xref: /linux/drivers/gpu/drm/display/drm_dp_helper.c (revision 73b7fd4b209263a92726daca6453a37ecb89eb9d)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/dynamic_debug.h>
26 #include <linux/errno.h>
27 #include <linux/i2c.h>
28 #include <linux/init.h>
29 #include <linux/iopoll.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/seq_file.h>
34 #include <linux/string_helpers.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_dp_mst_helper.h>
38 #include <drm/drm_edid.h>
39 #include <drm/drm_fixed.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_vblank.h>
42 #include <drm/drm_panel.h>
43 
44 #include "drm_dp_helper_internal.h"
45 
46 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
47 			"DRM_UT_CORE",
48 			"DRM_UT_DRIVER",
49 			"DRM_UT_KMS",
50 			"DRM_UT_PRIME",
51 			"DRM_UT_ATOMIC",
52 			"DRM_UT_VBL",
53 			"DRM_UT_STATE",
54 			"DRM_UT_LEASE",
55 			"DRM_UT_DP",
56 			"DRM_UT_DRMRES");
57 
58 struct dp_aux_backlight {
59 	struct backlight_device *base;
60 	struct drm_dp_aux *aux;
61 	struct drm_edp_backlight_info info;
62 	bool enabled;
63 };
64 
65 /**
66  * DOC: dp helpers
67  *
68  * These functions contain some common logic and helpers at various abstraction
69  * levels to deal with Display Port sink devices and related things like DP aux
70  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
71  * blocks, ...
72  */
73 
74 /* Helpers for DP link training */
75 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
76 {
77 	return link_status[r - DP_LANE0_1_STATUS];
78 }
79 
80 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
81 			     int lane)
82 {
83 	int i = DP_LANE0_1_STATUS + (lane >> 1);
84 	int s = (lane & 1) * 4;
85 	u8 l = dp_link_status(link_status, i);
86 
87 	return (l >> s) & 0xf;
88 }
89 
90 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
91 			  int lane_count)
92 {
93 	u8 lane_align;
94 	u8 lane_status;
95 	int lane;
96 
97 	lane_align = dp_link_status(link_status,
98 				    DP_LANE_ALIGN_STATUS_UPDATED);
99 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
100 		return false;
101 	for (lane = 0; lane < lane_count; lane++) {
102 		lane_status = dp_get_lane_status(link_status, lane);
103 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
104 			return false;
105 	}
106 	return true;
107 }
108 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
109 
110 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
111 			      int lane_count)
112 {
113 	int lane;
114 	u8 lane_status;
115 
116 	for (lane = 0; lane < lane_count; lane++) {
117 		lane_status = dp_get_lane_status(link_status, lane);
118 		if ((lane_status & DP_LANE_CR_DONE) == 0)
119 			return false;
120 	}
121 	return true;
122 }
123 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
124 
125 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
126 				     int lane)
127 {
128 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
129 	int s = ((lane & 1) ?
130 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
131 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
132 	u8 l = dp_link_status(link_status, i);
133 
134 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
135 }
136 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
137 
138 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
139 					  int lane)
140 {
141 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
142 	int s = ((lane & 1) ?
143 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
144 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
145 	u8 l = dp_link_status(link_status, i);
146 
147 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
148 }
149 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
150 
151 /* DP 2.0 128b/132b */
152 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
153 				   int lane)
154 {
155 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
156 	int s = ((lane & 1) ?
157 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
158 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
159 	u8 l = dp_link_status(link_status, i);
160 
161 	return (l >> s) & 0xf;
162 }
163 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
164 
165 /* DP 2.0 errata for 128b/132b */
166 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
167 					  int lane_count)
168 {
169 	u8 lane_align, lane_status;
170 	int lane;
171 
172 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
173 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
174 		return false;
175 
176 	for (lane = 0; lane < lane_count; lane++) {
177 		lane_status = dp_get_lane_status(link_status, lane);
178 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
179 			return false;
180 	}
181 	return true;
182 }
183 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
184 
185 /* DP 2.0 errata for 128b/132b */
186 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
187 					int lane_count)
188 {
189 	u8 lane_status;
190 	int lane;
191 
192 	for (lane = 0; lane < lane_count; lane++) {
193 		lane_status = dp_get_lane_status(link_status, lane);
194 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
195 			return false;
196 	}
197 	return true;
198 }
199 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
200 
201 /* DP 2.0 errata for 128b/132b */
202 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
203 {
204 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
205 
206 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
207 }
208 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
209 
210 /* DP 2.0 errata for 128b/132b */
211 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
212 {
213 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
214 
215 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
216 }
217 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
218 
219 /* DP 2.0 errata for 128b/132b */
220 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
221 {
222 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
223 
224 	return status & DP_128B132B_LT_FAILED;
225 }
226 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
227 
228 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
229 {
230 	if (rd_interval > 4)
231 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
232 			    aux->name, rd_interval);
233 
234 	if (rd_interval == 0)
235 		return 100;
236 
237 	return rd_interval * 4 * USEC_PER_MSEC;
238 }
239 
240 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
241 {
242 	if (rd_interval > 4)
243 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
244 			    aux->name, rd_interval);
245 
246 	if (rd_interval == 0)
247 		return 400;
248 
249 	return rd_interval * 4 * USEC_PER_MSEC;
250 }
251 
252 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
253 {
254 	switch (rd_interval) {
255 	default:
256 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
257 			    aux->name, rd_interval);
258 		fallthrough;
259 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
260 		return 400;
261 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
262 		return 4000;
263 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
264 		return 8000;
265 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
266 		return 12000;
267 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
268 		return 16000;
269 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
270 		return 32000;
271 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
272 		return 64000;
273 	}
274 }
275 
276 /*
277  * The link training delays are different for:
278  *
279  *  - Clock recovery vs. channel equalization
280  *  - DPRX vs. LTTPR
281  *  - 128b/132b vs. 8b/10b
282  *  - DPCD rev 1.3 vs. later
283  *
284  * Get the correct delay in us, reading DPCD if necessary.
285  */
286 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
287 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
288 {
289 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
290 	unsigned int offset;
291 	u8 rd_interval, mask;
292 
293 	if (dp_phy == DP_PHY_DPRX) {
294 		if (uhbr) {
295 			if (cr)
296 				return 100;
297 
298 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
299 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
300 			parse = __128b132b_channel_eq_delay_us;
301 		} else {
302 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
303 				return 100;
304 
305 			offset = DP_TRAINING_AUX_RD_INTERVAL;
306 			mask = DP_TRAINING_AUX_RD_MASK;
307 			if (cr)
308 				parse = __8b10b_clock_recovery_delay_us;
309 			else
310 				parse = __8b10b_channel_eq_delay_us;
311 		}
312 	} else {
313 		if (uhbr) {
314 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
315 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
316 			parse = __128b132b_channel_eq_delay_us;
317 		} else {
318 			if (cr)
319 				return 100;
320 
321 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
322 			mask = DP_TRAINING_AUX_RD_MASK;
323 			parse = __8b10b_channel_eq_delay_us;
324 		}
325 	}
326 
327 	if (offset < DP_RECEIVER_CAP_SIZE) {
328 		rd_interval = dpcd[offset];
329 	} else {
330 		if (drm_dp_dpcd_read_byte(aux, offset, &rd_interval) < 0) {
331 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
332 				    aux->name);
333 			/* arbitrary default delay */
334 			return 400;
335 		}
336 	}
337 
338 	return parse(aux, rd_interval & mask);
339 }
340 
341 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
342 				     enum drm_dp_phy dp_phy, bool uhbr)
343 {
344 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
345 }
346 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
347 
348 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
349 				 enum drm_dp_phy dp_phy, bool uhbr)
350 {
351 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
352 }
353 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
354 
355 /* Per DP 2.0 Errata */
356 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
357 {
358 	int unit;
359 	u8 val;
360 
361 	if (drm_dp_dpcd_read_byte(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) < 0) {
362 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
363 			aux->name);
364 		/* default to max */
365 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
366 	}
367 
368 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
369 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
370 
371 	return (val + 1) * unit * 1000;
372 }
373 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
374 
375 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
376 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
377 {
378 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
379 		DP_TRAINING_AUX_RD_MASK;
380 	int delay_us;
381 
382 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
383 		delay_us = 100;
384 	else
385 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
386 
387 	usleep_range(delay_us, delay_us * 2);
388 }
389 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
390 
391 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
392 						 u8 rd_interval)
393 {
394 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
395 
396 	usleep_range(delay_us, delay_us * 2);
397 }
398 
399 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
400 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
401 {
402 	__drm_dp_link_train_channel_eq_delay(aux,
403 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
404 					     DP_TRAINING_AUX_RD_MASK);
405 }
406 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
407 
408 /**
409  * drm_dp_phy_name() - Get the name of the given DP PHY
410  * @dp_phy: The DP PHY identifier
411  *
412  * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
413  * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
414  * non-NULL and valid.
415  *
416  * Returns: Name of the DP PHY.
417  */
418 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
419 {
420 	static const char * const phy_names[] = {
421 		[DP_PHY_DPRX] = "DPRX",
422 		[DP_PHY_LTTPR1] = "LTTPR 1",
423 		[DP_PHY_LTTPR2] = "LTTPR 2",
424 		[DP_PHY_LTTPR3] = "LTTPR 3",
425 		[DP_PHY_LTTPR4] = "LTTPR 4",
426 		[DP_PHY_LTTPR5] = "LTTPR 5",
427 		[DP_PHY_LTTPR6] = "LTTPR 6",
428 		[DP_PHY_LTTPR7] = "LTTPR 7",
429 		[DP_PHY_LTTPR8] = "LTTPR 8",
430 	};
431 
432 	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
433 	    WARN_ON(!phy_names[dp_phy]))
434 		return "<INVALID DP PHY>";
435 
436 	return phy_names[dp_phy];
437 }
438 EXPORT_SYMBOL(drm_dp_phy_name);
439 
440 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
441 {
442 	usleep_range(100, 200);
443 }
444 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
445 
446 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
447 {
448 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
449 }
450 
451 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
452 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
453 {
454 	u8 interval = dp_lttpr_phy_cap(phy_cap,
455 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
456 		      DP_TRAINING_AUX_RD_MASK;
457 
458 	__drm_dp_link_train_channel_eq_delay(aux, interval);
459 }
460 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
461 
462 /**
463  * drm_dp_lttpr_wake_timeout_setup() - Grant extended time for sink to wake up
464  * @aux: The DP AUX channel to use
465  * @transparent_mode: This is true if lttpr is in transparent mode
466  *
467  * This function checks if the sink needs any extended wake time, if it does
468  * it grants this request. Post this setup the source device can keep trying
469  * the Aux transaction till the granted wake timeout.
470  * If this function is not called all Aux transactions are expected to take
471  * a default of 1ms before they throw an error.
472  */
473 void drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux *aux, bool transparent_mode)
474 {
475 	u8 val = 1;
476 	int ret;
477 
478 	if (transparent_mode) {
479 		static const u8 timeout_mapping[] = {
480 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_1_MS] = 1,
481 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_20_MS] = 20,
482 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_40_MS] = 40,
483 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_60_MS] = 60,
484 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_80_MS] = 80,
485 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_100_MS] = 100,
486 		};
487 
488 		ret = drm_dp_dpcd_readb(aux, DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_REQUEST, &val);
489 		if (ret != 1) {
490 			drm_dbg_kms(aux->drm_dev,
491 				    "Failed to read Extended sleep wake timeout request\n");
492 			return;
493 		}
494 
495 		val = (val < sizeof(timeout_mapping) && timeout_mapping[val]) ?
496 			timeout_mapping[val] : 1;
497 
498 		if (val > 1)
499 			drm_dp_dpcd_writeb(aux,
500 					   DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_GRANT,
501 					   DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_GRANTED);
502 	} else {
503 		ret = drm_dp_dpcd_readb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &val);
504 		if (ret != 1) {
505 			drm_dbg_kms(aux->drm_dev,
506 				    "Failed to read Extended sleep wake timeout request\n");
507 			return;
508 		}
509 
510 		val = (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) ?
511 			(val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) * 10 : 1;
512 
513 		if (val > 1)
514 			drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT,
515 					   DP_EXTENDED_WAKE_TIMEOUT_GRANT);
516 	}
517 }
518 EXPORT_SYMBOL(drm_dp_lttpr_wake_timeout_setup);
519 
520 u8 drm_dp_link_rate_to_bw_code(int link_rate)
521 {
522 	switch (link_rate) {
523 	case 1000000:
524 		return DP_LINK_BW_10;
525 	case 1350000:
526 		return DP_LINK_BW_13_5;
527 	case 2000000:
528 		return DP_LINK_BW_20;
529 	default:
530 		/* Spec says link_bw = link_rate / 0.27Gbps */
531 		return link_rate / 27000;
532 	}
533 }
534 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
535 
536 int drm_dp_bw_code_to_link_rate(u8 link_bw)
537 {
538 	switch (link_bw) {
539 	case DP_LINK_BW_10:
540 		return 1000000;
541 	case DP_LINK_BW_13_5:
542 		return 1350000;
543 	case DP_LINK_BW_20:
544 		return 2000000;
545 	default:
546 		/* Spec says link_rate = link_bw * 0.27Gbps */
547 		return link_bw * 27000;
548 	}
549 }
550 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
551 
552 #define AUX_RETRY_INTERVAL 500 /* us */
553 
554 static inline void
555 drm_dp_dump_access(const struct drm_dp_aux *aux,
556 		   u8 request, uint offset, void *buffer, int ret)
557 {
558 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
559 
560 	if (ret > 0)
561 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
562 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
563 	else
564 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
565 			   aux->name, offset, arrow, ret);
566 }
567 
568 /**
569  * DOC: dp helpers
570  *
571  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
572  * independent access to AUX functionality. Drivers can take advantage of
573  * this by filling in the fields of the drm_dp_aux structure.
574  *
575  * Transactions are described using a hardware-independent drm_dp_aux_msg
576  * structure, which is passed into a driver's .transfer() implementation.
577  * Both native and I2C-over-AUX transactions are supported.
578  */
579 
580 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
581 			      unsigned int offset, void *buffer, size_t size)
582 {
583 	struct drm_dp_aux_msg msg;
584 	unsigned int retry, native_reply;
585 	int err = 0, ret = 0;
586 
587 	memset(&msg, 0, sizeof(msg));
588 	msg.address = offset;
589 	msg.request = request;
590 	msg.buffer = buffer;
591 	msg.size = size;
592 
593 	mutex_lock(&aux->hw_mutex);
594 
595 	/*
596 	 * If the device attached to the aux bus is powered down then there's
597 	 * no reason to attempt a transfer. Error out immediately.
