1 /* 2 * Copyright © 2009 Keith Packard 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/backlight.h> 24 #include <linux/delay.h> 25 #include <linux/errno.h> 26 #include <linux/i2c.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/string_helpers.h> 33 #include <linux/dynamic_debug.h> 34 35 #include <drm/display/drm_dp_helper.h> 36 #include <drm/display/drm_dp_mst_helper.h> 37 #include <drm/drm_edid.h> 38 #include <drm/drm_print.h> 39 #include <drm/drm_vblank.h> 40 #include <drm/drm_panel.h> 41 42 #include "drm_dp_helper_internal.h" 43 44 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0, 45 "DRM_UT_CORE", 46 "DRM_UT_DRIVER", 47 "DRM_UT_KMS", 48 "DRM_UT_PRIME", 49 "DRM_UT_ATOMIC", 50 "DRM_UT_VBL", 51 "DRM_UT_STATE", 52 "DRM_UT_LEASE", 53 "DRM_UT_DP", 54 "DRM_UT_DRMRES"); 55 56 struct dp_aux_backlight { 57 struct backlight_device *base; 58 struct drm_dp_aux *aux; 59 struct drm_edp_backlight_info info; 60 bool enabled; 61 }; 62 63 /** 64 * DOC: dp helpers 65 * 66 * These functions contain some common logic and helpers at various abstraction 67 * levels to deal with Display Port sink devices and related things like DP aux 68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD 69 * blocks, ... 70 */ 71 72 /* Helpers for DP link training */ 73 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r) 74 { 75 return link_status[r - DP_LANE0_1_STATUS]; 76 } 77 78 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE], 79 int lane) 80 { 81 int i = DP_LANE0_1_STATUS + (lane >> 1); 82 int s = (lane & 1) * 4; 83 u8 l = dp_link_status(link_status, i); 84 85 return (l >> s) & 0xf; 86 } 87 88 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 89 int lane_count) 90 { 91 u8 lane_align; 92 u8 lane_status; 93 int lane; 94 95 lane_align = dp_link_status(link_status, 96 DP_LANE_ALIGN_STATUS_UPDATED); 97 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) 98 return false; 99 for (lane = 0; lane < lane_count; lane++) { 100 lane_status = dp_get_lane_status(link_status, lane); 101 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) 102 return false; 103 } 104 return true; 105 } 106 EXPORT_SYMBOL(drm_dp_channel_eq_ok); 107 108 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 109 int lane_count) 110 { 111 int lane; 112 u8 lane_status; 113 114 for (lane = 0; lane < lane_count; lane++) { 115 lane_status = dp_get_lane_status(link_status, lane); 116 if ((lane_status & DP_LANE_CR_DONE) == 0) 117 return false; 118 } 119 return true; 120 } 121 EXPORT_SYMBOL(drm_dp_clock_recovery_ok); 122 123 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE], 124 int lane) 125 { 126 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 127 int s = ((lane & 1) ? 128 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : 129 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); 130 u8 l = dp_link_status(link_status, i); 131 132 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; 133 } 134 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage); 135 136 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE], 137 int lane) 138 { 139 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 140 int s = ((lane & 1) ? 141 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : 142 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); 143 u8 l = dp_link_status(link_status, i); 144 145 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; 146 } 147 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis); 148 149 /* DP 2.0 128b/132b */ 150 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE], 151 int lane) 152 { 153 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 154 int s = ((lane & 1) ? 155 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT : 156 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT); 157 u8 l = dp_link_status(link_status, i); 158 159 return (l >> s) & 0xf; 160 } 161 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset); 162 163 /* DP 2.0 errata for 128b/132b */ 164 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE], 165 int lane_count) 166 { 167 u8 lane_align, lane_status; 168 int lane; 169 170 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 171 if (!(lane_align & DP_INTERLANE_ALIGN_DONE)) 172 return false; 173 174 for (lane = 0; lane < lane_count; lane++) { 175 lane_status = dp_get_lane_status(link_status, lane); 176 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE)) 177 return false; 178 } 179 return true; 180 } 181 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done); 182 183 /* DP 2.0 errata for 128b/132b */ 184 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE], 185 int lane_count) 186 { 187 u8 lane_status; 188 int lane; 189 190 for (lane = 0; lane < lane_count; lane++) { 191 lane_status = dp_get_lane_status(link_status, lane); 192 if (!(lane_status & DP_LANE_SYMBOL_LOCKED)) 193 return false; 194 } 195 return true; 196 } 197 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked); 198 199 /* DP 2.0 errata for 128b/132b */ 200 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE]) 201 { 202 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 203 204 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE; 205 } 206 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done); 207 208 /* DP 2.0 errata for 128b/132b */ 209 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE]) 210 { 211 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 212 213 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE; 214 } 215 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done); 216 217 /* DP 2.0 errata for 128b/132b */ 218 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE]) 219 { 220 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 221 222 return status & DP_128B132B_LT_FAILED; 223 } 224 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed); 225 226 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 227 { 228 if (rd_interval > 4) 229 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n", 230 aux->name, rd_interval); 231 232 if (rd_interval == 0) 233 return 100; 234 235 return rd_interval * 4 * USEC_PER_MSEC; 236 } 237 238 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 239 { 240 if (rd_interval > 4) 241 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n", 242 aux->name, rd_interval); 243 244 if (rd_interval == 0) 245 return 400; 246 247 return rd_interval * 4 * USEC_PER_MSEC; 248 } 249 250 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 251 { 252 switch (rd_interval) { 253 default: 254 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n", 255 aux->name, rd_interval); 256 fallthrough; 257 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US: 258 return 400; 259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS: 260 return 4000; 261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS: 262 return 8000; 263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS: 264 return 12000; 265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS: 266 return 16000; 267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS: 268 return 32000; 269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS: 270 return 64000; 271 } 272 } 273 274 /* 275 * The link training delays are different for: 276 * 277 * - Clock recovery vs. channel equalization 278 * - DPRX vs. LTTPR 279 * - 128b/132b vs. 8b/10b 280 * - DPCD rev 1.3 vs. later 281 * 282 * Get the correct delay in us, reading DPCD if necessary. 283 */ 284 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 285 enum drm_dp_phy dp_phy, bool uhbr, bool cr) 286 { 287 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval); 288 unsigned int offset; 289 u8 rd_interval, mask; 290 291 if (dp_phy == DP_PHY_DPRX) { 292 if (uhbr) { 293 if (cr) 294 return 100; 295 296 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL; 297 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 298 parse = __128b132b_channel_eq_delay_us; 299 } else { 300 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) 301 return 100; 302 303 offset = DP_TRAINING_AUX_RD_INTERVAL; 304 mask = DP_TRAINING_AUX_RD_MASK; 305 if (cr) 306 parse = __8b10b_clock_recovery_delay_us; 307 else 308 parse = __8b10b_channel_eq_delay_us; 309 } 310 } else { 311 if (uhbr) { 312 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy); 313 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 314 parse = __128b132b_channel_eq_delay_us; 315 } else { 316 if (cr) 317 return 100; 318 319 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy); 320 mask = DP_TRAINING_AUX_RD_MASK; 321 parse = __8b10b_channel_eq_delay_us; 322 } 323 } 324 325 if (offset < DP_RECEIVER_CAP_SIZE) { 326 rd_interval = dpcd[offset]; 327 } else { 328 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) { 329 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n", 330 aux->name); 331 /* arbitrary default delay */ 332 return 400; 333 } 334 } 335 336 return parse(aux, rd_interval & mask); 337 } 338 339 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 340 enum drm_dp_phy dp_phy, bool uhbr) 341 { 342 return __read_delay(aux, dpcd, dp_phy, uhbr, true); 343 } 344 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay); 345 346 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 347 enum drm_dp_phy dp_phy, bool uhbr) 348 { 349 return __read_delay(aux, dpcd, dp_phy, uhbr, false); 350 } 351 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay); 352 353 /* Per DP 2.0 Errata */ 354 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux) 355 { 356 int unit; 357 u8 val; 358 359 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) { 360 drm_err(aux->drm_dev, "%s: failed rd interval read\n", 361 aux->name); 362 /* default to max */ 363 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 364 } 365 366 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2; 367 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 368 369 return (val + 1) * unit * 1000; 370 } 371 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval); 372 373 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux, 374 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 375 { 376 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 377 DP_TRAINING_AUX_RD_MASK; 378 int delay_us; 379 380 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) 381 delay_us = 100; 382 else 383 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval); 384 385 usleep_range(delay_us, delay_us * 2); 386 } 387 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay); 388 389 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 390 u8 rd_interval) 391 { 392 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval); 393 394 usleep_range(delay_us, delay_us * 2); 395 } 396 397 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 398 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 399 { 400 __drm_dp_link_train_channel_eq_delay(aux, 401 dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 402 DP_TRAINING_AUX_RD_MASK); 403 } 404 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay); 405 406 /** 407 * drm_dp_phy_name() - Get the name of the given DP PHY 408 * @dp_phy: The DP PHY identifier 409 * 410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or 411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always 412 * non-NULL and valid. 413 * 414 * Returns: Name of the DP PHY. 415 */ 416 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy) 417 { 418 static const char * const phy_names[] = { 419 [DP_PHY_DPRX] = "DPRX", 420 [DP_PHY_LTTPR1] = "LTTPR 1", 421 [DP_PHY_LTTPR2] = "LTTPR 2", 422 [DP_PHY_LTTPR3] = "LTTPR 3", 423 [DP_PHY_LTTPR4] = "LTTPR 4", 424 [DP_PHY_LTTPR5] = "LTTPR 5", 425 [DP_PHY_LTTPR6] = "LTTPR 6", 426 [DP_PHY_LTTPR7] = "LTTPR 7", 427 [DP_PHY_LTTPR8] = "LTTPR 8", 428 }; 429 430 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) || 431 WARN_ON(!phy_names[dp_phy])) 432 return "<INVALID DP PHY>"; 433 434 return phy_names[dp_phy]; 435 } 436 EXPORT_SYMBOL(drm_dp_phy_name); 437 438 void drm_dp_lttpr_link_train_clock_recovery_delay(void) 439 { 440 usleep_range(100, 200); 441 } 442 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay); 443 444 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r) 445 { 446 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1]; 447 } 448 449 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 450 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE]) 451 { 452 u8 interval = dp_lttpr_phy_cap(phy_cap, 453 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) & 454 DP_TRAINING_AUX_RD_MASK; 455 456 __drm_dp_link_train_channel_eq_delay(aux, interval); 457 } 458 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay); 459 460 u8 drm_dp_link_rate_to_bw_code(int link_rate) 461 { 462 switch (link_rate) { 463 case 1000000: 464 return DP_LINK_BW_10; 465 case 1350000: 466 return DP_LINK_BW_13_5; 467 case 2000000: 468 return DP_LINK_BW_20; 469 default: 470 /* Spec says link_bw = link_rate / 0.27Gbps */ 471 return link_rate / 27000; 472 } 473 } 474 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code); 475 476 int drm_dp_bw_code_to_link_rate(u8 link_bw) 477 { 478 switch (link_bw) { 479 case DP_LINK_BW_10: 480 return 1000000; 481 case DP_LINK_BW_13_5: 482 return 1350000; 483 case DP_LINK_BW_20: 484 return 2000000; 485 default: 486 /* Spec says link_rate = link_bw * 0.27Gbps */ 487 return link_bw * 27000; 488 } 489 } 490 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate); 491 492 #define AUX_RETRY_INTERVAL 500 /* us */ 493 494 static inline void 495 drm_dp_dump_access(const struct drm_dp_aux *aux, 496 u8 request, uint offset, void *buffer, int ret) 497 { 498 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-"; 499 500 if (ret > 0) 501 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n", 502 aux->name, offset, arrow, ret, min(ret, 20), buffer); 503 else 504 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n", 505 aux->name, offset, arrow, ret); 506 } 507 508 /** 509 * DOC: dp helpers 510 * 511 * The DisplayPort AUX channel is an abstraction to allow generic, driver- 512 * independent access to AUX functionality. Drivers can take advantage of 513 * this by filling in the fields of the drm_dp_aux structure. 514 * 515 * Transactions are described using a hardware-independent drm_dp_aux_msg 516 * structure, which is passed into a driver's .transfer() implementation. 517 * Both native and I2C-over-AUX transactions are supported. 518 */ 519 520 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request, 521 unsigned int offset, void *buffer, size_t size) 522 { 523 struct drm_dp_aux_msg msg; 524 unsigned int retry, native_reply; 525 int err = 0, ret = 0; 526 527 memset(&msg, 0, sizeof(msg)); 528 msg.address = offset; 529 msg.request = request; 530 msg.buffer = buffer; 531 msg.size = size; 532 533 mutex_lock(&aux->hw_mutex); 534 535 /* 536 * The specification doesn't give any recommendation on how often to 537 * retry native transactions. We used to retry 7 times like for 538 * aux i2c transactions but real world devices this wasn't 539 * sufficient, bump to 32 which makes Dell 4k monitors happier. 