1 /* 2 * Copyright © 2009 Keith Packard 3 * 4 * Permission to use, copy, modify, distribute, and sell this software and its 5 * documentation for any purpose is hereby granted without fee, provided that 6 * the above copyright notice appear in all copies and that both that copyright 7 * notice and this permission notice appear in supporting documentation, and 8 * that the name of the copyright holders not be used in advertising or 9 * publicity pertaining to distribution of the software without specific, 10 * written prior permission. The copyright holders make no representations 11 * about the suitability of this software for any purpose. It is provided "as 12 * is" without express or implied warranty. 13 * 14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 20 * OF THIS SOFTWARE. 21 */ 22 23 #include <linux/backlight.h> 24 #include <linux/delay.h> 25 #include <linux/errno.h> 26 #include <linux/i2c.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/string_helpers.h> 33 #include <linux/dynamic_debug.h> 34 35 #include <drm/display/drm_dp_helper.h> 36 #include <drm/display/drm_dp_mst_helper.h> 37 #include <drm/drm_edid.h> 38 #include <drm/drm_fixed.h> 39 #include <drm/drm_print.h> 40 #include <drm/drm_vblank.h> 41 #include <drm/drm_panel.h> 42 43 #include "drm_dp_helper_internal.h" 44 45 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0, 46 "DRM_UT_CORE", 47 "DRM_UT_DRIVER", 48 "DRM_UT_KMS", 49 "DRM_UT_PRIME", 50 "DRM_UT_ATOMIC", 51 "DRM_UT_VBL", 52 "DRM_UT_STATE", 53 "DRM_UT_LEASE", 54 "DRM_UT_DP", 55 "DRM_UT_DRMRES"); 56 57 struct dp_aux_backlight { 58 struct backlight_device *base; 59 struct drm_dp_aux *aux; 60 struct drm_edp_backlight_info info; 61 bool enabled; 62 }; 63 64 /** 65 * DOC: dp helpers 66 * 67 * These functions contain some common logic and helpers at various abstraction 68 * levels to deal with Display Port sink devices and related things like DP aux 69 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD 70 * blocks, ... 71 */ 72 73 /* Helpers for DP link training */ 74 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r) 75 { 76 return link_status[r - DP_LANE0_1_STATUS]; 77 } 78 79 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE], 80 int lane) 81 { 82 int i = DP_LANE0_1_STATUS + (lane >> 1); 83 int s = (lane & 1) * 4; 84 u8 l = dp_link_status(link_status, i); 85 86 return (l >> s) & 0xf; 87 } 88 89 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 90 int lane_count) 91 { 92 u8 lane_align; 93 u8 lane_status; 94 int lane; 95 96 lane_align = dp_link_status(link_status, 97 DP_LANE_ALIGN_STATUS_UPDATED); 98 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) 99 return false; 100 for (lane = 0; lane < lane_count; lane++) { 101 lane_status = dp_get_lane_status(link_status, lane); 102 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) 103 return false; 104 } 105 return true; 106 } 107 EXPORT_SYMBOL(drm_dp_channel_eq_ok); 108 109 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE], 110 int lane_count) 111 { 112 int lane; 113 u8 lane_status; 114 115 for (lane = 0; lane < lane_count; lane++) { 116 lane_status = dp_get_lane_status(link_status, lane); 117 if ((lane_status & DP_LANE_CR_DONE) == 0) 118 return false; 119 } 120 return true; 121 } 122 EXPORT_SYMBOL(drm_dp_clock_recovery_ok); 123 124 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE], 125 int lane) 126 { 127 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 128 int s = ((lane & 1) ? 129 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : 130 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); 131 u8 l = dp_link_status(link_status, i); 132 133 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; 134 } 135 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage); 136 137 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE], 138 int lane) 139 { 140 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 141 int s = ((lane & 1) ? 142 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : 143 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); 144 u8 l = dp_link_status(link_status, i); 145 146 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; 147 } 148 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis); 149 150 /* DP 2.0 128b/132b */ 151 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE], 152 int lane) 153 { 154 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 155 int s = ((lane & 1) ? 156 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT : 157 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT); 158 u8 l = dp_link_status(link_status, i); 159 160 return (l >> s) & 0xf; 161 } 162 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset); 163 164 /* DP 2.0 errata for 128b/132b */ 165 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE], 166 int lane_count) 167 { 168 u8 lane_align, lane_status; 169 int lane; 170 171 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 172 if (!(lane_align & DP_INTERLANE_ALIGN_DONE)) 173 return false; 174 175 for (lane = 0; lane < lane_count; lane++) { 176 lane_status = dp_get_lane_status(link_status, lane); 177 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE)) 178 return false; 179 } 180 return true; 181 } 182 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done); 183 184 /* DP 2.0 errata for 128b/132b */ 185 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE], 186 int lane_count) 187 { 188 u8 lane_status; 189 int lane; 190 191 for (lane = 0; lane < lane_count; lane++) { 192 lane_status = dp_get_lane_status(link_status, lane); 193 if (!(lane_status & DP_LANE_SYMBOL_LOCKED)) 194 return false; 195 } 196 return true; 197 } 198 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked); 199 200 /* DP 2.0 errata for 128b/132b */ 201 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE]) 202 { 203 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 204 205 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE; 206 } 207 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done); 208 209 /* DP 2.0 errata for 128b/132b */ 210 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE]) 211 { 212 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 213 214 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE; 215 } 216 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done); 217 218 /* DP 2.0 errata for 128b/132b */ 219 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE]) 220 { 221 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); 222 223 return status & DP_128B132B_LT_FAILED; 224 } 225 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed); 226 227 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 228 { 229 if (rd_interval > 4) 230 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n", 231 aux->name, rd_interval); 232 233 if (rd_interval == 0) 234 return 100; 235 236 return rd_interval * 4 * USEC_PER_MSEC; 237 } 238 239 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 240 { 241 if (rd_interval > 4) 242 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n", 243 aux->name, rd_interval); 244 245 if (rd_interval == 0) 246 return 400; 247 248 return rd_interval * 4 * USEC_PER_MSEC; 249 } 250 251 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval) 252 { 253 switch (rd_interval) { 254 default: 255 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n", 256 aux->name, rd_interval); 257 fallthrough; 258 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US: 259 return 400; 260 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS: 261 return 4000; 262 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS: 263 return 8000; 264 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS: 265 return 12000; 266 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS: 267 return 16000; 268 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS: 269 return 32000; 270 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS: 271 return 64000; 272 } 273 } 274 275 /* 276 * The link training delays are different for: 277 * 278 * - Clock recovery vs. channel equalization 279 * - DPRX vs. LTTPR 280 * - 128b/132b vs. 8b/10b 281 * - DPCD rev 1.3 vs. later 282 * 283 * Get the correct delay in us, reading DPCD if necessary. 284 */ 285 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 286 enum drm_dp_phy dp_phy, bool uhbr, bool cr) 287 { 288 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval); 289 unsigned int offset; 290 u8 rd_interval, mask; 291 292 if (dp_phy == DP_PHY_DPRX) { 293 if (uhbr) { 294 if (cr) 295 return 100; 296 297 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL; 298 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 299 parse = __128b132b_channel_eq_delay_us; 300 } else { 301 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) 302 return 100; 303 304 offset = DP_TRAINING_AUX_RD_INTERVAL; 305 mask = DP_TRAINING_AUX_RD_MASK; 306 if (cr) 307 parse = __8b10b_clock_recovery_delay_us; 308 else 309 parse = __8b10b_channel_eq_delay_us; 310 } 311 } else { 312 if (uhbr) { 313 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy); 314 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 315 parse = __128b132b_channel_eq_delay_us; 316 } else { 317 if (cr) 318 return 100; 319 320 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy); 321 mask = DP_TRAINING_AUX_RD_MASK; 322 parse = __8b10b_channel_eq_delay_us; 323 } 324 } 325 326 if (offset < DP_RECEIVER_CAP_SIZE) { 327 rd_interval = dpcd[offset]; 328 } else { 329 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) { 330 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n", 331 aux->name); 332 /* arbitrary default delay */ 333 return 400; 334 } 335 } 336 337 return parse(aux, rd_interval & mask); 338 } 339 340 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 341 enum drm_dp_phy dp_phy, bool uhbr) 342 { 343 return __read_delay(aux, dpcd, dp_phy, uhbr, true); 344 } 345 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay); 346 347 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE], 348 enum drm_dp_phy dp_phy, bool uhbr) 349 { 350 return __read_delay(aux, dpcd, dp_phy, uhbr, false); 351 } 352 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay); 353 354 /* Per DP 2.0 Errata */ 355 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux) 356 { 357 int unit; 358 u8 val; 359 360 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) { 361 drm_err(aux->drm_dev, "%s: failed rd interval read\n", 362 aux->name); 363 /* default to max */ 364 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 365 } 366 367 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2; 368 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK; 369 370 return (val + 1) * unit * 1000; 371 } 372 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval); 373 374 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux, 375 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 376 { 377 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 378 DP_TRAINING_AUX_RD_MASK; 379 int delay_us; 380 381 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) 382 delay_us = 100; 383 else 384 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval); 385 386 usleep_range(delay_us, delay_us * 2); 387 } 388 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay); 389 390 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 391 u8 rd_interval) 392 { 393 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval); 394 395 usleep_range(delay_us, delay_us * 2); 396 } 397 398 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 399 const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 400 { 401 __drm_dp_link_train_channel_eq_delay(aux, 402 dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 403 DP_TRAINING_AUX_RD_MASK); 404 } 405 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay); 406 407 /** 408 * drm_dp_phy_name() - Get the name of the given DP PHY 409 * @dp_phy: The DP PHY identifier 410 * 411 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or 412 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always 413 * non-NULL and valid. 414 * 415 * Returns: Name of the DP PHY. 416 */ 417 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy) 418 { 419 static const char * const phy_names[] = { 420 [DP_PHY_DPRX] = "DPRX", 421 [DP_PHY_LTTPR1] = "LTTPR 1", 422 [DP_PHY_LTTPR2] = "LTTPR 2", 423 [DP_PHY_LTTPR3] = "LTTPR 3", 424 [DP_PHY_LTTPR4] = "LTTPR 4", 425 [DP_PHY_LTTPR5] = "LTTPR 5", 426 [DP_PHY_LTTPR6] = "LTTPR 6", 427 [DP_PHY_LTTPR7] = "LTTPR 7", 428 [DP_PHY_LTTPR8] = "LTTPR 8", 429 }; 430 431 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) || 432 WARN_ON(!phy_names[dp_phy])) 433 return "<INVALID DP PHY>"; 434 435 return phy_names[dp_phy]; 436 } 437 EXPORT_SYMBOL(drm_dp_phy_name); 438 439 void drm_dp_lttpr_link_train_clock_recovery_delay(void) 440 { 441 usleep_range(100, 200); 442 } 443 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay); 444 445 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r) 446 { 447 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1]; 448 } 449 450 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux, 451 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE]) 452 { 453 u8 interval = dp_lttpr_phy_cap(phy_cap, 454 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) & 455 DP_TRAINING_AUX_RD_MASK; 456 457 __drm_dp_link_train_channel_eq_delay(aux, interval); 458 } 459 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay); 460 461 u8 drm_dp_link_rate_to_bw_code(int link_rate) 462 { 463 switch (link_rate) { 464 case 1000000: 465 return DP_LINK_BW_10; 466 case 1350000: 467 return DP_LINK_BW_13_5; 468 case 2000000: 469 return DP_LINK_BW_20; 470 default: 471 /* Spec says link_bw = link_rate / 0.27Gbps */ 472 return link_rate / 27000; 473 } 474 } 475 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code); 476 477 int drm_dp_bw_code_to_link_rate(u8 link_bw) 478 { 479 switch (link_bw) { 480 case DP_LINK_BW_10: 481 return 1000000; 482 case DP_LINK_BW_13_5: 483 return 1350000; 484 case DP_LINK_BW_20: 485 return 2000000; 486 default: 487 /* Spec says link_rate = link_bw * 0.27Gbps */ 488 return link_bw * 27000; 489 } 490 } 491 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate); 492 493 #define AUX_RETRY_INTERVAL 500 /* us */ 494 495 static inline void 496 drm_dp_dump_access(const struct drm_dp_aux *aux, 497 u8 request, uint offset, void *buffer, int ret) 498 { 499 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-"; 500 501 if (ret > 0) 502 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n", 503 aux->name, offset, arrow, ret, min(ret, 20), buffer); 504 else 505 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n", 506 aux->name, offset, arrow, ret); 507 } 508 509 /** 510 * DOC: dp helpers 511 * 512 * The DisplayPort AUX channel is an abstraction to allow generic, driver- 513 * independent access to AUX functionality. Drivers can take advantage of 514 * this by filling in the fields of the drm_dp_aux structure. 515 * 516 * Transactions are described using a hardware-independent drm_dp_aux_msg 517 * structure, which is passed into a driver's .transfer() implementation. 518 * Both native and I2C-over-AUX transactions are supported. 519 */ 520 521 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request, 522 unsigned int offset, void *buffer, size_t size) 523 { 524 struct drm_dp_aux_msg msg; 525 unsigned int retry, native_reply; 526 int err = 0, ret = 0; 527 528 memset(&msg, 0, sizeof(msg)); 529 msg.address = offset; 530 msg.request = request; 531 msg.buffer = buffer; 532 msg.size = size; 533 534 mutex_lock(&aux->hw_mutex); 535 536 /* 537 * If the device attached to the aux bus is powered down then there's 538 * no reason to attempt a transfer. Error out immediately. 539 */ 540 if (aux->powered_down) { 541 ret = -EBUSY; 542 goto unlock; 543 } 544 545 /* 546 * The specification doesn't give any recommendation on how often to 547 * retry native transactions. We used to retry 7 times like for 548 * aux i2c transactions but real world devices this wasn't 549 * sufficient, bump to 32 which makes Dell 4k monitors happier. 