xref: /linux/drivers/gpu/drm/display/drm_dp_helper.c (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 #include <linux/dynamic_debug.h>
34 
35 #include <drm/display/drm_dp_helper.h>
36 #include <drm/display/drm_dp_mst_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_fixed.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_vblank.h>
41 #include <drm/drm_panel.h>
42 
43 #include "drm_dp_helper_internal.h"
44 
45 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
46 			"DRM_UT_CORE",
47 			"DRM_UT_DRIVER",
48 			"DRM_UT_KMS",
49 			"DRM_UT_PRIME",
50 			"DRM_UT_ATOMIC",
51 			"DRM_UT_VBL",
52 			"DRM_UT_STATE",
53 			"DRM_UT_LEASE",
54 			"DRM_UT_DP",
55 			"DRM_UT_DRMRES");
56 
57 struct dp_aux_backlight {
58 	struct backlight_device *base;
59 	struct drm_dp_aux *aux;
60 	struct drm_edp_backlight_info info;
61 	bool enabled;
62 };
63 
64 /**
65  * DOC: dp helpers
66  *
67  * These functions contain some common logic and helpers at various abstraction
68  * levels to deal with Display Port sink devices and related things like DP aux
69  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
70  * blocks, ...
71  */
72 
73 /* Helpers for DP link training */
74 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
75 {
76 	return link_status[r - DP_LANE0_1_STATUS];
77 }
78 
79 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
80 			     int lane)
81 {
82 	int i = DP_LANE0_1_STATUS + (lane >> 1);
83 	int s = (lane & 1) * 4;
84 	u8 l = dp_link_status(link_status, i);
85 
86 	return (l >> s) & 0xf;
87 }
88 
89 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
90 			  int lane_count)
91 {
92 	u8 lane_align;
93 	u8 lane_status;
94 	int lane;
95 
96 	lane_align = dp_link_status(link_status,
97 				    DP_LANE_ALIGN_STATUS_UPDATED);
98 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
99 		return false;
100 	for (lane = 0; lane < lane_count; lane++) {
101 		lane_status = dp_get_lane_status(link_status, lane);
102 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
103 			return false;
104 	}
105 	return true;
106 }
107 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
108 
109 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
110 			      int lane_count)
111 {
112 	int lane;
113 	u8 lane_status;
114 
115 	for (lane = 0; lane < lane_count; lane++) {
116 		lane_status = dp_get_lane_status(link_status, lane);
117 		if ((lane_status & DP_LANE_CR_DONE) == 0)
118 			return false;
119 	}
120 	return true;
121 }
122 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
123 
124 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
125 				     int lane)
126 {
127 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
128 	int s = ((lane & 1) ?
129 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
130 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
131 	u8 l = dp_link_status(link_status, i);
132 
133 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
134 }
135 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
136 
137 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
138 					  int lane)
139 {
140 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
141 	int s = ((lane & 1) ?
142 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
143 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
144 	u8 l = dp_link_status(link_status, i);
145 
146 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
147 }
148 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
149 
150 /* DP 2.0 128b/132b */
151 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
152 				   int lane)
153 {
154 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
155 	int s = ((lane & 1) ?
156 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
157 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
158 	u8 l = dp_link_status(link_status, i);
159 
160 	return (l >> s) & 0xf;
161 }
162 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
163 
164 /* DP 2.0 errata for 128b/132b */
165 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
166 					  int lane_count)
167 {
168 	u8 lane_align, lane_status;
169 	int lane;
170 
171 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
172 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
173 		return false;
174 
175 	for (lane = 0; lane < lane_count; lane++) {
176 		lane_status = dp_get_lane_status(link_status, lane);
177 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
178 			return false;
179 	}
180 	return true;
181 }
182 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
183 
184 /* DP 2.0 errata for 128b/132b */
185 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
186 					int lane_count)
187 {
188 	u8 lane_status;
189 	int lane;
190 
191 	for (lane = 0; lane < lane_count; lane++) {
192 		lane_status = dp_get_lane_status(link_status, lane);
193 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
194 			return false;
195 	}
196 	return true;
197 }
198 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
199 
200 /* DP 2.0 errata for 128b/132b */
201 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
202 {
203 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
204 
205 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
206 }
207 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
208 
209 /* DP 2.0 errata for 128b/132b */
210 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
211 {
212 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
213 
214 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
215 }
216 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
217 
218 /* DP 2.0 errata for 128b/132b */
219 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
220 {
221 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
222 
223 	return status & DP_128B132B_LT_FAILED;
224 }
225 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
226 
227 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
228 {
229 	if (rd_interval > 4)
230 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
231 			    aux->name, rd_interval);
232 
233 	if (rd_interval == 0)
234 		return 100;
235 
236 	return rd_interval * 4 * USEC_PER_MSEC;
237 }
238 
239 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
240 {
241 	if (rd_interval > 4)
242 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
243 			    aux->name, rd_interval);
244 
245 	if (rd_interval == 0)
246 		return 400;
247 
248 	return rd_interval * 4 * USEC_PER_MSEC;
249 }
250 
251 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
252 {
253 	switch (rd_interval) {
254 	default:
255 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
256 			    aux->name, rd_interval);
257 		fallthrough;
258 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
259 		return 400;
260 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
261 		return 4000;
262 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
263 		return 8000;
264 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
265 		return 12000;
266 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
267 		return 16000;
268 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
269 		return 32000;
270 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
271 		return 64000;
272 	}
273 }
274 
275 /*
276  * The link training delays are different for:
277  *
278  *  - Clock recovery vs. channel equalization
279  *  - DPRX vs. LTTPR
280  *  - 128b/132b vs. 8b/10b
281  *  - DPCD rev 1.3 vs. later
282  *
283  * Get the correct delay in us, reading DPCD if necessary.
284  */
285 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
286 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
287 {
288 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
289 	unsigned int offset;
290 	u8 rd_interval, mask;
291 
292 	if (dp_phy == DP_PHY_DPRX) {
293 		if (uhbr) {
294 			if (cr)
295 				return 100;
296 
297 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
298 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
299 			parse = __128b132b_channel_eq_delay_us;
300 		} else {
301 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
302 				return 100;
303 
304 			offset = DP_TRAINING_AUX_RD_INTERVAL;
305 			mask = DP_TRAINING_AUX_RD_MASK;
306 			if (cr)
307 				parse = __8b10b_clock_recovery_delay_us;
308 			else
309 				parse = __8b10b_channel_eq_delay_us;
310 		}
311 	} else {
312 		if (uhbr) {
313 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
314 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
315 			parse = __128b132b_channel_eq_delay_us;
316 		} else {
317 			if (cr)
318 				return 100;
319 
320 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
321 			mask = DP_TRAINING_AUX_RD_MASK;
322 			parse = __8b10b_channel_eq_delay_us;
323 		}
324 	}
325 
326 	if (offset < DP_RECEIVER_CAP_SIZE) {
327 		rd_interval = dpcd[offset];
328 	} else {
329 		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
330 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
331 				    aux->name);
332 			/* arbitrary default delay */
333 			return 400;
334 		}
335 	}
336 
337 	return parse(aux, rd_interval & mask);
338 }
339 
340 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
341 				     enum drm_dp_phy dp_phy, bool uhbr)
342 {
343 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
344 }
345 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
346 
347 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
348 				 enum drm_dp_phy dp_phy, bool uhbr)
349 {
350 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
351 }
352 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
353 
354 /* Per DP 2.0 Errata */
355 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
356 {
357 	int unit;
358 	u8 val;
359 
360 	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
361 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
362 			aux->name);
363 		/* default to max */
364 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
365 	}
366 
367 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
368 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
369 
370 	return (val + 1) * unit * 1000;
371 }
372 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
373 
374 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
375 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
376 {
377 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
378 		DP_TRAINING_AUX_RD_MASK;
379 	int delay_us;
380 
381 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
382 		delay_us = 100;
383 	else
384 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
385 
386 	usleep_range(delay_us, delay_us * 2);
387 }
388 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
389 
390 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
391 						 u8 rd_interval)
392 {
393 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
394 
395 	usleep_range(delay_us, delay_us * 2);
396 }
397 
398 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
399 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
400 {
401 	__drm_dp_link_train_channel_eq_delay(aux,
402 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
403 					     DP_TRAINING_AUX_RD_MASK);
404 }
405 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
406 
407 /**
408  * drm_dp_phy_name() - Get the name of the given DP PHY
409  * @dp_phy: The DP PHY identifier
410  *
411  * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
412  * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
413  * non-NULL and valid.
414  *
415  * Returns: Name of the DP PHY.
416  */
417 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
418 {
419 	static const char * const phy_names[] = {
420 		[DP_PHY_DPRX] = "DPRX",
421 		[DP_PHY_LTTPR1] = "LTTPR 1",
422 		[DP_PHY_LTTPR2] = "LTTPR 2",
423 		[DP_PHY_LTTPR3] = "LTTPR 3",
424 		[DP_PHY_LTTPR4] = "LTTPR 4",
425 		[DP_PHY_LTTPR5] = "LTTPR 5",
426 		[DP_PHY_LTTPR6] = "LTTPR 6",
427 		[DP_PHY_LTTPR7] = "LTTPR 7",
428 		[DP_PHY_LTTPR8] = "LTTPR 8",
429 	};
430 
431 	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
432 	    WARN_ON(!phy_names[dp_phy]))
433 		return "<INVALID DP PHY>";
434 
435 	return phy_names[dp_phy];
436 }
437 EXPORT_SYMBOL(drm_dp_phy_name);
438 
439 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
440 {
441 	usleep_range(100, 200);
442 }
443 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
444 
445 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
446 {
447 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
448 }
449 
450 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
451 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
452 {
453 	u8 interval = dp_lttpr_phy_cap(phy_cap,
454 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
455 		      DP_TRAINING_AUX_RD_MASK;
456 
457 	__drm_dp_link_train_channel_eq_delay(aux, interval);
458 }
459 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
460 
461 u8 drm_dp_link_rate_to_bw_code(int link_rate)
462 {
463 	switch (link_rate) {
464 	case 1000000:
465 		return DP_LINK_BW_10;
466 	case 1350000:
467 		return DP_LINK_BW_13_5;
468 	case 2000000:
469 		return DP_LINK_BW_20;
470 	default:
471 		/* Spec says link_bw = link_rate / 0.27Gbps */
472 		return link_rate / 27000;
473 	}
474 }
475 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
476 
477 int drm_dp_bw_code_to_link_rate(u8 link_bw)
478 {
479 	switch (link_bw) {
480 	case DP_LINK_BW_10:
481 		return 1000000;
482 	case DP_LINK_BW_13_5:
483 		return 1350000;
484 	case DP_LINK_BW_20:
485 		return 2000000;
486 	default:
487 		/* Spec says link_rate = link_bw * 0.27Gbps */
488 		return link_bw * 27000;
489 	}
490 }
491 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
492 
493 #define AUX_RETRY_INTERVAL 500 /* us */
494 
495 static inline void
496 drm_dp_dump_access(const struct drm_dp_aux *aux,
497 		   u8 request, uint offset, void *buffer, int ret)
498 {
499 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
500 
501 	if (ret > 0)
502 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
503 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
504 	else
505 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
506 			   aux->name, offset, arrow, ret);
507 }
508 
509 /**
510  * DOC: dp helpers
511  *
512  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
513  * independent access to AUX functionality. Drivers can take advantage of
514  * this by filling in the fields of the drm_dp_aux structure.
515  *
516  * Transactions are described using a hardware-independent drm_dp_aux_msg
517  * structure, which is passed into a driver's .transfer() implementation.
518  * Both native and I2C-over-AUX transactions are supported.
519  */
520 
521 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
522 			      unsigned int offset, void *buffer, size_t size)
523 {
524 	struct drm_dp_aux_msg msg;
525 	unsigned int retry, native_reply;
526 	int err = 0, ret = 0;
527 
528 	memset(&msg, 0, sizeof(msg));
529 	msg.address = offset;
530 	msg.request = request;
531 	msg.buffer = buffer;
532 	msg.size = size;
533 
534 	mutex_lock(&aux->hw_mutex);
535 
536 	/*
537 	 * If the device attached to the aux bus is powered down then there's
538 	 * no reason to attempt a transfer. Error out immediately.
539 	 */
540 	if (aux->powered_down) {
541 		ret = -EBUSY;
542 		goto unlock;
543 	}
544 
545 	/*
546 	 * The specification doesn't give any recommendation on how often to
547 	 * retry native transactions. We used to retry 7 times like for
548 	 * aux i2c transactions but real world devices this wasn't
549 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
550 	 */
551 	for (retry = 0; retry < 32; retry++) {
552 		if (ret != 0 && ret != -ETIMEDOUT) {
553 			usleep_range(AUX_RETRY_INTERVAL,
554 				     AUX_RETRY_INTERVAL + 100);
555 		}
556 
557 		ret = aux->transfer(aux, &msg);
558 		if (ret >= 0) {
559 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
560 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
561 				if (ret == size)
562 					goto unlock;
563 
564 				ret = -EPROTO;
565 			} else
566 				ret = -EIO;
567 		}
568 
569 		/*
570 		 * We want the error we return to be the error we received on
571 		 * the first transaction, since we may get a different error the
572 		 * next time we retry
573 		 */
574 		if (!err)
575 			err = ret;
576 	}
577 
578 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
579 		    aux->name, err);
580 	ret = err;
581 
582 unlock:
583 	mutex_unlock(&aux->hw_mutex);
584 	return ret;
585 }
586 
587 /**
588  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
589  * @aux: DisplayPort AUX channel (SST)
590  * @offset: address of the register to probe
591  *
592  * Probe the provided DPCD address by reading 1 byte from it. The function can
593  * be used to trigger some side-effect the read access has, like waking up the
594  * sink, without the need for the read-out value.