598 	 */
599 	if (aux->powered_down) {
600 		ret = -EBUSY;
601 		goto unlock;
602 	}
603 
604 	/*
605 	 * The specification doesn't give any recommendation on how often to
606 	 * retry native transactions. We used to retry 7 times like for
607 	 * aux i2c transactions but real world devices this wasn't
608 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
609 	 */
610 	for (retry = 0; retry < 32; retry++) {
611 		if (ret != 0 && ret != -ETIMEDOUT) {
612 			usleep_range(AUX_RETRY_INTERVAL,
613 				     AUX_RETRY_INTERVAL + 100);
614 		}
615 
616 		ret = aux->transfer(aux, &msg);
617 		if (ret >= 0) {
618 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
619 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
620 				if (ret == size)
621 					goto unlock;
622 
623 				ret = -EPROTO;
624 			} else
625 				ret = -EIO;
626 		}
627 
628 		/*
629 		 * We want the error we return to be the error we received on
630 		 * the first transaction, since we may get a different error the
631 		 * next time we retry
632 		 */
633 		if (!err)
634 			err = ret;
635 	}
636 
637 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
638 		    aux->name, err);
639 	ret = err;
640 
641 unlock:
642 	mutex_unlock(&aux->hw_mutex);
643 	return ret;
644 }
645 
646 /**
647  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
648  * @aux: DisplayPort AUX channel (SST)
649  * @offset: address of the register to probe
650  *
651  * Probe the provided DPCD address by reading 1 byte from it. The function can
652  * be used to trigger some side-effect the read access has, like waking up the
653  * sink, without the need for the read-out value.
654  *
655  * Returns 0 if the read access suceeded, or a negative error code on failure.
656  */
657 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
658 {
659 	u8 buffer;
660 	int ret;
661 
662 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
663 	WARN_ON(ret == 0);
664 
665 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
666 
667 	return ret < 0 ? ret : 0;
668 }
669 EXPORT_SYMBOL(drm_dp_dpcd_probe);
670 
671 /**
672  * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
673  * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
674  *       and the function will be a no-op.
675  * @powered: true if powered; false if not
676  *
677  * If the endpoint device on the DP AUX bus is known to be powered down
678  * then this function can be called to make future transfers fail immediately
679  * instead of needing to time out.
680  *
681  * If this function is never called then a device defaults to being powered.
682  */
683 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
684 {
685 	if (!aux)
686 		return;
687 
688 	mutex_lock(&aux->hw_mutex);
689 	aux->powered_down = !powered;
690 	mutex_unlock(&aux->hw_mutex);
691 }
692 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
693 
694 /**
695  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
696  * @aux: DisplayPort AUX channel (SST or MST)
697  * @offset: address of the (first) register to read
698  * @buffer: buffer to store the register values
699  * @size: number of bytes in @buffer
700  *
701  * Returns the number of bytes transferred on success, or a negative error
702  * code on failure. -EIO is returned if the request was NAKed by the sink or
703  * if the retry count was exceeded. If not all bytes were transferred, this
704  * function returns -EPROTO. Errors from the underlying AUX channel transfer
705  * function, with the exception of -EBUSY (which causes the transaction to
706  * be retried), are propagated to the caller.
707  *
708  * In most of the cases you want to use drm_dp_dpcd_read_data() instead.
709  */
710 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
711 			 void *buffer, size_t size)
712 {
713 	int ret;
714 
715 	/*
716 	 * HP ZR24w corrupts the first DPCD access after entering power save
717 	 * mode. Eg. on a read, the entire buffer will be filled with the same
718 	 * byte. Do a throw away read to avoid corrupting anything we care
719 	 * about. Afterwards things will work correctly until the monitor
720 	 * gets woken up and subsequently re-enters power save mode.
721 	 *
722 	 * The user pressing any button on the monitor is enough to wake it
723 	 * up, so there is no particularly good place to do the workaround.
724 	 * We just have to do it before any DPCD access and hope that the
725 	 * monitor doesn't power down exactly after the throw away read.
726 	 */
727 	if (!aux->is_remote) {
728 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
729 		if (ret < 0)
730 			return ret;
731 	}
732 
733 	if (aux->is_remote)
734 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
735 	else
736 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
737 					 buffer, size);
738 
739 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
740 	return ret;
741 }
742 EXPORT_SYMBOL(drm_dp_dpcd_read);
743 
744 /**
745  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
746  * @aux: DisplayPort AUX channel (SST or MST)
747  * @offset: address of the (first) register to write
748  * @buffer: buffer containing the values to write
749  * @size: number of bytes in @buffer
750  *
751  * Returns the number of bytes transferred on success, or a negative error
752  * code on failure. -EIO is returned if the request was NAKed by the sink or
753  * if the retry count was exceeded. If not all bytes were transferred, this
754  * function returns -EPROTO. Errors from the underlying AUX channel transfer
755  * function, with the exception of -EBUSY (which causes the transaction to
756  * be retried), are propagated to the caller.
757  *
758  * In most of the cases you want to use drm_dp_dpcd_write_data() instead.
759  */
760 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
761 			  void *buffer, size_t size)
762 {
763 	int ret;
764 
765 	if (aux->is_remote)
766 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
767 	else
768 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
769 					 buffer, size);
770 
771 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
772 	return ret;
773 }
774 EXPORT_SYMBOL(drm_dp_dpcd_write);
775 
776 /**
777  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
778  * @aux: DisplayPort AUX channel
779  * @status: buffer to store the link status in (must be at least 6 bytes)
780  *
781  * Returns a negative error code on failure or 0 on success.
782  */
783 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
784 				 u8 status[DP_LINK_STATUS_SIZE])
785 {
786 	return drm_dp_dpcd_read_data(aux, DP_LANE0_1_STATUS, status,
787 				     DP_LINK_STATUS_SIZE);
788 }
789 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
790 
791 /**
792  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
793  * @aux: DisplayPort AUX channel
794  * @dp_phy: the DP PHY to get the link status for
795  * @link_status: buffer to return the status in
796  *
797  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
798  * layout of the returned @link_status matches the DPCD register layout of the
799  * DPRX PHY link status.
800  *
801  * Returns 0 if the information was read successfully or a negative error code
802  * on failure.
803  */
804 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
805 				     enum drm_dp_phy dp_phy,
806 				     u8 link_status[DP_LINK_STATUS_SIZE])
807 {
808 	int ret;
809 
810 	if (dp_phy == DP_PHY_DPRX)
811 		return drm_dp_dpcd_read_data(aux,
812 					     DP_LANE0_1_STATUS,
813 					     link_status,
814 					     DP_LINK_STATUS_SIZE);
815 
816 	ret = drm_dp_dpcd_read_data(aux,
817 				    DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
818 				    link_status,
819 				    DP_LINK_STATUS_SIZE - 1);
820 
821 	if (ret < 0)
822 		return ret;
823 
824 	/* Convert the LTTPR to the sink PHY link status layout */
825 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
826 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
827 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
828 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
833 
834 /**
835  * drm_dp_link_power_up() - power up a DisplayPort link
836  * @aux: DisplayPort AUX channel
837  * @revision: DPCD revision supported on the link
838  *
839  * Returns 0 on success or a negative error code on failure.
840  */
841 int drm_dp_link_power_up(struct drm_dp_aux *aux, unsigned char revision)
842 {
843 	u8 value;
844 	int err;
845 
846 	/* DP_SET_POWER register is only available on DPCD v1.1 and later */
847 	if (revision < DP_DPCD_REV_11)
848 		return 0;
849 
850 	err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
851 	if (err < 0)
852 		return err;
853 
854 	value &= ~DP_SET_POWER_MASK;
855 	value |= DP_SET_POWER_D0;
856 
857 	err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
858 	if (err < 0)
859 		return err;
860 
861 	/*
862 	 * According to the DP 1.1 specification, a "Sink Device must exit the
863 	 * power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
864 	 * Control Field" (register 0x600).
865 	 */
866 	usleep_range(1000, 2000);
867 
868 	return 0;
869 }
870 EXPORT_SYMBOL(drm_dp_link_power_up);
871 
872 /**
873  * drm_dp_link_power_down() - power down a DisplayPort link
874  * @aux: DisplayPort AUX channel
875  * @revision: DPCD revision supported on the link
876  *
877  * Returns 0 on success or a negative error code on failure.
878  */
879 int drm_dp_link_power_down(struct drm_dp_aux *aux, unsigned char revision)
880 {
881 	u8 value;
882 	int err;
883 
884 	/* DP_SET_POWER register is only available on DPCD v1.1 and later */
885 	if (revision < DP_DPCD_REV_11)
886 		return 0;
887 
888 	err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
889 	if (err < 0)
890 		return err;
891 
892 	value &= ~DP_SET_POWER_MASK;
893 	value |= DP_SET_POWER_D3;
894 
895 	err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
896 	if (err < 0)
897 		return err;
898 
899 	return 0;
900 }
901 EXPORT_SYMBOL(drm_dp_link_power_down);
902 
903 static int read_payload_update_status(struct drm_dp_aux *aux)
904 {
905 	int ret;
906 	u8 status;
907 
908 	ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
909 	if (ret < 0)
910 		return ret;
911 
912 	return status;
913 }
914 
915 /**
916  * drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table
917  * @aux: DisplayPort AUX channel
918  * @vcpid: Virtual Channel Payload ID
919  * @start_time_slot: Starting time slot
920  * @time_slot_count: Time slot count
921  *
922  * Write the Virtual Channel payload allocation table, checking the payload
923  * update status and retrying as necessary.
924  *
925  * Returns:
926  * 0 on success, negative error otherwise
927  */
928 int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux,
929 			      int vcpid, u8 start_time_slot, u8 time_slot_count)
930 {
931 	u8 payload_alloc[3], status;
932 	int ret;
933 	int retries = 0;
934 
935 	drm_dp_dpcd_write_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
936 			       DP_PAYLOAD_TABLE_UPDATED);
937 
938 	payload_alloc[0] = vcpid;
939 	payload_alloc[1] = start_time_slot;
940 	payload_alloc[2] = time_slot_count;
941 
942 	ret = drm_dp_dpcd_write_data(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
943 	if (ret < 0) {
944 		drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret);
945 		goto fail;
946 	}
947 
948 retry:
949 	ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
950 	if (ret < 0) {
951 		drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret);
952 		goto fail;
953 	}
954 
955 	if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
956 		retries++;
957 		if (retries < 20) {
958 			usleep_range(10000, 20000);
959 			goto retry;
960 		}
961 		drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n",
962 			    status);
963 		ret = -EINVAL;
964 		goto fail;
965 	}
966 	ret = 0;
967 fail:
968 	return ret;
969 }
970 EXPORT_SYMBOL(drm_dp_dpcd_write_payload);
971 
972 /**
973  * drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table
974  * @aux: DisplayPort AUX channel
975  *
976  * Clear the entire VC Payload ID table.
977  *
978  * Returns: 0 on success, negative error code on errors.
979  */
980 int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux)
981 {
982 	return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f);
983 }
984 EXPORT_SYMBOL(drm_dp_dpcd_clear_payload);
985 
986 /**
987  * drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status
988  * @aux: DisplayPort AUX channel
989  * @timeout_ms: Timeout in ms
990  *
991  * Try waiting for the sink to finish updating its payload table by polling for
992  * the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms
993  * milliseconds, defaulting to 3000 ms if 0.
994  *
995  * Returns:
996  * 0 if the ACT was handled in time, negative error code on failure.
997  */
998 int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms)
999 {
1000 	int ret, status;
1001 
1002 	/* default to 3 seconds, this is arbitrary */
1003 	timeout_ms = timeout_ms ?: 3000;
1004 
1005 	ret = readx_poll_timeout(read_payload_update_status, aux, status,
1006 				 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
1007 				 200, timeout_ms * USEC_PER_MSEC);
1008 	if (ret < 0 && status >= 0) {
1009 		drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n",
1010 			timeout_ms, status);
1011 		return -EINVAL;
1012 	} else if (status < 0) {
1013 		/*
1014 		 * Failure here isn't unexpected - the hub may have
1015 		 * just been unplugged
1016 		 */
1017 		drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status);
1018 		return status;
1019 	}
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled);
1024 
1025 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
1026 {
1027 	/* FIXME: get rid of drm_edid_raw() */
1028 	const struct edid *edid = drm_edid_raw(drm_edid);
1029 
1030 	return edid && edid->revision >= 4 &&
1031 		edid->input & DRM_EDID_INPUT_DIGITAL &&
1032 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
1033 }
1034 
1035 /**
1036  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
1037  * @dpcd: DisplayPort configuration data
1038  * @port_cap: port capabilities
1039  * @type: port type to be checked. Can be:
1040  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
1041  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
1042  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
1043  *
1044  * Caveat: Only works with DPCD 1.1+ port caps.
1045  *
1046  * Returns: whether the downstream facing port matches the type.
1047  */
1048 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1049 			       const u8 port_cap[4], u8 type)
1050 {
1051 	return drm_dp_is_branch(dpcd) &&
1052 		dpcd[DP_DPCD_REV] >= 0x11 &&
1053 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
1054 }
1055 EXPORT_SYMBOL(drm_dp_downstream_is_type);
1056 
1057 /**
1058  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
1059  * @dpcd: DisplayPort configuration data
1060  * @port_cap: port capabilities
1061  * @drm_edid: EDID
1062  *
1063  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
1064  */
1065 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1066 			       const u8 port_cap[4],
1067 			       const struct drm_edid *drm_edid)
1068 {
1069 	if (dpcd[DP_DPCD_REV] < 0x11) {
1070 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1071 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1072 			return true;
1073 		default:
1074 			return false;
1075 		}
1076 	}
1077 
1078 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1079 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1080 		if (is_edid_digital_input_dp(drm_edid))
1081 			return false;
1082 		fallthrough;
1083 	case DP_DS_PORT_TYPE_DVI:
1084 	case DP_DS_PORT_TYPE_HDMI:
1085 		return true;
1086 	default:
1087 		return false;
1088 	}
1089 }
1090 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
1091 
1092 /**
1093  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
1094  * @aux: DisplayPort AUX channel
1095  * @real_edid_checksum: real edid checksum for the last block
1096  *
1097  * Returns:
1098  * True on success
1099  */
1100 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
1101 				    u8 real_edid_checksum)
1102 {
1103 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
1104 
1105 	if (drm_dp_dpcd_read_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1106 				  &auto_test_req) < 0) {
1107 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1108 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1109 		return false;
1110 	}
1111 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
1112 
1113 	if (drm_dp_dpcd_read_byte(aux, DP_TEST_REQUEST, &link_edid_read) < 0) {
1114 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1115 			aux->name, DP_TEST_REQUEST);
1116 		return false;
1117 	}
1118 	link_edid_read &= DP_TEST_LINK_EDID_READ;
1119 
1120 	if (!auto_test_req || !link_edid_read) {
1121 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
1122 			    aux->name);
1123 		return false;
1124 	}
1125 
1126 	if (drm_dp_dpcd_write_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1127 				   auto_test_req) < 0) {
1128 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1129 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1130 		return false;
1131 	}
1132 
1133 	/* send back checksum for the last edid extension block data */
1134 	if (drm_dp_dpcd_write_byte(aux, DP_TEST_EDID_CHECKSUM,
1135 				   real_edid_checksum) < 0) {
1136 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1137 			aux->name, DP_TEST_EDID_CHECKSUM);
1138 		return false;
1139 	}
1140 
1141 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
1142 	if (drm_dp_dpcd_write_byte(aux, DP_TEST_RESPONSE, test_resp) < 0) {
1143 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1144 			aux->name, DP_TEST_RESPONSE);
1145 		return false;
1146 	}
1147 
1148 	return true;
1149 }
1150 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
1151 
1152 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
1153 {
1154 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
1155 
1156 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
1157 		port_count = 4;
1158 
1159 	return port_count;
1160 }
1161 
1162 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
1163 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
1164 {
1165 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
1166 	int ret;
1167 
1168 	/*
1169 	 * Prior to DP1.3 the bit represented by
1170 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
1171 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
1172 	 * the true capability of the panel. The only way to check is to
1173 	 * then compare 0000h and 2200h.
