 	switch (rd_interval) {
255 	default:
256 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
257 			    aux->name, rd_interval);
258 		fallthrough;
259 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
260 		return 400;
261 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
262 		return 4000;
263 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
264 		return 8000;
265 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
266 		return 12000;
267 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
268 		return 16000;
269 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
270 		return 32000;
271 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
272 		return 64000;
273 	}
274 }
275 
276 /*
277  * The link training delays are different for:
278  *
279  *  - Clock recovery vs. channel equalization
280  *  - DPRX vs. LTTPR
281  *  - 128b/132b vs. 8b/10b
282  *  - DPCD rev 1.3 vs. later
283  *
284  * Get the correct delay in us, reading DPCD if necessary.
285  */
286 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
287 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
288 {
289 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
290 	unsigned int offset;
291 	u8 rd_interval, mask;
292 
293 	if (dp_phy == DP_PHY_DPRX) {
294 		if (uhbr) {
295 			if (cr)
296 				return 100;
297 
298 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
299 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
300 			parse = __128b132b_channel_eq_delay_us;
301 		} else {
302 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
303 				return 100;
304 
305 			offset = DP_TRAINING_AUX_RD_INTERVAL;
306 			mask = DP_TRAINING_AUX_RD_MASK;
307 			if (cr)
308 				parse = __8b10b_clock_recovery_delay_us;
309 			else
310 				parse = __8b10b_channel_eq_delay_us;
311 		}
312 	} else {
313 		if (uhbr) {
314 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
315 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
316 			parse = __128b132b_channel_eq_delay_us;
317 		} else {
318 			if (cr)
319 				return 100;
320 
321 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
322 			mask = DP_TRAINING_AUX_RD_MASK;
323 			parse = __8b10b_channel_eq_delay_us;
324 		}
325 	}
326 
327 	if (offset < DP_RECEIVER_CAP_SIZE) {
328 		rd_interval = dpcd[offset];
329 	} else {
330 		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
331 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
332 				    aux->name);
333 			/* arbitrary default delay */
334 			return 400;
335 		}
336 	}
337 
338 	return parse(aux, rd_interval & mask);
339 }
340 
341 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
342 				     enum drm_dp_phy dp_phy, bool uhbr)
343 {
344 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
345 }
346 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
347 
348 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
349 				 enum drm_dp_phy dp_phy, bool uhbr)
350 {
351 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
352 }
353 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
354 
355 /* Per DP 2.0 Errata */
356 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
357 {
358 	int unit;
359 	u8 val;
360 
361 	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
362 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
363 			aux->name);
364 		/* default to max */
365 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
366 	}
367 
368 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
369 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
370 
371 	return (val + 1) * unit * 1000;
372 }
373 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
374 
375 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
376 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
377 {
378 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
379 		DP_TRAINING_AUX_RD_MASK;
380 	int delay_us;
381 
382 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
383 		delay_us = 100;
384 	else
385 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
386 
387 	usleep_range(delay_us, delay_us * 2);
388 }
389 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
390 
391 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
392 						 u8 rd_interval)
393 {
394 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
395 
396 	usleep_range(delay_us, delay_us * 2);
397 }
398 
399 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
400 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
401 {
402 	__drm_dp_link_train_channel_eq_delay(aux,
403 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
404 					     DP_TRAINING_AUX_RD_MASK);
405 }
406 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
407 
408 /**
409  * drm_dp_phy_name() - Get the name of the given DP PHY
410  * @dp_phy: The DP PHY identifier
411  *
412  * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
413  * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
414  * non-NULL and valid.
415  *
416  * Returns: Name of the DP PHY.
417  */
418 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
419 {
420 	static const char * const phy_names[] = {
421 		[DP_PHY_DPRX] = "DPRX",
422 		[DP_PHY_LTTPR1] = "LTTPR 1",
423 		[DP_PHY_LTTPR2] = "LTTPR 2",
424 		[DP_PHY_LTTPR3] = "LTTPR 3",
425 		[DP_PHY_LTTPR4] = "LTTPR 4",
426 		[DP_PHY_LTTPR5] = "LTTPR 5",
427 		[DP_PHY_LTTPR6] = "LTTPR 6",
428 		[DP_PHY_LTTPR7] = "LTTPR 7",
429 		[DP_PHY_LTTPR8] = "LTTPR 8",
430 	};
431 
432 	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
433 	    WARN_ON(!phy_names[dp_phy]))
434 		return "<INVALID DP PHY>";
435 
436 	return phy_names[dp_phy];
437 }
438 EXPORT_SYMBOL(drm_dp_phy_name);
439 
440 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
441 {
442 	usleep_range(100, 200);
443 }
444 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
445 
446 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
447 {
448 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
449 }
450 
451 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
452 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
453 {
454 	u8 interval = dp_lttpr_phy_cap(phy_cap,
455 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
456 		      DP_TRAINING_AUX_RD_MASK;
457 
458 	__drm_dp_link_train_channel_eq_delay(aux, interval);
459 }
460 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
461 
462 u8 drm_dp_link_rate_to_bw_code(int link_rate)
463 {
464 	switch (link_rate) {
465 	case 1000000:
466 		return DP_LINK_BW_10;
467 	case 1350000:
468 		return DP_LINK_BW_13_5;
469 	case 2000000:
470 		return DP_LINK_BW_20;
471 	default:
472 		/* Spec says link_bw = link_rate / 0.27Gbps */
473 		return link_rate / 27000;
474 	}
475 }
476 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
477 
478 int drm_dp_bw_code_to_link_rate(u8 link_bw)
479 {
480 	switch (link_bw) {
481 	case DP_LINK_BW_10:
482 		return 1000000;
483 	case DP_LINK_BW_13_5:
484 		return 1350000;
485 	case DP_LINK_BW_20:
486 		return 2000000;
487 	default:
488 		/* Spec says link_rate = link_bw * 0.27Gbps */
489 		return link_bw * 27000;
490 	}
491 }
492 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
493 
494 #define AUX_RETRY_INTERVAL 500 /* us */
495 
496 static inline void
497 drm_dp_dump_access(const struct drm_dp_aux *aux,
498 		   u8 request, uint offset, void *buffer, int ret)
499 {
500 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
501 
502 	if (ret > 0)
503 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
504 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
505 	else
506 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
507 			   aux->name, offset, arrow, ret);
508 }
509 
510 /**
511  * DOC: dp helpers
512  *
513  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
514  * independent access to AUX functionality. Drivers can take advantage of
515  * this by filling in the fields of the drm_dp_aux structure.
516  *
517  * Transactions are described using a hardware-independent drm_dp_aux_msg
518  * structure, which is passed into a driver's .transfer() implementation.
519  * Both native and I2C-over-AUX transactions are supported.
520  */
521 
522 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
523 			      unsigned int offset, void *buffer, size_t size)
524 {
525 	struct drm_dp_aux_msg msg;
526 	unsigned int retry, native_reply;
527 	int err = 0, ret = 0;
528 
529 	memset(&msg, 0, sizeof(msg));
530 	msg.address = offset;
531 	msg.request = request;
532 	msg.buffer = buffer;
533 	msg.size = size;
534 
535 	mutex_lock(&aux->hw_mutex);
536 
537 	/*
538 	 * If the device attached to the aux bus is powered down then there's
539 	 * no reason to attempt a transfer. Error out immediately.
540 	 */
541 	if (aux->powered_down) {
542 		ret = -EBUSY;
543 		goto unlock;
544 	}
545 
546 	/*
547 	 * The specification doesn't give any recommendation on how often to
548 	 * retry native transactions. We used to retry 7 times like for
549 	 * aux i2c transactions but real world devices this wasn't
550 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
551 	 */
552 	for (retry = 0; retry < 32; retry++) {
553 		if (ret != 0 && ret != -ETIMEDOUT) {
554 			usleep_range(AUX_RETRY_INTERVAL,
555 				     AUX_RETRY_INTERVAL + 100);
556 		}
557 
558 		ret = aux->transfer(aux, &msg);
559 		if (ret >= 0) {
560 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
561 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
562 				if (ret == size)
563 					goto unlock;
564 
565 				ret = -EPROTO;
566 			} else
567 				ret = -EIO;
568 		}
569 
570 		/*
571 		 * We want the error we return to be the error we received on
572 		 * the first transaction, since we may get a different error the
573 		 * next time we retry
574 		 */
575 		if (!err)
576 			err = ret;
577 	}
578 
579 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
580 		    aux->name, err);
581 	ret = err;
582 
583 unlock:
584 	mutex_unlock(&aux->hw_mutex);
585 	return ret;
586 }
587 
588 /**
589  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
590  * @aux: DisplayPort AUX channel (SST)
591  * @offset: address of the register to probe
592  *
593  * Probe the provided DPCD address by reading 1 byte from it. The function can
594  * be used to trigger some side-effect the read access has, like waking up the
595  * sink, without the need for the read-out value.
596  *
597  * Returns 0 if the read access suceeded, or a negative error code on failure.
598  */
599 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
600 {
601 	u8 buffer;
602 	int ret;
603 
604 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
605 	WARN_ON(ret == 0);
606 
607 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
608 
609 	return ret < 0 ? ret : 0;
610 }
611 EXPORT_SYMBOL(drm_dp_dpcd_probe);
612 
613 /**
614  * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
615  * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
616  *       and the function will be a no-op.
617  * @powered: true if powered; false if not
618  *
619  * If the endpoint device on the DP AUX bus is known to be powered down
620  * then this function can be called to make future transfers fail immediately
621  * instead of needing to time out.
622  *
623  * If this function is never called then a device defaults to being powered.
624  */
625 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
626 {
627 	if (!aux)
628 		return;
629 
630 	mutex_lock(&aux->hw_mutex);
631 	aux->powered_down = !powered;
632 	mutex_unlock(&aux->hw_mutex);
633 }
634 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
635 
636 /**
637  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
638  * @aux: DisplayPort AUX channel (SST or MST)
639  * @offset: address of the (first) register to read
640  * @buffer: buffer to store the register values
641  * @size: number of bytes in @buffer
642  *
643  * Returns the number of bytes transferred on success, or a negative error
644  * code on failure. -EIO is returned if the request was NAKed by the sink or
645  * if the retry count was exceeded. If not all bytes were transferred, this
646  * function returns -EPROTO. Errors from the underlying AUX channel transfer
647  * function, with the exception of -EBUSY (which causes the transaction to
648  * be retried), are propagated to the caller.
649  */
650 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
651 			 void *buffer, size_t size)
652 {
653 	int ret;
654 
655 	/*
656 	 * HP ZR24w corrupts the first DPCD access after entering power save
657 	 * mode. Eg. on a read, the entire buffer will be filled with the same
658 	 * byte. Do a throw away read to avoid corrupting anything we care
659 	 * about. Afterwards things will work correctly until the monitor
660 	 * gets woken up and subsequently re-enters power save mode.
661 	 *
662 	 * The user pressing any button on the monitor is enough to wake it
663 	 * up, so there is no particularly good place to do the workaround.
664 	 * We just have to do it before any DPCD access and hope that the
665 	 * monitor doesn't power down exactly after the throw away read.
666 	 */
667 	if (!aux->is_remote) {
668 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
669 		if (ret < 0)
670 			return ret;
671 	}
672 
673 	if (aux->is_remote)
674 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
675 	else
676 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
677 					 buffer, size);
678 
679 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
680 	return ret;
681 }
682 EXPORT_SYMBOL(drm_dp_dpcd_read);
683 
684 /**
685  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
686  * @aux: DisplayPort AUX channel (SST or MST)
687  * @offset: address of the (first) register to write
688  * @buffer: buffer containing the values to write
689  * @size: number of bytes in @buffer
690  *
691  * Returns the number of bytes transferred on success, or a negative error
692  * code on failure. -EIO is returned if the request was NAKed by the sink or
693  * if the retry count was exceeded. If not all bytes were transferred, this
694  * function returns -EPROTO. Errors from the underlying AUX channel transfer
695  * function, with the exception of -EBUSY (which causes the transaction to
696  * be retried), are propagated to the caller.
697  */
698 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
699 			  void *buffer, size_t size)
700 {
701 	int ret;
702 
703 	if (aux->is_remote)
704 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
705 	else
706 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
707 					 buffer, size);
708 
709 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
710 	return ret;
711 }
712 EXPORT_SYMBOL(drm_dp_dpcd_write);
713 
714 /**
715  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
716  * @aux: DisplayPort AUX channel
717  * @status: buffer to store the link status in (must be at least 6 bytes)
718  *
719  * Returns the number of bytes transferred on success or a negative error
720  * code on failure.
721  */
722 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
723 				 u8 status[DP_LINK_STATUS_SIZE])
724 {
725 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
726 				DP_LINK_STATUS_SIZE);
727 }
728 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
729 
730 /**
731  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
732  * @aux: DisplayPort AUX channel
733  * @dp_phy: the DP PHY to get the link status for
734  * @link_status: buffer to return the status in
735  *
736  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
737  * layout of the returned @link_status matches the DPCD register layout of the
738  * DPRX PHY link status.
739  *
740  * Returns 0 if the information was read successfully or a negative error code
741  * on failure.