595  *
596  * Returns 0 if the read access suceeded, or a negative error code on failure.
597  */
598 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
599 {
600 	u8 buffer;
601 	int ret;
602 
603 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
604 	WARN_ON(ret == 0);
605 
606 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
607 
608 	return ret < 0 ? ret : 0;
609 }
610 EXPORT_SYMBOL(drm_dp_dpcd_probe);
611 
612 /**
613  * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
614  * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
615  *       and the function will be a no-op.
616  * @powered: true if powered; false if not
617  *
618  * If the endpoint device on the DP AUX bus is known to be powered down
619  * then this function can be called to make future transfers fail immediately
620  * instead of needing to time out.
621  *
622  * If this function is never called then a device defaults to being powered.
623  */
624 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
625 {
626 	if (!aux)
627 		return;
628 
629 	mutex_lock(&aux->hw_mutex);
630 	aux->powered_down = !powered;
631 	mutex_unlock(&aux->hw_mutex);
632 }
633 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
634 
635 /**
636  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
637  * @aux: DisplayPort AUX channel (SST or MST)
638  * @offset: address of the (first) register to read
639  * @buffer: buffer to store the register values
640  * @size: number of bytes in @buffer
641  *
642  * Returns the number of bytes transferred on success, or a negative error
643  * code on failure. -EIO is returned if the request was NAKed by the sink or
644  * if the retry count was exceeded. If not all bytes were transferred, this
645  * function returns -EPROTO. Errors from the underlying AUX channel transfer
646  * function, with the exception of -EBUSY (which causes the transaction to
647  * be retried), are propagated to the caller.
648  */
649 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
650 			 void *buffer, size_t size)
651 {
652 	int ret;
653 
654 	/*
655 	 * HP ZR24w corrupts the first DPCD access after entering power save
656 	 * mode. Eg. on a read, the entire buffer will be filled with the same
657 	 * byte. Do a throw away read to avoid corrupting anything we care
658 	 * about. Afterwards things will work correctly until the monitor
659 	 * gets woken up and subsequently re-enters power save mode.
660 	 *
661 	 * The user pressing any button on the monitor is enough to wake it
662 	 * up, so there is no particularly good place to do the workaround.
663 	 * We just have to do it before any DPCD access and hope that the
664 	 * monitor doesn't power down exactly after the throw away read.
665 	 */
666 	if (!aux->is_remote) {
667 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
668 		if (ret < 0)
669 			return ret;
670 	}
671 
672 	if (aux->is_remote)
673 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
674 	else
675 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
676 					 buffer, size);
677 
678 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
679 	return ret;
680 }
681 EXPORT_SYMBOL(drm_dp_dpcd_read);
682 
683 /**
684  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
685  * @aux: DisplayPort AUX channel (SST or MST)
686  * @offset: address of the (first) register to write
687  * @buffer: buffer containing the values to write
688  * @size: number of bytes in @buffer
689  *
690  * Returns the number of bytes transferred on success, or a negative error
691  * code on failure. -EIO is returned if the request was NAKed by the sink or
692  * if the retry count was exceeded. If not all bytes were transferred, this
693  * function returns -EPROTO. Errors from the underlying AUX channel transfer
694  * function, with the exception of -EBUSY (which causes the transaction to
695  * be retried), are propagated to the caller.
696  */
697 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
698 			  void *buffer, size_t size)
699 {
700 	int ret;
701 
702 	if (aux->is_remote)
703 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
704 	else
705 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
706 					 buffer, size);
707 
708 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
709 	return ret;
710 }
711 EXPORT_SYMBOL(drm_dp_dpcd_write);
712 
713 /**
714  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
715  * @aux: DisplayPort AUX channel
716  * @status: buffer to store the link status in (must be at least 6 bytes)
717  *
718  * Returns the number of bytes transferred on success or a negative error
719  * code on failure.
720  */
721 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
722 				 u8 status[DP_LINK_STATUS_SIZE])
723 {
724 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
725 				DP_LINK_STATUS_SIZE);
726 }
727 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
728 
729 /**
730  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
731  * @aux: DisplayPort AUX channel
732  * @dp_phy: the DP PHY to get the link status for
733  * @link_status: buffer to return the status in
734  *
735  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
736  * layout of the returned @link_status matches the DPCD register layout of the
737  * DPRX PHY link status.
738  *
739  * Returns 0 if the information was read successfully or a negative error code
740  * on failure.
741  */
742 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
743 				     enum drm_dp_phy dp_phy,
744 				     u8 link_status[DP_LINK_STATUS_SIZE])
745 {
746 	int ret;
747 
748 	if (dp_phy == DP_PHY_DPRX) {
749 		ret = drm_dp_dpcd_read(aux,
750 				       DP_LANE0_1_STATUS,
751 				       link_status,
752 				       DP_LINK_STATUS_SIZE);
753 
754 		if (ret < 0)
755 			return ret;
756 
757 		WARN_ON(ret != DP_LINK_STATUS_SIZE);
758 
759 		return 0;
760 	}
761 
762 	ret = drm_dp_dpcd_read(aux,
763 			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
764 			       link_status,
765 			       DP_LINK_STATUS_SIZE - 1);
766 
767 	if (ret < 0)
768 		return ret;
769 
770 	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
771 
772 	/* Convert the LTTPR to the sink PHY link status layout */
773 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
774 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
775 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
776 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
777 
778 	return 0;
779 }
780 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
781 
782 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
783 {
784 	/* FIXME: get rid of drm_edid_raw() */
785 	const struct edid *edid = drm_edid_raw(drm_edid);
786 
787 	return edid && edid->revision >= 4 &&
788 		edid->input & DRM_EDID_INPUT_DIGITAL &&
789 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
790 }
791 
792 /**
793  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
794  * @dpcd: DisplayPort configuration data
795  * @port_cap: port capabilities
796  * @type: port type to be checked. Can be:
797  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
798  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
799  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
800  *
801  * Caveat: Only works with DPCD 1.1+ port caps.
802  *
803  * Returns: whether the downstream facing port matches the type.
804  */
805 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
806 			       const u8 port_cap[4], u8 type)
807 {
808 	return drm_dp_is_branch(dpcd) &&
809 		dpcd[DP_DPCD_REV] >= 0x11 &&
810 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
811 }
812 EXPORT_SYMBOL(drm_dp_downstream_is_type);
813 
814 /**
815  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
816  * @dpcd: DisplayPort configuration data
817  * @port_cap: port capabilities
818  * @drm_edid: EDID
819  *
820  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
821  */
822 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
823 			       const u8 port_cap[4],
824 			       const struct drm_edid *drm_edid)
825 {
826 	if (dpcd[DP_DPCD_REV] < 0x11) {
827 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
828 		case DP_DWN_STRM_PORT_TYPE_TMDS:
829 			return true;
830 		default:
831 			return false;
832 		}
833 	}
834 
835 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
836 	case DP_DS_PORT_TYPE_DP_DUALMODE:
837 		if (is_edid_digital_input_dp(drm_edid))
838 			return false;
839 		fallthrough;
840 	case DP_DS_PORT_TYPE_DVI:
841 	case DP_DS_PORT_TYPE_HDMI:
842 		return true;
843 	default:
844 		return false;
845 	}
846 }
847 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
848 
849 /**
850  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
851  * @aux: DisplayPort AUX channel
852  * @real_edid_checksum: real edid checksum for the last block
853  *
854  * Returns:
855  * True on success
856  */
857 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
858 				    u8 real_edid_checksum)
859 {
860 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
861 
862 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
863 			     &auto_test_req, 1) < 1) {
864 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
865 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
866 		return false;
867 	}
868 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
869 
870 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
871 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
872 			aux->name, DP_TEST_REQUEST);
873 		return false;
874 	}
875 	link_edid_read &= DP_TEST_LINK_EDID_READ;
876 
877 	if (!auto_test_req || !link_edid_read) {
878 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
879 			    aux->name);
880 		return false;
881 	}
882 
883 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
884 			      &auto_test_req, 1) < 1) {
885 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
886 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
887 		return false;
888 	}
889 
890 	/* send back checksum for the last edid extension block data */
891 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
892 			      &real_edid_checksum, 1) < 1) {
893 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
894 			aux->name, DP_TEST_EDID_CHECKSUM);
895 		return false;
896 	}
897 
898 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
899 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
900 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
901 			aux->name, DP_TEST_RESPONSE);
902 		return false;
903 	}
904 
905 	return true;
906 }
907 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
908 
909 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
910 {
911 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
912 
913 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
914 		port_count = 4;
915 
916 	return port_count;
917 }
918 
919 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
920 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
921 {
922 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
923 	int ret;
924 
925 	/*
926 	 * Prior to DP1.3 the bit represented by
927 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
928 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
929 	 * the true capability of the panel. The only way to check is to
930 	 * then compare 0000h and 2200h.
931 	 */
932 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
933 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
934 		return 0;
935 
936 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
937 			       sizeof(dpcd_ext));
938 	if (ret < 0)
939 		return ret;
940 	if (ret != sizeof(dpcd_ext))
941 		return -EIO;
942 
943 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
944 		drm_dbg_kms(aux->drm_dev,
945 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
946 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
947 		return 0;
948 	}
949 
950 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
951 		return 0;
952 
953 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
954 
955 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
956 
957 	return 0;
958 }
959 
960 /**
961  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
962  * available
963  * @aux: DisplayPort AUX channel
964  * @dpcd: Buffer to store the resulting DPCD in
965  *
966  * Attempts to read the base DPCD caps for @aux. Additionally, this function
967  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
968  * present.
969  *
970  * Returns: %0 if the DPCD was read successfully, negative error code
971  * otherwise.
972  */
973 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
974 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
975 {
976 	int ret;
977 
978 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
979 	if (ret < 0)
980 		return ret;
981 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
982 		return -EIO;
983 
984 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
985 	if (ret < 0)
986 		return ret;
987 
988 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
989 
990 	return ret;
991 }
992 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
993 
994 /**
995  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
996  * @aux: DisplayPort AUX channel
997  * @dpcd: A cached copy of the port's DPCD
998  * @downstream_ports: buffer to store the downstream port info in
999  *
1000  * See also:
1001  * drm_dp_downstream_max_clock()
1002  * drm_dp_downstream_max_bpc()
1003  *
1004  * Returns: 0 if either the downstream port info was read successfully or
1005  * there was no downstream info to read, or a negative error code otherwise.
1006  */
1007 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1008 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1009 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1010 {
1011 	int ret;
1012 	u8 len;
1013 
1014 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1015 
1016 	/* No downstream info to read */
1017 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1018 		return 0;
1019 
1020 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1021 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1022 	 * some branches do it we need to handle it regardless.
1023 	 */
1024 	len = drm_dp_downstream_port_count(dpcd);
1025 	if (!len)
1026 		return 0;
1027 
1028 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1029 		len *= 4;
1030 
1031 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1032 	if (ret < 0)
1033 		return ret;
1034 	if (ret != len)
1035 		return -EIO;
1036 
1037 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1038 
1039 	return 0;
1040 }
1041 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1042 
1043 /**
1044  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1045  * @dpcd: DisplayPort configuration data
1046  * @port_cap: port capabilities
1047  *
1048  * Returns: Downstream facing port max dot clock in kHz on success,
1049  * or 0 if max clock not defined
1050  */
1051 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1052 				   const u8 port_cap[4])
1053 {
1054 	if (!drm_dp_is_branch(dpcd))
1055 		return 0;
1056 
1057 	if (dpcd[DP_DPCD_REV] < 0x11)
1058 		return 0;
1059 
1060 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1061 	case DP_DS_PORT_TYPE_VGA:
1062 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1063 			return 0;
1064 		return port_cap[1] * 8000;
1065 	default:
1066 		return 0;
1067 	}
1068 }
1069 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1070 
1071 /**
1072  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1073  * @dpcd: DisplayPort configuration data
1074  * @port_cap: port capabilities
1075  * @drm_edid: EDID
1076  *
1077  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1078  * or 0 if max TMDS clock not defined
1079  */
1080 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1081 				     const u8 port_cap[4],
1082 				     const struct drm_edid *drm_edid)
1083 {
1084 	if (!drm_dp_is_branch(dpcd))
1085 		return 0;
1086 
1087 	if (dpcd[DP_DPCD_REV] < 0x11) {
1088 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1089 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1090 			return 165000;
1091 		default:
1092 			return 0;
1093 		}
1094 	}
1095 
1096 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1097 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1098 		if (is_edid_digital_input_dp(drm_edid))
1099 			return 0;
1100 		/*
1101 		 * It's left up to the driver to check the
1102 		 * DP dual mode adapter's max TMDS clock.
1103 		 *
1104 		 * Unfortunately it looks like branch devices
1105 		 * may not fordward that the DP dual mode i2c
1106 		 * access so we just usually get i2c nak :(
1107 		 */
1108 		fallthrough;
1109 	case DP_DS_PORT_TYPE_HDMI:
1110 		 /*
1111 		  * We should perhaps assume 165 MHz when detailed cap
1112 		  * info is not available. But looks like many typical
1113 		  * branch devices fall into that category and so we'd
1114 		  * probably end up with users complaining that they can't
1115 		  * get high resolution modes with their favorite dongle.
1116 		  *
1117 		  * So let's limit to 300 MHz instead since DPCD 1.4
1118 		  * HDMI 2.0 DFPs are required to have the detailed cap
1119 		  * info. So it's more likely we're dealing with a HDMI 1.4
1120 		  * compatible* device here.