1174 	 */
1175 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
1176 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
1177 		return 0;
1178 
1179 	ret = drm_dp_dpcd_read_data(aux, DP_DP13_DPCD_REV, &dpcd_ext,
1180 				    sizeof(dpcd_ext));
1181 	if (ret < 0)
1182 		return ret;
1183 
1184 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
1185 		drm_dbg_kms(aux->drm_dev,
1186 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
1187 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
1188 		return 0;
1189 	}
1190 
1191 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
1192 		return 0;
1193 
1194 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1195 
1196 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
1197 
1198 	return 0;
1199 }
1200 
1201 /**
1202  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
1203  * available
1204  * @aux: DisplayPort AUX channel
1205  * @dpcd: Buffer to store the resulting DPCD in
1206  *
1207  * Attempts to read the base DPCD caps for @aux. Additionally, this function
1208  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
1209  * present.
1210  *
1211  * Returns: %0 if the DPCD was read successfully, negative error code
1212  * otherwise.
1213  */
1214 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
1215 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
1216 {
1217 	int ret;
1218 
1219 	ret = drm_dp_dpcd_read_data(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
1220 	if (ret < 0)
1221 		return ret;
1222 	if (dpcd[DP_DPCD_REV] == 0)
1223 		return -EIO;
1224 
1225 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
1226 	if (ret < 0)
1227 		return ret;
1228 
1229 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1230 
1231 	return ret;
1232 }
1233 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
1234 
1235 /**
1236  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
1237  * @aux: DisplayPort AUX channel
1238  * @dpcd: A cached copy of the port's DPCD
1239  * @downstream_ports: buffer to store the downstream port info in
1240  *
1241  * See also:
1242  * drm_dp_downstream_max_clock()
1243  * drm_dp_downstream_max_bpc()
1244  *
1245  * Returns: 0 if either the downstream port info was read successfully or
1246  * there was no downstream info to read, or a negative error code otherwise.
1247  */
1248 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1249 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1250 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1251 {
1252 	int ret;
1253 	u8 len;
1254 
1255 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1256 
1257 	/* No downstream info to read */
1258 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1259 		return 0;
1260 
1261 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1262 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1263 	 * some branches do it we need to handle it regardless.
1264 	 */
1265 	len = drm_dp_downstream_port_count(dpcd);
1266 	if (!len)
1267 		return 0;
1268 
1269 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1270 		len *= 4;
1271 
1272 	ret = drm_dp_dpcd_read_data(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1273 	if (ret < 0)
1274 		return ret;
1275 
1276 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1277 
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1281 
1282 /**
1283  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1284  * @dpcd: DisplayPort configuration data
1285  * @port_cap: port capabilities
1286  *
1287  * Returns: Downstream facing port max dot clock in kHz on success,
1288  * or 0 if max clock not defined
1289  */
1290 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1291 				   const u8 port_cap[4])
1292 {
1293 	if (!drm_dp_is_branch(dpcd))
1294 		return 0;
1295 
1296 	if (dpcd[DP_DPCD_REV] < 0x11)
1297 		return 0;
1298 
1299 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1300 	case DP_DS_PORT_TYPE_VGA:
1301 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1302 			return 0;
1303 		return port_cap[1] * 8000;
1304 	default:
1305 		return 0;
1306 	}
1307 }
1308 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1309 
1310 /**
1311  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1312  * @dpcd: DisplayPort configuration data
1313  * @port_cap: port capabilities
1314  * @drm_edid: EDID
1315  *
1316  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1317  * or 0 if max TMDS clock not defined
1318  */
1319 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1320 				     const u8 port_cap[4],
1321 				     const struct drm_edid *drm_edid)
1322 {
1323 	if (!drm_dp_is_branch(dpcd))
1324 		return 0;
1325 
1326 	if (dpcd[DP_DPCD_REV] < 0x11) {
1327 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1328 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1329 			return 165000;
1330 		default:
1331 			return 0;
1332 		}
1333 	}
1334 
1335 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1336 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1337 		if (is_edid_digital_input_dp(drm_edid))
1338 			return 0;
1339 		/*
1340 		 * It's left up to the driver to check the
1341 		 * DP dual mode adapter's max TMDS clock.
1342 		 *
1343 		 * Unfortunately it looks like branch devices
1344 		 * may not fordward that the DP dual mode i2c
1345 		 * access so we just usually get i2c nak :(
1346 		 */
1347 		fallthrough;
1348 	case DP_DS_PORT_TYPE_HDMI:
1349 		 /*
1350 		  * We should perhaps assume 165 MHz when detailed cap
1351 		  * info is not available. But looks like many typical
1352 		  * branch devices fall into that category and so we'd
1353 		  * probably end up with users complaining that they can't
1354 		  * get high resolution modes with their favorite dongle.
1355 		  *
1356 		  * So let's limit to 300 MHz instead since DPCD 1.4
1357 		  * HDMI 2.0 DFPs are required to have the detailed cap
1358 		  * info. So it's more likely we're dealing with a HDMI 1.4
1359 		  * compatible* device here.
1360 		  */
1361 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1362 			return 300000;
1363 		return port_cap[1] * 2500;
1364 	case DP_DS_PORT_TYPE_DVI:
1365 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1366 			return 165000;
1367 		/* FIXME what to do about DVI dual link? */
1368 		return port_cap[1] * 2500;
1369 	default:
1370 		return 0;
1371 	}
1372 }
1373 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1374 
1375 /**
1376  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1377  * @dpcd: DisplayPort configuration data
1378  * @port_cap: port capabilities
1379  * @drm_edid: EDID
1380  *
1381  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1382  * or 0 if max TMDS clock not defined
1383  */
1384 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1385 				     const u8 port_cap[4],
1386 				     const struct drm_edid *drm_edid)
1387 {
1388 	if (!drm_dp_is_branch(dpcd))
1389 		return 0;
1390 
1391 	if (dpcd[DP_DPCD_REV] < 0x11) {
1392 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1393 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1394 			return 25000;
1395 		default:
1396 			return 0;
1397 		}
1398 	}
1399 
1400 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1401 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1402 		if (is_edid_digital_input_dp(drm_edid))
1403 			return 0;
1404 		fallthrough;
1405 	case DP_DS_PORT_TYPE_DVI:
1406 	case DP_DS_PORT_TYPE_HDMI:
1407 		/*
1408 		 * Unclear whether the protocol converter could
1409 		 * utilize pixel replication. Assume it won't.
1410 		 */
1411 		return 25000;
1412 	default:
1413 		return 0;
1414 	}
1415 }
1416 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1417 
1418 /**
1419  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1420  *                               bits per component
1421  * @dpcd: DisplayPort configuration data
1422  * @port_cap: downstream facing port capabilities
1423  * @drm_edid: EDID
1424  *
1425  * Returns: Max bpc on success or 0 if max bpc not defined
1426  */
1427 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1428 			      const u8 port_cap[4],
1429 			      const struct drm_edid *drm_edid)
1430 {
1431 	if (!drm_dp_is_branch(dpcd))
1432 		return 0;
1433 
1434 	if (dpcd[DP_DPCD_REV] < 0x11) {
1435 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1436 		case DP_DWN_STRM_PORT_TYPE_DP:
1437 			return 0;
1438 		default:
1439 			return 8;
1440 		}
1441 	}
1442 
1443 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1444 	case DP_DS_PORT_TYPE_DP:
1445 		return 0;
1446 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1447 		if (is_edid_digital_input_dp(drm_edid))
1448 			return 0;
1449 		fallthrough;
1450 	case DP_DS_PORT_TYPE_HDMI:
1451 	case DP_DS_PORT_TYPE_DVI:
1452 	case DP_DS_PORT_TYPE_VGA:
1453 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1454 			return 8;
1455 
1456 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1457 		case DP_DS_8BPC:
1458 			return 8;
1459 		case DP_DS_10BPC:
1460 			return 10;
1461 		case DP_DS_12BPC:
1462 			return 12;
1463 		case DP_DS_16BPC:
1464 			return 16;
1465 		default:
1466 			return 8;
1467 		}
1468 		break;
1469 	default:
1470 		return 8;
1471 	}
1472 }
1473 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1474 
1475 /**
1476  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1477  *                                       YCbCr 4:2:0 pass-through capability
1478  * @dpcd: DisplayPort configuration data
1479  * @port_cap: downstream facing port capabilities
1480  *
1481  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1482  */
1483 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1484 				       const u8 port_cap[4])
1485 {
1486 	if (!drm_dp_is_branch(dpcd))
1487 		return false;
1488 
1489 	if (dpcd[DP_DPCD_REV] < 0x13)
1490 		return false;
1491 
1492 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1493 	case DP_DS_PORT_TYPE_DP:
1494 		return true;
1495 	case DP_DS_PORT_TYPE_HDMI:
1496 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1497 			return false;
1498 
1499 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1500 	default:
1501 		return false;
1502 	}
1503 }
1504 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1505 
1506 /**
1507  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1508  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1509  * @dpcd: DisplayPort configuration data
1510  * @port_cap: downstream facing port capabilities
1511  *
1512  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1513  */
1514 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1515 					     const u8 port_cap[4])
1516 {
1517 	if (!drm_dp_is_branch(dpcd))
1518 		return false;
1519 
1520 	if (dpcd[DP_DPCD_REV] < 0x13)
1521 		return false;
1522 
1523 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1524 	case DP_DS_PORT_TYPE_HDMI:
1525 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1526 			return false;
1527 
1528 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1529 	default:
1530 		return false;
1531 	}
1532 }
1533 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1534 
1535 /**
1536  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1537  *                                               RGB->YCbCr conversion capability
1538  * @dpcd: DisplayPort configuration data
1539  * @port_cap: downstream facing port capabilities
1540  * @color_spc: Colorspace for which conversion cap is sought
1541  *
1542  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1543  * colorspace.
1544  */
1545 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1546 					       const u8 port_cap[4],
1547 					       u8 color_spc)
1548 {
1549 	if (!drm_dp_is_branch(dpcd))
1550 		return false;
1551 
1552 	if (dpcd[DP_DPCD_REV] < 0x13)
1553 		return false;
1554 
1555 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1556 	case DP_DS_PORT_TYPE_HDMI:
1557 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1558 			return false;
1559 
1560 		return port_cap[3] & color_spc;
1561 	default:
1562 		return false;
1563 	}
1564 }
1565 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1566 
1567 /**
1568  * drm_dp_downstream_mode() - return a mode for downstream facing port
1569  * @dev: DRM device
1570  * @dpcd: DisplayPort configuration data
1571  * @port_cap: port capabilities
1572  *
1573  * Provides a suitable mode for downstream facing ports without EDID.
1574  *
1575  * Returns: A new drm_display_mode on success or NULL on failure
1576  */
1577 struct drm_display_mode *
1578 drm_dp_downstream_mode(struct drm_device *dev,
1579 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1580 		       const u8 port_cap[4])
1581 
1582 {
1583 	u8 vic;
1584 
1585 	if (!drm_dp_is_branch(dpcd))
1586 		return NULL;
1587 
1588 	if (dpcd[DP_DPCD_REV] < 0x11)
1589 		return NULL;
1590 
1591 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1592 	case DP_DS_PORT_TYPE_NON_EDID:
1593 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1594 		case DP_DS_NON_EDID_720x480i_60:
1595 			vic = 6;
1596 			break;
1597 		case DP_DS_NON_EDID_720x480i_50:
1598 			vic = 21;
1599 			break;
1600 		case DP_DS_NON_EDID_1920x1080i_60:
1601 			vic = 5;
1602 			break;
1603 		case DP_DS_NON_EDID_1920x1080i_50:
1604 			vic = 20;
1605 			break;
1606 		case DP_DS_NON_EDID_1280x720_60:
1607 			vic = 4;
1608 			break;
1609 		case DP_DS_NON_EDID_1280x720_50:
1610 			vic = 19;
1611 			break;
1612 		default:
1613 			return NULL;
1614 		}
1615 		return drm_display_mode_from_cea_vic(dev, vic);
1616 	default:
1617 		return NULL;
1618 	}
1619 }
1620 EXPORT_SYMBOL(drm_dp_downstream_mode);
1621 
1622 /**
1623  * drm_dp_downstream_id() - identify branch device
1624  * @aux: DisplayPort AUX channel
1625  * @id: DisplayPort branch device id
1626  *
1627  * Returns branch device id on success or NULL on failure
1628  */
1629 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1630 {
1631 	return drm_dp_dpcd_read_data(aux, DP_BRANCH_ID, id, 6);
1632 }
1633 EXPORT_SYMBOL(drm_dp_downstream_id);
1634 
1635 /**
1636  * drm_dp_downstream_debug() - debug DP branch devices
1637  * @m: pointer for debugfs file
1638  * @dpcd: DisplayPort configuration data
1639  * @port_cap: port capabilities
1640  * @drm_edid: EDID
1641  * @aux: DisplayPort AUX channel
1642  *
1643  */
1644 void drm_dp_downstream_debug(struct seq_file *m,
1645 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1646 			     const u8 port_cap[4],
1647 			     const struct drm_edid *drm_edid,
1648 			     struct drm_dp_aux *aux)
1649 {
1650 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1651 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1652 	int clk;
1653 	int bpc;
1654 	char id[7];
1655 	int len;
1656 	uint8_t rev[2];
1657 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1658 	bool branch_device = drm_dp_is_branch(dpcd);
1659 
1660 	seq_printf(m, "\tDP branch device present: %s\n",
1661 		   str_yes_no(branch_device));
1662 
1663 	if (!branch_device)
1664 		return;
1665 
1666 	switch (type) {
1667 	case DP_DS_PORT_TYPE_DP:
1668 		seq_puts(m, "\t\tType: DisplayPort\n");
1669 		break;
1670 	case DP_DS_PORT_TYPE_VGA:
1671 		seq_puts(m, "\t\tType: VGA\n");
1672 		break;
1673 	case DP_DS_PORT_TYPE_DVI:
1674 		seq_puts(m, "\t\tType: DVI\n");
1675 		break;
1676 	case DP_DS_PORT_TYPE_HDMI:
1677 		seq_puts(m, "\t\tType: HDMI\n");
1678 		break;
1679 	case DP_DS_PORT_TYPE_NON_EDID:
1680 		seq_puts(m, "\t\tType: others without EDID support\n");
1681 		break;
1682 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1683 		seq_puts(m, "\t\tType: DP++\n");
1684 		break;
1685 	case DP_DS_PORT_TYPE_WIRELESS:
1686 		seq_puts(m, "\t\tType: Wireless\n");
1687 		break;
1688 	default:
1689 		seq_puts(m, "\t\tType: N/A\n");
1690 	}
1691 
1692 	memset(id, 0, sizeof(id));
1693 	drm_dp_downstream_id(aux, id);
1694 	seq_printf(m, "\t\tID: %s\n", id);
1695 
1696 	len = drm_dp_dpcd_read_data(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1697 	if (!len)
1698 		seq_printf(m, "\t\tHW: %d.%d\n",
1699 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1700 
1701 	len = drm_dp_dpcd_read_data(aux, DP_BRANCH_SW_REV, rev, 2);
1702 	if (!len)
1703 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1704 
1705 	if (detailed_cap_info) {
1706 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1707 		if (clk > 0)
1708 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1709 
1710 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1711 		if (clk > 0)
1712 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1713 
1714 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1715 		if (clk > 0)
1716 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1717 
1718 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1719 
1720 		if (bpc > 0)
1721 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1722 	}
1723 }
1724 EXPORT_SYMBOL(drm_dp_downstream_debug);
1725 
1726 /**
1727  * drm_dp_subconnector_type() - get DP branch device type
1728  * @dpcd: DisplayPort configuration data
1729  * @port_cap: port capabilities
1730  */
1731 enum drm_mode_subconnector
1732 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1733 			 const u8 port_cap[4])
1734 {
1735 	int type;
1736 	if (!drm_dp_is_branch(dpcd))
1737 		return DRM_MODE_SUBCONNECTOR_Native;
1738 	/* DP 1.0 approach */
1739 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1740 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1741 		       DP_DWN_STRM_PORT_TYPE_MASK;
1742 
1743 		switch (type) {
1744 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1745 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1746 			return DRM_MODE_SUBCONNECTOR_DVID;
1747 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1748 			/* Can be VGA or DVI-A, VGA is more popular */
1749 			return DRM_MODE_SUBCONNECTOR_VGA;
1750 		case DP_DWN_STRM_PORT_TYPE_DP:
1751 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1752 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1753 		default:
1754 			return DRM_MODE_SUBCONNECTOR_Unknown;
1755 		}
1756 	}
1757 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1758 
1759 	switch (type) {
1760 	case DP_DS_PORT_TYPE_DP:
1761 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1762 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1763 	case DP_DS_PORT_TYPE_VGA:
1764 		return DRM_MODE_SUBCONNECTOR_VGA;
1765 	case DP_DS_PORT_TYPE_DVI:
1766 		return DRM_MODE_SUBCONNECTOR_DVID;
1767 	case DP_DS_PORT_TYPE_HDMI:
1768 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1769 	case DP_DS_PORT_TYPE_WIRELESS:
1770 		return DRM_MODE_SUBCONNECTOR_Wireless;
1771 	case DP_DS_PORT_TYPE_NON_EDID:
1772 	default:
1773 		return DRM_MODE_SUBCONNECTOR_Unknown;
1774 	}
1775 }
1776 EXPORT_SYMBOL(drm_dp_subconnector_type);
1777 
1778 /**
1779  * drm_dp_set_subconnector_property - set subconnector for DP connector
1780  * @connector: connector to set property on
1781  * @status: connector status
1782  * @dpcd: DisplayPort configuration data
1783  * @port_cap: port capabilities
1784  *
1785  * Called by a driver on every detect event.