742  */
743 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
744 				     enum drm_dp_phy dp_phy,
745 				     u8 link_status[DP_LINK_STATUS_SIZE])
746 {
747 	int ret;
748 
749 	if (dp_phy == DP_PHY_DPRX) {
750 		ret = drm_dp_dpcd_read(aux,
751 				       DP_LANE0_1_STATUS,
752 				       link_status,
753 				       DP_LINK_STATUS_SIZE);
754 
755 		if (ret < 0)
756 			return ret;
757 
758 		WARN_ON(ret != DP_LINK_STATUS_SIZE);
759 
760 		return 0;
761 	}
762 
763 	ret = drm_dp_dpcd_read(aux,
764 			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
765 			       link_status,
766 			       DP_LINK_STATUS_SIZE - 1);
767 
768 	if (ret < 0)
769 		return ret;
770 
771 	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
772 
773 	/* Convert the LTTPR to the sink PHY link status layout */
774 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
775 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
776 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
777 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
778 
779 	return 0;
780 }
781 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
782 
783 static int read_payload_update_status(struct drm_dp_aux *aux)
784 {
785 	int ret;
786 	u8 status;
787 
788 	ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
789 	if (ret < 0)
790 		return ret;
791 
792 	return status;
793 }
794 
795 /**
796  * drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table
797  * @aux: DisplayPort AUX channel
798  * @vcpid: Virtual Channel Payload ID
799  * @start_time_slot: Starting time slot
800  * @time_slot_count: Time slot count
801  *
802  * Write the Virtual Channel payload allocation table, checking the payload
803  * update status and retrying as necessary.
804  *
805  * Returns:
806  * 0 on success, negative error otherwise
807  */
808 int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux,
809 			      int vcpid, u8 start_time_slot, u8 time_slot_count)
810 {
811 	u8 payload_alloc[3], status;
812 	int ret;
813 	int retries = 0;
814 
815 	drm_dp_dpcd_writeb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
816 			   DP_PAYLOAD_TABLE_UPDATED);
817 
818 	payload_alloc[0] = vcpid;
819 	payload_alloc[1] = start_time_slot;
820 	payload_alloc[2] = time_slot_count;
821 
822 	ret = drm_dp_dpcd_write(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
823 	if (ret != 3) {
824 		drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret);
825 		goto fail;
826 	}
827 
828 retry:
829 	ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
830 	if (ret < 0) {
831 		drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret);
832 		goto fail;
833 	}
834 
835 	if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
836 		retries++;
837 		if (retries < 20) {
838 			usleep_range(10000, 20000);
839 			goto retry;
840 		}
841 		drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n",
842 			    status);
843 		ret = -EINVAL;
844 		goto fail;
845 	}
846 	ret = 0;
847 fail:
848 	return ret;
849 }
850 EXPORT_SYMBOL(drm_dp_dpcd_write_payload);
851 
852 /**
853  * drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table
854  * @aux: DisplayPort AUX channel
855  *
856  * Clear the entire VC Payload ID table.
857  *
858  * Returns: 0 on success, negative error code on errors.
859  */
860 int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux)
861 {
862 	return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f);
863 }
864 EXPORT_SYMBOL(drm_dp_dpcd_clear_payload);
865 
866 /**
867  * drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status
868  * @aux: DisplayPort AUX channel
869  * @timeout_ms: Timeout in ms
870  *
871  * Try waiting for the sink to finish updating its payload table by polling for
872  * the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms
873  * milliseconds, defaulting to 3000 ms if 0.
874  *
875  * Returns:
876  * 0 if the ACT was handled in time, negative error code on failure.
877  */
878 int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms)
879 {
880 	int ret, status;
881 
882 	/* default to 3 seconds, this is arbitrary */
883 	timeout_ms = timeout_ms ?: 3000;
884 
885 	ret = readx_poll_timeout(read_payload_update_status, aux, status,
886 				 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
887 				 200, timeout_ms * USEC_PER_MSEC);
888 	if (ret < 0 && status >= 0) {
889 		drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n",
890 			timeout_ms, status);
891 		return -EINVAL;
892 	} else if (status < 0) {
893 		/*
894 		 * Failure here isn't unexpected - the hub may have
895 		 * just been unplugged
896 		 */
897 		drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status);
898 		return status;
899 	}
900 
901 	return 0;
902 }
903 EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled);
904 
905 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
906 {
907 	/* FIXME: get rid of drm_edid_raw() */
908 	const struct edid *edid = drm_edid_raw(drm_edid);
909 
910 	return edid && edid->revision >= 4 &&
911 		edid->input & DRM_EDID_INPUT_DIGITAL &&
912 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
913 }
914 
915 /**
916  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
917  * @dpcd: DisplayPort configuration data
918  * @port_cap: port capabilities
919  * @type: port type to be checked. Can be:
920  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
921  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
922  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
923  *
924  * Caveat: Only works with DPCD 1.1+ port caps.
925  *
926  * Returns: whether the downstream facing port matches the type.
927  */
928 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
929 			       const u8 port_cap[4], u8 type)
930 {
931 	return drm_dp_is_branch(dpcd) &&
932 		dpcd[DP_DPCD_REV] >= 0x11 &&
933 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
934 }
935 EXPORT_SYMBOL(drm_dp_downstream_is_type);
936 
937 /**
938  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
939  * @dpcd: DisplayPort configuration data
940  * @port_cap: port capabilities
941  * @drm_edid: EDID
942  *
943  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
944  */
945 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
946 			       const u8 port_cap[4],
947 			       const struct drm_edid *drm_edid)
948 {
949 	if (dpcd[DP_DPCD_REV] < 0x11) {
950 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
951 		case DP_DWN_STRM_PORT_TYPE_TMDS:
952 			return true;
953 		default:
954 			return false;
955 		}
956 	}
957 
958 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
959 	case DP_DS_PORT_TYPE_DP_DUALMODE:
960 		if (is_edid_digital_input_dp(drm_edid))
961 			return false;
962 		fallthrough;
963 	case DP_DS_PORT_TYPE_DVI:
964 	case DP_DS_PORT_TYPE_HDMI:
965 		return true;
966 	default:
967 		return false;
968 	}
969 }
970 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
971 
972 /**
973  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
974  * @aux: DisplayPort AUX channel
975  * @real_edid_checksum: real edid checksum for the last block
976  *
977  * Returns:
978  * True on success
979  */
980 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
981 				    u8 real_edid_checksum)
982 {
983 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
984 
985 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
986 			     &auto_test_req, 1) < 1) {
987 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
988 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
989 		return false;
990 	}
991 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
992 
993 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
994 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
995 			aux->name, DP_TEST_REQUEST);
996 		return false;
997 	}
998 	link_edid_read &= DP_TEST_LINK_EDID_READ;
999 
1000 	if (!auto_test_req || !link_edid_read) {
1001 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
1002 			    aux->name);
1003 		return false;
1004 	}
1005 
1006 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1007 			      &auto_test_req, 1) < 1) {
1008 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1009 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1010 		return false;
1011 	}
1012 
1013 	/* send back checksum for the last edid extension block data */
1014 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
1015 			      &real_edid_checksum, 1) < 1) {
1016 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1017 			aux->name, DP_TEST_EDID_CHECKSUM);
1018 		return false;
1019 	}
1020 
1021 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
1022 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
1023 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1024 			aux->name, DP_TEST_RESPONSE);
1025 		return false;
1026 	}
1027 
1028 	return true;
1029 }
1030 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
1031 
1032 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
1033 {
1034 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
1035 
1036 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
1037 		port_count = 4;
1038 
1039 	return port_count;
1040 }
1041 
1042 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
1043 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
1044 {
1045 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
1046 	int ret;
1047 
1048 	/*
1049 	 * Prior to DP1.3 the bit represented by
1050 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
1051 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
1052 	 * the true capability of the panel. The only way to check is to
1053 	 * then compare 0000h and 2200h.
1054 	 */
1055 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
1056 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
1057 		return 0;
1058 
1059 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
1060 			       sizeof(dpcd_ext));
1061 	if (ret < 0)
1062 		return ret;
1063 	if (ret != sizeof(dpcd_ext))
1064 		return -EIO;
1065 
1066 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
1067 		drm_dbg_kms(aux->drm_dev,
1068 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
1069 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
1070 		return 0;
1071 	}
1072 
1073 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
1074 		return 0;
1075 
1076 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1077 
1078 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
1079 
1080 	return 0;
1081 }
1082 
1083 /**
1084  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
1085  * available
1086  * @aux: DisplayPort AUX channel
1087  * @dpcd: Buffer to store the resulting DPCD in
1088  *
1089  * Attempts to read the base DPCD caps for @aux. Additionally, this function
1090  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
1091  * present.
1092  *
1093  * Returns: %0 if the DPCD was read successfully, negative error code
1094  * otherwise.
1095  */
1096 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
1097 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
1098 {
1099 	int ret;
1100 
1101 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
1102 	if (ret < 0)
1103 		return ret;
1104 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
1105 		return -EIO;
1106 
1107 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
1108 	if (ret < 0)
1109 		return ret;
1110 
1111 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1112 
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
1116 
1117 /**
1118  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
1119  * @aux: DisplayPort AUX channel
1120  * @dpcd: A cached copy of the port's DPCD
1121  * @downstream_ports: buffer to store the downstream port info in
1122  *
1123  * See also:
1124  * drm_dp_downstream_max_clock()
1125  * drm_dp_downstream_max_bpc()
1126  *
1127  * Returns: 0 if either the downstream port info was read successfully or
1128  * there was no downstream info to read, or a negative error code otherwise.
1129  */
1130 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1131 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1132 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1133 {
1134 	int ret;
1135 	u8 len;
1136 
1137 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1138 
1139 	/* No downstream info to read */
1140 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1141 		return 0;
1142 
1143 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1144 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1145 	 * some branches do it we need to handle it regardless.
1146 	 */
1147 	len = drm_dp_downstream_port_count(dpcd);
1148 	if (!len)
1149 		return 0;
1150 
1151 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1152 		len *= 4;
1153 
1154 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1155 	if (ret < 0)
1156 		return ret;
1157 	if (ret != len)
1158 		return -EIO;
1159 
1160 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1161 
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1165 
1166 /**
1167  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1168  * @dpcd: DisplayPort configuration data
1169  * @port_cap: port capabilities
1170  *
1171  * Returns: Downstream facing port max dot clock in kHz on success,
1172  * or 0 if max clock not defined
1173  */
1174 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1175 				   const u8 port_cap[4])
1176 {
1177 	if (!drm_dp_is_branch(dpcd))
1178 		return 0;
1179 
1180 	if (dpcd[DP_DPCD_REV] < 0x11)
1181 		return 0;
1182 
1183 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1184 	case DP_DS_PORT_TYPE_VGA:
1185 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1186 			return 0;
1187 		return port_cap[1] * 8000;
1188 	default:
1189 		return 0;
1190 	}
1191 }
1192 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1193 
1194 /**
1195  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1196  * @dpcd: DisplayPort configuration data
1197  * @port_cap: port capabilities
1198  * @drm_edid: EDID
1199  *
1200  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1201  * or 0 if max TMDS clock not defined
1202  */
1203 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1204 				     const u8 port_cap[4],
1205 				     const struct drm_edid *drm_edid)
1206 {
1207 	if (!drm_dp_is_branch(dpcd))
1208 		return 0;
1209 
1210 	if (dpcd[DP_DPCD_REV] < 0x11) {
1211 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1212 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1213 			return 165000;
1214 		default:
1215 			return 0;
1216 		}
1217 	}
1218 
1219 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1220 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1221 		if (is_edid_digital_input_dp(drm_edid))
1222 			return 0;
1223 		/*
1224 		 * It's left up to the driver to check the
1225 		 * DP dual mode adapter's max TMDS clock.
1226 		 *
1227 		 * Unfortunately it looks like branch devices
1228 		 * may not fordward that the DP dual mode i2c
1229 		 * access so we just usually get i2c nak :(
1230 		 */
1231 		fallthrough;
1232 	case DP_DS_PORT_TYPE_HDMI:
1233 		 /*
1234 		  * We should perhaps assume 165 MHz when detailed cap
1235 		  * info is not available. But looks like many typical
1236 		  * branch devices fall into that category and so we'd
1237 		  * probably end up with users complaining that they can't
1238 		  * get high resolution modes with their favorite dongle.
1239 		  *
1240 		  * So let's limit to 300 MHz instead since DPCD 1.4
1241 		  * HDMI 2.0 DFPs are required to have the detailed cap
1242 		  * info. So it's more likely we're dealing with a HDMI 1.4
1243 		  * compatible* device here.
1244 		  */
1245 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1246 			return 300000;
1247 		return port_cap[1] * 2500;
1248 	case DP_DS_PORT_TYPE_DVI:
1249 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1250 			return 165000;
1251 		/* FIXME what to do about DVI dual link? */
1252 		return port_cap[1] * 2500;
1253 	default:
1254 		return 0;
1255 	}
1256 }
1257 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1258 
1259 /**
1260  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1261  * @dpcd: DisplayPort configuration data
1262  * @port_cap: port capabilities
1263  * @drm_edid: EDID
1264  *
1265  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1266  * or 0 if max TMDS clock not defined
1267  */
1268 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1269 				     const u8 port_cap[4],
1270 				     const struct drm_edid *drm_edid)
1271 {
1272 	if (!drm_dp_is_branch(dpcd))
1273 		return 0;
1274 
1275 	if (dpcd[DP_DPCD_REV] < 0x11) {
1276 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1277 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1278 			return 25000;
1279 		default:
1280 			return 0;
1281 		}
1282 	}
1283 
1284 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1285 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1286 		if (is_edid_digital_input_dp(drm_edid))
1287 			return 0;
1288 		fallthrough;
1289 	case DP_DS_PORT_TYPE_DVI:
1290 	case DP_DS_PORT_TYPE_HDMI:
1291 		/*
1292 		 * Unclear whether the protocol converter could
1293 		 * utilize pixel replication. Assume it won't.