550 */ 551 for (retry = 0; retry < 32; retry++) { 552 if (ret != 0 && ret != -ETIMEDOUT) { 553 usleep_range(AUX_RETRY_INTERVAL, 554 AUX_RETRY_INTERVAL + 100); 555 } 556 557 ret = aux->transfer(aux, &msg); 558 if (ret >= 0) { 559 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK; 560 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) { 561 if (ret == size) 562 goto unlock; 563 564 ret = -EPROTO; 565 } else 566 ret = -EIO; 567 } 568 569 /* 570 * We want the error we return to be the error we received on 571 * the first transaction, since we may get a different error the 572 * next time we retry 573 */ 574 if (!err) 575 err = ret; 576 } 577 578 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n", 579 aux->name, err); 580 ret = err; 581 582 unlock: 583 mutex_unlock(&aux->hw_mutex); 584 return ret; 585 } 586 587 /** 588 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access 589 * @aux: DisplayPort AUX channel (SST) 590 * @offset: address of the register to probe 591 * 592 * Probe the provided DPCD address by reading 1 byte from it. The function can 593 * be used to trigger some side-effect the read access has, like waking up the 594 * sink, without the need for the read-out value. 595 * 596 * Returns 0 if the read access suceeded, or a negative error code on failure. 597 */ 598 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset) 599 { 600 u8 buffer; 601 int ret; 602 603 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1); 604 WARN_ON(ret == 0); 605 606 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret); 607 608 return ret < 0 ? ret : 0; 609 } 610 EXPORT_SYMBOL(drm_dp_dpcd_probe); 611 612 /** 613 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered 614 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here 615 * and the function will be a no-op. 616 * @powered: true if powered; false if not 617 * 618 * If the endpoint device on the DP AUX bus is known to be powered down 619 * then this function can be called to make future transfers fail immediately 620 * instead of needing to time out. 621 * 622 * If this function is never called then a device defaults to being powered. 623 */ 624 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered) 625 { 626 if (!aux) 627 return; 628 629 mutex_lock(&aux->hw_mutex); 630 aux->powered_down = !powered; 631 mutex_unlock(&aux->hw_mutex); 632 } 633 EXPORT_SYMBOL(drm_dp_dpcd_set_powered); 634 635 /** 636 * drm_dp_dpcd_read() - read a series of bytes from the DPCD 637 * @aux: DisplayPort AUX channel (SST or MST) 638 * @offset: address of the (first) register to read 639 * @buffer: buffer to store the register values 640 * @size: number of bytes in @buffer 641 * 642 * Returns the number of bytes transferred on success, or a negative error 643 * code on failure. -EIO is returned if the request was NAKed by the sink or 644 * if the retry count was exceeded. If not all bytes were transferred, this 645 * function returns -EPROTO. Errors from the underlying AUX channel transfer 646 * function, with the exception of -EBUSY (which causes the transaction to 647 * be retried), are propagated to the caller. 648 */ 649 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset, 650 void *buffer, size_t size) 651 { 652 int ret; 653 654 /* 655 * HP ZR24w corrupts the first DPCD access after entering power save 656 * mode. Eg. on a read, the entire buffer will be filled with the same 657 * byte. Do a throw away read to avoid corrupting anything we care 658 * about. Afterwards things will work correctly until the monitor 659 * gets woken up and subsequently re-enters power save mode. 660 * 661 * The user pressing any button on the monitor is enough to wake it 662 * up, so there is no particularly good place to do the workaround. 663 * We just have to do it before any DPCD access and hope that the 664 * monitor doesn't power down exactly after the throw away read. 665 */ 666 if (!aux->is_remote) { 667 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV); 668 if (ret < 0) 669 return ret; 670 } 671 672 if (aux->is_remote) 673 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size); 674 else 675 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, 676 buffer, size); 677 678 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret); 679 return ret; 680 } 681 EXPORT_SYMBOL(drm_dp_dpcd_read); 682 683 /** 684 * drm_dp_dpcd_write() - write a series of bytes to the DPCD 685 * @aux: DisplayPort AUX channel (SST or MST) 686 * @offset: address of the (first) register to write 687 * @buffer: buffer containing the values to write 688 * @size: number of bytes in @buffer 689 * 690 * Returns the number of bytes transferred on success, or a negative error 691 * code on failure. -EIO is returned if the request was NAKed by the sink or 692 * if the retry count was exceeded. If not all bytes were transferred, this 693 * function returns -EPROTO. Errors from the underlying AUX channel transfer 694 * function, with the exception of -EBUSY (which causes the transaction to 695 * be retried), are propagated to the caller. 696 */ 697 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset, 698 void *buffer, size_t size) 699 { 700 int ret; 701 702 if (aux->is_remote) 703 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size); 704 else 705 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset, 706 buffer, size); 707 708 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret); 709 return ret; 710 } 711 EXPORT_SYMBOL(drm_dp_dpcd_write); 712 713 /** 714 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207) 715 * @aux: DisplayPort AUX channel 716 * @status: buffer to store the link status in (must be at least 6 bytes) 717 * 718 * Returns the number of bytes transferred on success or a negative error 719 * code on failure. 720 */ 721 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux, 722 u8 status[DP_LINK_STATUS_SIZE]) 723 { 724 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status, 725 DP_LINK_STATUS_SIZE); 726 } 727 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status); 728 729 /** 730 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY 731 * @aux: DisplayPort AUX channel 732 * @dp_phy: the DP PHY to get the link status for 733 * @link_status: buffer to return the status in 734 * 735 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The 736 * layout of the returned @link_status matches the DPCD register layout of the 737 * DPRX PHY link status. 738 * 739 * Returns 0 if the information was read successfully or a negative error code 740 * on failure. 741 */ 742 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux, 743 enum drm_dp_phy dp_phy, 744 u8 link_status[DP_LINK_STATUS_SIZE]) 745 { 746 int ret; 747 748 if (dp_phy == DP_PHY_DPRX) { 749 ret = drm_dp_dpcd_read(aux, 750 DP_LANE0_1_STATUS, 751 link_status, 752 DP_LINK_STATUS_SIZE); 753 754 if (ret < 0) 755 return ret; 756 757 WARN_ON(ret != DP_LINK_STATUS_SIZE); 758 759 return 0; 760 } 761 762 ret = drm_dp_dpcd_read(aux, 763 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy), 764 link_status, 765 DP_LINK_STATUS_SIZE - 1); 766 767 if (ret < 0) 768 return ret; 769 770 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1); 771 772 /* Convert the LTTPR to the sink PHY link status layout */ 773 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1], 774 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS], 775 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1); 776 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0; 777 778 return 0; 779 } 780 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status); 781 782 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid) 783 { 784 /* FIXME: get rid of drm_edid_raw() */ 785 const struct edid *edid = drm_edid_raw(drm_edid); 786 787 return edid && edid->revision >= 4 && 788 edid->input & DRM_EDID_INPUT_DIGITAL && 789 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP; 790 } 791 792 /** 793 * drm_dp_downstream_is_type() - is the downstream facing port of certain type? 794 * @dpcd: DisplayPort configuration data 795 * @port_cap: port capabilities 796 * @type: port type to be checked. Can be: 797 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI, 798 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID, 799 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS. 800 * 801 * Caveat: Only works with DPCD 1.1+ port caps. 802 * 803 * Returns: whether the downstream facing port matches the type. 804 */ 805 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 806 const u8 port_cap[4], u8 type) 807 { 808 return drm_dp_is_branch(dpcd) && 809 dpcd[DP_DPCD_REV] >= 0x11 && 810 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type; 811 } 812 EXPORT_SYMBOL(drm_dp_downstream_is_type); 813 814 /** 815 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS? 816 * @dpcd: DisplayPort configuration data 817 * @port_cap: port capabilities 818 * @drm_edid: EDID 819 * 820 * Returns: whether the downstream facing port is TMDS (HDMI/DVI). 821 */ 822 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 823 const u8 port_cap[4], 824 const struct drm_edid *drm_edid) 825 { 826 if (dpcd[DP_DPCD_REV] < 0x11) { 827 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 828 case DP_DWN_STRM_PORT_TYPE_TMDS: 829 return true; 830 default: 831 return false; 832 } 833 } 834 835 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 836 case DP_DS_PORT_TYPE_DP_DUALMODE: 837 if (is_edid_digital_input_dp(drm_edid)) 838 return false; 839 fallthrough; 840 case DP_DS_PORT_TYPE_DVI: 841 case DP_DS_PORT_TYPE_HDMI: 842 return true; 843 default: 844 return false; 845 } 846 } 847 EXPORT_SYMBOL(drm_dp_downstream_is_tmds); 848 849 /** 850 * drm_dp_send_real_edid_checksum() - send back real edid checksum value 851 * @aux: DisplayPort AUX channel 852 * @real_edid_checksum: real edid checksum for the last block 853 * 854 * Returns: 855 * True on success 856 */ 857 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux, 858 u8 real_edid_checksum) 859 { 860 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0; 861 862 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, 863 &auto_test_req, 1) < 1) { 864 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n", 865 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); 866 return false; 867 } 868 auto_test_req &= DP_AUTOMATED_TEST_REQUEST; 869 870 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) { 871 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n", 872 aux->name, DP_TEST_REQUEST); 873 return false; 874 } 875 link_edid_read &= DP_TEST_LINK_EDID_READ; 876 877 if (!auto_test_req || !link_edid_read) { 878 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n", 879 aux->name); 880 return false; 881 } 882 883 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR, 884 &auto_test_req, 1) < 1) { 885 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 886 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR); 887 return false; 888 } 889 890 /* send back checksum for the last edid extension block data */ 891 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM, 892 &real_edid_checksum, 1) < 1) { 893 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 894 aux->name, DP_TEST_EDID_CHECKSUM); 895 return false; 896 } 897 898 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE; 899 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) { 900 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n", 901 aux->name, DP_TEST_RESPONSE); 902 return false; 903 } 904 905 return true; 906 } 907 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum); 908 909 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 910 { 911 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK; 912 913 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4) 914 port_count = 4; 915 916 return port_count; 917 } 918 919 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux, 920 u8 dpcd[DP_RECEIVER_CAP_SIZE]) 921 { 922 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; 923 int ret; 924 925 /* 926 * Prior to DP1.3 the bit represented by 927 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 928 * If it is set DP_DPCD_REV at 0000h could be at a value less than 929 * the true capability of the panel. The only way to check is to 930 * then compare 0000h and 2200h. 931 */ 932 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 933 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 934 return 0; 935 936 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext, 937 sizeof(dpcd_ext)); 938 if (ret < 0) 939 return ret; 940 if (ret != sizeof(dpcd_ext)) 941 return -EIO; 942 943 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 944 drm_dbg_kms(aux->drm_dev, 945 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n", 946 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]); 947 return 0; 948 } 949 950 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext))) 951 return 0; 952 953 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); 954 955 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext)); 956 957 return 0; 958 } 959 960 /** 961 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if 962 * available 963 * @aux: DisplayPort AUX channel 964 * @dpcd: Buffer to store the resulting DPCD in 965 * 966 * Attempts to read the base DPCD caps for @aux. Additionally, this function 967 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if 968 * present. 969 * 970 * Returns: %0 if the DPCD was read successfully, negative error code 971 * otherwise. 972 */ 973 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux, 974 u8 dpcd[DP_RECEIVER_CAP_SIZE]) 975 { 976 int ret; 977 978 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE); 979 if (ret < 0) 980 return ret; 981 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0) 982 return -EIO; 983 984 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd); 985 if (ret < 0) 986 return ret; 987 988 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd); 989 990 return ret; 991 } 992 EXPORT_SYMBOL(drm_dp_read_dpcd_caps); 993 994 /** 995 * drm_dp_read_downstream_info() - read DPCD downstream port info if available 996 * @aux: DisplayPort AUX channel 997 * @dpcd: A cached copy of the port's DPCD 998 * @downstream_ports: buffer to store the downstream port info in 999 * 1000 * See also: 1001 * drm_dp_downstream_max_clock() 1002 * drm_dp_downstream_max_bpc() 1003 * 1004 * Returns: 0 if either the downstream port info was read successfully or 1005 * there was no downstream info to read, or a negative error code otherwise. 1006 */ 1007 int drm_dp_read_downstream_info(struct drm_dp_aux *aux, 1008 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1009 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS]) 1010 { 1011 int ret; 1012 u8 len; 1013 1014 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS); 1015 1016 /* No downstream info to read */ 1017 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) 1018 return 0; 1019 1020 /* Some branches advertise having 0 downstream ports, despite also advertising they have a 1021 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since 1022 * some branches do it we need to handle it regardless. 1023 */ 1024 len = drm_dp_downstream_port_count(dpcd); 1025 if (!len) 1026 return 0; 1027 1028 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) 1029 len *= 4; 1030 1031 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len); 1032 if (ret < 0) 1033 return ret; 1034 if (ret != len) 1035 return -EIO; 1036 1037 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports); 1038 1039 return 0; 1040 } 1041 EXPORT_SYMBOL(drm_dp_read_downstream_info); 1042 1043 /** 1044 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock 1045 * @dpcd: DisplayPort configuration data 1046 * @port_cap: port capabilities 1047 * 1048 * Returns: Downstream facing port max dot clock in kHz on success, 1049 * or 0 if max clock not defined 1050 */ 1051 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1052 const u8 port_cap[4]) 1053 { 1054 if (!drm_dp_is_branch(dpcd)) 1055 return 0; 1056 1057 if (dpcd[DP_DPCD_REV] < 0x11) 1058 return 0; 1059 1060 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1061 case DP_DS_PORT_TYPE_VGA: 1062 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1063 return 0; 1064 return port_cap[1] * 8000; 1065 default: 1066 return 0; 1067 } 1068 } 1069 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock); 1070 1071 /** 1072 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock 1073 * @dpcd: DisplayPort configuration data 1074 * @port_cap: port capabilities 1075 * @drm_edid: EDID 1076 * 1077 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success, 1078 * or 0 if max TMDS clock not defined 1079 */ 1080 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1081 const u8 port_cap[4], 1082 const struct drm_edid *drm_edid) 1083 { 1084 if (!drm_dp_is_branch(dpcd)) 1085 return 0; 1086 1087 if (dpcd[DP_DPCD_REV] < 0x11) { 1088 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1089 case DP_DWN_STRM_PORT_TYPE_TMDS: 1090 return 165000; 1091 default: 1092 return 0; 1093 } 1094 } 1095 1096 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1097 case DP_DS_PORT_TYPE_DP_DUALMODE: 1098 if (is_edid_digital_input_dp(drm_edid)) 1099 return 0; 1100 /* 1101 * It's left up to the driver to check the 1102 * DP dual mode adapter's max TMDS clock. 