1786  */
1787 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1788 				      enum drm_connector_status status,
1789 				      const u8 *dpcd,
1790 				      const u8 port_cap[4])
1791 {
1792 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1793 
1794 	if (status == connector_status_connected)
1795 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1796 	drm_object_property_set_value(&connector->base,
1797 			connector->dev->mode_config.dp_subconnector_property,
1798 			subconnector);
1799 }
1800 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1801 
1802 /**
1803  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1804  * count
1805  * @connector: The DRM connector to check
1806  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1807  * @desc: A cached copy of the connector's DP descriptor
1808  *
1809  * See also: drm_dp_read_sink_count()
1810  *
1811  * Returns: %True if the (e)DP connector has a valid sink count that should
1812  * be probed, %false otherwise.
1813  */
1814 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1815 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1816 				const struct drm_dp_desc *desc)
1817 {
1818 	/* Some eDP panels don't set a valid value for the sink count */
1819 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1820 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1821 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1822 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1823 }
1824 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1825 
1826 /**
1827  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1828  * @aux: The DP AUX channel to use
1829  *
1830  * See also: drm_dp_read_sink_count_cap()
1831  *
1832  * Returns: The current sink count reported by @aux, or a negative error code
1833  * otherwise.
1834  */
1835 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1836 {
1837 	u8 count;
1838 	int ret;
1839 
1840 	ret = drm_dp_dpcd_read_byte(aux, DP_SINK_COUNT, &count);
1841 	if (ret < 0)
1842 		return ret;
1843 
1844 	return DP_GET_SINK_COUNT(count);
1845 }
1846 EXPORT_SYMBOL(drm_dp_read_sink_count);
1847 
1848 /*
1849  * I2C-over-AUX implementation
1850  */
1851 
1852 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1853 {
1854 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1855 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1856 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1857 	       I2C_FUNC_10BIT_ADDR;
1858 }
1859 
1860 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1861 {
1862 	/*
1863 	 * In case of i2c defer or short i2c ack reply to a write,
1864 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1865 	 * rest of the message
1866 	 */
1867 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1868 		msg->request &= DP_AUX_I2C_MOT;
1869 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1870 	}
1871 }
1872 
1873 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1874 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1875 #define AUX_STOP_LEN 4
1876 #define AUX_CMD_LEN 4
1877 #define AUX_ADDRESS_LEN 20
1878 #define AUX_REPLY_PAD_LEN 4
1879 #define AUX_LENGTH_LEN 8
1880 
1881 /*
1882  * Calculate the duration of the AUX request/reply in usec. Gives the
1883  * "best" case estimate, ie. successful while as short as possible.
1884  */
1885 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1886 {
1887 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1888 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1889 
1890 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1891 		len += msg->size * 8;
1892 
1893 	return len;
1894 }
1895 
1896 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1897 {
1898 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1899 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1900 
1901 	/*
1902 	 * For read we expect what was asked. For writes there will
1903 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1904 	 */
1905 	if (msg->request & DP_AUX_I2C_READ)
1906 		len += msg->size * 8;
1907 
1908 	return len;
1909 }
1910 
1911 #define I2C_START_LEN 1
1912 #define I2C_STOP_LEN 1
1913 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1914 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1915 
1916 /*
1917  * Calculate the length of the i2c transfer in usec, assuming
1918  * the i2c bus speed is as specified. Gives the "worst"
1919  * case estimate, ie. successful while as long as possible.
1920  * Doesn't account the "MOT" bit, and instead assumes each
1921  * message includes a START, ADDRESS and STOP. Neither does it
1922  * account for additional random variables such as clock stretching.
1923  */
1924 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1925 				   int i2c_speed_khz)
1926 {
1927 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1928 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1929 			     msg->size * I2C_DATA_LEN +
1930 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1931 }
1932 
1933 /*
1934  * Determine how many retries should be attempted to successfully transfer
1935  * the specified message, based on the estimated durations of the
1936  * i2c and AUX transfers.
1937  */
1938 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1939 			      int i2c_speed_khz)
1940 {
1941 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1942 		drm_dp_aux_reply_duration(msg);
1943 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1944 
1945 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1946 }
1947 
1948 /*
1949  * FIXME currently assumes 10 kHz as some real world devices seem
1950  * to require it. We should query/set the speed via DPCD if supported.
1951  */
1952 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1953 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1954 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1955 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1956 
1957 /*
1958  * Transfer a single I2C-over-AUX message and handle various error conditions,
1959  * retrying the transaction as appropriate.  It is assumed that the
1960  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1961  * reply field.
1962  *
1963  * Returns bytes transferred on success, or a negative error code on failure.
1964  */
1965 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1966 {
1967 	unsigned int retry, defer_i2c;
1968 	int ret;
1969 	/*
1970 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1971 	 * is required to retry at least seven times upon receiving AUX_DEFER
1972 	 * before giving up the AUX transaction.
1973 	 *
1974 	 * We also try to account for the i2c bus speed.
1975 	 */
1976 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1977 
1978 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1979 		ret = aux->transfer(aux, msg);
1980 		if (ret < 0) {
1981 			if (ret == -EBUSY)
1982 				continue;
1983 
1984 			/*
1985 			 * While timeouts can be errors, they're usually normal
1986 			 * behavior (for instance, when a driver tries to
1987 			 * communicate with a non-existent DisplayPort device).
1988 			 * Avoid spamming the kernel log with timeout errors.
1989 			 */
1990 			if (ret == -ETIMEDOUT)
1991 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1992 							aux->name);
1993 			else
1994 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1995 					    aux->name, ret);
1996 			return ret;
1997 		}
1998 
1999 
2000 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
2001 		case DP_AUX_NATIVE_REPLY_ACK:
2002 			/*
2003 			 * For I2C-over-AUX transactions this isn't enough, we
2004 			 * need to check for the I2C ACK reply.
2005 			 */
2006 			break;
2007 
2008 		case DP_AUX_NATIVE_REPLY_NACK:
2009 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
2010 				    aux->name, ret, msg->size);
2011 			return -EREMOTEIO;
2012 
2013 		case DP_AUX_NATIVE_REPLY_DEFER:
2014 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
2015 			/*
2016 			 * We could check for I2C bit rate capabilities and if
2017 			 * available adjust this interval. We could also be
2018 			 * more careful with DP-to-legacy adapters where a
2019 			 * long legacy cable may force very low I2C bit rates.
2020 			 *
2021 			 * For now just defer for long enough to hopefully be
2022 			 * safe for all use-cases.
2023 			 */
2024 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2025 			continue;
2026 
2027 		default:
2028 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
2029 				aux->name, msg->reply);
2030 			return -EREMOTEIO;
2031 		}
2032 
2033 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
2034 		case DP_AUX_I2C_REPLY_ACK:
2035 			/*
2036 			 * Both native ACK and I2C ACK replies received. We
2037 			 * can assume the transfer was successful.
2038 			 */
2039 			if (ret != msg->size)
2040 				drm_dp_i2c_msg_write_status_update(msg);
2041 			return ret;
2042 
2043 		case DP_AUX_I2C_REPLY_NACK:
2044 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
2045 				    aux->name, ret, msg->size);
2046 			aux->i2c_nack_count++;
2047 			return -EREMOTEIO;
2048 
2049 		case DP_AUX_I2C_REPLY_DEFER:
2050 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
2051 			/* DP Compliance Test 4.2.2.5 Requirement:
2052 			 * Must have at least 7 retries for I2C defers on the
2053 			 * transaction to pass this test
2054 			 */
2055 			aux->i2c_defer_count++;
2056 			if (defer_i2c < 7)
2057 				defer_i2c++;
2058 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2059 			drm_dp_i2c_msg_write_status_update(msg);
2060 
2061 			continue;
2062 
2063 		default:
2064 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
2065 				aux->name, msg->reply);
2066 			return -EREMOTEIO;
2067 		}
2068 	}
2069 
2070 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
2071 	return -EREMOTEIO;
2072 }
2073 
2074 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
2075 				       const struct i2c_msg *i2c_msg)
2076 {
2077 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
2078 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
2079 	if (!(i2c_msg->flags & I2C_M_STOP))
2080 		msg->request |= DP_AUX_I2C_MOT;
2081 }
2082 
2083 /*
2084  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
2085  *
2086  * Returns an error code on failure, or a recommended transfer size on success.
2087  */
2088 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
2089 {
2090 	int err, ret = orig_msg->size;
2091 	struct drm_dp_aux_msg msg = *orig_msg;
2092 
2093 	while (msg.size > 0) {
2094 		err = drm_dp_i2c_do_msg(aux, &msg);
2095 		if (err <= 0)
2096 			return err == 0 ? -EPROTO : err;
2097 
2098 		if (err < msg.size && err < ret) {
2099 			drm_dbg_kms(aux->drm_dev,
2100 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
2101 				    aux->name, msg.size, err);
2102 			ret = err;
2103 		}
2104 
2105 		msg.size -= err;
2106 		msg.buffer += err;
2107 	}
2108 
2109 	return ret;
2110 }
2111 
2112 /*
2113  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
2114  * packets to be as large as possible. If not, the I2C transactions never
2115  * succeed. Hence the default is maximum.
2116  */
2117 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
2118 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
2119 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
2120 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
2121 
2122 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
2123 			   int num)
2124 {
2125 	struct drm_dp_aux *aux = adapter->algo_data;
2126 	unsigned int i, j;
2127 	unsigned transfer_size;
2128 	struct drm_dp_aux_msg msg;
2129 	int err = 0;
2130 
2131 	if (aux->powered_down)
2132 		return -EBUSY;
2133 
2134 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
2135 
2136 	memset(&msg, 0, sizeof(msg));
2137 
2138 	for (i = 0; i < num; i++) {
2139 		msg.address = msgs[i].addr;
2140 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2141 		/* Send a bare address packet to start the transaction.
2142 		 * Zero sized messages specify an address only (bare
2143 		 * address) transaction.
2144 		 */
2145 		msg.buffer = NULL;
2146 		msg.size = 0;
2147 		err = drm_dp_i2c_do_msg(aux, &msg);
2148 
2149 		/*
2150 		 * Reset msg.request in case in case it got
2151 		 * changed into a WRITE_STATUS_UPDATE.
2152 		 */
2153 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2154 
2155 		if (err < 0)
2156 			break;
2157 		/* We want each transaction to be as large as possible, but
2158 		 * we'll go to smaller sizes if the hardware gives us a
2159 		 * short reply.
2160 		 */
2161 		transfer_size = dp_aux_i2c_transfer_size;
2162 		for (j = 0; j < msgs[i].len; j += msg.size) {
2163 			msg.buffer = msgs[i].buf + j;
2164 			msg.size = min(transfer_size, msgs[i].len - j);
2165 
2166 			err = drm_dp_i2c_drain_msg(aux, &msg);
2167 
2168 			/*
2169 			 * Reset msg.request in case in case it got
2170 			 * changed into a WRITE_STATUS_UPDATE.
2171 			 */
2172 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2173 
2174 			if (err < 0)
2175 				break;
2176 			transfer_size = err;
2177 		}
2178 		if (err < 0)
2179 			break;
2180 	}
2181 	if (err >= 0)
2182 		err = num;
2183 	/* Send a bare address packet to close out the transaction.
2184 	 * Zero sized messages specify an address only (bare
2185 	 * address) transaction.
2186 	 */
2187 	msg.request &= ~DP_AUX_I2C_MOT;
2188 	msg.buffer = NULL;
2189 	msg.size = 0;
2190 	(void)drm_dp_i2c_do_msg(aux, &msg);
2191 
2192 	return err;
2193 }
2194 
2195 static const struct i2c_algorithm drm_dp_i2c_algo = {
2196 	.functionality = drm_dp_i2c_functionality,
2197 	.master_xfer = drm_dp_i2c_xfer,
2198 };
2199 
2200 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
2201 {
2202 	return container_of(i2c, struct drm_dp_aux, ddc);
2203 }
2204 
2205 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
2206 {
2207 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
2208 }
2209 
2210 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
2211 {
2212 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
2213 }
2214 
2215 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
2216 {
2217 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
2218 }
2219 
2220 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
2221 	.lock_bus = lock_bus,
2222 	.trylock_bus = trylock_bus,
2223 	.unlock_bus = unlock_bus,
2224 };
2225 
2226 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
2227 {
2228 	u8 buf, count;
2229 	int ret;
2230 
2231 	ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2232 	if (ret < 0)
2233 		return ret;
2234 
2235 	WARN_ON(!(buf & DP_TEST_SINK_START));
2236 
2237 	ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK_MISC, &buf);
2238 	if (ret < 0)
2239 		return ret;
2240 
2241 	count = buf & DP_TEST_COUNT_MASK;
2242 	if (count == aux->crc_count)
2243 		return -EAGAIN; /* No CRC yet */
2244 
2245 	aux->crc_count = count;
2246 
2247 	/*
2248 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2249 	 * per component (RGB or CrYCb).