1294 		 */
1295 		return 25000;
1296 	default:
1297 		return 0;
1298 	}
1299 }
1300 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1301 
1302 /**
1303  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1304  *                               bits per component
1305  * @dpcd: DisplayPort configuration data
1306  * @port_cap: downstream facing port capabilities
1307  * @drm_edid: EDID
1308  *
1309  * Returns: Max bpc on success or 0 if max bpc not defined
1310  */
1311 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1312 			      const u8 port_cap[4],
1313 			      const struct drm_edid *drm_edid)
1314 {
1315 	if (!drm_dp_is_branch(dpcd))
1316 		return 0;
1317 
1318 	if (dpcd[DP_DPCD_REV] < 0x11) {
1319 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1320 		case DP_DWN_STRM_PORT_TYPE_DP:
1321 			return 0;
1322 		default:
1323 			return 8;
1324 		}
1325 	}
1326 
1327 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1328 	case DP_DS_PORT_TYPE_DP:
1329 		return 0;
1330 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1331 		if (is_edid_digital_input_dp(drm_edid))
1332 			return 0;
1333 		fallthrough;
1334 	case DP_DS_PORT_TYPE_HDMI:
1335 	case DP_DS_PORT_TYPE_DVI:
1336 	case DP_DS_PORT_TYPE_VGA:
1337 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1338 			return 8;
1339 
1340 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1341 		case DP_DS_8BPC:
1342 			return 8;
1343 		case DP_DS_10BPC:
1344 			return 10;
1345 		case DP_DS_12BPC:
1346 			return 12;
1347 		case DP_DS_16BPC:
1348 			return 16;
1349 		default:
1350 			return 8;
1351 		}
1352 		break;
1353 	default:
1354 		return 8;
1355 	}
1356 }
1357 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1358 
1359 /**
1360  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1361  *                                       YCbCr 4:2:0 pass-through capability
1362  * @dpcd: DisplayPort configuration data
1363  * @port_cap: downstream facing port capabilities
1364  *
1365  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1366  */
1367 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1368 				       const u8 port_cap[4])
1369 {
1370 	if (!drm_dp_is_branch(dpcd))
1371 		return false;
1372 
1373 	if (dpcd[DP_DPCD_REV] < 0x13)
1374 		return false;
1375 
1376 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1377 	case DP_DS_PORT_TYPE_DP:
1378 		return true;
1379 	case DP_DS_PORT_TYPE_HDMI:
1380 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1381 			return false;
1382 
1383 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1384 	default:
1385 		return false;
1386 	}
1387 }
1388 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1389 
1390 /**
1391  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1392  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1393  * @dpcd: DisplayPort configuration data
1394  * @port_cap: downstream facing port capabilities
1395  *
1396  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1397  */
1398 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1399 					     const u8 port_cap[4])
1400 {
1401 	if (!drm_dp_is_branch(dpcd))
1402 		return false;
1403 
1404 	if (dpcd[DP_DPCD_REV] < 0x13)
1405 		return false;
1406 
1407 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1408 	case DP_DS_PORT_TYPE_HDMI:
1409 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1410 			return false;
1411 
1412 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1413 	default:
1414 		return false;
1415 	}
1416 }
1417 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1418 
1419 /**
1420  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1421  *                                               RGB->YCbCr conversion capability
1422  * @dpcd: DisplayPort configuration data
1423  * @port_cap: downstream facing port capabilities
1424  * @color_spc: Colorspace for which conversion cap is sought
1425  *
1426  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1427  * colorspace.
1428  */
1429 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1430 					       const u8 port_cap[4],
1431 					       u8 color_spc)
1432 {
1433 	if (!drm_dp_is_branch(dpcd))
1434 		return false;
1435 
1436 	if (dpcd[DP_DPCD_REV] < 0x13)
1437 		return false;
1438 
1439 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1440 	case DP_DS_PORT_TYPE_HDMI:
1441 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1442 			return false;
1443 
1444 		return port_cap[3] & color_spc;
1445 	default:
1446 		return false;
1447 	}
1448 }
1449 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1450 
1451 /**
1452  * drm_dp_downstream_mode() - return a mode for downstream facing port
1453  * @dev: DRM device
1454  * @dpcd: DisplayPort configuration data
1455  * @port_cap: port capabilities
1456  *
1457  * Provides a suitable mode for downstream facing ports without EDID.
1458  *
1459  * Returns: A new drm_display_mode on success or NULL on failure
1460  */
1461 struct drm_display_mode *
1462 drm_dp_downstream_mode(struct drm_device *dev,
1463 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1464 		       const u8 port_cap[4])
1465 
1466 {
1467 	u8 vic;
1468 
1469 	if (!drm_dp_is_branch(dpcd))
1470 		return NULL;
1471 
1472 	if (dpcd[DP_DPCD_REV] < 0x11)
1473 		return NULL;
1474 
1475 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1476 	case DP_DS_PORT_TYPE_NON_EDID:
1477 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1478 		case DP_DS_NON_EDID_720x480i_60:
1479 			vic = 6;
1480 			break;
1481 		case DP_DS_NON_EDID_720x480i_50:
1482 			vic = 21;
1483 			break;
1484 		case DP_DS_NON_EDID_1920x1080i_60:
1485 			vic = 5;
1486 			break;
1487 		case DP_DS_NON_EDID_1920x1080i_50:
1488 			vic = 20;
1489 			break;
1490 		case DP_DS_NON_EDID_1280x720_60:
1491 			vic = 4;
1492 			break;
1493 		case DP_DS_NON_EDID_1280x720_50:
1494 			vic = 19;
1495 			break;
1496 		default:
1497 			return NULL;
1498 		}
1499 		return drm_display_mode_from_cea_vic(dev, vic);
1500 	default:
1501 		return NULL;
1502 	}
1503 }
1504 EXPORT_SYMBOL(drm_dp_downstream_mode);
1505 
1506 /**
1507  * drm_dp_downstream_id() - identify branch device
1508  * @aux: DisplayPort AUX channel
1509  * @id: DisplayPort branch device id
1510  *
1511  * Returns branch device id on success or NULL on failure
1512  */
1513 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1514 {
1515 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1516 }
1517 EXPORT_SYMBOL(drm_dp_downstream_id);
1518 
1519 /**
1520  * drm_dp_downstream_debug() - debug DP branch devices
1521  * @m: pointer for debugfs file
1522  * @dpcd: DisplayPort configuration data
1523  * @port_cap: port capabilities
1524  * @drm_edid: EDID
1525  * @aux: DisplayPort AUX channel
1526  *
1527  */
1528 void drm_dp_downstream_debug(struct seq_file *m,
1529 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1530 			     const u8 port_cap[4],
1531 			     const struct drm_edid *drm_edid,
1532 			     struct drm_dp_aux *aux)
1533 {
1534 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1535 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1536 	int clk;
1537 	int bpc;
1538 	char id[7];
1539 	int len;
1540 	uint8_t rev[2];
1541 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1542 	bool branch_device = drm_dp_is_branch(dpcd);
1543 
1544 	seq_printf(m, "\tDP branch device present: %s\n",
1545 		   str_yes_no(branch_device));
1546 
1547 	if (!branch_device)
1548 		return;
1549 
1550 	switch (type) {
1551 	case DP_DS_PORT_TYPE_DP:
1552 		seq_puts(m, "\t\tType: DisplayPort\n");
1553 		break;
1554 	case DP_DS_PORT_TYPE_VGA:
1555 		seq_puts(m, "\t\tType: VGA\n");
1556 		break;
1557 	case DP_DS_PORT_TYPE_DVI:
1558 		seq_puts(m, "\t\tType: DVI\n");
1559 		break;
1560 	case DP_DS_PORT_TYPE_HDMI:
1561 		seq_puts(m, "\t\tType: HDMI\n");
1562 		break;
1563 	case DP_DS_PORT_TYPE_NON_EDID:
1564 		seq_puts(m, "\t\tType: others without EDID support\n");
1565 		break;
1566 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1567 		seq_puts(m, "\t\tType: DP++\n");
1568 		break;
1569 	case DP_DS_PORT_TYPE_WIRELESS:
1570 		seq_puts(m, "\t\tType: Wireless\n");
1571 		break;
1572 	default:
1573 		seq_puts(m, "\t\tType: N/A\n");
1574 	}
1575 
1576 	memset(id, 0, sizeof(id));
1577 	drm_dp_downstream_id(aux, id);
1578 	seq_printf(m, "\t\tID: %s\n", id);
1579 
1580 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1581 	if (len > 0)
1582 		seq_printf(m, "\t\tHW: %d.%d\n",
1583 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1584 
1585 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1586 	if (len > 0)
1587 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1588 
1589 	if (detailed_cap_info) {
1590 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1591 		if (clk > 0)
1592 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1593 
1594 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1595 		if (clk > 0)
1596 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1597 
1598 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1599 		if (clk > 0)
1600 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1601 
1602 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1603 
1604 		if (bpc > 0)
1605 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1606 	}
1607 }
1608 EXPORT_SYMBOL(drm_dp_downstream_debug);
1609 
1610 /**
1611  * drm_dp_subconnector_type() - get DP branch device type
1612  * @dpcd: DisplayPort configuration data
1613  * @port_cap: port capabilities
1614  */
1615 enum drm_mode_subconnector
1616 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1617 			 const u8 port_cap[4])
1618 {
1619 	int type;
1620 	if (!drm_dp_is_branch(dpcd))
1621 		return DRM_MODE_SUBCONNECTOR_Native;
1622 	/* DP 1.0 approach */
1623 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1624 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1625 		       DP_DWN_STRM_PORT_TYPE_MASK;
1626 
1627 		switch (type) {
1628 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1629 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1630 			return DRM_MODE_SUBCONNECTOR_DVID;
1631 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1632 			/* Can be VGA or DVI-A, VGA is more popular */
1633 			return DRM_MODE_SUBCONNECTOR_VGA;
1634 		case DP_DWN_STRM_PORT_TYPE_DP:
1635 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1636 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1637 		default:
1638 			return DRM_MODE_SUBCONNECTOR_Unknown;
1639 		}
1640 	}
1641 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1642 
1643 	switch (type) {
1644 	case DP_DS_PORT_TYPE_DP:
1645 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1646 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1647 	case DP_DS_PORT_TYPE_VGA:
1648 		return DRM_MODE_SUBCONNECTOR_VGA;
1649 	case DP_DS_PORT_TYPE_DVI:
1650 		return DRM_MODE_SUBCONNECTOR_DVID;
1651 	case DP_DS_PORT_TYPE_HDMI:
1652 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1653 	case DP_DS_PORT_TYPE_WIRELESS:
1654 		return DRM_MODE_SUBCONNECTOR_Wireless;
1655 	case DP_DS_PORT_TYPE_NON_EDID:
1656 	default:
1657 		return DRM_MODE_SUBCONNECTOR_Unknown;
1658 	}
1659 }
1660 EXPORT_SYMBOL(drm_dp_subconnector_type);
1661 
1662 /**
1663  * drm_dp_set_subconnector_property - set subconnector for DP connector
1664  * @connector: connector to set property on
1665  * @status: connector status
1666  * @dpcd: DisplayPort configuration data
1667  * @port_cap: port capabilities
1668  *
1669  * Called by a driver on every detect event.
1670  */
1671 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1672 				      enum drm_connector_status status,
1673 				      const u8 *dpcd,
1674 				      const u8 port_cap[4])
1675 {
1676 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1677 
1678 	if (status == connector_status_connected)
1679 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1680 	drm_object_property_set_value(&connector->base,
1681 			connector->dev->mode_config.dp_subconnector_property,
1682 			subconnector);
1683 }
1684 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1685 
1686 /**
1687  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1688  * count
1689  * @connector: The DRM connector to check
1690  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1691  * @desc: A cached copy of the connector's DP descriptor
1692  *
1693  * See also: drm_dp_read_sink_count()
1694  *
1695  * Returns: %True if the (e)DP connector has a valid sink count that should
1696  * be probed, %false otherwise.
1697  */
1698 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1699 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1700 				const struct drm_dp_desc *desc)
1701 {
1702 	/* Some eDP panels don't set a valid value for the sink count */
1703 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1704 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1705 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1706 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1707 }
1708 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1709 
1710 /**
1711  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1712  * @aux: The DP AUX channel to use
1713  *
1714  * See also: drm_dp_read_sink_count_cap()
1715  *
1716  * Returns: The current sink count reported by @aux, or a negative error code
1717  * otherwise.
1718  */
1719 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1720 {
1721 	u8 count;
1722 	int ret;
1723 
1724 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1725 	if (ret < 0)
1726 		return ret;
1727 	if (ret != 1)
1728 		return -EIO;
1729 
1730 	return DP_GET_SINK_COUNT(count);
1731 }
1732 EXPORT_SYMBOL(drm_dp_read_sink_count);
1733 
1734 /*
1735  * I2C-over-AUX implementation
1736  */
1737 
1738 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1739 {
1740 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1741 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1742 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1743 	       I2C_FUNC_10BIT_ADDR;
1744 }
1745 
1746 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1747 {
1748 	/*
1749 	 * In case of i2c defer or short i2c ack reply to a write,
1750 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1751 	 * rest of the message
1752 	 */
1753 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1754 		msg->request &= DP_AUX_I2C_MOT;
1755 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1756 	}
1757 }
1758 
1759 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1760 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1761 #define AUX_STOP_LEN 4
1762 #define AUX_CMD_LEN 4
1763 #define AUX_ADDRESS_LEN 20
1764 #define AUX_REPLY_PAD_LEN 4
1765 #define AUX_LENGTH_LEN 8
1766 
1767 /*
1768  * Calculate the duration of the AUX request/reply in usec. Gives the
1769  * "best" case estimate, ie. successful while as short as possible.