1121 		  */
1122 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1123 			return 300000;
1124 		return port_cap[1] * 2500;
1125 	case DP_DS_PORT_TYPE_DVI:
1126 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1127 			return 165000;
1128 		/* FIXME what to do about DVI dual link? */
1129 		return port_cap[1] * 2500;
1130 	default:
1131 		return 0;
1132 	}
1133 }
1134 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1135 
1136 /**
1137  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1138  * @dpcd: DisplayPort configuration data
1139  * @port_cap: port capabilities
1140  * @drm_edid: EDID
1141  *
1142  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1143  * or 0 if max TMDS clock not defined
1144  */
1145 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1146 				     const u8 port_cap[4],
1147 				     const struct drm_edid *drm_edid)
1148 {
1149 	if (!drm_dp_is_branch(dpcd))
1150 		return 0;
1151 
1152 	if (dpcd[DP_DPCD_REV] < 0x11) {
1153 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1154 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1155 			return 25000;
1156 		default:
1157 			return 0;
1158 		}
1159 	}
1160 
1161 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1162 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1163 		if (is_edid_digital_input_dp(drm_edid))
1164 			return 0;
1165 		fallthrough;
1166 	case DP_DS_PORT_TYPE_DVI:
1167 	case DP_DS_PORT_TYPE_HDMI:
1168 		/*
1169 		 * Unclear whether the protocol converter could
1170 		 * utilize pixel replication. Assume it won't.
1171 		 */
1172 		return 25000;
1173 	default:
1174 		return 0;
1175 	}
1176 }
1177 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1178 
1179 /**
1180  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1181  *                               bits per component
1182  * @dpcd: DisplayPort configuration data
1183  * @port_cap: downstream facing port capabilities
1184  * @drm_edid: EDID
1185  *
1186  * Returns: Max bpc on success or 0 if max bpc not defined
1187  */
1188 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1189 			      const u8 port_cap[4],
1190 			      const struct drm_edid *drm_edid)
1191 {
1192 	if (!drm_dp_is_branch(dpcd))
1193 		return 0;
1194 
1195 	if (dpcd[DP_DPCD_REV] < 0x11) {
1196 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1197 		case DP_DWN_STRM_PORT_TYPE_DP:
1198 			return 0;
1199 		default:
1200 			return 8;
1201 		}
1202 	}
1203 
1204 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1205 	case DP_DS_PORT_TYPE_DP:
1206 		return 0;
1207 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1208 		if (is_edid_digital_input_dp(drm_edid))
1209 			return 0;
1210 		fallthrough;
1211 	case DP_DS_PORT_TYPE_HDMI:
1212 	case DP_DS_PORT_TYPE_DVI:
1213 	case DP_DS_PORT_TYPE_VGA:
1214 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1215 			return 8;
1216 
1217 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1218 		case DP_DS_8BPC:
1219 			return 8;
1220 		case DP_DS_10BPC:
1221 			return 10;
1222 		case DP_DS_12BPC:
1223 			return 12;
1224 		case DP_DS_16BPC:
1225 			return 16;
1226 		default:
1227 			return 8;
1228 		}
1229 		break;
1230 	default:
1231 		return 8;
1232 	}
1233 }
1234 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1235 
1236 /**
1237  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1238  *                                       YCbCr 4:2:0 pass-through capability
1239  * @dpcd: DisplayPort configuration data
1240  * @port_cap: downstream facing port capabilities
1241  *
1242  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1243  */
1244 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1245 				       const u8 port_cap[4])
1246 {
1247 	if (!drm_dp_is_branch(dpcd))
1248 		return false;
1249 
1250 	if (dpcd[DP_DPCD_REV] < 0x13)
1251 		return false;
1252 
1253 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1254 	case DP_DS_PORT_TYPE_DP:
1255 		return true;
1256 	case DP_DS_PORT_TYPE_HDMI:
1257 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1258 			return false;
1259 
1260 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1261 	default:
1262 		return false;
1263 	}
1264 }
1265 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1266 
1267 /**
1268  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1269  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1270  * @dpcd: DisplayPort configuration data
1271  * @port_cap: downstream facing port capabilities
1272  *
1273  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1274  */
1275 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1276 					     const u8 port_cap[4])
1277 {
1278 	if (!drm_dp_is_branch(dpcd))
1279 		return false;
1280 
1281 	if (dpcd[DP_DPCD_REV] < 0x13)
1282 		return false;
1283 
1284 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1285 	case DP_DS_PORT_TYPE_HDMI:
1286 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1287 			return false;
1288 
1289 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1290 	default:
1291 		return false;
1292 	}
1293 }
1294 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1295 
1296 /**
1297  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1298  *                                               RGB->YCbCr conversion capability
1299  * @dpcd: DisplayPort configuration data
1300  * @port_cap: downstream facing port capabilities
1301  * @color_spc: Colorspace for which conversion cap is sought
1302  *
1303  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1304  * colorspace.
1305  */
1306 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1307 					       const u8 port_cap[4],
1308 					       u8 color_spc)
1309 {
1310 	if (!drm_dp_is_branch(dpcd))
1311 		return false;
1312 
1313 	if (dpcd[DP_DPCD_REV] < 0x13)
1314 		return false;
1315 
1316 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317 	case DP_DS_PORT_TYPE_HDMI:
1318 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1319 			return false;
1320 
1321 		return port_cap[3] & color_spc;
1322 	default:
1323 		return false;
1324 	}
1325 }
1326 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1327 
1328 /**
1329  * drm_dp_downstream_mode() - return a mode for downstream facing port
1330  * @dev: DRM device
1331  * @dpcd: DisplayPort configuration data
1332  * @port_cap: port capabilities
1333  *
1334  * Provides a suitable mode for downstream facing ports without EDID.
1335  *
1336  * Returns: A new drm_display_mode on success or NULL on failure
1337  */
1338 struct drm_display_mode *
1339 drm_dp_downstream_mode(struct drm_device *dev,
1340 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1341 		       const u8 port_cap[4])
1342 
1343 {
1344 	u8 vic;
1345 
1346 	if (!drm_dp_is_branch(dpcd))
1347 		return NULL;
1348 
1349 	if (dpcd[DP_DPCD_REV] < 0x11)
1350 		return NULL;
1351 
1352 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1353 	case DP_DS_PORT_TYPE_NON_EDID:
1354 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1355 		case DP_DS_NON_EDID_720x480i_60:
1356 			vic = 6;
1357 			break;
1358 		case DP_DS_NON_EDID_720x480i_50:
1359 			vic = 21;
1360 			break;
1361 		case DP_DS_NON_EDID_1920x1080i_60:
1362 			vic = 5;
1363 			break;
1364 		case DP_DS_NON_EDID_1920x1080i_50:
1365 			vic = 20;
1366 			break;
1367 		case DP_DS_NON_EDID_1280x720_60:
1368 			vic = 4;
1369 			break;
1370 		case DP_DS_NON_EDID_1280x720_50:
1371 			vic = 19;
1372 			break;
1373 		default:
1374 			return NULL;
1375 		}
1376 		return drm_display_mode_from_cea_vic(dev, vic);
1377 	default:
1378 		return NULL;
1379 	}
1380 }
1381 EXPORT_SYMBOL(drm_dp_downstream_mode);
1382 
1383 /**
1384  * drm_dp_downstream_id() - identify branch device
1385  * @aux: DisplayPort AUX channel
1386  * @id: DisplayPort branch device id
1387  *
1388  * Returns branch device id on success or NULL on failure
1389  */
1390 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1391 {
1392 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1393 }
1394 EXPORT_SYMBOL(drm_dp_downstream_id);
1395 
1396 /**
1397  * drm_dp_downstream_debug() - debug DP branch devices
1398  * @m: pointer for debugfs file
1399  * @dpcd: DisplayPort configuration data
1400  * @port_cap: port capabilities
1401  * @drm_edid: EDID
1402  * @aux: DisplayPort AUX channel
1403  *
1404  */
1405 void drm_dp_downstream_debug(struct seq_file *m,
1406 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1407 			     const u8 port_cap[4],
1408 			     const struct drm_edid *drm_edid,
1409 			     struct drm_dp_aux *aux)
1410 {
1411 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1412 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1413 	int clk;
1414 	int bpc;
1415 	char id[7];
1416 	int len;
1417 	uint8_t rev[2];
1418 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1419 	bool branch_device = drm_dp_is_branch(dpcd);
1420 
1421 	seq_printf(m, "\tDP branch device present: %s\n",
1422 		   str_yes_no(branch_device));
1423 
1424 	if (!branch_device)
1425 		return;
1426 
1427 	switch (type) {
1428 	case DP_DS_PORT_TYPE_DP:
1429 		seq_puts(m, "\t\tType: DisplayPort\n");
1430 		break;
1431 	case DP_DS_PORT_TYPE_VGA:
1432 		seq_puts(m, "\t\tType: VGA\n");
1433 		break;
1434 	case DP_DS_PORT_TYPE_DVI:
1435 		seq_puts(m, "\t\tType: DVI\n");
1436 		break;
1437 	case DP_DS_PORT_TYPE_HDMI:
1438 		seq_puts(m, "\t\tType: HDMI\n");
1439 		break;
1440 	case DP_DS_PORT_TYPE_NON_EDID:
1441 		seq_puts(m, "\t\tType: others without EDID support\n");
1442 		break;
1443 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1444 		seq_puts(m, "\t\tType: DP++\n");
1445 		break;
1446 	case DP_DS_PORT_TYPE_WIRELESS:
1447 		seq_puts(m, "\t\tType: Wireless\n");
1448 		break;
1449 	default:
1450 		seq_puts(m, "\t\tType: N/A\n");
1451 	}
1452 
1453 	memset(id, 0, sizeof(id));
1454 	drm_dp_downstream_id(aux, id);
1455 	seq_printf(m, "\t\tID: %s\n", id);
1456 
1457 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1458 	if (len > 0)
1459 		seq_printf(m, "\t\tHW: %d.%d\n",
1460 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1461 
1462 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1463 	if (len > 0)
1464 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1465 
1466 	if (detailed_cap_info) {
1467 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1468 		if (clk > 0)
1469 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1470 
1471 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1472 		if (clk > 0)
1473 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1474 
1475 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1476 		if (clk > 0)
1477 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1478 
1479 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1480 
1481 		if (bpc > 0)
1482 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1483 	}
1484 }
1485 EXPORT_SYMBOL(drm_dp_downstream_debug);
1486 
1487 /**
1488  * drm_dp_subconnector_type() - get DP branch device type
1489  * @dpcd: DisplayPort configuration data
1490  * @port_cap: port capabilities
1491  */
1492 enum drm_mode_subconnector
1493 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1494 			 const u8 port_cap[4])
1495 {
1496 	int type;
1497 	if (!drm_dp_is_branch(dpcd))
1498 		return DRM_MODE_SUBCONNECTOR_Native;
1499 	/* DP 1.0 approach */
1500 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1501 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1502 		       DP_DWN_STRM_PORT_TYPE_MASK;
1503 
1504 		switch (type) {
1505 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1506 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1507 			return DRM_MODE_SUBCONNECTOR_DVID;
1508 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1509 			/* Can be VGA or DVI-A, VGA is more popular */
1510 			return DRM_MODE_SUBCONNECTOR_VGA;
1511 		case DP_DWN_STRM_PORT_TYPE_DP:
1512 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1513 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1514 		default:
1515 			return DRM_MODE_SUBCONNECTOR_Unknown;
1516 		}
1517 	}
1518 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1519 
1520 	switch (type) {
1521 	case DP_DS_PORT_TYPE_DP:
1522 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1523 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1524 	case DP_DS_PORT_TYPE_VGA:
1525 		return DRM_MODE_SUBCONNECTOR_VGA;
1526 	case DP_DS_PORT_TYPE_DVI:
1527 		return DRM_MODE_SUBCONNECTOR_DVID;
1528 	case DP_DS_PORT_TYPE_HDMI:
1529 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1530 	case DP_DS_PORT_TYPE_WIRELESS:
1531 		return DRM_MODE_SUBCONNECTOR_Wireless;
1532 	case DP_DS_PORT_TYPE_NON_EDID:
1533 	default:
1534 		return DRM_MODE_SUBCONNECTOR_Unknown;
1535 	}
1536 }
1537 EXPORT_SYMBOL(drm_dp_subconnector_type);
1538 
1539 /**
1540  * drm_dp_set_subconnector_property - set subconnector for DP connector
1541  * @connector: connector to set property on
1542  * @status: connector status
1543  * @dpcd: DisplayPort configuration data
1544  * @port_cap: port capabilities
1545  *
1546  * Called by a driver on every detect event.
1547  */
1548 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1549 				      enum drm_connector_status status,
1550 				      const u8 *dpcd,
1551 				      const u8 port_cap[4])
1552 {
1553 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1554 
1555 	if (status == connector_status_connected)
1556 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1557 	drm_object_property_set_value(&connector->base,
1558 			connector->dev->mode_config.dp_subconnector_property,
1559 			subconnector);
1560 }
1561 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1562 
1563 /**
1564  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1565  * count
1566  * @connector: The DRM connector to check
1567  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1568  * @desc: A cached copy of the connector's DP descriptor
1569  *
1570  * See also: drm_dp_read_sink_count()
1571  *
1572  * Returns: %True if the (e)DP connector has a valid sink count that should
1573  * be probed, %false otherwise.
1574  */
1575 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1576 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1577 				const struct drm_dp_desc *desc)
1578 {
1579 	/* Some eDP panels don't set a valid value for the sink count */
1580 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1581 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1582 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1583 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1584 }
1585 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1586 
1587 /**
1588  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1589  * @aux: The DP AUX channel to use
1590  *
1591  * See also: drm_dp_read_sink_count_cap()
1592  *
1593  * Returns: The current sink count reported by @aux, or a negative error code
1594  * otherwise.