1103 * 1104 * Unfortunately it looks like branch devices 1105 * may not fordward that the DP dual mode i2c 1106 * access so we just usually get i2c nak :( 1107 */ 1108 fallthrough; 1109 case DP_DS_PORT_TYPE_HDMI: 1110 /* 1111 * We should perhaps assume 165 MHz when detailed cap 1112 * info is not available. But looks like many typical 1113 * branch devices fall into that category and so we'd 1114 * probably end up with users complaining that they can't 1115 * get high resolution modes with their favorite dongle. 1116 * 1117 * So let's limit to 300 MHz instead since DPCD 1.4 1118 * HDMI 2.0 DFPs are required to have the detailed cap 1119 * info. So it's more likely we're dealing with a HDMI 1.4 1120 * compatible* device here. 1121 */ 1122 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1123 return 300000; 1124 return port_cap[1] * 2500; 1125 case DP_DS_PORT_TYPE_DVI: 1126 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1127 return 165000; 1128 /* FIXME what to do about DVI dual link? */ 1129 return port_cap[1] * 2500; 1130 default: 1131 return 0; 1132 } 1133 } 1134 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock); 1135 1136 /** 1137 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock 1138 * @dpcd: DisplayPort configuration data 1139 * @port_cap: port capabilities 1140 * @drm_edid: EDID 1141 * 1142 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success, 1143 * or 0 if max TMDS clock not defined 1144 */ 1145 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1146 const u8 port_cap[4], 1147 const struct drm_edid *drm_edid) 1148 { 1149 if (!drm_dp_is_branch(dpcd)) 1150 return 0; 1151 1152 if (dpcd[DP_DPCD_REV] < 0x11) { 1153 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1154 case DP_DWN_STRM_PORT_TYPE_TMDS: 1155 return 25000; 1156 default: 1157 return 0; 1158 } 1159 } 1160 1161 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1162 case DP_DS_PORT_TYPE_DP_DUALMODE: 1163 if (is_edid_digital_input_dp(drm_edid)) 1164 return 0; 1165 fallthrough; 1166 case DP_DS_PORT_TYPE_DVI: 1167 case DP_DS_PORT_TYPE_HDMI: 1168 /* 1169 * Unclear whether the protocol converter could 1170 * utilize pixel replication. Assume it won't. 1171 */ 1172 return 25000; 1173 default: 1174 return 0; 1175 } 1176 } 1177 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock); 1178 1179 /** 1180 * drm_dp_downstream_max_bpc() - extract downstream facing port max 1181 * bits per component 1182 * @dpcd: DisplayPort configuration data 1183 * @port_cap: downstream facing port capabilities 1184 * @drm_edid: EDID 1185 * 1186 * Returns: Max bpc on success or 0 if max bpc not defined 1187 */ 1188 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1189 const u8 port_cap[4], 1190 const struct drm_edid *drm_edid) 1191 { 1192 if (!drm_dp_is_branch(dpcd)) 1193 return 0; 1194 1195 if (dpcd[DP_DPCD_REV] < 0x11) { 1196 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) { 1197 case DP_DWN_STRM_PORT_TYPE_DP: 1198 return 0; 1199 default: 1200 return 8; 1201 } 1202 } 1203 1204 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1205 case DP_DS_PORT_TYPE_DP: 1206 return 0; 1207 case DP_DS_PORT_TYPE_DP_DUALMODE: 1208 if (is_edid_digital_input_dp(drm_edid)) 1209 return 0; 1210 fallthrough; 1211 case DP_DS_PORT_TYPE_HDMI: 1212 case DP_DS_PORT_TYPE_DVI: 1213 case DP_DS_PORT_TYPE_VGA: 1214 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1215 return 8; 1216 1217 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) { 1218 case DP_DS_8BPC: 1219 return 8; 1220 case DP_DS_10BPC: 1221 return 10; 1222 case DP_DS_12BPC: 1223 return 12; 1224 case DP_DS_16BPC: 1225 return 16; 1226 default: 1227 return 8; 1228 } 1229 break; 1230 default: 1231 return 8; 1232 } 1233 } 1234 EXPORT_SYMBOL(drm_dp_downstream_max_bpc); 1235 1236 /** 1237 * drm_dp_downstream_420_passthrough() - determine downstream facing port 1238 * YCbCr 4:2:0 pass-through capability 1239 * @dpcd: DisplayPort configuration data 1240 * @port_cap: downstream facing port capabilities 1241 * 1242 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0 1243 */ 1244 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1245 const u8 port_cap[4]) 1246 { 1247 if (!drm_dp_is_branch(dpcd)) 1248 return false; 1249 1250 if (dpcd[DP_DPCD_REV] < 0x13) 1251 return false; 1252 1253 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1254 case DP_DS_PORT_TYPE_DP: 1255 return true; 1256 case DP_DS_PORT_TYPE_HDMI: 1257 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1258 return false; 1259 1260 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH; 1261 default: 1262 return false; 1263 } 1264 } 1265 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough); 1266 1267 /** 1268 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port 1269 * YCbCr 4:4:4->4:2:0 conversion capability 1270 * @dpcd: DisplayPort configuration data 1271 * @port_cap: downstream facing port capabilities 1272 * 1273 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0 1274 */ 1275 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1276 const u8 port_cap[4]) 1277 { 1278 if (!drm_dp_is_branch(dpcd)) 1279 return false; 1280 1281 if (dpcd[DP_DPCD_REV] < 0x13) 1282 return false; 1283 1284 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1285 case DP_DS_PORT_TYPE_HDMI: 1286 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1287 return false; 1288 1289 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV; 1290 default: 1291 return false; 1292 } 1293 } 1294 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion); 1295 1296 /** 1297 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port 1298 * RGB->YCbCr conversion capability 1299 * @dpcd: DisplayPort configuration data 1300 * @port_cap: downstream facing port capabilities 1301 * @color_spc: Colorspace for which conversion cap is sought 1302 * 1303 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given 1304 * colorspace. 1305 */ 1306 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1307 const u8 port_cap[4], 1308 u8 color_spc) 1309 { 1310 if (!drm_dp_is_branch(dpcd)) 1311 return false; 1312 1313 if (dpcd[DP_DPCD_REV] < 0x13) 1314 return false; 1315 1316 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1317 case DP_DS_PORT_TYPE_HDMI: 1318 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0) 1319 return false; 1320 1321 return port_cap[3] & color_spc; 1322 default: 1323 return false; 1324 } 1325 } 1326 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion); 1327 1328 /** 1329 * drm_dp_downstream_mode() - return a mode for downstream facing port 1330 * @dev: DRM device 1331 * @dpcd: DisplayPort configuration data 1332 * @port_cap: port capabilities 1333 * 1334 * Provides a suitable mode for downstream facing ports without EDID. 1335 * 1336 * Returns: A new drm_display_mode on success or NULL on failure 1337 */ 1338 struct drm_display_mode * 1339 drm_dp_downstream_mode(struct drm_device *dev, 1340 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1341 const u8 port_cap[4]) 1342 1343 { 1344 u8 vic; 1345 1346 if (!drm_dp_is_branch(dpcd)) 1347 return NULL; 1348 1349 if (dpcd[DP_DPCD_REV] < 0x11) 1350 return NULL; 1351 1352 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) { 1353 case DP_DS_PORT_TYPE_NON_EDID: 1354 switch (port_cap[0] & DP_DS_NON_EDID_MASK) { 1355 case DP_DS_NON_EDID_720x480i_60: 1356 vic = 6; 1357 break; 1358 case DP_DS_NON_EDID_720x480i_50: 1359 vic = 21; 1360 break; 1361 case DP_DS_NON_EDID_1920x1080i_60: 1362 vic = 5; 1363 break; 1364 case DP_DS_NON_EDID_1920x1080i_50: 1365 vic = 20; 1366 break; 1367 case DP_DS_NON_EDID_1280x720_60: 1368 vic = 4; 1369 break; 1370 case DP_DS_NON_EDID_1280x720_50: 1371 vic = 19; 1372 break; 1373 default: 1374 return NULL; 1375 } 1376 return drm_display_mode_from_cea_vic(dev, vic); 1377 default: 1378 return NULL; 1379 } 1380 } 1381 EXPORT_SYMBOL(drm_dp_downstream_mode); 1382 1383 /** 1384 * drm_dp_downstream_id() - identify branch device 1385 * @aux: DisplayPort AUX channel 1386 * @id: DisplayPort branch device id 1387 * 1388 * Returns branch device id on success or NULL on failure 1389 */ 1390 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6]) 1391 { 1392 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6); 1393 } 1394 EXPORT_SYMBOL(drm_dp_downstream_id); 1395 1396 /** 1397 * drm_dp_downstream_debug() - debug DP branch devices 1398 * @m: pointer for debugfs file 1399 * @dpcd: DisplayPort configuration data 1400 * @port_cap: port capabilities 1401 * @drm_edid: EDID 1402 * @aux: DisplayPort AUX channel 1403 * 1404 */ 1405 void drm_dp_downstream_debug(struct seq_file *m, 1406 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1407 const u8 port_cap[4], 1408 const struct drm_edid *drm_edid, 1409 struct drm_dp_aux *aux) 1410 { 1411 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 1412 DP_DETAILED_CAP_INFO_AVAILABLE; 1413 int clk; 1414 int bpc; 1415 char id[7]; 1416 int len; 1417 uint8_t rev[2]; 1418 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 1419 bool branch_device = drm_dp_is_branch(dpcd); 1420 1421 seq_printf(m, "\tDP branch device present: %s\n", 1422 str_yes_no(branch_device)); 1423 1424 if (!branch_device) 1425 return; 1426 1427 switch (type) { 1428 case DP_DS_PORT_TYPE_DP: 1429 seq_puts(m, "\t\tType: DisplayPort\n"); 1430 break; 1431 case DP_DS_PORT_TYPE_VGA: 1432 seq_puts(m, "\t\tType: VGA\n"); 1433 break; 1434 case DP_DS_PORT_TYPE_DVI: 1435 seq_puts(m, "\t\tType: DVI\n"); 1436 break; 1437 case DP_DS_PORT_TYPE_HDMI: 1438 seq_puts(m, "\t\tType: HDMI\n"); 1439 break; 1440 case DP_DS_PORT_TYPE_NON_EDID: 1441 seq_puts(m, "\t\tType: others without EDID support\n"); 1442 break; 1443 case DP_DS_PORT_TYPE_DP_DUALMODE: 1444 seq_puts(m, "\t\tType: DP++\n"); 1445 break; 1446 case DP_DS_PORT_TYPE_WIRELESS: 1447 seq_puts(m, "\t\tType: Wireless\n"); 1448 break; 1449 default: 1450 seq_puts(m, "\t\tType: N/A\n"); 1451 } 1452 1453 memset(id, 0, sizeof(id)); 1454 drm_dp_downstream_id(aux, id); 1455 seq_printf(m, "\t\tID: %s\n", id); 1456 1457 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1); 1458 if (len > 0) 1459 seq_printf(m, "\t\tHW: %d.%d\n", 1460 (rev[0] & 0xf0) >> 4, rev[0] & 0xf); 1461 1462 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2); 1463 if (len > 0) 1464 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]); 1465 1466 if (detailed_cap_info) { 1467 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap); 1468 if (clk > 0) 1469 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk); 1470 1471 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid); 1472 if (clk > 0) 1473 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk); 1474 1475 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid); 1476 if (clk > 0) 1477 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk); 1478 1479 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid); 1480 1481 if (bpc > 0) 1482 seq_printf(m, "\t\tMax bpc: %d\n", bpc); 1483 } 1484 } 1485 EXPORT_SYMBOL(drm_dp_downstream_debug); 1486 1487 /** 1488 * drm_dp_subconnector_type() - get DP branch device type 1489 * @dpcd: DisplayPort configuration data 1490 * @port_cap: port capabilities 1491 */ 1492 enum drm_mode_subconnector 1493 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1494 const u8 port_cap[4]) 1495 { 1496 int type; 1497 if (!drm_dp_is_branch(dpcd)) 1498 return DRM_MODE_SUBCONNECTOR_Native; 1499 /* DP 1.0 approach */ 1500 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) { 1501 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] & 1502 DP_DWN_STRM_PORT_TYPE_MASK; 1503 1504 switch (type) { 1505 case DP_DWN_STRM_PORT_TYPE_TMDS: 1506 /* Can be HDMI or DVI-D, DVI-D is a safer option */ 1507 return DRM_MODE_SUBCONNECTOR_DVID; 1508 case DP_DWN_STRM_PORT_TYPE_ANALOG: 1509 /* Can be VGA or DVI-A, VGA is more popular */ 1510 return DRM_MODE_SUBCONNECTOR_VGA; 1511 case DP_DWN_STRM_PORT_TYPE_DP: 1512 return DRM_MODE_SUBCONNECTOR_DisplayPort; 1513 case DP_DWN_STRM_PORT_TYPE_OTHER: 1514 default: 1515 return DRM_MODE_SUBCONNECTOR_Unknown; 1516 } 1517 } 1518 type = port_cap[0] & DP_DS_PORT_TYPE_MASK; 1519 1520 switch (type) { 1521 case DP_DS_PORT_TYPE_DP: 1522 case DP_DS_PORT_TYPE_DP_DUALMODE: 1523 return DRM_MODE_SUBCONNECTOR_DisplayPort; 1524 case DP_DS_PORT_TYPE_VGA: 1525 return DRM_MODE_SUBCONNECTOR_VGA; 1526 case DP_DS_PORT_TYPE_DVI: 1527 return DRM_MODE_SUBCONNECTOR_DVID; 1528 case DP_DS_PORT_TYPE_HDMI: 1529 return DRM_MODE_SUBCONNECTOR_HDMIA; 1530 case DP_DS_PORT_TYPE_WIRELESS: 1531 return DRM_MODE_SUBCONNECTOR_Wireless; 1532 case DP_DS_PORT_TYPE_NON_EDID: 1533 default: 1534 return DRM_MODE_SUBCONNECTOR_Unknown; 1535 } 1536 } 1537 EXPORT_SYMBOL(drm_dp_subconnector_type); 1538 1539 /** 1540 * drm_dp_set_subconnector_property - set subconnector for DP connector 1541 * @connector: connector to set property on 1542 * @status: connector status 1543 * @dpcd: DisplayPort configuration data 1544 * @port_cap: port capabilities 1545 * 1546 * Called by a driver on every detect event. 1547 */ 1548 void drm_dp_set_subconnector_property(struct drm_connector *connector, 1549 enum drm_connector_status status, 1550 const u8 *dpcd, 1551 const u8 port_cap[4]) 1552 { 1553 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown; 1554 1555 if (status == connector_status_connected) 1556 subconnector = drm_dp_subconnector_type(dpcd, port_cap); 1557 drm_object_property_set_value(&connector->base, 1558 connector->dev->mode_config.dp_subconnector_property, 1559 subconnector); 1560 } 1561 EXPORT_SYMBOL(drm_dp_set_subconnector_property); 1562 1563 /** 1564 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink 1565 * count 1566 * @connector: The DRM connector to check 1567 * @dpcd: A cached copy of the connector's DPCD RX capabilities 1568 * @desc: A cached copy of the connector's DP descriptor 1569 * 1570 * See also: drm_dp_read_sink_count() 1571 * 1572 * Returns: %True if the (e)DP connector has a valid sink count that should 1573 * be probed, %false otherwise. 1574 */ 1575 bool drm_dp_read_sink_count_cap(struct drm_connector *connector, 1576 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 1577 const struct drm_dp_desc *desc) 1578 { 1579 /* Some eDP panels don't set a valid value for the sink count */ 1580 return connector->connector_type != DRM_MODE_CONNECTOR_eDP && 1581 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 && 1582 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 1583 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT); 1584 } 1585 EXPORT_SYMBOL(drm_dp_read_sink_count_cap); 1586 1587 /** 1588 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink 1589 * @aux: The DP AUX channel to use 1590 * 1591 * See also: drm_dp_read_sink_count_cap() 1592 * 1593 * Returns: The current sink count reported by @aux, or a negative error code 1594 * otherwise. 1595 */ 1596 int drm_dp_read_sink_count(struct drm_dp_aux *aux) 1597 { 1598 u8 count; 1599 int ret; 1600 1601 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count); 1602 if (ret < 0) 1603 return ret; 1604 if (ret != 1) 1605 return -EIO; 1606 1607 return DP_GET_SINK_COUNT(count); 1608 } 1609 EXPORT_SYMBOL(drm_dp_read_sink_count); 1610 1611 /* 1612 * I2C-over-AUX implementation 1613 */ 1614 1615 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter) 1616 { 1617 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 1618 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 1619 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 1620 I2C_FUNC_10BIT_ADDR; 1621 } 1622 1623 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg) 1624 { 1625 /* 1626 * In case of i2c defer or short i2c ack reply to a write, 1627 * we need to switch to WRITE_STATUS_UPDATE to drain the 1628 * rest of the message 1629 */ 1630 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) { 1631 msg->request &= DP_AUX_I2C_MOT; 1632 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE; 1633 } 1634 } 1635 1636 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */ 1637 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */ 1638 #define AUX_STOP_LEN 4 1639 #define AUX_CMD_LEN 4 1640 #define AUX_ADDRESS_LEN 20 1641 #define AUX_REPLY_PAD_LEN 4 1642 #define AUX_LENGTH_LEN 8 1643 1644 /* 1645 * Calculate the duration of the AUX request/reply in usec. Gives the 1646 * "best" case estimate, ie. successful while as short as possible. 