2250 	 */
2251 	return drm_dp_dpcd_read_data(aux, DP_TEST_CRC_R_CR, crc, 6);
2252 }
2253 
2254 static void drm_dp_aux_crc_work(struct work_struct *work)
2255 {
2256 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2257 					      crc_work);
2258 	struct drm_crtc *crtc;
2259 	u8 crc_bytes[6];
2260 	uint32_t crcs[3];
2261 	int ret;
2262 
2263 	if (WARN_ON(!aux->crtc))
2264 		return;
2265 
2266 	crtc = aux->crtc;
2267 	while (crtc->crc.opened) {
2268 		drm_crtc_wait_one_vblank(crtc);
2269 		if (!crtc->crc.opened)
2270 			break;
2271 
2272 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2273 		if (ret == -EAGAIN) {
2274 			usleep_range(1000, 2000);
2275 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2276 		}
2277 
2278 		if (ret == -EAGAIN) {
2279 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2280 				    aux->name, ret);
2281 			continue;
2282 		} else if (ret) {
2283 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2284 			continue;
2285 		}
2286 
2287 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2288 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2289 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2290 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2291 	}
2292 }
2293 
2294 /**
2295  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2296  * @aux: DisplayPort AUX channel
2297  *
2298  * Used for remote aux channel in general. Merely initialize the crc work
2299  * struct.
2300  */
2301 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2302 {
2303 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2304 }
2305 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2306 
2307 /**
2308  * drm_dp_aux_init() - minimally initialise an aux channel
2309  * @aux: DisplayPort AUX channel
2310  *
2311  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2312  * the outside world, call drm_dp_aux_init() first. For drivers which are
2313  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2314  * &drm_connector), you must still call drm_dp_aux_register() once the connector
2315  * has been registered to allow userspace access to the auxiliary DP channel.
2316  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2317  * early as possible so that the &drm_device that corresponds to the AUX adapter
2318  * may be mentioned in debugging output from the DRM DP helpers.
2319  *
2320  * For devices which use a separate platform device for their AUX adapters, this
2321  * may be called as early as required by the driver.
2322  *
2323  */
2324 void drm_dp_aux_init(struct drm_dp_aux *aux)
2325 {
2326 	mutex_init(&aux->hw_mutex);
2327 	mutex_init(&aux->cec.lock);
2328 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2329 
2330 	aux->ddc.algo = &drm_dp_i2c_algo;
2331 	aux->ddc.algo_data = aux;
2332 	aux->ddc.retries = 3;
2333 
2334 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2335 }
2336 EXPORT_SYMBOL(drm_dp_aux_init);
2337 
2338 /**
2339  * drm_dp_aux_register() - initialise and register aux channel
2340  * @aux: DisplayPort AUX channel
2341  *
2342  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2343  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2344  * initialized. For devices which are grandparents of their AUX channels,
2345  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2346  * corresponds to @aux. For these devices, it's advised to call
2347  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2348  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2349  * Functions which don't follow this will likely Oops when
2350  * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2351  *
2352  * For devices where the AUX channel is a device that exists independently of
2353  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2354  * recommended to call drm_dp_aux_register() after a &drm_device has been
2355  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2356  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2357  * with the AUX channel (e.g. on bridge detach).
2358  *
2359  * Drivers which need to use the aux channel before either of the two points
2360  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2361  * channel before registration.
2362  *
2363  * Returns 0 on success or a negative error code on failure.
2364  */
2365 int drm_dp_aux_register(struct drm_dp_aux *aux)
2366 {
2367 	int ret;
2368 
2369 	WARN_ON_ONCE(!aux->drm_dev);
2370 
2371 	if (!aux->ddc.algo)
2372 		drm_dp_aux_init(aux);
2373 
2374 	aux->ddc.owner = THIS_MODULE;
2375 	aux->ddc.dev.parent = aux->dev;
2376 
2377 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2378 		sizeof(aux->ddc.name));
2379 
2380 	ret = drm_dp_aux_register_devnode(aux);
2381 	if (ret)
2382 		return ret;
2383 
2384 	ret = i2c_add_adapter(&aux->ddc);
2385 	if (ret) {
2386 		drm_dp_aux_unregister_devnode(aux);
2387 		return ret;
2388 	}
2389 
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(drm_dp_aux_register);
2393 
2394 /**
2395  * drm_dp_aux_unregister() - unregister an AUX adapter
2396  * @aux: DisplayPort AUX channel
2397  */
2398 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2399 {
2400 	drm_dp_aux_unregister_devnode(aux);
2401 	i2c_del_adapter(&aux->ddc);
2402 }
2403 EXPORT_SYMBOL(drm_dp_aux_unregister);
2404 
2405 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2406 
2407 /**
2408  * drm_dp_psr_setup_time() - PSR setup in time usec
2409  * @psr_cap: PSR capabilities from DPCD
2410  *
2411  * Returns:
2412  * PSR setup time for the panel in microseconds,  negative
2413  * error code on failure.
2414  */
2415 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2416 {
2417 	static const u16 psr_setup_time_us[] = {
2418 		PSR_SETUP_TIME(330),
2419 		PSR_SETUP_TIME(275),
2420 		PSR_SETUP_TIME(220),
2421 		PSR_SETUP_TIME(165),
2422 		PSR_SETUP_TIME(110),
2423 		PSR_SETUP_TIME(55),
2424 		PSR_SETUP_TIME(0),
2425 	};
2426 	int i;
2427 
2428 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2429 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2430 		return -EINVAL;
2431 
2432 	return psr_setup_time_us[i];
2433 }
2434 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2435 
2436 #undef PSR_SETUP_TIME
2437 
2438 /**
2439  * drm_dp_start_crc() - start capture of frame CRCs
2440  * @aux: DisplayPort AUX channel
2441  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2442  *
2443  * Returns 0 on success or a negative error code on failure.
2444  */
2445 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2446 {
2447 	u8 buf;
2448 	int ret;
2449 
2450 	ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2451 	if (ret < 0)
2452 		return ret;
2453 
2454 	ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2455 	if (ret < 0)
2456 		return ret;
2457 
2458 	aux->crc_count = 0;
2459 	aux->crtc = crtc;
2460 	schedule_work(&aux->crc_work);
2461 
2462 	return 0;
2463 }
2464 EXPORT_SYMBOL(drm_dp_start_crc);
2465 
2466 /**
2467  * drm_dp_stop_crc() - stop capture of frame CRCs
2468  * @aux: DisplayPort AUX channel
2469  *
2470  * Returns 0 on success or a negative error code on failure.
2471  */
2472 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2473 {
2474 	u8 buf;
2475 	int ret;
2476 
2477 	ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2478 	if (ret < 0)
2479 		return ret;
2480 
2481 	ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2482 	if (ret < 0)
2483 		return ret;
2484 
2485 	flush_work(&aux->crc_work);
2486 	aux->crtc = NULL;
2487 
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL(drm_dp_stop_crc);
2491 
2492 struct dpcd_quirk {
2493 	u8 oui[3];
2494 	u8 device_id[6];
2495 	bool is_branch;
2496 	u32 quirks;
2497 };
2498 
2499 #define OUI(first, second, third) { (first), (second), (third) }
2500 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2501 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2502 
2503 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2504 
2505 static const struct dpcd_quirk dpcd_quirk_list[] = {
2506 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2507 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2508 	/* LG LP140WF6-SPM1 eDP panel */
2509 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2510 	/* Apple panels need some additional handling to support PSR */
2511 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2512 	/* CH7511 seems to leave SINK_COUNT zeroed */
2513 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2514 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2515 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2516 	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2517 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2518 	/* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2519 	{ OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2520 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2521 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2522 };
2523 
2524 #undef OUI
2525 
2526 /*
2527  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2528  * ident. The quirk data is shared but it's up to the drivers to act on the
2529  * data.
2530  *
2531  * For now, only the OUI (first three bytes) is used, but this may be extended
2532  * to device identification string and hardware/firmware revisions later.
2533  */
2534 static u32
2535 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2536 {
2537 	const struct dpcd_quirk *quirk;
2538 	u32 quirks = 0;
2539 	int i;
2540 	u8 any_device[] = DEVICE_ID_ANY;
2541 
2542 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2543 		quirk = &dpcd_quirk_list[i];
2544 
2545 		if (quirk->is_branch != is_branch)
2546 			continue;
2547 
2548 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2549 			continue;
2550 
2551 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2552 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2553 			continue;
2554 
2555 		quirks |= quirk->quirks;
2556 	}
2557 
2558 	return quirks;
2559 }
2560 
2561 #undef DEVICE_ID_ANY
2562 #undef DEVICE_ID
2563 
2564 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2565 			     struct drm_dp_dpcd_ident *ident)
2566 {
2567 	return drm_dp_dpcd_read_data(aux, offset, ident, sizeof(*ident));
2568 }
2569 
2570 static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2571 			     const char *device_name, const struct drm_dp_desc *desc)
2572 {
2573 	const struct drm_dp_dpcd_ident *ident = &desc->ident;
2574 
2575 	drm_dbg_kms(aux->drm_dev,
2576 		    "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2577 		    aux->name, device_name,
2578 		    (int)sizeof(ident->oui), ident->oui,
2579 		    (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2580 		    ident->hw_rev >> 4, ident->hw_rev & 0xf,
2581 		    ident->sw_major_rev, ident->sw_minor_rev,
2582 		    desc->quirks);
2583 }
2584 
2585 /**
2586  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2587  * @aux: DisplayPort AUX channel
2588  * @desc: Device descriptor to fill from DPCD
2589  * @is_branch: true for branch devices, false for sink devices
2590  *
2591  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2592  * identification.
2593  *
2594  * Returns 0 on success or a negative error code on failure.
2595  */
2596 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2597 		     bool is_branch)
2598 {
2599 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2600 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2601 	int ret;
2602 
2603 	ret = drm_dp_read_ident(aux, offset, ident);
2604 	if (ret < 0)
2605 		return ret;
2606 
2607 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2608 
2609 	drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2610 
2611 	return 0;
2612 }
2613 EXPORT_SYMBOL(drm_dp_read_desc);
2614 
2615 /**
2616  * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2617  * @aux: DisplayPort AUX channel
2618  * @dp_phy: LTTPR PHY instance
2619  *
2620  * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2621  * with its details to dmesg.
2622  *
2623  * Returns 0 on success or a negative error code on failure.
2624  */
2625 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2626 {
2627 	struct drm_dp_desc desc = {};
2628 	int ret;
2629 
2630 	if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2631 		return -EINVAL;
2632 
2633 	ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2634 	if (ret < 0)
2635 		return ret;
2636 
2637 	drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2638 
2639 	return 0;
2640 }
2641 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2642 
2643 /**
2644  * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2645  * @dsc_dpcd: DSC capabilities from DPCD
2646  *
2647  * Returns the bpp precision supported by the DP sink.
2648  */
2649 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2650 {
2651 	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2652 
2653 	switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) {
2654 	case DP_DSC_BITS_PER_PIXEL_1_16:
2655 		return 16;
2656 	case DP_DSC_BITS_PER_PIXEL_1_8:
2657 		return 8;
2658 	case DP_DSC_BITS_PER_PIXEL_1_4:
2659 		return 4;
2660 	case DP_DSC_BITS_PER_PIXEL_1_2:
2661 		return 2;
2662 	case DP_DSC_BITS_PER_PIXEL_1_1:
2663 		return 1;
2664 	}
2665 
2666 	return 0;
2667 }
2668 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2669 
2670 /**
2671  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2672  * supported by the DSC sink.
2673  * @dsc_dpcd: DSC capabilities from DPCD
2674  * @is_edp: true if its eDP, false for DP
2675  *
2676  * Read the slice capabilities DPCD register from DSC sink to get
2677  * the maximum slice count supported. This is used to populate
2678  * the DSC parameters in the &struct drm_dsc_config by the driver.
2679  * Driver creates an infoframe using these parameters to populate
2680  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2681  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2682  *
2683  * Returns:
2684  * Maximum slice count supported by DSC sink or 0 its invalid
2685  */
2686 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2687 				   bool is_edp)
2688 {
2689 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2690 
2691 	if (is_edp) {
2692 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2693 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2694 			return 4;
2695 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2696 			return 2;
2697 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2698 			return 1;
2699 	} else {
2700 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2701 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2702 
2703 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2704 			return 24;
2705 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2706 			return 20;
2707 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2708 			return 16;
2709 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2710 			return 12;
2711 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2712 			return 10;
2713 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2714 			return 8;
2715 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2716 			return 6;
2717 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2718 			return 4;
2719 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2720 			return 2;
2721 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2722 			return 1;
2723 	}
2724 
2725 	return 0;
2726 }
2727 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2728 
2729 /**
2730  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2731  * @dsc_dpcd: DSC capabilities from DPCD
2732  *
2733  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2734  * number of bits of precision within the decoder line buffer supported by
2735  * the DSC sink. This is used to populate the DSC parameters in the
2736  * &struct drm_dsc_config by the driver.
2737  * Driver creates an infoframe using these parameters to populate
2738  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2739  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2740  *
2741  * Returns:
2742  * Line buffer depth supported by DSC panel or 0 its invalid
2743  */
2744 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2745 {
2746 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2747 
2748 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2749 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2750 		return 9;
2751 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2752 		return 10;
2753 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2754 		return 11;
2755 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2756 		return 12;
2757 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2758 		return 13;
2759 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2760 		return 14;
2761 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2762 		return 15;
2763 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2764 		return 16;
2765 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2766 		return 8;
2767 	}
2768 
2769 	return 0;
2770 }
2771 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2772 
2773 /**
2774  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2775  * values supported by the DSC sink.
2776  * @dsc_dpcd: DSC capabilities from DPCD
2777  * @dsc_bpc: An array to be filled by this helper with supported
2778  *           input bpcs.
2779  *
2780  * Read the DSC DPCD from the sink device to parse the supported bits per
2781  * component values. This is used to populate the DSC parameters
2782  * in the &struct drm_dsc_config by the driver.
2783  * Driver creates an infoframe using these parameters to populate
2784  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2785  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2786  *
2787  * Returns:
2788  * Number of input BPC values parsed from the DPCD
2789  */
2790 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2791 					 u8 dsc_bpc[3])
2792 {
2793 	int num_bpc = 0;
2794 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2795 
2796 	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2797 		return 0;
2798 
2799 	if (color_depth & DP_DSC_12_BPC)
2800 		dsc_bpc[num_bpc++] = 12;
2801 	if (color_depth & DP_DSC_10_BPC)
2802 		dsc_bpc[num_bpc++] = 10;
2803 
2804 	/* A DP DSC Sink device shall support 8 bpc. */
2805 	dsc_bpc[num_bpc++] = 8;
2806 
2807 	return num_bpc;
2808 }
2809 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2810 
2811 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2812 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2813 				  u8 *buf, int buf_size)
2814 {
2815 	/*
2816 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2817 	 * corrupted values when reading from the 0xF0000- range with a block
2818 	 * size bigger than 1.
2819 	 */
2820 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2821 	int offset;
2822 	int ret;
2823 
2824 	for (offset = 0; offset < buf_size; offset += block_size) {
2825 		ret = drm_dp_dpcd_read_data(aux,
2826 					    address + offset,
2827 					    &buf[offset], block_size);
2828 		if (ret < 0)
2829 			return ret;
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 /**
2836  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2837  * @aux: DisplayPort AUX channel
2838  * @dpcd: DisplayPort configuration data
2839  * @caps: buffer to return the capability info in
2840  *
2841  * Read capabilities common to all LTTPRs.
2842  *
2843  * Returns 0 on success or a negative error code on failure.
