xref: /linux/drivers/gpu/drm/display/drm_dp_helper.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 
34 #include <drm/display/drm_dp_helper.h>
35 #include <drm/display/drm_dp_mst_helper.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_print.h>
38 #include <drm/drm_vblank.h>
39 #include <drm/drm_panel.h>
40 
41 #include "drm_dp_helper_internal.h"
42 
43 struct dp_aux_backlight {
44 	struct backlight_device *base;
45 	struct drm_dp_aux *aux;
46 	struct drm_edp_backlight_info info;
47 	bool enabled;
48 };
49 
50 /**
51  * DOC: dp helpers
52  *
53  * These functions contain some common logic and helpers at various abstraction
54  * levels to deal with Display Port sink devices and related things like DP aux
55  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
56  * blocks, ...
57  */
58 
59 /* Helpers for DP link training */
60 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
61 {
62 	return link_status[r - DP_LANE0_1_STATUS];
63 }
64 
65 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
66 			     int lane)
67 {
68 	int i = DP_LANE0_1_STATUS + (lane >> 1);
69 	int s = (lane & 1) * 4;
70 	u8 l = dp_link_status(link_status, i);
71 
72 	return (l >> s) & 0xf;
73 }
74 
75 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
76 			  int lane_count)
77 {
78 	u8 lane_align;
79 	u8 lane_status;
80 	int lane;
81 
82 	lane_align = dp_link_status(link_status,
83 				    DP_LANE_ALIGN_STATUS_UPDATED);
84 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
85 		return false;
86 	for (lane = 0; lane < lane_count; lane++) {
87 		lane_status = dp_get_lane_status(link_status, lane);
88 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
89 			return false;
90 	}
91 	return true;
92 }
93 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
94 
95 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
96 			      int lane_count)
97 {
98 	int lane;
99 	u8 lane_status;
100 
101 	for (lane = 0; lane < lane_count; lane++) {
102 		lane_status = dp_get_lane_status(link_status, lane);
103 		if ((lane_status & DP_LANE_CR_DONE) == 0)
104 			return false;
105 	}
106 	return true;
107 }
108 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
109 
110 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
111 				     int lane)
112 {
113 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
114 	int s = ((lane & 1) ?
115 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
116 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
117 	u8 l = dp_link_status(link_status, i);
118 
119 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
120 }
121 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
122 
123 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
124 					  int lane)
125 {
126 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127 	int s = ((lane & 1) ?
128 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
129 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
130 	u8 l = dp_link_status(link_status, i);
131 
132 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
133 }
134 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
135 
136 /* DP 2.0 128b/132b */
137 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
138 				   int lane)
139 {
140 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
141 	int s = ((lane & 1) ?
142 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
143 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
144 	u8 l = dp_link_status(link_status, i);
145 
146 	return (l >> s) & 0xf;
147 }
148 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
149 
150 /* DP 2.0 errata for 128b/132b */
151 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
152 					  int lane_count)
153 {
154 	u8 lane_align, lane_status;
155 	int lane;
156 
157 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
158 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
159 		return false;
160 
161 	for (lane = 0; lane < lane_count; lane++) {
162 		lane_status = dp_get_lane_status(link_status, lane);
163 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
164 			return false;
165 	}
166 	return true;
167 }
168 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
169 
170 /* DP 2.0 errata for 128b/132b */
171 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
172 					int lane_count)
173 {
174 	u8 lane_status;
175 	int lane;
176 
177 	for (lane = 0; lane < lane_count; lane++) {
178 		lane_status = dp_get_lane_status(link_status, lane);
179 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
180 			return false;
181 	}
182 	return true;
183 }
184 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
185 
186 /* DP 2.0 errata for 128b/132b */
187 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
188 {
189 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
190 
191 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
192 }
193 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
194 
195 /* DP 2.0 errata for 128b/132b */
196 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
197 {
198 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
199 
200 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
201 }
202 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
203 
204 /* DP 2.0 errata for 128b/132b */
205 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
206 {
207 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
208 
209 	return status & DP_128B132B_LT_FAILED;
210 }
211 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
212 
213 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
214 {
215 	if (rd_interval > 4)
216 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
217 			    aux->name, rd_interval);
218 
219 	if (rd_interval == 0)
220 		return 100;
221 
222 	return rd_interval * 4 * USEC_PER_MSEC;
223 }
224 
225 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
226 {
227 	if (rd_interval > 4)
228 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
229 			    aux->name, rd_interval);
230 
231 	if (rd_interval == 0)
232 		return 400;
233 
234 	return rd_interval * 4 * USEC_PER_MSEC;
235 }
236 
237 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
238 {
239 	switch (rd_interval) {
240 	default:
241 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
242 			    aux->name, rd_interval);
243 		fallthrough;
244 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
245 		return 400;
246 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
247 		return 4000;
248 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
249 		return 8000;
250 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
251 		return 12000;
252 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
253 		return 16000;
254 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
255 		return 32000;
256 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
257 		return 64000;
258 	}
259 }
260 
261 /*
262  * The link training delays are different for:
263  *
264  *  - Clock recovery vs. channel equalization
265  *  - DPRX vs. LTTPR
266  *  - 128b/132b vs. 8b/10b
267  *  - DPCD rev 1.3 vs. later
268  *
269  * Get the correct delay in us, reading DPCD if necessary.
270  */
271 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
272 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
273 {
274 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
275 	unsigned int offset;
276 	u8 rd_interval, mask;
277 
278 	if (dp_phy == DP_PHY_DPRX) {
279 		if (uhbr) {
280 			if (cr)
281 				return 100;
282 
283 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
284 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
285 			parse = __128b132b_channel_eq_delay_us;
286 		} else {
287 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
288 				return 100;
289 
290 			offset = DP_TRAINING_AUX_RD_INTERVAL;
291 			mask = DP_TRAINING_AUX_RD_MASK;
292 			if (cr)
293 				parse = __8b10b_clock_recovery_delay_us;
294 			else
295 				parse = __8b10b_channel_eq_delay_us;
296 		}
297 	} else {
298 		if (uhbr) {
299 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
300 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
301 			parse = __128b132b_channel_eq_delay_us;
302 		} else {
303 			if (cr)
304 				return 100;
305 
306 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
307 			mask = DP_TRAINING_AUX_RD_MASK;
308 			parse = __8b10b_channel_eq_delay_us;
309 		}
310 	}
311 
312 	if (offset < DP_RECEIVER_CAP_SIZE) {
313 		rd_interval = dpcd[offset];
314 	} else {
315 		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
316 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
317 				    aux->name);
318 			/* arbitrary default delay */
319 			return 400;
320 		}
321 	}
322 
323 	return parse(aux, rd_interval & mask);
324 }
325 
326 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
327 				     enum drm_dp_phy dp_phy, bool uhbr)
328 {
329 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
330 }
331 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
332 
333 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
334 				 enum drm_dp_phy dp_phy, bool uhbr)
335 {
336 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
337 }
338 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
339 
340 /* Per DP 2.0 Errata */
341 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
342 {
343 	int unit;
344 	u8 val;
345 
346 	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
347 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
348 			aux->name);
349 		/* default to max */
350 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
351 	}
352 
353 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
354 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
355 
356 	return (val + 1) * unit * 1000;
357 }
358 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
359 
360 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
361 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
362 {
363 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
364 		DP_TRAINING_AUX_RD_MASK;
365 	int delay_us;
366 
367 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
368 		delay_us = 100;
369 	else
370 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
371 
372 	usleep_range(delay_us, delay_us * 2);
373 }
374 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
375 
376 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
377 						 u8 rd_interval)
378 {
379 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
380 
381 	usleep_range(delay_us, delay_us * 2);
382 }
383 
384 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
385 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
386 {
387 	__drm_dp_link_train_channel_eq_delay(aux,
388 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
389 					     DP_TRAINING_AUX_RD_MASK);
390 }
391 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
392 
393 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
394 {
395 	usleep_range(100, 200);
396 }
397 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
398 
399 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
400 {
401 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
402 }
403 
404 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
405 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
406 {
407 	u8 interval = dp_lttpr_phy_cap(phy_cap,
408 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
409 		      DP_TRAINING_AUX_RD_MASK;
410 
411 	__drm_dp_link_train_channel_eq_delay(aux, interval);
412 }
413 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
414 
415 u8 drm_dp_link_rate_to_bw_code(int link_rate)
416 {
417 	switch (link_rate) {
418 	case 1000000:
419 		return DP_LINK_BW_10;
420 	case 1350000:
421 		return DP_LINK_BW_13_5;
422 	case 2000000:
423 		return DP_LINK_BW_20;
424 	default:
425 		/* Spec says link_bw = link_rate / 0.27Gbps */
426 		return link_rate / 27000;
427 	}
428 }
429 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
430 
431 int drm_dp_bw_code_to_link_rate(u8 link_bw)
432 {
433 	switch (link_bw) {
434 	case DP_LINK_BW_10:
435 		return 1000000;
436 	case DP_LINK_BW_13_5:
437 		return 1350000;
438 	case DP_LINK_BW_20:
439 		return 2000000;
440 	default:
441 		/* Spec says link_rate = link_bw * 0.27Gbps */
442 		return link_bw * 27000;
443 	}
444 }
445 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
446 
447 #define AUX_RETRY_INTERVAL 500 /* us */
448 
449 static inline void
450 drm_dp_dump_access(const struct drm_dp_aux *aux,
451 		   u8 request, uint offset, void *buffer, int ret)
452 {
453 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
454 
455 	if (ret > 0)
456 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
457 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
458 	else
459 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
460 			   aux->name, offset, arrow, ret);
461 }
462 
463 /**
464  * DOC: dp helpers
465  *
466  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
467  * independent access to AUX functionality. Drivers can take advantage of
468  * this by filling in the fields of the drm_dp_aux structure.