1647 */ 1648 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg) 1649 { 1650 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 1651 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN; 1652 1653 if ((msg->request & DP_AUX_I2C_READ) == 0) 1654 len += msg->size * 8; 1655 1656 return len; 1657 } 1658 1659 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg) 1660 { 1661 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN + 1662 AUX_CMD_LEN + AUX_REPLY_PAD_LEN; 1663 1664 /* 1665 * For read we expect what was asked. For writes there will 1666 * be 0 or 1 data bytes. Assume 0 for the "best" case. 1667 */ 1668 if (msg->request & DP_AUX_I2C_READ) 1669 len += msg->size * 8; 1670 1671 return len; 1672 } 1673 1674 #define I2C_START_LEN 1 1675 #define I2C_STOP_LEN 1 1676 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */ 1677 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */ 1678 1679 /* 1680 * Calculate the length of the i2c transfer in usec, assuming 1681 * the i2c bus speed is as specified. Gives the "worst" 1682 * case estimate, ie. successful while as long as possible. 1683 * Doesn't account the "MOT" bit, and instead assumes each 1684 * message includes a START, ADDRESS and STOP. Neither does it 1685 * account for additional random variables such as clock stretching. 1686 */ 1687 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg, 1688 int i2c_speed_khz) 1689 { 1690 /* AUX bitrate is 1MHz, i2c bitrate as specified */ 1691 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN + 1692 msg->size * I2C_DATA_LEN + 1693 I2C_STOP_LEN) * 1000, i2c_speed_khz); 1694 } 1695 1696 /* 1697 * Determine how many retries should be attempted to successfully transfer 1698 * the specified message, based on the estimated durations of the 1699 * i2c and AUX transfers. 1700 */ 1701 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg, 1702 int i2c_speed_khz) 1703 { 1704 int aux_time_us = drm_dp_aux_req_duration(msg) + 1705 drm_dp_aux_reply_duration(msg); 1706 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz); 1707 1708 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL); 1709 } 1710 1711 /* 1712 * FIXME currently assumes 10 kHz as some real world devices seem 1713 * to require it. We should query/set the speed via DPCD if supported. 1714 */ 1715 static int dp_aux_i2c_speed_khz __read_mostly = 10; 1716 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644); 1717 MODULE_PARM_DESC(dp_aux_i2c_speed_khz, 1718 "Assumed speed of the i2c bus in kHz, (1-400, default 10)"); 1719 1720 /* 1721 * Transfer a single I2C-over-AUX message and handle various error conditions, 1722 * retrying the transaction as appropriate. It is assumed that the 1723 * &drm_dp_aux.transfer function does not modify anything in the msg other than the 1724 * reply field. 1725 * 1726 * Returns bytes transferred on success, or a negative error code on failure. 1727 */ 1728 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1729 { 1730 unsigned int retry, defer_i2c; 1731 int ret; 1732 /* 1733 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device 1734 * is required to retry at least seven times upon receiving AUX_DEFER 1735 * before giving up the AUX transaction. 1736 * 1737 * We also try to account for the i2c bus speed. 1738 */ 1739 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz)); 1740 1741 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) { 1742 ret = aux->transfer(aux, msg); 1743 if (ret < 0) { 1744 if (ret == -EBUSY) 1745 continue; 1746 1747 /* 1748 * While timeouts can be errors, they're usually normal 1749 * behavior (for instance, when a driver tries to 1750 * communicate with a non-existent DisplayPort device). 1751 * Avoid spamming the kernel log with timeout errors. 1752 */ 1753 if (ret == -ETIMEDOUT) 1754 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n", 1755 aux->name); 1756 else 1757 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n", 1758 aux->name, ret); 1759 return ret; 1760 } 1761 1762 1763 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) { 1764 case DP_AUX_NATIVE_REPLY_ACK: 1765 /* 1766 * For I2C-over-AUX transactions this isn't enough, we 1767 * need to check for the I2C ACK reply. 1768 */ 1769 break; 1770 1771 case DP_AUX_NATIVE_REPLY_NACK: 1772 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n", 1773 aux->name, ret, msg->size); 1774 return -EREMOTEIO; 1775 1776 case DP_AUX_NATIVE_REPLY_DEFER: 1777 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name); 1778 /* 1779 * We could check for I2C bit rate capabilities and if 1780 * available adjust this interval. We could also be 1781 * more careful with DP-to-legacy adapters where a 1782 * long legacy cable may force very low I2C bit rates. 1783 * 1784 * For now just defer for long enough to hopefully be 1785 * safe for all use-cases. 1786 */ 1787 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 1788 continue; 1789 1790 default: 1791 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n", 1792 aux->name, msg->reply); 1793 return -EREMOTEIO; 1794 } 1795 1796 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) { 1797 case DP_AUX_I2C_REPLY_ACK: 1798 /* 1799 * Both native ACK and I2C ACK replies received. We 1800 * can assume the transfer was successful. 1801 */ 1802 if (ret != msg->size) 1803 drm_dp_i2c_msg_write_status_update(msg); 1804 return ret; 1805 1806 case DP_AUX_I2C_REPLY_NACK: 1807 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n", 1808 aux->name, ret, msg->size); 1809 aux->i2c_nack_count++; 1810 return -EREMOTEIO; 1811 1812 case DP_AUX_I2C_REPLY_DEFER: 1813 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name); 1814 /* DP Compliance Test 4.2.2.5 Requirement: 1815 * Must have at least 7 retries for I2C defers on the 1816 * transaction to pass this test 1817 */ 1818 aux->i2c_defer_count++; 1819 if (defer_i2c < 7) 1820 defer_i2c++; 1821 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100); 1822 drm_dp_i2c_msg_write_status_update(msg); 1823 1824 continue; 1825 1826 default: 1827 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n", 1828 aux->name, msg->reply); 1829 return -EREMOTEIO; 1830 } 1831 } 1832 1833 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name); 1834 return -EREMOTEIO; 1835 } 1836 1837 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg, 1838 const struct i2c_msg *i2c_msg) 1839 { 1840 msg->request = (i2c_msg->flags & I2C_M_RD) ? 1841 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE; 1842 if (!(i2c_msg->flags & I2C_M_STOP)) 1843 msg->request |= DP_AUX_I2C_MOT; 1844 } 1845 1846 /* 1847 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred. 1848 * 1849 * Returns an error code on failure, or a recommended transfer size on success. 1850 */ 1851 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg) 1852 { 1853 int err, ret = orig_msg->size; 1854 struct drm_dp_aux_msg msg = *orig_msg; 1855 1856 while (msg.size > 0) { 1857 err = drm_dp_i2c_do_msg(aux, &msg); 1858 if (err <= 0) 1859 return err == 0 ? -EPROTO : err; 1860 1861 if (err < msg.size && err < ret) { 1862 drm_dbg_kms(aux->drm_dev, 1863 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n", 1864 aux->name, msg.size, err); 1865 ret = err; 1866 } 1867 1868 msg.size -= err; 1869 msg.buffer += err; 1870 } 1871 1872 return ret; 1873 } 1874 1875 /* 1876 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX 1877 * packets to be as large as possible. If not, the I2C transactions never 1878 * succeed. Hence the default is maximum. 1879 */ 1880 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES; 1881 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644); 1882 MODULE_PARM_DESC(dp_aux_i2c_transfer_size, 1883 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)"); 1884 1885 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, 1886 int num) 1887 { 1888 struct drm_dp_aux *aux = adapter->algo_data; 1889 unsigned int i, j; 1890 unsigned transfer_size; 1891 struct drm_dp_aux_msg msg; 1892 int err = 0; 1893 1894 if (aux->powered_down) 1895 return -EBUSY; 1896 1897 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES); 1898 1899 memset(&msg, 0, sizeof(msg)); 1900 1901 for (i = 0; i < num; i++) { 1902 msg.address = msgs[i].addr; 1903 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 1904 /* Send a bare address packet to start the transaction. 1905 * Zero sized messages specify an address only (bare 1906 * address) transaction. 1907 */ 1908 msg.buffer = NULL; 1909 msg.size = 0; 1910 err = drm_dp_i2c_do_msg(aux, &msg); 1911 1912 /* 1913 * Reset msg.request in case in case it got 1914 * changed into a WRITE_STATUS_UPDATE. 1915 */ 1916 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 1917 1918 if (err < 0) 1919 break; 1920 /* We want each transaction to be as large as possible, but 1921 * we'll go to smaller sizes if the hardware gives us a 1922 * short reply. 1923 */ 1924 transfer_size = dp_aux_i2c_transfer_size; 1925 for (j = 0; j < msgs[i].len; j += msg.size) { 1926 msg.buffer = msgs[i].buf + j; 1927 msg.size = min(transfer_size, msgs[i].len - j); 1928 1929 err = drm_dp_i2c_drain_msg(aux, &msg); 1930 1931 /* 1932 * Reset msg.request in case in case it got 1933 * changed into a WRITE_STATUS_UPDATE. 1934 */ 1935 drm_dp_i2c_msg_set_request(&msg, &msgs[i]); 1936 1937 if (err < 0) 1938 break; 1939 transfer_size = err; 1940 } 1941 if (err < 0) 1942 break; 1943 } 1944 if (err >= 0) 1945 err = num; 1946 /* Send a bare address packet to close out the transaction. 1947 * Zero sized messages specify an address only (bare 1948 * address) transaction. 1949 */ 1950 msg.request &= ~DP_AUX_I2C_MOT; 1951 msg.buffer = NULL; 1952 msg.size = 0; 1953 (void)drm_dp_i2c_do_msg(aux, &msg); 1954 1955 return err; 1956 } 1957 1958 static const struct i2c_algorithm drm_dp_i2c_algo = { 1959 .functionality = drm_dp_i2c_functionality, 1960 .master_xfer = drm_dp_i2c_xfer, 1961 }; 1962 1963 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c) 1964 { 1965 return container_of(i2c, struct drm_dp_aux, ddc); 1966 } 1967 1968 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags) 1969 { 1970 mutex_lock(&i2c_to_aux(i2c)->hw_mutex); 1971 } 1972 1973 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags) 1974 { 1975 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex); 1976 } 1977 1978 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags) 1979 { 1980 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex); 1981 } 1982 1983 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = { 1984 .lock_bus = lock_bus, 1985 .trylock_bus = trylock_bus, 1986 .unlock_bus = unlock_bus, 1987 }; 1988 1989 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc) 1990 { 1991 u8 buf, count; 1992 int ret; 1993 1994 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 1995 if (ret < 0) 1996 return ret; 1997 1998 WARN_ON(!(buf & DP_TEST_SINK_START)); 1999 2000 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf); 2001 if (ret < 0) 2002 return ret; 2003 2004 count = buf & DP_TEST_COUNT_MASK; 2005 if (count == aux->crc_count) 2006 return -EAGAIN; /* No CRC yet */ 2007 2008 aux->crc_count = count; 2009 2010 /* 2011 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes 2012 * per component (RGB or CrYCb). 2013 */ 2014 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6); 2015 if (ret < 0) 2016 return ret; 2017 2018 return 0; 2019 } 2020 2021 static void drm_dp_aux_crc_work(struct work_struct *work) 2022 { 2023 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux, 2024 crc_work); 2025 struct drm_crtc *crtc; 2026 u8 crc_bytes[6]; 2027 uint32_t crcs[3]; 2028 int ret; 2029 2030 if (WARN_ON(!aux->crtc)) 2031 return; 2032 2033 crtc = aux->crtc; 2034 while (crtc->crc.opened) { 2035 drm_crtc_wait_one_vblank(crtc); 2036 if (!crtc->crc.opened) 2037 break; 2038 2039 ret = drm_dp_aux_get_crc(aux, crc_bytes); 2040 if (ret == -EAGAIN) { 2041 usleep_range(1000, 2000); 2042 ret = drm_dp_aux_get_crc(aux, crc_bytes); 2043 } 2044 2045 if (ret == -EAGAIN) { 2046 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n", 2047 aux->name, ret); 2048 continue; 2049 } else if (ret) { 2050 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret); 2051 continue; 2052 } 2053 2054 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8; 2055 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8; 2056 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8; 2057 drm_crtc_add_crc_entry(crtc, false, 0, crcs); 2058 } 2059 } 2060 2061 /** 2062 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel 2063 * @aux: DisplayPort AUX channel 2064 * 2065 * Used for remote aux channel in general. Merely initialize the crc work 2066 * struct. 2067 */ 2068 void drm_dp_remote_aux_init(struct drm_dp_aux *aux) 2069 { 2070 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 2071 } 2072 EXPORT_SYMBOL(drm_dp_remote_aux_init); 2073 2074 /** 2075 * drm_dp_aux_init() - minimally initialise an aux channel 2076 * @aux: DisplayPort AUX channel 2077 * 2078 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with 2079 * the outside world, call drm_dp_aux_init() first. For drivers which are 2080 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a 2081 * &drm_connector), you must still call drm_dp_aux_register() once the connector 2082 * has been registered to allow userspace access to the auxiliary DP channel. 2083 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as 2084 * early as possible so that the &drm_device that corresponds to the AUX adapter 2085 * may be mentioned in debugging output from the DRM DP helpers. 2086 * 2087 * For devices which use a separate platform device for their AUX adapters, this 2088 * may be called as early as required by the driver. 2089 * 2090 */ 2091 void drm_dp_aux_init(struct drm_dp_aux *aux) 2092 { 2093 mutex_init(&aux->hw_mutex); 2094 mutex_init(&aux->cec.lock); 2095 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work); 2096 2097 aux->ddc.algo = &drm_dp_i2c_algo; 2098 aux->ddc.algo_data = aux; 2099 aux->ddc.retries = 3; 2100 2101 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops; 2102 } 2103 EXPORT_SYMBOL(drm_dp_aux_init); 2104 2105 /** 2106 * drm_dp_aux_register() - initialise and register aux channel 2107 * @aux: DisplayPort AUX channel 2108 * 2109 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This 2110 * should only be called once the parent of @aux, &drm_dp_aux.dev, is 2111 * initialized. For devices which are grandparents of their AUX channels, 2112 * &drm_dp_aux.dev will typically be the &drm_connector &device which 2113 * corresponds to @aux. For these devices, it's advised to call 2114 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to 2115 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister. 2116 * Functions which don't follow this will likely Oops when 2117 * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled. 2118 * 2119 * For devices where the AUX channel is a device that exists independently of 2120 * the &drm_device that uses it, such as SoCs and bridge devices, it is 2121 * recommended to call drm_dp_aux_register() after a &drm_device has been 2122 * assigned to &drm_dp_aux.drm_dev, and likewise to call 2123 * drm_dp_aux_unregister() once the &drm_device should no longer be associated 2124 * with the AUX channel (e.g. on bridge detach). 2125 * 2126 * Drivers which need to use the aux channel before either of the two points 2127 * mentioned above need to call drm_dp_aux_init() in order to use the AUX 2128 * channel before registration. 2129 * 2130 * Returns 0 on success or a negative error code on failure. 2131 */ 2132 int drm_dp_aux_register(struct drm_dp_aux *aux) 2133 { 2134 int ret; 2135 2136 WARN_ON_ONCE(!aux->drm_dev); 2137 2138 if (!aux->ddc.algo) 2139 drm_dp_aux_init(aux); 2140 2141 aux->ddc.owner = THIS_MODULE; 2142 aux->ddc.dev.parent = aux->dev; 2143 2144 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev), 2145 sizeof(aux->ddc.name)); 2146 2147 ret = drm_dp_aux_register_devnode(aux); 2148 if (ret) 2149 return ret; 2150 2151 ret = i2c_add_adapter(&aux->ddc); 2152 if (ret) { 2153 drm_dp_aux_unregister_devnode(aux); 2154 return ret; 2155 } 2156 2157 return 0; 2158 } 2159 EXPORT_SYMBOL(drm_dp_aux_register); 2160 2161 /** 2162 * drm_dp_aux_unregister() - unregister an AUX adapter 2163 * @aux: DisplayPort AUX channel 2164 */ 2165 void drm_dp_aux_unregister(struct drm_dp_aux *aux) 2166 { 2167 drm_dp_aux_unregister_devnode(aux); 2168 i2c_del_adapter(&aux->ddc); 2169 } 2170 EXPORT_SYMBOL(drm_dp_aux_unregister); 2171 2172 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x) 2173 2174 /** 2175 * drm_dp_psr_setup_time() - PSR setup in time usec 2176 * @psr_cap: PSR capabilities from DPCD 2177 * 2178 * Returns: 2179 * PSR setup time for the panel in microseconds, negative 2180 * error code on failure. 