2844  */
2845 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2846 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2847 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2848 {
2849 	return drm_dp_read_lttpr_regs(aux, dpcd,
2850 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2851 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2852 }
2853 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2854 
2855 /**
2856  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2857  * @aux: DisplayPort AUX channel
2858  * @dpcd: DisplayPort configuration data
2859  * @dp_phy: LTTPR PHY to read the capabilities for
2860  * @caps: buffer to return the capability info in
2861  *
2862  * Read the capabilities for the given LTTPR PHY.
2863  *
2864  * Returns 0 on success or a negative error code on failure.
2865  */
2866 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2867 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2868 			       enum drm_dp_phy dp_phy,
2869 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2870 {
2871 	return drm_dp_read_lttpr_regs(aux, dpcd,
2872 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2873 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2874 }
2875 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2876 
2877 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2878 {
2879 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2880 }
2881 
2882 /**
2883  * drm_dp_lttpr_count - get the number of detected LTTPRs
2884  * @caps: LTTPR common capabilities
2885  *
2886  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2887  *
2888  * Returns:
2889  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2890  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2891  *   otherwise the number of detected LTTPRs
2892  */
2893 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2894 {
2895 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2896 
2897 	switch (hweight8(count)) {
2898 	case 0:
2899 		return 0;
2900 	case 1:
2901 		return 8 - ilog2(count);
2902 	case 8:
2903 		return -ERANGE;
2904 	default:
2905 		return -EINVAL;
2906 	}
2907 }
2908 EXPORT_SYMBOL(drm_dp_lttpr_count);
2909 
2910 /**
2911  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2912  * @caps: LTTPR common capabilities
2913  *
2914  * Returns the maximum link rate supported by all detected LTTPRs.
2915  */
2916 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2917 {
2918 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2919 
2920 	return drm_dp_bw_code_to_link_rate(rate);
2921 }
2922 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2923 
2924 /**
2925  * drm_dp_lttpr_set_transparent_mode() - set the LTTPR in transparent mode
2926  * @aux: DisplayPort AUX channel
2927  * @enable: Enable or disable transparent mode
2928  *
2929  * Returns: 0 on success or a negative error code on failure.
2930  */
2931 int drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux *aux, bool enable)
2932 {
2933 	u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
2934 			  DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
2935 	int ret = drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_MODE, val);
2936 
2937 	if (ret < 0)
2938 		return ret;
2939 
2940 	return (ret == 1) ? 0 : -EIO;
2941 }
2942 EXPORT_SYMBOL(drm_dp_lttpr_set_transparent_mode);
2943 
2944 /**
2945  * drm_dp_lttpr_init() - init LTTPR transparency mode according to DP standard
2946  * @aux: DisplayPort AUX channel
2947  * @lttpr_count: Number of LTTPRs. Between 0 and 8, according to DP standard.
2948  *               Negative error code for any non-valid number.
2949  *               See drm_dp_lttpr_count().
2950  *
2951  * Returns: 0 on success or a negative error code on failure.
2952  */
2953 int drm_dp_lttpr_init(struct drm_dp_aux *aux, int lttpr_count)
2954 {
2955 	int ret;
2956 
2957 	if (!lttpr_count)
2958 		return 0;
2959 
2960 	/*
2961 	 * See DP Standard v2.0 3.6.6.1 about the explicit disabling of
2962 	 * non-transparent mode and the disable->enable non-transparent mode
2963 	 * sequence.
2964 	 */
2965 	ret = drm_dp_lttpr_set_transparent_mode(aux, true);
2966 	if (ret)
2967 		return ret;
2968 
2969 	if (lttpr_count < 0)
2970 		return -ENODEV;
2971 
2972 	if (drm_dp_lttpr_set_transparent_mode(aux, false)) {
2973 		/*
2974 		 * Roll-back to transparent mode if setting non-transparent
2975 		 * mode has failed
2976 		 */
2977 		drm_dp_lttpr_set_transparent_mode(aux, true);
2978 		return -EINVAL;
2979 	}
2980 
2981 	return 0;
2982 }
2983 EXPORT_SYMBOL(drm_dp_lttpr_init);
2984 
2985 /**
2986  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2987  * @caps: LTTPR common capabilities
2988  *
2989  * Returns the maximum lane count supported by all detected LTTPRs.
2990  */
2991 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2992 {
2993 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2994 
2995 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2996 }
2997 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2998 
2999 /**
3000  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
3001  * @caps: LTTPR PHY capabilities
3002  *
3003  * Returns true if the @caps for an LTTPR TX PHY indicate support for
3004  * voltage swing level 3.
3005  */
3006 bool
3007 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3008 {
3009 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3010 
3011 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
3012 }
3013 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
3014 
3015 /**
3016  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
3017  * @caps: LTTPR PHY capabilities
3018  *
3019  * Returns true if the @caps for an LTTPR TX PHY indicate support for
3020  * pre-emphasis level 3.
3021  */
3022 bool
3023 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3024 {
3025 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3026 
3027 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
3028 }
3029 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
3030 
3031 /**
3032  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
3033  * @aux: DisplayPort AUX channel
3034  * @data: DP phy compliance test parameters.
3035  *
3036  * Returns 0 on success or a negative error code on failure.
3037  */
3038 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
3039 				struct drm_dp_phy_test_params *data)
3040 {
3041 	int err;
3042 	u8 rate, lanes;
3043 
3044 	err = drm_dp_dpcd_read_byte(aux, DP_TEST_LINK_RATE, &rate);
3045 	if (err < 0)
3046 		return err;
3047 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
3048 
3049 	err = drm_dp_dpcd_read_byte(aux, DP_TEST_LANE_COUNT, &lanes);
3050 	if (err < 0)
3051 		return err;
3052 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
3053 
3054 	if (lanes & DP_ENHANCED_FRAME_CAP)
3055 		data->enhanced_frame_cap = true;
3056 
3057 	err = drm_dp_dpcd_read_byte(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
3058 	if (err < 0)
3059 		return err;
3060 
3061 	switch (data->phy_pattern) {
3062 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
3063 		err = drm_dp_dpcd_read_data(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
3064 					    &data->custom80, sizeof(data->custom80));
3065 		if (err < 0)
3066 			return err;
3067 
3068 		break;
3069 	case DP_PHY_TEST_PATTERN_CP2520:
3070 		err = drm_dp_dpcd_read_data(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
3071 					    &data->hbr2_reset,
3072 					    sizeof(data->hbr2_reset));
3073 		if (err < 0)
3074 			return err;
3075 	}
3076 
3077 	return 0;
3078 }
3079 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
3080 
3081 /**
3082  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
3083  * @aux: DisplayPort AUX channel
3084  * @data: DP phy compliance test parameters.
3085  * @dp_rev: DP revision to use for compliance testing
3086  *
3087  * Returns 0 on success or a negative error code on failure.
3088  */
3089 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
3090 				struct drm_dp_phy_test_params *data, u8 dp_rev)
3091 {
3092 	int err, i;
3093 	u8 test_pattern;
3094 
3095 	test_pattern = data->phy_pattern;
3096 	if (dp_rev < 0x12) {
3097 		test_pattern = (test_pattern << 2) &
3098 			       DP_LINK_QUAL_PATTERN_11_MASK;
3099 		err = drm_dp_dpcd_write_byte(aux, DP_TRAINING_PATTERN_SET,
3100 					     test_pattern);
3101 		if (err < 0)
3102 			return err;
3103 	} else {
3104 		for (i = 0; i < data->num_lanes; i++) {
3105 			err = drm_dp_dpcd_write_byte(aux,
3106 						     DP_LINK_QUAL_LANE0_SET + i,
3107 						     test_pattern);
3108 			if (err < 0)
3109 				return err;
3110 		}
3111 	}
3112 
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
3116 
3117 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
3118 {
3119 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3120 		return "Invalid";
3121 
3122 	switch (pixelformat) {
3123 	case DP_PIXELFORMAT_RGB:
3124 		return "RGB";
3125 	case DP_PIXELFORMAT_YUV444:
3126 		return "YUV444";
3127 	case DP_PIXELFORMAT_YUV422:
3128 		return "YUV422";
3129 	case DP_PIXELFORMAT_YUV420:
3130 		return "YUV420";
3131 	case DP_PIXELFORMAT_Y_ONLY:
3132 		return "Y_ONLY";
3133 	case DP_PIXELFORMAT_RAW:
3134 		return "RAW";
3135 	default:
3136 		return "Reserved";
3137 	}
3138 }
3139 
3140 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
3141 					   enum dp_colorimetry colorimetry)
3142 {
3143 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3144 		return "Invalid";
3145 
3146 	switch (colorimetry) {
3147 	case DP_COLORIMETRY_DEFAULT:
3148 		switch (pixelformat) {
3149 		case DP_PIXELFORMAT_RGB:
3150 			return "sRGB";
3151 		case DP_PIXELFORMAT_YUV444:
3152 		case DP_PIXELFORMAT_YUV422:
3153 		case DP_PIXELFORMAT_YUV420:
3154 			return "BT.601";
3155 		case DP_PIXELFORMAT_Y_ONLY:
3156 			return "DICOM PS3.14";
3157 		case DP_PIXELFORMAT_RAW:
3158 			return "Custom Color Profile";
3159 		default:
3160 			return "Reserved";
3161 		}
3162 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
3163 		switch (pixelformat) {
3164 		case DP_PIXELFORMAT_RGB:
3165 			return "Wide Fixed";
3166 		case DP_PIXELFORMAT_YUV444:
3167 		case DP_PIXELFORMAT_YUV422:
3168 		case DP_PIXELFORMAT_YUV420:
3169 			return "BT.709";
3170 		default:
3171 			return "Reserved";
3172 		}
3173 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
3174 		switch (pixelformat) {
3175 		case DP_PIXELFORMAT_RGB:
3176 			return "Wide Float";
3177 		case DP_PIXELFORMAT_YUV444:
3178 		case DP_PIXELFORMAT_YUV422:
3179 		case DP_PIXELFORMAT_YUV420:
3180 			return "xvYCC 601";
3181 		default:
3182 			return "Reserved";
3183 		}
3184 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
3185 		switch (pixelformat) {
3186 		case DP_PIXELFORMAT_RGB:
3187 			return "OpRGB";
3188 		case DP_PIXELFORMAT_YUV444:
3189 		case DP_PIXELFORMAT_YUV422:
3190 		case DP_PIXELFORMAT_YUV420:
3191 			return "xvYCC 709";
3192 		default:
3193 			return "Reserved";
3194 		}
3195 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
3196 		switch (pixelformat) {
3197 		case DP_PIXELFORMAT_RGB:
3198 			return "DCI-P3";
3199 		case DP_PIXELFORMAT_YUV444:
3200 		case DP_PIXELFORMAT_YUV422:
3201 		case DP_PIXELFORMAT_YUV420:
3202 			return "sYCC 601";
3203 		default:
3204 			return "Reserved";
3205 		}
3206 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
3207 		switch (pixelformat) {
3208 		case DP_PIXELFORMAT_RGB:
3209 			return "Custom Profile";
3210 		case DP_PIXELFORMAT_YUV444:
3211 		case DP_PIXELFORMAT_YUV422:
3212 		case DP_PIXELFORMAT_YUV420:
3213 			return "OpYCC 601";
3214 		default:
3215 			return "Reserved";
3216 		}
3217 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
3218 		switch (pixelformat) {
3219 		case DP_PIXELFORMAT_RGB:
3220 			return "BT.2020 RGB";
3221 		case DP_PIXELFORMAT_YUV444:
3222 		case DP_PIXELFORMAT_YUV422:
3223 		case DP_PIXELFORMAT_YUV420:
3224 			return "BT.2020 CYCC";
3225 		default:
3226 			return "Reserved";
3227 		}
3228 	case DP_COLORIMETRY_BT2020_YCC:
3229 		switch (pixelformat) {
3230 		case DP_PIXELFORMAT_YUV444:
3231 		case DP_PIXELFORMAT_YUV422:
3232 		case DP_PIXELFORMAT_YUV420:
3233 			return "BT.2020 YCC";
3234 		default:
3235 			return "Reserved";
3236 		}
3237 	default:
3238 		return "Invalid";
3239 	}
3240 }
3241 
3242 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
3243 {
3244 	switch (dynamic_range) {
3245 	case DP_DYNAMIC_RANGE_VESA:
3246 		return "VESA range";
3247 	case DP_DYNAMIC_RANGE_CTA:
3248 		return "CTA range";
3249 	default:
3250 		return "Invalid";
3251 	}
3252 }
3253 
3254 static const char *dp_content_type_get_name(enum dp_content_type content_type)
3255 {
3256 	switch (content_type) {
3257 	case DP_CONTENT_TYPE_NOT_DEFINED:
3258 		return "Not defined";
3259 	case DP_CONTENT_TYPE_GRAPHICS:
3260 		return "Graphics";
3261 	case DP_CONTENT_TYPE_PHOTO:
3262 		return "Photo";
3263 	case DP_CONTENT_TYPE_VIDEO:
3264 		return "Video";
3265 	case DP_CONTENT_TYPE_GAME:
3266 		return "Game";
3267 	default:
3268 		return "Reserved";
3269 	}
3270 }
3271 
3272 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
3273 {
3274 	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
3275 		   vsc->revision, vsc->length);
3276 	drm_printf(p, "    pixelformat: %s\n",
3277 		   dp_pixelformat_get_name(vsc->pixelformat));
3278 	drm_printf(p, "    colorimetry: %s\n",
3279 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
3280 	drm_printf(p, "    bpc: %u\n", vsc->bpc);
3281 	drm_printf(p, "    dynamic range: %s\n",
3282 		   dp_dynamic_range_get_name(vsc->dynamic_range));
3283 	drm_printf(p, "    content type: %s\n",
3284 		   dp_content_type_get_name(vsc->content_type));
3285 }
3286 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
3287 
3288 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3289 {
3290 	drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3291 		   as_sdp->revision, as_sdp->length);
3292 	drm_printf(p, "    vtotal: %d\n", as_sdp->vtotal);
3293 	drm_printf(p, "    target_rr: %d\n", as_sdp->target_rr);
3294 	drm_printf(p, "    duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3295 	drm_printf(p, "    duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3296 	drm_printf(p, "    operation_mode: %d\n", as_sdp->mode);
3297 }
3298 EXPORT_SYMBOL(drm_dp_as_sdp_log);
3299 
3300 /**
3301  * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3302  * @aux: DisplayPort AUX channel
3303  * @dpcd: DisplayPort configuration data
3304  *
3305  * Returns true if adaptive sync sdp is supported, else returns false
3306  */
3307 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3308 {
3309 	u8 rx_feature;
3310 
3311 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3312 		return false;
3313 
3314 	if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3315 				  &rx_feature) < 0) {
3316 		drm_dbg_dp(aux->drm_dev,
3317 			   "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3318 		return false;
3319 	}
3320 
3321 	return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3322 }
3323 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3324 
3325 /**
3326  * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3327  * @aux: DisplayPort AUX channel
3328  * @dpcd: DisplayPort configuration data
3329  *
3330  * Returns true if vsc sdp is supported, else returns false
3331  */
3332 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3333 {
3334 	u8 rx_feature;
3335 
3336 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3337 		return false;
3338 
3339 	if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) < 0) {
3340 		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3341 		return false;
3342 	}
3343 
3344 	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3345 }
3346 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3347 
3348 /**
3349  * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3350  * @vsc: vsc sdp initialized according to its purpose as defined in
3351  *       table 2-118 - table 2-120 in DP 1.4a specification
3352  * @sdp: valid handle to the generic dp_sdp which will be packed
3353  *
3354  * Returns length of sdp on success and error code on failure
3355  */
3356 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3357 			    struct dp_sdp *sdp)
3358 {
3359 	size_t length = sizeof(struct dp_sdp);
3360 
3361 	memset(sdp, 0, sizeof(struct dp_sdp));
3362 
3363 	/*
3364 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3365 	 * VSC SDP Header Bytes
3366 	 */
3367 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3368 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3369 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3370 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3371 
3372 	if (vsc->revision == 0x6) {
3373 		sdp->db[0] = 1;
3374 		sdp->db[3] = 1;
3375 	}
3376 
3377 	/*
3378 	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3379 	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3380 	 */
3381 	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3382 		goto out;
3383 
3384 	/* VSC SDP Payload for DB16 through DB18 */
3385 	/* Pixel Encoding and Colorimetry Formats  */
3386 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3387 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3388 
3389 	switch (vsc->bpc) {
3390 	case 6:
3391 		/* 6bpc: 0x0 */
3392 		break;
3393 	case 8:
3394 		sdp->db[17] = 0x1; /* DB17[3:0] */
3395 		break;
3396 	case 10:
3397 		sdp->db[17] = 0x2;
3398 		break;
3399 	case 12:
3400 		sdp->db[17] = 0x3;
3401 		break;
3402 	case 16:
3403 		sdp->db[17] = 0x4;
3404 		break;
3405 	default:
3406 		WARN(1, "Missing case %d\n", vsc->bpc);
3407 		return -EINVAL;
3408 	}
3409 
3410 	/* Dynamic Range and Component Bit Depth */
3411 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3412 		sdp->db[17] |= 0x80;  /* DB17[7] */
3413 
3414 	/* Content Type */
3415 	sdp->db[18] = vsc->content_type & 0x7;
3416 
3417 out:
3418 	return length;
3419 }
3420 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3421 
3422 /**
3423  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3424  * @dpcd: DisplayPort configuration data
3425  * @port_cap: port capabilities
3426  *
3427  * Returns maximum frl bandwidth supported by PCON in GBPS,
3428  * returns 0 if not supported.