469  *
470  * Transactions are described using a hardware-independent drm_dp_aux_msg
471  * structure, which is passed into a driver's .transfer() implementation.
472  * Both native and I2C-over-AUX transactions are supported.
473  */
474 
475 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
476 			      unsigned int offset, void *buffer, size_t size)
477 {
478 	struct drm_dp_aux_msg msg;
479 	unsigned int retry, native_reply;
480 	int err = 0, ret = 0;
481 
482 	memset(&msg, 0, sizeof(msg));
483 	msg.address = offset;
484 	msg.request = request;
485 	msg.buffer = buffer;
486 	msg.size = size;
487 
488 	mutex_lock(&aux->hw_mutex);
489 
490 	/*
491 	 * The specification doesn't give any recommendation on how often to
492 	 * retry native transactions. We used to retry 7 times like for
493 	 * aux i2c transactions but real world devices this wasn't
494 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
495 	 */
496 	for (retry = 0; retry < 32; retry++) {
497 		if (ret != 0 && ret != -ETIMEDOUT) {
498 			usleep_range(AUX_RETRY_INTERVAL,
499 				     AUX_RETRY_INTERVAL + 100);
500 		}
501 
502 		ret = aux->transfer(aux, &msg);
503 		if (ret >= 0) {
504 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
505 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
506 				if (ret == size)
507 					goto unlock;
508 
509 				ret = -EPROTO;
510 			} else
511 				ret = -EIO;
512 		}
513 
514 		/*
515 		 * We want the error we return to be the error we received on
516 		 * the first transaction, since we may get a different error the
517 		 * next time we retry
518 		 */
519 		if (!err)
520 			err = ret;
521 	}
522 
523 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
524 		    aux->name, err);
525 	ret = err;
526 
527 unlock:
528 	mutex_unlock(&aux->hw_mutex);
529 	return ret;
530 }
531 
532 /**
533  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
534  * @aux: DisplayPort AUX channel (SST)
535  * @offset: address of the register to probe
536  *
537  * Probe the provided DPCD address by reading 1 byte from it. The function can
538  * be used to trigger some side-effect the read access has, like waking up the
539  * sink, without the need for the read-out value.
540  *
541  * Returns 0 if the read access suceeded, or a negative error code on failure.
542  */
543 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
544 {
545 	u8 buffer;
546 	int ret;
547 
548 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
549 	WARN_ON(ret == 0);
550 
551 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
552 
553 	return ret < 0 ? ret : 0;
554 }
555 EXPORT_SYMBOL(drm_dp_dpcd_probe);
556 
557 /**
558  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
559  * @aux: DisplayPort AUX channel (SST or MST)
560  * @offset: address of the (first) register to read
561  * @buffer: buffer to store the register values
562  * @size: number of bytes in @buffer
563  *
564  * Returns the number of bytes transferred on success, or a negative error
565  * code on failure. -EIO is returned if the request was NAKed by the sink or
566  * if the retry count was exceeded. If not all bytes were transferred, this
567  * function returns -EPROTO. Errors from the underlying AUX channel transfer
568  * function, with the exception of -EBUSY (which causes the transaction to
569  * be retried), are propagated to the caller.
570  */
571 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
572 			 void *buffer, size_t size)
573 {
574 	int ret;
575 
576 	/*
577 	 * HP ZR24w corrupts the first DPCD access after entering power save
578 	 * mode. Eg. on a read, the entire buffer will be filled with the same
579 	 * byte. Do a throw away read to avoid corrupting anything we care
580 	 * about. Afterwards things will work correctly until the monitor
581 	 * gets woken up and subsequently re-enters power save mode.
582 	 *
583 	 * The user pressing any button on the monitor is enough to wake it
584 	 * up, so there is no particularly good place to do the workaround.
585 	 * We just have to do it before any DPCD access and hope that the
586 	 * monitor doesn't power down exactly after the throw away read.
587 	 */
588 	if (!aux->is_remote) {
589 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
590 		if (ret < 0)
591 			return ret;
592 	}
593 
594 	if (aux->is_remote)
595 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
596 	else
597 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
598 					 buffer, size);
599 
600 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
601 	return ret;
602 }
603 EXPORT_SYMBOL(drm_dp_dpcd_read);
604 
605 /**
606  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
607  * @aux: DisplayPort AUX channel (SST or MST)
608  * @offset: address of the (first) register to write
609  * @buffer: buffer containing the values to write
610  * @size: number of bytes in @buffer
611  *
612  * Returns the number of bytes transferred on success, or a negative error
613  * code on failure. -EIO is returned if the request was NAKed by the sink or
614  * if the retry count was exceeded. If not all bytes were transferred, this
615  * function returns -EPROTO. Errors from the underlying AUX channel transfer
616  * function, with the exception of -EBUSY (which causes the transaction to
617  * be retried), are propagated to the caller.
618  */
619 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
620 			  void *buffer, size_t size)
621 {
622 	int ret;
623 
624 	if (aux->is_remote)
625 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
626 	else
627 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
628 					 buffer, size);
629 
630 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
631 	return ret;
632 }
633 EXPORT_SYMBOL(drm_dp_dpcd_write);
634 
635 /**
636  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
637  * @aux: DisplayPort AUX channel
638  * @status: buffer to store the link status in (must be at least 6 bytes)
639  *
640  * Returns the number of bytes transferred on success or a negative error
641  * code on failure.