1595  */
1596 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1597 {
1598 	u8 count;
1599 	int ret;
1600 
1601 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1602 	if (ret < 0)
1603 		return ret;
1604 	if (ret != 1)
1605 		return -EIO;
1606 
1607 	return DP_GET_SINK_COUNT(count);
1608 }
1609 EXPORT_SYMBOL(drm_dp_read_sink_count);
1610 
1611 /*
1612  * I2C-over-AUX implementation
1613  */
1614 
1615 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1616 {
1617 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1618 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1619 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1620 	       I2C_FUNC_10BIT_ADDR;
1621 }
1622 
1623 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1624 {
1625 	/*
1626 	 * In case of i2c defer or short i2c ack reply to a write,
1627 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1628 	 * rest of the message
1629 	 */
1630 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1631 		msg->request &= DP_AUX_I2C_MOT;
1632 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1633 	}
1634 }
1635 
1636 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1637 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1638 #define AUX_STOP_LEN 4
1639 #define AUX_CMD_LEN 4
1640 #define AUX_ADDRESS_LEN 20
1641 #define AUX_REPLY_PAD_LEN 4
1642 #define AUX_LENGTH_LEN 8
1643 
1644 /*
1645  * Calculate the duration of the AUX request/reply in usec. Gives the
1646  * "best" case estimate, ie. successful while as short as possible.
1647  */
1648 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1649 {
1650 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1651 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1652 
1653 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1654 		len += msg->size * 8;
1655 
1656 	return len;
1657 }
1658 
1659 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1660 {
1661 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1662 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1663 
1664 	/*
1665 	 * For read we expect what was asked. For writes there will
1666 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1667 	 */
1668 	if (msg->request & DP_AUX_I2C_READ)
1669 		len += msg->size * 8;
1670 
1671 	return len;
1672 }
1673 
1674 #define I2C_START_LEN 1
1675 #define I2C_STOP_LEN 1
1676 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1677 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1678 
1679 /*
1680  * Calculate the length of the i2c transfer in usec, assuming
1681  * the i2c bus speed is as specified. Gives the "worst"
1682  * case estimate, ie. successful while as long as possible.
1683  * Doesn't account the "MOT" bit, and instead assumes each
1684  * message includes a START, ADDRESS and STOP. Neither does it
1685  * account for additional random variables such as clock stretching.
1686  */
1687 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1688 				   int i2c_speed_khz)
1689 {
1690 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1691 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1692 			     msg->size * I2C_DATA_LEN +
1693 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1694 }
1695 
1696 /*
1697  * Determine how many retries should be attempted to successfully transfer
1698  * the specified message, based on the estimated durations of the
1699  * i2c and AUX transfers.
1700  */
1701 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1702 			      int i2c_speed_khz)
1703 {
1704 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1705 		drm_dp_aux_reply_duration(msg);
1706 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1707 
1708 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1709 }
1710 
1711 /*
1712  * FIXME currently assumes 10 kHz as some real world devices seem
1713  * to require it. We should query/set the speed via DPCD if supported.
1714  */
1715 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1716 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1717 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1718 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1719 
1720 /*
1721  * Transfer a single I2C-over-AUX message and handle various error conditions,
1722  * retrying the transaction as appropriate.  It is assumed that the
1723  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1724  * reply field.
1725  *
1726  * Returns bytes transferred on success, or a negative error code on failure.
1727  */
1728 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1729 {
1730 	unsigned int retry, defer_i2c;
1731 	int ret;
1732 	/*
1733 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1734 	 * is required to retry at least seven times upon receiving AUX_DEFER
1735 	 * before giving up the AUX transaction.
1736 	 *
1737 	 * We also try to account for the i2c bus speed.
1738 	 */
1739 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1740 
1741 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1742 		ret = aux->transfer(aux, msg);
1743 		if (ret < 0) {
1744 			if (ret == -EBUSY)
1745 				continue;
1746 
1747 			/*
1748 			 * While timeouts can be errors, they're usually normal
1749 			 * behavior (for instance, when a driver tries to
1750 			 * communicate with a non-existent DisplayPort device).
1751 			 * Avoid spamming the kernel log with timeout errors.
1752 			 */
1753 			if (ret == -ETIMEDOUT)
1754 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1755 							aux->name);
1756 			else
1757 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1758 					    aux->name, ret);
1759 			return ret;
1760 		}
1761 
1762 
1763 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1764 		case DP_AUX_NATIVE_REPLY_ACK:
1765 			/*
1766 			 * For I2C-over-AUX transactions this isn't enough, we
1767 			 * need to check for the I2C ACK reply.
1768 			 */
1769 			break;
1770 
1771 		case DP_AUX_NATIVE_REPLY_NACK:
1772 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1773 				    aux->name, ret, msg->size);
1774 			return -EREMOTEIO;
1775 
1776 		case DP_AUX_NATIVE_REPLY_DEFER:
1777 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1778 			/*
1779 			 * We could check for I2C bit rate capabilities and if
1780 			 * available adjust this interval. We could also be
1781 			 * more careful with DP-to-legacy adapters where a
1782 			 * long legacy cable may force very low I2C bit rates.
1783 			 *
1784 			 * For now just defer for long enough to hopefully be
1785 			 * safe for all use-cases.
1786 			 */
1787 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1788 			continue;
1789 
1790 		default:
1791 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1792 				aux->name, msg->reply);
1793 			return -EREMOTEIO;
1794 		}
1795 
1796 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1797 		case DP_AUX_I2C_REPLY_ACK:
1798 			/*
1799 			 * Both native ACK and I2C ACK replies received. We
1800 			 * can assume the transfer was successful.
1801 			 */
1802 			if (ret != msg->size)
1803 				drm_dp_i2c_msg_write_status_update(msg);
1804 			return ret;
1805 
1806 		case DP_AUX_I2C_REPLY_NACK:
1807 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1808 				    aux->name, ret, msg->size);
1809 			aux->i2c_nack_count++;
1810 			return -EREMOTEIO;
1811 
1812 		case DP_AUX_I2C_REPLY_DEFER:
1813 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1814 			/* DP Compliance Test 4.2.2.5 Requirement:
1815 			 * Must have at least 7 retries for I2C defers on the
1816 			 * transaction to pass this test
1817 			 */
1818 			aux->i2c_defer_count++;
1819 			if (defer_i2c < 7)
1820 				defer_i2c++;
1821 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1822 			drm_dp_i2c_msg_write_status_update(msg);
1823 
1824 			continue;
1825 
1826 		default:
1827 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1828 				aux->name, msg->reply);
1829 			return -EREMOTEIO;
1830 		}
1831 	}
1832 
1833 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1834 	return -EREMOTEIO;
1835 }
1836 
1837 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1838 				       const struct i2c_msg *i2c_msg)
1839 {
1840 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1841 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1842 	if (!(i2c_msg->flags & I2C_M_STOP))
1843 		msg->request |= DP_AUX_I2C_MOT;
1844 }
1845 
1846 /*
1847  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1848  *
1849  * Returns an error code on failure, or a recommended transfer size on success.
1850  */
1851 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1852 {
1853 	int err, ret = orig_msg->size;
1854 	struct drm_dp_aux_msg msg = *orig_msg;
1855 
1856 	while (msg.size > 0) {
1857 		err = drm_dp_i2c_do_msg(aux, &msg);
1858 		if (err <= 0)
1859 			return err == 0 ? -EPROTO : err;
1860 
1861 		if (err < msg.size && err < ret) {
1862 			drm_dbg_kms(aux->drm_dev,
1863 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1864 				    aux->name, msg.size, err);
1865 			ret = err;
1866 		}
1867 
1868 		msg.size -= err;
1869 		msg.buffer += err;
1870 	}
1871 
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1877  * packets to be as large as possible. If not, the I2C transactions never
1878  * succeed. Hence the default is maximum.
1879  */
1880 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1881 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1882 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1883 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1884 
1885 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1886 			   int num)
1887 {
1888 	struct drm_dp_aux *aux = adapter->algo_data;
1889 	unsigned int i, j;
1890 	unsigned transfer_size;
1891 	struct drm_dp_aux_msg msg;
1892 	int err = 0;
1893 
1894 	if (aux->powered_down)
1895 		return -EBUSY;
1896 
1897 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1898 
1899 	memset(&msg, 0, sizeof(msg));
1900 
1901 	for (i = 0; i < num; i++) {
1902 		msg.address = msgs[i].addr;
1903 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1904 		/* Send a bare address packet to start the transaction.
1905 		 * Zero sized messages specify an address only (bare
1906 		 * address) transaction.
1907 		 */
1908 		msg.buffer = NULL;
1909 		msg.size = 0;
1910 		err = drm_dp_i2c_do_msg(aux, &msg);
1911 
1912 		/*
1913 		 * Reset msg.request in case in case it got
1914 		 * changed into a WRITE_STATUS_UPDATE.
1915 		 */
1916 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1917 
1918 		if (err < 0)
1919 			break;
1920 		/* We want each transaction to be as large as possible, but
1921 		 * we'll go to smaller sizes if the hardware gives us a
1922 		 * short reply.
1923 		 */
1924 		transfer_size = dp_aux_i2c_transfer_size;
1925 		for (j = 0; j < msgs[i].len; j += msg.size) {
1926 			msg.buffer = msgs[i].buf + j;
1927 			msg.size = min(transfer_size, msgs[i].len - j);
1928 
1929 			err = drm_dp_i2c_drain_msg(aux, &msg);
1930 
1931 			/*
1932 			 * Reset msg.request in case in case it got
1933 			 * changed into a WRITE_STATUS_UPDATE.
1934 			 */
1935 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1936 
1937 			if (err < 0)
1938 				break;
1939 			transfer_size = err;
1940 		}
1941 		if (err < 0)
1942 			break;
1943 	}
1944 	if (err >= 0)
1945 		err = num;
1946 	/* Send a bare address packet to close out the transaction.
1947 	 * Zero sized messages specify an address only (bare
1948 	 * address) transaction.
1949 	 */
1950 	msg.request &= ~DP_AUX_I2C_MOT;
1951 	msg.buffer = NULL;
1952 	msg.size = 0;
1953 	(void)drm_dp_i2c_do_msg(aux, &msg);
1954 
1955 	return err;
1956 }
1957 
1958 static const struct i2c_algorithm drm_dp_i2c_algo = {
1959 	.functionality = drm_dp_i2c_functionality,
1960 	.master_xfer = drm_dp_i2c_xfer,
1961 };
1962 
1963 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1964 {
1965 	return container_of(i2c, struct drm_dp_aux, ddc);
1966 }
1967 
1968 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1969 {
1970 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1971 }
1972 
1973 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1974 {
1975 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1976 }
1977 
1978 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1979 {
1980 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1981 }
1982 
1983 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1984 	.lock_bus = lock_bus,
1985 	.trylock_bus = trylock_bus,
1986 	.unlock_bus = unlock_bus,
1987 };
1988 
1989 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1990 {
1991 	u8 buf, count;
1992 	int ret;
1993 
1994 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1995 	if (ret < 0)
1996 		return ret;
1997 
1998 	WARN_ON(!(buf & DP_TEST_SINK_START));
1999 
2000 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2001 	if (ret < 0)
2002 		return ret;
2003 
2004 	count = buf & DP_TEST_COUNT_MASK;
2005 	if (count == aux->crc_count)
2006 		return -EAGAIN; /* No CRC yet */
2007 
2008 	aux->crc_count = count;
2009 
2010 	/*
2011 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2012 	 * per component (RGB or CrYCb).
2013 	 */
2014 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2015 	if (ret < 0)
2016 		return ret;
2017 
2018 	return 0;
2019 }
2020 
2021 static void drm_dp_aux_crc_work(struct work_struct *work)
2022 {
2023 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2024 					      crc_work);
2025 	struct drm_crtc *crtc;
2026 	u8 crc_bytes[6];
2027 	uint32_t crcs[3];
2028 	int ret;
2029 
2030 	if (WARN_ON(!aux->crtc))
2031 		return;
2032 
2033 	crtc = aux->crtc;
2034 	while (crtc->crc.opened) {
2035 		drm_crtc_wait_one_vblank(crtc);
2036 		if (!crtc->crc.opened)
2037 			break;
2038 
2039 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2040 		if (ret == -EAGAIN) {
2041 			usleep_range(1000, 2000);
2042 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2043 		}
2044 
2045 		if (ret == -EAGAIN) {
2046 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2047 				    aux->name, ret);
2048 			continue;
2049 		} else if (ret) {
2050 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2051 			continue;
2052 		}
2053 
2054 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2055 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2056 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2057 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2058 	}
2059 }
2060 
2061 /**
2062  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2063  * @aux: DisplayPort AUX channel
2064  *
2065  * Used for remote aux channel in general. Merely initialize the crc work
2066  * struct.
2067  */
2068 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2069 {
2070 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2071 }
2072 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2073 
2074 /**
2075  * drm_dp_aux_init() - minimally initialise an aux channel
2076  * @aux: DisplayPort AUX channel
2077  *
2078  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2079  * the outside world, call drm_dp_aux_init() first. For drivers which are
2080  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2081  * &drm_connector), you must still call drm_dp_aux_register() once the connector
2082  * has been registered to allow userspace access to the auxiliary DP channel.
2083  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2084  * early as possible so that the &drm_device that corresponds to the AUX adapter
2085  * may be mentioned in debugging output from the DRM DP helpers.
2086  *
2087  * For devices which use a separate platform device for their AUX adapters, this
2088  * may be called as early as required by the driver.