1770  */
1771 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1772 {
1773 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1774 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1775 
1776 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1777 		len += msg->size * 8;
1778 
1779 	return len;
1780 }
1781 
1782 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1783 {
1784 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1785 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1786 
1787 	/*
1788 	 * For read we expect what was asked. For writes there will
1789 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1790 	 */
1791 	if (msg->request & DP_AUX_I2C_READ)
1792 		len += msg->size * 8;
1793 
1794 	return len;
1795 }
1796 
1797 #define I2C_START_LEN 1
1798 #define I2C_STOP_LEN 1
1799 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1800 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1801 
1802 /*
1803  * Calculate the length of the i2c transfer in usec, assuming
1804  * the i2c bus speed is as specified. Gives the "worst"
1805  * case estimate, ie. successful while as long as possible.
1806  * Doesn't account the "MOT" bit, and instead assumes each
1807  * message includes a START, ADDRESS and STOP. Neither does it
1808  * account for additional random variables such as clock stretching.
1809  */
1810 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1811 				   int i2c_speed_khz)
1812 {
1813 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1814 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1815 			     msg->size * I2C_DATA_LEN +
1816 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1817 }
1818 
1819 /*
1820  * Determine how many retries should be attempted to successfully transfer
1821  * the specified message, based on the estimated durations of the
1822  * i2c and AUX transfers.
1823  */
1824 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1825 			      int i2c_speed_khz)
1826 {
1827 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1828 		drm_dp_aux_reply_duration(msg);
1829 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1830 
1831 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1832 }
1833 
1834 /*
1835  * FIXME currently assumes 10 kHz as some real world devices seem
1836  * to require it. We should query/set the speed via DPCD if supported.
1837  */
1838 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1839 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1840 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1841 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1842 
1843 /*
1844  * Transfer a single I2C-over-AUX message and handle various error conditions,
1845  * retrying the transaction as appropriate.  It is assumed that the
1846  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1847  * reply field.
1848  *
1849  * Returns bytes transferred on success, or a negative error code on failure.
1850  */
1851 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1852 {
1853 	unsigned int retry, defer_i2c;
1854 	int ret;
1855 	/*
1856 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1857 	 * is required to retry at least seven times upon receiving AUX_DEFER
1858 	 * before giving up the AUX transaction.
1859 	 *
1860 	 * We also try to account for the i2c bus speed.
1861 	 */
1862 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1863 
1864 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1865 		ret = aux->transfer(aux, msg);
1866 		if (ret < 0) {
1867 			if (ret == -EBUSY)
1868 				continue;
1869 
1870 			/*
1871 			 * While timeouts can be errors, they're usually normal
1872 			 * behavior (for instance, when a driver tries to
1873 			 * communicate with a non-existent DisplayPort device).
1874 			 * Avoid spamming the kernel log with timeout errors.
1875 			 */
1876 			if (ret == -ETIMEDOUT)
1877 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1878 							aux->name);
1879 			else
1880 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1881 					    aux->name, ret);
1882 			return ret;
1883 		}
1884 
1885 
1886 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1887 		case DP_AUX_NATIVE_REPLY_ACK:
1888 			/*
1889 			 * For I2C-over-AUX transactions this isn't enough, we
1890 			 * need to check for the I2C ACK reply.
1891 			 */
1892 			break;
1893 
1894 		case DP_AUX_NATIVE_REPLY_NACK:
1895 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1896 				    aux->name, ret, msg->size);
1897 			return -EREMOTEIO;
1898 
1899 		case DP_AUX_NATIVE_REPLY_DEFER:
1900 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1901 			/*
1902 			 * We could check for I2C bit rate capabilities and if
1903 			 * available adjust this interval. We could also be
1904 			 * more careful with DP-to-legacy adapters where a
1905 			 * long legacy cable may force very low I2C bit rates.
1906 			 *
1907 			 * For now just defer for long enough to hopefully be
1908 			 * safe for all use-cases.
1909 			 */
1910 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1911 			continue;
1912 
1913 		default:
1914 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1915 				aux->name, msg->reply);
1916 			return -EREMOTEIO;
1917 		}
1918 
1919 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1920 		case DP_AUX_I2C_REPLY_ACK:
1921 			/*
1922 			 * Both native ACK and I2C ACK replies received. We
1923 			 * can assume the transfer was successful.
1924 			 */
1925 			if (ret != msg->size)
1926 				drm_dp_i2c_msg_write_status_update(msg);
1927 			return ret;
1928 
1929 		case DP_AUX_I2C_REPLY_NACK:
1930 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1931 				    aux->name, ret, msg->size);
1932 			aux->i2c_nack_count++;
1933 			return -EREMOTEIO;
1934 
1935 		case DP_AUX_I2C_REPLY_DEFER:
1936 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1937 			/* DP Compliance Test 4.2.2.5 Requirement:
1938 			 * Must have at least 7 retries for I2C defers on the
1939 			 * transaction to pass this test
1940 			 */
1941 			aux->i2c_defer_count++;
1942 			if (defer_i2c < 7)
1943 				defer_i2c++;
1944 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1945 			drm_dp_i2c_msg_write_status_update(msg);
1946 
1947 			continue;
1948 
1949 		default:
1950 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1951 				aux->name, msg->reply);
1952 			return -EREMOTEIO;
1953 		}
1954 	}
1955 
1956 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1957 	return -EREMOTEIO;
1958 }
1959 
1960 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1961 				       const struct i2c_msg *i2c_msg)
1962 {
1963 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1964 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1965 	if (!(i2c_msg->flags & I2C_M_STOP))
1966 		msg->request |= DP_AUX_I2C_MOT;
1967 }
1968 
1969 /*
1970  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1971  *
1972  * Returns an error code on failure, or a recommended transfer size on success.
1973  */
1974 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1975 {
1976 	int err, ret = orig_msg->size;
1977 	struct drm_dp_aux_msg msg = *orig_msg;
1978 
1979 	while (msg.size > 0) {
1980 		err = drm_dp_i2c_do_msg(aux, &msg);
1981 		if (err <= 0)
1982 			return err == 0 ? -EPROTO : err;
1983 
1984 		if (err < msg.size && err < ret) {
1985 			drm_dbg_kms(aux->drm_dev,
1986 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1987 				    aux->name, msg.size, err);
1988 			ret = err;
1989 		}
1990 
1991 		msg.size -= err;
1992 		msg.buffer += err;
1993 	}
1994 
1995 	return ret;
1996 }
1997 
1998 /*
1999  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
2000  * packets to be as large as possible. If not, the I2C transactions never
2001  * succeed. Hence the default is maximum.
2002  */
2003 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
2004 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
2005 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
2006 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
2007 
2008 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
2009 			   int num)
2010 {
2011 	struct drm_dp_aux *aux = adapter->algo_data;
2012 	unsigned int i, j;
2013 	unsigned transfer_size;
2014 	struct drm_dp_aux_msg msg;
2015 	int err = 0;
2016 
2017 	if (aux->powered_down)
2018 		return -EBUSY;
2019 
2020 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
2021 
2022 	memset(&msg, 0, sizeof(msg));
2023 
2024 	for (i = 0; i < num; i++) {
2025 		msg.address = msgs[i].addr;
2026 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2027 		/* Send a bare address packet to start the transaction.
2028 		 * Zero sized messages specify an address only (bare
2029 		 * address) transaction.
2030 		 */
2031 		msg.buffer = NULL;
2032 		msg.size = 0;
2033 		err = drm_dp_i2c_do_msg(aux, &msg);
2034 
2035 		/*
2036 		 * Reset msg.request in case in case it got
2037 		 * changed into a WRITE_STATUS_UPDATE.
2038 		 */
2039 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2040 
2041 		if (err < 0)
2042 			break;
2043 		/* We want each transaction to be as large as possible, but
2044 		 * we'll go to smaller sizes if the hardware gives us a
2045 		 * short reply.
2046 		 */
2047 		transfer_size = dp_aux_i2c_transfer_size;
2048 		for (j = 0; j < msgs[i].len; j += msg.size) {
2049 			msg.buffer = msgs[i].buf + j;
2050 			msg.size = min(transfer_size, msgs[i].len - j);
2051 
2052 			err = drm_dp_i2c_drain_msg(aux, &msg);
2053 
2054 			/*
2055 			 * Reset msg.request in case in case it got
2056 			 * changed into a WRITE_STATUS_UPDATE.
2057 			 */
2058 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2059 
2060 			if (err < 0)
2061 				break;
2062 			transfer_size = err;
2063 		}
2064 		if (err < 0)
2065 			break;
2066 	}
2067 	if (err >= 0)
2068 		err = num;
2069 	/* Send a bare address packet to close out the transaction.
2070 	 * Zero sized messages specify an address only (bare
2071 	 * address) transaction.
2072 	 */
2073 	msg.request &= ~DP_AUX_I2C_MOT;
2074 	msg.buffer = NULL;
2075 	msg.size = 0;
2076 	(void)drm_dp_i2c_do_msg(aux, &msg);
2077 
2078 	return err;
2079 }
2080 
2081 static const struct i2c_algorithm drm_dp_i2c_algo = {
2082 	.functionality = drm_dp_i2c_functionality,
2083 	.master_xfer = drm_dp_i2c_xfer,
2084 };
2085 
2086 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
2087 {
2088 	return container_of(i2c, struct drm_dp_aux, ddc);
2089 }
2090 
2091 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
2092 {
2093 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
2094 }
2095 
2096 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
2097 {
2098 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
2099 }
2100 
2101 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
2102 {
2103 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
2104 }
2105 
2106 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
2107 	.lock_bus = lock_bus,
2108 	.trylock_bus = trylock_bus,
2109 	.unlock_bus = unlock_bus,
2110 };
2111 
2112 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
2113 {
2114 	u8 buf, count;
2115 	int ret;
2116 
2117 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2118 	if (ret < 0)
2119 		return ret;
2120 
2121 	WARN_ON(!(buf & DP_TEST_SINK_START));
2122 
2123 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2124 	if (ret < 0)
2125 		return ret;
2126 
2127 	count = buf & DP_TEST_COUNT_MASK;
2128 	if (count == aux->crc_count)
2129 		return -EAGAIN; /* No CRC yet */
2130 
2131 	aux->crc_count = count;
2132 
2133 	/*
2134 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2135 	 * per component (RGB or CrYCb).
2136 	 */
2137 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2138 	if (ret < 0)
2139 		return ret;
2140 
2141 	return 0;
2142 }
2143 
2144 static void drm_dp_aux_crc_work(struct work_struct *work)
2145 {
2146 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2147 					      crc_work);
2148 	struct drm_crtc *crtc;
2149 	u8 crc_bytes[6];
2150 	uint32_t crcs[3];
2151 	int ret;
2152 
2153 	if (WARN_ON(!aux->crtc))
2154 		return;
2155 
2156 	crtc = aux->crtc;
2157 	while (crtc->crc.opened) {
2158 		drm_crtc_wait_one_vblank(crtc);
2159 		if (!crtc->crc.opened)
2160 			break;
2161 
2162 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2163 		if (ret == -EAGAIN) {
2164 			usleep_range(1000, 2000);
2165 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2166 		}
2167 
2168 		if (ret == -EAGAIN) {
2169 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2170 				    aux->name, ret);
2171 			continue;
2172 		} else if (ret) {
2173 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2174 			continue;
2175 		}
2176 
2177 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2178 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2179 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2180 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2181 	}
2182 }
2183 
2184 /**
2185  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2186  * @aux: DisplayPort AUX channel
2187  *
2188  * Used for remote aux channel in general. Merely initialize the crc work
2189  * struct.
2190  */
2191 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2192 {
2193 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2194 }
2195 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2196 
2197 /**
2198  * drm_dp_aux_init() - minimally initialise an aux channel
2199  * @aux: DisplayPort AUX channel
2200  *
2201  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2202  * the outside world, call drm_dp_aux_init() first. For drivers which are
2203  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2204  * &drm_connector), you must still call drm_dp_aux_register() once the connector
2205  * has been registered to allow userspace access to the auxiliary DP channel.
2206  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2207  * early as possible so that the &drm_device that corresponds to the AUX adapter
2208  * may be mentioned in debugging output from the DRM DP helpers.
2209  *
2210  * For devices which use a separate platform device for their AUX adapters, this
2211  * may be called as early as required by the driver.
2212  *
2213  */
2214 void drm_dp_aux_init(struct drm_dp_aux *aux)
2215 {
2216 	mutex_init(&aux->hw_mutex);
2217 	mutex_init(&aux->cec.lock);
2218 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2219 
2220 	aux->ddc.algo = &drm_dp_i2c_algo;
2221 	aux->ddc.algo_data = aux;
2222 	aux->ddc.retries = 3;
2223 
2224 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2225 }
2226 EXPORT_SYMBOL(drm_dp_aux_init);
2227 
2228 /**
2229  * drm_dp_aux_register() - initialise and register aux channel
2230  * @aux: DisplayPort AUX channel
2231  *
2232  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2233  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2234  * initialized. For devices which are grandparents of their AUX channels,
2235  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2236  * corresponds to @aux. For these devices, it's advised to call
2237  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2238  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2239  * Functions which don't follow this will likely Oops when
2240  * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2241  *
2242  * For devices where the AUX channel is a device that exists independently of
2243  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2244  * recommended to call drm_dp_aux_register() after a &drm_device has been
2245  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2246  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2247  * with the AUX channel (e.g. on bridge detach).
2248  *
2249  * Drivers which need to use the aux channel before either of the two points
2250  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2251  * channel before registration.
2252  *
2253  * Returns 0 on success or a negative error code on failure.