642  */
643 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
644 				 u8 status[DP_LINK_STATUS_SIZE])
645 {
646 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
647 				DP_LINK_STATUS_SIZE);
648 }
649 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
650 
651 /**
652  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
653  * @aux: DisplayPort AUX channel
654  * @dp_phy: the DP PHY to get the link status for
655  * @link_status: buffer to return the status in
656  *
657  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
658  * layout of the returned @link_status matches the DPCD register layout of the
659  * DPRX PHY link status.
660  *
661  * Returns 0 if the information was read successfully or a negative error code
662  * on failure.
663  */
664 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
665 				     enum drm_dp_phy dp_phy,
666 				     u8 link_status[DP_LINK_STATUS_SIZE])
667 {
668 	int ret;
669 
670 	if (dp_phy == DP_PHY_DPRX) {
671 		ret = drm_dp_dpcd_read(aux,
672 				       DP_LANE0_1_STATUS,
673 				       link_status,
674 				       DP_LINK_STATUS_SIZE);
675 
676 		if (ret < 0)
677 			return ret;
678 
679 		WARN_ON(ret != DP_LINK_STATUS_SIZE);
680 
681 		return 0;
682 	}
683 
684 	ret = drm_dp_dpcd_read(aux,
685 			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
686 			       link_status,
687 			       DP_LINK_STATUS_SIZE - 1);
688 
689 	if (ret < 0)
690 		return ret;
691 
692 	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
693 
694 	/* Convert the LTTPR to the sink PHY link status layout */
695 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
696 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
697 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
698 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
699 
700 	return 0;
701 }
702 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
703 
704 static bool is_edid_digital_input_dp(const struct edid *edid)
705 {
706 	return edid && edid->revision >= 4 &&
707 		edid->input & DRM_EDID_INPUT_DIGITAL &&
708 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
709 }
710 
711 /**
712  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
713  * @dpcd: DisplayPort configuration data
714  * @port_cap: port capabilities
715  * @type: port type to be checked. Can be:
716  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
717  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
718  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
719  *
720  * Caveat: Only works with DPCD 1.1+ port caps.
721  *
722  * Returns: whether the downstream facing port matches the type.
723  */
724 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
725 			       const u8 port_cap[4], u8 type)
726 {
727 	return drm_dp_is_branch(dpcd) &&
728 		dpcd[DP_DPCD_REV] >= 0x11 &&
729 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
730 }
731 EXPORT_SYMBOL(drm_dp_downstream_is_type);
732 
733 /**
734  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
735  * @dpcd: DisplayPort configuration data
736  * @port_cap: port capabilities
737  * @edid: EDID
738  *
739  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
740  */
741 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
742 			       const u8 port_cap[4],
743 			       const struct edid *edid)
744 {
745 	if (dpcd[DP_DPCD_REV] < 0x11) {
746 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
747 		case DP_DWN_STRM_PORT_TYPE_TMDS:
748 			return true;
749 		default:
750 			return false;
751 		}
752 	}
753 
754 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
755 	case DP_DS_PORT_TYPE_DP_DUALMODE:
756 		if (is_edid_digital_input_dp(edid))
757 			return false;
758 		fallthrough;
759 	case DP_DS_PORT_TYPE_DVI:
760 	case DP_DS_PORT_TYPE_HDMI:
761 		return true;
762 	default:
763 		return false;
764 	}
765 }
766 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
767 
768 /**
769  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
770  * @aux: DisplayPort AUX channel
771  * @real_edid_checksum: real edid checksum for the last block
772  *
773  * Returns:
774  * True on success
775  */
776 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
777 				    u8 real_edid_checksum)
778 {
779 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
780 
781 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
782 			     &auto_test_req, 1) < 1) {
783 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
784 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
785 		return false;
786 	}
787 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
788 
789 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
790 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
791 			aux->name, DP_TEST_REQUEST);
792 		return false;
793 	}
794 	link_edid_read &= DP_TEST_LINK_EDID_READ;
795 
796 	if (!auto_test_req || !link_edid_read) {
797 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
798 			    aux->name);
799 		return false;
800 	}
801 
802 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
803 			      &auto_test_req, 1) < 1) {
804 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
805 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
806 		return false;
807 	}
808 
809 	/* send back checksum for the last edid extension block data */
810 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
811 			      &real_edid_checksum, 1) < 1) {
812 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
813 			aux->name, DP_TEST_EDID_CHECKSUM);
814 		return false;
815 	}
816 
817 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
818 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
819 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
820 			aux->name, DP_TEST_RESPONSE);
821 		return false;
822 	}
823 
824 	return true;
825 }
826 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
827 
828 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
829 {
830 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
831 
832 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
833 		port_count = 4;
834 
835 	return port_count;
836 }
837 
838 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
839 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
840 {
841 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
842 	int ret;
843 
844 	/*
845 	 * Prior to DP1.3 the bit represented by
846 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
847 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
848 	 * the true capability of the panel. The only way to check is to
849 	 * then compare 0000h and 2200h.
850 	 */
851 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
852 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
853 		return 0;
854 
855 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
856 			       sizeof(dpcd_ext));
857 	if (ret < 0)
858 		return ret;
859 	if (ret != sizeof(dpcd_ext))
860 		return -EIO;
861 
862 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
863 		drm_dbg_kms(aux->drm_dev,
864 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
865 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
866 		return 0;
867 	}
868 
869 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
870 		return 0;
871 
872 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
873 
874 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
875 
876 	return 0;
877 }
878 
879 /**
880  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
881  * available
882  * @aux: DisplayPort AUX channel
883  * @dpcd: Buffer to store the resulting DPCD in
884  *
885  * Attempts to read the base DPCD caps for @aux. Additionally, this function
886  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
887  * present.
888  *
889  * Returns: %0 if the DPCD was read successfully, negative error code
890  * otherwise.
891  */
892 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
893 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
894 {
895 	int ret;
896 
897 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
898 	if (ret < 0)
899 		return ret;
900 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
901 		return -EIO;
902 
903 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
904 	if (ret < 0)
905 		return ret;
906 
907 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
908 
909 	return ret;
910 }
911 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
912 
913 /**
914  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
915  * @aux: DisplayPort AUX channel
916  * @dpcd: A cached copy of the port's DPCD
917  * @downstream_ports: buffer to store the downstream port info in
918  *
919  * See also:
920  * drm_dp_downstream_max_clock()
921  * drm_dp_downstream_max_bpc()
922  *
923  * Returns: 0 if either the downstream port info was read successfully or
924  * there was no downstream info to read, or a negative error code otherwise.
925  */
926 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
927 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
928 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
929 {
930 	int ret;
931 	u8 len;
932 
933 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
934 
935 	/* No downstream info to read */
936 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
937 		return 0;
938 
939 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
940 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
941 	 * some branches do it we need to handle it regardless.
942 	 */
943 	len = drm_dp_downstream_port_count(dpcd);
944 	if (!len)
945 		return 0;
946 
947 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
948 		len *= 4;
949 
950 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
951 	if (ret < 0)
952 		return ret;
953 	if (ret != len)
954 		return -EIO;
955 
956 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
957 
958 	return 0;
959 }
960 EXPORT_SYMBOL(drm_dp_read_downstream_info);
961 
962 /**
963  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
964  * @dpcd: DisplayPort configuration data
965  * @port_cap: port capabilities
966  *
967  * Returns: Downstream facing port max dot clock in kHz on success,
968  * or 0 if max clock not defined
969  */
970 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
971 				   const u8 port_cap[4])
972 {
973 	if (!drm_dp_is_branch(dpcd))
974 		return 0;
975 
976 	if (dpcd[DP_DPCD_REV] < 0x11)
977 		return 0;
978 
979 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
980 	case DP_DS_PORT_TYPE_VGA:
981 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
982 			return 0;
983 		return port_cap[1] * 8000;
984 	default:
985 		return 0;
986 	}
987 }
988 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
989 
990 /**
991  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
992  * @dpcd: DisplayPort configuration data
993  * @port_cap: port capabilities
994  * @edid: EDID
995  *
996  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
997  * or 0 if max TMDS clock not defined
998  */
999 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1000 				     const u8 port_cap[4],
1001 				     const struct edid *edid)
1002 {
1003 	if (!drm_dp_is_branch(dpcd))
1004 		return 0;
1005 
1006 	if (dpcd[DP_DPCD_REV] < 0x11) {
1007 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1008 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1009 			return 165000;
1010 		default:
1011 			return 0;
1012 		}
1013 	}
1014 
1015 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1016 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1017 		if (is_edid_digital_input_dp(edid))
1018 			return 0;
1019 		/*
1020 		 * It's left up to the driver to check the
1021 		 * DP dual mode adapter's max TMDS clock.