3429  */
3430 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3431 			       const u8 port_cap[4])
3432 {
3433 	int bw;
3434 	u8 buf;
3435 
3436 	buf = port_cap[2];
3437 	bw = buf & DP_PCON_MAX_FRL_BW;
3438 
3439 	switch (bw) {
3440 	case DP_PCON_MAX_9GBPS:
3441 		return 9;
3442 	case DP_PCON_MAX_18GBPS:
3443 		return 18;
3444 	case DP_PCON_MAX_24GBPS:
3445 		return 24;
3446 	case DP_PCON_MAX_32GBPS:
3447 		return 32;
3448 	case DP_PCON_MAX_40GBPS:
3449 		return 40;
3450 	case DP_PCON_MAX_48GBPS:
3451 		return 48;
3452 	case DP_PCON_MAX_0GBPS:
3453 	default:
3454 		return 0;
3455 	}
3456 
3457 	return 0;
3458 }
3459 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3460 
3461 /**
3462  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3463  * @aux: DisplayPort AUX channel
3464  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3465  *
3466  * Returns 0 if success, else returns negative error code.
3467  */
3468 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3469 {
3470 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3471 		 DP_PCON_ENABLE_LINK_FRL_MODE;
3472 
3473 	if (enable_frl_ready_hpd)
3474 		buf |= DP_PCON_ENABLE_HPD_READY;
3475 
3476 	return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3477 }
3478 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3479 
3480 /**
3481  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3482  * @aux: DisplayPort AUX channel
3483  *
3484  * Returns true if success, else returns false.
3485  */
3486 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3487 {
3488 	int ret;
3489 	u8 buf;
3490 
3491 	ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3492 	if (ret < 0)
3493 		return false;
3494 
3495 	if (buf & DP_PCON_FRL_READY)
3496 		return true;
3497 
3498 	return false;
3499 }
3500 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3501 
3502 /**
3503  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3504  * @aux: DisplayPort AUX channel
3505  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3506  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3507  * In Concurrent Mode, the FRL link bring up can be done along with
3508  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3509  * the DP Link training.
3510  *
3511  * Returns 0 if success, else returns negative error code.
3512  */
3513 
3514 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3515 				u8 frl_mode)
3516 {
3517 	int ret;
3518 	u8 buf;
3519 
3520 	ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3521 	if (ret < 0)
3522 		return ret;
3523 
3524 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3525 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3526 	else
3527 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3528 
3529 	switch (max_frl_gbps) {
3530 	case 9:
3531 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3532 		break;
3533 	case 18:
3534 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3535 		break;
3536 	case 24:
3537 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3538 		break;
3539 	case 32:
3540 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3541 		break;
3542 	case 40:
3543 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3544 		break;
3545 	case 48:
3546 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3547 		break;
3548 	case 0:
3549 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3550 		break;
3551 	default:
3552 		return -EINVAL;
3553 	}
3554 
3555 	return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3556 }
3557 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3558 
3559 /**
3560  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3561  * @aux: DisplayPort AUX channel
3562  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3563  * @frl_type : FRL training type, can be Extended, or Normal.
3564  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3565  * starting from min, and stops when link training is successful. In Extended
3566  * FRL training, all frl bw selected in the mask are trained by the PCON.
3567  *
3568  * Returns 0 if success, else returns negative error code.
3569  */
3570 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3571 				u8 frl_type)
3572 {
3573 	int ret;
3574 	u8 buf = max_frl_mask;
3575 
3576 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3577 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3578 	else
3579 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3580 
3581 	return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3582 	if (ret < 0)
3583 		return ret;
3584 
3585 	return 0;
3586 }
3587 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3588 
3589 /**
3590  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3591  * @aux: DisplayPort AUX channel
3592  *
3593  * Returns 0 if success, else returns negative error code.
3594  */
3595 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3596 {
3597 	return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3598 }
3599 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3600 
3601 /**
3602  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3603  * @aux: DisplayPort AUX channel
3604  *
3605  * Returns 0 if success, else returns negative error code.
3606  */
3607 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3608 {
3609 	int ret;
3610 	u8 buf = 0;
3611 
3612 	ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3613 	if (ret < 0)
3614 		return ret;
3615 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3616 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3617 			    aux->name);
3618 		return -EINVAL;
3619 	}
3620 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3621 	return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3622 }
3623 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3624 
3625 /**
3626  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3627  * @aux: DisplayPort AUX channel
3628  *
3629  * Returns true if link is active else returns false.
3630  */
3631 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3632 {
3633 	u8 buf;
3634 	int ret;
3635 
3636 	ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3637 	if (ret < 0)
3638 		return false;
3639 
3640 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3641 }
3642 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3643 
3644 /**
3645  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3646  * @aux: DisplayPort AUX channel
3647  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3648  * Valid only if the MODE returned is FRL. For Normal Link training mode
3649  * only 1 of the bits will be set, but in case of Extended mode, more than
3650  * one bits can be set.
3651  *
3652  * Returns the link mode : TMDS or FRL on success, else returns negative error
3653  * code.
3654  */
3655 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3656 {
3657 	u8 buf;
3658 	int mode;
3659 	int ret;
3660 
3661 	ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3662 	if (ret < 0)
3663 		return ret;
3664 
3665 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3666 
3667 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3668 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3669 
3670 	return mode;
3671 }
3672 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3673 
3674 /**
3675  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3676  * during link failure between PCON and HDMI sink
3677  * @aux: DisplayPort AUX channel
3678  * @connector: DRM connector
3679  * code.
3680  **/
3681 
3682 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3683 					   struct drm_connector *connector)
3684 {
3685 	u8 buf, error_count;
3686 	int i, num_error;
3687 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3688 
3689 	for (i = 0; i < hdmi->max_lanes; i++) {
3690 		if (drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3691 			return;
3692 
3693 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3694 		switch (error_count) {
3695 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3696 			num_error = 100;
3697 			break;
3698 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3699 			num_error = 10;
3700 			break;
3701 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3702 			num_error = 3;
3703 			break;
3704 		default:
3705 			num_error = 0;
3706 		}
3707 
3708 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3709 			aux->name, num_error, i);
3710 	}
3711 }
3712 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3713 
3714 /*
3715  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3716  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3717  *
3718  * Returns true is PCON encoder is DSC 1.2 else returns false.
3719  */
3720 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3721 {
3722 	u8 buf;
3723 	u8 major_v, minor_v;
3724 
3725 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3726 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3727 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3728 
3729 	if (major_v == 1 && minor_v == 2)
3730 		return true;
3731 
3732 	return false;
3733 }
3734 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3735 
3736 /*
3737  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3738  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3739  *
3740  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3741  */
3742 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3743 {
3744 	u8 slice_cap1, slice_cap2;
3745 
3746 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3747 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3748 
3749 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3750 		return 24;
3751 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3752 		return 20;
3753 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3754 		return 16;
3755 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3756 		return 12;
3757 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3758 		return 10;
3759 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3760 		return 8;
3761 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3762 		return 6;
3763 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3764 		return 4;
3765 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3766 		return 2;
3767 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3768 		return 1;
3769 
3770 	return 0;
3771 }
3772 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3773 
3774 /*
3775  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3776  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3777  *
3778  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3779  */
3780 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3781 {
3782 	u8 buf;
3783 
3784 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3785 
3786 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3787 }
3788 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3789 
3790 /*
3791  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3792  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3793  *
3794  * Returns the bpp precision supported by the PCON encoder.
3795  */
3796 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3797 {
3798 	u8 buf;
3799 
3800 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3801 
3802 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3803 	case DP_PCON_DSC_ONE_16TH_BPP:
3804 		return 16;
3805 	case DP_PCON_DSC_ONE_8TH_BPP:
3806 		return 8;
3807 	case DP_PCON_DSC_ONE_4TH_BPP:
3808 		return 4;
3809 	case DP_PCON_DSC_ONE_HALF_BPP:
3810 		return 2;
3811 	case DP_PCON_DSC_ONE_BPP:
3812 		return 1;
3813 	}
3814 
3815 	return 0;
3816 }
3817 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3818 
3819 static
3820 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3821 {
3822 	u8 buf;
3823 	int ret;
3824 
3825 	ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3826 	if (ret < 0)
3827 		return ret;
3828 
3829 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3830 
3831 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3832 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3833 		buf |= pps_buf_config << 2;
3834 	}
3835 
3836 	return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3837 }
3838 
3839 /**
3840  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3841  * for DSC1.2 between PCON & HDMI2.1 sink
3842  * @aux: DisplayPort AUX channel
3843  *
3844  * Returns 0 on success, else returns negative error code.
3845  */
3846 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3847 {
3848 	return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3849 }
3850 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3851 
3852 /**
3853  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3854  * HDMI sink
3855  * @aux: DisplayPort AUX channel
3856  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3857  *
3858  * Returns 0 on success, else returns negative error code.
3859  */
3860 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3861 {
3862 	int ret;
3863 
3864 	ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3865 	if (ret < 0)
3866 		return ret;
3867 
3868 	return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3869 }
3870 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3871 
3872 /*
3873  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3874  * override registers
3875  * @aux: DisplayPort AUX channel
3876  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3877  * bits_per_pixel.
3878  *
3879  * Returns 0 on success, else returns negative error code.
3880  */
3881 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3882 {
3883 	int ret;
3884 
3885 	ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3886 	if (ret < 0)
3887 		return ret;
3888 	ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3889 	if (ret < 0)
3890 		return ret;
3891 	ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3892 	if (ret < 0)
3893 		return ret;
3894 
3895 	return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3896 }
3897 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3898 
3899 /*
3900  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3901  * @aux: displayPort AUX channel
3902  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3903  *
3904  * Returns 0 on success, else returns negative error code.
3905  */
3906 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3907 {
3908 	int ret;
3909 	u8 buf;
3910 
3911 	ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3912 	if (ret < 0)
3913 		return ret;
3914 
3915 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3916 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3917 	else
3918 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3919 
3920 	return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3921 }
3922 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3923 
3924 /**
3925  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3926  * @aux: The DP AUX channel to use
3927  * @bl: Backlight capability info from drm_edp_backlight_init()
3928  * @level: The brightness level to set
3929  *
3930  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3931  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3932  *
3933  * Returns: %0 on success, negative error code on failure
3934  */
3935 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3936 				u16 level)
3937 {
3938 	int ret;
3939 	u8 buf[2] = { 0 };
3940 
3941 	/* The panel uses the PWM for controlling brightness levels */
3942 	if (!bl->aux_set)
3943 		return 0;
3944 
3945 	if (bl->lsb_reg_used) {
3946 		buf[0] = (level & 0xff00) >> 8;
3947 		buf[1] = (level & 0x00ff);
3948 	} else {
3949 		buf[0] = level;
3950 	}
3951 
3952 	ret = drm_dp_dpcd_write_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3953 	if (ret < 0) {
3954 		drm_err(aux->drm_dev,
3955 			"%s: Failed to write aux backlight level: %d\n",
3956 			aux->name, ret);
3957 		return ret;
3958 	}
3959 
3960 	return 0;
3961 }
3962 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3963 
3964 static int
3965 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3966 			     bool enable)
3967 {
3968 	int ret;
3969 	u8 buf;
3970 
3971 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3972 	if (!bl->aux_enable)
3973 		return 0;
3974 
3975 	ret = drm_dp_dpcd_read_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3976 	if (ret < 0) {
3977 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3978 			aux->name, ret);
3979 		return ret;
3980 	}
3981 	if (enable)
3982 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3983 	else
3984 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3985 
3986 	ret = drm_dp_dpcd_write_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3987 	if (ret < 0) {
3988 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3989 			aux->name, ret);
3990 		return ret;
3991 	}
3992 
3993 	return 0;
3994 }
3995 
3996 /**
3997  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3998  * @aux: The DP AUX channel to use
3999  * @bl: Backlight capability info from drm_edp_backlight_init()
4000  * @level: The initial backlight level to set via AUX, if there is one
4001  *
4002  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
4003  * restoring any important backlight state such as the given backlight level, the brightness byte
4004  * count, backlight frequency, etc.
4005  *
4006  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4007  * that the driver handle enabling/disabling the panel through implementation-specific means using
4008  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4009  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
4010  * the EDP_BL_PWR GPIO.
4011  *
4012  * Returns: %0 on success, negative error code on failure.
4013  */
4014 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
4015 			     const u16 level)
4016 {
4017 	int ret;
4018 	u8 dpcd_buf;
4019 
4020 	if (bl->aux_set)
4021 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
4022 	else
4023 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
4024 
4025 	if (bl->pwmgen_bit_count) {
4026 		ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
4027 		if (ret < 0)
4028 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4029 				    aux->name, ret);
4030 	}
4031 
4032 	if (bl->pwm_freq_pre_divider) {
4033 		ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_FREQ_SET,
4034 					     bl->pwm_freq_pre_divider);
4035 		if (ret < 0)
4036 			drm_dbg_kms(aux->drm_dev,
4037 				    "%s: Failed to write aux backlight frequency: %d\n",
4038 				    aux->name, ret);
4039 		else
4040 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
4041 	}
4042 
4043 	ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
4044 	if (ret < 0) {
4045 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
4046 			    aux->name, ret);
4047 		return ret < 0 ? ret : -EIO;
4048 	}
4049 
4050 	ret = drm_edp_backlight_set_level(aux, bl, level);
4051 	if (ret < 0)
4052 		return ret;
4053 	ret = drm_edp_backlight_set_enable(aux, bl, true);
4054 	if (ret < 0)
4055 		return ret;
4056 
4057 	return 0;
4058 }
4059 EXPORT_SYMBOL(drm_edp_backlight_enable);
4060 
4061 /**
4062  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
4063  * @aux: The DP AUX channel to use
4064  * @bl: Backlight capability info from drm_edp_backlight_init()
4065  *
4066  * This function handles disabling DPCD backlight controls on a panel over AUX.
