xref: /linux/drivers/gpu/drm/display/drm_dp_helper.c (revision 6efc0ab3b05de0d7bab8ec0597214e4788251071)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 #include <linux/dynamic_debug.h>
34 
35 #include <drm/display/drm_dp_helper.h>
36 #include <drm/display/drm_dp_mst_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_fixed.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_vblank.h>
41 #include <drm/drm_panel.h>
42 
43 #include "drm_dp_helper_internal.h"
44 
45 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
46 			"DRM_UT_CORE",
47 			"DRM_UT_DRIVER",
48 			"DRM_UT_KMS",
49 			"DRM_UT_PRIME",
50 			"DRM_UT_ATOMIC",
51 			"DRM_UT_VBL",
52 			"DRM_UT_STATE",
53 			"DRM_UT_LEASE",
54 			"DRM_UT_DP",
55 			"DRM_UT_DRMRES");
56 
57 struct dp_aux_backlight {
58 	struct backlight_device *base;
59 	struct drm_dp_aux *aux;
60 	struct drm_edp_backlight_info info;
61 	bool enabled;
62 };
63 
64 /**
65  * DOC: dp helpers
66  *
67  * These functions contain some common logic and helpers at various abstraction
68  * levels to deal with Display Port sink devices and related things like DP aux
69  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
70  * blocks, ...
71  */
72 
73 /* Helpers for DP link training */
74 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
75 {
76 	return link_status[r - DP_LANE0_1_STATUS];
77 }
78 
79 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
80 			     int lane)
81 {
82 	int i = DP_LANE0_1_STATUS + (lane >> 1);
83 	int s = (lane & 1) * 4;
84 	u8 l = dp_link_status(link_status, i);
85 
86 	return (l >> s) & 0xf;
87 }
88 
89 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
90 			  int lane_count)
91 {
92 	u8 lane_align;
93 	u8 lane_status;
94 	int lane;
95 
96 	lane_align = dp_link_status(link_status,
97 				    DP_LANE_ALIGN_STATUS_UPDATED);
98 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
99 		return false;
100 	for (lane = 0; lane < lane_count; lane++) {
101 		lane_status = dp_get_lane_status(link_status, lane);
102 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
103 			return false;
104 	}
105 	return true;
106 }
107 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
108 
109 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
110 			      int lane_count)
111 {
112 	int lane;
113 	u8 lane_status;
114 
115 	for (lane = 0; lane < lane_count; lane++) {
116 		lane_status = dp_get_lane_status(link_status, lane);
117 		if ((lane_status & DP_LANE_CR_DONE) == 0)
118 			return false;
119 	}
120 	return true;
121 }
122 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
123 
124 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
125 				     int lane)
126 {
127 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
128 	int s = ((lane & 1) ?
129 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
130 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
131 	u8 l = dp_link_status(link_status, i);
132 
133 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
134 }
135 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
136 
137 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
138 					  int lane)
139 {
140 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
141 	int s = ((lane & 1) ?
142 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
143 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
144 	u8 l = dp_link_status(link_status, i);
145 
146 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
147 }
148 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
149 
150 /* DP 2.0 128b/132b */
151 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
152 				   int lane)
153 {
154 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
155 	int s = ((lane & 1) ?
156 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
157 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
158 	u8 l = dp_link_status(link_status, i);
159 
160 	return (l >> s) & 0xf;
161 }
162 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
163 
164 /* DP 2.0 errata for 128b/132b */
165 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
166 					  int lane_count)
167 {
168 	u8 lane_align, lane_status;
169 	int lane;
170 
171 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
172 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
173 		return false;
174 
175 	for (lane = 0; lane < lane_count; lane++) {
176 		lane_status = dp_get_lane_status(link_status, lane);
177 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
178 			return false;
179 	}
180 	return true;
181 }
182 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
183 
184 /* DP 2.0 errata for 128b/132b */
185 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
186 					int lane_count)
187 {
188 	u8 lane_status;
189 	int lane;
190 
191 	for (lane = 0; lane < lane_count; lane++) {
192 		lane_status = dp_get_lane_status(link_status, lane);
193 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
194 			return false;
195 	}
196 	return true;
197 }
198 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
199 
200 /* DP 2.0 errata for 128b/132b */
201 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
202 {
203 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
204 
205 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
206 }
207 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
208 
209 /* DP 2.0 errata for 128b/132b */
210 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
211 {
212 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
213 
214 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
215 }
216 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
217 
218 /* DP 2.0 errata for 128b/132b */
219 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
220 {
221 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
222 
223 	return status & DP_128B132B_LT_FAILED;
224 }
225 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
226 
227 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
228 {
229 	if (rd_interval > 4)
230 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
231 			    aux->name, rd_interval);
232 
233 	if (rd_interval == 0)
234 		return 100;
235 
236 	return rd_interval * 4 * USEC_PER_MSEC;
237 }
238 
239 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
240 {
241 	if (rd_interval > 4)
242 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
243 			    aux->name, rd_interval);
244 
245 	if (rd_interval == 0)
246 		return 400;
247 
248 	return rd_interval * 4 * USEC_PER_MSEC;
249 }
250 
251 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
252 {
253 	switch (rd_interval) {
254 	default:
255 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
256 			    aux->name, rd_interval);
257 		fallthrough;
258 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
259 		return 400;
260 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
261 		return 4000;
262 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
263 		return 8000;
264 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
265 		return 12000;
266 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
267 		return 16000;
268 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
269 		return 32000;
270 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
271 		return 64000;
272 	}
273 }
274 
275 /*
276  * The link training delays are different for:
277  *
278  *  - Clock recovery vs. channel equalization
279  *  - DPRX vs. LTTPR
280  *  - 128b/132b vs. 8b/10b
281  *  - DPCD rev 1.3 vs. later
282  *
283  * Get the correct delay in us, reading DPCD if necessary.
284  */
285 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
286 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
287 {
288 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
289 	unsigned int offset;
290 	u8 rd_interval, mask;
291 
292 	if (dp_phy == DP_PHY_DPRX) {
293 		if (uhbr) {
294 			if (cr)
295 				return 100;
296 
297 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
298 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
299 			parse = __128b132b_channel_eq_delay_us;
300 		} else {
301 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
302 				return 100;
303 
304 			offset = DP_TRAINING_AUX_RD_INTERVAL;
305 			mask = DP_TRAINING_AUX_RD_MASK;
306 			if (cr)
307 				parse = __8b10b_clock_recovery_delay_us;
308 			else
309 				parse = __8b10b_channel_eq_delay_us;
310 		}
311 	} else {
312 		if (uhbr) {
313 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
314 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
315 			parse = __128b132b_channel_eq_delay_us;
316 		} else {
317 			if (cr)
318 				return 100;
319 
320 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
321 			mask = DP_TRAINING_AUX_RD_MASK;
322 			parse = __8b10b_channel_eq_delay_us;
323 		}
324 	}
325 
326 	if (offset < DP_RECEIVER_CAP_SIZE) {
327 		rd_interval = dpcd[offset];
328 	} else {
329 		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
330 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
331 				    aux->name);
332 			/* arbitrary default delay */
333 			return 400;
334 		}
335 	}
336 
337 	return parse(aux, rd_interval & mask);
338 }
339 
340 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
341 				     enum drm_dp_phy dp_phy, bool uhbr)
342 {
343 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
344 }
345 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
346 
347 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
348 				 enum drm_dp_phy dp_phy, bool uhbr)
349 {
350 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
351 }
352 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
353 
354 /* Per DP 2.0 Errata */
355 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
356 {
357 	int unit;
358 	u8 val;
359 
360 	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
361 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
362 			aux->name);
363 		/* default to max */
364 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
365 	}
366 
367 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
368 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
369 
370 	return (val + 1) * unit * 1000;
371 }
372 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
373 
374 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
375 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
376 {
377 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
378 		DP_TRAINING_AUX_RD_MASK;
379 	int delay_us;
380 
381 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
382 		delay_us = 100;
383 	else
384 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
385 
386 	usleep_range(delay_us, delay_us * 2);
387 }
388 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
389 
390 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
391 						 u8 rd_interval)
392 {
393 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
394 
395 	usleep_range(delay_us, delay_us * 2);
396 }
397 
398 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
399 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
400 {
401 	__drm_dp_link_train_channel_eq_delay(aux,
402 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
403 					     DP_TRAINING_AUX_RD_MASK);
404 }
405 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
406 
407 /**
408  * drm_dp_phy_name() - Get the name of the given DP PHY
409  * @dp_phy: The DP PHY identifier
410  *
411  * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
412  * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
413  * non-NULL and valid.
414  *
415  * Returns: Name of the DP PHY.
416  */
417 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
418 {
419 	static const char * const phy_names[] = {
420 		[DP_PHY_DPRX] = "DPRX",
421 		[DP_PHY_LTTPR1] = "LTTPR 1",
422 		[DP_PHY_LTTPR2] = "LTTPR 2",
423 		[DP_PHY_LTTPR3] = "LTTPR 3",
424 		[DP_PHY_LTTPR4] = "LTTPR 4",
425 		[DP_PHY_LTTPR5] = "LTTPR 5",
426 		[DP_PHY_LTTPR6] = "LTTPR 6",
427 		[DP_PHY_LTTPR7] = "LTTPR 7",
428 		[DP_PHY_LTTPR8] = "LTTPR 8",
429 	};
430 
431 	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
432 	    WARN_ON(!phy_names[dp_phy]))
433 		return "<INVALID DP PHY>";
434 
435 	return phy_names[dp_phy];
436 }
437 EXPORT_SYMBOL(drm_dp_phy_name);
438 
439 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
440 {
441 	usleep_range(100, 200);
442 }
443 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
444 
445 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
446 {
447 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
448 }
449 
450 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
451 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
452 {
453 	u8 interval = dp_lttpr_phy_cap(phy_cap,
454 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
455 		      DP_TRAINING_AUX_RD_MASK;
456 
457 	__drm_dp_link_train_channel_eq_delay(aux, interval);
458 }
459 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
460 
461 u8 drm_dp_link_rate_to_bw_code(int link_rate)
462 {
463 	switch (link_rate) {
464 	case 1000000:
465 		return DP_LINK_BW_10;
466 	case 1350000:
467 		return DP_LINK_BW_13_5;
468 	case 2000000:
469 		return DP_LINK_BW_20;
470 	default:
471 		/* Spec says link_bw = link_rate / 0.27Gbps */
472 		return link_rate / 27000;
473 	}
474 }
475 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
476 
477 int drm_dp_bw_code_to_link_rate(u8 link_bw)
478 {
479 	switch (link_bw) {
480 	case DP_LINK_BW_10:
481 		return 1000000;
482 	case DP_LINK_BW_13_5:
483 		return 1350000;
484 	case DP_LINK_BW_20:
485 		return 2000000;
486 	default:
487 		/* Spec says link_rate = link_bw * 0.27Gbps */
488 		return link_bw * 27000;
489 	}
490 }
491 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
492 
493 #define AUX_RETRY_INTERVAL 500 /* us */
494 
495 static inline void
496 drm_dp_dump_access(const struct drm_dp_aux *aux,
497 		   u8 request, uint offset, void *buffer, int ret)
498 {
499 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
500 
501 	if (ret > 0)
502 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
503 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
504 	else
505 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
506 			   aux->name, offset, arrow, ret);
507 }
508 
509 /**
510  * DOC: dp helpers
511  *
512  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
513  * independent access to AUX functionality. Drivers can take advantage of
514  * this by filling in the fields of the drm_dp_aux structure.
515  *
516  * Transactions are described using a hardware-independent drm_dp_aux_msg
517  * structure, which is passed into a driver's .transfer() implementation.
518  * Both native and I2C-over-AUX transactions are supported.
519  */
520 
521 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
522 			      unsigned int offset, void *buffer, size_t size)
523 {
524 	struct drm_dp_aux_msg msg;
525 	unsigned int retry, native_reply;
526 	int err = 0, ret = 0;
527 
528 	memset(&msg, 0, sizeof(msg));
529 	msg.address = offset;
530 	msg.request = request;
531 	msg.buffer = buffer;
532 	msg.size = size;
533 
534 	mutex_lock(&aux->hw_mutex);
535 
536 	/*
537 	 * If the device attached to the aux bus is powered down then there's
538 	 * no reason to attempt a transfer. Error out immediately.
539 	 */
540 	if (aux->powered_down) {
541 		ret = -EBUSY;
542 		goto unlock;
543 	}
544 
545 	/*
546 	 * The specification doesn't give any recommendation on how often to
547 	 * retry native transactions. We used to retry 7 times like for
548 	 * aux i2c transactions but real world devices this wasn't
549 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
550 	 */
551 	for (retry = 0; retry < 32; retry++) {
552 		if (ret != 0 && ret != -ETIMEDOUT) {
553 			usleep_range(AUX_RETRY_INTERVAL,
554 				     AUX_RETRY_INTERVAL + 100);
555 		}
556 
557 		ret = aux->transfer(aux, &msg);
558 		if (ret >= 0) {
559 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
560 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
561 				if (ret == size)
562 					goto unlock;
563 
564 				ret = -EPROTO;
565 			} else
566 				ret = -EIO;
567 		}
568 
569 		/*
570 		 * We want the error we return to be the error we received on
571 		 * the first transaction, since we may get a different error the
572 		 * next time we retry
573 		 */
574 		if (!err)
575 			err = ret;
576 	}
577 
578 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
579 		    aux->name, err);
580 	ret = err;
581 
582 unlock:
583 	mutex_unlock(&aux->hw_mutex);
584 	return ret;
585 }
586 
587 /**
588  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
589  * @aux: DisplayPort AUX channel (SST)
590  * @offset: address of the register to probe
591  *
592  * Probe the provided DPCD address by reading 1 byte from it. The function can
593  * be used to trigger some side-effect the read access has, like waking up the
594  * sink, without the need for the read-out value.