1022 		 *
1023 		 * Unfortunately it looks like branch devices
1024 		 * may not fordward that the DP dual mode i2c
1025 		 * access so we just usually get i2c nak :(
1026 		 */
1027 		fallthrough;
1028 	case DP_DS_PORT_TYPE_HDMI:
1029 		 /*
1030 		  * We should perhaps assume 165 MHz when detailed cap
1031 		  * info is not available. But looks like many typical
1032 		  * branch devices fall into that category and so we'd
1033 		  * probably end up with users complaining that they can't
1034 		  * get high resolution modes with their favorite dongle.
1035 		  *
1036 		  * So let's limit to 300 MHz instead since DPCD 1.4
1037 		  * HDMI 2.0 DFPs are required to have the detailed cap
1038 		  * info. So it's more likely we're dealing with a HDMI 1.4
1039 		  * compatible* device here.
1040 		  */
1041 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1042 			return 300000;
1043 		return port_cap[1] * 2500;
1044 	case DP_DS_PORT_TYPE_DVI:
1045 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1046 			return 165000;
1047 		/* FIXME what to do about DVI dual link? */
1048 		return port_cap[1] * 2500;
1049 	default:
1050 		return 0;
1051 	}
1052 }
1053 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1054 
1055 /**
1056  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1057  * @dpcd: DisplayPort configuration data
1058  * @port_cap: port capabilities
1059  * @edid: EDID
1060  *
1061  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1062  * or 0 if max TMDS clock not defined
1063  */
1064 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1065 				     const u8 port_cap[4],
1066 				     const struct edid *edid)
1067 {
1068 	if (!drm_dp_is_branch(dpcd))
1069 		return 0;
1070 
1071 	if (dpcd[DP_DPCD_REV] < 0x11) {
1072 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1073 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1074 			return 25000;
1075 		default:
1076 			return 0;
1077 		}
1078 	}
1079 
1080 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1081 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1082 		if (is_edid_digital_input_dp(edid))
1083 			return 0;
1084 		fallthrough;
1085 	case DP_DS_PORT_TYPE_DVI:
1086 	case DP_DS_PORT_TYPE_HDMI:
1087 		/*
1088 		 * Unclear whether the protocol converter could
1089 		 * utilize pixel replication. Assume it won't.
1090 		 */
1091 		return 25000;
1092 	default:
1093 		return 0;
1094 	}
1095 }
1096 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1097 
1098 /**
1099  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1100  *                               bits per component
1101  * @dpcd: DisplayPort configuration data
1102  * @port_cap: downstream facing port capabilities
1103  * @edid: EDID
1104  *
1105  * Returns: Max bpc on success or 0 if max bpc not defined
1106  */
1107 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1108 			      const u8 port_cap[4],
1109 			      const struct edid *edid)
1110 {
1111 	if (!drm_dp_is_branch(dpcd))
1112 		return 0;
1113 
1114 	if (dpcd[DP_DPCD_REV] < 0x11) {
1115 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1116 		case DP_DWN_STRM_PORT_TYPE_DP:
1117 			return 0;
1118 		default:
1119 			return 8;
1120 		}
1121 	}
1122 
1123 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1124 	case DP_DS_PORT_TYPE_DP:
1125 		return 0;
1126 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1127 		if (is_edid_digital_input_dp(edid))
1128 			return 0;
1129 		fallthrough;
1130 	case DP_DS_PORT_TYPE_HDMI:
1131 	case DP_DS_PORT_TYPE_DVI:
1132 	case DP_DS_PORT_TYPE_VGA:
1133 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1134 			return 8;
1135 
1136 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1137 		case DP_DS_8BPC:
1138 			return 8;
1139 		case DP_DS_10BPC:
1140 			return 10;
1141 		case DP_DS_12BPC:
1142 			return 12;
1143 		case DP_DS_16BPC:
1144 			return 16;
1145 		default:
1146 			return 8;
1147 		}
1148 		break;
1149 	default:
1150 		return 8;
1151 	}
1152 }
1153 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1154 
1155 /**
1156  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1157  *                                       YCbCr 4:2:0 pass-through capability
1158  * @dpcd: DisplayPort configuration data
1159  * @port_cap: downstream facing port capabilities
1160  *
1161  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1162  */
1163 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1164 				       const u8 port_cap[4])
1165 {
1166 	if (!drm_dp_is_branch(dpcd))
1167 		return false;
1168 
1169 	if (dpcd[DP_DPCD_REV] < 0x13)
1170 		return false;
1171 
1172 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1173 	case DP_DS_PORT_TYPE_DP:
1174 		return true;
1175 	case DP_DS_PORT_TYPE_HDMI:
1176 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1177 			return false;
1178 
1179 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1180 	default:
1181 		return false;
1182 	}
1183 }
1184 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1185 
1186 /**
1187  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1188  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1189  * @dpcd: DisplayPort configuration data
1190  * @port_cap: downstream facing port capabilities
1191  *
1192  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1193  */
1194 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1195 					     const u8 port_cap[4])
1196 {
1197 	if (!drm_dp_is_branch(dpcd))
1198 		return false;
1199 
1200 	if (dpcd[DP_DPCD_REV] < 0x13)
1201 		return false;
1202 
1203 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1204 	case DP_DS_PORT_TYPE_HDMI:
1205 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1206 			return false;
1207 
1208 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1209 	default:
1210 		return false;
1211 	}
1212 }
1213 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1214 
1215 /**
1216  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1217  *                                               RGB->YCbCr conversion capability
1218  * @dpcd: DisplayPort configuration data
1219  * @port_cap: downstream facing port capabilities
1220  * @color_spc: Colorspace for which conversion cap is sought
1221  *
1222  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1223  * colorspace.
1224  */
1225 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1226 					       const u8 port_cap[4],
1227 					       u8 color_spc)
1228 {
1229 	if (!drm_dp_is_branch(dpcd))
1230 		return false;
1231 
1232 	if (dpcd[DP_DPCD_REV] < 0x13)
1233 		return false;
1234 
1235 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1236 	case DP_DS_PORT_TYPE_HDMI:
1237 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1238 			return false;
1239 
1240 		return port_cap[3] & color_spc;
1241 	default:
1242 		return false;
1243 	}
1244 }
1245 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1246 
1247 /**
1248  * drm_dp_downstream_mode() - return a mode for downstream facing port
1249  * @dev: DRM device
1250  * @dpcd: DisplayPort configuration data
1251  * @port_cap: port capabilities
1252  *
1253  * Provides a suitable mode for downstream facing ports without EDID.