2181 */ 2182 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE]) 2183 { 2184 static const u16 psr_setup_time_us[] = { 2185 PSR_SETUP_TIME(330), 2186 PSR_SETUP_TIME(275), 2187 PSR_SETUP_TIME(220), 2188 PSR_SETUP_TIME(165), 2189 PSR_SETUP_TIME(110), 2190 PSR_SETUP_TIME(55), 2191 PSR_SETUP_TIME(0), 2192 }; 2193 int i; 2194 2195 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT; 2196 if (i >= ARRAY_SIZE(psr_setup_time_us)) 2197 return -EINVAL; 2198 2199 return psr_setup_time_us[i]; 2200 } 2201 EXPORT_SYMBOL(drm_dp_psr_setup_time); 2202 2203 #undef PSR_SETUP_TIME 2204 2205 /** 2206 * drm_dp_start_crc() - start capture of frame CRCs 2207 * @aux: DisplayPort AUX channel 2208 * @crtc: CRTC displaying the frames whose CRCs are to be captured 2209 * 2210 * Returns 0 on success or a negative error code on failure. 2211 */ 2212 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc) 2213 { 2214 u8 buf; 2215 int ret; 2216 2217 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 2218 if (ret < 0) 2219 return ret; 2220 2221 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START); 2222 if (ret < 0) 2223 return ret; 2224 2225 aux->crc_count = 0; 2226 aux->crtc = crtc; 2227 schedule_work(&aux->crc_work); 2228 2229 return 0; 2230 } 2231 EXPORT_SYMBOL(drm_dp_start_crc); 2232 2233 /** 2234 * drm_dp_stop_crc() - stop capture of frame CRCs 2235 * @aux: DisplayPort AUX channel 2236 * 2237 * Returns 0 on success or a negative error code on failure. 2238 */ 2239 int drm_dp_stop_crc(struct drm_dp_aux *aux) 2240 { 2241 u8 buf; 2242 int ret; 2243 2244 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf); 2245 if (ret < 0) 2246 return ret; 2247 2248 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START); 2249 if (ret < 0) 2250 return ret; 2251 2252 flush_work(&aux->crc_work); 2253 aux->crtc = NULL; 2254 2255 return 0; 2256 } 2257 EXPORT_SYMBOL(drm_dp_stop_crc); 2258 2259 struct dpcd_quirk { 2260 u8 oui[3]; 2261 u8 device_id[6]; 2262 bool is_branch; 2263 u32 quirks; 2264 }; 2265 2266 #define OUI(first, second, third) { (first), (second), (third) } 2267 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \ 2268 { (first), (second), (third), (fourth), (fifth), (sixth) } 2269 2270 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0) 2271 2272 static const struct dpcd_quirk dpcd_quirk_list[] = { 2273 /* Analogix 7737 needs reduced M and N at HBR2 link rates */ 2274 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 2275 /* LG LP140WF6-SPM1 eDP panel */ 2276 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) }, 2277 /* Apple panels need some additional handling to support PSR */ 2278 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) }, 2279 /* CH7511 seems to leave SINK_COUNT zeroed */ 2280 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) }, 2281 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */ 2282 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) }, 2283 /* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */ 2284 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) }, 2285 /* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */ 2286 { OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) }, 2287 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */ 2288 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) }, 2289 }; 2290 2291 #undef OUI 2292 2293 /* 2294 * Get a bit mask of DPCD quirks for the sink/branch device identified by 2295 * ident. The quirk data is shared but it's up to the drivers to act on the 2296 * data. 2297 * 2298 * For now, only the OUI (first three bytes) is used, but this may be extended 2299 * to device identification string and hardware/firmware revisions later. 2300 */ 2301 static u32 2302 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch) 2303 { 2304 const struct dpcd_quirk *quirk; 2305 u32 quirks = 0; 2306 int i; 2307 u8 any_device[] = DEVICE_ID_ANY; 2308 2309 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) { 2310 quirk = &dpcd_quirk_list[i]; 2311 2312 if (quirk->is_branch != is_branch) 2313 continue; 2314 2315 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0) 2316 continue; 2317 2318 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 && 2319 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0) 2320 continue; 2321 2322 quirks |= quirk->quirks; 2323 } 2324 2325 return quirks; 2326 } 2327 2328 #undef DEVICE_ID_ANY 2329 #undef DEVICE_ID 2330 2331 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset, 2332 struct drm_dp_dpcd_ident *ident) 2333 { 2334 int ret; 2335 2336 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident)); 2337 2338 return ret < 0 ? ret : 0; 2339 } 2340 2341 static void drm_dp_dump_desc(struct drm_dp_aux *aux, 2342 const char *device_name, const struct drm_dp_desc *desc) 2343 { 2344 const struct drm_dp_dpcd_ident *ident = &desc->ident; 2345 2346 drm_dbg_kms(aux->drm_dev, 2347 "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n", 2348 aux->name, device_name, 2349 (int)sizeof(ident->oui), ident->oui, 2350 (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id, 2351 ident->hw_rev >> 4, ident->hw_rev & 0xf, 2352 ident->sw_major_rev, ident->sw_minor_rev, 2353 desc->quirks); 2354 } 2355 2356 /** 2357 * drm_dp_read_desc - read sink/branch descriptor from DPCD 2358 * @aux: DisplayPort AUX channel 2359 * @desc: Device descriptor to fill from DPCD 2360 * @is_branch: true for branch devices, false for sink devices 2361 * 2362 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the 2363 * identification. 2364 * 2365 * Returns 0 on success or a negative error code on failure. 2366 */ 2367 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc, 2368 bool is_branch) 2369 { 2370 struct drm_dp_dpcd_ident *ident = &desc->ident; 2371 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI; 2372 int ret; 2373 2374 ret = drm_dp_read_ident(aux, offset, ident); 2375 if (ret < 0) 2376 return ret; 2377 2378 desc->quirks = drm_dp_get_quirks(ident, is_branch); 2379 2380 drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc); 2381 2382 return 0; 2383 } 2384 EXPORT_SYMBOL(drm_dp_read_desc); 2385 2386 /** 2387 * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY 2388 * @aux: DisplayPort AUX channel 2389 * @dp_phy: LTTPR PHY instance 2390 * 2391 * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message 2392 * with its details to dmesg. 2393 * 2394 * Returns 0 on success or a negative error code on failure. 2395 */ 2396 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy) 2397 { 2398 struct drm_dp_desc desc = {}; 2399 int ret; 2400 2401 if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT)) 2402 return -EINVAL; 2403 2404 ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident); 2405 if (ret < 0) 2406 return ret; 2407 2408 drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc); 2409 2410 return 0; 2411 } 2412 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc); 2413 2414 /** 2415 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment 2416 * @dsc_dpcd: DSC capabilities from DPCD 2417 * 2418 * Returns the bpp precision supported by the DP sink. 2419 */ 2420 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 2421 { 2422 u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT]; 2423 2424 switch (bpp_increment_dpcd) { 2425 case DP_DSC_BITS_PER_PIXEL_1_16: 2426 return 16; 2427 case DP_DSC_BITS_PER_PIXEL_1_8: 2428 return 8; 2429 case DP_DSC_BITS_PER_PIXEL_1_4: 2430 return 4; 2431 case DP_DSC_BITS_PER_PIXEL_1_2: 2432 return 2; 2433 case DP_DSC_BITS_PER_PIXEL_1_1: 2434 return 1; 2435 } 2436 2437 return 0; 2438 } 2439 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr); 2440 2441 /** 2442 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count 2443 * supported by the DSC sink. 2444 * @dsc_dpcd: DSC capabilities from DPCD 2445 * @is_edp: true if its eDP, false for DP 2446 * 2447 * Read the slice capabilities DPCD register from DSC sink to get 2448 * the maximum slice count supported. This is used to populate 2449 * the DSC parameters in the &struct drm_dsc_config by the driver. 2450 * Driver creates an infoframe using these parameters to populate 2451 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2452 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2453 * 2454 * Returns: 2455 * Maximum slice count supported by DSC sink or 0 its invalid 2456 */ 2457 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 2458 bool is_edp) 2459 { 2460 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT]; 2461 2462 if (is_edp) { 2463 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */ 2464 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 2465 return 4; 2466 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 2467 return 2; 2468 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 2469 return 1; 2470 } else { 2471 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */ 2472 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT]; 2473 2474 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK) 2475 return 24; 2476 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK) 2477 return 20; 2478 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK) 2479 return 16; 2480 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK) 2481 return 12; 2482 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK) 2483 return 10; 2484 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK) 2485 return 8; 2486 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK) 2487 return 6; 2488 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK) 2489 return 4; 2490 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK) 2491 return 2; 2492 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK) 2493 return 1; 2494 } 2495 2496 return 0; 2497 } 2498 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count); 2499 2500 /** 2501 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits 2502 * @dsc_dpcd: DSC capabilities from DPCD 2503 * 2504 * Read the DSC DPCD register to parse the line buffer depth in bits which is 2505 * number of bits of precision within the decoder line buffer supported by 2506 * the DSC sink. This is used to populate the DSC parameters in the 2507 * &struct drm_dsc_config by the driver. 2508 * Driver creates an infoframe using these parameters to populate 2509 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2510 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2511 * 2512 * Returns: 2513 * Line buffer depth supported by DSC panel or 0 its invalid 2514 */ 2515 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]) 2516 { 2517 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT]; 2518 2519 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) { 2520 case DP_DSC_LINE_BUF_BIT_DEPTH_9: 2521 return 9; 2522 case DP_DSC_LINE_BUF_BIT_DEPTH_10: 2523 return 10; 2524 case DP_DSC_LINE_BUF_BIT_DEPTH_11: 2525 return 11; 2526 case DP_DSC_LINE_BUF_BIT_DEPTH_12: 2527 return 12; 2528 case DP_DSC_LINE_BUF_BIT_DEPTH_13: 2529 return 13; 2530 case DP_DSC_LINE_BUF_BIT_DEPTH_14: 2531 return 14; 2532 case DP_DSC_LINE_BUF_BIT_DEPTH_15: 2533 return 15; 2534 case DP_DSC_LINE_BUF_BIT_DEPTH_16: 2535 return 16; 2536 case DP_DSC_LINE_BUF_BIT_DEPTH_8: 2537 return 8; 2538 } 2539 2540 return 0; 2541 } 2542 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth); 2543 2544 /** 2545 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component 2546 * values supported by the DSC sink. 2547 * @dsc_dpcd: DSC capabilities from DPCD 2548 * @dsc_bpc: An array to be filled by this helper with supported 2549 * input bpcs. 2550 * 2551 * Read the DSC DPCD from the sink device to parse the supported bits per 2552 * component values. This is used to populate the DSC parameters 2553 * in the &struct drm_dsc_config by the driver. 2554 * Driver creates an infoframe using these parameters to populate 2555 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC 2556 * infoframe using the helper function drm_dsc_pps_infoframe_pack() 2557 * 2558 * Returns: 2559 * Number of input BPC values parsed from the DPCD 2560 */ 2561 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE], 2562 u8 dsc_bpc[3]) 2563 { 2564 int num_bpc = 0; 2565 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT]; 2566 2567 if (!drm_dp_sink_supports_dsc(dsc_dpcd)) 2568 return 0; 2569 2570 if (color_depth & DP_DSC_12_BPC) 2571 dsc_bpc[num_bpc++] = 12; 2572 if (color_depth & DP_DSC_10_BPC) 2573 dsc_bpc[num_bpc++] = 10; 2574 2575 /* A DP DSC Sink device shall support 8 bpc. */ 2576 dsc_bpc[num_bpc++] = 8; 2577 2578 return num_bpc; 2579 } 2580 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs); 2581 2582 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux, 2583 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address, 2584 u8 *buf, int buf_size) 2585 { 2586 /* 2587 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns 2588 * corrupted values when reading from the 0xF0000- range with a block 2589 * size bigger than 1. 2590 */ 2591 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size; 2592 int offset; 2593 int ret; 2594 2595 for (offset = 0; offset < buf_size; offset += block_size) { 2596 ret = drm_dp_dpcd_read(aux, 2597 address + offset, 2598 &buf[offset], block_size); 2599 if (ret < 0) 2600 return ret; 2601 2602 WARN_ON(ret != block_size); 2603 } 2604 2605 return 0; 2606 } 2607 2608 /** 2609 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities 2610 * @aux: DisplayPort AUX channel 2611 * @dpcd: DisplayPort configuration data 2612 * @caps: buffer to return the capability info in 2613 * 2614 * Read capabilities common to all LTTPRs. 2615 * 2616 * Returns 0 on success or a negative error code on failure. 2617 */ 2618 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux, 2619 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 2620 u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2621 { 2622 return drm_dp_read_lttpr_regs(aux, dpcd, 2623 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV, 2624 caps, DP_LTTPR_COMMON_CAP_SIZE); 2625 } 2626 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps); 2627 2628 /** 2629 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY 2630 * @aux: DisplayPort AUX channel 2631 * @dpcd: DisplayPort configuration data 2632 * @dp_phy: LTTPR PHY to read the capabilities for 2633 * @caps: buffer to return the capability info in 2634 * 2635 * Read the capabilities for the given LTTPR PHY. 2636 * 2637 * Returns 0 on success or a negative error code on failure. 2638 */ 2639 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux, 2640 const u8 dpcd[DP_RECEIVER_CAP_SIZE], 2641 enum drm_dp_phy dp_phy, 2642 u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 2643 { 2644 return drm_dp_read_lttpr_regs(aux, dpcd, 2645 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy), 2646 caps, DP_LTTPR_PHY_CAP_SIZE); 2647 } 2648 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps); 2649 2650 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r) 2651 { 2652 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; 2653 } 2654 2655 /** 2656 * drm_dp_lttpr_count - get the number of detected LTTPRs 2657 * @caps: LTTPR common capabilities 2658 * 2659 * Get the number of detected LTTPRs from the LTTPR common capabilities info. 2660 * 2661 * Returns: 2662 * -ERANGE if more than supported number (8) of LTTPRs are detected 2663 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value 2664 * otherwise the number of detected LTTPRs 2665 */ 2666 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2667 { 2668 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT); 2669 2670 switch (hweight8(count)) { 2671 case 0: 2672 return 0; 2673 case 1: 2674 return 8 - ilog2(count); 2675 case 8: 2676 return -ERANGE; 2677 default: 2678 return -EINVAL; 2679 } 2680 } 2681 EXPORT_SYMBOL(drm_dp_lttpr_count); 2682 2683 /** 2684 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs 2685 * @caps: LTTPR common capabilities 2686 * 2687 * Returns the maximum link rate supported by all detected LTTPRs. 2688 */ 2689 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2690 { 2691 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER); 2692 2693 return drm_dp_bw_code_to_link_rate(rate); 2694 } 2695 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate); 2696 2697 /** 2698 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs 2699 * @caps: LTTPR common capabilities 2700 * 2701 * Returns the maximum lane count supported by all detected LTTPRs. 