595  *
596  * Returns 0 if the read access suceeded, or a negative error code on failure.
597  */
598 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
599 {
600 	u8 buffer;
601 	int ret;
602 
603 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
604 	WARN_ON(ret == 0);
605 
606 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
607 
608 	return ret < 0 ? ret : 0;
609 }
610 EXPORT_SYMBOL(drm_dp_dpcd_probe);
611 
612 /**
613  * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
614  * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
615  *       and the function will be a no-op.
616  * @powered: true if powered; false if not
617  *
618  * If the endpoint device on the DP AUX bus is known to be powered down
619  * then this function can be called to make future transfers fail immediately
620  * instead of needing to time out.
621  *
622  * If this function is never called then a device defaults to being powered.
623  */
624 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
625 {
626 	if (!aux)
627 		return;
628 
629 	mutex_lock(&aux->hw_mutex);
630 	aux->powered_down = !powered;
631 	mutex_unlock(&aux->hw_mutex);
632 }
633 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
634 
635 /**
636  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
637  * @aux: DisplayPort AUX channel (SST or MST)
638  * @offset: address of the (first) register to read
639  * @buffer: buffer to store the register values
640  * @size: number of bytes in @buffer
641  *
642  * Returns the number of bytes transferred on success, or a negative error
643  * code on failure. -EIO is returned if the request was NAKed by the sink or
644  * if the retry count was exceeded. If not all bytes were transferred, this
645  * function returns -EPROTO. Errors from the underlying AUX channel transfer
646  * function, with the exception of -EBUSY (which causes the transaction to
647  * be retried), are propagated to the caller.
648  */
649 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
650 			 void *buffer, size_t size)
651 {
652 	int ret;
653 
654 	/*
655 	 * HP ZR24w corrupts the first DPCD access after entering power save
656 	 * mode. Eg. on a read, the entire buffer will be filled with the same
657 	 * byte. Do a throw away read to avoid corrupting anything we care
658 	 * about. Afterwards things will work correctly until the monitor
659 	 * gets woken up and subsequently re-enters power save mode.
660 	 *
661 	 * The user pressing any button on the monitor is enough to wake it
662 	 * up, so there is no particularly good place to do the workaround.
663 	 * We just have to do it before any DPCD access and hope that the
664 	 * monitor doesn't power down exactly after the throw away read.
665 	 */
666 	if (!aux->is_remote) {
667 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
668 		if (ret < 0)
669 			return ret;
670 	}
671 
672 	if (aux->is_remote)
673 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
674 	else
675 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
676 					 buffer, size);
677 
678 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
679 	return ret;
680 }
681 EXPORT_SYMBOL(drm_dp_dpcd_read);
682 
683 /**
684  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
685  * @aux: DisplayPort AUX channel (SST or MST)
686  * @offset: address of the (first) register to write
687  * @buffer: buffer containing the values to write
688  * @size: number of bytes in @buffer
689  *
690  * Returns the number of bytes transferred on success, or a negative error
691  * code on failure. -EIO is returned if the request was NAKed by the sink or
692  * if the retry count was exceeded. If not all bytes were transferred, this
693  * function returns -EPROTO. Errors from the underlying AUX channel transfer
694  * function, with the exception of -EBUSY (which causes the transaction to
695  * be retried), are propagated to the caller.
696  */
697 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
698 			  void *buffer, size_t size)
699 {
700 	int ret;
701 
702 	if (aux->is_remote)
703 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
704 	else
705 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
706 					 buffer, size);
707 
708 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
709 	return ret;
710 }
711 EXPORT_SYMBOL(drm_dp_dpcd_write);
712 
713 /**
714  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
715  * @aux: DisplayPort AUX channel
716  * @status: buffer to store the link status in (must be at least 6 bytes)
717  *
718  * Returns the number of bytes transferred on success or a negative error
719  * code on failure.
720  */
721 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
722 				 u8 status[DP_LINK_STATUS_SIZE])
723 {
724 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
725 				DP_LINK_STATUS_SIZE);
726 }
727 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
728 
729 /**
730  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
731  * @aux: DisplayPort AUX channel
732  * @dp_phy: the DP PHY to get the link status for
733  * @link_status: buffer to return the status in
734  *
735  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
736  * layout of the returned @link_status matches the DPCD register layout of the
737  * DPRX PHY link status.
738  *
739  * Returns 0 if the information was read successfully or a negative error code
740  * on failure.
741  */
742 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
743 				     enum drm_dp_phy dp_phy,
744 				     u8 link_status[DP_LINK_STATUS_SIZE])
745 {
746 	int ret;
747 
748 	if (dp_phy == DP_PHY_DPRX) {
749 		ret = drm_dp_dpcd_read(aux,
750 				       DP_LANE0_1_STATUS,
751 				       link_status,
752 				       DP_LINK_STATUS_SIZE);
753 
754 		if (ret < 0)
755 			return ret;
756 
757 		WARN_ON(ret != DP_LINK_STATUS_SIZE);
758 
759 		return 0;
760 	}
761 
762 	ret = drm_dp_dpcd_read(aux,
763 			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
764 			       link_status,
765 			       DP_LINK_STATUS_SIZE - 1);
766 
767 	if (ret < 0)
768 		return ret;
769 
770 	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
771 
772 	/* Convert the LTTPR to the sink PHY link status layout */
773 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
774 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
775 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
776 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
777 
778 	return 0;
779 }
780 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
781 
782 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
783 {
784 	/* FIXME: get rid of drm_edid_raw() */
785 	const struct edid *edid = drm_edid_raw(drm_edid);
786 
787 	return edid && edid->revision >= 4 &&
788 		edid->input & DRM_EDID_INPUT_DIGITAL &&
789 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
790 }
791 
792 /**
793  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
794  * @dpcd: DisplayPort configuration data
795  * @port_cap: port capabilities
796  * @type: port type to be checked. Can be:
797  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
798  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
799  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
800  *
801  * Caveat: Only works with DPCD 1.1+ port caps.
802  *
803  * Returns: whether the downstream facing port matches the type.
804  */
805 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
806 			       const u8 port_cap[4], u8 type)
807 {
808 	return drm_dp_is_branch(dpcd) &&
809 		dpcd[DP_DPCD_REV] >= 0x11 &&
810 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
811 }
812 EXPORT_SYMBOL(drm_dp_downstream_is_type);
813 
814 /**
815  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
816  * @dpcd: DisplayPort configuration data
817  * @port_cap: port capabilities
818  * @drm_edid: EDID
819  *
820  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
821  */
822 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
823 			       const u8 port_cap[4],
824 			       const struct drm_edid *drm_edid)
825 {
826 	if (dpcd[DP_DPCD_REV] < 0x11) {
827 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
828 		case DP_DWN_STRM_PORT_TYPE_TMDS:
829 			return true;
830 		default:
831 			return false;
832 		}
833 	}
834 
835 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
836 	case DP_DS_PORT_TYPE_DP_DUALMODE:
837 		if (is_edid_digital_input_dp(drm_edid))
838 			return false;
839 		fallthrough;
840 	case DP_DS_PORT_TYPE_DVI:
841 	case DP_DS_PORT_TYPE_HDMI:
842 		return true;
843 	default:
844 		return false;
845 	}
846 }
847 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
848 
849 /**
850  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
851  * @aux: DisplayPort AUX channel
852  * @real_edid_checksum: real edid checksum for the last block
853  *
854  * Returns:
855  * True on success
856  */
857 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
858 				    u8 real_edid_checksum)
859 {
860 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
861 
862 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
863 			     &auto_test_req, 1) < 1) {
864 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
865 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
866 		return false;
867 	}
868 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
869 
870 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
871 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
872 			aux->name, DP_TEST_REQUEST);
873 		return false;
874 	}
875 	link_edid_read &= DP_TEST_LINK_EDID_READ;
876 
877 	if (!auto_test_req || !link_edid_read) {
878 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
879 			    aux->name);
880 		return false;
881 	}
882 
883 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
884 			      &auto_test_req, 1) < 1) {
885 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
886 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
887 		return false;
888 	}
889 
890 	/* send back checksum for the last edid extension block data */
891 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
892 			      &real_edid_checksum, 1) < 1) {
893 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
894 			aux->name, DP_TEST_EDID_CHECKSUM);
895 		return false;
896 	}
897 
898 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
899 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
900 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
901 			aux->name, DP_TEST_RESPONSE);
902 		return false;
903 	}
904 
905 	return true;
906 }
907 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
908 
909 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
910 {
911 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
912 
913 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
914 		port_count = 4;
915 
916 	return port_count;
917 }
918 
919 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
920 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
921 {
922 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
923 	int ret;
924 
925 	/*
926 	 * Prior to DP1.3 the bit represented by
927 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
928 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
929 	 * the true capability of the panel. The only way to check is to
930 	 * then compare 0000h and 2200h.
931 	 */
932 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
933 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
934 		return 0;
935 
936 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
937 			       sizeof(dpcd_ext));
938 	if (ret < 0)
939 		return ret;
940 	if (ret != sizeof(dpcd_ext))
941 		return -EIO;
942 
943 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
944 		drm_dbg_kms(aux->drm_dev,
945 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
946 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
947 		return 0;
948 	}
949 
950 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
951 		return 0;
952 
953 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
954 
955 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
956 
957 	return 0;
958 }
959 
960 /**
961  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
962  * available
963  * @aux: DisplayPort AUX channel
964  * @dpcd: Buffer to store the resulting DPCD in
965  *
966  * Attempts to read the base DPCD caps for @aux. Additionally, this function
967  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
968  * present.
969  *
970  * Returns: %0 if the DPCD was read successfully, negative error code
971  * otherwise.
972  */
973 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
974 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
975 {
976 	int ret;
977 
978 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
979 	if (ret < 0)
980 		return ret;
981 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
982 		return -EIO;
983 
984 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
985 	if (ret < 0)
986 		return ret;
987 
988 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
989 
990 	return ret;
991 }
992 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
993 
994 /**
995  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
996  * @aux: DisplayPort AUX channel
997  * @dpcd: A cached copy of the port's DPCD
998  * @downstream_ports: buffer to store the downstream port info in
999  *
1000  * See also:
1001  * drm_dp_downstream_max_clock()
1002  * drm_dp_downstream_max_bpc()
1003  *
1004  * Returns: 0 if either the downstream port info was read successfully or
1005  * there was no downstream info to read, or a negative error code otherwise.
1006  */
1007 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1008 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1009 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1010 {
1011 	int ret;
1012 	u8 len;
1013 
1014 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1015 
1016 	/* No downstream info to read */
1017 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1018 		return 0;
1019 
1020 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1021 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1022 	 * some branches do it we need to handle it regardless.
1023 	 */
1024 	len = drm_dp_downstream_port_count(dpcd);
1025 	if (!len)
1026 		return 0;
1027 
1028 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1029 		len *= 4;
1030 
1031 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1032 	if (ret < 0)
1033 		return ret;
1034 	if (ret != len)
1035 		return -EIO;
1036 
1037 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1038 
1039 	return 0;
1040 }
1041 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1042 
1043 /**
1044  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1045  * @dpcd: DisplayPort configuration data
1046  * @port_cap: port capabilities
1047  *
1048  * Returns: Downstream facing port max dot clock in kHz on success,
1049  * or 0 if max clock not defined
1050  */
1051 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1052 				   const u8 port_cap[4])
1053 {
1054 	if (!drm_dp_is_branch(dpcd))
1055 		return 0;
1056 
1057 	if (dpcd[DP_DPCD_REV] < 0x11)
1058 		return 0;
1059 
1060 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1061 	case DP_DS_PORT_TYPE_VGA:
1062 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1063 			return 0;
1064 		return port_cap[1] * 8000;
1065 	default:
1066 		return 0;
1067 	}
1068 }
1069 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1070 
1071 /**
1072  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1073  * @dpcd: DisplayPort configuration data
1074  * @port_cap: port capabilities
1075  * @drm_edid: EDID
1076  *
1077  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1078  * or 0 if max TMDS clock not defined
1079  */
1080 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1081 				     const u8 port_cap[4],
1082 				     const struct drm_edid *drm_edid)
1083 {
1084 	if (!drm_dp_is_branch(dpcd))
1085 		return 0;
1086 
1087 	if (dpcd[DP_DPCD_REV] < 0x11) {
1088 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1089 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1090 			return 165000;
1091 		default:
1092 			return 0;
1093 		}
1094 	}
1095 
1096 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1097 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1098 		if (is_edid_digital_input_dp(drm_edid))
1099 			return 0;
1100 		/*
1101 		 * It's left up to the driver to check the
1102 		 * DP dual mode adapter's max TMDS clock.
1103 		 *
1104 		 * Unfortunately it looks like branch devices
1105 		 * may not fordward that the DP dual mode i2c
1106 		 * access so we just usually get i2c nak :(
1107 		 */
1108 		fallthrough;
1109 	case DP_DS_PORT_TYPE_HDMI:
1110 		 /*
1111 		  * We should perhaps assume 165 MHz when detailed cap
1112 		  * info is not available. But looks like many typical
1113 		  * branch devices fall into that category and so we'd
1114 		  * probably end up with users complaining that they can't
1115 		  * get high resolution modes with their favorite dongle.
1116 		  *
1117 		  * So let's limit to 300 MHz instead since DPCD 1.4
1118 		  * HDMI 2.0 DFPs are required to have the detailed cap
1119 		  * info. So it's more likely we're dealing with a HDMI 1.4
1120 		  * compatible* device here.