1254  *
1255  * Returns: A new drm_display_mode on success or NULL on failure
1256  */
1257 struct drm_display_mode *
1258 drm_dp_downstream_mode(struct drm_device *dev,
1259 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1260 		       const u8 port_cap[4])
1261 
1262 {
1263 	u8 vic;
1264 
1265 	if (!drm_dp_is_branch(dpcd))
1266 		return NULL;
1267 
1268 	if (dpcd[DP_DPCD_REV] < 0x11)
1269 		return NULL;
1270 
1271 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1272 	case DP_DS_PORT_TYPE_NON_EDID:
1273 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1274 		case DP_DS_NON_EDID_720x480i_60:
1275 			vic = 6;
1276 			break;
1277 		case DP_DS_NON_EDID_720x480i_50:
1278 			vic = 21;
1279 			break;
1280 		case DP_DS_NON_EDID_1920x1080i_60:
1281 			vic = 5;
1282 			break;
1283 		case DP_DS_NON_EDID_1920x1080i_50:
1284 			vic = 20;
1285 			break;
1286 		case DP_DS_NON_EDID_1280x720_60:
1287 			vic = 4;
1288 			break;
1289 		case DP_DS_NON_EDID_1280x720_50:
1290 			vic = 19;
1291 			break;
1292 		default:
1293 			return NULL;
1294 		}
1295 		return drm_display_mode_from_cea_vic(dev, vic);
1296 	default:
1297 		return NULL;
1298 	}
1299 }
1300 EXPORT_SYMBOL(drm_dp_downstream_mode);
1301 
1302 /**
1303  * drm_dp_downstream_id() - identify branch device
1304  * @aux: DisplayPort AUX channel
1305  * @id: DisplayPort branch device id
1306  *
1307  * Returns branch device id on success or NULL on failure
1308  */
1309 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1310 {
1311 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1312 }
1313 EXPORT_SYMBOL(drm_dp_downstream_id);
1314 
1315 /**
1316  * drm_dp_downstream_debug() - debug DP branch devices
1317  * @m: pointer for debugfs file
1318  * @dpcd: DisplayPort configuration data
1319  * @port_cap: port capabilities
1320  * @edid: EDID
1321  * @aux: DisplayPort AUX channel
1322  *
1323  */
1324 void drm_dp_downstream_debug(struct seq_file *m,
1325 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1326 			     const u8 port_cap[4],
1327 			     const struct edid *edid,
1328 			     struct drm_dp_aux *aux)
1329 {
1330 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1331 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1332 	int clk;
1333 	int bpc;
1334 	char id[7];
1335 	int len;
1336 	uint8_t rev[2];
1337 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1338 	bool branch_device = drm_dp_is_branch(dpcd);
1339 
1340 	seq_printf(m, "\tDP branch device present: %s\n",
1341 		   str_yes_no(branch_device));
1342 
1343 	if (!branch_device)
1344 		return;
1345 
1346 	switch (type) {
1347 	case DP_DS_PORT_TYPE_DP:
1348 		seq_puts(m, "\t\tType: DisplayPort\n");
1349 		break;
1350 	case DP_DS_PORT_TYPE_VGA:
1351 		seq_puts(m, "\t\tType: VGA\n");
1352 		break;
1353 	case DP_DS_PORT_TYPE_DVI:
1354 		seq_puts(m, "\t\tType: DVI\n");
1355 		break;
1356 	case DP_DS_PORT_TYPE_HDMI:
1357 		seq_puts(m, "\t\tType: HDMI\n");
1358 		break;
1359 	case DP_DS_PORT_TYPE_NON_EDID:
1360 		seq_puts(m, "\t\tType: others without EDID support\n");
1361 		break;
1362 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1363 		seq_puts(m, "\t\tType: DP++\n");
1364 		break;
1365 	case DP_DS_PORT_TYPE_WIRELESS:
1366 		seq_puts(m, "\t\tType: Wireless\n");
1367 		break;
1368 	default:
1369 		seq_puts(m, "\t\tType: N/A\n");
1370 	}
1371 
1372 	memset(id, 0, sizeof(id));
1373 	drm_dp_downstream_id(aux, id);
1374 	seq_printf(m, "\t\tID: %s\n", id);
1375 
1376 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1377 	if (len > 0)
1378 		seq_printf(m, "\t\tHW: %d.%d\n",
1379 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1380 
1381 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1382 	if (len > 0)
1383 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1384 
1385 	if (detailed_cap_info) {
1386 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1387 		if (clk > 0)
1388 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1389 
1390 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1391 		if (clk > 0)
1392 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1393 
1394 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1395 		if (clk > 0)
1396 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1397 
1398 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1399 
1400 		if (bpc > 0)
1401 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1402 	}
1403 }
1404 EXPORT_SYMBOL(drm_dp_downstream_debug);
1405 
1406 /**
1407  * drm_dp_subconnector_type() - get DP branch device type
1408  * @dpcd: DisplayPort configuration data
1409  * @port_cap: port capabilities
1410  */
1411 enum drm_mode_subconnector
1412 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1413 			 const u8 port_cap[4])
1414 {
1415 	int type;
1416 	if (!drm_dp_is_branch(dpcd))
1417 		return DRM_MODE_SUBCONNECTOR_Native;
1418 	/* DP 1.0 approach */
1419 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1420 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1421 		       DP_DWN_STRM_PORT_TYPE_MASK;
1422 
1423 		switch (type) {
1424 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1425 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1426 			return DRM_MODE_SUBCONNECTOR_DVID;
1427 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1428 			/* Can be VGA or DVI-A, VGA is more popular */
1429 			return DRM_MODE_SUBCONNECTOR_VGA;
1430 		case DP_DWN_STRM_PORT_TYPE_DP:
1431 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1432 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1433 		default:
1434 			return DRM_MODE_SUBCONNECTOR_Unknown;
1435 		}
1436 	}
1437 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1438 
1439 	switch (type) {
1440 	case DP_DS_PORT_TYPE_DP:
1441 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1442 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1443 	case DP_DS_PORT_TYPE_VGA:
1444 		return DRM_MODE_SUBCONNECTOR_VGA;
1445 	case DP_DS_PORT_TYPE_DVI:
1446 		return DRM_MODE_SUBCONNECTOR_DVID;
1447 	case DP_DS_PORT_TYPE_HDMI:
1448 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1449 	case DP_DS_PORT_TYPE_WIRELESS:
1450 		return DRM_MODE_SUBCONNECTOR_Wireless;
1451 	case DP_DS_PORT_TYPE_NON_EDID:
1452 	default:
1453 		return DRM_MODE_SUBCONNECTOR_Unknown;
1454 	}
1455 }
1456 EXPORT_SYMBOL(drm_dp_subconnector_type);
1457 
1458 /**
1459  * drm_dp_set_subconnector_property - set subconnector for DP connector
1460  * @connector: connector to set property on
1461  * @status: connector status
1462  * @dpcd: DisplayPort configuration data
1463  * @port_cap: port capabilities
1464  *
1465  * Called by a driver on every detect event.
1466  */
1467 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1468 				      enum drm_connector_status status,
1469 				      const u8 *dpcd,
1470 				      const u8 port_cap[4])
1471 {
1472 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1473 
1474 	if (status == connector_status_connected)
1475 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1476 	drm_object_property_set_value(&connector->base,
1477 			connector->dev->mode_config.dp_subconnector_property,
1478 			subconnector);
1479 }
1480 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1481 
1482 /**
1483  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1484  * count
1485  * @connector: The DRM connector to check
1486  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1487  * @desc: A cached copy of the connector's DP descriptor
1488  *
1489  * See also: drm_dp_read_sink_count()
1490  *
1491  * Returns: %True if the (e)DP connector has a valid sink count that should
1492  * be probed, %false otherwise.
1493  */
1494 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1495 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1496 				const struct drm_dp_desc *desc)
1497 {
1498 	/* Some eDP panels don't set a valid value for the sink count */
1499 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1500 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1501 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1502 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1503 }
1504 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1505 
1506 /**
1507  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1508  * @aux: The DP AUX channel to use
1509  *
1510  * See also: drm_dp_read_sink_count_cap()
1511  *
1512  * Returns: The current sink count reported by @aux, or a negative error code
1513  * otherwise.