2254  */
2255 int drm_dp_aux_register(struct drm_dp_aux *aux)
2256 {
2257 	int ret;
2258 
2259 	WARN_ON_ONCE(!aux->drm_dev);
2260 
2261 	if (!aux->ddc.algo)
2262 		drm_dp_aux_init(aux);
2263 
2264 	aux->ddc.owner = THIS_MODULE;
2265 	aux->ddc.dev.parent = aux->dev;
2266 
2267 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2268 		sizeof(aux->ddc.name));
2269 
2270 	ret = drm_dp_aux_register_devnode(aux);
2271 	if (ret)
2272 		return ret;
2273 
2274 	ret = i2c_add_adapter(&aux->ddc);
2275 	if (ret) {
2276 		drm_dp_aux_unregister_devnode(aux);
2277 		return ret;
2278 	}
2279 
2280 	return 0;
2281 }
2282 EXPORT_SYMBOL(drm_dp_aux_register);
2283 
2284 /**
2285  * drm_dp_aux_unregister() - unregister an AUX adapter
2286  * @aux: DisplayPort AUX channel
2287  */
2288 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2289 {
2290 	drm_dp_aux_unregister_devnode(aux);
2291 	i2c_del_adapter(&aux->ddc);
2292 }
2293 EXPORT_SYMBOL(drm_dp_aux_unregister);
2294 
2295 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2296 
2297 /**
2298  * drm_dp_psr_setup_time() - PSR setup in time usec
2299  * @psr_cap: PSR capabilities from DPCD
2300  *
2301  * Returns:
2302  * PSR setup time for the panel in microseconds,  negative
2303  * error code on failure.
2304  */
2305 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2306 {
2307 	static const u16 psr_setup_time_us[] = {
2308 		PSR_SETUP_TIME(330),
2309 		PSR_SETUP_TIME(275),
2310 		PSR_SETUP_TIME(220),
2311 		PSR_SETUP_TIME(165),
2312 		PSR_SETUP_TIME(110),
2313 		PSR_SETUP_TIME(55),
2314 		PSR_SETUP_TIME(0),
2315 	};
2316 	int i;
2317 
2318 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2319 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2320 		return -EINVAL;
2321 
2322 	return psr_setup_time_us[i];
2323 }
2324 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2325 
2326 #undef PSR_SETUP_TIME
2327 
2328 /**
2329  * drm_dp_start_crc() - start capture of frame CRCs
2330  * @aux: DisplayPort AUX channel
2331  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2332  *
2333  * Returns 0 on success or a negative error code on failure.
2334  */
2335 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2336 {
2337 	u8 buf;
2338 	int ret;
2339 
2340 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2341 	if (ret < 0)
2342 		return ret;
2343 
2344 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2345 	if (ret < 0)
2346 		return ret;
2347 
2348 	aux->crc_count = 0;
2349 	aux->crtc = crtc;
2350 	schedule_work(&aux->crc_work);
2351 
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(drm_dp_start_crc);
2355 
2356 /**
2357  * drm_dp_stop_crc() - stop capture of frame CRCs
2358  * @aux: DisplayPort AUX channel
2359  *
2360  * Returns 0 on success or a negative error code on failure.
2361  */
2362 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2363 {
2364 	u8 buf;
2365 	int ret;
2366 
2367 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2368 	if (ret < 0)
2369 		return ret;
2370 
2371 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2372 	if (ret < 0)
2373 		return ret;
2374 
2375 	flush_work(&aux->crc_work);
2376 	aux->crtc = NULL;
2377 
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL(drm_dp_stop_crc);
2381 
2382 struct dpcd_quirk {
2383 	u8 oui[3];
2384 	u8 device_id[6];
2385 	bool is_branch;
2386 	u32 quirks;
2387 };
2388 
2389 #define OUI(first, second, third) { (first), (second), (third) }
2390 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2391 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2392 
2393 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2394 
2395 static const struct dpcd_quirk dpcd_quirk_list[] = {
2396 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2397 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2398 	/* LG LP140WF6-SPM1 eDP panel */
2399 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2400 	/* Apple panels need some additional handling to support PSR */
2401 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2402 	/* CH7511 seems to leave SINK_COUNT zeroed */
2403 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2404 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2405 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2406 	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2407 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2408 	/* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2409 	{ OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2410 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2411 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2412 };
2413 
2414 #undef OUI
2415 
2416 /*
2417  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2418  * ident. The quirk data is shared but it's up to the drivers to act on the
2419  * data.
2420  *
2421  * For now, only the OUI (first three bytes) is used, but this may be extended
2422  * to device identification string and hardware/firmware revisions later.
2423  */
2424 static u32
2425 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2426 {
2427 	const struct dpcd_quirk *quirk;
2428 	u32 quirks = 0;
2429 	int i;
2430 	u8 any_device[] = DEVICE_ID_ANY;
2431 
2432 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2433 		quirk = &dpcd_quirk_list[i];
2434 
2435 		if (quirk->is_branch != is_branch)
2436 			continue;
2437 
2438 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2439 			continue;
2440 
2441 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2442 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2443 			continue;
2444 
2445 		quirks |= quirk->quirks;
2446 	}
2447 
2448 	return quirks;
2449 }
2450 
2451 #undef DEVICE_ID_ANY
2452 #undef DEVICE_ID
2453 
2454 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2455 			     struct drm_dp_dpcd_ident *ident)
2456 {
2457 	int ret;
2458 
2459 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2460 
2461 	return ret < 0 ? ret : 0;
2462 }
2463 
2464 static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2465 			     const char *device_name, const struct drm_dp_desc *desc)
2466 {
2467 	const struct drm_dp_dpcd_ident *ident = &desc->ident;
2468 
2469 	drm_dbg_kms(aux->drm_dev,
2470 		    "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2471 		    aux->name, device_name,
2472 		    (int)sizeof(ident->oui), ident->oui,
2473 		    (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2474 		    ident->hw_rev >> 4, ident->hw_rev & 0xf,
2475 		    ident->sw_major_rev, ident->sw_minor_rev,
2476 		    desc->quirks);
2477 }
2478 
2479 /**
2480  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2481  * @aux: DisplayPort AUX channel
2482  * @desc: Device descriptor to fill from DPCD
2483  * @is_branch: true for branch devices, false for sink devices
2484  *
2485  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2486  * identification.
2487  *
2488  * Returns 0 on success or a negative error code on failure.
2489  */
2490 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2491 		     bool is_branch)
2492 {
2493 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2494 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2495 	int ret;
2496 
2497 	ret = drm_dp_read_ident(aux, offset, ident);
2498 	if (ret < 0)
2499 		return ret;
2500 
2501 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2502 
2503 	drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2504 
2505 	return 0;
2506 }
2507 EXPORT_SYMBOL(drm_dp_read_desc);
2508 
2509 /**
2510  * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2511  * @aux: DisplayPort AUX channel
2512  * @dp_phy: LTTPR PHY instance
2513  *
2514  * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2515  * with its details to dmesg.
2516  *
2517  * Returns 0 on success or a negative error code on failure.
2518  */
2519 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2520 {
2521 	struct drm_dp_desc desc = {};
2522 	int ret;
2523 
2524 	if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2525 		return -EINVAL;
2526 
2527 	ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2528 	if (ret < 0)
2529 		return ret;
2530 
2531 	drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2532 
2533 	return 0;
2534 }
2535 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2536 
2537 /**
2538  * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2539  * @dsc_dpcd: DSC capabilities from DPCD
2540  *
2541  * Returns the bpp precision supported by the DP sink.
2542  */
2543 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2544 {
2545 	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2546 
2547 	switch (bpp_increment_dpcd) {
2548 	case DP_DSC_BITS_PER_PIXEL_1_16:
2549 		return 16;
2550 	case DP_DSC_BITS_PER_PIXEL_1_8:
2551 		return 8;
2552 	case DP_DSC_BITS_PER_PIXEL_1_4:
2553 		return 4;
2554 	case DP_DSC_BITS_PER_PIXEL_1_2:
2555 		return 2;
2556 	case DP_DSC_BITS_PER_PIXEL_1_1:
2557 		return 1;
2558 	}
2559 
2560 	return 0;
2561 }
2562 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2563 
2564 /**
2565  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2566  * supported by the DSC sink.
2567  * @dsc_dpcd: DSC capabilities from DPCD
2568  * @is_edp: true if its eDP, false for DP
2569  *
2570  * Read the slice capabilities DPCD register from DSC sink to get
2571  * the maximum slice count supported. This is used to populate
2572  * the DSC parameters in the &struct drm_dsc_config by the driver.
2573  * Driver creates an infoframe using these parameters to populate
2574  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2575  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2576  *
2577  * Returns:
2578  * Maximum slice count supported by DSC sink or 0 its invalid
2579  */
2580 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2581 				   bool is_edp)
2582 {
2583 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2584 
2585 	if (is_edp) {
2586 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2587 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2588 			return 4;
2589 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2590 			return 2;
2591 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2592 			return 1;
2593 	} else {
2594 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2595 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2596 
2597 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2598 			return 24;
2599 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2600 			return 20;
2601 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2602 			return 16;
2603 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2604 			return 12;
2605 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2606 			return 10;
2607 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2608 			return 8;
2609 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2610 			return 6;
2611 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2612 			return 4;
2613 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2614 			return 2;
2615 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2616 			return 1;
2617 	}
2618 
2619 	return 0;
2620 }
2621 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2622 
2623 /**
2624  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2625  * @dsc_dpcd: DSC capabilities from DPCD
2626  *
2627  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2628  * number of bits of precision within the decoder line buffer supported by
2629  * the DSC sink. This is used to populate the DSC parameters in the
2630  * &struct drm_dsc_config by the driver.
2631  * Driver creates an infoframe using these parameters to populate
2632  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2633  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2634  *
2635  * Returns:
2636  * Line buffer depth supported by DSC panel or 0 its invalid
2637  */
2638 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2639 {
2640 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2641 
2642 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2643 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2644 		return 9;
2645 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2646 		return 10;
2647 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2648 		return 11;
2649 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2650 		return 12;
2651 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2652 		return 13;
2653 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2654 		return 14;
2655 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2656 		return 15;
2657 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2658 		return 16;
2659 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2660 		return 8;
2661 	}
2662 
2663 	return 0;
2664 }
2665 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2666 
2667 /**
2668  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2669  * values supported by the DSC sink.
2670  * @dsc_dpcd: DSC capabilities from DPCD
2671  * @dsc_bpc: An array to be filled by this helper with supported
2672  *           input bpcs.
2673  *
2674  * Read the DSC DPCD from the sink device to parse the supported bits per
2675  * component values. This is used to populate the DSC parameters
2676  * in the &struct drm_dsc_config by the driver.
2677  * Driver creates an infoframe using these parameters to populate
2678  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2679  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2680  *
2681  * Returns:
2682  * Number of input BPC values parsed from the DPCD
2683  */
2684 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2685 					 u8 dsc_bpc[3])
2686 {
2687 	int num_bpc = 0;
2688 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2689 
2690 	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2691 		return 0;
2692 
2693 	if (color_depth & DP_DSC_12_BPC)
2694 		dsc_bpc[num_bpc++] = 12;
2695 	if (color_depth & DP_DSC_10_BPC)
2696 		dsc_bpc[num_bpc++] = 10;
2697 
2698 	/* A DP DSC Sink device shall support 8 bpc. */
2699 	dsc_bpc[num_bpc++] = 8;
2700 
2701 	return num_bpc;
2702 }
2703 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2704 
2705 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2706 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2707 				  u8 *buf, int buf_size)
2708 {
2709 	/*
2710 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2711 	 * corrupted values when reading from the 0xF0000- range with a block
2712 	 * size bigger than 1.
2713 	 */
2714 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2715 	int offset;
2716 	int ret;
2717 
2718 	for (offset = 0; offset < buf_size; offset += block_size) {
2719 		ret = drm_dp_dpcd_read(aux,
2720 				       address + offset,
2721 				       &buf[offset], block_size);
2722 		if (ret < 0)
2723 			return ret;
2724 
2725 		WARN_ON(ret != block_size);
2726 	}
2727 
2728 	return 0;
2729 }
2730 
2731 /**
2732  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2733  * @aux: DisplayPort AUX channel
2734  * @dpcd: DisplayPort configuration data
2735  * @caps: buffer to return the capability info in
2736  *
2737  * Read capabilities common to all LTTPRs.
2738  *
2739  * Returns 0 on success or a negative error code on failure.
2740  */
2741 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2742 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2743 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2744 {
2745 	return drm_dp_read_lttpr_regs(aux, dpcd,
2746 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2747 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2748 }
2749 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2750 
2751 /**
2752  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2753  * @aux: DisplayPort AUX channel
2754  * @dpcd: DisplayPort configuration data
2755  * @dp_phy: LTTPR PHY to read the capabilities for
2756  * @caps: buffer to return the capability info in
2757  *
2758  * Read the capabilities for the given LTTPR PHY.
2759  *
2760  * Returns 0 on success or a negative error code on failure.
2761  */
2762 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2763 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2764 			       enum drm_dp_phy dp_phy,
2765 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2766 {
2767 	return drm_dp_read_lttpr_regs(aux, dpcd,
2768 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2769 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2770 }
2771 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2772 
2773 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2774 {
2775 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2776 }
2777 
2778 /**
2779  * drm_dp_lttpr_count - get the number of detected LTTPRs
2780  * @caps: LTTPR common capabilities
2781  *
2782  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2783  *
2784  * Returns:
2785  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2786  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2787  *   otherwise the number of detected LTTPRs
2788  */
2789 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2790 {
2791 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2792 
2793 	switch (hweight8(count)) {
2794 	case 0:
2795 		return 0;
2796 	case 1:
2797 		return 8 - ilog2(count);
2798 	case 8:
2799 		return -ERANGE;
2800 	default:
2801 		return -EINVAL;
2802 	}
2803 }
2804 EXPORT_SYMBOL(drm_dp_lttpr_count);
2805 
2806 /**
2807  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2808  * @caps: LTTPR common capabilities
2809  *
2810  * Returns the maximum link rate supported by all detected LTTPRs.