540 */ 541 for (retry = 0; retry < 32; retry++) { 542 if (ret != 0 && ret != -ETIMEDOUT) { 543 usleep_range(AUX_RETRY_INTERVAL, 544 AUX_RETRY_INTERVAL + 100); 545 } 546 547 ret = aux->transfer(aux, &msg); 548 if (ret >= 0) { 549 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK; 550 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) { 551 if (ret == size) 552 goto unlock; 553 554 ret = -EPROTO; 555 } else 556 ret = -EIO; 557 } 558 559 /* 560 * We want the error we return to be the error we received on 561 * the first transaction, since we may get a different error the 562 * next time we retry 563 */ 564 if (!err) 565 err = ret; 566 } 567 568 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n", 569 aux->name, err); 570 ret = err; 571 572 unlock: 573 mutex_unlock(&aux->hw_mutex); 574 return ret; 575 } 576 577 /** 578 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access 579 * @aux: DisplayPort AUX channel (SST) 580 * @offset: address of the register to probe 581 * 582 * Probe the provided DPCD address by reading 1 byte from it. The function can 583 * be used to trigger some side-effect the read access has, like waking up the 584 * sink, without the need for the read-out value. 585 * 586 * Returns 0 if the read access suceeded, or a negative error code on failure. 587 */ 588 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset) 589 { 590 u8 buffer; 591 int ret; 592 593 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1); 594 WARN_ON(ret == 0); 595 596 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret); 597 598 return ret < 0 ? ret : 0; 599 } 600 EXPORT_SYMBOL(drm_dp_dpcd_probe); 601 602 /** 603 * drm_dp_dpcd_read() - read a series of bytes from the DPCD 604 * @aux: DisplayPort AUX channel (SST or MST) 605 * @offset: address of the (first) register to read 606 * @buffer: buffer to store the register values 607 * @size: number of bytes in @buffer 608 * 609 * Returns the number of bytes transferred on success, or a negative error 610 * code on failure. -EIO is returned if the request was NAKed by the sink or 611 * if the retry count was exceeded. If not all bytes were transferred, this 612 * function returns -EPROTO. Errors from the underlying AUX channel transfer 613 * function, with the exception of -EBUSY (which causes the transaction to 614 * be retried), are propagated to the caller. 615 */ 616 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset, 617 void *buffer, size_t size) 618 { 619 int ret; 620 621 /* 622 * HP ZR24w corrupts the first DPCD access after entering power save 623 * mode. Eg. on a read, the entire buffer will be filled with the same 624 * byte. Do a throw away read to avoid corrupting anything we care 625 * about. Afterwards things will work correctly until the monitor 626 * gets woken up and subsequently re-enters power save mode. 627 * 628 * The user pressing any button on the monitor is enough to wake it 629 * up, so there is no particularly good place to do the workaround. 630 * We just have to do it before any DPCD access and hope that the 631 * monitor doesn't power down exactly after the throw away read. 632 */ 633 if (!aux->is_remote) { 634 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV); 635 if (ret < 0) 636 return ret; 637 } 638 639 if (aux->is_remote) 640 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size); 641 else 642 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, 643 buffer, size); 644 645 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret); 646 return ret; 647 } 648 EXPORT_SYMBOL(drm_dp_dpcd_read); 649 650 /** 651 * drm_dp_dpcd_write() - write a series of bytes to the DPCD 652 * @aux: DisplayPort AUX channel (SST or MST) 653 * @offset: address of the (first) register to write 654 * @buffer: buffer containing the values to write 655 * @size: number of bytes in @buffer 656 * 657 * Returns the number of bytes transferred on success, or a negative error 658 * code on failure. -EIO is returned if the request was NAKed by the sink or 659 * if the retry count was exceeded. If not all bytes were transferred, this 660 * function returns -EPROTO. Errors from the underlying AUX channel transfer 661 * function, with the exception of -EBUSY (which causes the transaction to 662 * be retried), are propagated to the caller. 663 */ 664 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset, 665 void *buffer, size_t size) 666 { 667 int ret; 668 669 if (aux->is_remote) 670 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size); 671 else 672 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset, 673 buffer, size); 674 675 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret); 676 return ret; 677 } 678 EXPORT_SYMBOL(drm_dp_dpcd_write); 679 680 /** 681 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207) 682 * @aux: DisplayPort AUX channel 683 * @status: buffer to store the link status in (must be at least 6 bytes) 684 * 685 * Returns the number of bytes transferred on success or a negative error 686 * code on failure. 687 */ 688 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux, 689 u8 status[DP_LINK_STATUS_SIZE]) 690 { 691 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status, 692 DP_LINK_STATUS_SIZE); 693 } 694 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status); 695 696 /** 697 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY 698 * @aux: DisplayPort AUX channel 699 * @dp_phy: the DP PHY to get the link status for 700 * @link_status: buffer to return the status in 701 * 702 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The 703 * layout of the returned @link_status matches the DPCD register layout of the 704 * DPRX PHY link status. 705 * 706 * Returns 0 if the information was read successfully or a negative error code 707 * on failure. 708 */ 709 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux, 710 enum drm_dp_phy dp_phy, 711 u8 link_status[DP_LINK_STATUS_SIZE]) 712 { 713 int ret; 714 715 if (dp_phy == DP_PHY_DPRX) { 716 ret = drm_dp_dpcd_read(aux, 717 DP_LANE0_1_STATUS, 718 link_status, 719 DP_LINK_STATUS_SIZE); 720 721 if (ret < 0) 722 return ret; 723 724 WARN_ON(ret != DP_LINK_STATUS_SIZE); 725 726 return 0; 727 } 728 729 ret = drm_dp_dpcd_read(aux, 730 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy), 731 link_status, 732 DP_LINK_STATUS_SIZE - 1); 733 734 if (ret < 0) 735 return ret; 736 737 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1); 738 739 /* Convert the LTTPR to the sink PHY link status layout */ 740 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1], 741 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS], 742 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1); 743 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0; 744 745 return 0; 746 } 747 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status); 748 749 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid) 750 { 751 /* FIXME: get rid of drm_edid_raw() */ 752 const struct edid *edid = drm_edid_raw(drm_edid); 753 754 return edid && edid->revision >= 4 && 755 edid->input & DRM_EDID_INPUT_DIGITAL && 756 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP; 757 } 758 759 /** 760 * drm_dp_downstream_is_type() - is the downstream facing port of certain type? 761 * @dpcd: DisplayPort configuration data 762 * @port_cap: port capabilities 763 * @type: port type to be checked. Can be: 764 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI, 765 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID, 766 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS. 767 * 768 * Caveat: Only works with DPCD 1.1+ port caps. 769 * 770 * Returns: whether the downstream facing port matches the type. 771 */ 772 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 773 const u8 port_cap[4], u8 type) 774 { 775 return drm_dp_is_branch(dpcd) && 776 dpcd[DP_DPCD_REV] >= 0x11 && 777 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type; 778 } 779 EXPORT_SYMBOL(drm_dp_downstream_is_type); 780 781 /** 782 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS? 783 * @dpcd: DisplayPort configuration data 784 * @port_cap: port capabilities 785 * @drm_edid: EDID 786 * 787 * Returns: whether the downstream facing port is TMDS (HDMI/DVI). 788 */ 789 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 790 const u8 port_cap[4], 791 const struct drm_edid *drm_edid) 792 { 793 if (dpcd[DP_DPCD_REV] < 0x11) { 794 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 795 case DP_DWN_STRM_PORT_TYPE_TMDS: 796 return true; 797 default: 798 return false; 799 } 800 } 801 802 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 803 case DP_DS_PORT_TYPE_DP_DUALMODE: 804 if (is_edid_digital_input_dp(drm_edid)) 805 return false; 806 fallthrough; 807 case DP_DS_PORT_TYPE_DVI: 808 case DP_DS_PORT_TYPE_HDMI: 809 return true; 810 default: 811 return false; 812 } 813 } 814 EXPORT_SYMBOL(drm_dp_downstream_is_tmds); 815 816 /** 817 * drm_dp_send_real_edid_checksum() - send back real edid checksum value 818 * @aux: DisplayPort AUX channel 819 * @real_edid_checksum: real edid checksum for the last block 820 * 821 * Returns: 822 * True on success 823 */ 824 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux, 825 u8 real_edid_checksum) 826 { 827 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0; 828 829 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, 830 &auto_test_req, 1) < 1) { 831 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n", 832 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); 833 return false; 834 } 835 auto_test_req &= DP_AUTOMATED_TEST_REQUEST; 836 837 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) { 838 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n", 839 aux->name, DP_TEST_REQUEST); 840 return false; 841 } 842 link_edid_read &= DP_TEST_LINK_EDID_READ; 843 844 if (!auto_test_req || !link_edid_read) { 845 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n", 846 aux->name); 847 return false; 848 } 849 850 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, 851 &auto_test_req, 1) < 1) { 852 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 853 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); 854 return false; 855 } 856 857 /* send back checksum for the last edid extension block data */ 858 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM, 859 &real_edid_checksum, 1) < 1) { 860 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 861 aux->name, DP_TEST_EDID_CHECKSUM); 862 return false; 863 } 864 865 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE; 866 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) { 867 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 868 aux->name, DP_TEST_RESPONSE); 869 return false; 870 } 871 872 return true; 873 } 874 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum); 875 876 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 877 { 878 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK; 879 880 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4) 881 port_count = 4; 882 883 return port_count; 884 } 885 886 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux, 887 u8 dpcd[DP_RECEIVER_CAP_SIZE]) 888 { 889 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 890 int ret; 891 892 /* 893 * Prior to DP1.3 the bit represented by 894 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 895 * If it is set DP_DPCD_REV at 0000h could be at a value less than 896 * the true capability of the panel. The only way to check is to 897 * then compare 0000h and 2200h. 898 */ 899 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 900 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 901 return 0; 902 903 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext, 904 sizeof(dpcd_ext)); 905 if (ret < 0) 906 return ret; 907 if (ret != sizeof(dpcd_ext)) 908 return -EIO; 909 910 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 911 drm_dbg_kms(aux->drm_dev, 912 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n", 913 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]); 914 return 0; 915 } 916 917 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext))) 918 return 0; 919 920 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); 921 922 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext)); 923 924 return 0; 925 } 926 927 /** 928 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if 929 * available 930 * @aux: DisplayPort AUX channel 931 * @dpcd: Buffer to store the resulting DPCD in 932 * 933 * Attempts to read the base DPCD caps for @aux. Additionally, this function 934 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if 935 * present. 936 * 937 * Returns: %0 if the DPCD was read successfully, negative error code 938 * otherwise. 939 */ 940 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux, 941 u8 dpcd[DP_RECEIVER_CAP_SIZE]) 942 { 943 int ret; 944 945 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE); 946 if (ret < 0) 947 return ret; 948 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0) 949 return -EIO; 950 951 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd); 952 if (ret < 0) 953 return ret; 954 955 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); 956 957 return ret; 958 } 959 EXPORT_SYMBOL(drm_dp_read_dpcd_caps); 960 961 /** 962 * drm_dp_read_downstream_info() - read DPCD downstream port info if available 963 * @aux: DisplayPort AUX channel 964 * @dpcd: A cached copy of the port's DPCD 965 * @downstream_ports: buffer to store the downstream port info in 966 * 967 * See also: 968 * drm_dp_downstream_max_clock() 969 * drm_dp_downstream_max_bpc() 970 * 971 * Returns: 0 if either the downstream port info was read successfully or 972 * there was no downstream info to read, or a negative error code otherwise. 973 */ 974 int drm_dp_read_downstream_info(struct drm_dp_aux *aux, 975 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 976 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS]) 977 { 978 int ret; 979 u8 len; 980 981 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS); 982 983 /* No downstream info to read */ 984 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) 985 return 0; 986 987 /* Some branches advertise having 0 downstream ports, despite also advertising they have a 988 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since 989 * some branches do it we need to handle it regardless. 990 */ 991 len = drm_dp_downstream_port_count(dpcd); 992 if (!len) 993 return 0; 994 995 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) 996 len *= 4; 997 998 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len); 999 if (ret < 0) 1000 return ret; 1001 if (ret != len) 1002 return -EIO; 1003 1004 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports); 1005 1006 return 0; 1007 } 1008 EXPORT_SYMBOL(drm_dp_read_downstream_info); 1009 1010 /** 1011 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock 1012 * @dpcd: DisplayPort configuration data 1013 * @port_cap: port capabilities 1014 * 1015 * Returns: Downstream facing port max dot clock in kHz on success, 1016 * or 0 if max clock not defined 1017 */ 1018 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1019 const u8 port_cap[4]) 1020 { 1021 if (!drm_dp_is_branch(dpcd)) 1022 return 0; 1023 1024 if (dpcd[DP_DPCD_REV] < 0x11) 1025 return 0; 1026 1027 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1028 case DP_DS_PORT_TYPE_VGA: 1029 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1030 return 0; 1031 return port_cap[1] * 8000; 1032 default: 1033 return 0; 1034 } 1035 } 1036 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock); 1037 1038 /** 1039 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock 1040 * @dpcd: DisplayPort configuration data 1041 * @port_cap: port capabilities 1042 * @drm_edid: EDID 1043 * 1044 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success, 1045 * or 0 if max TMDS clock not defined 1046 */ 1047 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1048 const u8 port_cap[4], 1049 const struct drm_edid *drm_edid) 1050 { 1051 if (!drm_dp_is_branch(dpcd)) 1052 return 0; 1053 1054 if (dpcd[DP_DPCD_REV] < 0x11) { 1055 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1056 case DP_DWN_STRM_PORT_TYPE_TMDS: 1057 return 165000; 1058 default: 1059 return 0; 1060 } 1061 } 1062 1063 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1064 case DP_DS_PORT_TYPE_DP_DUALMODE: 1065 if (is_edid_digital_input_dp(drm_edid)) 1066 return 0; 1067 /* 1068 * It's left up to the driver to check the 1069 * DP dual mode adapter's max TMDS clock. 