1514  */
1515 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1516 {
1517 	u8 count;
1518 	int ret;
1519 
1520 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1521 	if (ret < 0)
1522 		return ret;
1523 	if (ret != 1)
1524 		return -EIO;
1525 
1526 	return DP_GET_SINK_COUNT(count);
1527 }
1528 EXPORT_SYMBOL(drm_dp_read_sink_count);
1529 
1530 /*
1531  * I2C-over-AUX implementation
1532  */
1533 
1534 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1535 {
1536 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1537 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1538 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1539 	       I2C_FUNC_10BIT_ADDR;
1540 }
1541 
1542 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1543 {
1544 	/*
1545 	 * In case of i2c defer or short i2c ack reply to a write,
1546 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1547 	 * rest of the message
1548 	 */
1549 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1550 		msg->request &= DP_AUX_I2C_MOT;
1551 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1552 	}
1553 }
1554 
1555 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1556 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1557 #define AUX_STOP_LEN 4
1558 #define AUX_CMD_LEN 4
1559 #define AUX_ADDRESS_LEN 20
1560 #define AUX_REPLY_PAD_LEN 4
1561 #define AUX_LENGTH_LEN 8
1562 
1563 /*
1564  * Calculate the duration of the AUX request/reply in usec. Gives the
1565  * "best" case estimate, ie. successful while as short as possible.
1566  */
1567 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1568 {
1569 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1570 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1571 
1572 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1573 		len += msg->size * 8;
1574 
1575 	return len;
1576 }
1577 
1578 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1579 {
1580 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1581 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1582 
1583 	/*
1584 	 * For read we expect what was asked. For writes there will
1585 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1586 	 */
1587 	if (msg->request & DP_AUX_I2C_READ)
1588 		len += msg->size * 8;
1589 
1590 	return len;
1591 }
1592 
1593 #define I2C_START_LEN 1
1594 #define I2C_STOP_LEN 1
1595 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1596 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1597 
1598 /*
1599  * Calculate the length of the i2c transfer in usec, assuming
1600  * the i2c bus speed is as specified. Gives the the "worst"
1601  * case estimate, ie. successful while as long as possible.
1602  * Doesn't account the "MOT" bit, and instead assumes each
1603  * message includes a START, ADDRESS and STOP. Neither does it
1604  * account for additional random variables such as clock stretching.
1605  */
1606 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1607 				   int i2c_speed_khz)
1608 {
1609 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1610 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1611 			     msg->size * I2C_DATA_LEN +
1612 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1613 }
1614 
1615 /*
1616  * Determine how many retries should be attempted to successfully transfer
1617  * the specified message, based on the estimated durations of the
1618  * i2c and AUX transfers.
1619  */
1620 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1621 			      int i2c_speed_khz)
1622 {
1623 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1624 		drm_dp_aux_reply_duration(msg);
1625 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1626 
1627 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1628 }
1629 
1630 /*
1631  * FIXME currently assumes 10 kHz as some real world devices seem
1632  * to require it. We should query/set the speed via DPCD if supported.
1633  */
1634 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1635 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1636 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1637 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1638 
1639 /*
1640  * Transfer a single I2C-over-AUX message and handle various error conditions,
1641  * retrying the transaction as appropriate.  It is assumed that the
1642  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1643  * reply field.
1644  *
1645  * Returns bytes transferred on success, or a negative error code on failure.
1646  */
1647 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1648 {
1649 	unsigned int retry, defer_i2c;
1650 	int ret;
1651 	/*
1652 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1653 	 * is required to retry at least seven times upon receiving AUX_DEFER
1654 	 * before giving up the AUX transaction.
1655 	 *
1656 	 * We also try to account for the i2c bus speed.
1657 	 */
1658 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1659 
1660 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1661 		ret = aux->transfer(aux, msg);
1662 		if (ret < 0) {
1663 			if (ret == -EBUSY)
1664 				continue;
1665 
1666 			/*
1667 			 * While timeouts can be errors, they're usually normal
1668 			 * behavior (for instance, when a driver tries to
1669 			 * communicate with a non-existent DisplayPort device).
1670 			 * Avoid spamming the kernel log with timeout errors.
1671 			 */
1672 			if (ret == -ETIMEDOUT)
1673 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1674 							aux->name);
1675 			else
1676 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1677 					    aux->name, ret);
1678 			return ret;
1679 		}
1680 
1681 
1682 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1683 		case DP_AUX_NATIVE_REPLY_ACK:
1684 			/*
1685 			 * For I2C-over-AUX transactions this isn't enough, we
1686 			 * need to check for the I2C ACK reply.
1687 			 */
1688 			break;
1689 
1690 		case DP_AUX_NATIVE_REPLY_NACK:
1691 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1692 				    aux->name, ret, msg->size);
1693 			return -EREMOTEIO;
1694 
1695 		case DP_AUX_NATIVE_REPLY_DEFER:
1696 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1697 			/*
1698 			 * We could check for I2C bit rate capabilities and if
1699 			 * available adjust this interval. We could also be
1700 			 * more careful with DP-to-legacy adapters where a
1701 			 * long legacy cable may force very low I2C bit rates.
1702 			 *
1703 			 * For now just defer for long enough to hopefully be
1704 			 * safe for all use-cases.
1705 			 */
1706 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1707 			continue;
1708 
1709 		default:
1710 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1711 				aux->name, msg->reply);
1712 			return -EREMOTEIO;
1713 		}
1714 
1715 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1716 		case DP_AUX_I2C_REPLY_ACK:
1717 			/*
1718 			 * Both native ACK and I2C ACK replies received. We
1719 			 * can assume the transfer was successful.
1720 			 */
1721 			if (ret != msg->size)
1722 				drm_dp_i2c_msg_write_status_update(msg);
1723 			return ret;
1724 
1725 		case DP_AUX_I2C_REPLY_NACK:
1726 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1727 				    aux->name, ret, msg->size);
1728 			aux->i2c_nack_count++;
1729 			return -EREMOTEIO;
1730 
1731 		case DP_AUX_I2C_REPLY_DEFER:
1732 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1733 			/* DP Compliance Test 4.2.2.5 Requirement:
1734 			 * Must have at least 7 retries for I2C defers on the
1735 			 * transaction to pass this test
1736 			 */
1737 			aux->i2c_defer_count++;
1738 			if (defer_i2c < 7)
1739 				defer_i2c++;
1740 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1741 			drm_dp_i2c_msg_write_status_update(msg);
1742 
1743 			continue;
1744 
1745 		default:
1746 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1747 				aux->name, msg->reply);
1748 			return -EREMOTEIO;
1749 		}
1750 	}
1751 
1752 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1753 	return -EREMOTEIO;
1754 }
1755 
1756 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1757 				       const struct i2c_msg *i2c_msg)
1758 {
1759 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1760 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1761 	if (!(i2c_msg->flags & I2C_M_STOP))
1762 		msg->request |= DP_AUX_I2C_MOT;
1763 }
1764 
1765 /*
1766  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1767  *
1768  * Returns an error code on failure, or a recommended transfer size on success.
1769  */
1770 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1771 {
1772 	int err, ret = orig_msg->size;
1773 	struct drm_dp_aux_msg msg = *orig_msg;
1774 
1775 	while (msg.size > 0) {
1776 		err = drm_dp_i2c_do_msg(aux, &msg);
1777 		if (err <= 0)
1778 			return err == 0 ? -EPROTO : err;
1779 
1780 		if (err < msg.size && err < ret) {
1781 			drm_dbg_kms(aux->drm_dev,
1782 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1783 				    aux->name, msg.size, err);
1784 			ret = err;
1785 		}
1786 
1787 		msg.size -= err;
1788 		msg.buffer += err;
1789 	}
1790 
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1796  * packets to be as large as possible. If not, the I2C transactions never
1797  * succeed. Hence the default is maximum.