4067  *
4068  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4069  * that the driver handle enabling/disabling the panel through implementation-specific means using
4070  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4071  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
4072  * the EDP_BL_PWR GPIO.
4073  *
4074  * Returns: %0 on success or no-op, negative error code on failure.
4075  */
4076 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
4077 {
4078 	int ret;
4079 
4080 	ret = drm_edp_backlight_set_enable(aux, bl, false);
4081 	if (ret < 0)
4082 		return ret;
4083 
4084 	return 0;
4085 }
4086 EXPORT_SYMBOL(drm_edp_backlight_disable);
4087 
4088 static inline int
4089 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4090 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
4091 {
4092 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
4093 	int ret;
4094 	u8 pn, pn_min, pn_max;
4095 
4096 	if (!bl->aux_set)
4097 		return 0;
4098 
4099 	ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
4100 	if (ret < 0) {
4101 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
4102 			    aux->name, ret);
4103 		return -ENODEV;
4104 	}
4105 
4106 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4107 	bl->max = (1 << pn) - 1;
4108 	if (!driver_pwm_freq_hz)
4109 		return 0;
4110 
4111 	/*
4112 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
4113 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
4114 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
4115 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
4116 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
4117 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
4118 	 */
4119 
4120 	/* Find desired value of (F x P)
4121 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
4122 	 * applied automatically. So no need to check that.
4123 	 */
4124 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
4125 
4126 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
4127 	 * satisfying the conditions below.
4128 	 * - Pn is in the range of Pn_min and Pn_max
4129 	 * - F is in the range of 1 and 255
4130 	 * - FxP is within 25% of desired value.
4131 	 *   Note: 25% is arbitrary value and may need some tweak.
4132 	 */
4133 	ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
4134 	if (ret < 0) {
4135 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
4136 			    aux->name, ret);
4137 		return 0;
4138 	}
4139 	ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
4140 	if (ret < 0) {
4141 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
4142 			    aux->name, ret);
4143 		return 0;
4144 	}
4145 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4146 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4147 
4148 	/* Ensure frequency is within 25% of desired value */
4149 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
4150 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
4151 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
4152 		drm_dbg_kms(aux->drm_dev,
4153 			    "%s: Driver defined backlight frequency (%d) out of range\n",
4154 			    aux->name, driver_pwm_freq_hz);
4155 		return 0;
4156 	}
4157 
4158 	for (pn = pn_max; pn >= pn_min; pn--) {
4159 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
4160 		fxp_actual = f << pn;
4161 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
4162 			break;
4163 	}
4164 
4165 	ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
4166 	if (ret < 0) {
4167 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4168 			    aux->name, ret);
4169 		return 0;
4170 	}
4171 	bl->pwmgen_bit_count = pn;
4172 	bl->max = (1 << pn) - 1;
4173 
4174 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
4175 		bl->pwm_freq_pre_divider = f;
4176 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
4177 			    aux->name, driver_pwm_freq_hz);
4178 	}
4179 
4180 	return 0;
4181 }
4182 
4183 static inline int
4184 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4185 			      u8 *current_mode)
4186 {
4187 	int ret;
4188 	u8 buf[2];
4189 	u8 mode_reg;
4190 
4191 	ret = drm_dp_dpcd_read_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
4192 	if (ret < 0) {
4193 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
4194 			    aux->name, ret);
4195 		return ret < 0 ? ret : -EIO;
4196 	}
4197 
4198 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
4199 	if (!bl->aux_set)
4200 		return 0;
4201 
4202 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
4203 		int size = 1 + bl->lsb_reg_used;
4204 
4205 		ret = drm_dp_dpcd_read_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
4206 		if (ret < 0) {
4207 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
4208 				    aux->name, ret);
4209 			return ret;
4210 		}
4211 
4212 		if (bl->lsb_reg_used)
4213 			return (buf[0] << 8) | buf[1];
4214 		else
4215 			return buf[0];
4216 	}
4217 
4218 	/*
4219 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
4220 	 * the driver should assume max brightness
4221 	 */
4222 	return bl->max;
4223 }
4224 
4225 /**
4226  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
4227  * interface.
4228  * @aux: The DP aux device to use for probing
4229  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
4230  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
4231  * @edp_dpcd: A cached copy of the eDP DPCD
4232  * @current_level: Where to store the probed brightness level, if any
4233  * @current_mode: Where to store the currently set backlight control mode
4234  *
4235  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
4236  * along with also probing the current and maximum supported brightness levels.
4237  *
4238  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
4239  * default frequency from the panel is used.
4240  *
4241  * Returns: %0 on success, negative error code on failure.
4242  */
4243 int
4244 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4245 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
4246 		       u16 *current_level, u8 *current_mode)
4247 {
4248 	int ret;
4249 
4250 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4251 		bl->aux_enable = true;
4252 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4253 		bl->aux_set = true;
4254 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4255 		bl->lsb_reg_used = true;
4256 
4257 	/* Sanity check caps */
4258 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
4259 		drm_dbg_kms(aux->drm_dev,
4260 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
4261 			    aux->name);
4262 		return -EINVAL;
4263 	}
4264 
4265 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4266 	if (ret < 0)
4267 		return ret;
4268 
4269 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4270 	if (ret < 0)
4271 		return ret;
4272 	*current_level = ret;
4273 
4274 	drm_dbg_kms(aux->drm_dev,
4275 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4276 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4277 	if (bl->aux_set) {
4278 		drm_dbg_kms(aux->drm_dev,
4279 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4280 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4281 			    bl->lsb_reg_used);
4282 	}
4283 
4284 	return 0;
4285 }
4286 EXPORT_SYMBOL(drm_edp_backlight_init);
4287 
4288 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4289 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4290 
4291 static int dp_aux_backlight_update_status(struct backlight_device *bd)
4292 {
4293 	struct dp_aux_backlight *bl = bl_get_data(bd);
4294 	u16 brightness = backlight_get_brightness(bd);
4295 	int ret = 0;
4296 
4297 	if (!backlight_is_blank(bd)) {
4298 		if (!bl->enabled) {
4299 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4300 			bl->enabled = true;
4301 			return 0;
4302 		}
4303 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4304 	} else {
4305 		if (bl->enabled) {
4306 			drm_edp_backlight_disable(bl->aux, &bl->info);
4307 			bl->enabled = false;
4308 		}
4309 	}
4310 
4311 	return ret;
4312 }
4313 
4314 static const struct backlight_ops dp_aux_bl_ops = {
4315 	.update_status = dp_aux_backlight_update_status,
4316 };
4317 
4318 /**
4319  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4320  * @panel: DRM panel
4321  * @aux: The DP AUX channel to use
4322  *
4323  * Use this function to create and handle backlight if your panel
4324  * supports backlight control over DP AUX channel using DPCD
4325  * registers as per VESA's standard backlight control interface.
4326  *
4327  * When the panel is enabled backlight will be enabled after a
4328  * successful call to &drm_panel_funcs.enable()
4329  *
4330  * When the panel is disabled backlight will be disabled before the
4331  * call to &drm_panel_funcs.disable().
4332  *
4333  * A typical implementation for a panel driver supporting backlight
4334  * control over DP AUX will call this function at probe time.
4335  * Backlight will then be handled transparently without requiring
4336  * any intervention from the driver.
4337  *
4338  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4339  *
4340  * Return: 0 on success or a negative error code on failure.
4341  */
4342 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4343 {
4344 	struct dp_aux_backlight *bl;
4345 	struct backlight_properties props = { 0 };
4346 	u16 current_level;
4347 	u8 current_mode;
4348 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4349 	int ret;
4350 
4351 	if (!panel || !panel->dev || !aux)
4352 		return -EINVAL;
4353 
4354 	ret = drm_dp_dpcd_read_data(aux, DP_EDP_DPCD_REV, edp_dpcd,
4355 				    EDP_DISPLAY_CTL_CAP_SIZE);
4356 	if (ret < 0)
4357 		return ret;
4358 
4359 	if (!drm_edp_backlight_supported(edp_dpcd)) {
4360 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4361 		return 0;
4362 	}
4363 
4364 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4365 	if (!bl)
4366 		return -ENOMEM;
4367 
4368 	bl->aux = aux;
4369 
4370 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4371 				     &current_level, &current_mode);
4372 	if (ret < 0)
4373 		return ret;
4374 
4375 	props.type = BACKLIGHT_RAW;
4376 	props.brightness = current_level;
4377 	props.max_brightness = bl->info.max;
4378 
4379 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4380 						  panel->dev, bl,
4381 						  &dp_aux_bl_ops, &props);
4382 	if (IS_ERR(bl->base))
4383 		return PTR_ERR(bl->base);
4384 
4385 	backlight_disable(bl->base);
4386 
4387 	panel->backlight = bl->base;
4388 
4389 	return 0;
4390 }
4391 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4392 
4393 #endif
4394 
4395 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4396 static int drm_dp_link_data_symbol_cycles(int lane_count, int pixels,
4397 					  int bpp_x16, int symbol_size,
4398 					  bool is_mst)
4399 {
4400 	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4401 	int align = is_mst ? 4 / lane_count : 1;
4402 
4403 	return ALIGN(cycles, align);
4404 }
4405 
4406 /**
4407  * drm_dp_link_symbol_cycles - calculate the link symbol count with/without dsc
4408  * @lane_count: DP link lane count
4409  * @pixels: number of pixels in a scanline
4410  * @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4411  * @bpp_x16: bits per pixel in .4 binary fixed format
4412  * @symbol_size: DP symbol size
4413  * @is_mst: %true for MST and %false for SST
4414  *
4415  * Calculate the link symbol cycles for both DSC (@dsc_slice_count !=0) and
4416  * non-DSC case (@dsc_slice_count == 0) and return the count.
4417  */
4418 int drm_dp_link_symbol_cycles(int lane_count, int pixels, int dsc_slice_count,
4419 			      int bpp_x16, int symbol_size, bool is_mst)
4420 {
4421 	int slice_count = dsc_slice_count ? : 1;
4422 	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4423 	int slice_data_cycles = drm_dp_link_data_symbol_cycles(lane_count,
4424 							       slice_pixels,
4425 							       bpp_x16,
4426 							       symbol_size,
4427 							       is_mst);
4428 	int slice_eoc_cycles = 0;
4429 
4430 	if (dsc_slice_count)
4431 		slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4432 
4433 	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4434 }
4435 EXPORT_SYMBOL(drm_dp_link_symbol_cycles);
4436 
4437 /**
4438  * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4439  * @lane_count: DP link lane count
4440  * @hactive: pixel count of the active period in one scanline of the stream
4441  * @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4442  * @bpp_x16: bits per pixel in .4 binary fixed point
4443  * @flags: DRM_DP_OVERHEAD_x flags
4444  *
4445  * Calculate the BW allocation overhead of a DP link stream, depending
4446  * on the link's
4447  * - @lane_count
4448  * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4449  * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4450  * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4451  * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4452  * as well as the stream's
4453  * - @hactive timing
4454  * - @bpp_x16 color depth
4455  * - compression mode (@dsc_slice_count != 0)
4456  * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4457  * channel coding efficiency, for that see
4458  * @drm_dp_link_bw_channel_coding_efficiency().
4459  *
4460  * Returns the overhead as 100% + overhead% in 1ppm units.
4461  */
4462 int drm_dp_bw_overhead(int lane_count, int hactive,
4463 		       int dsc_slice_count,
4464 		       int bpp_x16, unsigned long flags)
4465 {
4466 	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4467 	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4468 	u32 overhead = 1000000;
4469 	int symbol_cycles;
4470 
4471 	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4472 		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4473 			      lane_count, hactive,
4474 			      FXP_Q4_ARGS(bpp_x16));
4475 		return 0;
4476 	}
4477 
4478 	/*
4479 	 * DP Standard v2.1 2.6.4.1
4480 	 * SSC downspread and ref clock variation margin:
4481 	 *   5300ppm + 300ppm ~ 0.6%
4482 	 */
4483 	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4484 		overhead += 6000;
4485 
4486 	/*
4487 	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4488 	 * FEC symbol insertions for 8b/10b channel coding:
4489 	 * After each 250 data symbols on 2-4 lanes:
4490 	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4491 	 * After each 2 x 250 data symbols on 1 lane:
4492 	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4493 	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4494 	 *   256 * 256 bytes + 1 FEC_PM
4495 	 * or
4496 	 *   128 * 512 bytes + 1 FEC_PM
4497 	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4498 	 */
4499 	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4500 		overhead += 24016;
4501 
4502 	/*
4503 	 * DP Standard v2.1 2.7.9, 5.9.7
4504 	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4505 	 * coding efficiency.
4506 	 */
4507 	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4508 		(flags & DRM_DP_BW_OVERHEAD_FEC));
4509 
4510 	symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4511 						  dsc_slice_count,
4512 						  bpp_x16, symbol_size,
4513 						  is_mst);
4514 
4515 	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4516 					    overhead * 16),
4517 				hactive * bpp_x16);
4518 }
4519 EXPORT_SYMBOL(drm_dp_bw_overhead);
4520 
4521 /**
4522  * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4523  * @is_uhbr: Whether the link has a 128b/132b channel coding
4524  *
4525  * Return the channel coding efficiency of the given DP link type, which is
4526  * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4527  * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4528  * and for 128b/132b any link or PHY level control symbol insertion overhead
4529  * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4530  * corresponding FEC overhead is BW allocation specific, included in the value
4531  * returned by drm_dp_bw_overhead().
4532  *
4533  * Returns the efficiency in the 100%/coding-overhead% ratio in
4534  * 1ppm units.
4535  */
4536 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4537 {
4538 	if (is_uhbr)
4539 		return 967100;
4540 	else
4541 		/*
4542 		 * Note that on 8b/10b MST the efficiency is only
4543 		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4544 		 * not accounted for here.
4545 		 */
4546 		return 800000;
4547 }
4548 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4549 
4550 /**
4551  * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4552  * @max_link_rate: max DPRX link rate in 10kbps units
4553  * @max_lanes: max DPRX lane count
4554  *
4555  * Given a link rate and lanes, get the data bandwidth.
4556  *
4557  * Data bandwidth is the actual payload rate, which depends on the data
4558  * bandwidth efficiency and the link rate.
4559  *
4560  * Note that protocol layers above the DPRX link level considered here can
4561  * further limit the maximum data rate. Such layers are the MST topology (with
4562  * limits on the link between the source and first branch device as well as on
4563  * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4564  * which in turn can encapsulate an MST link with its own limit - with each
4565  * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4566  *
4567  * Returns the maximum data rate in kBps units.
4568  */
4569 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4570 {
4571 	int ch_coding_efficiency =
4572 		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4573 
4574 	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4575 					      ch_coding_efficiency),
4576 				  1000000 * 8);
4577 }
4578 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4579