2702 */ 2703 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE]) 2704 { 2705 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER); 2706 2707 return max_lanes & DP_MAX_LANE_COUNT_MASK; 2708 } 2709 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count); 2710 2711 /** 2712 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support 2713 * @caps: LTTPR PHY capabilities 2714 * 2715 * Returns true if the @caps for an LTTPR TX PHY indicate support for 2716 * voltage swing level 3. 2717 */ 2718 bool 2719 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 2720 { 2721 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); 2722 2723 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED; 2724 } 2725 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported); 2726 2727 /** 2728 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support 2729 * @caps: LTTPR PHY capabilities 2730 * 2731 * Returns true if the @caps for an LTTPR TX PHY indicate support for 2732 * pre-emphasis level 3. 2733 */ 2734 bool 2735 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE]) 2736 { 2737 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1); 2738 2739 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED; 2740 } 2741 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported); 2742 2743 /** 2744 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink. 2745 * @aux: DisplayPort AUX channel 2746 * @data: DP phy compliance test parameters. 2747 * 2748 * Returns 0 on success or a negative error code on failure. 2749 */ 2750 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux, 2751 struct drm_dp_phy_test_params *data) 2752 { 2753 int err; 2754 u8 rate, lanes; 2755 2756 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate); 2757 if (err < 0) 2758 return err; 2759 data->link_rate = drm_dp_bw_code_to_link_rate(rate); 2760 2761 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes); 2762 if (err < 0) 2763 return err; 2764 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK; 2765 2766 if (lanes & DP_ENHANCED_FRAME_CAP) 2767 data->enhanced_frame_cap = true; 2768 2769 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern); 2770 if (err < 0) 2771 return err; 2772 2773 switch (data->phy_pattern) { 2774 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: 2775 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0, 2776 &data->custom80, sizeof(data->custom80)); 2777 if (err < 0) 2778 return err; 2779 2780 break; 2781 case DP_PHY_TEST_PATTERN_CP2520: 2782 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET, 2783 &data->hbr2_reset, 2784 sizeof(data->hbr2_reset)); 2785 if (err < 0) 2786 return err; 2787 } 2788 2789 return 0; 2790 } 2791 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern); 2792 2793 /** 2794 * drm_dp_set_phy_test_pattern() - set the pattern to the sink. 2795 * @aux: DisplayPort AUX channel 2796 * @data: DP phy compliance test parameters. 2797 * @dp_rev: DP revision to use for compliance testing 2798 * 2799 * Returns 0 on success or a negative error code on failure. 2800 */ 2801 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux, 2802 struct drm_dp_phy_test_params *data, u8 dp_rev) 2803 { 2804 int err, i; 2805 u8 test_pattern; 2806 2807 test_pattern = data->phy_pattern; 2808 if (dp_rev < 0x12) { 2809 test_pattern = (test_pattern << 2) & 2810 DP_LINK_QUAL_PATTERN_11_MASK; 2811 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, 2812 test_pattern); 2813 if (err < 0) 2814 return err; 2815 } else { 2816 for (i = 0; i < data->num_lanes; i++) { 2817 err = drm_dp_dpcd_writeb(aux, 2818 DP_LINK_QUAL_LANE0_SET + i, 2819 test_pattern); 2820 if (err < 0) 2821 return err; 2822 } 2823 } 2824 2825 return 0; 2826 } 2827 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern); 2828 2829 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat) 2830 { 2831 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) 2832 return "Invalid"; 2833 2834 switch (pixelformat) { 2835 case DP_PIXELFORMAT_RGB: 2836 return "RGB"; 2837 case DP_PIXELFORMAT_YUV444: 2838 return "YUV444"; 2839 case DP_PIXELFORMAT_YUV422: 2840 return "YUV422"; 2841 case DP_PIXELFORMAT_YUV420: 2842 return "YUV420"; 2843 case DP_PIXELFORMAT_Y_ONLY: 2844 return "Y_ONLY"; 2845 case DP_PIXELFORMAT_RAW: 2846 return "RAW"; 2847 default: 2848 return "Reserved"; 2849 } 2850 } 2851 2852 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat, 2853 enum dp_colorimetry colorimetry) 2854 { 2855 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED) 2856 return "Invalid"; 2857 2858 switch (colorimetry) { 2859 case DP_COLORIMETRY_DEFAULT: 2860 switch (pixelformat) { 2861 case DP_PIXELFORMAT_RGB: 2862 return "sRGB"; 2863 case DP_PIXELFORMAT_YUV444: 2864 case DP_PIXELFORMAT_YUV422: 2865 case DP_PIXELFORMAT_YUV420: 2866 return "BT.601"; 2867 case DP_PIXELFORMAT_Y_ONLY: 2868 return "DICOM PS3.14"; 2869 case DP_PIXELFORMAT_RAW: 2870 return "Custom Color Profile"; 2871 default: 2872 return "Reserved"; 2873 } 2874 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */ 2875 switch (pixelformat) { 2876 case DP_PIXELFORMAT_RGB: 2877 return "Wide Fixed"; 2878 case DP_PIXELFORMAT_YUV444: 2879 case DP_PIXELFORMAT_YUV422: 2880 case DP_PIXELFORMAT_YUV420: 2881 return "BT.709"; 2882 default: 2883 return "Reserved"; 2884 } 2885 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */ 2886 switch (pixelformat) { 2887 case DP_PIXELFORMAT_RGB: 2888 return "Wide Float"; 2889 case DP_PIXELFORMAT_YUV444: 2890 case DP_PIXELFORMAT_YUV422: 2891 case DP_PIXELFORMAT_YUV420: 2892 return "xvYCC 601"; 2893 default: 2894 return "Reserved"; 2895 } 2896 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */ 2897 switch (pixelformat) { 2898 case DP_PIXELFORMAT_RGB: 2899 return "OpRGB"; 2900 case DP_PIXELFORMAT_YUV444: 2901 case DP_PIXELFORMAT_YUV422: 2902 case DP_PIXELFORMAT_YUV420: 2903 return "xvYCC 709"; 2904 default: 2905 return "Reserved"; 2906 } 2907 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */ 2908 switch (pixelformat) { 2909 case DP_PIXELFORMAT_RGB: 2910 return "DCI-P3"; 2911 case DP_PIXELFORMAT_YUV444: 2912 case DP_PIXELFORMAT_YUV422: 2913 case DP_PIXELFORMAT_YUV420: 2914 return "sYCC 601"; 2915 default: 2916 return "Reserved"; 2917 } 2918 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */ 2919 switch (pixelformat) { 2920 case DP_PIXELFORMAT_RGB: 2921 return "Custom Profile"; 2922 case DP_PIXELFORMAT_YUV444: 2923 case DP_PIXELFORMAT_YUV422: 2924 case DP_PIXELFORMAT_YUV420: 2925 return "OpYCC 601"; 2926 default: 2927 return "Reserved"; 2928 } 2929 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */ 2930 switch (pixelformat) { 2931 case DP_PIXELFORMAT_RGB: 2932 return "BT.2020 RGB"; 2933 case DP_PIXELFORMAT_YUV444: 2934 case DP_PIXELFORMAT_YUV422: 2935 case DP_PIXELFORMAT_YUV420: 2936 return "BT.2020 CYCC"; 2937 default: 2938 return "Reserved"; 2939 } 2940 case DP_COLORIMETRY_BT2020_YCC: 2941 switch (pixelformat) { 2942 case DP_PIXELFORMAT_YUV444: 2943 case DP_PIXELFORMAT_YUV422: 2944 case DP_PIXELFORMAT_YUV420: 2945 return "BT.2020 YCC"; 2946 default: 2947 return "Reserved"; 2948 } 2949 default: 2950 return "Invalid"; 2951 } 2952 } 2953 2954 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range) 2955 { 2956 switch (dynamic_range) { 2957 case DP_DYNAMIC_RANGE_VESA: 2958 return "VESA range"; 2959 case DP_DYNAMIC_RANGE_CTA: 2960 return "CTA range"; 2961 default: 2962 return "Invalid"; 2963 } 2964 } 2965 2966 static const char *dp_content_type_get_name(enum dp_content_type content_type) 2967 { 2968 switch (content_type) { 2969 case DP_CONTENT_TYPE_NOT_DEFINED: 2970 return "Not defined"; 2971 case DP_CONTENT_TYPE_GRAPHICS: 2972 return "Graphics"; 2973 case DP_CONTENT_TYPE_PHOTO: 2974 return "Photo"; 2975 case DP_CONTENT_TYPE_VIDEO: 2976 return "Video"; 2977 case DP_CONTENT_TYPE_GAME: 2978 return "Game"; 2979 default: 2980 return "Reserved"; 2981 } 2982 } 2983 2984 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc) 2985 { 2986 drm_printf(p, "DP SDP: VSC, revision %u, length %u\n", 2987 vsc->revision, vsc->length); 2988 drm_printf(p, " pixelformat: %s\n", 2989 dp_pixelformat_get_name(vsc->pixelformat)); 2990 drm_printf(p, " colorimetry: %s\n", 2991 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry)); 2992 drm_printf(p, " bpc: %u\n", vsc->bpc); 2993 drm_printf(p, " dynamic range: %s\n", 2994 dp_dynamic_range_get_name(vsc->dynamic_range)); 2995 drm_printf(p, " content type: %s\n", 2996 dp_content_type_get_name(vsc->content_type)); 2997 } 2998 EXPORT_SYMBOL(drm_dp_vsc_sdp_log); 2999 3000 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp) 3001 { 3002 drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n", 3003 as_sdp->revision, as_sdp->length); 3004 drm_printf(p, " vtotal: %d\n", as_sdp->vtotal); 3005 drm_printf(p, " target_rr: %d\n", as_sdp->target_rr); 3006 drm_printf(p, " duration_incr_ms: %d\n", as_sdp->duration_incr_ms); 3007 drm_printf(p, " duration_decr_ms: %d\n", as_sdp->duration_decr_ms); 3008 drm_printf(p, " operation_mode: %d\n", as_sdp->mode); 3009 } 3010 EXPORT_SYMBOL(drm_dp_as_sdp_log); 3011 3012 /** 3013 * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported 3014 * @aux: DisplayPort AUX channel 3015 * @dpcd: DisplayPort configuration data 3016 * 3017 * Returns true if adaptive sync sdp is supported, else returns false 3018 */ 3019 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3020 { 3021 u8 rx_feature; 3022 3023 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13) 3024 return false; 3025 3026 if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1, 3027 &rx_feature) != 1) { 3028 drm_dbg_dp(aux->drm_dev, 3029 "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n"); 3030 return false; 3031 } 3032 3033 return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED); 3034 } 3035 EXPORT_SYMBOL(drm_dp_as_sdp_supported); 3036 3037 /** 3038 * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported 3039 * @aux: DisplayPort AUX channel 3040 * @dpcd: DisplayPort configuration data 3041 * 3042 * Returns true if vsc sdp is supported, else returns false 3043 */ 3044 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE]) 3045 { 3046 u8 rx_feature; 3047 3048 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13) 3049 return false; 3050 3051 if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) { 3052 drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n"); 3053 return false; 3054 } 3055 3056 return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED); 3057 } 3058 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported); 3059 3060 /** 3061 * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp 3062 * @vsc: vsc sdp initialized according to its purpose as defined in 3063 * table 2-118 - table 2-120 in DP 1.4a specification 3064 * @sdp: valid handle to the generic dp_sdp which will be packed 3065 * 3066 * Returns length of sdp on success and error code on failure 3067 */ 3068 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc, 3069 struct dp_sdp *sdp) 3070 { 3071 size_t length = sizeof(struct dp_sdp); 3072 3073 memset(sdp, 0, sizeof(struct dp_sdp)); 3074 3075 /* 3076 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 3077 * VSC SDP Header Bytes 3078 */ 3079 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */ 3080 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */ 3081 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */ 3082 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */ 3083 3084 if (vsc->revision == 0x6) { 3085 sdp->db[0] = 1; 3086 sdp->db[3] = 1; 3087 } 3088 3089 /* 3090 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry 3091 * Format as per DP 1.4a spec and DP 2.0 respectively. 3092 */ 3093 if (!(vsc->revision == 0x5 || vsc->revision == 0x7)) 3094 goto out; 3095 3096 /* VSC SDP Payload for DB16 through DB18 */ 3097 /* Pixel Encoding and Colorimetry Formats */ 3098 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */ 3099 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */ 3100 3101 switch (vsc->bpc) { 3102 case 6: 3103 /* 6bpc: 0x0 */ 3104 break; 3105 case 8: 3106 sdp->db[17] = 0x1; /* DB17[3:0] */ 3107 break; 3108 case 10: 3109 sdp->db[17] = 0x2; 3110 break; 3111 case 12: 3112 sdp->db[17] = 0x3; 3113 break; 3114 case 16: 3115 sdp->db[17] = 0x4; 3116 break; 3117 default: 3118 WARN(1, "Missing case %d\n", vsc->bpc); 3119 return -EINVAL; 3120 } 3121 3122 /* Dynamic Range and Component Bit Depth */ 3123 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA) 3124 sdp->db[17] |= 0x80; /* DB17[7] */ 3125 3126 /* Content Type */ 3127 sdp->db[18] = vsc->content_type & 0x7; 3128 3129 out: 3130 return length; 3131 } 3132 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack); 3133 3134 /** 3135 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON 3136 * @dpcd: DisplayPort configuration data 3137 * @port_cap: port capabilities 3138 * 3139 * Returns maximum frl bandwidth supported by PCON in GBPS, 3140 * returns 0 if not supported. 3141 */ 3142 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE], 3143 const u8 port_cap[4]) 3144 { 3145 int bw; 3146 u8 buf; 3147 3148 buf = port_cap[2]; 3149 bw = buf & DP_PCON_MAX_FRL_BW; 3150 3151 switch (bw) { 3152 case DP_PCON_MAX_9GBPS: 3153 return 9; 3154 case DP_PCON_MAX_18GBPS: 3155 return 18; 3156 case DP_PCON_MAX_24GBPS: 3157 return 24; 3158 case DP_PCON_MAX_32GBPS: 3159 return 32; 3160 case DP_PCON_MAX_40GBPS: 3161 return 40; 3162 case DP_PCON_MAX_48GBPS: 3163 return 48; 3164 case DP_PCON_MAX_0GBPS: 3165 default: 3166 return 0; 3167 } 3168 3169 return 0; 3170 } 3171 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw); 3172 3173 /** 3174 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL. 3175 * @aux: DisplayPort AUX channel 3176 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY. 3177 * 3178 * Returns 0 if success, else returns negative error code. 3179 */ 3180 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd) 3181 { 3182 int ret; 3183 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE | 3184 DP_PCON_ENABLE_LINK_FRL_MODE; 3185 3186 if (enable_frl_ready_hpd) 3187 buf |= DP_PCON_ENABLE_HPD_READY; 3188 3189 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3190 3191 return ret; 3192 } 3193 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare); 3194 3195 /** 3196 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL 3197 * @aux: DisplayPort AUX channel 3198 * 3199 * Returns true if success, else returns false. 3200 */ 3201 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux) 3202 { 3203 int ret; 3204 u8 buf; 3205 3206 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf); 3207 if (ret < 0) 3208 return false; 3209 3210 if (buf & DP_PCON_FRL_READY) 3211 return true; 3212 3213 return false; 3214 } 3215 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready); 3216 3217 /** 3218 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1 3219 * @aux: DisplayPort AUX channel 3220 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink 3221 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential. 3222 * In Concurrent Mode, the FRL link bring up can be done along with 3223 * DP Link training. In Sequential mode, the FRL link bring up is done prior to 3224 * the DP Link training. 3225 * 3226 * Returns 0 if success, else returns negative error code. 3227 */ 3228 3229 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps, 3230 u8 frl_mode) 3231 { 3232 int ret; 3233 u8 buf; 3234 3235 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf); 3236 if (ret < 0) 3237 return ret; 3238 3239 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK) 3240 buf |= DP_PCON_ENABLE_CONCURRENT_LINK; 3241 else 3242 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK; 3243 3244 switch (max_frl_gbps) { 3245 case 9: 3246 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS; 3247 break; 3248 case 18: 3249 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS; 3250 break; 3251 case 24: 3252 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS; 3253 break; 3254 case 32: 3255 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS; 3256 break; 3257 case 40: 3258 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS; 3259 break; 3260 case 48: 3261 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS; 3262 break; 3263 case 0: 3264 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS; 3265 break; 3266 default: 3267 return -EINVAL; 3268 } 3269 3270 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3271 if (ret < 0) 3272 return ret; 3273 3274 return 0; 3275 } 3276 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1); 3277 3278 /** 3279 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2 3280 * @aux: DisplayPort AUX channel 3281 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink 3282 * @frl_type : FRL training type, can be Extended, or Normal. 