1798  */
1799 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1800 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1801 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1802 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1803 
1804 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1805 			   int num)
1806 {
1807 	struct drm_dp_aux *aux = adapter->algo_data;
1808 	unsigned int i, j;
1809 	unsigned transfer_size;
1810 	struct drm_dp_aux_msg msg;
1811 	int err = 0;
1812 
1813 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1814 
1815 	memset(&msg, 0, sizeof(msg));
1816 
1817 	for (i = 0; i < num; i++) {
1818 		msg.address = msgs[i].addr;
1819 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1820 		/* Send a bare address packet to start the transaction.
1821 		 * Zero sized messages specify an address only (bare
1822 		 * address) transaction.
1823 		 */
1824 		msg.buffer = NULL;
1825 		msg.size = 0;
1826 		err = drm_dp_i2c_do_msg(aux, &msg);
1827 
1828 		/*
1829 		 * Reset msg.request in case in case it got
1830 		 * changed into a WRITE_STATUS_UPDATE.
1831 		 */
1832 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1833 
1834 		if (err < 0)
1835 			break;
1836 		/* We want each transaction to be as large as possible, but
1837 		 * we'll go to smaller sizes if the hardware gives us a
1838 		 * short reply.
1839 		 */
1840 		transfer_size = dp_aux_i2c_transfer_size;
1841 		for (j = 0; j < msgs[i].len; j += msg.size) {
1842 			msg.buffer = msgs[i].buf + j;
1843 			msg.size = min(transfer_size, msgs[i].len - j);
1844 
1845 			err = drm_dp_i2c_drain_msg(aux, &msg);
1846 
1847 			/*
1848 			 * Reset msg.request in case in case it got
1849 			 * changed into a WRITE_STATUS_UPDATE.
1850 			 */
1851 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1852 
1853 			if (err < 0)
1854 				break;
1855 			transfer_size = err;
1856 		}
1857 		if (err < 0)
1858 			break;
1859 	}
1860 	if (err >= 0)
1861 		err = num;
1862 	/* Send a bare address packet to close out the transaction.
1863 	 * Zero sized messages specify an address only (bare
1864 	 * address) transaction.
1865 	 */
1866 	msg.request &= ~DP_AUX_I2C_MOT;
1867 	msg.buffer = NULL;
1868 	msg.size = 0;
1869 	(void)drm_dp_i2c_do_msg(aux, &msg);
1870 
1871 	return err;
1872 }
1873 
1874 static const struct i2c_algorithm drm_dp_i2c_algo = {
1875 	.functionality = drm_dp_i2c_functionality,
1876 	.master_xfer = drm_dp_i2c_xfer,
1877 };
1878 
1879 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1880 {
1881 	return container_of(i2c, struct drm_dp_aux, ddc);
1882 }
1883 
1884 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1885 {
1886 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1887 }
1888 
1889 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1890 {
1891 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1892 }
1893 
1894 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1895 {
1896 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1897 }
1898 
1899 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1900 	.lock_bus = lock_bus,
1901 	.trylock_bus = trylock_bus,
1902 	.unlock_bus = unlock_bus,
1903 };
1904 
1905 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1906 {
1907 	u8 buf, count;
1908 	int ret;
1909 
1910 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1911 	if (ret < 0)
1912 		return ret;
1913 
1914 	WARN_ON(!(buf & DP_TEST_SINK_START));
1915 
1916 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1917 	if (ret < 0)
1918 		return ret;
1919 
1920 	count = buf & DP_TEST_COUNT_MASK;
1921 	if (count == aux->crc_count)
1922 		return -EAGAIN; /* No CRC yet */
1923 
1924 	aux->crc_count = count;
1925 
1926 	/*
1927 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1928 	 * per component (RGB or CrYCb).
1929 	 */
1930 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1931 	if (ret < 0)
1932 		return ret;
1933 
1934 	return 0;
1935 }
1936 
1937 static void drm_dp_aux_crc_work(struct work_struct *work)
1938 {
1939 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1940 					      crc_work);
1941 	struct drm_crtc *crtc;
1942 	u8 crc_bytes[6];
1943 	uint32_t crcs[3];
1944 	int ret;
1945 
1946 	if (WARN_ON(!aux->crtc))
1947 		return;
1948 
1949 	crtc = aux->crtc;
1950 	while (crtc->crc.opened) {
1951 		drm_crtc_wait_one_vblank(crtc);
1952 		if (!crtc->crc.opened)
1953 			break;
1954 
1955 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
1956 		if (ret == -EAGAIN) {
1957 			usleep_range(1000, 2000);
1958 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
1959 		}
1960 
1961 		if (ret == -EAGAIN) {
1962 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
1963 				    aux->name, ret);
1964 			continue;
1965 		} else if (ret) {
1966 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
1967 			continue;
1968 		}
1969 
1970 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
1971 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
1972 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
1973 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
1974 	}
1975 }
1976 
1977 /**
1978  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
1979  * @aux: DisplayPort AUX channel
1980  *
1981  * Used for remote aux channel in general. Merely initialize the crc work
1982  * struct.
1983  */
1984 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
1985 {
1986 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1987 }
1988 EXPORT_SYMBOL(drm_dp_remote_aux_init);
1989 
1990 /**
1991  * drm_dp_aux_init() - minimally initialise an aux channel
1992  * @aux: DisplayPort AUX channel
1993  *
1994  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
1995  * the outside world, call drm_dp_aux_init() first. For drivers which are
1996  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
1997  * &drm_connector), you must still call drm_dp_aux_register() once the connector
1998  * has been registered to allow userspace access to the auxiliary DP channel.
1999  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2000  * early as possible so that the &drm_device that corresponds to the AUX adapter
2001  * may be mentioned in debugging output from the DRM DP helpers.
2002  *
2003  * For devices which use a separate platform device for their AUX adapters, this
2004  * may be called as early as required by the driver.
2005  *
2006  */
2007 void drm_dp_aux_init(struct drm_dp_aux *aux)
2008 {
2009 	mutex_init(&aux->hw_mutex);
2010 	mutex_init(&aux->cec.lock);
2011 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2012 
2013 	aux->ddc.algo = &drm_dp_i2c_algo;
2014 	aux->ddc.algo_data = aux;
2015 	aux->ddc.retries = 3;
2016 
2017 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2018 }
2019 EXPORT_SYMBOL(drm_dp_aux_init);
2020 
2021 /**
2022  * drm_dp_aux_register() - initialise and register aux channel
2023  * @aux: DisplayPort AUX channel
2024  *
2025  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2026  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2027  * initialized. For devices which are grandparents of their AUX channels,
2028  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2029  * corresponds to @aux. For these devices, it's advised to call
2030  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2031  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2032  * Functions which don't follow this will likely Oops when
2033  * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2034  *
2035  * For devices where the AUX channel is a device that exists independently of
2036  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2037  * recommended to call drm_dp_aux_register() after a &drm_device has been
2038  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2039  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2040  * with the AUX channel (e.g. on bridge detach).
2041  *
2042  * Drivers which need to use the aux channel before either of the two points
2043  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2044  * channel before registration.
2045  *
2046  * Returns 0 on success or a negative error code on failure.