2089  *
2090  */
2091 void drm_dp_aux_init(struct drm_dp_aux *aux)
2092 {
2093 	mutex_init(&aux->hw_mutex);
2094 	mutex_init(&aux->cec.lock);
2095 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2096 
2097 	aux->ddc.algo = &drm_dp_i2c_algo;
2098 	aux->ddc.algo_data = aux;
2099 	aux->ddc.retries = 3;
2100 
2101 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2102 }
2103 EXPORT_SYMBOL(drm_dp_aux_init);
2104 
2105 /**
2106  * drm_dp_aux_register() - initialise and register aux channel
2107  * @aux: DisplayPort AUX channel
2108  *
2109  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2110  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2111  * initialized. For devices which are grandparents of their AUX channels,
2112  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2113  * corresponds to @aux. For these devices, it's advised to call
2114  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2115  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2116  * Functions which don't follow this will likely Oops when
2117  * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2118  *
2119  * For devices where the AUX channel is a device that exists independently of
2120  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2121  * recommended to call drm_dp_aux_register() after a &drm_device has been
2122  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2123  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2124  * with the AUX channel (e.g. on bridge detach).
2125  *
2126  * Drivers which need to use the aux channel before either of the two points
2127  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2128  * channel before registration.
2129  *
2130  * Returns 0 on success or a negative error code on failure.
2131  */
2132 int drm_dp_aux_register(struct drm_dp_aux *aux)
2133 {
2134 	int ret;
2135 
2136 	WARN_ON_ONCE(!aux->drm_dev);
2137 
2138 	if (!aux->ddc.algo)
2139 		drm_dp_aux_init(aux);
2140 
2141 	aux->ddc.owner = THIS_MODULE;
2142 	aux->ddc.dev.parent = aux->dev;
2143 
2144 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2145 		sizeof(aux->ddc.name));
2146 
2147 	ret = drm_dp_aux_register_devnode(aux);
2148 	if (ret)
2149 		return ret;
2150 
2151 	ret = i2c_add_adapter(&aux->ddc);
2152 	if (ret) {
2153 		drm_dp_aux_unregister_devnode(aux);
2154 		return ret;
2155 	}
2156 
2157 	return 0;
2158 }
2159 EXPORT_SYMBOL(drm_dp_aux_register);
2160 
2161 /**
2162  * drm_dp_aux_unregister() - unregister an AUX adapter
2163  * @aux: DisplayPort AUX channel
2164  */
2165 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2166 {
2167 	drm_dp_aux_unregister_devnode(aux);
2168 	i2c_del_adapter(&aux->ddc);
2169 }
2170 EXPORT_SYMBOL(drm_dp_aux_unregister);
2171 
2172 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2173 
2174 /**
2175  * drm_dp_psr_setup_time() - PSR setup in time usec
2176  * @psr_cap: PSR capabilities from DPCD
2177  *
2178  * Returns:
2179  * PSR setup time for the panel in microseconds,  negative
2180  * error code on failure.
2181  */
2182 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2183 {
2184 	static const u16 psr_setup_time_us[] = {
2185 		PSR_SETUP_TIME(330),
2186 		PSR_SETUP_TIME(275),
2187 		PSR_SETUP_TIME(220),
2188 		PSR_SETUP_TIME(165),
2189 		PSR_SETUP_TIME(110),
2190 		PSR_SETUP_TIME(55),
2191 		PSR_SETUP_TIME(0),
2192 	};
2193 	int i;
2194 
2195 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2196 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2197 		return -EINVAL;
2198 
2199 	return psr_setup_time_us[i];
2200 }
2201 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2202 
2203 #undef PSR_SETUP_TIME
2204 
2205 /**
2206  * drm_dp_start_crc() - start capture of frame CRCs
2207  * @aux: DisplayPort AUX channel
2208  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2209  *
2210  * Returns 0 on success or a negative error code on failure.
2211  */
2212 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2213 {
2214 	u8 buf;
2215 	int ret;
2216 
2217 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2218 	if (ret < 0)
2219 		return ret;
2220 
2221 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2222 	if (ret < 0)
2223 		return ret;
2224 
2225 	aux->crc_count = 0;
2226 	aux->crtc = crtc;
2227 	schedule_work(&aux->crc_work);
2228 
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(drm_dp_start_crc);
2232 
2233 /**
2234  * drm_dp_stop_crc() - stop capture of frame CRCs
2235  * @aux: DisplayPort AUX channel
2236  *
2237  * Returns 0 on success or a negative error code on failure.
2238  */
2239 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2240 {
2241 	u8 buf;
2242 	int ret;
2243 
2244 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2245 	if (ret < 0)
2246 		return ret;
2247 
2248 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2249 	if (ret < 0)
2250 		return ret;
2251 
2252 	flush_work(&aux->crc_work);
2253 	aux->crtc = NULL;
2254 
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL(drm_dp_stop_crc);
2258 
2259 struct dpcd_quirk {
2260 	u8 oui[3];
2261 	u8 device_id[6];
2262 	bool is_branch;
2263 	u32 quirks;
2264 };
2265 
2266 #define OUI(first, second, third) { (first), (second), (third) }
2267 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2268 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2269 
2270 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2271 
2272 static const struct dpcd_quirk dpcd_quirk_list[] = {
2273 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2274 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2275 	/* LG LP140WF6-SPM1 eDP panel */
2276 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2277 	/* Apple panels need some additional handling to support PSR */
2278 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2279 	/* CH7511 seems to leave SINK_COUNT zeroed */
2280 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2281 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2282 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2283 	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2284 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2285 	/* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2286 	{ OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2287 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2288 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2289 };
2290 
2291 #undef OUI
2292 
2293 /*
2294  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2295  * ident. The quirk data is shared but it's up to the drivers to act on the
2296  * data.
2297  *
2298  * For now, only the OUI (first three bytes) is used, but this may be extended
2299  * to device identification string and hardware/firmware revisions later.
2300  */
2301 static u32
2302 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2303 {
2304 	const struct dpcd_quirk *quirk;
2305 	u32 quirks = 0;
2306 	int i;
2307 	u8 any_device[] = DEVICE_ID_ANY;
2308 
2309 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2310 		quirk = &dpcd_quirk_list[i];
2311 
2312 		if (quirk->is_branch != is_branch)
2313 			continue;
2314 
2315 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2316 			continue;
2317 
2318 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2319 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2320 			continue;
2321 
2322 		quirks |= quirk->quirks;
2323 	}
2324 
2325 	return quirks;
2326 }
2327 
2328 #undef DEVICE_ID_ANY
2329 #undef DEVICE_ID
2330 
2331 /**
2332  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2333  * @aux: DisplayPort AUX channel
2334  * @desc: Device descriptor to fill from DPCD
2335  * @is_branch: true for branch devices, false for sink devices
2336  *
2337  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2338  * identification.
2339  *
2340  * Returns 0 on success or a negative error code on failure.
2341  */
2342 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2343 		     bool is_branch)
2344 {
2345 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2346 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2347 	int ret, dev_id_len;
2348 
2349 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2350 	if (ret < 0)
2351 		return ret;
2352 
2353 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2354 
2355 	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2356 
2357 	drm_dbg_kms(aux->drm_dev,
2358 		    "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2359 		    aux->name, is_branch ? "branch" : "sink",
2360 		    (int)sizeof(ident->oui), ident->oui, dev_id_len,
2361 		    ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2362 		    ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2363 
2364 	return 0;
2365 }
2366 EXPORT_SYMBOL(drm_dp_read_desc);
2367 
2368 /**
2369  * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2370  * @dsc_dpcd: DSC capabilities from DPCD
2371  *
2372  * Returns the bpp precision supported by the DP sink.
2373  */
2374 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2375 {
2376 	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2377 
2378 	switch (bpp_increment_dpcd) {
2379 	case DP_DSC_BITS_PER_PIXEL_1_16:
2380 		return 16;
2381 	case DP_DSC_BITS_PER_PIXEL_1_8:
2382 		return 8;
2383 	case DP_DSC_BITS_PER_PIXEL_1_4:
2384 		return 4;
2385 	case DP_DSC_BITS_PER_PIXEL_1_2:
2386 		return 2;
2387 	case DP_DSC_BITS_PER_PIXEL_1_1:
2388 		return 1;
2389 	}
2390 
2391 	return 0;
2392 }
2393 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2394 
2395 /**
2396  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2397  * supported by the DSC sink.
2398  * @dsc_dpcd: DSC capabilities from DPCD
2399  * @is_edp: true if its eDP, false for DP
2400  *
2401  * Read the slice capabilities DPCD register from DSC sink to get
2402  * the maximum slice count supported. This is used to populate
2403  * the DSC parameters in the &struct drm_dsc_config by the driver.
2404  * Driver creates an infoframe using these parameters to populate
2405  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2406  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2407  *
2408  * Returns:
2409  * Maximum slice count supported by DSC sink or 0 its invalid
2410  */
2411 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2412 				   bool is_edp)
2413 {
2414 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2415 
2416 	if (is_edp) {
2417 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2418 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2419 			return 4;
2420 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2421 			return 2;
2422 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2423 			return 1;
2424 	} else {
2425 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2426 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2427 
2428 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2429 			return 24;
2430 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2431 			return 20;
2432 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2433 			return 16;
2434 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2435 			return 12;
2436 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2437 			return 10;
2438 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2439 			return 8;
2440 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2441 			return 6;
2442 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2443 			return 4;
2444 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2445 			return 2;
2446 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2447 			return 1;
2448 	}
2449 
2450 	return 0;
2451 }
2452 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2453 
2454 /**
2455  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2456  * @dsc_dpcd: DSC capabilities from DPCD
2457  *
2458  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2459  * number of bits of precision within the decoder line buffer supported by
2460  * the DSC sink. This is used to populate the DSC parameters in the
2461  * &struct drm_dsc_config by the driver.
2462  * Driver creates an infoframe using these parameters to populate
2463  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2464  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2465  *
2466  * Returns:
2467  * Line buffer depth supported by DSC panel or 0 its invalid
2468  */
2469 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2470 {
2471 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2472 
2473 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2474 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2475 		return 9;
2476 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2477 		return 10;
2478 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2479 		return 11;
2480 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2481 		return 12;
2482 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2483 		return 13;
2484 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2485 		return 14;
2486 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2487 		return 15;
2488 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2489 		return 16;
2490 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2491 		return 8;
2492 	}
2493 
2494 	return 0;
2495 }
2496 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2497 
2498 /**
2499  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2500  * values supported by the DSC sink.
2501  * @dsc_dpcd: DSC capabilities from DPCD
2502  * @dsc_bpc: An array to be filled by this helper with supported
2503  *           input bpcs.
2504  *
2505  * Read the DSC DPCD from the sink device to parse the supported bits per
2506  * component values. This is used to populate the DSC parameters
2507  * in the &struct drm_dsc_config by the driver.
2508  * Driver creates an infoframe using these parameters to populate
2509  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2510  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2511  *
2512  * Returns:
2513  * Number of input BPC values parsed from the DPCD
2514  */
2515 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2516 					 u8 dsc_bpc[3])
2517 {
2518 	int num_bpc = 0;
2519 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2520 
2521 	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2522 		return 0;
2523 
2524 	if (color_depth & DP_DSC_12_BPC)
2525 		dsc_bpc[num_bpc++] = 12;
2526 	if (color_depth & DP_DSC_10_BPC)
2527 		dsc_bpc[num_bpc++] = 10;
2528 
2529 	/* A DP DSC Sink device shall support 8 bpc. */
2530 	dsc_bpc[num_bpc++] = 8;
2531 
2532 	return num_bpc;
2533 }
2534 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2535 
2536 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2537 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2538 				  u8 *buf, int buf_size)
2539 {
2540 	/*
2541 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2542 	 * corrupted values when reading from the 0xF0000- range with a block
2543 	 * size bigger than 1.
2544 	 */
2545 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2546 	int offset;
2547 	int ret;
2548 
2549 	for (offset = 0; offset < buf_size; offset += block_size) {
2550 		ret = drm_dp_dpcd_read(aux,
2551 				       address + offset,
2552 				       &buf[offset], block_size);
2553 		if (ret < 0)
2554 			return ret;
2555 
2556 		WARN_ON(ret != block_size);
2557 	}
2558 
2559 	return 0;
2560 }
2561 
2562 /**
2563  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2564  * @aux: DisplayPort AUX channel
2565  * @dpcd: DisplayPort configuration data
2566  * @caps: buffer to return the capability info in
2567  *
2568  * Read capabilities common to all LTTPRs.
2569  *
2570  * Returns 0 on success or a negative error code on failure.
2571  */
2572 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2573 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2574 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2575 {
2576 	return drm_dp_read_lttpr_regs(aux, dpcd,
2577 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2578 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2579 }
2580 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2581 
2582 /**
2583  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2584  * @aux: DisplayPort AUX channel
2585  * @dpcd: DisplayPort configuration data
2586  * @dp_phy: LTTPR PHY to read the capabilities for
2587  * @caps: buffer to return the capability info in
2588  *
2589  * Read the capabilities for the given LTTPR PHY.
2590  *
2591  * Returns 0 on success or a negative error code on failure.
2592  */
2593 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2594 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2595 			       enum drm_dp_phy dp_phy,
2596 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2597 {
2598 	return drm_dp_read_lttpr_regs(aux, dpcd,
2599 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2600 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2601 }
2602 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2603 
2604 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2605 {
2606 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2607 }
2608 
2609 /**
2610  * drm_dp_lttpr_count - get the number of detected LTTPRs
2611  * @caps: LTTPR common capabilities
2612  *
2613  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2614  *
2615  * Returns:
2616  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2617  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2618  *   otherwise the number of detected LTTPRs
2619  */
2620 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2621 {
2622 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2623 
2624 	switch (hweight8(count)) {
2625 	case 0:
2626 		return 0;
2627 	case 1:
2628 		return 8 - ilog2(count);
2629 	case 8:
2630 		return -ERANGE;
2631 	default:
2632 		return -EINVAL;
2633 	}
2634 }
2635 EXPORT_SYMBOL(drm_dp_lttpr_count);
2636 
2637 /**
2638  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2639  * @caps: LTTPR common capabilities
2640  *
2641  * Returns the maximum link rate supported by all detected LTTPRs.