2811  */
2812 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2813 {
2814 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2815 
2816 	return drm_dp_bw_code_to_link_rate(rate);
2817 }
2818 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2819 
2820 /**
2821  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2822  * @caps: LTTPR common capabilities
2823  *
2824  * Returns the maximum lane count supported by all detected LTTPRs.
2825  */
2826 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2827 {
2828 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2829 
2830 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2831 }
2832 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2833 
2834 /**
2835  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2836  * @caps: LTTPR PHY capabilities
2837  *
2838  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2839  * voltage swing level 3.
2840  */
2841 bool
2842 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2843 {
2844 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2845 
2846 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2847 }
2848 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2849 
2850 /**
2851  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2852  * @caps: LTTPR PHY capabilities
2853  *
2854  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2855  * pre-emphasis level 3.
2856  */
2857 bool
2858 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2859 {
2860 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2861 
2862 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2863 }
2864 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2865 
2866 /**
2867  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2868  * @aux: DisplayPort AUX channel
2869  * @data: DP phy compliance test parameters.
2870  *
2871  * Returns 0 on success or a negative error code on failure.
2872  */
2873 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2874 				struct drm_dp_phy_test_params *data)
2875 {
2876 	int err;
2877 	u8 rate, lanes;
2878 
2879 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2880 	if (err < 0)
2881 		return err;
2882 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2883 
2884 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2885 	if (err < 0)
2886 		return err;
2887 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2888 
2889 	if (lanes & DP_ENHANCED_FRAME_CAP)
2890 		data->enhanced_frame_cap = true;
2891 
2892 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2893 	if (err < 0)
2894 		return err;
2895 
2896 	switch (data->phy_pattern) {
2897 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2898 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2899 				       &data->custom80, sizeof(data->custom80));
2900 		if (err < 0)
2901 			return err;
2902 
2903 		break;
2904 	case DP_PHY_TEST_PATTERN_CP2520:
2905 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2906 				       &data->hbr2_reset,
2907 				       sizeof(data->hbr2_reset));
2908 		if (err < 0)
2909 			return err;
2910 	}
2911 
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2915 
2916 /**
2917  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2918  * @aux: DisplayPort AUX channel
2919  * @data: DP phy compliance test parameters.
2920  * @dp_rev: DP revision to use for compliance testing
2921  *
2922  * Returns 0 on success or a negative error code on failure.
2923  */
2924 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2925 				struct drm_dp_phy_test_params *data, u8 dp_rev)
2926 {
2927 	int err, i;
2928 	u8 test_pattern;
2929 
2930 	test_pattern = data->phy_pattern;
2931 	if (dp_rev < 0x12) {
2932 		test_pattern = (test_pattern << 2) &
2933 			       DP_LINK_QUAL_PATTERN_11_MASK;
2934 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2935 					 test_pattern);
2936 		if (err < 0)
2937 			return err;
2938 	} else {
2939 		for (i = 0; i < data->num_lanes; i++) {
2940 			err = drm_dp_dpcd_writeb(aux,
2941 						 DP_LINK_QUAL_LANE0_SET + i,
2942 						 test_pattern);
2943 			if (err < 0)
2944 				return err;
2945 		}
2946 	}
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2951 
2952 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2953 {
2954 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2955 		return "Invalid";
2956 
2957 	switch (pixelformat) {
2958 	case DP_PIXELFORMAT_RGB:
2959 		return "RGB";
2960 	case DP_PIXELFORMAT_YUV444:
2961 		return "YUV444";
2962 	case DP_PIXELFORMAT_YUV422:
2963 		return "YUV422";
2964 	case DP_PIXELFORMAT_YUV420:
2965 		return "YUV420";
2966 	case DP_PIXELFORMAT_Y_ONLY:
2967 		return "Y_ONLY";
2968 	case DP_PIXELFORMAT_RAW:
2969 		return "RAW";
2970 	default:
2971 		return "Reserved";
2972 	}
2973 }
2974 
2975 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2976 					   enum dp_colorimetry colorimetry)
2977 {
2978 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2979 		return "Invalid";
2980 
2981 	switch (colorimetry) {
2982 	case DP_COLORIMETRY_DEFAULT:
2983 		switch (pixelformat) {
2984 		case DP_PIXELFORMAT_RGB:
2985 			return "sRGB";
2986 		case DP_PIXELFORMAT_YUV444:
2987 		case DP_PIXELFORMAT_YUV422:
2988 		case DP_PIXELFORMAT_YUV420:
2989 			return "BT.601";
2990 		case DP_PIXELFORMAT_Y_ONLY:
2991 			return "DICOM PS3.14";
2992 		case DP_PIXELFORMAT_RAW:
2993 			return "Custom Color Profile";
2994 		default:
2995 			return "Reserved";
2996 		}
2997 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2998 		switch (pixelformat) {
2999 		case DP_PIXELFORMAT_RGB:
3000 			return "Wide Fixed";
3001 		case DP_PIXELFORMAT_YUV444:
3002 		case DP_PIXELFORMAT_YUV422:
3003 		case DP_PIXELFORMAT_YUV420:
3004 			return "BT.709";
3005 		default:
3006 			return "Reserved";
3007 		}
3008 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
3009 		switch (pixelformat) {
3010 		case DP_PIXELFORMAT_RGB:
3011 			return "Wide Float";
3012 		case DP_PIXELFORMAT_YUV444:
3013 		case DP_PIXELFORMAT_YUV422:
3014 		case DP_PIXELFORMAT_YUV420:
3015 			return "xvYCC 601";
3016 		default:
3017 			return "Reserved";
3018 		}
3019 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
3020 		switch (pixelformat) {
3021 		case DP_PIXELFORMAT_RGB:
3022 			return "OpRGB";
3023 		case DP_PIXELFORMAT_YUV444:
3024 		case DP_PIXELFORMAT_YUV422:
3025 		case DP_PIXELFORMAT_YUV420:
3026 			return "xvYCC 709";
3027 		default:
3028 			return "Reserved";
3029 		}
3030 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
3031 		switch (pixelformat) {
3032 		case DP_PIXELFORMAT_RGB:
3033 			return "DCI-P3";
3034 		case DP_PIXELFORMAT_YUV444:
3035 		case DP_PIXELFORMAT_YUV422:
3036 		case DP_PIXELFORMAT_YUV420:
3037 			return "sYCC 601";
3038 		default:
3039 			return "Reserved";
3040 		}
3041 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
3042 		switch (pixelformat) {
3043 		case DP_PIXELFORMAT_RGB:
3044 			return "Custom Profile";
3045 		case DP_PIXELFORMAT_YUV444:
3046 		case DP_PIXELFORMAT_YUV422:
3047 		case DP_PIXELFORMAT_YUV420:
3048 			return "OpYCC 601";
3049 		default:
3050 			return "Reserved";
3051 		}
3052 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
3053 		switch (pixelformat) {
3054 		case DP_PIXELFORMAT_RGB:
3055 			return "BT.2020 RGB";
3056 		case DP_PIXELFORMAT_YUV444:
3057 		case DP_PIXELFORMAT_YUV422:
3058 		case DP_PIXELFORMAT_YUV420:
3059 			return "BT.2020 CYCC";
3060 		default:
3061 			return "Reserved";
3062 		}
3063 	case DP_COLORIMETRY_BT2020_YCC:
3064 		switch (pixelformat) {
3065 		case DP_PIXELFORMAT_YUV444:
3066 		case DP_PIXELFORMAT_YUV422:
3067 		case DP_PIXELFORMAT_YUV420:
3068 			return "BT.2020 YCC";
3069 		default:
3070 			return "Reserved";
3071 		}
3072 	default:
3073 		return "Invalid";
3074 	}
3075 }
3076 
3077 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
3078 {
3079 	switch (dynamic_range) {
3080 	case DP_DYNAMIC_RANGE_VESA:
3081 		return "VESA range";
3082 	case DP_DYNAMIC_RANGE_CTA:
3083 		return "CTA range";
3084 	default:
3085 		return "Invalid";
3086 	}
3087 }
3088 
3089 static const char *dp_content_type_get_name(enum dp_content_type content_type)
3090 {
3091 	switch (content_type) {
3092 	case DP_CONTENT_TYPE_NOT_DEFINED:
3093 		return "Not defined";
3094 	case DP_CONTENT_TYPE_GRAPHICS:
3095 		return "Graphics";
3096 	case DP_CONTENT_TYPE_PHOTO:
3097 		return "Photo";
3098 	case DP_CONTENT_TYPE_VIDEO:
3099 		return "Video";
3100 	case DP_CONTENT_TYPE_GAME:
3101 		return "Game";
3102 	default:
3103 		return "Reserved";
3104 	}
3105 }
3106 
3107 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
3108 {
3109 	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
3110 		   vsc->revision, vsc->length);
3111 	drm_printf(p, "    pixelformat: %s\n",
3112 		   dp_pixelformat_get_name(vsc->pixelformat));
3113 	drm_printf(p, "    colorimetry: %s\n",
3114 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
3115 	drm_printf(p, "    bpc: %u\n", vsc->bpc);
3116 	drm_printf(p, "    dynamic range: %s\n",
3117 		   dp_dynamic_range_get_name(vsc->dynamic_range));
3118 	drm_printf(p, "    content type: %s\n",
3119 		   dp_content_type_get_name(vsc->content_type));
3120 }
3121 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
3122 
3123 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3124 {
3125 	drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3126 		   as_sdp->revision, as_sdp->length);
3127 	drm_printf(p, "    vtotal: %d\n", as_sdp->vtotal);
3128 	drm_printf(p, "    target_rr: %d\n", as_sdp->target_rr);
3129 	drm_printf(p, "    duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3130 	drm_printf(p, "    duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3131 	drm_printf(p, "    operation_mode: %d\n", as_sdp->mode);
3132 }
3133 EXPORT_SYMBOL(drm_dp_as_sdp_log);
3134 
3135 /**
3136  * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3137  * @aux: DisplayPort AUX channel
3138  * @dpcd: DisplayPort configuration data
3139  *
3140  * Returns true if adaptive sync sdp is supported, else returns false
3141  */
3142 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3143 {
3144 	u8 rx_feature;
3145 
3146 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3147 		return false;
3148 
3149 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3150 			      &rx_feature) != 1) {
3151 		drm_dbg_dp(aux->drm_dev,
3152 			   "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3153 		return false;
3154 	}
3155 
3156 	return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3157 }
3158 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3159 
3160 /**
3161  * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3162  * @aux: DisplayPort AUX channel
3163  * @dpcd: DisplayPort configuration data
3164  *
3165  * Returns true if vsc sdp is supported, else returns false
3166  */
3167 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3168 {
3169 	u8 rx_feature;
3170 
3171 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3172 		return false;
3173 
3174 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
3175 		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3176 		return false;
3177 	}
3178 
3179 	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3180 }
3181 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3182 
3183 /**
3184  * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3185  * @vsc: vsc sdp initialized according to its purpose as defined in
3186  *       table 2-118 - table 2-120 in DP 1.4a specification
3187  * @sdp: valid handle to the generic dp_sdp which will be packed
3188  *
3189  * Returns length of sdp on success and error code on failure
3190  */
3191 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3192 			    struct dp_sdp *sdp)
3193 {
3194 	size_t length = sizeof(struct dp_sdp);
3195 
3196 	memset(sdp, 0, sizeof(struct dp_sdp));
3197 
3198 	/*
3199 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3200 	 * VSC SDP Header Bytes
3201 	 */
3202 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3203 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3204 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3205 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3206 
3207 	if (vsc->revision == 0x6) {
3208 		sdp->db[0] = 1;
3209 		sdp->db[3] = 1;
3210 	}
3211 
3212 	/*
3213 	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3214 	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3215 	 */
3216 	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3217 		goto out;
3218 
3219 	/* VSC SDP Payload for DB16 through DB18 */
3220 	/* Pixel Encoding and Colorimetry Formats  */
3221 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3222 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3223 
3224 	switch (vsc->bpc) {
3225 	case 6:
3226 		/* 6bpc: 0x0 */
3227 		break;
3228 	case 8:
3229 		sdp->db[17] = 0x1; /* DB17[3:0] */
3230 		break;
3231 	case 10:
3232 		sdp->db[17] = 0x2;
3233 		break;
3234 	case 12:
3235 		sdp->db[17] = 0x3;
3236 		break;
3237 	case 16:
3238 		sdp->db[17] = 0x4;
3239 		break;
3240 	default:
3241 		WARN(1, "Missing case %d\n", vsc->bpc);
3242 		return -EINVAL;
3243 	}
3244 
3245 	/* Dynamic Range and Component Bit Depth */
3246 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3247 		sdp->db[17] |= 0x80;  /* DB17[7] */
3248 
3249 	/* Content Type */
3250 	sdp->db[18] = vsc->content_type & 0x7;
3251 
3252 out:
3253 	return length;
3254 }
3255 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3256 
3257 /**
3258  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3259  * @dpcd: DisplayPort configuration data
3260  * @port_cap: port capabilities
3261  *
3262  * Returns maximum frl bandwidth supported by PCON in GBPS,
3263  * returns 0 if not supported.