1121 		  */
1122 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1123 			return 300000;
1124 		return port_cap[1] * 2500;
1125 	case DP_DS_PORT_TYPE_DVI:
1126 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1127 			return 165000;
1128 		/* FIXME what to do about DVI dual link? */
1129 		return port_cap[1] * 2500;
1130 	default:
1131 		return 0;
1132 	}
1133 }
1134 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1135 
1136 /**
1137  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1138  * @dpcd: DisplayPort configuration data
1139  * @port_cap: port capabilities
1140  * @drm_edid: EDID
1141  *
1142  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1143  * or 0 if max TMDS clock not defined
1144  */
1145 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1146 				     const u8 port_cap[4],
1147 				     const struct drm_edid *drm_edid)
1148 {
1149 	if (!drm_dp_is_branch(dpcd))
1150 		return 0;
1151 
1152 	if (dpcd[DP_DPCD_REV] < 0x11) {
1153 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1154 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1155 			return 25000;
1156 		default:
1157 			return 0;
1158 		}
1159 	}
1160 
1161 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1162 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1163 		if (is_edid_digital_input_dp(drm_edid))
1164 			return 0;
1165 		fallthrough;
1166 	case DP_DS_PORT_TYPE_DVI:
1167 	case DP_DS_PORT_TYPE_HDMI:
1168 		/*
1169 		 * Unclear whether the protocol converter could
1170 		 * utilize pixel replication. Assume it won't.
1171 		 */
1172 		return 25000;
1173 	default:
1174 		return 0;
1175 	}
1176 }
1177 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1178 
1179 /**
1180  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1181  *                               bits per component
1182  * @dpcd: DisplayPort configuration data
1183  * @port_cap: downstream facing port capabilities
1184  * @drm_edid: EDID
1185  *
1186  * Returns: Max bpc on success or 0 if max bpc not defined
1187  */
1188 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1189 			      const u8 port_cap[4],
1190 			      const struct drm_edid *drm_edid)
1191 {
1192 	if (!drm_dp_is_branch(dpcd))
1193 		return 0;
1194 
1195 	if (dpcd[DP_DPCD_REV] < 0x11) {
1196 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1197 		case DP_DWN_STRM_PORT_TYPE_DP:
1198 			return 0;
1199 		default:
1200 			return 8;
1201 		}
1202 	}
1203 
1204 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1205 	case DP_DS_PORT_TYPE_DP:
1206 		return 0;
1207 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1208 		if (is_edid_digital_input_dp(drm_edid))
1209 			return 0;
1210 		fallthrough;
1211 	case DP_DS_PORT_TYPE_HDMI:
1212 	case DP_DS_PORT_TYPE_DVI:
1213 	case DP_DS_PORT_TYPE_VGA:
1214 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1215 			return 8;
1216 
1217 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1218 		case DP_DS_8BPC:
1219 			return 8;
1220 		case DP_DS_10BPC:
1221 			return 10;
1222 		case DP_DS_12BPC:
1223 			return 12;
1224 		case DP_DS_16BPC:
1225 			return 16;
1226 		default:
1227 			return 8;
1228 		}
1229 		break;
1230 	default:
1231 		return 8;
1232 	}
1233 }
1234 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1235 
1236 /**
1237  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1238  *                                       YCbCr 4:2:0 pass-through capability
1239  * @dpcd: DisplayPort configuration data
1240  * @port_cap: downstream facing port capabilities
1241  *
1242  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1243  */
1244 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1245 				       const u8 port_cap[4])
1246 {
1247 	if (!drm_dp_is_branch(dpcd))
1248 		return false;
1249 
1250 	if (dpcd[DP_DPCD_REV] < 0x13)
1251 		return false;
1252 
1253 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1254 	case DP_DS_PORT_TYPE_DP:
1255 		return true;
1256 	case DP_DS_PORT_TYPE_HDMI:
1257 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1258 			return false;
1259 
1260 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1261 	default:
1262 		return false;
1263 	}
1264 }
1265 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1266 
1267 /**
1268  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1269  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1270  * @dpcd: DisplayPort configuration data
1271  * @port_cap: downstream facing port capabilities
1272  *
1273  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1274  */
1275 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1276 					     const u8 port_cap[4])
1277 {
1278 	if (!drm_dp_is_branch(dpcd))
1279 		return false;
1280 
1281 	if (dpcd[DP_DPCD_REV] < 0x13)
1282 		return false;
1283 
1284 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1285 	case DP_DS_PORT_TYPE_HDMI:
1286 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1287 			return false;
1288 
1289 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1290 	default:
1291 		return false;
1292 	}
1293 }
1294 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1295 
1296 /**
1297  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1298  *                                               RGB->YCbCr conversion capability
1299  * @dpcd: DisplayPort configuration data
1300  * @port_cap: downstream facing port capabilities
1301  * @color_spc: Colorspace for which conversion cap is sought
1302  *
1303  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1304  * colorspace.
1305  */
1306 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1307 					       const u8 port_cap[4],
1308 					       u8 color_spc)
1309 {
1310 	if (!drm_dp_is_branch(dpcd))
1311 		return false;
1312 
1313 	if (dpcd[DP_DPCD_REV] < 0x13)
1314 		return false;
1315 
1316 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317 	case DP_DS_PORT_TYPE_HDMI:
1318 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1319 			return false;
1320 
1321 		return port_cap[3] & color_spc;
1322 	default:
1323 		return false;
1324 	}
1325 }
1326 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1327 
1328 /**
1329  * drm_dp_downstream_mode() - return a mode for downstream facing port
1330  * @dev: DRM device
1331  * @dpcd: DisplayPort configuration data
1332  * @port_cap: port capabilities
1333  *
1334  * Provides a suitable mode for downstream facing ports without EDID.
1335  *
1336  * Returns: A new drm_display_mode on success or NULL on failure
1337  */
1338 struct drm_display_mode *
1339 drm_dp_downstream_mode(struct drm_device *dev,
1340 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1341 		       const u8 port_cap[4])
1342 
1343 {
1344 	u8 vic;
1345 
1346 	if (!drm_dp_is_branch(dpcd))
1347 		return NULL;
1348 
1349 	if (dpcd[DP_DPCD_REV] < 0x11)
1350 		return NULL;
1351 
1352 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1353 	case DP_DS_PORT_TYPE_NON_EDID:
1354 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1355 		case DP_DS_NON_EDID_720x480i_60:
1356 			vic = 6;
1357 			break;
1358 		case DP_DS_NON_EDID_720x480i_50:
1359 			vic = 21;
1360 			break;
1361 		case DP_DS_NON_EDID_1920x1080i_60:
1362 			vic = 5;
1363 			break;
1364 		case DP_DS_NON_EDID_1920x1080i_50:
1365 			vic = 20;
1366 			break;
1367 		case DP_DS_NON_EDID_1280x720_60:
1368 			vic = 4;
1369 			break;
1370 		case DP_DS_NON_EDID_1280x720_50:
1371 			vic = 19;
1372 			break;
1373 		default:
1374 			return NULL;
1375 		}
1376 		return drm_display_mode_from_cea_vic(dev, vic);
1377 	default:
1378 		return NULL;
1379 	}
1380 }
1381 EXPORT_SYMBOL(drm_dp_downstream_mode);
1382 
1383 /**
1384  * drm_dp_downstream_id() - identify branch device
1385  * @aux: DisplayPort AUX channel
1386  * @id: DisplayPort branch device id
1387  *
1388  * Returns branch device id on success or NULL on failure
1389  */
1390 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1391 {
1392 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1393 }
1394 EXPORT_SYMBOL(drm_dp_downstream_id);
1395 
1396 /**
1397  * drm_dp_downstream_debug() - debug DP branch devices
1398  * @m: pointer for debugfs file
1399  * @dpcd: DisplayPort configuration data
1400  * @port_cap: port capabilities
1401  * @drm_edid: EDID
1402  * @aux: DisplayPort AUX channel
1403  *
1404  */
1405 void drm_dp_downstream_debug(struct seq_file *m,
1406 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1407 			     const u8 port_cap[4],
1408 			     const struct drm_edid *drm_edid,
1409 			     struct drm_dp_aux *aux)
1410 {
1411 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1412 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1413 	int clk;
1414 	int bpc;
1415 	char id[7];
1416 	int len;
1417 	uint8_t rev[2];
1418 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1419 	bool branch_device = drm_dp_is_branch(dpcd);
1420 
1421 	seq_printf(m, "\tDP branch device present: %s\n",
1422 		   str_yes_no(branch_device));
1423 
1424 	if (!branch_device)
1425 		return;
1426 
1427 	switch (type) {
1428 	case DP_DS_PORT_TYPE_DP:
1429 		seq_puts(m, "\t\tType: DisplayPort\n");
1430 		break;
1431 	case DP_DS_PORT_TYPE_VGA:
1432 		seq_puts(m, "\t\tType: VGA\n");
1433 		break;
1434 	case DP_DS_PORT_TYPE_DVI:
1435 		seq_puts(m, "\t\tType: DVI\n");
1436 		break;
1437 	case DP_DS_PORT_TYPE_HDMI:
1438 		seq_puts(m, "\t\tType: HDMI\n");
1439 		break;
1440 	case DP_DS_PORT_TYPE_NON_EDID:
1441 		seq_puts(m, "\t\tType: others without EDID support\n");
1442 		break;
1443 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1444 		seq_puts(m, "\t\tType: DP++\n");
1445 		break;
1446 	case DP_DS_PORT_TYPE_WIRELESS:
1447 		seq_puts(m, "\t\tType: Wireless\n");
1448 		break;
1449 	default:
1450 		seq_puts(m, "\t\tType: N/A\n");
1451 	}
1452 
1453 	memset(id, 0, sizeof(id));
1454 	drm_dp_downstream_id(aux, id);
1455 	seq_printf(m, "\t\tID: %s\n", id);
1456 
1457 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1458 	if (len > 0)
1459 		seq_printf(m, "\t\tHW: %d.%d\n",
1460 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1461 
1462 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1463 	if (len > 0)
1464 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1465 
1466 	if (detailed_cap_info) {
1467 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1468 		if (clk > 0)
1469 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1470 
1471 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1472 		if (clk > 0)
1473 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1474 
1475 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1476 		if (clk > 0)
1477 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1478 
1479 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1480 
1481 		if (bpc > 0)
1482 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1483 	}
1484 }
1485 EXPORT_SYMBOL(drm_dp_downstream_debug);
1486 
1487 /**
1488  * drm_dp_subconnector_type() - get DP branch device type
1489  * @dpcd: DisplayPort configuration data
1490  * @port_cap: port capabilities
1491  */
1492 enum drm_mode_subconnector
1493 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1494 			 const u8 port_cap[4])
1495 {
1496 	int type;
1497 	if (!drm_dp_is_branch(dpcd))
1498 		return DRM_MODE_SUBCONNECTOR_Native;
1499 	/* DP 1.0 approach */
1500 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1501 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1502 		       DP_DWN_STRM_PORT_TYPE_MASK;
1503 
1504 		switch (type) {
1505 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1506 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1507 			return DRM_MODE_SUBCONNECTOR_DVID;
1508 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1509 			/* Can be VGA or DVI-A, VGA is more popular */
1510 			return DRM_MODE_SUBCONNECTOR_VGA;
1511 		case DP_DWN_STRM_PORT_TYPE_DP:
1512 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1513 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1514 		default:
1515 			return DRM_MODE_SUBCONNECTOR_Unknown;
1516 		}
1517 	}
1518 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1519 
1520 	switch (type) {
1521 	case DP_DS_PORT_TYPE_DP:
1522 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1523 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1524 	case DP_DS_PORT_TYPE_VGA:
1525 		return DRM_MODE_SUBCONNECTOR_VGA;
1526 	case DP_DS_PORT_TYPE_DVI:
1527 		return DRM_MODE_SUBCONNECTOR_DVID;
1528 	case DP_DS_PORT_TYPE_HDMI:
1529 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1530 	case DP_DS_PORT_TYPE_WIRELESS:
1531 		return DRM_MODE_SUBCONNECTOR_Wireless;
1532 	case DP_DS_PORT_TYPE_NON_EDID:
1533 	default:
1534 		return DRM_MODE_SUBCONNECTOR_Unknown;
1535 	}
1536 }
1537 EXPORT_SYMBOL(drm_dp_subconnector_type);
1538 
1539 /**
1540  * drm_dp_set_subconnector_property - set subconnector for DP connector
1541  * @connector: connector to set property on
1542  * @status: connector status
1543  * @dpcd: DisplayPort configuration data
1544  * @port_cap: port capabilities
1545  *
1546  * Called by a driver on every detect event.
1547  */
1548 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1549 				      enum drm_connector_status status,
1550 				      const u8 *dpcd,
1551 				      const u8 port_cap[4])
1552 {
1553 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1554 
1555 	if (status == connector_status_connected)
1556 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1557 	drm_object_property_set_value(&connector->base,
1558 			connector->dev->mode_config.dp_subconnector_property,
1559 			subconnector);
1560 }
1561 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1562 
1563 /**
1564  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1565  * count
1566  * @connector: The DRM connector to check
1567  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1568  * @desc: A cached copy of the connector's DP descriptor
1569  *
1570  * See also: drm_dp_read_sink_count()
1571  *
1572  * Returns: %True if the (e)DP connector has a valid sink count that should
1573  * be probed, %false otherwise.
1574  */
1575 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1576 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1577 				const struct drm_dp_desc *desc)
1578 {
1579 	/* Some eDP panels don't set a valid value for the sink count */
1580 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1581 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1582 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1583 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1584 }
1585 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1586 
1587 /**
1588  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1589  * @aux: The DP AUX channel to use
1590  *
1591  * See also: drm_dp_read_sink_count_cap()
1592  *
1593  * Returns: The current sink count reported by @aux, or a negative error code
1594  * otherwise.