1070 * 1071 * Unfortunately it looks like branch devices 1072 * may not fordward that the DP dual mode i2c 1073 * access so we just usually get i2c nak :( 1074 */ 1075 fallthrough; 1076 case DP_DS_PORT_TYPE_HDMI: 1077 /* 1078 * We should perhaps assume 165 MHz when detailed cap 1079 * info is not available. But looks like many typical 1080 * branch devices fall into that category and so we'd 1081 * probably end up with users complaining that they can't 1082 * get high resolution modes with their favorite dongle. 1083 * 1084 * So let's limit to 300 MHz instead since DPCD 1.4 1085 * HDMI 2.0 DFPs are required to have the detailed cap 1086 * info. So it's more likely we're dealing with a HDMI 1.4 1087 * compatible* device here. 1088 */ 1089 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1090 return 300000; 1091 return port_cap[1] * 2500; 1092 case DP_DS_PORT_TYPE_DVI: 1093 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1094 return 165000; 1095 /* FIXME what to do about DVI dual link? */ 1096 return port_cap[1] * 2500; 1097 default: 1098 return 0; 1099 } 1100 } 1101 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock); 1102 1103 /** 1104 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock 1105 * @dpcd: DisplayPort configuration data 1106 * @port_cap: port capabilities 1107 * @drm_edid: EDID 1108 * 1109 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success, 1110 * or 0 if max TMDS clock not defined 1111 */ 1112 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1113 const u8 port_cap[4], 1114 const struct drm_edid *drm_edid) 1115 { 1116 if (!drm_dp_is_branch(dpcd)) 1117 return 0; 1118 1119 if (dpcd[DP_DPCD_REV] < 0x11) { 1120 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1121 case DP_DWN_STRM_PORT_TYPE_TMDS: 1122 return 25000; 1123 default: 1124 return 0; 1125 } 1126 } 1127 1128 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1129 case DP_DS_PORT_TYPE_DP_DUALMODE: 1130 if (is_edid_digital_input_dp(drm_edid)) 1131 return 0; 1132 fallthrough; 1133 case DP_DS_PORT_TYPE_DVI: 1134 case DP_DS_PORT_TYPE_HDMI: 1135 /* 1136 * Unclear whether the protocol converter could 1137 * utilize pixel replication. Assume it won't. 1138 */ 1139 return 25000; 1140 default: 1141 return 0; 1142 } 1143 } 1144 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock); 1145 1146 /** 1147 * drm_dp_downstream_max_bpc() - extract downstream facing port max 1148 * bits per component 1149 * @dpcd: DisplayPort configuration data 1150 * @port_cap: downstream facing port capabilities 1151 * @drm_edid: EDID 1152 * 1153 * Returns: Max bpc on success or 0 if max bpc not defined 1154 */ 1155 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1156 const u8 port_cap[4], 1157 const struct drm_edid *drm_edid) 1158 { 1159 if (!drm_dp_is_branch(dpcd)) 1160 return 0; 1161 1162 if (dpcd[DP_DPCD_REV] < 0x11) { 1163 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1164 case DP_DWN_STRM_PORT_TYPE_DP: 1165 return 0; 1166 default: 1167 return 8; 1168 } 1169 } 1170 1171 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1172 case DP_DS_PORT_TYPE_DP: 1173 return 0; 1174 case DP_DS_PORT_TYPE_DP_DUALMODE: 1175 if (is_edid_digital_input_dp(drm_edid)) 1176 return 0; 1177 fallthrough; 1178 case DP_DS_PORT_TYPE_HDMI: 1179 case DP_DS_PORT_TYPE_DVI: 1180 case DP_DS_PORT_TYPE_VGA: 1181 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1182 return 8; 1183 1184 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) { 1185 case DP_DS_8BPC: 1186 return 8; 1187 case DP_DS_10BPC: 1188 return 10; 1189 case DP_DS_12BPC: 1190 return 12; 1191 case DP_DS_16BPC: 1192 return 16; 1193 default: 1194 return 8; 1195 } 1196 break; 1197 default: 1198 return 8; 1199 } 1200 } 1201 EXPORT_SYMBOL(drm_dp_downstream_max_bpc); 1202 1203 /** 1204 * drm_dp_downstream_420_passthrough() - determine downstream facing port 1205 * YCbCr 4:2:0 pass-through capability 1206 * @dpcd: DisplayPort configuration data 1207 * @port_cap: downstream facing port capabilities 1208 * 1209 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0 1210 */ 1211 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1212 const u8 port_cap[4]) 1213 { 1214 if (!drm_dp_is_branch(dpcd)) 1215 return false; 1216 1217 if (dpcd[DP_DPCD_REV] < 0x13) 1218 return false; 1219 1220 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1221 case DP_DS_PORT_TYPE_DP: 1222 return true; 1223 case DP_DS_PORT_TYPE_HDMI: 1224 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1225 return false; 1226 1227 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH; 1228 default: 1229 return false; 1230 } 1231 } 1232 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough); 1233 1234 /** 1235 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port 1236 * YCbCr 4:4:4->4:2:0 conversion capability 1237 * @dpcd: DisplayPort configuration data 1238 * @port_cap: downstream facing port capabilities 1239 * 1240 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0 1241 */ 1242 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1243 const u8 port_cap[4]) 1244 { 1245 if (!drm_dp_is_branch(dpcd)) 1246 return false; 1247 1248 if (dpcd[DP_DPCD_REV] < 0x13) 1249 return false; 1250 1251 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1252 case DP_DS_PORT_TYPE_HDMI: 1253 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1254 return false; 1255 1256 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV; 1257 default: 1258 return false; 1259 } 1260 } 1261 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion); 1262 1263 /** 1264 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port 1265 * RGB->YCbCr conversion capability 1266 * @dpcd: DisplayPort configuration data 1267 * @port_cap: downstream facing port capabilities 1268 * @color_spc: Colorspace for which conversion cap is sought 1269 * 1270 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given 1271 * colorspace. 1272 */ 1273 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1274 const u8 port_cap[4], 1275 u8 color_spc) 1276 { 1277 if (!drm_dp_is_branch(dpcd)) 1278 return false; 1279 1280 if (dpcd[DP_DPCD_REV] < 0x13) 1281 return false; 1282 1283 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1284 case DP_DS_PORT_TYPE_HDMI: 1285 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1286 return false; 1287 1288 return port_cap[3] & color_spc; 1289 default: 1290 return false; 1291 } 1292 } 1293 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion); 1294 1295 /** 1296 * drm_dp_downstream_mode() - return a mode for downstream facing port 1297 * @dev: DRM device 1298 * @dpcd: DisplayPort configuration data 1299 * @port_cap: port capabilities 1300 * 1301 * Provides a suitable mode for downstream facing ports without EDID. 1302 * 1303 * Returns: A new drm_display_mode on success or NULL on failure 1304 */ 1305 struct drm_display_mode * 1306 drm_dp_downstream_mode(struct drm_device *dev, 1307 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1308 const u8 port_cap[4]) 1309 1310 { 1311 u8 vic; 1312 1313 if (!drm_dp_is_branch(dpcd)) 1314 return NULL; 1315 1316 if (dpcd[DP_DPCD_REV] < 0x11) 1317 return NULL; 1318 1319 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1320 case DP_DS_PORT_TYPE_NON_EDID: 1321 switch (port_cap[0] & DP_DS_NON_EDID_MASK) { 1322 case DP_DS_NON_EDID_720x480i_60: 1323 vic = 6; 1324 break; 1325 case DP_DS_NON_EDID_720x480i_50: 1326 vic = 21; 1327 break; 1328 case DP_DS_NON_EDID_1920x1080i_60: 1329 vic = 5; 1330 break; 1331 case DP_DS_NON_EDID_1920x1080i_50: 1332 vic = 20; 1333 break; 1334 case DP_DS_NON_EDID_1280x720_60: 1335 vic = 4; 1336 break; 1337 case DP_DS_NON_EDID_1280x720_50: 1338 vic = 19; 1339 break; 1340 default: 1341 return NULL; 1342 } 1343 return drm_display_mode_from_cea_vic(dev, vic); 1344 default: 1345 return NULL; 1346 } 1347 } 1348 EXPORT_SYMBOL(drm_dp_downstream_mode); 1349 1350 /** 1351 * drm_dp_downstream_id() - identify branch device 1352 * @aux: DisplayPort AUX channel 1353 * @id: DisplayPort branch device id 1354 * 1355 * Returns branch device id on success or NULL on failure 1356 */ 1357 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6]) 1358 { 1359 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6); 1360 } 1361 EXPORT_SYMBOL(drm_dp_downstream_id); 1362 1363 /** 1364 * drm_dp_downstream_debug() - debug DP branch devices 1365 * @m: pointer for debugfs file 1366 * @dpcd: DisplayPort configuration data 1367 * @port_cap: port capabilities 1368 * @drm_edid: EDID 1369 * @aux: DisplayPort AUX channel 1370 * 1371 */ 1372 void drm_dp_downstream_debug(struct seq_file *m, 1373 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1374 const u8 port_cap[4], 1375 const struct drm_edid *drm_edid, 1376 struct drm_dp_aux *aux) 1377 { 1378 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 1379 DP_DETAILED_CAP_INFO_AVAILABLE; 1380 int clk; 1381 int bpc; 1382 char id[7]; 1383 int len; 1384 uint8_t rev[2]; 1385 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 1386 bool branch_device = drm_dp_is_branch(dpcd); 1387 1388 seq_printf(m, "\tDP branch device present: %s\n", 1389 str_yes_no(branch_device)); 1390 1391 if (!branch_device) 1392 return; 1393 1394 switch (type) { 1395 case DP_DS_PORT_TYPE_DP: 1396 seq_puts(m, "\t\tType: DisplayPort\n"); 1397 break; 1398 case DP_DS_PORT_TYPE_VGA: 1399 seq_puts(m, "\t\tType: VGA\n"); 1400 break; 1401 case DP_DS_PORT_TYPE_DVI: 1402 seq_puts(m, "\t\tType: DVI\n"); 1403 break; 1404 case DP_DS_PORT_TYPE_HDMI: 1405 seq_puts(m, "\t\tType: HDMI\n"); 1406 break; 1407 case DP_DS_PORT_TYPE_NON_EDID: 1408 seq_puts(m, "\t\tType: others without EDID support\n"); 1409 break; 1410 case DP_DS_PORT_TYPE_DP_DUALMODE: 1411 seq_puts(m, "\t\tType: DP++\n"); 1412 break; 1413 case DP_DS_PORT_TYPE_WIRELESS: 1414 seq_puts(m, "\t\tType: Wireless\n"); 1415 break; 1416 default: 1417 seq_puts(m, "\t\tType: N/A\n"); 1418 } 1419 1420 memset(id, 0, sizeof(id)); 1421 drm_dp_downstream_id(aux, id); 1422 seq_printf(m, "\t\tID: %s\n", id); 1423 1424 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1); 1425 if (len > 0) 1426 seq_printf(m, "\t\tHW: %d.%d\n", 1427 (rev[0] & 0xf0) >> 4, rev[0] & 0xf); 1428 1429 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2); 1430 if (len > 0) 1431 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]); 1432 1433 if (detailed_cap_info) { 1434 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap); 1435 if (clk > 0) 1436 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk); 1437 1438 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid); 1439 if (clk > 0) 1440 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk); 1441 1442 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid); 1443 if (clk > 0) 1444 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk); 1445 1446 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid); 1447 1448 if (bpc > 0) 1449 seq_printf(m, "\t\tMax bpc: %d\n", bpc); 1450 } 1451 } 1452 EXPORT_SYMBOL(drm_dp_downstream_debug); 1453 1454 /** 1455 * drm_dp_subconnector_type() - get DP branch device type 1456 * @dpcd: DisplayPort configuration data 1457 * @port_cap: port capabilities 1458 */ 1459 enum drm_mode_subconnector 1460 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1461 const u8 port_cap[4]) 1462 { 1463 int type; 1464 if (!drm_dp_is_branch(dpcd)) 1465 return DRM_MODE_SUBCONNECTOR_Native; 1466 /* DP 1.0 approach */ 1467 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) { 1468 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 1469 DP_DWN_STRM_PORT_TYPE_MASK; 1470 1471 switch (type) { 1472 case DP_DWN_STRM_PORT_TYPE_TMDS: 1473 /* Can be HDMI or DVI-D, DVI-D is a safer option */ 1474 return DRM_MODE_SUBCONNECTOR_DVID; 1475 case DP_DWN_STRM_PORT_TYPE_ANALOG: 1476 /* Can be VGA or DVI-A, VGA is more popular */ 1477 return DRM_MODE_SUBCONNECTOR_VGA; 1478 case DP_DWN_STRM_PORT_TYPE_DP: 1479 return DRM_MODE_SUBCONNECTOR_DisplayPort; 1480 case DP_DWN_STRM_PORT_TYPE_OTHER: 1481 default: 1482 return DRM_MODE_SUBCONNECTOR_Unknown; 1483 } 1484 } 1485 type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 1486 1487 switch (type) { 1488 case DP_DS_PORT_TYPE_DP: 1489 case DP_DS_PORT_TYPE_DP_DUALMODE: 1490 return DRM_MODE_SUBCONNECTOR_DisplayPort; 1491 case DP_DS_PORT_TYPE_VGA: 1492 return DRM_MODE_SUBCONNECTOR_VGA; 1493 case DP_DS_PORT_TYPE_DVI: 1494 return DRM_MODE_SUBCONNECTOR_DVID; 1495 case DP_DS_PORT_TYPE_HDMI: 1496 return DRM_MODE_SUBCONNECTOR_HDMIA; 1497 case DP_DS_PORT_TYPE_WIRELESS: 1498 return DRM_MODE_SUBCONNECTOR_Wireless; 1499 case DP_DS_PORT_TYPE_NON_EDID: 1500 default: 1501 return DRM_MODE_SUBCONNECTOR_Unknown; 1502 } 1503 } 1504 EXPORT_SYMBOL(drm_dp_subconnector_type); 1505 1506 /** 1507 * drm_dp_set_subconnector_property - set subconnector for DP connector 1508 * @connector: connector to set property on 1509 * @status: connector status 1510 * @dpcd: DisplayPort configuration data 1511 * @port_cap: port capabilities 1512 * 1513 * Called by a driver on every detect event. 1514 */ 1515 void drm_dp_set_subconnector_property(struct drm_connector *connector, 1516 enum drm_connector_status status, 1517 const u8 *dpcd, 1518 const u8 port_cap[4]) 1519 { 1520 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown; 1521 1522 if (status == connector_status_connected) 1523 subconnector = drm_dp_subconnector_type(dpcd, port_cap); 1524 drm_object_property_set_value(&connector->base, 1525 connector->dev->mode_config.dp_subconnector_property, 1526 subconnector); 1527 } 1528 EXPORT_SYMBOL(drm_dp_set_subconnector_property); 1529 1530 /** 1531 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink 1532 * count 1533 * @connector: The DRM connector to check 1534 * @dpcd: A cached copy of the connector's DPCD RX capabilities 1535 * @desc: A cached copy of the connector's DP descriptor 1536 * 1537 * See also: drm_dp_read_sink_count() 1538 * 1539 * Returns: %True if the (e)DP connector has a valid sink count that should 1540 * be probed, %false otherwise. 1541 */ 1542 bool drm_dp_read_sink_count_cap(struct drm_connector *connector, 1543 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1544 const struct drm_dp_desc *desc) 1545 { 1546 /* Some eDP panels don't set a valid value for the sink count */ 1547 return connector->connector_type != DRM_MODE_CONNECTOR_eDP && 1548 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 && 1549 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 1550 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT); 1551 } 1552 EXPORT_SYMBOL(drm_dp_read_sink_count_cap); 1553 1554 /** 1555 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink 1556 * @aux: The DP AUX channel to use 1557 * 1558 * See also: drm_dp_read_sink_count_cap() 1559 * 1560 * Returns: The current sink count reported by @aux, or a negative error code 1561 * otherwise. 