3264  */
3265 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3266 			       const u8 port_cap[4])
3267 {
3268 	int bw;
3269 	u8 buf;
3270 
3271 	buf = port_cap[2];
3272 	bw = buf & DP_PCON_MAX_FRL_BW;
3273 
3274 	switch (bw) {
3275 	case DP_PCON_MAX_9GBPS:
3276 		return 9;
3277 	case DP_PCON_MAX_18GBPS:
3278 		return 18;
3279 	case DP_PCON_MAX_24GBPS:
3280 		return 24;
3281 	case DP_PCON_MAX_32GBPS:
3282 		return 32;
3283 	case DP_PCON_MAX_40GBPS:
3284 		return 40;
3285 	case DP_PCON_MAX_48GBPS:
3286 		return 48;
3287 	case DP_PCON_MAX_0GBPS:
3288 	default:
3289 		return 0;
3290 	}
3291 
3292 	return 0;
3293 }
3294 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3295 
3296 /**
3297  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3298  * @aux: DisplayPort AUX channel
3299  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3300  *
3301  * Returns 0 if success, else returns negative error code.
3302  */
3303 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3304 {
3305 	int ret;
3306 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3307 		 DP_PCON_ENABLE_LINK_FRL_MODE;
3308 
3309 	if (enable_frl_ready_hpd)
3310 		buf |= DP_PCON_ENABLE_HPD_READY;
3311 
3312 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3313 
3314 	return ret;
3315 }
3316 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3317 
3318 /**
3319  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3320  * @aux: DisplayPort AUX channel
3321  *
3322  * Returns true if success, else returns false.
3323  */
3324 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3325 {
3326 	int ret;
3327 	u8 buf;
3328 
3329 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3330 	if (ret < 0)
3331 		return false;
3332 
3333 	if (buf & DP_PCON_FRL_READY)
3334 		return true;
3335 
3336 	return false;
3337 }
3338 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3339 
3340 /**
3341  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3342  * @aux: DisplayPort AUX channel
3343  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3344  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3345  * In Concurrent Mode, the FRL link bring up can be done along with
3346  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3347  * the DP Link training.
3348  *
3349  * Returns 0 if success, else returns negative error code.
3350  */
3351 
3352 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3353 				u8 frl_mode)
3354 {
3355 	int ret;
3356 	u8 buf;
3357 
3358 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3359 	if (ret < 0)
3360 		return ret;
3361 
3362 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3363 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3364 	else
3365 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3366 
3367 	switch (max_frl_gbps) {
3368 	case 9:
3369 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3370 		break;
3371 	case 18:
3372 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3373 		break;
3374 	case 24:
3375 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3376 		break;
3377 	case 32:
3378 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3379 		break;
3380 	case 40:
3381 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3382 		break;
3383 	case 48:
3384 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3385 		break;
3386 	case 0:
3387 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3388 		break;
3389 	default:
3390 		return -EINVAL;
3391 	}
3392 
3393 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3394 	if (ret < 0)
3395 		return ret;
3396 
3397 	return 0;
3398 }
3399 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3400 
3401 /**
3402  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3403  * @aux: DisplayPort AUX channel
3404  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3405  * @frl_type : FRL training type, can be Extended, or Normal.
3406  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3407  * starting from min, and stops when link training is successful. In Extended
3408  * FRL training, all frl bw selected in the mask are trained by the PCON.
3409  *
3410  * Returns 0 if success, else returns negative error code.
3411  */
3412 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3413 				u8 frl_type)
3414 {
3415 	int ret;
3416 	u8 buf = max_frl_mask;
3417 
3418 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3419 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3420 	else
3421 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3422 
3423 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3424 	if (ret < 0)
3425 		return ret;
3426 
3427 	return 0;
3428 }
3429 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3430 
3431 /**
3432  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3433  * @aux: DisplayPort AUX channel
3434  *
3435  * Returns 0 if success, else returns negative error code.
3436  */
3437 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3438 {
3439 	int ret;
3440 
3441 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3442 	if (ret < 0)
3443 		return ret;
3444 
3445 	return 0;
3446 }
3447 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3448 
3449 /**
3450  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3451  * @aux: DisplayPort AUX channel
3452  *
3453  * Returns 0 if success, else returns negative error code.
3454  */
3455 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3456 {
3457 	int ret;
3458 	u8 buf = 0;
3459 
3460 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3461 	if (ret < 0)
3462 		return ret;
3463 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3464 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3465 			    aux->name);
3466 		return -EINVAL;
3467 	}
3468 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3469 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3470 	if (ret < 0)
3471 		return ret;
3472 
3473 	return 0;
3474 }
3475 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3476 
3477 /**
3478  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3479  * @aux: DisplayPort AUX channel
3480  *
3481  * Returns true if link is active else returns false.
3482  */
3483 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3484 {
3485 	u8 buf;
3486 	int ret;
3487 
3488 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3489 	if (ret < 0)
3490 		return false;
3491 
3492 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3493 }
3494 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3495 
3496 /**
3497  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3498  * @aux: DisplayPort AUX channel
3499  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3500  * Valid only if the MODE returned is FRL. For Normal Link training mode
3501  * only 1 of the bits will be set, but in case of Extended mode, more than
3502  * one bits can be set.
3503  *
3504  * Returns the link mode : TMDS or FRL on success, else returns negative error
3505  * code.
3506  */
3507 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3508 {
3509 	u8 buf;
3510 	int mode;
3511 	int ret;
3512 
3513 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3514 	if (ret < 0)
3515 		return ret;
3516 
3517 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3518 
3519 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3520 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3521 
3522 	return mode;
3523 }
3524 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3525 
3526 /**
3527  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3528  * during link failure between PCON and HDMI sink
3529  * @aux: DisplayPort AUX channel
3530  * @connector: DRM connector
3531  * code.
3532  **/
3533 
3534 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3535 					   struct drm_connector *connector)
3536 {
3537 	u8 buf, error_count;
3538 	int i, num_error;
3539 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3540 
3541 	for (i = 0; i < hdmi->max_lanes; i++) {
3542 		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3543 			return;
3544 
3545 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3546 		switch (error_count) {
3547 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3548 			num_error = 100;
3549 			break;
3550 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3551 			num_error = 10;
3552 			break;
3553 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3554 			num_error = 3;
3555 			break;
3556 		default:
3557 			num_error = 0;
3558 		}
3559 
3560 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3561 			aux->name, num_error, i);
3562 	}
3563 }
3564 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3565 
3566 /*
3567  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3568  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3569  *
3570  * Returns true is PCON encoder is DSC 1.2 else returns false.
3571  */
3572 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3573 {
3574 	u8 buf;
3575 	u8 major_v, minor_v;
3576 
3577 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3578 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3579 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3580 
3581 	if (major_v == 1 && minor_v == 2)
3582 		return true;
3583 
3584 	return false;
3585 }
3586 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3587 
3588 /*
3589  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3590  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3591  *
3592  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3593  */
3594 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3595 {
3596 	u8 slice_cap1, slice_cap2;
3597 
3598 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3599 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3600 
3601 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3602 		return 24;
3603 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3604 		return 20;
3605 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3606 		return 16;
3607 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3608 		return 12;
3609 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3610 		return 10;
3611 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3612 		return 8;
3613 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3614 		return 6;
3615 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3616 		return 4;
3617 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3618 		return 2;
3619 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3620 		return 1;
3621 
3622 	return 0;
3623 }
3624 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3625 
3626 /*
3627  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3628  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3629  *
3630  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3631  */
3632 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3633 {
3634 	u8 buf;
3635 
3636 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3637 
3638 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3639 }
3640 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3641 
3642 /*
3643  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3644  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3645  *
3646  * Returns the bpp precision supported by the PCON encoder.
3647  */
3648 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3649 {
3650 	u8 buf;
3651 
3652 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3653 
3654 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3655 	case DP_PCON_DSC_ONE_16TH_BPP:
3656 		return 16;
3657 	case DP_PCON_DSC_ONE_8TH_BPP:
3658 		return 8;
3659 	case DP_PCON_DSC_ONE_4TH_BPP:
3660 		return 4;
3661 	case DP_PCON_DSC_ONE_HALF_BPP:
3662 		return 2;
3663 	case DP_PCON_DSC_ONE_BPP:
3664 		return 1;
3665 	}
3666 
3667 	return 0;
3668 }
3669 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3670 
3671 static
3672 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3673 {
3674 	u8 buf;
3675 	int ret;
3676 
3677 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3678 	if (ret < 0)
3679 		return ret;
3680 
3681 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3682 
3683 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3684 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3685 		buf |= pps_buf_config << 2;
3686 	}
3687 
3688 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3689 	if (ret < 0)
3690 		return ret;
3691 
3692 	return 0;
3693 }
3694 
3695 /**
3696  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3697  * for DSC1.2 between PCON & HDMI2.1 sink
3698  * @aux: DisplayPort AUX channel
3699  *
3700  * Returns 0 on success, else returns negative error code.
3701  */
3702 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3703 {
3704 	int ret;
3705 
3706 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3707 	if (ret < 0)
3708 		return ret;
3709 
3710 	return 0;
3711 }
3712 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3713 
3714 /**
3715  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3716  * HDMI sink
3717  * @aux: DisplayPort AUX channel
3718  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3719  *
3720  * Returns 0 on success, else returns negative error code.
3721  */
3722 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3723 {
3724 	int ret;
3725 
3726 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3727 	if (ret < 0)
3728 		return ret;
3729 
3730 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3731 	if (ret < 0)
3732 		return ret;
3733 
3734 	return 0;
3735 }
3736 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3737 
3738 /*
3739  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3740  * override registers
3741  * @aux: DisplayPort AUX channel
3742  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3743  * bits_per_pixel.
3744  *
3745  * Returns 0 on success, else returns negative error code.
3746  */
3747 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3748 {
3749 	int ret;
3750 
3751 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3752 	if (ret < 0)
3753 		return ret;
3754 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3755 	if (ret < 0)
3756 		return ret;
3757 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3758 	if (ret < 0)
3759 		return ret;
3760 
3761 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3762 	if (ret < 0)
3763 		return ret;
3764 
3765 	return 0;
3766 }
3767 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3768 
3769 /*
3770  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3771  * @aux: displayPort AUX channel
3772  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3773  *
3774  * Returns 0 on success, else returns negative error code.
3775  */
3776 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3777 {
3778 	int ret;
3779 	u8 buf;
3780 
3781 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3782 	if (ret < 0)
3783 		return ret;
3784 
3785 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3786 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3787 	else
3788 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3789 
3790 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3791 	if (ret < 0)
3792 		return ret;
3793 
3794 	return 0;
3795 }
3796 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3797 
3798 /**
3799  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3800  * @aux: The DP AUX channel to use
3801  * @bl: Backlight capability info from drm_edp_backlight_init()
3802  * @level: The brightness level to set
3803  *
3804  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3805  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3806  *
3807  * Returns: %0 on success, negative error code on failure
3808  */
3809 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3810 				u16 level)
3811 {
3812 	int ret;
3813 	u8 buf[2] = { 0 };
3814 
3815 	/* The panel uses the PWM for controlling brightness levels */
3816 	if (!bl->aux_set)
3817 		return 0;
3818 
3819 	if (bl->lsb_reg_used) {
3820 		buf[0] = (level & 0xff00) >> 8;
3821 		buf[1] = (level & 0x00ff);
3822 	} else {
3823 		buf[0] = level;
3824 	}
3825 
3826 	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3827 	if (ret != sizeof(buf)) {
3828 		drm_err(aux->drm_dev,
3829 			"%s: Failed to write aux backlight level: %d\n",
3830 			aux->name, ret);
3831 		return ret < 0 ? ret : -EIO;
3832 	}
3833 
3834 	return 0;
3835 }
3836 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3837 
3838 static int
3839 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3840 			     bool enable)
3841 {
3842 	int ret;
3843 	u8 buf;
3844 
3845 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3846 	if (!bl->aux_enable)
3847 		return 0;
3848 
3849 	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3850 	if (ret != 1) {
3851 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3852 			aux->name, ret);
3853 		return ret < 0 ? ret : -EIO;
3854 	}
3855 	if (enable)
3856 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3857 	else
3858 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3859 
3860 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3861 	if (ret != 1) {
3862 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3863 			aux->name, ret);
3864 		return ret < 0 ? ret : -EIO;
3865 	}
3866 
3867 	return 0;
3868 }
3869 
3870 /**
3871  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3872  * @aux: The DP AUX channel to use
3873  * @bl: Backlight capability info from drm_edp_backlight_init()
3874  * @level: The initial backlight level to set via AUX, if there is one
3875  *
3876  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3877  * restoring any important backlight state such as the given backlight level, the brightness byte
3878  * count, backlight frequency, etc.
3879  *
3880  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3881  * that the driver handle enabling/disabling the panel through implementation-specific means using
3882  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3883  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3884  * the EDP_BL_PWR GPIO.
3885  *
3886  * Returns: %0 on success, negative error code on failure.
3887  */
3888 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3889 			     const u16 level)
3890 {
3891 	int ret;
3892 	u8 dpcd_buf;
3893 
3894 	if (bl->aux_set)
3895 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3896 	else
3897 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3898 
3899 	if (bl->pwmgen_bit_count) {
3900 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3901 		if (ret != 1)
3902 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3903 				    aux->name, ret);
3904 	}
3905 
3906 	if (bl->pwm_freq_pre_divider) {
3907 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3908 		if (ret != 1)
3909 			drm_dbg_kms(aux->drm_dev,
3910 				    "%s: Failed to write aux backlight frequency: %d\n",
3911 				    aux->name, ret);
3912 		else
3913 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3914 	}
3915 
3916 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3917 	if (ret != 1) {
3918 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3919 			    aux->name, ret);
3920 		return ret < 0 ? ret : -EIO;
3921 	}
3922 
3923 	ret = drm_edp_backlight_set_level(aux, bl, level);
3924 	if (ret < 0)
3925 		return ret;
3926 	ret = drm_edp_backlight_set_enable(aux, bl, true);
3927 	if (ret < 0)
3928 		return ret;
3929 
3930 	return 0;
3931 }
3932 EXPORT_SYMBOL(drm_edp_backlight_enable);
3933 
3934 /**
3935  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3936  * @aux: The DP AUX channel to use
3937  * @bl: Backlight capability info from drm_edp_backlight_init()
3938  *
3939  * This function handles disabling DPCD backlight controls on a panel over AUX.