1595  */
1596 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1597 {
1598 	u8 count;
1599 	int ret;
1600 
1601 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1602 	if (ret < 0)
1603 		return ret;
1604 	if (ret != 1)
1605 		return -EIO;
1606 
1607 	return DP_GET_SINK_COUNT(count);
1608 }
1609 EXPORT_SYMBOL(drm_dp_read_sink_count);
1610 
1611 /*
1612  * I2C-over-AUX implementation
1613  */
1614 
1615 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1616 {
1617 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1618 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1619 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1620 	       I2C_FUNC_10BIT_ADDR;
1621 }
1622 
1623 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1624 {
1625 	/*
1626 	 * In case of i2c defer or short i2c ack reply to a write,
1627 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1628 	 * rest of the message
1629 	 */
1630 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1631 		msg->request &= DP_AUX_I2C_MOT;
1632 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1633 	}
1634 }
1635 
1636 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1637 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1638 #define AUX_STOP_LEN 4
1639 #define AUX_CMD_LEN 4
1640 #define AUX_ADDRESS_LEN 20
1641 #define AUX_REPLY_PAD_LEN 4
1642 #define AUX_LENGTH_LEN 8
1643 
1644 /*
1645  * Calculate the duration of the AUX request/reply in usec. Gives the
1646  * "best" case estimate, ie. successful while as short as possible.
1647  */
1648 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1649 {
1650 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1651 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1652 
1653 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1654 		len += msg->size * 8;
1655 
1656 	return len;
1657 }
1658 
1659 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1660 {
1661 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1662 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1663 
1664 	/*
1665 	 * For read we expect what was asked. For writes there will
1666 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1667 	 */
1668 	if (msg->request & DP_AUX_I2C_READ)
1669 		len += msg->size * 8;
1670 
1671 	return len;
1672 }
1673 
1674 #define I2C_START_LEN 1
1675 #define I2C_STOP_LEN 1
1676 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1677 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1678 
1679 /*
1680  * Calculate the length of the i2c transfer in usec, assuming
1681  * the i2c bus speed is as specified. Gives the "worst"
1682  * case estimate, ie. successful while as long as possible.
1683  * Doesn't account the "MOT" bit, and instead assumes each
1684  * message includes a START, ADDRESS and STOP. Neither does it
1685  * account for additional random variables such as clock stretching.
1686  */
1687 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1688 				   int i2c_speed_khz)
1689 {
1690 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1691 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1692 			     msg->size * I2C_DATA_LEN +
1693 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1694 }
1695 
1696 /*
1697  * Determine how many retries should be attempted to successfully transfer
1698  * the specified message, based on the estimated durations of the
1699  * i2c and AUX transfers.
1700  */
1701 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1702 			      int i2c_speed_khz)
1703 {
1704 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1705 		drm_dp_aux_reply_duration(msg);
1706 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1707 
1708 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1709 }
1710 
1711 /*
1712  * FIXME currently assumes 10 kHz as some real world devices seem
1713  * to require it. We should query/set the speed via DPCD if supported.
1714  */
1715 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1716 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1717 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1718 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1719 
1720 /*
1721  * Transfer a single I2C-over-AUX message and handle various error conditions,
1722  * retrying the transaction as appropriate.  It is assumed that the
1723  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1724  * reply field.
1725  *
1726  * Returns bytes transferred on success, or a negative error code on failure.
1727  */
1728 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1729 {
1730 	unsigned int retry, defer_i2c;
1731 	int ret;
1732 	/*
1733 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1734 	 * is required to retry at least seven times upon receiving AUX_DEFER
1735 	 * before giving up the AUX transaction.
1736 	 *
1737 	 * We also try to account for the i2c bus speed.
1738 	 */
1739 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1740 
1741 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1742 		ret = aux->transfer(aux, msg);
1743 		if (ret < 0) {
1744 			if (ret == -EBUSY)
1745 				continue;
1746 
1747 			/*
1748 			 * While timeouts can be errors, they're usually normal
1749 			 * behavior (for instance, when a driver tries to
1750 			 * communicate with a non-existent DisplayPort device).
1751 			 * Avoid spamming the kernel log with timeout errors.
1752 			 */
1753 			if (ret == -ETIMEDOUT)
1754 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1755 							aux->name);
1756 			else
1757 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1758 					    aux->name, ret);
1759 			return ret;
1760 		}
1761 
1762 
1763 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1764 		case DP_AUX_NATIVE_REPLY_ACK:
1765 			/*
1766 			 * For I2C-over-AUX transactions this isn't enough, we
1767 			 * need to check for the I2C ACK reply.
1768 			 */
1769 			break;
1770 
1771 		case DP_AUX_NATIVE_REPLY_NACK:
1772 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1773 				    aux->name, ret, msg->size);
1774 			return -EREMOTEIO;
1775 
1776 		case DP_AUX_NATIVE_REPLY_DEFER:
1777 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1778 			/*
1779 			 * We could check for I2C bit rate capabilities and if
1780 			 * available adjust this interval. We could also be
1781 			 * more careful with DP-to-legacy adapters where a
1782 			 * long legacy cable may force very low I2C bit rates.
1783 			 *
1784 			 * For now just defer for long enough to hopefully be
1785 			 * safe for all use-cases.
1786 			 */
1787 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1788 			continue;
1789 
1790 		default:
1791 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1792 				aux->name, msg->reply);
1793 			return -EREMOTEIO;
1794 		}
1795 
1796 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1797 		case DP_AUX_I2C_REPLY_ACK:
1798 			/*
1799 			 * Both native ACK and I2C ACK replies received. We
1800 			 * can assume the transfer was successful.
1801 			 */
1802 			if (ret != msg->size)
1803 				drm_dp_i2c_msg_write_status_update(msg);
1804 			return ret;
1805 
1806 		case DP_AUX_I2C_REPLY_NACK:
1807 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1808 				    aux->name, ret, msg->size);
1809 			aux->i2c_nack_count++;
1810 			return -EREMOTEIO;
1811 
1812 		case DP_AUX_I2C_REPLY_DEFER:
1813 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1814 			/* DP Compliance Test 4.2.2.5 Requirement:
1815 			 * Must have at least 7 retries for I2C defers on the
1816 			 * transaction to pass this test
1817 			 */
1818 			aux->i2c_defer_count++;
1819 			if (defer_i2c < 7)
1820 				defer_i2c++;
1821 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1822 			drm_dp_i2c_msg_write_status_update(msg);
1823 
1824 			continue;
1825 
1826 		default:
1827 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1828 				aux->name, msg->reply);
1829 			return -EREMOTEIO;
1830 		}
1831 	}
1832 
1833 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1834 	return -EREMOTEIO;
1835 }
1836 
1837 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1838 				       const struct i2c_msg *i2c_msg)
1839 {
1840 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1841 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1842 	if (!(i2c_msg->flags & I2C_M_STOP))
1843 		msg->request |= DP_AUX_I2C_MOT;
1844 }
1845 
1846 /*
1847  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1848  *
1849  * Returns an error code on failure, or a recommended transfer size on success.
1850  */
1851 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1852 {
1853 	int err, ret = orig_msg->size;
1854 	struct drm_dp_aux_msg msg = *orig_msg;
1855 
1856 	while (msg.size > 0) {
1857 		err = drm_dp_i2c_do_msg(aux, &msg);
1858 		if (err <= 0)
1859 			return err == 0 ? -EPROTO : err;
1860 
1861 		if (err < msg.size && err < ret) {
1862 			drm_dbg_kms(aux->drm_dev,
1863 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1864 				    aux->name, msg.size, err);
1865 			ret = err;
1866 		}
1867 
1868 		msg.size -= err;
1869 		msg.buffer += err;
1870 	}
1871 
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1877  * packets to be as large as possible. If not, the I2C transactions never
1878  * succeed. Hence the default is maximum.
1879  */
1880 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1881 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1882 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1883 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1884 
1885 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1886 			   int num)
1887 {
1888 	struct drm_dp_aux *aux = adapter->algo_data;
1889 	unsigned int i, j;
1890 	unsigned transfer_size;
1891 	struct drm_dp_aux_msg msg;
1892 	int err = 0;
1893 
1894 	if (aux->powered_down)
1895 		return -EBUSY;
1896 
1897 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1898 
1899 	memset(&msg, 0, sizeof(msg));
1900 
1901 	for (i = 0; i < num; i++) {
1902 		msg.address = msgs[i].addr;
1903 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1904 		/* Send a bare address packet to start the transaction.
1905 		 * Zero sized messages specify an address only (bare
1906 		 * address) transaction.
1907 		 */
1908 		msg.buffer = NULL;
1909 		msg.size = 0;
1910 		err = drm_dp_i2c_do_msg(aux, &msg);
1911 
1912 		/*
1913 		 * Reset msg.request in case in case it got
1914 		 * changed into a WRITE_STATUS_UPDATE.
1915 		 */
1916 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1917 
1918 		if (err < 0)
1919 			break;
1920 		/* We want each transaction to be as large as possible, but
1921 		 * we'll go to smaller sizes if the hardware gives us a
1922 		 * short reply.
1923 		 */
1924 		transfer_size = dp_aux_i2c_transfer_size;
1925 		for (j = 0; j < msgs[i].len; j += msg.size) {
1926 			msg.buffer = msgs[i].buf + j;
1927 			msg.size = min(transfer_size, msgs[i].len - j);
1928 
1929 			err = drm_dp_i2c_drain_msg(aux, &msg);
1930 
1931 			/*
1932 			 * Reset msg.request in case in case it got
1933 			 * changed into a WRITE_STATUS_UPDATE.
1934 			 */
1935 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1936 
1937 			if (err < 0)
1938 				break;
1939 			transfer_size = err;
1940 		}
1941 		if (err < 0)
1942 			break;
1943 	}
1944 	if (err >= 0)
1945 		err = num;
1946 	/* Send a bare address packet to close out the transaction.
1947 	 * Zero sized messages specify an address only (bare
1948 	 * address) transaction.
1949 	 */
1950 	msg.request &= ~DP_AUX_I2C_MOT;
1951 	msg.buffer = NULL;
1952 	msg.size = 0;
1953 	(void)drm_dp_i2c_do_msg(aux, &msg);
1954 
1955 	return err;
1956 }
1957 
1958 static const struct i2c_algorithm drm_dp_i2c_algo = {
1959 	.functionality = drm_dp_i2c_functionality,
1960 	.master_xfer = drm_dp_i2c_xfer,
1961 };
1962 
1963 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1964 {
1965 	return container_of(i2c, struct drm_dp_aux, ddc);
1966 }
1967 
1968 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1969 {
1970 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1971 }
1972 
1973 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1974 {
1975 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1976 }
1977 
1978 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1979 {
1980 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1981 }
1982 
1983 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1984 	.lock_bus = lock_bus,
1985 	.trylock_bus = trylock_bus,
1986 	.unlock_bus = unlock_bus,
1987 };
1988 
1989 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1990 {
1991 	u8 buf, count;
1992 	int ret;
1993 
1994 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1995 	if (ret < 0)
1996 		return ret;
1997 
1998 	WARN_ON(!(buf & DP_TEST_SINK_START));
1999 
2000 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2001 	if (ret < 0)
2002 		return ret;
2003 
2004 	count = buf & DP_TEST_COUNT_MASK;
2005 	if (count == aux->crc_count)
2006 		return -EAGAIN; /* No CRC yet */
2007 
2008 	aux->crc_count = count;
2009 
2010 	/*
2011 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2012 	 * per component (RGB or CrYCb).
2013 	 */
2014 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2015 	if (ret < 0)
2016 		return ret;
2017 
2018 	return 0;
2019 }
2020 
2021 static void drm_dp_aux_crc_work(struct work_struct *work)
2022 {
2023 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2024 					      crc_work);
2025 	struct drm_crtc *crtc;
2026 	u8 crc_bytes[6];
2027 	uint32_t crcs[3];
2028 	int ret;
2029 
2030 	if (WARN_ON(!aux->crtc))
2031 		return;
2032 
2033 	crtc = aux->crtc;
2034 	while (crtc->crc.opened) {
2035 		drm_crtc_wait_one_vblank(crtc);
2036 		if (!crtc->crc.opened)
2037 			break;
2038 
2039 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2040 		if (ret == -EAGAIN) {
2041 			usleep_range(1000, 2000);
2042 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2043 		}
2044 
2045 		if (ret == -EAGAIN) {
2046 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2047 				    aux->name, ret);
2048 			continue;
2049 		} else if (ret) {
2050 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2051 			continue;
2052 		}
2053 
2054 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2055 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2056 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2057 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2058 	}
2059 }
2060 
2061 /**
2062  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2063  * @aux: DisplayPort AUX channel
2064  *
2065  * Used for remote aux channel in general. Merely initialize the crc work
2066  * struct.
2067  */
2068 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2069 {
2070 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2071 }
2072 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2073 
2074 /**
2075  * drm_dp_aux_init() - minimally initialise an aux channel
2076  * @aux: DisplayPort AUX channel
2077  *
2078  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2079  * the outside world, call drm_dp_aux_init() first. For drivers which are
2080  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2081  * &drm_connector), you must still call drm_dp_aux_register() once the connector
2082  * has been registered to allow userspace access to the auxiliary DP channel.
2083  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2084  * early as possible so that the &drm_device that corresponds to the AUX adapter
2085  * may be mentioned in debugging output from the DRM DP helpers.
2086  *
2087  * For devices which use a separate platform device for their AUX adapters, this
2088  * may be called as early as required by the driver.
2089  *
2090  */
2091 void drm_dp_aux_init(struct drm_dp_aux *aux)
2092 {
2093 	mutex_init(&aux->hw_mutex);
2094 	mutex_init(&aux->cec.lock);
2095 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2096 
2097 	aux->ddc.algo = &drm_dp_i2c_algo;
2098 	aux->ddc.algo_data = aux;
2099 	aux->ddc.retries = 3;
2100 
2101 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2102 }
2103 EXPORT_SYMBOL(drm_dp_aux_init);
2104 
2105 /**
2106  * drm_dp_aux_register() - initialise and register aux channel
2107  * @aux: DisplayPort AUX channel
2108  *
2109  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2110  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2111  * initialized. For devices which are grandparents of their AUX channels,
2112  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2113  * corresponds to @aux. For these devices, it's advised to call
2114  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2115  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2116  * Functions which don't follow this will likely Oops when
2117  * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2118  *
2119  * For devices where the AUX channel is a device that exists independently of
2120  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2121  * recommended to call drm_dp_aux_register() after a &drm_device has been
2122  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2123  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2124  * with the AUX channel (e.g. on bridge detach).