1562 */ 1563 int drm_dp_read_sink_count(struct drm_dp_aux *aux) 1564 { 1565 u8 count; 1566 int ret; 1567 1568 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count); 1569 if (ret < 0) 1570 return ret; 1571 if (ret != 1) 1572 return -EIO; 1573 1574 return DP_GET_SINK_COUNT(count); 1575 } 1576 EXPORT_SYMBOL(drm_dp_read_sink_count); 1577 1578 /* 1579 * I2C-over-AUX implementation 1580 */ 1581 1582 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter) 1583 { 1584 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 1585 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 1586 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 1587 I2C_FUNC_10BIT_ADDR; 1588 } 1589 1590 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg) 1591 { 1592 /* 1593 * In case of i2c defer or short i2c ack reply to a write, 1594 * we need to switch to WRITE_STATUS_UPDATE to drain the 1595 * rest of the message 1596 */ 1597 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) { 1598 msg->request &= DP_AUX_I2C_MOT; 1599 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE; 1600 } 1601 } 1602 1603 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */ 1604 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */ 1605 #define AUX_STOP_LEN 4 1606 #define AUX_CMD_LEN 4 1607 #define AUX_ADDRESS_LEN 20 1608 #define AUX_REPLY_PAD_LEN 4 1609 #define AUX_LENGTH_LEN 8 1610 1611 /* 1612 * Calculate the duration of the AUX request/reply in usec. Gives the 1613 * "best" case estimate, ie. successful while as short as possible. 1614 */ 1615 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg) 1616 { 1617 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 1618 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN; 1619 1620 if ((msg->request & DP_AUX_I2C_READ) == 0) 1621 len += msg->size * 8; 1622 1623 return len; 1624 } 1625 1626 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg) 1627 { 1628 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 1629 AUX_CMD_LEN + AUX_REPLY_PAD_LEN; 1630 1631 /* 1632 * For read we expect what was asked. For writes there will 1633 * be 0 or 1 data bytes. Assume 0 for the "best" case. 1634 */ 1635 if (msg->request & DP_AUX_I2C_READ) 1636 len += msg->size * 8; 1637 1638 return len; 1639 } 1640 1641 #define I2C_START_LEN 1 1642 #define I2C_STOP_LEN 1 1643 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */ 1644 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */ 1645 1646 /* 1647 * Calculate the length of the i2c transfer in usec, assuming 1648 * the i2c bus speed is as specified. Gives the "worst" 1649 * case estimate, ie. successful while as long as possible. 1650 * Doesn't account the "MOT" bit, and instead assumes each 1651 * message includes a START, ADDRESS and STOP. Neither does it 1652 * account for additional random variables such as clock stretching. 1653 */ 1654 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg, 1655 int i2c_speed_khz) 1656 { 1657 /* AUX bitrate is 1MHz, i2c bitrate as specified */ 1658 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN + 1659 msg->size * I2C_DATA_LEN + 1660 I2C_STOP_LEN) * 1000, i2c_speed_khz); 1661 } 1662 1663 /* 1664 * Determine how many retries should be attempted to successfully transfer 1665 * the specified message, based on the estimated durations of the 1666 * i2c and AUX transfers. 1667 */ 1668 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg, 1669 int i2c_speed_khz) 1670 { 1671 int aux_time_us = drm_dp_aux_req_duration(msg) + 1672 drm_dp_aux_reply_duration(msg); 1673 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz); 1674 1675 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL); 1676 } 1677 1678 /* 1679 * FIXME currently assumes 10 kHz as some real world devices seem 1680 * to require it. We should query/set the speed via DPCD if supported. 1681 */ 1682 static int dp_aux_i2c_speed_khz __read_mostly = 10; 1683 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644); 1684 MODULE_PARM_DESC(dp_aux_i2c_speed_khz, 1685 "Assumed speed of the i2c bus in kHz, (1-400, default 10)"); 1686 1687 /* 1688 * Transfer a single I2C-over-AUX message and handle various error conditions, 1689 * retrying the transaction as appropriate. It is assumed that the 1690 * &drm_dp_aux.transfer function does not modify anything in the msg other than the 1691 * reply field. 1692 * 1693 * Returns bytes transferred on success, or a negative error code on failure. 1694 */ 1695 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1696 { 1697 unsigned int retry, defer_i2c; 1698 int ret; 1699 /* 1700 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device 1701 * is required to retry at least seven times upon receiving AUX_DEFER 1702 * before giving up the AUX transaction. 1703 * 1704 * We also try to account for the i2c bus speed. 1705 */ 1706 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz)); 1707 1708 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) { 1709 ret = aux->transfer(aux, msg); 1710 if (ret < 0) { 1711 if (ret == -EBUSY) 1712 continue; 1713 1714 /* 1715 * While timeouts can be errors, they're usually normal 1716 * behavior (for instance, when a driver tries to 1717 * communicate with a non-existent DisplayPort device). 1718 * Avoid spamming the kernel log with timeout errors. 1719 */ 1720 if (ret == -ETIMEDOUT) 1721 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n", 1722 aux->name); 1723 else 1724 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n", 1725 aux->name, ret); 1726 return ret; 1727 } 1728 1729 1730 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) { 1731 case DP_AUX_NATIVE_REPLY_ACK: 1732 /* 1733 * For I2C-over-AUX transactions this isn't enough, we 1734 * need to check for the I2C ACK reply. 1735 */ 1736 break; 1737 1738 case DP_AUX_NATIVE_REPLY_NACK: 1739 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n", 1740 aux->name, ret, msg->size); 1741 return -EREMOTEIO; 1742 1743 case DP_AUX_NATIVE_REPLY_DEFER: 1744 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name); 1745 /* 1746 * We could check for I2C bit rate capabilities and if 1747 * available adjust this interval. We could also be 1748 * more careful with DP-to-legacy adapters where a 1749 * long legacy cable may force very low I2C bit rates. 1750 * 1751 * For now just defer for long enough to hopefully be 1752 * safe for all use-cases. 1753 */ 1754 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 1755 continue; 1756 1757 default: 1758 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n", 1759 aux->name, msg->reply); 1760 return -EREMOTEIO; 1761 } 1762 1763 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) { 1764 case DP_AUX_I2C_REPLY_ACK: 1765 /* 1766 * Both native ACK and I2C ACK replies received. We 1767 * can assume the transfer was successful. 1768 */ 1769 if (ret != msg->size) 1770 drm_dp_i2c_msg_write_status_update(msg); 1771 return ret; 1772 1773 case DP_AUX_I2C_REPLY_NACK: 1774 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n", 1775 aux->name, ret, msg->size); 1776 aux->i2c_nack_count++; 1777 return -EREMOTEIO; 1778 1779 case DP_AUX_I2C_REPLY_DEFER: 1780 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name); 1781 /* DP Compliance Test 4.2.2.5 Requirement: 1782 * Must have at least 7 retries for I2C defers on the 1783 * transaction to pass this test 1784 */ 1785 aux->i2c_defer_count++; 1786 if (defer_i2c < 7) 1787 defer_i2c++; 1788 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 1789 drm_dp_i2c_msg_write_status_update(msg); 1790 1791 continue; 1792 1793 default: 1794 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n", 1795 aux->name, msg->reply); 1796 return -EREMOTEIO; 1797 } 1798 } 1799 1800 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name); 1801 return -EREMOTEIO; 1802 } 1803 1804 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg, 1805 const struct i2c_msg *i2c_msg) 1806 { 1807 msg->request = (i2c_msg->flags & I2C_M_RD) ? 1808 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE; 1809 if (!(i2c_msg->flags & I2C_M_STOP)) 1810 msg->request |= DP_AUX_I2C_MOT; 1811 } 1812 1813 /* 1814 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred. 1815 * 1816 * Returns an error code on failure, or a recommended transfer size on success. 1817 */ 1818 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg) 1819 { 1820 int err, ret = orig_msg->size; 1821 struct drm_dp_aux_msg msg = *orig_msg; 1822 1823 while (msg.size > 0) { 1824 err = drm_dp_i2c_do_msg(aux, &msg); 1825 if (err <= 0) 1826 return err == 0 ? -EPROTO : err; 1827 1828 if (err < msg.size && err < ret) { 1829 drm_dbg_kms(aux->drm_dev, 1830 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n", 1831 aux->name, msg.size, err); 1832 ret = err; 1833 } 1834 1835 msg.size -= err; 1836 msg.buffer += err; 1837 } 1838 1839 return ret; 1840 } 1841 1842 /* 1843 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX 1844 * packets to be as large as possible. If not, the I2C transactions never 1845 * succeed. Hence the default is maximum. 1846 */ 1847 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES; 1848 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644); 1849 MODULE_PARM_DESC(dp_aux_i2c_transfer_size, 1850 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)"); 1851 1852 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, 1853 int num) 1854 { 1855 struct drm_dp_aux *aux = adapter->algo_data; 1856 unsigned int i, j; 1857 unsigned transfer_size; 1858 struct drm_dp_aux_msg msg; 1859 int err = 0; 1860 1861 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES); 1862 1863 memset(&msg, 0, sizeof(msg)); 1864 1865 for (i = 0; i < num; i++) { 1866 msg.address = msgs[i].addr; 1867 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 1868 /* Send a bare address packet to start the transaction. 1869 * Zero sized messages specify an address only (bare 1870 * address) transaction. 1871 */ 1872 msg.buffer = NULL; 1873 msg.size = 0; 1874 err = drm_dp_i2c_do_msg(aux, &msg); 1875 1876 /* 1877 * Reset msg.request in case in case it got 1878 * changed into a WRITE_STATUS_UPDATE. 1879 */ 1880 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 1881 1882 if (err < 0) 1883 break; 1884 /* We want each transaction to be as large as possible, but 1885 * we'll go to smaller sizes if the hardware gives us a 1886 * short reply. 1887 */ 1888 transfer_size = dp_aux_i2c_transfer_size; 1889 for (j = 0; j < msgs[i].len; j += msg.size) { 1890 msg.buffer = msgs[i].buf + j; 1891 msg.size = min(transfer_size, msgs[i].len - j); 1892 1893 err = drm_dp_i2c_drain_msg(aux, &msg); 1894 1895 /* 1896 * Reset msg.request in case in case it got 1897 * changed into a WRITE_STATUS_UPDATE. 1898 */ 1899 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 1900 1901 if (err < 0) 1902 break; 1903 transfer_size = err; 1904 } 1905 if (err < 0) 1906 break; 1907 } 1908 if (err >= 0) 1909 err = num; 1910 /* Send a bare address packet to close out the transaction. 1911 * Zero sized messages specify an address only (bare 1912 * address) transaction. 1913 */ 1914 msg.request &= ~DP_AUX_I2C_MOT; 1915 msg.buffer = NULL; 1916 msg.size = 0; 1917 (void)drm_dp_i2c_do_msg(aux, &msg); 1918 1919 return err; 1920 } 1921 1922 static const struct i2c_algorithm drm_dp_i2c_algo = { 1923 .functionality = drm_dp_i2c_functionality, 1924 .master_xfer = drm_dp_i2c_xfer, 1925 }; 1926 1927 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c) 1928 { 1929 return container_of(i2c, struct drm_dp_aux, ddc); 1930 } 1931 1932 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags) 1933 { 1934 mutex_lock(&i2c_to_aux(i2c)->hw_mutex); 1935 } 1936 1937 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags) 1938 { 1939 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex); 1940 } 1941 1942 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags) 1943 { 1944 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex); 1945 } 1946 1947 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = { 1948 .lock_bus = lock_bus, 1949 .trylock_bus = trylock_bus, 1950 .unlock_bus = unlock_bus, 1951 }; 1952 1953 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc) 1954 { 1955 u8 buf, count; 1956 int ret; 1957 1958 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 1959 if (ret < 0) 1960 return ret; 1961 1962 WARN_ON(!(buf & DP_TEST_SINK_START)); 1963 1964 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf); 1965 if (ret < 0) 1966 return ret; 1967 1968 count = buf & DP_TEST_COUNT_MASK; 1969 if (count == aux->crc_count) 1970 return -EAGAIN; /* No CRC yet */ 1971 1972 aux->crc_count = count; 1973 1974 /* 1975 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes 1976 * per component (RGB or CrYCb). 1977 */ 1978 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6); 1979 if (ret < 0) 1980 return ret; 1981 1982 return 0; 1983 } 1984 1985 static void drm_dp_aux_crc_work(struct work_struct *work) 1986 { 1987 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux, 1988 crc_work); 1989 struct drm_crtc *crtc; 1990 u8 crc_bytes[6]; 1991 uint32_t crcs[3]; 1992 int ret; 1993 1994 if (WARN_ON(!aux->crtc)) 1995 return; 1996 1997 crtc = aux->crtc; 1998 while (crtc->crc.opened) { 1999 drm_crtc_wait_one_vblank(crtc); 2000 if (!crtc->crc.opened) 2001 break; 2002 2003 ret = drm_dp_aux_get_crc(aux, crc_bytes); 2004 if (ret == -EAGAIN) { 2005 usleep_range(1000, 2000); 2006 ret = drm_dp_aux_get_crc(aux, crc_bytes); 2007 } 2008 2009 if (ret == -EAGAIN) { 2010 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n", 2011 aux->name, ret); 2012 continue; 2013 } else if (ret) { 2014 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret); 2015 continue; 2016 } 2017 2018 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8; 2019 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8; 2020 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8; 2021 drm_crtc_add_crc_entry(crtc, false, 0, crcs); 2022 } 2023 } 2024 2025 /** 2026 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel 2027 * @aux: DisplayPort AUX channel 2028 * 2029 * Used for remote aux channel in general. Merely initialize the crc work 2030 * struct. 2031 */ 2032 void drm_dp_remote_aux_init(struct drm_dp_aux *aux) 2033 { 2034 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 2035 } 2036 EXPORT_SYMBOL(drm_dp_remote_aux_init); 2037 2038 /** 2039 * drm_dp_aux_init() - minimally initialise an aux channel 2040 * @aux: DisplayPort AUX channel 2041 * 2042 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with 2043 * the outside world, call drm_dp_aux_init() first. For drivers which are 2044 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a 2045 * &drm_connector), you must still call drm_dp_aux_register() once the connector 2046 * has been registered to allow userspace access to the auxiliary DP channel. 2047 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as 2048 * early as possible so that the &drm_device that corresponds to the AUX adapter 2049 * may be mentioned in debugging output from the DRM DP helpers. 2050 * 2051 * For devices which use a separate platform device for their AUX adapters, this 2052 * may be called as early as required by the driver. 