3283 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask 3284 * starting from min, and stops when link training is successful. In Extended 3285 * FRL training, all frl bw selected in the mask are trained by the PCON. 3286 * 3287 * Returns 0 if success, else returns negative error code. 3288 */ 3289 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask, 3290 u8 frl_type) 3291 { 3292 int ret; 3293 u8 buf = max_frl_mask; 3294 3295 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED) 3296 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED; 3297 else 3298 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED; 3299 3300 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf); 3301 if (ret < 0) 3302 return ret; 3303 3304 return 0; 3305 } 3306 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2); 3307 3308 /** 3309 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration. 3310 * @aux: DisplayPort AUX channel 3311 * 3312 * Returns 0 if success, else returns negative error code. 3313 */ 3314 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux) 3315 { 3316 int ret; 3317 3318 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0); 3319 if (ret < 0) 3320 return ret; 3321 3322 return 0; 3323 } 3324 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config); 3325 3326 /** 3327 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL 3328 * @aux: DisplayPort AUX channel 3329 * 3330 * Returns 0 if success, else returns negative error code. 3331 */ 3332 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux) 3333 { 3334 int ret; 3335 u8 buf = 0; 3336 3337 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf); 3338 if (ret < 0) 3339 return ret; 3340 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) { 3341 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n", 3342 aux->name); 3343 return -EINVAL; 3344 } 3345 buf |= DP_PCON_ENABLE_HDMI_LINK; 3346 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); 3347 if (ret < 0) 3348 return ret; 3349 3350 return 0; 3351 } 3352 EXPORT_SYMBOL(drm_dp_pcon_frl_enable); 3353 3354 /** 3355 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active. 3356 * @aux: DisplayPort AUX channel 3357 * 3358 * Returns true if link is active else returns false. 3359 */ 3360 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux) 3361 { 3362 u8 buf; 3363 int ret; 3364 3365 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf); 3366 if (ret < 0) 3367 return false; 3368 3369 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE; 3370 } 3371 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active); 3372 3373 /** 3374 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE 3375 * @aux: DisplayPort AUX channel 3376 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration. 3377 * Valid only if the MODE returned is FRL. For Normal Link training mode 3378 * only 1 of the bits will be set, but in case of Extended mode, more than 3379 * one bits can be set. 3380 * 3381 * Returns the link mode : TMDS or FRL on success, else returns negative error 3382 * code. 3383 */ 3384 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask) 3385 { 3386 u8 buf; 3387 int mode; 3388 int ret; 3389 3390 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf); 3391 if (ret < 0) 3392 return ret; 3393 3394 mode = buf & DP_PCON_HDMI_LINK_MODE; 3395 3396 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode) 3397 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1; 3398 3399 return mode; 3400 } 3401 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode); 3402 3403 /** 3404 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane 3405 * during link failure between PCON and HDMI sink 3406 * @aux: DisplayPort AUX channel 3407 * @connector: DRM connector 3408 * code. 3409 **/ 3410 3411 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux, 3412 struct drm_connector *connector) 3413 { 3414 u8 buf, error_count; 3415 int i, num_error; 3416 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; 3417 3418 for (i = 0; i < hdmi->max_lanes; i++) { 3419 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0) 3420 return; 3421 3422 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK; 3423 switch (error_count) { 3424 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS: 3425 num_error = 100; 3426 break; 3427 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS: 3428 num_error = 10; 3429 break; 3430 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS: 3431 num_error = 3; 3432 break; 3433 default: 3434 num_error = 0; 3435 } 3436 3437 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d", 3438 aux->name, num_error, i); 3439 } 3440 } 3441 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count); 3442 3443 /* 3444 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2 3445 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3446 * 3447 * Returns true is PCON encoder is DSC 1.2 else returns false. 3448 */ 3449 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3450 { 3451 u8 buf; 3452 u8 major_v, minor_v; 3453 3454 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER]; 3455 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT; 3456 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT; 3457 3458 if (major_v == 1 && minor_v == 2) 3459 return true; 3460 3461 return false; 3462 } 3463 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2); 3464 3465 /* 3466 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder 3467 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3468 * 3469 * Returns maximum no. of slices supported by the PCON DSC Encoder. 3470 */ 3471 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3472 { 3473 u8 slice_cap1, slice_cap2; 3474 3475 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER]; 3476 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER]; 3477 3478 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC) 3479 return 24; 3480 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC) 3481 return 20; 3482 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC) 3483 return 16; 3484 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC) 3485 return 12; 3486 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC) 3487 return 10; 3488 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC) 3489 return 8; 3490 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC) 3491 return 6; 3492 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC) 3493 return 4; 3494 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC) 3495 return 2; 3496 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC) 3497 return 1; 3498 3499 return 0; 3500 } 3501 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices); 3502 3503 /* 3504 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder 3505 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3506 * 3507 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320. 3508 */ 3509 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3510 { 3511 u8 buf; 3512 3513 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER]; 3514 3515 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER; 3516 } 3517 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width); 3518 3519 /* 3520 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder 3521 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder 3522 * 3523 * Returns the bpp precision supported by the PCON encoder. 3524 */ 3525 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE]) 3526 { 3527 u8 buf; 3528 3529 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER]; 3530 3531 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) { 3532 case DP_PCON_DSC_ONE_16TH_BPP: 3533 return 16; 3534 case DP_PCON_DSC_ONE_8TH_BPP: 3535 return 8; 3536 case DP_PCON_DSC_ONE_4TH_BPP: 3537 return 4; 3538 case DP_PCON_DSC_ONE_HALF_BPP: 3539 return 2; 3540 case DP_PCON_DSC_ONE_BPP: 3541 return 1; 3542 } 3543 3544 return 0; 3545 } 3546 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr); 3547 3548 static 3549 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config) 3550 { 3551 u8 buf; 3552 int ret; 3553 3554 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf); 3555 if (ret < 0) 3556 return ret; 3557 3558 buf |= DP_PCON_ENABLE_DSC_ENCODER; 3559 3560 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) { 3561 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK; 3562 buf |= pps_buf_config << 2; 3563 } 3564 3565 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf); 3566 if (ret < 0) 3567 return ret; 3568 3569 return 0; 3570 } 3571 3572 /** 3573 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters 3574 * for DSC1.2 between PCON & HDMI2.1 sink 3575 * @aux: DisplayPort AUX channel 3576 * 3577 * Returns 0 on success, else returns negative error code. 3578 */ 3579 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux) 3580 { 3581 int ret; 3582 3583 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED); 3584 if (ret < 0) 3585 return ret; 3586 3587 return 0; 3588 } 3589 EXPORT_SYMBOL(drm_dp_pcon_pps_default); 3590 3591 /** 3592 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for 3593 * HDMI sink 3594 * @aux: DisplayPort AUX channel 3595 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON. 3596 * 3597 * Returns 0 on success, else returns negative error code. 3598 */ 3599 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128]) 3600 { 3601 int ret; 3602 3603 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128); 3604 if (ret < 0) 3605 return ret; 3606 3607 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER); 3608 if (ret < 0) 3609 return ret; 3610 3611 return 0; 3612 } 3613 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf); 3614 3615 /* 3616 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder 3617 * override registers 3618 * @aux: DisplayPort AUX channel 3619 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height, 3620 * bits_per_pixel. 3621 * 3622 * Returns 0 on success, else returns negative error code. 3623 */ 3624 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6]) 3625 { 3626 int ret; 3627 3628 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2); 3629 if (ret < 0) 3630 return ret; 3631 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2); 3632 if (ret < 0) 3633 return ret; 3634 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2); 3635 if (ret < 0) 3636 return ret; 3637 3638 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER); 3639 if (ret < 0) 3640 return ret; 3641 3642 return 0; 3643 } 3644 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param); 3645 3646 /* 3647 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr 3648 * @aux: displayPort AUX channel 3649 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable. 3650 * 3651 * Returns 0 on success, else returns negative error code. 3652 */ 3653 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc) 3654 { 3655 int ret; 3656 u8 buf; 3657 3658 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf); 3659 if (ret < 0) 3660 return ret; 3661 3662 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK) 3663 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK); 3664 else 3665 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK; 3666 3667 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf); 3668 if (ret < 0) 3669 return ret; 3670 3671 return 0; 3672 } 3673 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr); 3674 3675 /** 3676 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX 3677 * @aux: The DP AUX channel to use 3678 * @bl: Backlight capability info from drm_edp_backlight_init() 3679 * @level: The brightness level to set 3680 * 3681 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must 3682 * already have been enabled by the driver by calling drm_edp_backlight_enable(). 3683 * 3684 * Returns: %0 on success, negative error code on failure 3685 */ 3686 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3687 u16 level) 3688 { 3689 int ret; 3690 u8 buf[2] = { 0 }; 3691 3692 /* The panel uses the PWM for controlling brightness levels */ 3693 if (!bl->aux_set) 3694 return 0; 3695 3696 if (bl->lsb_reg_used) { 3697 buf[0] = (level & 0xff00) >> 8; 3698 buf[1] = (level & 0x00ff); 3699 } else { 3700 buf[0] = level; 3701 } 3702 3703 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf)); 3704 if (ret != sizeof(buf)) { 3705 drm_err(aux->drm_dev, 3706 "%s: Failed to write aux backlight level: %d\n", 3707 aux->name, ret); 3708 return ret < 0 ? ret : -EIO; 3709 } 3710 3711 return 0; 3712 } 3713 EXPORT_SYMBOL(drm_edp_backlight_set_level); 3714 3715 static int 3716 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3717 bool enable) 3718 { 3719 int ret; 3720 u8 buf; 3721 3722 /* This panel uses the EDP_BL_PWR GPIO for enablement */ 3723 if (!bl->aux_enable) 3724 return 0; 3725 3726 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf); 3727 if (ret != 1) { 3728 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n", 3729 aux->name, ret); 3730 return ret < 0 ? ret : -EIO; 3731 } 3732 if (enable) 3733 buf |= DP_EDP_BACKLIGHT_ENABLE; 3734 else 3735 buf &= ~DP_EDP_BACKLIGHT_ENABLE; 3736 3737 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf); 3738 if (ret != 1) { 3739 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n", 3740 aux->name, ret); 3741 return ret < 0 ? ret : -EIO; 3742 } 3743 3744 return 0; 3745 } 3746 3747 /** 3748 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD 3749 * @aux: The DP AUX channel to use 3750 * @bl: Backlight capability info from drm_edp_backlight_init() 3751 * @level: The initial backlight level to set via AUX, if there is one 3752 * 3753 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally 3754 * restoring any important backlight state such as the given backlight level, the brightness byte 3755 * count, backlight frequency, etc. 3756 * 3757 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require 3758 * that the driver handle enabling/disabling the panel through implementation-specific means using 3759 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false, 3760 * this function becomes a no-op, and the driver is expected to handle powering the panel on using 3761 * the EDP_BL_PWR GPIO. 3762 * 3763 * Returns: %0 on success, negative error code on failure. 3764 */ 3765 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl, 3766 const u16 level) 3767 { 3768 int ret; 3769 u8 dpcd_buf; 3770 3771 if (bl->aux_set) 3772 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD; 3773 else 3774 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM; 3775 3776 if (bl->pwmgen_bit_count) { 3777 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count); 3778 if (ret != 1) 3779 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n", 3780 aux->name, ret); 3781 } 3782 3783 if (bl->pwm_freq_pre_divider) { 3784 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider); 3785 if (ret != 1) 3786 drm_dbg_kms(aux->drm_dev, 3787 "%s: Failed to write aux backlight frequency: %d\n", 3788 aux->name, ret); 3789 else 3790 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE; 3791 } 3792 3793 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf); 3794 if (ret != 1) { 3795 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n", 3796 aux->name, ret); 3797 return ret < 0 ? ret : -EIO; 3798 } 3799 3800 ret = drm_edp_backlight_set_level(aux, bl, level); 3801 if (ret < 0) 3802 return ret; 3803 ret = drm_edp_backlight_set_enable(aux, bl, true); 3804 if (ret < 0) 3805 return ret; 3806 3807 return 0; 3808 } 3809 EXPORT_SYMBOL(drm_edp_backlight_enable); 3810 3811 /** 3812 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported 3813 * @aux: The DP AUX channel to use 3814 * @bl: Backlight capability info from drm_edp_backlight_init() 3815 * 3816 * This function handles disabling DPCD backlight controls on a panel over AUX. 3817 * 3818 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require 3819 * that the driver handle enabling/disabling the panel through implementation-specific means using 3820 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false, 3821 * this function becomes a no-op, and the driver is expected to handle powering the panel off using 3822 * the EDP_BL_PWR GPIO. 3823 * 3824 * Returns: %0 on success or no-op, negative error code on failure. 