2125  *
2126  * Drivers which need to use the aux channel before either of the two points
2127  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2128  * channel before registration.
2129  *
2130  * Returns 0 on success or a negative error code on failure.
2131  */
2132 int drm_dp_aux_register(struct drm_dp_aux *aux)
2133 {
2134 	int ret;
2135 
2136 	WARN_ON_ONCE(!aux->drm_dev);
2137 
2138 	if (!aux->ddc.algo)
2139 		drm_dp_aux_init(aux);
2140 
2141 	aux->ddc.owner = THIS_MODULE;
2142 	aux->ddc.dev.parent = aux->dev;
2143 
2144 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2145 		sizeof(aux->ddc.name));
2146 
2147 	ret = drm_dp_aux_register_devnode(aux);
2148 	if (ret)
2149 		return ret;
2150 
2151 	ret = i2c_add_adapter(&aux->ddc);
2152 	if (ret) {
2153 		drm_dp_aux_unregister_devnode(aux);
2154 		return ret;
2155 	}
2156 
2157 	return 0;
2158 }
2159 EXPORT_SYMBOL(drm_dp_aux_register);
2160 
2161 /**
2162  * drm_dp_aux_unregister() - unregister an AUX adapter
2163  * @aux: DisplayPort AUX channel
2164  */
2165 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2166 {
2167 	drm_dp_aux_unregister_devnode(aux);
2168 	i2c_del_adapter(&aux->ddc);
2169 }
2170 EXPORT_SYMBOL(drm_dp_aux_unregister);
2171 
2172 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2173 
2174 /**
2175  * drm_dp_psr_setup_time() - PSR setup in time usec
2176  * @psr_cap: PSR capabilities from DPCD
2177  *
2178  * Returns:
2179  * PSR setup time for the panel in microseconds,  negative
2180  * error code on failure.
2181  */
2182 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2183 {
2184 	static const u16 psr_setup_time_us[] = {
2185 		PSR_SETUP_TIME(330),
2186 		PSR_SETUP_TIME(275),
2187 		PSR_SETUP_TIME(220),
2188 		PSR_SETUP_TIME(165),
2189 		PSR_SETUP_TIME(110),
2190 		PSR_SETUP_TIME(55),
2191 		PSR_SETUP_TIME(0),
2192 	};
2193 	int i;
2194 
2195 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2196 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2197 		return -EINVAL;
2198 
2199 	return psr_setup_time_us[i];
2200 }
2201 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2202 
2203 #undef PSR_SETUP_TIME
2204 
2205 /**
2206  * drm_dp_start_crc() - start capture of frame CRCs
2207  * @aux: DisplayPort AUX channel
2208  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2209  *
2210  * Returns 0 on success or a negative error code on failure.
2211  */
2212 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2213 {
2214 	u8 buf;
2215 	int ret;
2216 
2217 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2218 	if (ret < 0)
2219 		return ret;
2220 
2221 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2222 	if (ret < 0)
2223 		return ret;
2224 
2225 	aux->crc_count = 0;
2226 	aux->crtc = crtc;
2227 	schedule_work(&aux->crc_work);
2228 
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(drm_dp_start_crc);
2232 
2233 /**
2234  * drm_dp_stop_crc() - stop capture of frame CRCs
2235  * @aux: DisplayPort AUX channel
2236  *
2237  * Returns 0 on success or a negative error code on failure.
2238  */
2239 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2240 {
2241 	u8 buf;
2242 	int ret;
2243 
2244 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2245 	if (ret < 0)
2246 		return ret;
2247 
2248 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2249 	if (ret < 0)
2250 		return ret;
2251 
2252 	flush_work(&aux->crc_work);
2253 	aux->crtc = NULL;
2254 
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL(drm_dp_stop_crc);
2258 
2259 struct dpcd_quirk {
2260 	u8 oui[3];
2261 	u8 device_id[6];
2262 	bool is_branch;
2263 	u32 quirks;
2264 };
2265 
2266 #define OUI(first, second, third) { (first), (second), (third) }
2267 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2268 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2269 
2270 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2271 
2272 static const struct dpcd_quirk dpcd_quirk_list[] = {
2273 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2274 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2275 	/* LG LP140WF6-SPM1 eDP panel */
2276 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2277 	/* Apple panels need some additional handling to support PSR */
2278 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2279 	/* CH7511 seems to leave SINK_COUNT zeroed */
2280 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2281 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2282 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2283 	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2284 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2285 	/* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2286 	{ OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2287 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2288 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2289 };
2290 
2291 #undef OUI
2292 
2293 /*
2294  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2295  * ident. The quirk data is shared but it's up to the drivers to act on the
2296  * data.
2297  *
2298  * For now, only the OUI (first three bytes) is used, but this may be extended
2299  * to device identification string and hardware/firmware revisions later.
2300  */
2301 static u32
2302 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2303 {
2304 	const struct dpcd_quirk *quirk;
2305 	u32 quirks = 0;
2306 	int i;
2307 	u8 any_device[] = DEVICE_ID_ANY;
2308 
2309 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2310 		quirk = &dpcd_quirk_list[i];
2311 
2312 		if (quirk->is_branch != is_branch)
2313 			continue;
2314 
2315 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2316 			continue;
2317 
2318 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2319 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2320 			continue;
2321 
2322 		quirks |= quirk->quirks;
2323 	}
2324 
2325 	return quirks;
2326 }
2327 
2328 #undef DEVICE_ID_ANY
2329 #undef DEVICE_ID
2330 
2331 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2332 			     struct drm_dp_dpcd_ident *ident)
2333 {
2334 	int ret;
2335 
2336 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2337 
2338 	return ret < 0 ? ret : 0;
2339 }
2340 
2341 static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2342 			     const char *device_name, const struct drm_dp_desc *desc)
2343 {
2344 	const struct drm_dp_dpcd_ident *ident = &desc->ident;
2345 
2346 	drm_dbg_kms(aux->drm_dev,
2347 		    "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2348 		    aux->name, device_name,
2349 		    (int)sizeof(ident->oui), ident->oui,
2350 		    (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2351 		    ident->hw_rev >> 4, ident->hw_rev & 0xf,
2352 		    ident->sw_major_rev, ident->sw_minor_rev,
2353 		    desc->quirks);
2354 }
2355 
2356 /**
2357  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2358  * @aux: DisplayPort AUX channel
2359  * @desc: Device descriptor to fill from DPCD
2360  * @is_branch: true for branch devices, false for sink devices
2361  *
2362  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2363  * identification.
2364  *
2365  * Returns 0 on success or a negative error code on failure.
2366  */
2367 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2368 		     bool is_branch)
2369 {
2370 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2371 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2372 	int ret;
2373 
2374 	ret = drm_dp_read_ident(aux, offset, ident);
2375 	if (ret < 0)
2376 		return ret;
2377 
2378 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2379 
2380 	drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2381 
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL(drm_dp_read_desc);
2385 
2386 /**
2387  * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2388  * @aux: DisplayPort AUX channel
2389  * @dp_phy: LTTPR PHY instance
2390  *
2391  * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2392  * with its details to dmesg.
2393  *
2394  * Returns 0 on success or a negative error code on failure.
2395  */
2396 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2397 {
2398 	struct drm_dp_desc desc = {};
2399 	int ret;
2400 
2401 	if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2402 		return -EINVAL;
2403 
2404 	ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2405 	if (ret < 0)
2406 		return ret;
2407 
2408 	drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2409 
2410 	return 0;
2411 }
2412 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2413 
2414 /**
2415  * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2416  * @dsc_dpcd: DSC capabilities from DPCD
2417  *
2418  * Returns the bpp precision supported by the DP sink.
2419  */
2420 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2421 {
2422 	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2423 
2424 	switch (bpp_increment_dpcd) {
2425 	case DP_DSC_BITS_PER_PIXEL_1_16:
2426 		return 16;
2427 	case DP_DSC_BITS_PER_PIXEL_1_8:
2428 		return 8;
2429 	case DP_DSC_BITS_PER_PIXEL_1_4:
2430 		return 4;
2431 	case DP_DSC_BITS_PER_PIXEL_1_2:
2432 		return 2;
2433 	case DP_DSC_BITS_PER_PIXEL_1_1:
2434 		return 1;
2435 	}
2436 
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2440 
2441 /**
2442  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2443  * supported by the DSC sink.
2444  * @dsc_dpcd: DSC capabilities from DPCD
2445  * @is_edp: true if its eDP, false for DP
2446  *
2447  * Read the slice capabilities DPCD register from DSC sink to get
2448  * the maximum slice count supported. This is used to populate
2449  * the DSC parameters in the &struct drm_dsc_config by the driver.
2450  * Driver creates an infoframe using these parameters to populate
2451  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2452  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2453  *
2454  * Returns:
2455  * Maximum slice count supported by DSC sink or 0 its invalid
2456  */
2457 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2458 				   bool is_edp)
2459 {
2460 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2461 
2462 	if (is_edp) {
2463 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2464 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2465 			return 4;
2466 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2467 			return 2;
2468 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2469 			return 1;
2470 	} else {
2471 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2472 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2473 
2474 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2475 			return 24;
2476 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2477 			return 20;
2478 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2479 			return 16;
2480 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2481 			return 12;
2482 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2483 			return 10;
2484 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2485 			return 8;
2486 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2487 			return 6;
2488 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2489 			return 4;
2490 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2491 			return 2;
2492 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2493 			return 1;
2494 	}
2495 
2496 	return 0;
2497 }
2498 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2499 
2500 /**
2501  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2502  * @dsc_dpcd: DSC capabilities from DPCD
2503  *
2504  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2505  * number of bits of precision within the decoder line buffer supported by
2506  * the DSC sink. This is used to populate the DSC parameters in the
2507  * &struct drm_dsc_config by the driver.
2508  * Driver creates an infoframe using these parameters to populate
2509  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2510  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2511  *
2512  * Returns:
2513  * Line buffer depth supported by DSC panel or 0 its invalid
2514  */
2515 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2516 {
2517 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2518 
2519 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2520 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2521 		return 9;
2522 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2523 		return 10;
2524 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2525 		return 11;
2526 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2527 		return 12;
2528 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2529 		return 13;
2530 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2531 		return 14;
2532 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2533 		return 15;
2534 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2535 		return 16;
2536 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2537 		return 8;
2538 	}
2539 
2540 	return 0;
2541 }
2542 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2543 
2544 /**
2545  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2546  * values supported by the DSC sink.
2547  * @dsc_dpcd: DSC capabilities from DPCD
2548  * @dsc_bpc: An array to be filled by this helper with supported
2549  *           input bpcs.
2550  *
2551  * Read the DSC DPCD from the sink device to parse the supported bits per
2552  * component values. This is used to populate the DSC parameters
2553  * in the &struct drm_dsc_config by the driver.
2554  * Driver creates an infoframe using these parameters to populate
2555  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2556  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2557  *
2558  * Returns:
2559  * Number of input BPC values parsed from the DPCD
2560  */
2561 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2562 					 u8 dsc_bpc[3])
2563 {
2564 	int num_bpc = 0;
2565 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2566 
2567 	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2568 		return 0;
2569 
2570 	if (color_depth & DP_DSC_12_BPC)
2571 		dsc_bpc[num_bpc++] = 12;
2572 	if (color_depth & DP_DSC_10_BPC)
2573 		dsc_bpc[num_bpc++] = 10;
2574 
2575 	/* A DP DSC Sink device shall support 8 bpc. */
2576 	dsc_bpc[num_bpc++] = 8;
2577 
2578 	return num_bpc;
2579 }
2580 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2581 
2582 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2583 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2584 				  u8 *buf, int buf_size)
2585 {
2586 	/*
2587 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2588 	 * corrupted values when reading from the 0xF0000- range with a block
2589 	 * size bigger than 1.
2590 	 */
2591 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2592 	int offset;
2593 	int ret;
2594 
2595 	for (offset = 0; offset < buf_size; offset += block_size) {
2596 		ret = drm_dp_dpcd_read(aux,
2597 				       address + offset,
2598 				       &buf[offset], block_size);
2599 		if (ret < 0)
2600 			return ret;
2601 
2602 		WARN_ON(ret != block_size);
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 /**
2609  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2610  * @aux: DisplayPort AUX channel
2611  * @dpcd: DisplayPort configuration data
2612  * @caps: buffer to return the capability info in
2613  *
2614  * Read capabilities common to all LTTPRs.
2615  *
2616  * Returns 0 on success or a negative error code on failure.
2617  */
2618 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2619 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2620 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2621 {
2622 	return drm_dp_read_lttpr_regs(aux, dpcd,
2623 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2624 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2625 }
2626 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2627 
2628 /**
2629  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2630  * @aux: DisplayPort AUX channel
2631  * @dpcd: DisplayPort configuration data
2632  * @dp_phy: LTTPR PHY to read the capabilities for
2633  * @caps: buffer to return the capability info in
2634  *
2635  * Read the capabilities for the given LTTPR PHY.
2636  *
2637  * Returns 0 on success or a negative error code on failure.