2053 * 2054 */ 2055 void drm_dp_aux_init(struct drm_dp_aux *aux) 2056 { 2057 mutex_init(&aux->hw_mutex); 2058 mutex_init(&aux->cec.lock); 2059 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 2060 2061 aux->ddc.algo = &drm_dp_i2c_algo; 2062 aux->ddc.algo_data = aux; 2063 aux->ddc.retries = 3; 2064 2065 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops; 2066 } 2067 EXPORT_SYMBOL(drm_dp_aux_init); 2068 2069 /** 2070 * drm_dp_aux_register() - initialise and register aux channel 2071 * @aux: DisplayPort AUX channel 2072 * 2073 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This 2074 * should only be called once the parent of @aux, &drm_dp_aux.dev, is 2075 * initialized. For devices which are grandparents of their AUX channels, 2076 * &drm_dp_aux.dev will typically be the &drm_connector &device which 2077 * corresponds to @aux. For these devices, it's advised to call 2078 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to 2079 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister. 2080 * Functions which don't follow this will likely Oops when 2081 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled. 2082 * 2083 * For devices where the AUX channel is a device that exists independently of 2084 * the &drm_device that uses it, such as SoCs and bridge devices, it is 2085 * recommended to call drm_dp_aux_register() after a &drm_device has been 2086 * assigned to &drm_dp_aux.drm_dev, and likewise to call 2087 * drm_dp_aux_unregister() once the &drm_device should no longer be associated 2088 * with the AUX channel (e.g. on bridge detach). 2089 * 2090 * Drivers which need to use the aux channel before either of the two points 2091 * mentioned above need to call drm_dp_aux_init() in order to use the AUX 2092 * channel before registration. 2093 * 2094 * Returns 0 on success or a negative error code on failure. 2095 */ 2096 int drm_dp_aux_register(struct drm_dp_aux *aux) 2097 { 2098 int ret; 2099 2100 WARN_ON_ONCE(!aux->drm_dev); 2101 2102 if (!aux->ddc.algo) 2103 drm_dp_aux_init(aux); 2104 2105 aux->ddc.class = I2C_CLASS_DDC; 2106 aux->ddc.owner = THIS_MODULE; 2107 aux->ddc.dev.parent = aux->dev; 2108 2109 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev), 2110 sizeof(aux->ddc.name)); 2111 2112 ret = drm_dp_aux_register_devnode(aux); 2113 if (ret) 2114 return ret; 2115 2116 ret = i2c_add_adapter(&aux->ddc); 2117 if (ret) { 2118 drm_dp_aux_unregister_devnode(aux); 2119 return ret; 2120 } 2121 2122 return 0; 2123 } 2124 EXPORT_SYMBOL(drm_dp_aux_register); 2125 2126 /** 2127 * drm_dp_aux_unregister() - unregister an AUX adapter 2128 * @aux: DisplayPort AUX channel 2129 */ 2130 void drm_dp_aux_unregister(struct drm_dp_aux *aux) 2131 { 2132 drm_dp_aux_unregister_devnode(aux); 2133 i2c_del_adapter(&aux->ddc); 2134 } 2135 EXPORT_SYMBOL(drm_dp_aux_unregister); 2136 2137 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x) 2138 2139 /** 2140 * drm_dp_psr_setup_time() - PSR setup in time usec 2141 * @psr_cap: PSR capabilities from DPCD 2142 * 2143 * Returns: 2144 * PSR setup time for the panel in microseconds, negative 2145 * error code on failure. 2146 */ 2147 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE]) 2148 { 2149 static const u16 psr_setup_time_us[] = { 2150 PSR_SETUP_TIME(330), 2151 PSR_SETUP_TIME(275), 2152 PSR_SETUP_TIME(220), 2153 PSR_SETUP_TIME(165), 2154 PSR_SETUP_TIME(110), 2155 PSR_SETUP_TIME(55), 2156 PSR_SETUP_TIME(0), 2157 }; 2158 int i; 2159 2160 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT; 2161 if (i >= ARRAY_SIZE(psr_setup_time_us)) 2162 return -EINVAL; 2163 2164 return psr_setup_time_us[i]; 2165 } 2166 EXPORT_SYMBOL(drm_dp_psr_setup_time); 2167 2168 #undef PSR_SETUP_TIME 2169 2170 /** 2171 * drm_dp_start_crc() - start capture of frame CRCs 2172 * @aux: DisplayPort AUX channel 2173 * @crtc: CRTC displaying the frames whose CRCs are to be captured 2174 * 2175 * Returns 0 on success or a negative error code on failure. 2176 */ 2177 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc) 2178 { 2179 u8 buf; 2180 int ret; 2181 2182 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 2183 if (ret < 0) 2184 return ret; 2185 2186 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START); 2187 if (ret < 0) 2188 return ret; 2189 2190 aux->crc_count = 0; 2191 aux->crtc = crtc; 2192 schedule_work(&aux->crc_work); 2193 2194 return 0; 2195 } 2196 EXPORT_SYMBOL(drm_dp_start_crc); 2197 2198 /** 2199 * drm_dp_stop_crc() - stop capture of frame CRCs 2200 * @aux: DisplayPort AUX channel 2201 * 2202 * Returns 0 on success or a negative error code on failure. 2203 */ 2204 int drm_dp_stop_crc(struct drm_dp_aux *aux) 2205 { 2206 u8 buf; 2207 int ret; 2208 2209 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 2210 if (ret < 0) 2211 return ret; 2212 2213 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START); 2214 if (ret < 0) 2215 return ret; 2216 2217 flush_work(&aux->crc_work); 2218 aux->crtc = NULL; 2219 2220 return 0; 2221 } 2222 EXPORT_SYMBOL(drm_dp_stop_crc); 2223 2224 struct dpcd_quirk { 2225 u8 oui[3]; 2226 u8 device_id[6]; 2227 bool is_branch; 2228 u32 quirks; 2229 }; 2230 2231 #define OUI(first, second, third) { (first), (second), (third) } 2232 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \ 2233 { (first), (second), (third), (fourth), (fifth), (sixth) } 2234 2235 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0) 2236 2237 static const struct dpcd_quirk dpcd_quirk_list[] = { 2238 /* Analogix 7737 needs reduced M and N at HBR2 link rates */ 2239 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 2240 /* LG LP140WF6-SPM1 eDP panel */ 2241 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 2242 /* Apple panels need some additional handling to support PSR */ 2243 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) }, 2244 /* CH7511 seems to leave SINK_COUNT zeroed */ 2245 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) }, 2246 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */ 2247 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) }, 2248 /* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */ 2249 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) }, 2250 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */ 2251 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) }, 2252 }; 2253 2254 #undef OUI 2255 2256 /* 2257 * Get a bit mask of DPCD quirks for the sink/branch device identified by 2258 * ident. The quirk data is shared but it's up to the drivers to act on the 2259 * data. 2260 * 2261 * For now, only the OUI (first three bytes) is used, but this may be extended 2262 * to device identification string and hardware/firmware revisions later. 2263 */ 2264 static u32 2265 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch) 2266 { 2267 const struct dpcd_quirk *quirk; 2268 u32 quirks = 0; 2269 int i; 2270 u8 any_device[] = DEVICE_ID_ANY; 2271 2272 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) { 2273 quirk = &dpcd_quirk_list[i]; 2274 2275 if (quirk->is_branch != is_branch) 2276 continue; 2277 2278 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0) 2279 continue; 2280 2281 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 && 2282 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0) 2283 continue; 2284 2285 quirks |= quirk->quirks; 2286 } 2287 2288 return quirks; 2289 } 2290 2291 #undef DEVICE_ID_ANY 2292 #undef DEVICE_ID 2293 2294 /** 2295 * drm_dp_read_desc - read sink/branch descriptor from DPCD 2296 * @aux: DisplayPort AUX channel 2297 * @desc: Device descriptor to fill from DPCD 2298 * @is_branch: true for branch devices, false for sink devices 2299 * 2300 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the 2301 * identification. 2302 * 2303 * Returns 0 on success or a negative error code on failure. 2304 */ 2305 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc, 2306 bool is_branch) 2307 { 2308 struct drm_dp_dpcd_ident *ident = &desc->ident; 2309 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI; 2310 int ret, dev_id_len; 2311 2312 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident)); 2313 if (ret < 0) 2314 return ret; 2315 2316 desc->quirks = drm_dp_get_quirks(ident, is_branch); 2317 2318 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id)); 2319 2320 drm_dbg_kms(aux->drm_dev, 2321 "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n", 2322 aux->name, is_branch ? "branch" : "sink", 2323 (int)sizeof(ident->oui), ident->oui, dev_id_len, 2324 ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf, 2325 ident->sw_major_rev, ident->sw_minor_rev, desc->quirks); 2326 2327 return 0; 2328 } 2329 EXPORT_SYMBOL(drm_dp_read_desc); 2330 2331 /** 2332 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment 2333 * @dsc_dpcd: DSC capabilities from DPCD 2334 * 2335 * Returns the bpp precision supported by the DP sink. 2336 */ 2337 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 2338 { 2339 u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT]; 2340 2341 switch (bpp_increment_dpcd) { 2342 case DP_DSC_BITS_PER_PIXEL_1_16: 2343 return 16; 2344 case DP_DSC_BITS_PER_PIXEL_1_8: 2345 return 8; 2346 case DP_DSC_BITS_PER_PIXEL_1_4: 2347 return 4; 2348 case DP_DSC_BITS_PER_PIXEL_1_2: 2349 return 2; 2350 case DP_DSC_BITS_PER_PIXEL_1_1: 2351 return 1; 2352 } 2353 2354 return 0; 2355 } 2356 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr); 2357 2358 /** 2359 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count 2360 * supported by the DSC sink. 2361 * @dsc_dpcd: DSC capabilities from DPCD 2362 * @is_edp: true if its eDP, false for DP 2363 * 2364 * Read the slice capabilities DPCD register from DSC sink to get 2365 * the maximum slice count supported. This is used to populate 2366 * the DSC parameters in the &struct drm_dsc_config by the driver. 2367 * Driver creates an infoframe using these parameters to populate 2368 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2369 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2370 * 2371 * Returns: 2372 * Maximum slice count supported by DSC sink or 0 its invalid 2373 */ 2374 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 2375 bool is_edp) 2376 { 2377 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT]; 2378 2379 if (is_edp) { 2380 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */ 2381 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 2382 return 4; 2383 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 2384 return 2; 2385 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 2386 return 1; 2387 } else { 2388 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */ 2389 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT]; 2390 2391 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK) 2392 return 24; 2393 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK) 2394 return 20; 2395 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK) 2396 return 16; 2397 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK) 2398 return 12; 2399 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK) 2400 return 10; 2401 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK) 2402 return 8; 2403 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK) 2404 return 6; 2405 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 2406 return 4; 2407 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 2408 return 2; 2409 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 2410 return 1; 2411 } 2412 2413 return 0; 2414 } 2415 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count); 2416 2417 /** 2418 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits 2419 * @dsc_dpcd: DSC capabilities from DPCD 2420 * 2421 * Read the DSC DPCD register to parse the line buffer depth in bits which is 2422 * number of bits of precision within the decoder line buffer supported by 2423 * the DSC sink. This is used to populate the DSC parameters in the 2424 * &struct drm_dsc_config by the driver. 2425 * Driver creates an infoframe using these parameters to populate 2426 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2427 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2428 * 2429 * Returns: 2430 * Line buffer depth supported by DSC panel or 0 its invalid 2431 */ 2432 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 2433 { 2434 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT]; 2435 2436 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) { 2437 case DP_DSC_LINE_BUF_BIT_DEPTH_9: 2438 return 9; 2439 case DP_DSC_LINE_BUF_BIT_DEPTH_10: 2440 return 10; 2441 case DP_DSC_LINE_BUF_BIT_DEPTH_11: 2442 return 11; 2443 case DP_DSC_LINE_BUF_BIT_DEPTH_12: 2444 return 12; 2445 case DP_DSC_LINE_BUF_BIT_DEPTH_13: 2446 return 13; 2447 case DP_DSC_LINE_BUF_BIT_DEPTH_14: 2448 return 14; 2449 case DP_DSC_LINE_BUF_BIT_DEPTH_15: 2450 return 15; 2451 case DP_DSC_LINE_BUF_BIT_DEPTH_16: 2452 return 16; 2453 case DP_DSC_LINE_BUF_BIT_DEPTH_8: 2454 return 8; 2455 } 2456 2457 return 0; 2458 } 2459 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth); 2460 2461 /** 2462 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component 2463 * values supported by the DSC sink. 2464 * @dsc_dpcd: DSC capabilities from DPCD 2465 * @dsc_bpc: An array to be filled by this helper with supported 2466 * input bpcs. 2467 * 2468 * Read the DSC DPCD from the sink device to parse the supported bits per 2469 * component values. This is used to populate the DSC parameters 2470 * in the &struct drm_dsc_config by the driver. 2471 * Driver creates an infoframe using these parameters to populate 2472 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2473 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2474 * 2475 * Returns: 2476 * Number of input BPC values parsed from the DPCD 2477 */ 2478 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 2479 u8 dsc_bpc[3]) 2480 { 2481 int num_bpc = 0; 2482 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT]; 2483 2484 if (!drm_dp_sink_supports_dsc(dsc_dpcd)) 2485 return 0; 2486 2487 if (color_depth & DP_DSC_12_BPC) 2488 dsc_bpc[num_bpc++] = 12; 2489 if (color_depth & DP_DSC_10_BPC) 2490 dsc_bpc[num_bpc++] = 10; 2491 2492 /* A DP DSC Sink device shall support 8 bpc. */ 2493 dsc_bpc[num_bpc++] = 8; 2494 2495 return num_bpc; 2496 } 2497 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs); 2498 2499 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux, 2500 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address, 2501 u8 *buf, int buf_size) 2502 { 2503 /* 2504 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns 2505 * corrupted values when reading from the 0xF0000- range with a block 2506 * size bigger than 1. 2507 */ 2508 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size; 2509 int offset; 2510 int ret; 2511 2512 for (offset = 0; offset < buf_size; offset += block_size) { 2513 ret = drm_dp_dpcd_read(aux, 2514 address + offset, 2515 &buf[offset], block_size); 2516 if (ret < 0) 2517 return ret; 2518 2519 WARN_ON(ret != block_size); 2520 } 2521 2522 return 0; 2523 } 2524 2525 /** 2526 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities 2527 * @aux: DisplayPort AUX channel 2528 * @dpcd: DisplayPort configuration data 2529 * @caps: buffer to return the capability info in 2530 * 2531 * Read capabilities common to all LTTPRs. 2532 * 2533 * Returns 0 on success or a negative error code on failure. 