2642  */
2643 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2644 {
2645 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2646 
2647 	return drm_dp_bw_code_to_link_rate(rate);
2648 }
2649 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2650 
2651 /**
2652  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2653  * @caps: LTTPR common capabilities
2654  *
2655  * Returns the maximum lane count supported by all detected LTTPRs.
2656  */
2657 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2658 {
2659 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2660 
2661 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2662 }
2663 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2664 
2665 /**
2666  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2667  * @caps: LTTPR PHY capabilities
2668  *
2669  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2670  * voltage swing level 3.
2671  */
2672 bool
2673 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2674 {
2675 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2676 
2677 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2678 }
2679 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2680 
2681 /**
2682  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2683  * @caps: LTTPR PHY capabilities
2684  *
2685  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2686  * pre-emphasis level 3.
2687  */
2688 bool
2689 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2690 {
2691 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2692 
2693 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2694 }
2695 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2696 
2697 /**
2698  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2699  * @aux: DisplayPort AUX channel
2700  * @data: DP phy compliance test parameters.
2701  *
2702  * Returns 0 on success or a negative error code on failure.
2703  */
2704 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2705 				struct drm_dp_phy_test_params *data)
2706 {
2707 	int err;
2708 	u8 rate, lanes;
2709 
2710 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2711 	if (err < 0)
2712 		return err;
2713 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2714 
2715 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2716 	if (err < 0)
2717 		return err;
2718 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2719 
2720 	if (lanes & DP_ENHANCED_FRAME_CAP)
2721 		data->enhanced_frame_cap = true;
2722 
2723 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2724 	if (err < 0)
2725 		return err;
2726 
2727 	switch (data->phy_pattern) {
2728 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2729 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2730 				       &data->custom80, sizeof(data->custom80));
2731 		if (err < 0)
2732 			return err;
2733 
2734 		break;
2735 	case DP_PHY_TEST_PATTERN_CP2520:
2736 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2737 				       &data->hbr2_reset,
2738 				       sizeof(data->hbr2_reset));
2739 		if (err < 0)
2740 			return err;
2741 	}
2742 
2743 	return 0;
2744 }
2745 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2746 
2747 /**
2748  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2749  * @aux: DisplayPort AUX channel
2750  * @data: DP phy compliance test parameters.
2751  * @dp_rev: DP revision to use for compliance testing
2752  *
2753  * Returns 0 on success or a negative error code on failure.
2754  */
2755 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2756 				struct drm_dp_phy_test_params *data, u8 dp_rev)
2757 {
2758 	int err, i;
2759 	u8 test_pattern;
2760 
2761 	test_pattern = data->phy_pattern;
2762 	if (dp_rev < 0x12) {
2763 		test_pattern = (test_pattern << 2) &
2764 			       DP_LINK_QUAL_PATTERN_11_MASK;
2765 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2766 					 test_pattern);
2767 		if (err < 0)
2768 			return err;
2769 	} else {
2770 		for (i = 0; i < data->num_lanes; i++) {
2771 			err = drm_dp_dpcd_writeb(aux,
2772 						 DP_LINK_QUAL_LANE0_SET + i,
2773 						 test_pattern);
2774 			if (err < 0)
2775 				return err;
2776 		}
2777 	}
2778 
2779 	return 0;
2780 }
2781 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2782 
2783 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2784 {
2785 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2786 		return "Invalid";
2787 
2788 	switch (pixelformat) {
2789 	case DP_PIXELFORMAT_RGB:
2790 		return "RGB";
2791 	case DP_PIXELFORMAT_YUV444:
2792 		return "YUV444";
2793 	case DP_PIXELFORMAT_YUV422:
2794 		return "YUV422";
2795 	case DP_PIXELFORMAT_YUV420:
2796 		return "YUV420";
2797 	case DP_PIXELFORMAT_Y_ONLY:
2798 		return "Y_ONLY";
2799 	case DP_PIXELFORMAT_RAW:
2800 		return "RAW";
2801 	default:
2802 		return "Reserved";
2803 	}
2804 }
2805 
2806 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2807 					   enum dp_colorimetry colorimetry)
2808 {
2809 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2810 		return "Invalid";
2811 
2812 	switch (colorimetry) {
2813 	case DP_COLORIMETRY_DEFAULT:
2814 		switch (pixelformat) {
2815 		case DP_PIXELFORMAT_RGB:
2816 			return "sRGB";
2817 		case DP_PIXELFORMAT_YUV444:
2818 		case DP_PIXELFORMAT_YUV422:
2819 		case DP_PIXELFORMAT_YUV420:
2820 			return "BT.601";
2821 		case DP_PIXELFORMAT_Y_ONLY:
2822 			return "DICOM PS3.14";
2823 		case DP_PIXELFORMAT_RAW:
2824 			return "Custom Color Profile";
2825 		default:
2826 			return "Reserved";
2827 		}
2828 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2829 		switch (pixelformat) {
2830 		case DP_PIXELFORMAT_RGB:
2831 			return "Wide Fixed";
2832 		case DP_PIXELFORMAT_YUV444:
2833 		case DP_PIXELFORMAT_YUV422:
2834 		case DP_PIXELFORMAT_YUV420:
2835 			return "BT.709";
2836 		default:
2837 			return "Reserved";
2838 		}
2839 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2840 		switch (pixelformat) {
2841 		case DP_PIXELFORMAT_RGB:
2842 			return "Wide Float";
2843 		case DP_PIXELFORMAT_YUV444:
2844 		case DP_PIXELFORMAT_YUV422:
2845 		case DP_PIXELFORMAT_YUV420:
2846 			return "xvYCC 601";
2847 		default:
2848 			return "Reserved";
2849 		}
2850 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2851 		switch (pixelformat) {
2852 		case DP_PIXELFORMAT_RGB:
2853 			return "OpRGB";
2854 		case DP_PIXELFORMAT_YUV444:
2855 		case DP_PIXELFORMAT_YUV422:
2856 		case DP_PIXELFORMAT_YUV420:
2857 			return "xvYCC 709";
2858 		default:
2859 			return "Reserved";
2860 		}
2861 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2862 		switch (pixelformat) {
2863 		case DP_PIXELFORMAT_RGB:
2864 			return "DCI-P3";
2865 		case DP_PIXELFORMAT_YUV444:
2866 		case DP_PIXELFORMAT_YUV422:
2867 		case DP_PIXELFORMAT_YUV420:
2868 			return "sYCC 601";
2869 		default:
2870 			return "Reserved";
2871 		}
2872 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2873 		switch (pixelformat) {
2874 		case DP_PIXELFORMAT_RGB:
2875 			return "Custom Profile";
2876 		case DP_PIXELFORMAT_YUV444:
2877 		case DP_PIXELFORMAT_YUV422:
2878 		case DP_PIXELFORMAT_YUV420:
2879 			return "OpYCC 601";
2880 		default:
2881 			return "Reserved";
2882 		}
2883 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2884 		switch (pixelformat) {
2885 		case DP_PIXELFORMAT_RGB:
2886 			return "BT.2020 RGB";
2887 		case DP_PIXELFORMAT_YUV444:
2888 		case DP_PIXELFORMAT_YUV422:
2889 		case DP_PIXELFORMAT_YUV420:
2890 			return "BT.2020 CYCC";
2891 		default:
2892 			return "Reserved";
2893 		}
2894 	case DP_COLORIMETRY_BT2020_YCC:
2895 		switch (pixelformat) {
2896 		case DP_PIXELFORMAT_YUV444:
2897 		case DP_PIXELFORMAT_YUV422:
2898 		case DP_PIXELFORMAT_YUV420:
2899 			return "BT.2020 YCC";
2900 		default:
2901 			return "Reserved";
2902 		}
2903 	default:
2904 		return "Invalid";
2905 	}
2906 }
2907 
2908 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2909 {
2910 	switch (dynamic_range) {
2911 	case DP_DYNAMIC_RANGE_VESA:
2912 		return "VESA range";
2913 	case DP_DYNAMIC_RANGE_CTA:
2914 		return "CTA range";
2915 	default:
2916 		return "Invalid";
2917 	}
2918 }
2919 
2920 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2921 {
2922 	switch (content_type) {
2923 	case DP_CONTENT_TYPE_NOT_DEFINED:
2924 		return "Not defined";
2925 	case DP_CONTENT_TYPE_GRAPHICS:
2926 		return "Graphics";
2927 	case DP_CONTENT_TYPE_PHOTO:
2928 		return "Photo";
2929 	case DP_CONTENT_TYPE_VIDEO:
2930 		return "Video";
2931 	case DP_CONTENT_TYPE_GAME:
2932 		return "Game";
2933 	default:
2934 		return "Reserved";
2935 	}
2936 }
2937 
2938 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
2939 {
2940 	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
2941 		   vsc->revision, vsc->length);
2942 	drm_printf(p, "    pixelformat: %s\n",
2943 		   dp_pixelformat_get_name(vsc->pixelformat));
2944 	drm_printf(p, "    colorimetry: %s\n",
2945 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2946 	drm_printf(p, "    bpc: %u\n", vsc->bpc);
2947 	drm_printf(p, "    dynamic range: %s\n",
2948 		   dp_dynamic_range_get_name(vsc->dynamic_range));
2949 	drm_printf(p, "    content type: %s\n",
2950 		   dp_content_type_get_name(vsc->content_type));
2951 }
2952 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2953 
2954 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
2955 {
2956 	drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
2957 		   as_sdp->revision, as_sdp->length);
2958 	drm_printf(p, "    vtotal: %d\n", as_sdp->vtotal);
2959 	drm_printf(p, "    target_rr: %d\n", as_sdp->target_rr);
2960 	drm_printf(p, "    duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
2961 	drm_printf(p, "    duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
2962 	drm_printf(p, "    operation_mode: %d\n", as_sdp->mode);
2963 }
2964 EXPORT_SYMBOL(drm_dp_as_sdp_log);
2965 
2966 /**
2967  * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
2968  * @aux: DisplayPort AUX channel
2969  * @dpcd: DisplayPort configuration data
2970  *
2971  * Returns true if adaptive sync sdp is supported, else returns false
2972  */
2973 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
2974 {
2975 	u8 rx_feature;
2976 
2977 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
2978 		return false;
2979 
2980 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
2981 			      &rx_feature) != 1) {
2982 		drm_dbg_dp(aux->drm_dev,
2983 			   "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
2984 		return false;
2985 	}
2986 
2987 	return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
2988 }
2989 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
2990 
2991 /**
2992  * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
2993  * @aux: DisplayPort AUX channel
2994  * @dpcd: DisplayPort configuration data
2995  *
2996  * Returns true if vsc sdp is supported, else returns false
2997  */
2998 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
2999 {
3000 	u8 rx_feature;
3001 
3002 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3003 		return false;
3004 
3005 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
3006 		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3007 		return false;
3008 	}
3009 
3010 	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3011 }
3012 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3013 
3014 /**
3015  * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3016  * @vsc: vsc sdp initialized according to its purpose as defined in
3017  *       table 2-118 - table 2-120 in DP 1.4a specification
3018  * @sdp: valid handle to the generic dp_sdp which will be packed
3019  *
3020  * Returns length of sdp on success and error code on failure
3021  */
3022 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3023 			    struct dp_sdp *sdp)
3024 {
3025 	size_t length = sizeof(struct dp_sdp);
3026 
3027 	memset(sdp, 0, sizeof(struct dp_sdp));
3028 
3029 	/*
3030 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3031 	 * VSC SDP Header Bytes
3032 	 */
3033 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3034 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3035 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3036 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3037 
3038 	if (vsc->revision == 0x6) {
3039 		sdp->db[0] = 1;
3040 		sdp->db[3] = 1;
3041 	}
3042 
3043 	/*
3044 	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3045 	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3046 	 */
3047 	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3048 		goto out;
3049 
3050 	/* VSC SDP Payload for DB16 through DB18 */
3051 	/* Pixel Encoding and Colorimetry Formats  */
3052 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3053 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3054 
3055 	switch (vsc->bpc) {
3056 	case 6:
3057 		/* 6bpc: 0x0 */
3058 		break;
3059 	case 8:
3060 		sdp->db[17] = 0x1; /* DB17[3:0] */
3061 		break;
3062 	case 10:
3063 		sdp->db[17] = 0x2;
3064 		break;
3065 	case 12:
3066 		sdp->db[17] = 0x3;
3067 		break;
3068 	case 16:
3069 		sdp->db[17] = 0x4;
3070 		break;
3071 	default:
3072 		WARN(1, "Missing case %d\n", vsc->bpc);
3073 		return -EINVAL;
3074 	}
3075 
3076 	/* Dynamic Range and Component Bit Depth */
3077 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3078 		sdp->db[17] |= 0x80;  /* DB17[7] */
3079 
3080 	/* Content Type */
3081 	sdp->db[18] = vsc->content_type & 0x7;
3082 
3083 out:
3084 	return length;
3085 }
3086 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3087 
3088 /**
3089  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3090  * @dpcd: DisplayPort configuration data
3091  * @port_cap: port capabilities
3092  *
3093  * Returns maximum frl bandwidth supported by PCON in GBPS,
3094  * returns 0 if not supported.