3825 */ 3826 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl) 3827 { 3828 int ret; 3829 3830 ret = drm_edp_backlight_set_enable(aux, bl, false); 3831 if (ret < 0) 3832 return ret; 3833 3834 return 0; 3835 } 3836 EXPORT_SYMBOL(drm_edp_backlight_disable); 3837 3838 static inline int 3839 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 3840 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE]) 3841 { 3842 int fxp, fxp_min, fxp_max, fxp_actual, f = 1; 3843 int ret; 3844 u8 pn, pn_min, pn_max; 3845 3846 if (!bl->aux_set) 3847 return 0; 3848 3849 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn); 3850 if (ret != 1) { 3851 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n", 3852 aux->name, ret); 3853 return -ENODEV; 3854 } 3855 3856 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 3857 bl->max = (1 << pn) - 1; 3858 if (!driver_pwm_freq_hz) 3859 return 0; 3860 3861 /* 3862 * Set PWM Frequency divider to match desired frequency provided by the driver. 3863 * The PWM Frequency is calculated as 27Mhz / (F x P). 3864 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the 3865 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h) 3866 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the 3867 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h) 3868 */ 3869 3870 /* Find desired value of (F x P) 3871 * Note that, if F x P is out of supported range, the maximum value or minimum value will 3872 * applied automatically. So no need to check that. 3873 */ 3874 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz); 3875 3876 /* Use highest possible value of Pn for more granularity of brightness adjustment while 3877 * satisfying the conditions below. 3878 * - Pn is in the range of Pn_min and Pn_max 3879 * - F is in the range of 1 and 255 3880 * - FxP is within 25% of desired value. 3881 * Note: 25% is arbitrary value and may need some tweak. 3882 */ 3883 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min); 3884 if (ret != 1) { 3885 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n", 3886 aux->name, ret); 3887 return 0; 3888 } 3889 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max); 3890 if (ret != 1) { 3891 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n", 3892 aux->name, ret); 3893 return 0; 3894 } 3895 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 3896 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK; 3897 3898 /* Ensure frequency is within 25% of desired value */ 3899 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4); 3900 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4); 3901 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) { 3902 drm_dbg_kms(aux->drm_dev, 3903 "%s: Driver defined backlight frequency (%d) out of range\n", 3904 aux->name, driver_pwm_freq_hz); 3905 return 0; 3906 } 3907 3908 for (pn = pn_max; pn >= pn_min; pn--) { 3909 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255); 3910 fxp_actual = f << pn; 3911 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max) 3912 break; 3913 } 3914 3915 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn); 3916 if (ret != 1) { 3917 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n", 3918 aux->name, ret); 3919 return 0; 3920 } 3921 bl->pwmgen_bit_count = pn; 3922 bl->max = (1 << pn) - 1; 3923 3924 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) { 3925 bl->pwm_freq_pre_divider = f; 3926 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n", 3927 aux->name, driver_pwm_freq_hz); 3928 } 3929 3930 return 0; 3931 } 3932 3933 static inline int 3934 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 3935 u8 *current_mode) 3936 { 3937 int ret; 3938 u8 buf[2]; 3939 u8 mode_reg; 3940 3941 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg); 3942 if (ret != 1) { 3943 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n", 3944 aux->name, ret); 3945 return ret < 0 ? ret : -EIO; 3946 } 3947 3948 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK); 3949 if (!bl->aux_set) 3950 return 0; 3951 3952 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) { 3953 int size = 1 + bl->lsb_reg_used; 3954 3955 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size); 3956 if (ret != size) { 3957 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n", 3958 aux->name, ret); 3959 return ret < 0 ? ret : -EIO; 3960 } 3961 3962 if (bl->lsb_reg_used) 3963 return (buf[0] << 8) | buf[1]; 3964 else 3965 return buf[0]; 3966 } 3967 3968 /* 3969 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and 3970 * the driver should assume max brightness 3971 */ 3972 return bl->max; 3973 } 3974 3975 /** 3976 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight 3977 * interface. 3978 * @aux: The DP aux device to use for probing 3979 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight 3980 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz 3981 * @edp_dpcd: A cached copy of the eDP DPCD 3982 * @current_level: Where to store the probed brightness level, if any 3983 * @current_mode: Where to store the currently set backlight control mode 3984 * 3985 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities, 3986 * along with also probing the current and maximum supported brightness levels. 3987 * 3988 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the 3989 * default frequency from the panel is used. 3990 * 3991 * Returns: %0 on success, negative error code on failure. 3992 */ 3993 int 3994 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl, 3995 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE], 3996 u16 *current_level, u8 *current_mode) 3997 { 3998 int ret; 3999 4000 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP) 4001 bl->aux_enable = true; 4002 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP) 4003 bl->aux_set = true; 4004 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT) 4005 bl->lsb_reg_used = true; 4006 4007 /* Sanity check caps */ 4008 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) { 4009 drm_dbg_kms(aux->drm_dev, 4010 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n", 4011 aux->name); 4012 return -EINVAL; 4013 } 4014 4015 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd); 4016 if (ret < 0) 4017 return ret; 4018 4019 ret = drm_edp_backlight_probe_state(aux, bl, current_mode); 4020 if (ret < 0) 4021 return ret; 4022 *current_level = ret; 4023 4024 drm_dbg_kms(aux->drm_dev, 4025 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n", 4026 aux->name, bl->aux_set, bl->aux_enable, *current_mode); 4027 if (bl->aux_set) { 4028 drm_dbg_kms(aux->drm_dev, 4029 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n", 4030 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider, 4031 bl->lsb_reg_used); 4032 } 4033 4034 return 0; 4035 } 4036 EXPORT_SYMBOL(drm_edp_backlight_init); 4037 4038 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \ 4039 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE)) 4040 4041 static int dp_aux_backlight_update_status(struct backlight_device *bd) 4042 { 4043 struct dp_aux_backlight *bl = bl_get_data(bd); 4044 u16 brightness = backlight_get_brightness(bd); 4045 int ret = 0; 4046 4047 if (!backlight_is_blank(bd)) { 4048 if (!bl->enabled) { 4049 drm_edp_backlight_enable(bl->aux, &bl->info, brightness); 4050 bl->enabled = true; 4051 return 0; 4052 } 4053 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness); 4054 } else { 4055 if (bl->enabled) { 4056 drm_edp_backlight_disable(bl->aux, &bl->info); 4057 bl->enabled = false; 4058 } 4059 } 4060 4061 return ret; 4062 } 4063 4064 static const struct backlight_ops dp_aux_bl_ops = { 4065 .update_status = dp_aux_backlight_update_status, 4066 }; 4067 4068 /** 4069 * drm_panel_dp_aux_backlight - create and use DP AUX backlight 4070 * @panel: DRM panel 4071 * @aux: The DP AUX channel to use 4072 * 4073 * Use this function to create and handle backlight if your panel 4074 * supports backlight control over DP AUX channel using DPCD 4075 * registers as per VESA's standard backlight control interface. 4076 * 4077 * When the panel is enabled backlight will be enabled after a 4078 * successful call to &drm_panel_funcs.enable() 4079 * 4080 * When the panel is disabled backlight will be disabled before the 4081 * call to &drm_panel_funcs.disable(). 4082 * 4083 * A typical implementation for a panel driver supporting backlight 4084 * control over DP AUX will call this function at probe time. 4085 * Backlight will then be handled transparently without requiring 4086 * any intervention from the driver. 4087 * 4088 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init(). 4089 * 4090 * Return: 0 on success or a negative error code on failure. 4091 */ 4092 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux) 4093 { 4094 struct dp_aux_backlight *bl; 4095 struct backlight_properties props = { 0 }; 4096 u16 current_level; 4097 u8 current_mode; 4098 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE]; 4099 int ret; 4100 4101 if (!panel || !panel->dev || !aux) 4102 return -EINVAL; 4103 4104 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd, 4105 EDP_DISPLAY_CTL_CAP_SIZE); 4106 if (ret < 0) 4107 return ret; 4108 4109 if (!drm_edp_backlight_supported(edp_dpcd)) { 4110 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n"); 4111 return 0; 4112 } 4113 4114 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL); 4115 if (!bl) 4116 return -ENOMEM; 4117 4118 bl->aux = aux; 4119 4120 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd, 4121 ¤t_level, ¤t_mode); 4122 if (ret < 0) 4123 return ret; 4124 4125 props.type = BACKLIGHT_RAW; 4126 props.brightness = current_level; 4127 props.max_brightness = bl->info.max; 4128 4129 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight", 4130 panel->dev, bl, 4131 &dp_aux_bl_ops, &props); 4132 if (IS_ERR(bl->base)) 4133 return PTR_ERR(bl->base); 4134 4135 backlight_disable(bl->base); 4136 4137 panel->backlight = bl->base; 4138 4139 return 0; 4140 } 4141 EXPORT_SYMBOL(drm_panel_dp_aux_backlight); 4142 4143 #endif 4144 4145 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */ 4146 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16, 4147 int symbol_size, bool is_mst) 4148 { 4149 int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count); 4150 int align = is_mst ? 4 / lane_count : 1; 4151 4152 return ALIGN(cycles, align); 4153 } 4154 4155 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count, 4156 int bpp_x16, int symbol_size, bool is_mst) 4157 { 4158 int slice_pixels = DIV_ROUND_UP(pixels, slice_count); 4159 int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels, 4160 bpp_x16, symbol_size, is_mst); 4161 int slice_eoc_cycles = is_mst ? 4 / lane_count : 1; 4162 4163 return slice_count * (slice_data_cycles + slice_eoc_cycles); 4164 } 4165 4166 /** 4167 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream 4168 * @lane_count: DP link lane count 4169 * @hactive: pixel count of the active period in one scanline of the stream 4170 * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set 4171 * @bpp_x16: bits per pixel in .4 binary fixed point 4172 * @flags: DRM_DP_OVERHEAD_x flags 4173 * 4174 * Calculate the BW allocation overhead of a DP link stream, depending 4175 * on the link's 4176 * - @lane_count 4177 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST) 4178 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR) 4179 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC) 4180 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK) 4181 * as well as the stream's 4182 * - @hactive timing 4183 * - @bpp_x16 color depth 4184 * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC). 4185 * Note that this overhead doesn't account for the 8b/10b, 128b/132b 4186 * channel coding efficiency, for that see 4187 * @drm_dp_link_bw_channel_coding_efficiency(). 4188 * 4189 * Returns the overhead as 100% + overhead% in 1ppm units. 4190 */ 4191 int drm_dp_bw_overhead(int lane_count, int hactive, 4192 int dsc_slice_count, 4193 int bpp_x16, unsigned long flags) 4194 { 4195 int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8; 4196 bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST; 4197 u32 overhead = 1000000; 4198 int symbol_cycles; 4199 4200 if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) { 4201 DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n", 4202 lane_count, hactive, 4203 FXP_Q4_ARGS(bpp_x16)); 4204 return 0; 4205 } 4206 4207 /* 4208 * DP Standard v2.1 2.6.4.1 4209 * SSC downspread and ref clock variation margin: 4210 * 5300ppm + 300ppm ~ 0.6% 4211 */ 4212 if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK) 4213 overhead += 6000; 4214 4215 /* 4216 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4: 4217 * FEC symbol insertions for 8b/10b channel coding: 4218 * After each 250 data symbols on 2-4 lanes: 4219 * 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block) 4220 * After each 2 x 250 data symbols on 1 lane: 4221 * 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block) 4222 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks: 4223 * 256 * 256 bytes + 1 FEC_PM 4224 * or 4225 * 128 * 512 bytes + 1 FEC_PM 4226 * (256 * 6 + 1) / (256 * 250) = 2.4015625 % 4227 */ 4228 if (flags & DRM_DP_BW_OVERHEAD_FEC) 4229 overhead += 24016; 4230 4231 /* 4232 * DP Standard v2.1 2.7.9, 5.9.7 4233 * The FEC overhead for UHBR is accounted for in its 96.71% channel 4234 * coding efficiency. 4235 */ 4236 WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) && 4237 (flags & DRM_DP_BW_OVERHEAD_FEC)); 4238 4239 if (flags & DRM_DP_BW_OVERHEAD_DSC) 4240 symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive, 4241 dsc_slice_count, 4242 bpp_x16, symbol_size, 4243 is_mst); 4244 else 4245 symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive, 4246 bpp_x16, symbol_size, 4247 is_mst); 4248 4249 return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count, 4250 overhead * 16), 4251 hactive * bpp_x16); 4252 } 4253 EXPORT_SYMBOL(drm_dp_bw_overhead); 4254 4255 /** 4256 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency 4257 * @is_uhbr: Whether the link has a 128b/132b channel coding 4258 * 4259 * Return the channel coding efficiency of the given DP link type, which is 4260 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes 4261 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead 4262 * and for 128b/132b any link or PHY level control symbol insertion overhead 4263 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the 4264 * corresponding FEC overhead is BW allocation specific, included in the value 4265 * returned by drm_dp_bw_overhead(). 4266 * 4267 * Returns the efficiency in the 100%/coding-overhead% ratio in 4268 * 1ppm units. 4269 */ 4270 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr) 4271 { 4272 if (is_uhbr) 4273 return 967100; 4274 else 4275 /* 4276 * Note that on 8b/10b MST the efficiency is only 4277 * 78.75% due to the 1 out of 64 MTPH packet overhead, 4278 * not accounted for here. 4279 */ 4280 return 800000; 4281 } 4282 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency); 4283 4284 /** 4285 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink 4286 * @max_link_rate: max DPRX link rate in 10kbps units 4287 * @max_lanes: max DPRX lane count 4288 * 4289 * Given a link rate and lanes, get the data bandwidth. 4290 * 4291 * Data bandwidth is the actual payload rate, which depends on the data 4292 * bandwidth efficiency and the link rate. 4293 * 4294 * Note that protocol layers above the DPRX link level considered here can 4295 * further limit the maximum data rate. Such layers are the MST topology (with 4296 * limits on the link between the source and first branch device as well as on 4297 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels - 4298 * which in turn can encapsulate an MST link with its own limit - with each 4299 * SST or MST encapsulated tunnel sharing the BW of a tunnel group. 4300 * 4301 * Returns the maximum data rate in kBps units. 4302 */ 4303 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes) 4304 { 4305 int ch_coding_efficiency = 4306 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate)); 4307 4308 return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes, 4309 ch_coding_efficiency), 4310 1000000 * 8); 4311 } 4312 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate); 4313