2638  */
2639 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2640 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2641 			       enum drm_dp_phy dp_phy,
2642 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2643 {
2644 	return drm_dp_read_lttpr_regs(aux, dpcd,
2645 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2646 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2647 }
2648 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2649 
2650 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2651 {
2652 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2653 }
2654 
2655 /**
2656  * drm_dp_lttpr_count - get the number of detected LTTPRs
2657  * @caps: LTTPR common capabilities
2658  *
2659  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2660  *
2661  * Returns:
2662  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2663  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2664  *   otherwise the number of detected LTTPRs
2665  */
2666 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2667 {
2668 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2669 
2670 	switch (hweight8(count)) {
2671 	case 0:
2672 		return 0;
2673 	case 1:
2674 		return 8 - ilog2(count);
2675 	case 8:
2676 		return -ERANGE;
2677 	default:
2678 		return -EINVAL;
2679 	}
2680 }
2681 EXPORT_SYMBOL(drm_dp_lttpr_count);
2682 
2683 /**
2684  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2685  * @caps: LTTPR common capabilities
2686  *
2687  * Returns the maximum link rate supported by all detected LTTPRs.
2688  */
2689 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2690 {
2691 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2692 
2693 	return drm_dp_bw_code_to_link_rate(rate);
2694 }
2695 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2696 
2697 /**
2698  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2699  * @caps: LTTPR common capabilities
2700  *
2701  * Returns the maximum lane count supported by all detected LTTPRs.
2702  */
2703 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2704 {
2705 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2706 
2707 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2708 }
2709 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2710 
2711 /**
2712  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2713  * @caps: LTTPR PHY capabilities
2714  *
2715  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2716  * voltage swing level 3.
2717  */
2718 bool
2719 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2720 {
2721 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2722 
2723 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2724 }
2725 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2726 
2727 /**
2728  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2729  * @caps: LTTPR PHY capabilities
2730  *
2731  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2732  * pre-emphasis level 3.
2733  */
2734 bool
2735 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2736 {
2737 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2738 
2739 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2740 }
2741 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2742 
2743 /**
2744  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2745  * @aux: DisplayPort AUX channel
2746  * @data: DP phy compliance test parameters.
2747  *
2748  * Returns 0 on success or a negative error code on failure.
2749  */
2750 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2751 				struct drm_dp_phy_test_params *data)
2752 {
2753 	int err;
2754 	u8 rate, lanes;
2755 
2756 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2757 	if (err < 0)
2758 		return err;
2759 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2760 
2761 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2762 	if (err < 0)
2763 		return err;
2764 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2765 
2766 	if (lanes & DP_ENHANCED_FRAME_CAP)
2767 		data->enhanced_frame_cap = true;
2768 
2769 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2770 	if (err < 0)
2771 		return err;
2772 
2773 	switch (data->phy_pattern) {
2774 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2775 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2776 				       &data->custom80, sizeof(data->custom80));
2777 		if (err < 0)
2778 			return err;
2779 
2780 		break;
2781 	case DP_PHY_TEST_PATTERN_CP2520:
2782 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2783 				       &data->hbr2_reset,
2784 				       sizeof(data->hbr2_reset));
2785 		if (err < 0)
2786 			return err;
2787 	}
2788 
2789 	return 0;
2790 }
2791 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2792 
2793 /**
2794  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2795  * @aux: DisplayPort AUX channel
2796  * @data: DP phy compliance test parameters.
2797  * @dp_rev: DP revision to use for compliance testing
2798  *
2799  * Returns 0 on success or a negative error code on failure.
2800  */
2801 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2802 				struct drm_dp_phy_test_params *data, u8 dp_rev)
2803 {
2804 	int err, i;
2805 	u8 test_pattern;
2806 
2807 	test_pattern = data->phy_pattern;
2808 	if (dp_rev < 0x12) {
2809 		test_pattern = (test_pattern << 2) &
2810 			       DP_LINK_QUAL_PATTERN_11_MASK;
2811 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2812 					 test_pattern);
2813 		if (err < 0)
2814 			return err;
2815 	} else {
2816 		for (i = 0; i < data->num_lanes; i++) {
2817 			err = drm_dp_dpcd_writeb(aux,
2818 						 DP_LINK_QUAL_LANE0_SET + i,
2819 						 test_pattern);
2820 			if (err < 0)
2821 				return err;
2822 		}
2823 	}
2824 
2825 	return 0;
2826 }
2827 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2828 
2829 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2830 {
2831 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2832 		return "Invalid";
2833 
2834 	switch (pixelformat) {
2835 	case DP_PIXELFORMAT_RGB:
2836 		return "RGB";
2837 	case DP_PIXELFORMAT_YUV444:
2838 		return "YUV444";
2839 	case DP_PIXELFORMAT_YUV422:
2840 		return "YUV422";
2841 	case DP_PIXELFORMAT_YUV420:
2842 		return "YUV420";
2843 	case DP_PIXELFORMAT_Y_ONLY:
2844 		return "Y_ONLY";
2845 	case DP_PIXELFORMAT_RAW:
2846 		return "RAW";
2847 	default:
2848 		return "Reserved";
2849 	}
2850 }
2851 
2852 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2853 					   enum dp_colorimetry colorimetry)
2854 {
2855 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2856 		return "Invalid";
2857 
2858 	switch (colorimetry) {
2859 	case DP_COLORIMETRY_DEFAULT:
2860 		switch (pixelformat) {
2861 		case DP_PIXELFORMAT_RGB:
2862 			return "sRGB";
2863 		case DP_PIXELFORMAT_YUV444:
2864 		case DP_PIXELFORMAT_YUV422:
2865 		case DP_PIXELFORMAT_YUV420:
2866 			return "BT.601";
2867 		case DP_PIXELFORMAT_Y_ONLY:
2868 			return "DICOM PS3.14";
2869 		case DP_PIXELFORMAT_RAW:
2870 			return "Custom Color Profile";
2871 		default:
2872 			return "Reserved";
2873 		}
2874 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2875 		switch (pixelformat) {
2876 		case DP_PIXELFORMAT_RGB:
2877 			return "Wide Fixed";
2878 		case DP_PIXELFORMAT_YUV444:
2879 		case DP_PIXELFORMAT_YUV422:
2880 		case DP_PIXELFORMAT_YUV420:
2881 			return "BT.709";
2882 		default:
2883 			return "Reserved";
2884 		}
2885 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2886 		switch (pixelformat) {
2887 		case DP_PIXELFORMAT_RGB:
2888 			return "Wide Float";
2889 		case DP_PIXELFORMAT_YUV444:
2890 		case DP_PIXELFORMAT_YUV422:
2891 		case DP_PIXELFORMAT_YUV420:
2892 			return "xvYCC 601";
2893 		default:
2894 			return "Reserved";
2895 		}
2896 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2897 		switch (pixelformat) {
2898 		case DP_PIXELFORMAT_RGB:
2899 			return "OpRGB";
2900 		case DP_PIXELFORMAT_YUV444:
2901 		case DP_PIXELFORMAT_YUV422:
2902 		case DP_PIXELFORMAT_YUV420:
2903 			return "xvYCC 709";
2904 		default:
2905 			return "Reserved";
2906 		}
2907 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2908 		switch (pixelformat) {
2909 		case DP_PIXELFORMAT_RGB:
2910 			return "DCI-P3";
2911 		case DP_PIXELFORMAT_YUV444:
2912 		case DP_PIXELFORMAT_YUV422:
2913 		case DP_PIXELFORMAT_YUV420:
2914 			return "sYCC 601";
2915 		default:
2916 			return "Reserved";
2917 		}
2918 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2919 		switch (pixelformat) {
2920 		case DP_PIXELFORMAT_RGB:
2921 			return "Custom Profile";
2922 		case DP_PIXELFORMAT_YUV444:
2923 		case DP_PIXELFORMAT_YUV422:
2924 		case DP_PIXELFORMAT_YUV420:
2925 			return "OpYCC 601";
2926 		default:
2927 			return "Reserved";
2928 		}
2929 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2930 		switch (pixelformat) {
2931 		case DP_PIXELFORMAT_RGB:
2932 			return "BT.2020 RGB";
2933 		case DP_PIXELFORMAT_YUV444:
2934 		case DP_PIXELFORMAT_YUV422:
2935 		case DP_PIXELFORMAT_YUV420:
2936 			return "BT.2020 CYCC";
2937 		default:
2938 			return "Reserved";
2939 		}
2940 	case DP_COLORIMETRY_BT2020_YCC:
2941 		switch (pixelformat) {
2942 		case DP_PIXELFORMAT_YUV444:
2943 		case DP_PIXELFORMAT_YUV422:
2944 		case DP_PIXELFORMAT_YUV420:
2945 			return "BT.2020 YCC";
2946 		default:
2947 			return "Reserved";
2948 		}
2949 	default:
2950 		return "Invalid";
2951 	}
2952 }
2953 
2954 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2955 {
2956 	switch (dynamic_range) {
2957 	case DP_DYNAMIC_RANGE_VESA:
2958 		return "VESA range";
2959 	case DP_DYNAMIC_RANGE_CTA:
2960 		return "CTA range";
2961 	default:
2962 		return "Invalid";
2963 	}
2964 }
2965 
2966 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2967 {
2968 	switch (content_type) {
2969 	case DP_CONTENT_TYPE_NOT_DEFINED:
2970 		return "Not defined";
2971 	case DP_CONTENT_TYPE_GRAPHICS:
2972 		return "Graphics";
2973 	case DP_CONTENT_TYPE_PHOTO:
2974 		return "Photo";
2975 	case DP_CONTENT_TYPE_VIDEO:
2976 		return "Video";
2977 	case DP_CONTENT_TYPE_GAME:
2978 		return "Game";
2979 	default:
2980 		return "Reserved";
2981 	}
2982 }
2983 
2984 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
2985 {
2986 	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
2987 		   vsc->revision, vsc->length);
2988 	drm_printf(p, "    pixelformat: %s\n",
2989 		   dp_pixelformat_get_name(vsc->pixelformat));
2990 	drm_printf(p, "    colorimetry: %s\n",
2991 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2992 	drm_printf(p, "    bpc: %u\n", vsc->bpc);
2993 	drm_printf(p, "    dynamic range: %s\n",
2994 		   dp_dynamic_range_get_name(vsc->dynamic_range));
2995 	drm_printf(p, "    content type: %s\n",
2996 		   dp_content_type_get_name(vsc->content_type));
2997 }
2998 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2999 
3000 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3001 {
3002 	drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3003 		   as_sdp->revision, as_sdp->length);
3004 	drm_printf(p, "    vtotal: %d\n", as_sdp->vtotal);
3005 	drm_printf(p, "    target_rr: %d\n", as_sdp->target_rr);
3006 	drm_printf(p, "    duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3007 	drm_printf(p, "    duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3008 	drm_printf(p, "    operation_mode: %d\n", as_sdp->mode);
3009 }
3010 EXPORT_SYMBOL(drm_dp_as_sdp_log);
3011 
3012 /**
3013  * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3014  * @aux: DisplayPort AUX channel
3015  * @dpcd: DisplayPort configuration data
3016  *
3017  * Returns true if adaptive sync sdp is supported, else returns false
3018  */
3019 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3020 {
3021 	u8 rx_feature;
3022 
3023 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3024 		return false;
3025 
3026 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3027 			      &rx_feature) != 1) {
3028 		drm_dbg_dp(aux->drm_dev,
3029 			   "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3030 		return false;
3031 	}
3032 
3033 	return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3034 }
3035 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3036 
3037 /**
3038  * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3039  * @aux: DisplayPort AUX channel
3040  * @dpcd: DisplayPort configuration data
3041  *
3042  * Returns true if vsc sdp is supported, else returns false
3043  */
3044 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3045 {
3046 	u8 rx_feature;
3047 
3048 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3049 		return false;
3050 
3051 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
3052 		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3053 		return false;
3054 	}
3055 
3056 	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3057 }
3058 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3059 
3060 /**
3061  * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3062  * @vsc: vsc sdp initialized according to its purpose as defined in
3063  *       table 2-118 - table 2-120 in DP 1.4a specification
3064  * @sdp: valid handle to the generic dp_sdp which will be packed
3065  *
3066  * Returns length of sdp on success and error code on failure
3067  */
3068 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3069 			    struct dp_sdp *sdp)
3070 {
3071 	size_t length = sizeof(struct dp_sdp);
3072 
3073 	memset(sdp, 0, sizeof(struct dp_sdp));
3074 
3075 	/*
3076 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3077 	 * VSC SDP Header Bytes
3078 	 */
3079 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3080 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3081 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3082 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3083 
3084 	if (vsc->revision == 0x6) {
3085 		sdp->db[0] = 1;
3086 		sdp->db[3] = 1;
3087 	}
3088 
3089 	/*
3090 	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3091 	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3092 	 */
3093 	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3094 		goto out;
3095 
3096 	/* VSC SDP Payload for DB16 through DB18 */
3097 	/* Pixel Encoding and Colorimetry Formats  */
3098 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3099 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3100 
3101 	switch (vsc->bpc) {
3102 	case 6:
3103 		/* 6bpc: 0x0 */
3104 		break;
3105 	case 8:
3106 		sdp->db[17] = 0x1; /* DB17[3:0] */
3107 		break;
3108 	case 10:
3109 		sdp->db[17] = 0x2;
3110 		break;
3111 	case 12:
3112 		sdp->db[17] = 0x3;
3113 		break;
3114 	case 16:
3115 		sdp->db[17] = 0x4;
3116 		break;
3117 	default:
3118 		WARN(1, "Missing case %d\n", vsc->bpc);
3119 		return -EINVAL;
3120 	}
3121 
3122 	/* Dynamic Range and Component Bit Depth */
3123 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3124 		sdp->db[17] |= 0x80;  /* DB17[7] */
3125 
3126 	/* Content Type */
3127 	sdp->db[18] = vsc->content_type & 0x7;
3128 
3129 out:
3130 	return length;
3131 }
3132 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3133 
3134 /**
3135  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3136  * @dpcd: DisplayPort configuration data
3137  * @port_cap: port capabilities
3138  *
3139  * Returns maximum frl bandwidth supported by PCON in GBPS,
3140  * returns 0 if not supported.