3095  */
3096 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3097 			       const u8 port_cap[4])
3098 {
3099 	int bw;
3100 	u8 buf;
3101 
3102 	buf = port_cap[2];
3103 	bw = buf & DP_PCON_MAX_FRL_BW;
3104 
3105 	switch (bw) {
3106 	case DP_PCON_MAX_9GBPS:
3107 		return 9;
3108 	case DP_PCON_MAX_18GBPS:
3109 		return 18;
3110 	case DP_PCON_MAX_24GBPS:
3111 		return 24;
3112 	case DP_PCON_MAX_32GBPS:
3113 		return 32;
3114 	case DP_PCON_MAX_40GBPS:
3115 		return 40;
3116 	case DP_PCON_MAX_48GBPS:
3117 		return 48;
3118 	case DP_PCON_MAX_0GBPS:
3119 	default:
3120 		return 0;
3121 	}
3122 
3123 	return 0;
3124 }
3125 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3126 
3127 /**
3128  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3129  * @aux: DisplayPort AUX channel
3130  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3131  *
3132  * Returns 0 if success, else returns negative error code.
3133  */
3134 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3135 {
3136 	int ret;
3137 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3138 		 DP_PCON_ENABLE_LINK_FRL_MODE;
3139 
3140 	if (enable_frl_ready_hpd)
3141 		buf |= DP_PCON_ENABLE_HPD_READY;
3142 
3143 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3144 
3145 	return ret;
3146 }
3147 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3148 
3149 /**
3150  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3151  * @aux: DisplayPort AUX channel
3152  *
3153  * Returns true if success, else returns false.
3154  */
3155 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3156 {
3157 	int ret;
3158 	u8 buf;
3159 
3160 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3161 	if (ret < 0)
3162 		return false;
3163 
3164 	if (buf & DP_PCON_FRL_READY)
3165 		return true;
3166 
3167 	return false;
3168 }
3169 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3170 
3171 /**
3172  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3173  * @aux: DisplayPort AUX channel
3174  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3175  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3176  * In Concurrent Mode, the FRL link bring up can be done along with
3177  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3178  * the DP Link training.
3179  *
3180  * Returns 0 if success, else returns negative error code.
3181  */
3182 
3183 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3184 				u8 frl_mode)
3185 {
3186 	int ret;
3187 	u8 buf;
3188 
3189 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3190 	if (ret < 0)
3191 		return ret;
3192 
3193 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3194 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3195 	else
3196 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3197 
3198 	switch (max_frl_gbps) {
3199 	case 9:
3200 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3201 		break;
3202 	case 18:
3203 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3204 		break;
3205 	case 24:
3206 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3207 		break;
3208 	case 32:
3209 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3210 		break;
3211 	case 40:
3212 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3213 		break;
3214 	case 48:
3215 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3216 		break;
3217 	case 0:
3218 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3219 		break;
3220 	default:
3221 		return -EINVAL;
3222 	}
3223 
3224 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3225 	if (ret < 0)
3226 		return ret;
3227 
3228 	return 0;
3229 }
3230 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3231 
3232 /**
3233  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3234  * @aux: DisplayPort AUX channel
3235  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3236  * @frl_type : FRL training type, can be Extended, or Normal.
3237  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3238  * starting from min, and stops when link training is successful. In Extended
3239  * FRL training, all frl bw selected in the mask are trained by the PCON.
3240  *
3241  * Returns 0 if success, else returns negative error code.
3242  */
3243 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3244 				u8 frl_type)
3245 {
3246 	int ret;
3247 	u8 buf = max_frl_mask;
3248 
3249 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3250 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3251 	else
3252 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3253 
3254 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3255 	if (ret < 0)
3256 		return ret;
3257 
3258 	return 0;
3259 }
3260 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3261 
3262 /**
3263  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3264  * @aux: DisplayPort AUX channel
3265  *
3266  * Returns 0 if success, else returns negative error code.
3267  */
3268 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3269 {
3270 	int ret;
3271 
3272 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3273 	if (ret < 0)
3274 		return ret;
3275 
3276 	return 0;
3277 }
3278 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3279 
3280 /**
3281  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3282  * @aux: DisplayPort AUX channel
3283  *
3284  * Returns 0 if success, else returns negative error code.
3285  */
3286 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3287 {
3288 	int ret;
3289 	u8 buf = 0;
3290 
3291 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3292 	if (ret < 0)
3293 		return ret;
3294 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3295 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3296 			    aux->name);
3297 		return -EINVAL;
3298 	}
3299 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3300 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3301 	if (ret < 0)
3302 		return ret;
3303 
3304 	return 0;
3305 }
3306 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3307 
3308 /**
3309  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3310  * @aux: DisplayPort AUX channel
3311  *
3312  * Returns true if link is active else returns false.
3313  */
3314 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3315 {
3316 	u8 buf;
3317 	int ret;
3318 
3319 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3320 	if (ret < 0)
3321 		return false;
3322 
3323 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3324 }
3325 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3326 
3327 /**
3328  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3329  * @aux: DisplayPort AUX channel
3330  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3331  * Valid only if the MODE returned is FRL. For Normal Link training mode
3332  * only 1 of the bits will be set, but in case of Extended mode, more than
3333  * one bits can be set.
3334  *
3335  * Returns the link mode : TMDS or FRL on success, else returns negative error
3336  * code.
3337  */
3338 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3339 {
3340 	u8 buf;
3341 	int mode;
3342 	int ret;
3343 
3344 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3345 	if (ret < 0)
3346 		return ret;
3347 
3348 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3349 
3350 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3351 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3352 
3353 	return mode;
3354 }
3355 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3356 
3357 /**
3358  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3359  * during link failure between PCON and HDMI sink
3360  * @aux: DisplayPort AUX channel
3361  * @connector: DRM connector
3362  * code.
3363  **/
3364 
3365 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3366 					   struct drm_connector *connector)
3367 {
3368 	u8 buf, error_count;
3369 	int i, num_error;
3370 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3371 
3372 	for (i = 0; i < hdmi->max_lanes; i++) {
3373 		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3374 			return;
3375 
3376 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3377 		switch (error_count) {
3378 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3379 			num_error = 100;
3380 			break;
3381 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3382 			num_error = 10;
3383 			break;
3384 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3385 			num_error = 3;
3386 			break;
3387 		default:
3388 			num_error = 0;
3389 		}
3390 
3391 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3392 			aux->name, num_error, i);
3393 	}
3394 }
3395 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3396 
3397 /*
3398  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3399  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3400  *
3401  * Returns true is PCON encoder is DSC 1.2 else returns false.
3402  */
3403 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3404 {
3405 	u8 buf;
3406 	u8 major_v, minor_v;
3407 
3408 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3409 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3410 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3411 
3412 	if (major_v == 1 && minor_v == 2)
3413 		return true;
3414 
3415 	return false;
3416 }
3417 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3418 
3419 /*
3420  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3421  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3422  *
3423  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3424  */
3425 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3426 {
3427 	u8 slice_cap1, slice_cap2;
3428 
3429 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3430 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3431 
3432 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3433 		return 24;
3434 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3435 		return 20;
3436 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3437 		return 16;
3438 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3439 		return 12;
3440 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3441 		return 10;
3442 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3443 		return 8;
3444 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3445 		return 6;
3446 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3447 		return 4;
3448 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3449 		return 2;
3450 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3451 		return 1;
3452 
3453 	return 0;
3454 }
3455 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3456 
3457 /*
3458  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3459  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3460  *
3461  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3462  */
3463 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3464 {
3465 	u8 buf;
3466 
3467 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3468 
3469 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3470 }
3471 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3472 
3473 /*
3474  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3475  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3476  *
3477  * Returns the bpp precision supported by the PCON encoder.
3478  */
3479 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3480 {
3481 	u8 buf;
3482 
3483 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3484 
3485 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3486 	case DP_PCON_DSC_ONE_16TH_BPP:
3487 		return 16;
3488 	case DP_PCON_DSC_ONE_8TH_BPP:
3489 		return 8;
3490 	case DP_PCON_DSC_ONE_4TH_BPP:
3491 		return 4;
3492 	case DP_PCON_DSC_ONE_HALF_BPP:
3493 		return 2;
3494 	case DP_PCON_DSC_ONE_BPP:
3495 		return 1;
3496 	}
3497 
3498 	return 0;
3499 }
3500 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3501 
3502 static
3503 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3504 {
3505 	u8 buf;
3506 	int ret;
3507 
3508 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3509 	if (ret < 0)
3510 		return ret;
3511 
3512 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3513 
3514 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3515 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3516 		buf |= pps_buf_config << 2;
3517 	}
3518 
3519 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3520 	if (ret < 0)
3521 		return ret;
3522 
3523 	return 0;
3524 }
3525 
3526 /**
3527  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3528  * for DSC1.2 between PCON & HDMI2.1 sink
3529  * @aux: DisplayPort AUX channel
3530  *
3531  * Returns 0 on success, else returns negative error code.
3532  */
3533 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3534 {
3535 	int ret;
3536 
3537 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3538 	if (ret < 0)
3539 		return ret;
3540 
3541 	return 0;
3542 }
3543 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3544 
3545 /**
3546  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3547  * HDMI sink
3548  * @aux: DisplayPort AUX channel
3549  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3550  *
3551  * Returns 0 on success, else returns negative error code.
3552  */
3553 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3554 {
3555 	int ret;
3556 
3557 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3558 	if (ret < 0)
3559 		return ret;
3560 
3561 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3562 	if (ret < 0)
3563 		return ret;
3564 
3565 	return 0;
3566 }
3567 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3568 
3569 /*
3570  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3571  * override registers
3572  * @aux: DisplayPort AUX channel
3573  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3574  * bits_per_pixel.
3575  *
3576  * Returns 0 on success, else returns negative error code.
3577  */
3578 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3579 {
3580 	int ret;
3581 
3582 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3583 	if (ret < 0)
3584 		return ret;
3585 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3586 	if (ret < 0)
3587 		return ret;
3588 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3589 	if (ret < 0)
3590 		return ret;
3591 
3592 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3593 	if (ret < 0)
3594 		return ret;
3595 
3596 	return 0;
3597 }
3598 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3599 
3600 /*
3601  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3602  * @aux: displayPort AUX channel
3603  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3604  *
3605  * Returns 0 on success, else returns negative error code.
3606  */
3607 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3608 {
3609 	int ret;
3610 	u8 buf;
3611 
3612 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3613 	if (ret < 0)
3614 		return ret;
3615 
3616 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3617 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3618 	else
3619 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3620 
3621 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3622 	if (ret < 0)
3623 		return ret;
3624 
3625 	return 0;
3626 }
3627 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3628 
3629 /**
3630  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3631  * @aux: The DP AUX channel to use
3632  * @bl: Backlight capability info from drm_edp_backlight_init()
3633  * @level: The brightness level to set
3634  *
3635  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3636  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3637  *
3638  * Returns: %0 on success, negative error code on failure
3639  */
3640 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3641 				u16 level)
3642 {
3643 	int ret;
3644 	u8 buf[2] = { 0 };
3645 
3646 	/* The panel uses the PWM for controlling brightness levels */
3647 	if (!bl->aux_set)
3648 		return 0;
3649 
3650 	if (bl->lsb_reg_used) {
3651 		buf[0] = (level & 0xff00) >> 8;
3652 		buf[1] = (level & 0x00ff);
3653 	} else {
3654 		buf[0] = level;
3655 	}
3656 
3657 	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3658 	if (ret != sizeof(buf)) {
3659 		drm_err(aux->drm_dev,
3660 			"%s: Failed to write aux backlight level: %d\n",
3661 			aux->name, ret);
3662 		return ret < 0 ? ret : -EIO;
3663 	}
3664 
3665 	return 0;
3666 }
3667 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3668 
3669 static int
3670 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3671 			     bool enable)
3672 {
3673 	int ret;
3674 	u8 buf;
3675 
3676 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3677 	if (!bl->aux_enable)
3678 		return 0;
3679 
3680 	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3681 	if (ret != 1) {
3682 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3683 			aux->name, ret);
3684 		return ret < 0 ? ret : -EIO;
3685 	}
3686 	if (enable)
3687 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3688 	else
3689 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3690 
3691 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3692 	if (ret != 1) {
3693 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3694 			aux->name, ret);
3695 		return ret < 0 ? ret : -EIO;
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 /**
3702  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3703  * @aux: The DP AUX channel to use
3704  * @bl: Backlight capability info from drm_edp_backlight_init()
3705  * @level: The initial backlight level to set via AUX, if there is one
3706  *
3707  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3708  * restoring any important backlight state such as the given backlight level, the brightness byte
3709  * count, backlight frequency, etc.
3710  *
3711  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3712  * that the driver handle enabling/disabling the panel through implementation-specific means using
3713  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3714  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3715  * the EDP_BL_PWR GPIO.
3716  *
3717  * Returns: %0 on success, negative error code on failure.
3718  */
3719 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3720 			     const u16 level)
3721 {
3722 	int ret;
3723 	u8 dpcd_buf;
3724 
3725 	if (bl->aux_set)
3726 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3727 	else
3728 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3729 
3730 	if (bl->pwmgen_bit_count) {
3731 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3732 		if (ret != 1)
3733 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3734 				    aux->name, ret);
3735 	}
3736 
3737 	if (bl->pwm_freq_pre_divider) {
3738 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3739 		if (ret != 1)
3740 			drm_dbg_kms(aux->drm_dev,
3741 				    "%s: Failed to write aux backlight frequency: %d\n",
3742 				    aux->name, ret);
3743 		else
3744 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3745 	}
3746 
3747 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3748 	if (ret != 1) {
3749 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3750 			    aux->name, ret);
3751 		return ret < 0 ? ret : -EIO;
3752 	}
3753 
3754 	ret = drm_edp_backlight_set_level(aux, bl, level);
3755 	if (ret < 0)
3756 		return ret;
3757 	ret = drm_edp_backlight_set_enable(aux, bl, true);
3758 	if (ret < 0)
3759 		return ret;
3760 
3761 	return 0;
3762 }
3763 EXPORT_SYMBOL(drm_edp_backlight_enable);
3764 
3765 /**
3766  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3767  * @aux: The DP AUX channel to use
3768  * @bl: Backlight capability info from drm_edp_backlight_init()
3769  *
3770  * This function handles disabling DPCD backlight controls on a panel over AUX.