2534 */ 2535 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux, 2536 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 2537 u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2538 { 2539 return drm_dp_read_lttpr_regs(aux, dpcd, 2540 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV, 2541 caps, DP_LTTPR_COMMON_CAP_SIZE); 2542 } 2543 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps); 2544 2545 /** 2546 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY 2547 * @aux: DisplayPort AUX channel 2548 * @dpcd: DisplayPort configuration data 2549 * @dp_phy: LTTPR PHY to read the capabilities for 2550 * @caps: buffer to return the capability info in 2551 * 2552 * Read the capabilities for the given LTTPR PHY. 2553 * 2554 * Returns 0 on success or a negative error code on failure. 2555 */ 2556 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux, 2557 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 2558 enum drm_dp_phy dp_phy, 2559 u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 2560 { 2561 return drm_dp_read_lttpr_regs(aux, dpcd, 2562 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy), 2563 caps, DP_LTTPR_PHY_CAP_SIZE); 2564 } 2565 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps); 2566 2567 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r) 2568 { 2569 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; 2570 } 2571 2572 /** 2573 * drm_dp_lttpr_count - get the number of detected LTTPRs 2574 * @caps: LTTPR common capabilities 2575 * 2576 * Get the number of detected LTTPRs from the LTTPR common capabilities info. 2577 * 2578 * Returns: 2579 * -ERANGE if more than supported number (8) of LTTPRs are detected 2580 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value 2581 * otherwise the number of detected LTTPRs 2582 */ 2583 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2584 { 2585 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT); 2586 2587 switch (hweight8(count)) { 2588 case 0: 2589 return 0; 2590 case 1: 2591 return 8 - ilog2(count); 2592 case 8: 2593 return -ERANGE; 2594 default: 2595 return -EINVAL; 2596 } 2597 } 2598 EXPORT_SYMBOL(drm_dp_lttpr_count); 2599 2600 /** 2601 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs 2602 * @caps: LTTPR common capabilities 2603 * 2604 * Returns the maximum link rate supported by all detected LTTPRs. 2605 */ 2606 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2607 { 2608 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER); 2609 2610 return drm_dp_bw_code_to_link_rate(rate); 2611 } 2612 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate); 2613 2614 /** 2615 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs 2616 * @caps: LTTPR common capabilities 2617 * 2618 * Returns the maximum lane count supported by all detected LTTPRs. 2619 */ 2620 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2621 { 2622 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER); 2623 2624 return max_lanes & DP_MAX_LANE_COUNT_MASK; 2625 } 2626 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count); 2627 2628 /** 2629 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support 2630 * @caps: LTTPR PHY capabilities 2631 * 2632 * Returns true if the @caps for an LTTPR TX PHY indicate support for 2633 * voltage swing level 3. 2634 */ 2635 bool 2636 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 2637 { 2638 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); 2639 2640 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED; 2641 } 2642 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported); 2643 2644 /** 2645 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support 2646 * @caps: LTTPR PHY capabilities 2647 * 2648 * Returns true if the @caps for an LTTPR TX PHY indicate support for 2649 * pre-emphasis level 3. 2650 */ 2651 bool 2652 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 2653 { 2654 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); 2655 2656 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED; 2657 } 2658 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported); 2659 2660 /** 2661 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink. 2662 * @aux: DisplayPort AUX channel 2663 * @data: DP phy compliance test parameters. 2664 * 2665 * Returns 0 on success or a negative error code on failure. 2666 */ 2667 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux, 2668 struct drm_dp_phy_test_params *data) 2669 { 2670 int err; 2671 u8 rate, lanes; 2672 2673 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate); 2674 if (err < 0) 2675 return err; 2676 data->link_rate = drm_dp_bw_code_to_link_rate(rate); 2677 2678 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes); 2679 if (err < 0) 2680 return err; 2681 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK; 2682 2683 if (lanes & DP_ENHANCED_FRAME_CAP) 2684 data->enhanced_frame_cap = true; 2685 2686 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern); 2687 if (err < 0) 2688 return err; 2689 2690 switch (data->phy_pattern) { 2691 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: 2692 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0, 2693 &data->custom80, sizeof(data->custom80)); 2694 if (err < 0) 2695 return err; 2696 2697 break; 2698 case DP_PHY_TEST_PATTERN_CP2520: 2699 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET, 2700 &data->hbr2_reset, 2701 sizeof(data->hbr2_reset)); 2702 if (err < 0) 2703 return err; 2704 } 2705 2706 return 0; 2707 } 2708 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern); 2709 2710 /** 2711 * drm_dp_set_phy_test_pattern() - set the pattern to the sink. 2712 * @aux: DisplayPort AUX channel 2713 * @data: DP phy compliance test parameters. 2714 * @dp_rev: DP revision to use for compliance testing 2715 * 2716 * Returns 0 on success or a negative error code on failure. 2717 */ 2718 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux, 2719 struct drm_dp_phy_test_params *data, u8 dp_rev) 2720 { 2721 int err, i; 2722 u8 test_pattern; 2723 2724 test_pattern = data->phy_pattern; 2725 if (dp_rev < 0x12) { 2726 test_pattern = (test_pattern << 2) & 2727 DP_LINK_QUAL_PATTERN_11_MASK; 2728 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, 2729 test_pattern); 2730 if (err < 0) 2731 return err; 2732 } else { 2733 for (i = 0; i < data->num_lanes; i++) { 2734 err = drm_dp_dpcd_writeb(aux, 2735 DP_LINK_QUAL_LANE0_SET + i, 2736 test_pattern); 2737 if (err < 0) 2738 return err; 2739 } 2740 } 2741 2742 return 0; 2743 } 2744 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern); 2745 2746 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat) 2747 { 2748 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) 2749 return "Invalid"; 2750 2751 switch (pixelformat) { 2752 case DP_PIXELFORMAT_RGB: 2753 return "RGB"; 2754 case DP_PIXELFORMAT_YUV444: 2755 return "YUV444"; 2756 case DP_PIXELFORMAT_YUV422: 2757 return "YUV422"; 2758 case DP_PIXELFORMAT_YUV420: 2759 return "YUV420"; 2760 case DP_PIXELFORMAT_Y_ONLY: 2761 return "Y_ONLY"; 2762 case DP_PIXELFORMAT_RAW: 2763 return "RAW"; 2764 default: 2765 return "Reserved"; 2766 } 2767 } 2768 2769 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat, 2770 enum dp_colorimetry colorimetry) 2771 { 2772 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) 2773 return "Invalid"; 2774 2775 switch (colorimetry) { 2776 case DP_COLORIMETRY_DEFAULT: 2777 switch (pixelformat) { 2778 case DP_PIXELFORMAT_RGB: 2779 return "sRGB"; 2780 case DP_PIXELFORMAT_YUV444: 2781 case DP_PIXELFORMAT_YUV422: 2782 case DP_PIXELFORMAT_YUV420: 2783 return "BT.601"; 2784 case DP_PIXELFORMAT_Y_ONLY: 2785 return "DICOM PS3.14"; 2786 case DP_PIXELFORMAT_RAW: 2787 return "Custom Color Profile"; 2788 default: 2789 return "Reserved"; 2790 } 2791 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */ 2792 switch (pixelformat) { 2793 case DP_PIXELFORMAT_RGB: 2794 return "Wide Fixed"; 2795 case DP_PIXELFORMAT_YUV444: 2796 case DP_PIXELFORMAT_YUV422: 2797 case DP_PIXELFORMAT_YUV420: 2798 return "BT.709"; 2799 default: 2800 return "Reserved"; 2801 } 2802 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */ 2803 switch (pixelformat) { 2804 case DP_PIXELFORMAT_RGB: 2805 return "Wide Float"; 2806 case DP_PIXELFORMAT_YUV444: 2807 case DP_PIXELFORMAT_YUV422: 2808 case DP_PIXELFORMAT_YUV420: 2809 return "xvYCC 601"; 2810 default: 2811 return "Reserved"; 2812 } 2813 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */ 2814 switch (pixelformat) { 2815 case DP_PIXELFORMAT_RGB: 2816 return "OpRGB"; 2817 case DP_PIXELFORMAT_YUV444: 2818 case DP_PIXELFORMAT_YUV422: 2819 case DP_PIXELFORMAT_YUV420: 2820 return "xvYCC 709"; 2821 default: 2822 return "Reserved"; 2823 } 2824 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */ 2825 switch (pixelformat) { 2826 case DP_PIXELFORMAT_RGB: 2827 return "DCI-P3"; 2828 case DP_PIXELFORMAT_YUV444: 2829 case DP_PIXELFORMAT_YUV422: 2830 case DP_PIXELFORMAT_YUV420: 2831 return "sYCC 601"; 2832 default: 2833 return "Reserved"; 2834 } 2835 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */ 2836 switch (pixelformat) { 2837 case DP_PIXELFORMAT_RGB: 2838 return "Custom Profile"; 2839 case DP_PIXELFORMAT_YUV444: 2840 case DP_PIXELFORMAT_YUV422: 2841 case DP_PIXELFORMAT_YUV420: 2842 return "OpYCC 601"; 2843 default: 2844 return "Reserved"; 2845 } 2846 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */ 2847 switch (pixelformat) { 2848 case DP_PIXELFORMAT_RGB: 2849 return "BT.2020 RGB"; 2850 case DP_PIXELFORMAT_YUV444: 2851 case DP_PIXELFORMAT_YUV422: 2852 case DP_PIXELFORMAT_YUV420: 2853 return "BT.2020 CYCC"; 2854 default: 2855 return "Reserved"; 2856 } 2857 case DP_COLORIMETRY_BT2020_YCC: 2858 switch (pixelformat) { 2859 case DP_PIXELFORMAT_YUV444: 2860 case DP_PIXELFORMAT_YUV422: 2861 case DP_PIXELFORMAT_YUV420: 2862 return "BT.2020 YCC"; 2863 default: 2864 return "Reserved"; 2865 } 2866 default: 2867 return "Invalid"; 2868 } 2869 } 2870 2871 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range) 2872 { 2873 switch (dynamic_range) { 2874 case DP_DYNAMIC_RANGE_VESA: 2875 return "VESA range"; 2876 case DP_DYNAMIC_RANGE_CTA: 2877 return "CTA range"; 2878 default: 2879 return "Invalid"; 2880 } 2881 } 2882 2883 static const char *dp_content_type_get_name(enum dp_content_type content_type) 2884 { 2885 switch (content_type) { 2886 case DP_CONTENT_TYPE_NOT_DEFINED: 2887 return "Not defined"; 2888 case DP_CONTENT_TYPE_GRAPHICS: 2889 return "Graphics"; 2890 case DP_CONTENT_TYPE_PHOTO: 2891 return "Photo"; 2892 case DP_CONTENT_TYPE_VIDEO: 2893 return "Video"; 2894 case DP_CONTENT_TYPE_GAME: 2895 return "Game"; 2896 default: 2897 return "Reserved"; 2898 } 2899 } 2900 2901 void drm_dp_vsc_sdp_log(const char *level, struct device *dev, 2902 const struct drm_dp_vsc_sdp *vsc) 2903 { 2904 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__) 2905 DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC", 2906 vsc->revision, vsc->length); 2907 DP_SDP_LOG(" pixelformat: %s\n", 2908 dp_pixelformat_get_name(vsc->pixelformat)); 2909 DP_SDP_LOG(" colorimetry: %s\n", 2910 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry)); 2911 DP_SDP_LOG(" bpc: %u\n", vsc->bpc); 2912 DP_SDP_LOG(" dynamic range: %s\n", 2913 dp_dynamic_range_get_name(vsc->dynamic_range)); 2914 DP_SDP_LOG(" content type: %s\n", 2915 dp_content_type_get_name(vsc->content_type)); 2916 #undef DP_SDP_LOG 2917 } 2918 EXPORT_SYMBOL(drm_dp_vsc_sdp_log); 2919 2920 /** 2921 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON 2922 * @dpcd: DisplayPort configuration data 2923 * @port_cap: port capabilities 2924 * 2925 * Returns maximum frl bandwidth supported by PCON in GBPS, 2926 * returns 0 if not supported. 2927 */ 2928 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 2929 const u8 port_cap[4]) 2930 { 2931 int bw; 2932 u8 buf; 2933 2934 buf = port_cap[2]; 2935 bw = buf & DP_PCON_MAX_FRL_BW; 2936 2937 switch (bw) { 2938 case DP_PCON_MAX_9GBPS: 2939 return 9; 2940 case DP_PCON_MAX_18GBPS: 2941 return 18; 2942 case DP_PCON_MAX_24GBPS: 2943 return 24; 2944 case DP_PCON_MAX_32GBPS: 2945 return 32; 2946 case DP_PCON_MAX_40GBPS: 2947 return 40; 2948 case DP_PCON_MAX_48GBPS: 2949 return 48; 2950 case DP_PCON_MAX_0GBPS: 2951 default: 2952 return 0; 2953 } 2954 2955 return 0; 2956 } 2957 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw); 2958 2959 /** 2960 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL. 2961 * @aux: DisplayPort AUX channel 2962 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY. 2963 * 2964 * Returns 0 if success, else returns negative error code. 2965 */ 2966 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd) 2967 { 2968 int ret; 2969 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE | 2970 DP_PCON_ENABLE_LINK_FRL_MODE; 2971 2972 if (enable_frl_ready_hpd) 2973 buf |= DP_PCON_ENABLE_HPD_READY; 2974 2975 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 2976 2977 return ret; 2978 } 2979 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare); 2980 2981 /** 2982 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL 2983 * @aux: DisplayPort AUX channel 2984 * 2985 * Returns true if success, else returns false. 2986 */ 2987 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux) 2988 { 2989 int ret; 2990 u8 buf; 2991 2992 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf); 2993 if (ret < 0) 2994 return false; 2995 2996 if (buf & DP_PCON_FRL_READY) 2997 return true; 2998 2999 return false; 3000 } 3001 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready); 3002 3003 /** 3004 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1 3005 * @aux: DisplayPort AUX channel 3006 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink 3007 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential. 3008 * In Concurrent Mode, the FRL link bring up can be done along with 3009 * DP Link training. In Sequential mode, the FRL link bring up is done prior to 3010 * the DP Link training. 3011 * 3012 * Returns 0 if success, else returns negative error code. 3013 */ 3014 3015 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps, 3016 u8 frl_mode) 3017 { 3018 int ret; 3019 u8 buf; 3020 3021 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf); 3022 if (ret < 0) 3023 return ret; 3024 3025 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK) 3026 buf |= DP_PCON_ENABLE_CONCURRENT_LINK; 3027 else 3028 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK; 3029 3030 switch (max_frl_gbps) { 3031 case 9: 3032 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS; 3033 break; 3034 case 18: 3035 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS; 3036 break; 3037 case 24: 3038 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS; 3039 break; 3040 case 32: 3041 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS; 3042 break; 3043 case 40: 3044 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS; 3045 break; 3046 case 48: 3047 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS; 3048 break; 3049 case 0: 3050 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS; 3051 break; 3052 default: 3053 return -EINVAL; 3054 } 3055 3056 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3057 if (ret < 0) 3058 return ret; 3059 3060 return 0; 3061 } 3062 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1); 3063 3064 /** 3065 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2 3066 * @aux: DisplayPort AUX channel 3067 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink 3068 * @frl_type : FRL training type, can be Extended, or Normal. 