3141  */
3142 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3143 			       const u8 port_cap[4])
3144 {
3145 	int bw;
3146 	u8 buf;
3147 
3148 	buf = port_cap[2];
3149 	bw = buf & DP_PCON_MAX_FRL_BW;
3150 
3151 	switch (bw) {
3152 	case DP_PCON_MAX_9GBPS:
3153 		return 9;
3154 	case DP_PCON_MAX_18GBPS:
3155 		return 18;
3156 	case DP_PCON_MAX_24GBPS:
3157 		return 24;
3158 	case DP_PCON_MAX_32GBPS:
3159 		return 32;
3160 	case DP_PCON_MAX_40GBPS:
3161 		return 40;
3162 	case DP_PCON_MAX_48GBPS:
3163 		return 48;
3164 	case DP_PCON_MAX_0GBPS:
3165 	default:
3166 		return 0;
3167 	}
3168 
3169 	return 0;
3170 }
3171 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3172 
3173 /**
3174  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3175  * @aux: DisplayPort AUX channel
3176  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3177  *
3178  * Returns 0 if success, else returns negative error code.
3179  */
3180 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3181 {
3182 	int ret;
3183 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3184 		 DP_PCON_ENABLE_LINK_FRL_MODE;
3185 
3186 	if (enable_frl_ready_hpd)
3187 		buf |= DP_PCON_ENABLE_HPD_READY;
3188 
3189 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3190 
3191 	return ret;
3192 }
3193 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3194 
3195 /**
3196  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3197  * @aux: DisplayPort AUX channel
3198  *
3199  * Returns true if success, else returns false.
3200  */
3201 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3202 {
3203 	int ret;
3204 	u8 buf;
3205 
3206 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3207 	if (ret < 0)
3208 		return false;
3209 
3210 	if (buf & DP_PCON_FRL_READY)
3211 		return true;
3212 
3213 	return false;
3214 }
3215 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3216 
3217 /**
3218  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3219  * @aux: DisplayPort AUX channel
3220  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3221  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3222  * In Concurrent Mode, the FRL link bring up can be done along with
3223  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3224  * the DP Link training.
3225  *
3226  * Returns 0 if success, else returns negative error code.
3227  */
3228 
3229 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3230 				u8 frl_mode)
3231 {
3232 	int ret;
3233 	u8 buf;
3234 
3235 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3236 	if (ret < 0)
3237 		return ret;
3238 
3239 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3240 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3241 	else
3242 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3243 
3244 	switch (max_frl_gbps) {
3245 	case 9:
3246 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3247 		break;
3248 	case 18:
3249 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3250 		break;
3251 	case 24:
3252 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3253 		break;
3254 	case 32:
3255 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3256 		break;
3257 	case 40:
3258 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3259 		break;
3260 	case 48:
3261 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3262 		break;
3263 	case 0:
3264 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3265 		break;
3266 	default:
3267 		return -EINVAL;
3268 	}
3269 
3270 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3271 	if (ret < 0)
3272 		return ret;
3273 
3274 	return 0;
3275 }
3276 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3277 
3278 /**
3279  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3280  * @aux: DisplayPort AUX channel
3281  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3282  * @frl_type : FRL training type, can be Extended, or Normal.
3283  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3284  * starting from min, and stops when link training is successful. In Extended
3285  * FRL training, all frl bw selected in the mask are trained by the PCON.
3286  *
3287  * Returns 0 if success, else returns negative error code.
3288  */
3289 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3290 				u8 frl_type)
3291 {
3292 	int ret;
3293 	u8 buf = max_frl_mask;
3294 
3295 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3296 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3297 	else
3298 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3299 
3300 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3301 	if (ret < 0)
3302 		return ret;
3303 
3304 	return 0;
3305 }
3306 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3307 
3308 /**
3309  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3310  * @aux: DisplayPort AUX channel
3311  *
3312  * Returns 0 if success, else returns negative error code.
3313  */
3314 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3315 {
3316 	int ret;
3317 
3318 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3319 	if (ret < 0)
3320 		return ret;
3321 
3322 	return 0;
3323 }
3324 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3325 
3326 /**
3327  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3328  * @aux: DisplayPort AUX channel
3329  *
3330  * Returns 0 if success, else returns negative error code.
3331  */
3332 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3333 {
3334 	int ret;
3335 	u8 buf = 0;
3336 
3337 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3338 	if (ret < 0)
3339 		return ret;
3340 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3341 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3342 			    aux->name);
3343 		return -EINVAL;
3344 	}
3345 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3346 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3347 	if (ret < 0)
3348 		return ret;
3349 
3350 	return 0;
3351 }
3352 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3353 
3354 /**
3355  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3356  * @aux: DisplayPort AUX channel
3357  *
3358  * Returns true if link is active else returns false.
3359  */
3360 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3361 {
3362 	u8 buf;
3363 	int ret;
3364 
3365 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3366 	if (ret < 0)
3367 		return false;
3368 
3369 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3370 }
3371 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3372 
3373 /**
3374  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3375  * @aux: DisplayPort AUX channel
3376  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3377  * Valid only if the MODE returned is FRL. For Normal Link training mode
3378  * only 1 of the bits will be set, but in case of Extended mode, more than
3379  * one bits can be set.
3380  *
3381  * Returns the link mode : TMDS or FRL on success, else returns negative error
3382  * code.
3383  */
3384 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3385 {
3386 	u8 buf;
3387 	int mode;
3388 	int ret;
3389 
3390 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3391 	if (ret < 0)
3392 		return ret;
3393 
3394 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3395 
3396 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3397 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3398 
3399 	return mode;
3400 }
3401 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3402 
3403 /**
3404  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3405  * during link failure between PCON and HDMI sink
3406  * @aux: DisplayPort AUX channel
3407  * @connector: DRM connector
3408  * code.
3409  **/
3410 
3411 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3412 					   struct drm_connector *connector)
3413 {
3414 	u8 buf, error_count;
3415 	int i, num_error;
3416 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3417 
3418 	for (i = 0; i < hdmi->max_lanes; i++) {
3419 		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3420 			return;
3421 
3422 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3423 		switch (error_count) {
3424 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3425 			num_error = 100;
3426 			break;
3427 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3428 			num_error = 10;
3429 			break;
3430 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3431 			num_error = 3;
3432 			break;
3433 		default:
3434 			num_error = 0;
3435 		}
3436 
3437 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3438 			aux->name, num_error, i);
3439 	}
3440 }
3441 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3442 
3443 /*
3444  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3445  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3446  *
3447  * Returns true is PCON encoder is DSC 1.2 else returns false.
3448  */
3449 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3450 {
3451 	u8 buf;
3452 	u8 major_v, minor_v;
3453 
3454 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3455 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3456 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3457 
3458 	if (major_v == 1 && minor_v == 2)
3459 		return true;
3460 
3461 	return false;
3462 }
3463 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3464 
3465 /*
3466  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3467  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3468  *
3469  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3470  */
3471 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3472 {
3473 	u8 slice_cap1, slice_cap2;
3474 
3475 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3476 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3477 
3478 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3479 		return 24;
3480 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3481 		return 20;
3482 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3483 		return 16;
3484 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3485 		return 12;
3486 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3487 		return 10;
3488 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3489 		return 8;
3490 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3491 		return 6;
3492 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3493 		return 4;
3494 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3495 		return 2;
3496 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3497 		return 1;
3498 
3499 	return 0;
3500 }
3501 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3502 
3503 /*
3504  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3505  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3506  *
3507  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3508  */
3509 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3510 {
3511 	u8 buf;
3512 
3513 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3514 
3515 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3516 }
3517 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3518 
3519 /*
3520  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3521  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3522  *
3523  * Returns the bpp precision supported by the PCON encoder.
3524  */
3525 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3526 {
3527 	u8 buf;
3528 
3529 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3530 
3531 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3532 	case DP_PCON_DSC_ONE_16TH_BPP:
3533 		return 16;
3534 	case DP_PCON_DSC_ONE_8TH_BPP:
3535 		return 8;
3536 	case DP_PCON_DSC_ONE_4TH_BPP:
3537 		return 4;
3538 	case DP_PCON_DSC_ONE_HALF_BPP:
3539 		return 2;
3540 	case DP_PCON_DSC_ONE_BPP:
3541 		return 1;
3542 	}
3543 
3544 	return 0;
3545 }
3546 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3547 
3548 static
3549 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3550 {
3551 	u8 buf;
3552 	int ret;
3553 
3554 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3555 	if (ret < 0)
3556 		return ret;
3557 
3558 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3559 
3560 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3561 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3562 		buf |= pps_buf_config << 2;
3563 	}
3564 
3565 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3566 	if (ret < 0)
3567 		return ret;
3568 
3569 	return 0;
3570 }
3571 
3572 /**
3573  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3574  * for DSC1.2 between PCON & HDMI2.1 sink
3575  * @aux: DisplayPort AUX channel
3576  *
3577  * Returns 0 on success, else returns negative error code.
3578  */
3579 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3580 {
3581 	int ret;
3582 
3583 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3584 	if (ret < 0)
3585 		return ret;
3586 
3587 	return 0;
3588 }
3589 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3590 
3591 /**
3592  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3593  * HDMI sink
3594  * @aux: DisplayPort AUX channel
3595  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3596  *
3597  * Returns 0 on success, else returns negative error code.
3598  */
3599 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3600 {
3601 	int ret;
3602 
3603 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3604 	if (ret < 0)
3605 		return ret;
3606 
3607 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3608 	if (ret < 0)
3609 		return ret;
3610 
3611 	return 0;
3612 }
3613 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3614 
3615 /*
3616  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3617  * override registers
3618  * @aux: DisplayPort AUX channel
3619  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3620  * bits_per_pixel.
3621  *
3622  * Returns 0 on success, else returns negative error code.
3623  */
3624 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3625 {
3626 	int ret;
3627 
3628 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3629 	if (ret < 0)
3630 		return ret;
3631 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3632 	if (ret < 0)
3633 		return ret;
3634 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3635 	if (ret < 0)
3636 		return ret;
3637 
3638 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3639 	if (ret < 0)
3640 		return ret;
3641 
3642 	return 0;
3643 }
3644 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3645 
3646 /*
3647  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3648  * @aux: displayPort AUX channel
3649  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3650  *
3651  * Returns 0 on success, else returns negative error code.
3652  */
3653 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3654 {
3655 	int ret;
3656 	u8 buf;
3657 
3658 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3659 	if (ret < 0)
3660 		return ret;
3661 
3662 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3663 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3664 	else
3665 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3666 
3667 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3668 	if (ret < 0)
3669 		return ret;
3670 
3671 	return 0;
3672 }
3673 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3674 
3675 /**
3676  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3677  * @aux: The DP AUX channel to use
3678  * @bl: Backlight capability info from drm_edp_backlight_init()
3679  * @level: The brightness level to set
3680  *
3681  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3682  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3683  *
3684  * Returns: %0 on success, negative error code on failure
3685  */
3686 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3687 				u16 level)
3688 {
3689 	int ret;
3690 	u8 buf[2] = { 0 };
3691 
3692 	/* The panel uses the PWM for controlling brightness levels */
3693 	if (!bl->aux_set)
3694 		return 0;
3695 
3696 	if (bl->lsb_reg_used) {
3697 		buf[0] = (level & 0xff00) >> 8;
3698 		buf[1] = (level & 0x00ff);
3699 	} else {
3700 		buf[0] = level;
3701 	}
3702 
3703 	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3704 	if (ret != sizeof(buf)) {
3705 		drm_err(aux->drm_dev,
3706 			"%s: Failed to write aux backlight level: %d\n",
3707 			aux->name, ret);
3708 		return ret < 0 ? ret : -EIO;
3709 	}
3710 
3711 	return 0;
3712 }
3713 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3714 
3715 static int
3716 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3717 			     bool enable)
3718 {
3719 	int ret;
3720 	u8 buf;
3721 
3722 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3723 	if (!bl->aux_enable)
3724 		return 0;
3725 
3726 	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3727 	if (ret != 1) {
3728 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3729 			aux->name, ret);
3730 		return ret < 0 ? ret : -EIO;
3731 	}
3732 	if (enable)
3733 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3734 	else
3735 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3736 
3737 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3738 	if (ret != 1) {
3739 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3740 			aux->name, ret);
3741 		return ret < 0 ? ret : -EIO;
3742 	}
3743 
3744 	return 0;
3745 }
3746 
3747 /**
3748  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3749  * @aux: The DP AUX channel to use
3750  * @bl: Backlight capability info from drm_edp_backlight_init()
3751  * @level: The initial backlight level to set via AUX, if there is one
3752  *
3753  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3754  * restoring any important backlight state such as the given backlight level, the brightness byte
3755  * count, backlight frequency, etc.
3756  *
3757  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3758  * that the driver handle enabling/disabling the panel through implementation-specific means using
3759  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3760  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3761  * the EDP_BL_PWR GPIO.
3762  *
3763  * Returns: %0 on success, negative error code on failure.
3764  */
3765 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3766 			     const u16 level)
3767 {
3768 	int ret;
3769 	u8 dpcd_buf;
3770 
3771 	if (bl->aux_set)
3772 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3773 	else
3774 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3775 
3776 	if (bl->pwmgen_bit_count) {
3777 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3778 		if (ret != 1)
3779 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3780 				    aux->name, ret);
3781 	}
3782 
3783 	if (bl->pwm_freq_pre_divider) {
3784 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3785 		if (ret != 1)
3786 			drm_dbg_kms(aux->drm_dev,
3787 				    "%s: Failed to write aux backlight frequency: %d\n",
3788 				    aux->name, ret);
3789 		else
3790 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3791 	}
3792 
3793 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3794 	if (ret != 1) {
3795 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3796 			    aux->name, ret);
3797 		return ret < 0 ? ret : -EIO;
3798 	}
3799 
3800 	ret = drm_edp_backlight_set_level(aux, bl, level);
3801 	if (ret < 0)
3802 		return ret;
3803 	ret = drm_edp_backlight_set_enable(aux, bl, true);
3804 	if (ret < 0)
3805 		return ret;
3806 
3807 	return 0;
3808 }
3809 EXPORT_SYMBOL(drm_edp_backlight_enable);
3810 
3811 /**
3812  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3813  * @aux: The DP AUX channel to use
3814  * @bl: Backlight capability info from drm_edp_backlight_init()
3815  *
3816  * This function handles disabling DPCD backlight controls on a panel over AUX.