3771  *
3772  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3773  * that the driver handle enabling/disabling the panel through implementation-specific means using
3774  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3775  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3776  * the EDP_BL_PWR GPIO.
3777  *
3778  * Returns: %0 on success or no-op, negative error code on failure.
3779  */
3780 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3781 {
3782 	int ret;
3783 
3784 	ret = drm_edp_backlight_set_enable(aux, bl, false);
3785 	if (ret < 0)
3786 		return ret;
3787 
3788 	return 0;
3789 }
3790 EXPORT_SYMBOL(drm_edp_backlight_disable);
3791 
3792 static inline int
3793 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3794 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3795 {
3796 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3797 	int ret;
3798 	u8 pn, pn_min, pn_max;
3799 
3800 	if (!bl->aux_set)
3801 		return 0;
3802 
3803 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3804 	if (ret != 1) {
3805 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3806 			    aux->name, ret);
3807 		return -ENODEV;
3808 	}
3809 
3810 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3811 	bl->max = (1 << pn) - 1;
3812 	if (!driver_pwm_freq_hz)
3813 		return 0;
3814 
3815 	/*
3816 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3817 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3818 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3819 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3820 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3821 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3822 	 */
3823 
3824 	/* Find desired value of (F x P)
3825 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3826 	 * applied automatically. So no need to check that.
3827 	 */
3828 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3829 
3830 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3831 	 * satisfying the conditions below.
3832 	 * - Pn is in the range of Pn_min and Pn_max
3833 	 * - F is in the range of 1 and 255
3834 	 * - FxP is within 25% of desired value.
3835 	 *   Note: 25% is arbitrary value and may need some tweak.
3836 	 */
3837 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3838 	if (ret != 1) {
3839 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3840 			    aux->name, ret);
3841 		return 0;
3842 	}
3843 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3844 	if (ret != 1) {
3845 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3846 			    aux->name, ret);
3847 		return 0;
3848 	}
3849 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3850 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3851 
3852 	/* Ensure frequency is within 25% of desired value */
3853 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3854 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3855 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3856 		drm_dbg_kms(aux->drm_dev,
3857 			    "%s: Driver defined backlight frequency (%d) out of range\n",
3858 			    aux->name, driver_pwm_freq_hz);
3859 		return 0;
3860 	}
3861 
3862 	for (pn = pn_max; pn >= pn_min; pn--) {
3863 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3864 		fxp_actual = f << pn;
3865 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3866 			break;
3867 	}
3868 
3869 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3870 	if (ret != 1) {
3871 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3872 			    aux->name, ret);
3873 		return 0;
3874 	}
3875 	bl->pwmgen_bit_count = pn;
3876 	bl->max = (1 << pn) - 1;
3877 
3878 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3879 		bl->pwm_freq_pre_divider = f;
3880 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3881 			    aux->name, driver_pwm_freq_hz);
3882 	}
3883 
3884 	return 0;
3885 }
3886 
3887 static inline int
3888 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3889 			      u8 *current_mode)
3890 {
3891 	int ret;
3892 	u8 buf[2];
3893 	u8 mode_reg;
3894 
3895 	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3896 	if (ret != 1) {
3897 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3898 			    aux->name, ret);
3899 		return ret < 0 ? ret : -EIO;
3900 	}
3901 
3902 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3903 	if (!bl->aux_set)
3904 		return 0;
3905 
3906 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3907 		int size = 1 + bl->lsb_reg_used;
3908 
3909 		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3910 		if (ret != size) {
3911 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3912 				    aux->name, ret);
3913 			return ret < 0 ? ret : -EIO;
3914 		}
3915 
3916 		if (bl->lsb_reg_used)
3917 			return (buf[0] << 8) | buf[1];
3918 		else
3919 			return buf[0];
3920 	}
3921 
3922 	/*
3923 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3924 	 * the driver should assume max brightness
3925 	 */
3926 	return bl->max;
3927 }
3928 
3929 /**
3930  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3931  * interface.
3932  * @aux: The DP aux device to use for probing
3933  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3934  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3935  * @edp_dpcd: A cached copy of the eDP DPCD
3936  * @current_level: Where to store the probed brightness level, if any
3937  * @current_mode: Where to store the currently set backlight control mode
3938  *
3939  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3940  * along with also probing the current and maximum supported brightness levels.
3941  *
3942  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3943  * default frequency from the panel is used.
3944  *
3945  * Returns: %0 on success, negative error code on failure.
3946  */
3947 int
3948 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3949 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3950 		       u16 *current_level, u8 *current_mode)
3951 {
3952 	int ret;
3953 
3954 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3955 		bl->aux_enable = true;
3956 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3957 		bl->aux_set = true;
3958 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3959 		bl->lsb_reg_used = true;
3960 
3961 	/* Sanity check caps */
3962 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3963 		drm_dbg_kms(aux->drm_dev,
3964 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3965 			    aux->name);
3966 		return -EINVAL;
3967 	}
3968 
3969 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3970 	if (ret < 0)
3971 		return ret;
3972 
3973 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3974 	if (ret < 0)
3975 		return ret;
3976 	*current_level = ret;
3977 
3978 	drm_dbg_kms(aux->drm_dev,
3979 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3980 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3981 	if (bl->aux_set) {
3982 		drm_dbg_kms(aux->drm_dev,
3983 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3984 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3985 			    bl->lsb_reg_used);
3986 	}
3987 
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL(drm_edp_backlight_init);
3991 
3992 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3993 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3994 
3995 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3996 {
3997 	struct dp_aux_backlight *bl = bl_get_data(bd);
3998 	u16 brightness = backlight_get_brightness(bd);
3999 	int ret = 0;
4000 
4001 	if (!backlight_is_blank(bd)) {
4002 		if (!bl->enabled) {
4003 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4004 			bl->enabled = true;
4005 			return 0;
4006 		}
4007 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4008 	} else {
4009 		if (bl->enabled) {
4010 			drm_edp_backlight_disable(bl->aux, &bl->info);
4011 			bl->enabled = false;
4012 		}
4013 	}
4014 
4015 	return ret;
4016 }
4017 
4018 static const struct backlight_ops dp_aux_bl_ops = {
4019 	.update_status = dp_aux_backlight_update_status,
4020 };
4021 
4022 /**
4023  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4024  * @panel: DRM panel
4025  * @aux: The DP AUX channel to use
4026  *
4027  * Use this function to create and handle backlight if your panel
4028  * supports backlight control over DP AUX channel using DPCD
4029  * registers as per VESA's standard backlight control interface.
4030  *
4031  * When the panel is enabled backlight will be enabled after a
4032  * successful call to &drm_panel_funcs.enable()
4033  *
4034  * When the panel is disabled backlight will be disabled before the
4035  * call to &drm_panel_funcs.disable().
4036  *
4037  * A typical implementation for a panel driver supporting backlight
4038  * control over DP AUX will call this function at probe time.
4039  * Backlight will then be handled transparently without requiring
4040  * any intervention from the driver.
4041  *
4042  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4043  *
4044  * Return: 0 on success or a negative error code on failure.
4045  */
4046 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4047 {
4048 	struct dp_aux_backlight *bl;
4049 	struct backlight_properties props = { 0 };
4050 	u16 current_level;
4051 	u8 current_mode;
4052 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4053 	int ret;
4054 
4055 	if (!panel || !panel->dev || !aux)
4056 		return -EINVAL;
4057 
4058 	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4059 			       EDP_DISPLAY_CTL_CAP_SIZE);
4060 	if (ret < 0)
4061 		return ret;
4062 
4063 	if (!drm_edp_backlight_supported(edp_dpcd)) {
4064 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4065 		return 0;
4066 	}
4067 
4068 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4069 	if (!bl)
4070 		return -ENOMEM;
4071 
4072 	bl->aux = aux;
4073 
4074 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4075 				     &current_level, &current_mode);
4076 	if (ret < 0)
4077 		return ret;
4078 
4079 	props.type = BACKLIGHT_RAW;
4080 	props.brightness = current_level;
4081 	props.max_brightness = bl->info.max;
4082 
4083 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4084 						  panel->dev, bl,
4085 						  &dp_aux_bl_ops, &props);
4086 	if (IS_ERR(bl->base))
4087 		return PTR_ERR(bl->base);
4088 
4089 	backlight_disable(bl->base);
4090 
4091 	panel->backlight = bl->base;
4092 
4093 	return 0;
4094 }
4095 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4096 
4097 #endif
4098 
4099 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4100 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4101 				     int symbol_size, bool is_mst)
4102 {
4103 	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4104 	int align = is_mst ? 4 / lane_count : 1;
4105 
4106 	return ALIGN(cycles, align);
4107 }
4108 
4109 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4110 					 int bpp_x16, int symbol_size, bool is_mst)
4111 {
4112 	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4113 	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4114 							  bpp_x16, symbol_size, is_mst);
4115 	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4116 
4117 	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4118 }
4119 
4120 /**
4121  * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4122  * @lane_count: DP link lane count
4123  * @hactive: pixel count of the active period in one scanline of the stream
4124  * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4125  * @bpp_x16: bits per pixel in .4 binary fixed point
4126  * @flags: DRM_DP_OVERHEAD_x flags
4127  *
4128  * Calculate the BW allocation overhead of a DP link stream, depending
4129  * on the link's
4130  * - @lane_count
4131  * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4132  * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4133  * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4134  * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4135  * as well as the stream's
4136  * - @hactive timing
4137  * - @bpp_x16 color depth
4138  * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4139  * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4140  * channel coding efficiency, for that see
4141  * @drm_dp_link_bw_channel_coding_efficiency().
4142  *
4143  * Returns the overhead as 100% + overhead% in 1ppm units.
4144  */
4145 int drm_dp_bw_overhead(int lane_count, int hactive,
4146 		       int dsc_slice_count,
4147 		       int bpp_x16, unsigned long flags)
4148 {
4149 	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4150 	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4151 	u32 overhead = 1000000;
4152 	int symbol_cycles;
4153 
4154 	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4155 		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4156 			      lane_count, hactive,
4157 			      FXP_Q4_ARGS(bpp_x16));
4158 		return 0;
4159 	}
4160 
4161 	/*
4162 	 * DP Standard v2.1 2.6.4.1
4163 	 * SSC downspread and ref clock variation margin:
4164 	 *   5300ppm + 300ppm ~ 0.6%
4165 	 */
4166 	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4167 		overhead += 6000;
4168 
4169 	/*
4170 	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4171 	 * FEC symbol insertions for 8b/10b channel coding:
4172 	 * After each 250 data symbols on 2-4 lanes:
4173 	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4174 	 * After each 2 x 250 data symbols on 1 lane:
4175 	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4176 	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4177 	 *   256 * 256 bytes + 1 FEC_PM
4178 	 * or
4179 	 *   128 * 512 bytes + 1 FEC_PM
4180 	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4181 	 */
4182 	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4183 		overhead += 24016;
4184 
4185 	/*
4186 	 * DP Standard v2.1 2.7.9, 5.9.7
4187 	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4188 	 * coding efficiency.
4189 	 */
4190 	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4191 		(flags & DRM_DP_BW_OVERHEAD_FEC));
4192 
4193 	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4194 		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4195 							      dsc_slice_count,
4196 							      bpp_x16, symbol_size,
4197 							      is_mst);
4198 	else
4199 		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4200 							  bpp_x16, symbol_size,
4201 							  is_mst);
4202 
4203 	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4204 					    overhead * 16),
4205 				hactive * bpp_x16);
4206 }
4207 EXPORT_SYMBOL(drm_dp_bw_overhead);
4208 
4209 /**
4210  * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4211  * @is_uhbr: Whether the link has a 128b/132b channel coding
4212  *
4213  * Return the channel coding efficiency of the given DP link type, which is
4214  * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4215  * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4216  * and for 128b/132b any link or PHY level control symbol insertion overhead
4217  * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4218  * corresponding FEC overhead is BW allocation specific, included in the value
4219  * returned by drm_dp_bw_overhead().
4220  *
4221  * Returns the efficiency in the 100%/coding-overhead% ratio in
4222  * 1ppm units.
4223  */
4224 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4225 {
4226 	if (is_uhbr)
4227 		return 967100;
4228 	else
4229 		/*
4230 		 * Note that on 8b/10b MST the efficiency is only
4231 		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4232 		 * not accounted for here.
4233 		 */
4234 		return 800000;
4235 }
4236 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4237 
4238 /**
4239  * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4240  * @max_link_rate: max DPRX link rate in 10kbps units
4241  * @max_lanes: max DPRX lane count
4242  *
4243  * Given a link rate and lanes, get the data bandwidth.
4244  *
4245  * Data bandwidth is the actual payload rate, which depends on the data
4246  * bandwidth efficiency and the link rate.
4247  *
4248  * Note that protocol layers above the DPRX link level considered here can
4249  * further limit the maximum data rate. Such layers are the MST topology (with
4250  * limits on the link between the source and first branch device as well as on
4251  * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4252  * which in turn can encapsulate an MST link with its own limit - with each
4253  * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4254  *
4255  * Returns the maximum data rate in kBps units.
4256  */
4257 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4258 {
4259 	int ch_coding_efficiency =
4260 		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4261 
4262 	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4263 					      ch_coding_efficiency),
4264 				  1000000 * 8);
4265 }
4266 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4267