3069 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask 3070 * starting from min, and stops when link training is successful. In Extended 3071 * FRL training, all frl bw selected in the mask are trained by the PCON. 3072 * 3073 * Returns 0 if success, else returns negative error code. 3074 */ 3075 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask, 3076 u8 frl_type) 3077 { 3078 int ret; 3079 u8 buf = max_frl_mask; 3080 3081 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED) 3082 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED; 3083 else 3084 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED; 3085 3086 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf); 3087 if (ret < 0) 3088 return ret; 3089 3090 return 0; 3091 } 3092 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2); 3093 3094 /** 3095 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration. 3096 * @aux: DisplayPort AUX channel 3097 * 3098 * Returns 0 if success, else returns negative error code. 3099 */ 3100 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux) 3101 { 3102 int ret; 3103 3104 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0); 3105 if (ret < 0) 3106 return ret; 3107 3108 return 0; 3109 } 3110 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config); 3111 3112 /** 3113 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL 3114 * @aux: DisplayPort AUX channel 3115 * 3116 * Returns 0 if success, else returns negative error code. 3117 */ 3118 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux) 3119 { 3120 int ret; 3121 u8 buf = 0; 3122 3123 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf); 3124 if (ret < 0) 3125 return ret; 3126 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) { 3127 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n", 3128 aux->name); 3129 return -EINVAL; 3130 } 3131 buf |= DP_PCON_ENABLE_HDMI_LINK; 3132 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3133 if (ret < 0) 3134 return ret; 3135 3136 return 0; 3137 } 3138 EXPORT_SYMBOL(drm_dp_pcon_frl_enable); 3139 3140 /** 3141 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active. 3142 * @aux: DisplayPort AUX channel 3143 * 3144 * Returns true if link is active else returns false. 3145 */ 3146 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux) 3147 { 3148 u8 buf; 3149 int ret; 3150 3151 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf); 3152 if (ret < 0) 3153 return false; 3154 3155 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE; 3156 } 3157 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active); 3158 3159 /** 3160 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE 3161 * @aux: DisplayPort AUX channel 3162 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration. 3163 * Valid only if the MODE returned is FRL. For Normal Link training mode 3164 * only 1 of the bits will be set, but in case of Extended mode, more than 3165 * one bits can be set. 3166 * 3167 * Returns the link mode : TMDS or FRL on success, else returns negative error 3168 * code. 3169 */ 3170 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask) 3171 { 3172 u8 buf; 3173 int mode; 3174 int ret; 3175 3176 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf); 3177 if (ret < 0) 3178 return ret; 3179 3180 mode = buf & DP_PCON_HDMI_LINK_MODE; 3181 3182 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode) 3183 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1; 3184 3185 return mode; 3186 } 3187 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode); 3188 3189 /** 3190 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane 3191 * during link failure between PCON and HDMI sink 3192 * @aux: DisplayPort AUX channel 3193 * @connector: DRM connector 3194 * code. 3195 **/ 3196 3197 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux, 3198 struct drm_connector *connector) 3199 { 3200 u8 buf, error_count; 3201 int i, num_error; 3202 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 3203 3204 for (i = 0; i < hdmi->max_lanes; i++) { 3205 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0) 3206 return; 3207 3208 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK; 3209 switch (error_count) { 3210 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS: 3211 num_error = 100; 3212 break; 3213 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS: 3214 num_error = 10; 3215 break; 3216 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS: 3217 num_error = 3; 3218 break; 3219 default: 3220 num_error = 0; 3221 } 3222 3223 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d", 3224 aux->name, num_error, i); 3225 } 3226 } 3227 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count); 3228 3229 /* 3230 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2 3231 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3232 * 3233 * Returns true is PCON encoder is DSC 1.2 else returns false. 3234 */ 3235 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3236 { 3237 u8 buf; 3238 u8 major_v, minor_v; 3239 3240 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER]; 3241 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT; 3242 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT; 3243 3244 if (major_v == 1 && minor_v == 2) 3245 return true; 3246 3247 return false; 3248 } 3249 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2); 3250 3251 /* 3252 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder 3253 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3254 * 3255 * Returns maximum no. of slices supported by the PCON DSC Encoder. 3256 */ 3257 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3258 { 3259 u8 slice_cap1, slice_cap2; 3260 3261 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER]; 3262 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER]; 3263 3264 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC) 3265 return 24; 3266 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC) 3267 return 20; 3268 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC) 3269 return 16; 3270 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC) 3271 return 12; 3272 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC) 3273 return 10; 3274 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC) 3275 return 8; 3276 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC) 3277 return 6; 3278 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC) 3279 return 4; 3280 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC) 3281 return 2; 3282 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC) 3283 return 1; 3284 3285 return 0; 3286 } 3287 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices); 3288 3289 /* 3290 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder 3291 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3292 * 3293 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320. 3294 */ 3295 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3296 { 3297 u8 buf; 3298 3299 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER]; 3300 3301 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER; 3302 } 3303 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width); 3304 3305 /* 3306 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder 3307 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3308 * 3309 * Returns the bpp precision supported by the PCON encoder. 3310 */ 3311 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3312 { 3313 u8 buf; 3314 3315 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER]; 3316 3317 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) { 3318 case DP_PCON_DSC_ONE_16TH_BPP: 3319 return 16; 3320 case DP_PCON_DSC_ONE_8TH_BPP: 3321 return 8; 3322 case DP_PCON_DSC_ONE_4TH_BPP: 3323 return 4; 3324 case DP_PCON_DSC_ONE_HALF_BPP: 3325 return 2; 3326 case DP_PCON_DSC_ONE_BPP: 3327 return 1; 3328 } 3329 3330 return 0; 3331 } 3332 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr); 3333 3334 static 3335 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config) 3336 { 3337 u8 buf; 3338 int ret; 3339 3340 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf); 3341 if (ret < 0) 3342 return ret; 3343 3344 buf |= DP_PCON_ENABLE_DSC_ENCODER; 3345 3346 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) { 3347 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK; 3348 buf |= pps_buf_config << 2; 3349 } 3350 3351 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf); 3352 if (ret < 0) 3353 return ret; 3354 3355 return 0; 3356 } 3357 3358 /** 3359 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters 3360 * for DSC1.2 between PCON & HDMI2.1 sink 3361 * @aux: DisplayPort AUX channel 3362 * 3363 * Returns 0 on success, else returns negative error code. 3364 */ 3365 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux) 3366 { 3367 int ret; 3368 3369 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED); 3370 if (ret < 0) 3371 return ret; 3372 3373 return 0; 3374 } 3375 EXPORT_SYMBOL(drm_dp_pcon_pps_default); 3376 3377 /** 3378 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for 3379 * HDMI sink 3380 * @aux: DisplayPort AUX channel 3381 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON. 3382 * 3383 * Returns 0 on success, else returns negative error code. 3384 */ 3385 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128]) 3386 { 3387 int ret; 3388 3389 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128); 3390 if (ret < 0) 3391 return ret; 3392 3393 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER); 3394 if (ret < 0) 3395 return ret; 3396 3397 return 0; 3398 } 3399 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf); 3400 3401 /* 3402 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder 3403 * override registers 3404 * @aux: DisplayPort AUX channel 3405 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height, 3406 * bits_per_pixel. 3407 * 3408 * Returns 0 on success, else returns negative error code. 3409 */ 3410 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6]) 3411 { 3412 int ret; 3413 3414 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2); 3415 if (ret < 0) 3416 return ret; 3417 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2); 3418 if (ret < 0) 3419 return ret; 3420 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2); 3421 if (ret < 0) 3422 return ret; 3423 3424 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER); 3425 if (ret < 0) 3426 return ret; 3427 3428 return 0; 3429 } 3430 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param); 3431 3432 /* 3433 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr 3434 * @aux: displayPort AUX channel 3435 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable. 3436 * 3437 * Returns 0 on success, else returns negative error code. 3438 */ 3439 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc) 3440 { 3441 int ret; 3442 u8 buf; 3443 3444 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf); 3445 if (ret < 0) 3446 return ret; 3447 3448 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK) 3449 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK); 3450 else 3451 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK; 3452 3453 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf); 3454 if (ret < 0) 3455 return ret; 3456 3457 return 0; 3458 } 3459 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr); 3460 3461 /** 3462 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX 3463 * @aux: The DP AUX channel to use 3464 * @bl: Backlight capability info from drm_edp_backlight_init() 3465 * @level: The brightness level to set 3466 * 3467 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must 3468 * already have been enabled by the driver by calling drm_edp_backlight_enable(). 3469 * 3470 * Returns: %0 on success, negative error code on failure 3471 */ 3472 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3473 u16 level) 3474 { 3475 int ret; 3476 u8 buf[2] = { 0 }; 3477 3478 /* The panel uses the PWM for controlling brightness levels */ 3479 if (!bl->aux_set) 3480 return 0; 3481 3482 if (bl->lsb_reg_used) { 3483 buf[0] = (level & 0xff00) >> 8; 3484 buf[1] = (level & 0x00ff); 3485 } else { 3486 buf[0] = level; 3487 } 3488 3489 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf)); 3490 if (ret != sizeof(buf)) { 3491 drm_err(aux->drm_dev, 3492 "%s: Failed to write aux backlight level: %d\n", 3493 aux->name, ret); 3494 return ret < 0 ? ret : -EIO; 3495 } 3496 3497 return 0; 3498 } 3499 EXPORT_SYMBOL(drm_edp_backlight_set_level); 3500 3501 static int 3502 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3503 bool enable) 3504 { 3505 int ret; 3506 u8 buf; 3507 3508 /* This panel uses the EDP_BL_PWR GPIO for enablement */ 3509 if (!bl->aux_enable) 3510 return 0; 3511 3512 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf); 3513 if (ret != 1) { 3514 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n", 3515 aux->name, ret); 3516 return ret < 0 ? ret : -EIO; 3517 } 3518 if (enable) 3519 buf |= DP_EDP_BACKLIGHT_ENABLE; 3520 else 3521 buf &= ~DP_EDP_BACKLIGHT_ENABLE; 3522 3523 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf); 3524 if (ret != 1) { 3525 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n", 3526 aux->name, ret); 3527 return ret < 0 ? ret : -EIO; 3528 } 3529 3530 return 0; 3531 } 3532 3533 /** 3534 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD 3535 * @aux: The DP AUX channel to use 3536 * @bl: Backlight capability info from drm_edp_backlight_init() 3537 * @level: The initial backlight level to set via AUX, if there is one 3538 * 3539 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally 3540 * restoring any important backlight state such as the given backlight level, the brightness byte 3541 * count, backlight frequency, etc. 3542 * 3543 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require 3544 * that the driver handle enabling/disabling the panel through implementation-specific means using 3545 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false, 3546 * this function becomes a no-op, and the driver is expected to handle powering the panel on using 3547 * the EDP_BL_PWR GPIO. 3548 * 3549 * Returns: %0 on success, negative error code on failure. 3550 */ 3551 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3552 const u16 level) 3553 { 3554 int ret; 3555 u8 dpcd_buf; 3556 3557 if (bl->aux_set) 3558 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD; 3559 else 3560 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM; 3561 3562 if (bl->pwmgen_bit_count) { 3563 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count); 3564 if (ret != 1) 3565 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n", 3566 aux->name, ret); 3567 } 3568 3569 if (bl->pwm_freq_pre_divider) { 3570 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider); 3571 if (ret != 1) 3572 drm_dbg_kms(aux->drm_dev, 3573 "%s: Failed to write aux backlight frequency: %d\n", 3574 aux->name, ret); 3575 else 3576 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE; 3577 } 3578 3579 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf); 3580 if (ret != 1) { 3581 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n", 3582 aux->name, ret); 3583 return ret < 0 ? ret : -EIO; 3584 } 3585 3586 ret = drm_edp_backlight_set_level(aux, bl, level); 3587 if (ret < 0) 3588 return ret; 3589 ret = drm_edp_backlight_set_enable(aux, bl, true); 3590 if (ret < 0) 3591 return ret; 3592 3593 return 0; 3594 } 3595 EXPORT_SYMBOL(drm_edp_backlight_enable); 3596 3597 /** 3598 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported 3599 * @aux: The DP AUX channel to use 3600 * @bl: Backlight capability info from drm_edp_backlight_init() 3601 * 3602 * This function handles disabling DPCD backlight controls on a panel over AUX. 3603 * 3604 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require 3605 * that the driver handle enabling/disabling the panel through implementation-specific means using 3606 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false, 3607 * this function becomes a no-op, and the driver is expected to handle powering the panel off using 3608 * the EDP_BL_PWR GPIO. 3609 * 3610 * Returns: %0 on success or no-op, negative error code on failure. 