3940  *
3941  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3942  * that the driver handle enabling/disabling the panel through implementation-specific means using
3943  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3944  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3945  * the EDP_BL_PWR GPIO.
3946  *
3947  * Returns: %0 on success or no-op, negative error code on failure.
3948  */
3949 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3950 {
3951 	int ret;
3952 
3953 	ret = drm_edp_backlight_set_enable(aux, bl, false);
3954 	if (ret < 0)
3955 		return ret;
3956 
3957 	return 0;
3958 }
3959 EXPORT_SYMBOL(drm_edp_backlight_disable);
3960 
3961 static inline int
3962 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3963 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3964 {
3965 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3966 	int ret;
3967 	u8 pn, pn_min, pn_max;
3968 
3969 	if (!bl->aux_set)
3970 		return 0;
3971 
3972 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3973 	if (ret != 1) {
3974 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3975 			    aux->name, ret);
3976 		return -ENODEV;
3977 	}
3978 
3979 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3980 	bl->max = (1 << pn) - 1;
3981 	if (!driver_pwm_freq_hz)
3982 		return 0;
3983 
3984 	/*
3985 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3986 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3987 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3988 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3989 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3990 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3991 	 */
3992 
3993 	/* Find desired value of (F x P)
3994 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3995 	 * applied automatically. So no need to check that.
3996 	 */
3997 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3998 
3999 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
4000 	 * satisfying the conditions below.
4001 	 * - Pn is in the range of Pn_min and Pn_max
4002 	 * - F is in the range of 1 and 255
4003 	 * - FxP is within 25% of desired value.
4004 	 *   Note: 25% is arbitrary value and may need some tweak.
4005 	 */
4006 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
4007 	if (ret != 1) {
4008 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
4009 			    aux->name, ret);
4010 		return 0;
4011 	}
4012 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
4013 	if (ret != 1) {
4014 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
4015 			    aux->name, ret);
4016 		return 0;
4017 	}
4018 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4019 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4020 
4021 	/* Ensure frequency is within 25% of desired value */
4022 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
4023 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
4024 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
4025 		drm_dbg_kms(aux->drm_dev,
4026 			    "%s: Driver defined backlight frequency (%d) out of range\n",
4027 			    aux->name, driver_pwm_freq_hz);
4028 		return 0;
4029 	}
4030 
4031 	for (pn = pn_max; pn >= pn_min; pn--) {
4032 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
4033 		fxp_actual = f << pn;
4034 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
4035 			break;
4036 	}
4037 
4038 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
4039 	if (ret != 1) {
4040 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4041 			    aux->name, ret);
4042 		return 0;
4043 	}
4044 	bl->pwmgen_bit_count = pn;
4045 	bl->max = (1 << pn) - 1;
4046 
4047 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
4048 		bl->pwm_freq_pre_divider = f;
4049 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
4050 			    aux->name, driver_pwm_freq_hz);
4051 	}
4052 
4053 	return 0;
4054 }
4055 
4056 static inline int
4057 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4058 			      u8 *current_mode)
4059 {
4060 	int ret;
4061 	u8 buf[2];
4062 	u8 mode_reg;
4063 
4064 	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
4065 	if (ret != 1) {
4066 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
4067 			    aux->name, ret);
4068 		return ret < 0 ? ret : -EIO;
4069 	}
4070 
4071 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
4072 	if (!bl->aux_set)
4073 		return 0;
4074 
4075 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
4076 		int size = 1 + bl->lsb_reg_used;
4077 
4078 		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
4079 		if (ret != size) {
4080 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
4081 				    aux->name, ret);
4082 			return ret < 0 ? ret : -EIO;
4083 		}
4084 
4085 		if (bl->lsb_reg_used)
4086 			return (buf[0] << 8) | buf[1];
4087 		else
4088 			return buf[0];
4089 	}
4090 
4091 	/*
4092 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
4093 	 * the driver should assume max brightness
4094 	 */
4095 	return bl->max;
4096 }
4097 
4098 /**
4099  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
4100  * interface.
4101  * @aux: The DP aux device to use for probing
4102  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
4103  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
4104  * @edp_dpcd: A cached copy of the eDP DPCD
4105  * @current_level: Where to store the probed brightness level, if any
4106  * @current_mode: Where to store the currently set backlight control mode
4107  *
4108  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
4109  * along with also probing the current and maximum supported brightness levels.
4110  *
4111  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
4112  * default frequency from the panel is used.
4113  *
4114  * Returns: %0 on success, negative error code on failure.
4115  */
4116 int
4117 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4118 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
4119 		       u16 *current_level, u8 *current_mode)
4120 {
4121 	int ret;
4122 
4123 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4124 		bl->aux_enable = true;
4125 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4126 		bl->aux_set = true;
4127 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4128 		bl->lsb_reg_used = true;
4129 
4130 	/* Sanity check caps */
4131 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
4132 		drm_dbg_kms(aux->drm_dev,
4133 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
4134 			    aux->name);
4135 		return -EINVAL;
4136 	}
4137 
4138 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4139 	if (ret < 0)
4140 		return ret;
4141 
4142 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4143 	if (ret < 0)
4144 		return ret;
4145 	*current_level = ret;
4146 
4147 	drm_dbg_kms(aux->drm_dev,
4148 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4149 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4150 	if (bl->aux_set) {
4151 		drm_dbg_kms(aux->drm_dev,
4152 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4153 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4154 			    bl->lsb_reg_used);
4155 	}
4156 
4157 	return 0;
4158 }
4159 EXPORT_SYMBOL(drm_edp_backlight_init);
4160 
4161 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4162 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4163 
4164 static int dp_aux_backlight_update_status(struct backlight_device *bd)
4165 {
4166 	struct dp_aux_backlight *bl = bl_get_data(bd);
4167 	u16 brightness = backlight_get_brightness(bd);
4168 	int ret = 0;
4169 
4170 	if (!backlight_is_blank(bd)) {
4171 		if (!bl->enabled) {
4172 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4173 			bl->enabled = true;
4174 			return 0;
4175 		}
4176 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4177 	} else {
4178 		if (bl->enabled) {
4179 			drm_edp_backlight_disable(bl->aux, &bl->info);
4180 			bl->enabled = false;
4181 		}
4182 	}
4183 
4184 	return ret;
4185 }
4186 
4187 static const struct backlight_ops dp_aux_bl_ops = {
4188 	.update_status = dp_aux_backlight_update_status,
4189 };
4190 
4191 /**
4192  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4193  * @panel: DRM panel
4194  * @aux: The DP AUX channel to use
4195  *
4196  * Use this function to create and handle backlight if your panel
4197  * supports backlight control over DP AUX channel using DPCD
4198  * registers as per VESA's standard backlight control interface.
4199  *
4200  * When the panel is enabled backlight will be enabled after a
4201  * successful call to &drm_panel_funcs.enable()
4202  *
4203  * When the panel is disabled backlight will be disabled before the
4204  * call to &drm_panel_funcs.disable().
4205  *
4206  * A typical implementation for a panel driver supporting backlight
4207  * control over DP AUX will call this function at probe time.
4208  * Backlight will then be handled transparently without requiring
4209  * any intervention from the driver.
4210  *
4211  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4212  *
4213  * Return: 0 on success or a negative error code on failure.
4214  */
4215 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4216 {
4217 	struct dp_aux_backlight *bl;
4218 	struct backlight_properties props = { 0 };
4219 	u16 current_level;
4220 	u8 current_mode;
4221 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4222 	int ret;
4223 
4224 	if (!panel || !panel->dev || !aux)
4225 		return -EINVAL;
4226 
4227 	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4228 			       EDP_DISPLAY_CTL_CAP_SIZE);
4229 	if (ret < 0)
4230 		return ret;
4231 
4232 	if (!drm_edp_backlight_supported(edp_dpcd)) {
4233 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4234 		return 0;
4235 	}
4236 
4237 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4238 	if (!bl)
4239 		return -ENOMEM;
4240 
4241 	bl->aux = aux;
4242 
4243 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4244 				     &current_level, &current_mode);
4245 	if (ret < 0)
4246 		return ret;
4247 
4248 	props.type = BACKLIGHT_RAW;
4249 	props.brightness = current_level;
4250 	props.max_brightness = bl->info.max;
4251 
4252 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4253 						  panel->dev, bl,
4254 						  &dp_aux_bl_ops, &props);
4255 	if (IS_ERR(bl->base))
4256 		return PTR_ERR(bl->base);
4257 
4258 	backlight_disable(bl->base);
4259 
4260 	panel->backlight = bl->base;
4261 
4262 	return 0;
4263 }
4264 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4265 
4266 #endif
4267 
4268 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4269 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4270 				     int symbol_size, bool is_mst)
4271 {
4272 	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4273 	int align = is_mst ? 4 / lane_count : 1;
4274 
4275 	return ALIGN(cycles, align);
4276 }
4277 
4278 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4279 					 int bpp_x16, int symbol_size, bool is_mst)
4280 {
4281 	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4282 	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4283 							  bpp_x16, symbol_size, is_mst);
4284 	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4285 
4286 	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4287 }
4288 
4289 /**
4290  * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4291  * @lane_count: DP link lane count
4292  * @hactive: pixel count of the active period in one scanline of the stream
4293  * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4294  * @bpp_x16: bits per pixel in .4 binary fixed point
4295  * @flags: DRM_DP_OVERHEAD_x flags
4296  *
4297  * Calculate the BW allocation overhead of a DP link stream, depending
4298  * on the link's
4299  * - @lane_count
4300  * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4301  * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4302  * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4303  * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4304  * as well as the stream's
4305  * - @hactive timing
4306  * - @bpp_x16 color depth
4307  * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4308  * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4309  * channel coding efficiency, for that see
4310  * @drm_dp_link_bw_channel_coding_efficiency().
4311  *
4312  * Returns the overhead as 100% + overhead% in 1ppm units.
4313  */
4314 int drm_dp_bw_overhead(int lane_count, int hactive,
4315 		       int dsc_slice_count,
4316 		       int bpp_x16, unsigned long flags)
4317 {
4318 	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4319 	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4320 	u32 overhead = 1000000;
4321 	int symbol_cycles;
4322 
4323 	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4324 		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4325 			      lane_count, hactive,
4326 			      FXP_Q4_ARGS(bpp_x16));
4327 		return 0;
4328 	}
4329 
4330 	/*
4331 	 * DP Standard v2.1 2.6.4.1
4332 	 * SSC downspread and ref clock variation margin:
4333 	 *   5300ppm + 300ppm ~ 0.6%
4334 	 */
4335 	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4336 		overhead += 6000;
4337 
4338 	/*
4339 	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4340 	 * FEC symbol insertions for 8b/10b channel coding:
4341 	 * After each 250 data symbols on 2-4 lanes:
4342 	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4343 	 * After each 2 x 250 data symbols on 1 lane:
4344 	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4345 	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4346 	 *   256 * 256 bytes + 1 FEC_PM
4347 	 * or
4348 	 *   128 * 512 bytes + 1 FEC_PM
4349 	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4350 	 */
4351 	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4352 		overhead += 24016;
4353 
4354 	/*
4355 	 * DP Standard v2.1 2.7.9, 5.9.7
4356 	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4357 	 * coding efficiency.
4358 	 */
4359 	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4360 		(flags & DRM_DP_BW_OVERHEAD_FEC));
4361 
4362 	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4363 		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4364 							      dsc_slice_count,
4365 							      bpp_x16, symbol_size,
4366 							      is_mst);
4367 	else
4368 		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4369 							  bpp_x16, symbol_size,
4370 							  is_mst);
4371 
4372 	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4373 					    overhead * 16),
4374 				hactive * bpp_x16);
4375 }
4376 EXPORT_SYMBOL(drm_dp_bw_overhead);
4377 
4378 /**
4379  * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4380  * @is_uhbr: Whether the link has a 128b/132b channel coding
4381  *
4382  * Return the channel coding efficiency of the given DP link type, which is
4383  * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4384  * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4385  * and for 128b/132b any link or PHY level control symbol insertion overhead
4386  * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4387  * corresponding FEC overhead is BW allocation specific, included in the value
4388  * returned by drm_dp_bw_overhead().
4389  *
4390  * Returns the efficiency in the 100%/coding-overhead% ratio in
4391  * 1ppm units.
4392  */
4393 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4394 {
4395 	if (is_uhbr)
4396 		return 967100;
4397 	else
4398 		/*
4399 		 * Note that on 8b/10b MST the efficiency is only
4400 		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4401 		 * not accounted for here.
4402 		 */
4403 		return 800000;
4404 }
4405 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4406 
4407 /**
4408  * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4409  * @max_link_rate: max DPRX link rate in 10kbps units
4410  * @max_lanes: max DPRX lane count
4411  *
4412  * Given a link rate and lanes, get the data bandwidth.
4413  *
4414  * Data bandwidth is the actual payload rate, which depends on the data
4415  * bandwidth efficiency and the link rate.
4416  *
4417  * Note that protocol layers above the DPRX link level considered here can
4418  * further limit the maximum data rate. Such layers are the MST topology (with
4419  * limits on the link between the source and first branch device as well as on
4420  * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4421  * which in turn can encapsulate an MST link with its own limit - with each
4422  * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4423  *
4424  * Returns the maximum data rate in kBps units.
4425  */
4426 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4427 {
4428 	int ch_coding_efficiency =
4429 		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4430 
4431 	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4432 					      ch_coding_efficiency),
4433 				  1000000 * 8);
4434 }
4435 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4436