3817  *
3818  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3819  * that the driver handle enabling/disabling the panel through implementation-specific means using
3820  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3821  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3822  * the EDP_BL_PWR GPIO.
3823  *
3824  * Returns: %0 on success or no-op, negative error code on failure.
3825  */
3826 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3827 {
3828 	int ret;
3829 
3830 	ret = drm_edp_backlight_set_enable(aux, bl, false);
3831 	if (ret < 0)
3832 		return ret;
3833 
3834 	return 0;
3835 }
3836 EXPORT_SYMBOL(drm_edp_backlight_disable);
3837 
3838 static inline int
3839 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3840 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3841 {
3842 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3843 	int ret;
3844 	u8 pn, pn_min, pn_max;
3845 
3846 	if (!bl->aux_set)
3847 		return 0;
3848 
3849 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3850 	if (ret != 1) {
3851 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3852 			    aux->name, ret);
3853 		return -ENODEV;
3854 	}
3855 
3856 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3857 	bl->max = (1 << pn) - 1;
3858 	if (!driver_pwm_freq_hz)
3859 		return 0;
3860 
3861 	/*
3862 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3863 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3864 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3865 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3866 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3867 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3868 	 */
3869 
3870 	/* Find desired value of (F x P)
3871 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3872 	 * applied automatically. So no need to check that.
3873 	 */
3874 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3875 
3876 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3877 	 * satisfying the conditions below.
3878 	 * - Pn is in the range of Pn_min and Pn_max
3879 	 * - F is in the range of 1 and 255
3880 	 * - FxP is within 25% of desired value.
3881 	 *   Note: 25% is arbitrary value and may need some tweak.
3882 	 */
3883 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3884 	if (ret != 1) {
3885 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3886 			    aux->name, ret);
3887 		return 0;
3888 	}
3889 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3890 	if (ret != 1) {
3891 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3892 			    aux->name, ret);
3893 		return 0;
3894 	}
3895 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3896 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3897 
3898 	/* Ensure frequency is within 25% of desired value */
3899 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3900 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3901 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3902 		drm_dbg_kms(aux->drm_dev,
3903 			    "%s: Driver defined backlight frequency (%d) out of range\n",
3904 			    aux->name, driver_pwm_freq_hz);
3905 		return 0;
3906 	}
3907 
3908 	for (pn = pn_max; pn >= pn_min; pn--) {
3909 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3910 		fxp_actual = f << pn;
3911 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3912 			break;
3913 	}
3914 
3915 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3916 	if (ret != 1) {
3917 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3918 			    aux->name, ret);
3919 		return 0;
3920 	}
3921 	bl->pwmgen_bit_count = pn;
3922 	bl->max = (1 << pn) - 1;
3923 
3924 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3925 		bl->pwm_freq_pre_divider = f;
3926 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3927 			    aux->name, driver_pwm_freq_hz);
3928 	}
3929 
3930 	return 0;
3931 }
3932 
3933 static inline int
3934 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3935 			      u8 *current_mode)
3936 {
3937 	int ret;
3938 	u8 buf[2];
3939 	u8 mode_reg;
3940 
3941 	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3942 	if (ret != 1) {
3943 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3944 			    aux->name, ret);
3945 		return ret < 0 ? ret : -EIO;
3946 	}
3947 
3948 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3949 	if (!bl->aux_set)
3950 		return 0;
3951 
3952 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3953 		int size = 1 + bl->lsb_reg_used;
3954 
3955 		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3956 		if (ret != size) {
3957 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3958 				    aux->name, ret);
3959 			return ret < 0 ? ret : -EIO;
3960 		}
3961 
3962 		if (bl->lsb_reg_used)
3963 			return (buf[0] << 8) | buf[1];
3964 		else
3965 			return buf[0];
3966 	}
3967 
3968 	/*
3969 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3970 	 * the driver should assume max brightness
3971 	 */
3972 	return bl->max;
3973 }
3974 
3975 /**
3976  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3977  * interface.
3978  * @aux: The DP aux device to use for probing
3979  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3980  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3981  * @edp_dpcd: A cached copy of the eDP DPCD
3982  * @current_level: Where to store the probed brightness level, if any
3983  * @current_mode: Where to store the currently set backlight control mode
3984  *
3985  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3986  * along with also probing the current and maximum supported brightness levels.
3987  *
3988  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3989  * default frequency from the panel is used.
3990  *
3991  * Returns: %0 on success, negative error code on failure.
3992  */
3993 int
3994 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3995 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3996 		       u16 *current_level, u8 *current_mode)
3997 {
3998 	int ret;
3999 
4000 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4001 		bl->aux_enable = true;
4002 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4003 		bl->aux_set = true;
4004 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4005 		bl->lsb_reg_used = true;
4006 
4007 	/* Sanity check caps */
4008 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
4009 		drm_dbg_kms(aux->drm_dev,
4010 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
4011 			    aux->name);
4012 		return -EINVAL;
4013 	}
4014 
4015 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4016 	if (ret < 0)
4017 		return ret;
4018 
4019 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4020 	if (ret < 0)
4021 		return ret;
4022 	*current_level = ret;
4023 
4024 	drm_dbg_kms(aux->drm_dev,
4025 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4026 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4027 	if (bl->aux_set) {
4028 		drm_dbg_kms(aux->drm_dev,
4029 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4030 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4031 			    bl->lsb_reg_used);
4032 	}
4033 
4034 	return 0;
4035 }
4036 EXPORT_SYMBOL(drm_edp_backlight_init);
4037 
4038 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4039 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4040 
4041 static int dp_aux_backlight_update_status(struct backlight_device *bd)
4042 {
4043 	struct dp_aux_backlight *bl = bl_get_data(bd);
4044 	u16 brightness = backlight_get_brightness(bd);
4045 	int ret = 0;
4046 
4047 	if (!backlight_is_blank(bd)) {
4048 		if (!bl->enabled) {
4049 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4050 			bl->enabled = true;
4051 			return 0;
4052 		}
4053 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4054 	} else {
4055 		if (bl->enabled) {
4056 			drm_edp_backlight_disable(bl->aux, &bl->info);
4057 			bl->enabled = false;
4058 		}
4059 	}
4060 
4061 	return ret;
4062 }
4063 
4064 static const struct backlight_ops dp_aux_bl_ops = {
4065 	.update_status = dp_aux_backlight_update_status,
4066 };
4067 
4068 /**
4069  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4070  * @panel: DRM panel
4071  * @aux: The DP AUX channel to use
4072  *
4073  * Use this function to create and handle backlight if your panel
4074  * supports backlight control over DP AUX channel using DPCD
4075  * registers as per VESA's standard backlight control interface.
4076  *
4077  * When the panel is enabled backlight will be enabled after a
4078  * successful call to &drm_panel_funcs.enable()
4079  *
4080  * When the panel is disabled backlight will be disabled before the
4081  * call to &drm_panel_funcs.disable().
4082  *
4083  * A typical implementation for a panel driver supporting backlight
4084  * control over DP AUX will call this function at probe time.
4085  * Backlight will then be handled transparently without requiring
4086  * any intervention from the driver.
4087  *
4088  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4089  *
4090  * Return: 0 on success or a negative error code on failure.
4091  */
4092 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4093 {
4094 	struct dp_aux_backlight *bl;
4095 	struct backlight_properties props = { 0 };
4096 	u16 current_level;
4097 	u8 current_mode;
4098 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4099 	int ret;
4100 
4101 	if (!panel || !panel->dev || !aux)
4102 		return -EINVAL;
4103 
4104 	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4105 			       EDP_DISPLAY_CTL_CAP_SIZE);
4106 	if (ret < 0)
4107 		return ret;
4108 
4109 	if (!drm_edp_backlight_supported(edp_dpcd)) {
4110 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4111 		return 0;
4112 	}
4113 
4114 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4115 	if (!bl)
4116 		return -ENOMEM;
4117 
4118 	bl->aux = aux;
4119 
4120 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4121 				     &current_level, &current_mode);
4122 	if (ret < 0)
4123 		return ret;
4124 
4125 	props.type = BACKLIGHT_RAW;
4126 	props.brightness = current_level;
4127 	props.max_brightness = bl->info.max;
4128 
4129 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4130 						  panel->dev, bl,
4131 						  &dp_aux_bl_ops, &props);
4132 	if (IS_ERR(bl->base))
4133 		return PTR_ERR(bl->base);
4134 
4135 	backlight_disable(bl->base);
4136 
4137 	panel->backlight = bl->base;
4138 
4139 	return 0;
4140 }
4141 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4142 
4143 #endif
4144 
4145 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4146 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4147 				     int symbol_size, bool is_mst)
4148 {
4149 	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4150 	int align = is_mst ? 4 / lane_count : 1;
4151 
4152 	return ALIGN(cycles, align);
4153 }
4154 
4155 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4156 					 int bpp_x16, int symbol_size, bool is_mst)
4157 {
4158 	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4159 	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4160 							  bpp_x16, symbol_size, is_mst);
4161 	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4162 
4163 	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4164 }
4165 
4166 /**
4167  * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4168  * @lane_count: DP link lane count
4169  * @hactive: pixel count of the active period in one scanline of the stream
4170  * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4171  * @bpp_x16: bits per pixel in .4 binary fixed point
4172  * @flags: DRM_DP_OVERHEAD_x flags
4173  *
4174  * Calculate the BW allocation overhead of a DP link stream, depending
4175  * on the link's
4176  * - @lane_count
4177  * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4178  * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4179  * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4180  * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4181  * as well as the stream's
4182  * - @hactive timing
4183  * - @bpp_x16 color depth
4184  * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4185  * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4186  * channel coding efficiency, for that see
4187  * @drm_dp_link_bw_channel_coding_efficiency().
4188  *
4189  * Returns the overhead as 100% + overhead% in 1ppm units.
4190  */
4191 int drm_dp_bw_overhead(int lane_count, int hactive,
4192 		       int dsc_slice_count,
4193 		       int bpp_x16, unsigned long flags)
4194 {
4195 	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4196 	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4197 	u32 overhead = 1000000;
4198 	int symbol_cycles;
4199 
4200 	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4201 		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4202 			      lane_count, hactive,
4203 			      FXP_Q4_ARGS(bpp_x16));
4204 		return 0;
4205 	}
4206 
4207 	/*
4208 	 * DP Standard v2.1 2.6.4.1
4209 	 * SSC downspread and ref clock variation margin:
4210 	 *   5300ppm + 300ppm ~ 0.6%
4211 	 */
4212 	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4213 		overhead += 6000;
4214 
4215 	/*
4216 	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4217 	 * FEC symbol insertions for 8b/10b channel coding:
4218 	 * After each 250 data symbols on 2-4 lanes:
4219 	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4220 	 * After each 2 x 250 data symbols on 1 lane:
4221 	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4222 	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4223 	 *   256 * 256 bytes + 1 FEC_PM
4224 	 * or
4225 	 *   128 * 512 bytes + 1 FEC_PM
4226 	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4227 	 */
4228 	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4229 		overhead += 24016;
4230 
4231 	/*
4232 	 * DP Standard v2.1 2.7.9, 5.9.7
4233 	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4234 	 * coding efficiency.
4235 	 */
4236 	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4237 		(flags & DRM_DP_BW_OVERHEAD_FEC));
4238 
4239 	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4240 		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4241 							      dsc_slice_count,
4242 							      bpp_x16, symbol_size,
4243 							      is_mst);
4244 	else
4245 		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4246 							  bpp_x16, symbol_size,
4247 							  is_mst);
4248 
4249 	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4250 					    overhead * 16),
4251 				hactive * bpp_x16);
4252 }
4253 EXPORT_SYMBOL(drm_dp_bw_overhead);
4254 
4255 /**
4256  * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4257  * @is_uhbr: Whether the link has a 128b/132b channel coding
4258  *
4259  * Return the channel coding efficiency of the given DP link type, which is
4260  * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4261  * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4262  * and for 128b/132b any link or PHY level control symbol insertion overhead
4263  * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4264  * corresponding FEC overhead is BW allocation specific, included in the value
4265  * returned by drm_dp_bw_overhead().
4266  *
4267  * Returns the efficiency in the 100%/coding-overhead% ratio in
4268  * 1ppm units.
4269  */
4270 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4271 {
4272 	if (is_uhbr)
4273 		return 967100;
4274 	else
4275 		/*
4276 		 * Note that on 8b/10b MST the efficiency is only
4277 		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4278 		 * not accounted for here.
4279 		 */
4280 		return 800000;
4281 }
4282 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4283 
4284 /**
4285  * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4286  * @max_link_rate: max DPRX link rate in 10kbps units
4287  * @max_lanes: max DPRX lane count
4288  *
4289  * Given a link rate and lanes, get the data bandwidth.
4290  *
4291  * Data bandwidth is the actual payload rate, which depends on the data
4292  * bandwidth efficiency and the link rate.
4293  *
4294  * Note that protocol layers above the DPRX link level considered here can
4295  * further limit the maximum data rate. Such layers are the MST topology (with
4296  * limits on the link between the source and first branch device as well as on
4297  * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4298  * which in turn can encapsulate an MST link with its own limit - with each
4299  * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4300  *
4301  * Returns the maximum data rate in kBps units.
4302  */
4303 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4304 {
4305 	int ch_coding_efficiency =
4306 		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4307 
4308 	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4309 					      ch_coding_efficiency),
4310 				  1000000 * 8);
4311 }
4312 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4313