3611 */ 3612 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl) 3613 { 3614 int ret; 3615 3616 ret = drm_edp_backlight_set_enable(aux, bl, false); 3617 if (ret < 0) 3618 return ret; 3619 3620 return 0; 3621 } 3622 EXPORT_SYMBOL(drm_edp_backlight_disable); 3623 3624 static inline int 3625 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 3626 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE]) 3627 { 3628 int fxp, fxp_min, fxp_max, fxp_actual, f = 1; 3629 int ret; 3630 u8 pn, pn_min, pn_max; 3631 3632 if (!bl->aux_set) 3633 return 0; 3634 3635 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn); 3636 if (ret != 1) { 3637 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n", 3638 aux->name, ret); 3639 return -ENODEV; 3640 } 3641 3642 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 3643 bl->max = (1 << pn) - 1; 3644 if (!driver_pwm_freq_hz) 3645 return 0; 3646 3647 /* 3648 * Set PWM Frequency divider to match desired frequency provided by the driver. 3649 * The PWM Frequency is calculated as 27Mhz / (F x P). 3650 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the 3651 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h) 3652 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the 3653 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h) 3654 */ 3655 3656 /* Find desired value of (F x P) 3657 * Note that, if F x P is out of supported range, the maximum value or minimum value will 3658 * applied automatically. So no need to check that. 3659 */ 3660 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz); 3661 3662 /* Use highest possible value of Pn for more granularity of brightness adjustment while 3663 * satisfying the conditions below. 3664 * - Pn is in the range of Pn_min and Pn_max 3665 * - F is in the range of 1 and 255 3666 * - FxP is within 25% of desired value. 3667 * Note: 25% is arbitrary value and may need some tweak. 3668 */ 3669 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min); 3670 if (ret != 1) { 3671 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n", 3672 aux->name, ret); 3673 return 0; 3674 } 3675 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max); 3676 if (ret != 1) { 3677 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n", 3678 aux->name, ret); 3679 return 0; 3680 } 3681 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 3682 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 3683 3684 /* Ensure frequency is within 25% of desired value */ 3685 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4); 3686 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4); 3687 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) { 3688 drm_dbg_kms(aux->drm_dev, 3689 "%s: Driver defined backlight frequency (%d) out of range\n", 3690 aux->name, driver_pwm_freq_hz); 3691 return 0; 3692 } 3693 3694 for (pn = pn_max; pn >= pn_min; pn--) { 3695 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255); 3696 fxp_actual = f << pn; 3697 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max) 3698 break; 3699 } 3700 3701 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn); 3702 if (ret != 1) { 3703 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n", 3704 aux->name, ret); 3705 return 0; 3706 } 3707 bl->pwmgen_bit_count = pn; 3708 bl->max = (1 << pn) - 1; 3709 3710 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) { 3711 bl->pwm_freq_pre_divider = f; 3712 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n", 3713 aux->name, driver_pwm_freq_hz); 3714 } 3715 3716 return 0; 3717 } 3718 3719 static inline int 3720 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 3721 u8 *current_mode) 3722 { 3723 int ret; 3724 u8 buf[2]; 3725 u8 mode_reg; 3726 3727 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg); 3728 if (ret != 1) { 3729 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n", 3730 aux->name, ret); 3731 return ret < 0 ? ret : -EIO; 3732 } 3733 3734 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK); 3735 if (!bl->aux_set) 3736 return 0; 3737 3738 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) { 3739 int size = 1 + bl->lsb_reg_used; 3740 3741 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size); 3742 if (ret != size) { 3743 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n", 3744 aux->name, ret); 3745 return ret < 0 ? ret : -EIO; 3746 } 3747 3748 if (bl->lsb_reg_used) 3749 return (buf[0] << 8) | buf[1]; 3750 else 3751 return buf[0]; 3752 } 3753 3754 /* 3755 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and 3756 * the driver should assume max brightness 3757 */ 3758 return bl->max; 3759 } 3760 3761 /** 3762 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight 3763 * interface. 3764 * @aux: The DP aux device to use for probing 3765 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight 3766 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz 3767 * @edp_dpcd: A cached copy of the eDP DPCD 3768 * @current_level: Where to store the probed brightness level, if any 3769 * @current_mode: Where to store the currently set backlight control mode 3770 * 3771 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities, 3772 * along with also probing the current and maximum supported brightness levels. 3773 * 3774 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the 3775 * default frequency from the panel is used. 3776 * 3777 * Returns: %0 on success, negative error code on failure. 3778 */ 3779 int 3780 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 3781 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE], 3782 u16 *current_level, u8 *current_mode) 3783 { 3784 int ret; 3785 3786 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP) 3787 bl->aux_enable = true; 3788 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP) 3789 bl->aux_set = true; 3790 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT) 3791 bl->lsb_reg_used = true; 3792 3793 /* Sanity check caps */ 3794 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) { 3795 drm_dbg_kms(aux->drm_dev, 3796 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n", 3797 aux->name); 3798 return -EINVAL; 3799 } 3800 3801 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd); 3802 if (ret < 0) 3803 return ret; 3804 3805 ret = drm_edp_backlight_probe_state(aux, bl, current_mode); 3806 if (ret < 0) 3807 return ret; 3808 *current_level = ret; 3809 3810 drm_dbg_kms(aux->drm_dev, 3811 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n", 3812 aux->name, bl->aux_set, bl->aux_enable, *current_mode); 3813 if (bl->aux_set) { 3814 drm_dbg_kms(aux->drm_dev, 3815 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n", 3816 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider, 3817 bl->lsb_reg_used); 3818 } 3819 3820 return 0; 3821 } 3822 EXPORT_SYMBOL(drm_edp_backlight_init); 3823 3824 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \ 3825 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE)) 3826 3827 static int dp_aux_backlight_update_status(struct backlight_device *bd) 3828 { 3829 struct dp_aux_backlight *bl = bl_get_data(bd); 3830 u16 brightness = backlight_get_brightness(bd); 3831 int ret = 0; 3832 3833 if (!backlight_is_blank(bd)) { 3834 if (!bl->enabled) { 3835 drm_edp_backlight_enable(bl->aux, &bl->info, brightness); 3836 bl->enabled = true; 3837 return 0; 3838 } 3839 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness); 3840 } else { 3841 if (bl->enabled) { 3842 drm_edp_backlight_disable(bl->aux, &bl->info); 3843 bl->enabled = false; 3844 } 3845 } 3846 3847 return ret; 3848 } 3849 3850 static const struct backlight_ops dp_aux_bl_ops = { 3851 .update_status = dp_aux_backlight_update_status, 3852 }; 3853 3854 /** 3855 * drm_panel_dp_aux_backlight - create and use DP AUX backlight 3856 * @panel: DRM panel 3857 * @aux: The DP AUX channel to use 3858 * 3859 * Use this function to create and handle backlight if your panel 3860 * supports backlight control over DP AUX channel using DPCD 3861 * registers as per VESA's standard backlight control interface. 3862 * 3863 * When the panel is enabled backlight will be enabled after a 3864 * successful call to &drm_panel_funcs.enable() 3865 * 3866 * When the panel is disabled backlight will be disabled before the 3867 * call to &drm_panel_funcs.disable(). 3868 * 3869 * A typical implementation for a panel driver supporting backlight 3870 * control over DP AUX will call this function at probe time. 3871 * Backlight will then be handled transparently without requiring 3872 * any intervention from the driver. 3873 * 3874 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init(). 3875 * 3876 * Return: 0 on success or a negative error code on failure. 3877 */ 3878 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux) 3879 { 3880 struct dp_aux_backlight *bl; 3881 struct backlight_properties props = { 0 }; 3882 u16 current_level; 3883 u8 current_mode; 3884 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE]; 3885 int ret; 3886 3887 if (!panel || !panel->dev || !aux) 3888 return -EINVAL; 3889 3890 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd, 3891 EDP_DISPLAY_CTL_CAP_SIZE); 3892 if (ret < 0) 3893 return ret; 3894 3895 if (!drm_edp_backlight_supported(edp_dpcd)) { 3896 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n"); 3897 return 0; 3898 } 3899 3900 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL); 3901 if (!bl) 3902 return -ENOMEM; 3903 3904 bl->aux = aux; 3905 3906 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd, 3907 ¤t_level, ¤t_mode); 3908 if (ret < 0) 3909 return ret; 3910 3911 props.type = BACKLIGHT_RAW; 3912 props.brightness = current_level; 3913 props.max_brightness = bl->info.max; 3914 3915 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight", 3916 panel->dev, bl, 3917 &dp_aux_bl_ops, &props); 3918 if (IS_ERR(bl->base)) 3919 return PTR_ERR(bl->base); 3920 3921 backlight_disable(bl->base); 3922 3923 panel->backlight = bl->base; 3924 3925 return 0; 3926 } 3927 EXPORT_SYMBOL(drm_panel_dp_aux_backlight); 3928 3929 #endif 3930 3931 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */ 3932 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16, 3933 int symbol_size, bool is_mst) 3934 { 3935 int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count); 3936 int align = is_mst ? 4 / lane_count : 1; 3937 3938 return ALIGN(cycles, align); 3939 } 3940 3941 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count, 3942 int bpp_x16, int symbol_size, bool is_mst) 3943 { 3944 int slice_pixels = DIV_ROUND_UP(pixels, slice_count); 3945 int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels, 3946 bpp_x16, symbol_size, is_mst); 3947 int slice_eoc_cycles = is_mst ? 4 / lane_count : 1; 3948 3949 return slice_count * (slice_data_cycles + slice_eoc_cycles); 3950 } 3951 3952 /** 3953 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream 3954 * @lane_count: DP link lane count 3955 * @hactive: pixel count of the active period in one scanline of the stream 3956 * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set 3957 * @bpp_x16: bits per pixel in .4 binary fixed point 3958 * @flags: DRM_DP_OVERHEAD_x flags 3959 * 3960 * Calculate the BW allocation overhead of a DP link stream, depending 3961 * on the link's 3962 * - @lane_count 3963 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST) 3964 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR) 3965 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC) 3966 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK) 3967 * as well as the stream's 3968 * - @hactive timing 3969 * - @bpp_x16 color depth 3970 * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC). 3971 * Note that this overhead doesn't account for the 8b/10b, 128b/132b 3972 * channel coding efficiency, for that see 3973 * @drm_dp_link_bw_channel_coding_efficiency(). 3974 * 3975 * Returns the overhead as 100% + overhead% in 1ppm units. 3976 */ 3977 int drm_dp_bw_overhead(int lane_count, int hactive, 3978 int dsc_slice_count, 3979 int bpp_x16, unsigned long flags) 3980 { 3981 int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8; 3982 bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST; 3983 u32 overhead = 1000000; 3984 int symbol_cycles; 3985 3986 /* 3987 * DP Standard v2.1 2.6.4.1 3988 * SSC downspread and ref clock variation margin: 3989 * 5300ppm + 300ppm ~ 0.6% 3990 */ 3991 if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK) 3992 overhead += 6000; 3993 3994 /* 3995 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4: 3996 * FEC symbol insertions for 8b/10b channel coding: 3997 * After each 250 data symbols on 2-4 lanes: 3998 * 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block) 3999 * After each 2 x 250 data symbols on 1 lane: 4000 * 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block) 4001 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks: 4002 * 256 * 256 bytes + 1 FEC_PM 4003 * or 4004 * 128 * 512 bytes + 1 FEC_PM 4005 * (256 * 6 + 1) / (256 * 250) = 2.4015625 % 4006 */ 4007 if (flags & DRM_DP_BW_OVERHEAD_FEC) 4008 overhead += 24016; 4009 4010 /* 4011 * DP Standard v2.1 2.7.9, 5.9.7 4012 * The FEC overhead for UHBR is accounted for in its 96.71% channel 4013 * coding efficiency. 4014 */ 4015 WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) && 4016 (flags & DRM_DP_BW_OVERHEAD_FEC)); 4017 4018 if (flags & DRM_DP_BW_OVERHEAD_DSC) 4019 symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive, 4020 dsc_slice_count, 4021 bpp_x16, symbol_size, 4022 is_mst); 4023 else 4024 symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive, 4025 bpp_x16, symbol_size, 4026 is_mst); 4027 4028 return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count, 4029 overhead * 16), 4030 hactive * bpp_x16); 4031 } 4032 EXPORT_SYMBOL(drm_dp_bw_overhead); 4033 4034 /** 4035 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency 4036 * @is_uhbr: Whether the link has a 128b/132b channel coding 4037 * 4038 * Return the channel coding efficiency of the given DP link type, which is 4039 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes 4040 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead 4041 * and for 128b/132b any link or PHY level control symbol insertion overhead 4042 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the 4043 * corresponding FEC overhead is BW allocation specific, included in the value 4044 * returned by drm_dp_bw_overhead(). 4045 * 4046 * Returns the efficiency in the 100%/coding-overhead% ratio in 4047 * 1ppm units. 4048 */ 4049 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr) 4050 { 4051 if (is_uhbr) 4052 return 967100; 4053 else 4054 /* 4055 * Note that on 8b/10b MST the efficiency is only 4056 * 78.75% due to the 1 out of 64 MTPH packet overhead, 4057 * not accounted for here. 4058 */ 4059 return 800000; 4060 } 4061 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency); 4062