2047  */
2048 int drm_dp_aux_register(struct drm_dp_aux *aux)
2049 {
2050 	int ret;
2051 
2052 	WARN_ON_ONCE(!aux->drm_dev);
2053 
2054 	if (!aux->ddc.algo)
2055 		drm_dp_aux_init(aux);
2056 
2057 	aux->ddc.class = I2C_CLASS_DDC;
2058 	aux->ddc.owner = THIS_MODULE;
2059 	aux->ddc.dev.parent = aux->dev;
2060 
2061 	strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2062 		sizeof(aux->ddc.name));
2063 
2064 	ret = drm_dp_aux_register_devnode(aux);
2065 	if (ret)
2066 		return ret;
2067 
2068 	ret = i2c_add_adapter(&aux->ddc);
2069 	if (ret) {
2070 		drm_dp_aux_unregister_devnode(aux);
2071 		return ret;
2072 	}
2073 
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL(drm_dp_aux_register);
2077 
2078 /**
2079  * drm_dp_aux_unregister() - unregister an AUX adapter
2080  * @aux: DisplayPort AUX channel
2081  */
2082 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2083 {
2084 	drm_dp_aux_unregister_devnode(aux);
2085 	i2c_del_adapter(&aux->ddc);
2086 }
2087 EXPORT_SYMBOL(drm_dp_aux_unregister);
2088 
2089 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2090 
2091 /**
2092  * drm_dp_psr_setup_time() - PSR setup in time usec
2093  * @psr_cap: PSR capabilities from DPCD
2094  *
2095  * Returns:
2096  * PSR setup time for the panel in microseconds,  negative
2097  * error code on failure.
2098  */
2099 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2100 {
2101 	static const u16 psr_setup_time_us[] = {
2102 		PSR_SETUP_TIME(330),
2103 		PSR_SETUP_TIME(275),
2104 		PSR_SETUP_TIME(220),
2105 		PSR_SETUP_TIME(165),
2106 		PSR_SETUP_TIME(110),
2107 		PSR_SETUP_TIME(55),
2108 		PSR_SETUP_TIME(0),
2109 	};
2110 	int i;
2111 
2112 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2113 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2114 		return -EINVAL;
2115 
2116 	return psr_setup_time_us[i];
2117 }
2118 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2119 
2120 #undef PSR_SETUP_TIME
2121 
2122 /**
2123  * drm_dp_start_crc() - start capture of frame CRCs
2124  * @aux: DisplayPort AUX channel
2125  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2126  *
2127  * Returns 0 on success or a negative error code on failure.
2128  */
2129 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2130 {
2131 	u8 buf;
2132 	int ret;
2133 
2134 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2135 	if (ret < 0)
2136 		return ret;
2137 
2138 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2139 	if (ret < 0)
2140 		return ret;
2141 
2142 	aux->crc_count = 0;
2143 	aux->crtc = crtc;
2144 	schedule_work(&aux->crc_work);
2145 
2146 	return 0;
2147 }
2148 EXPORT_SYMBOL(drm_dp_start_crc);
2149 
2150 /**
2151  * drm_dp_stop_crc() - stop capture of frame CRCs
2152  * @aux: DisplayPort AUX channel
2153  *
2154  * Returns 0 on success or a negative error code on failure.
2155  */
2156 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2157 {
2158 	u8 buf;
2159 	int ret;
2160 
2161 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2162 	if (ret < 0)
2163 		return ret;
2164 
2165 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2166 	if (ret < 0)
2167 		return ret;
2168 
2169 	flush_work(&aux->crc_work);
2170 	aux->crtc = NULL;
2171 
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL(drm_dp_stop_crc);
2175 
2176 struct dpcd_quirk {
2177 	u8 oui[3];
2178 	u8 device_id[6];
2179 	bool is_branch;
2180 	u32 quirks;
2181 };
2182 
2183 #define OUI(first, second, third) { (first), (second), (third) }
2184 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2185 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2186 
2187 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2188 
2189 static const struct dpcd_quirk dpcd_quirk_list[] = {
2190 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2191 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2192 	/* LG LP140WF6-SPM1 eDP panel */
2193 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2194 	/* Apple panels need some additional handling to support PSR */
2195 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2196 	/* CH7511 seems to leave SINK_COUNT zeroed */
2197 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2198 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2199 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2200 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2201 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2202 };
2203 
2204 #undef OUI
2205 
2206 /*
2207  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2208  * ident. The quirk data is shared but it's up to the drivers to act on the
2209  * data.
2210  *
2211  * For now, only the OUI (first three bytes) is used, but this may be extended
2212  * to device identification string and hardware/firmware revisions later.
2213  */
2214 static u32
2215 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2216 {
2217 	const struct dpcd_quirk *quirk;
2218 	u32 quirks = 0;
2219 	int i;
2220 	u8 any_device[] = DEVICE_ID_ANY;
2221 
2222 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2223 		quirk = &dpcd_quirk_list[i];
2224 
2225 		if (quirk->is_branch != is_branch)
2226 			continue;
2227 
2228 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2229 			continue;
2230 
2231 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2232 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2233 			continue;
2234 
2235 		quirks |= quirk->quirks;
2236 	}
2237 
2238 	return quirks;
2239 }
2240 
2241 #undef DEVICE_ID_ANY
2242 #undef DEVICE_ID
2243 
2244 /**
2245  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2246  * @aux: DisplayPort AUX channel
2247  * @desc: Device descriptor to fill from DPCD
2248  * @is_branch: true for branch devices, false for sink devices
2249  *
2250  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2251  * identification.
2252  *
2253  * Returns 0 on success or a negative error code on failure.
2254  */
2255 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2256 		     bool is_branch)
2257 {
2258 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2259 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2260 	int ret, dev_id_len;
2261 
2262 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2263 	if (ret < 0)
2264 		return ret;
2265 
2266 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2267 
2268 	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2269 
2270 	drm_dbg_kms(aux->drm_dev,
2271 		    "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2272 		    aux->name, is_branch ? "branch" : "sink",
2273 		    (int)sizeof(ident->oui), ident->oui, dev_id_len,
2274 		    ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2275 		    ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2276 
2277 	return 0;
2278 }
2279 EXPORT_SYMBOL(drm_dp_read_desc);
2280 
2281 /**
2282  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2283  * supported by the DSC sink.
2284  * @dsc_dpcd: DSC capabilities from DPCD
2285  * @is_edp: true if its eDP, false for DP
2286  *
2287  * Read the slice capabilities DPCD register from DSC sink to get
2288  * the maximum slice count supported. This is used to populate
2289  * the DSC parameters in the &struct drm_dsc_config by the driver.
2290  * Driver creates an infoframe using these parameters to populate
2291  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2292  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2293  *
2294  * Returns:
2295  * Maximum slice count supported by DSC sink or 0 its invalid
2296  */
2297 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2298 				   bool is_edp)
2299 {
2300 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2301 
2302 	if (is_edp) {
2303 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2304 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2305 			return 4;
2306 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2307 			return 2;
2308 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2309 			return 1;
2310 	} else {
2311 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2312 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2313 
2314 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2315 			return 24;
2316 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2317 			return 20;
2318 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2319 			return 16;
2320 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2321 			return 12;
2322 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2323 			return 10;
2324 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2325 			return 8;
2326 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2327 			return 6;
2328 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2329 			return 4;
2330 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2331 			return 2;
2332 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2333 			return 1;
2334 	}
2335 
2336 	return 0;
2337 }
2338 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2339 
2340 /**
2341  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2342  * @dsc_dpcd: DSC capabilities from DPCD
2343  *
2344  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2345  * number of bits of precision within the decoder line buffer supported by
2346  * the DSC sink. This is used to populate the DSC parameters in the
2347  * &struct drm_dsc_config by the driver.
2348  * Driver creates an infoframe using these parameters to populate
2349  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2350  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2351  *
2352  * Returns:
2353  * Line buffer depth supported by DSC panel or 0 its invalid
2354  */
2355 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2356 {
2357 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2358 
2359 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2360 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2361 		return 9;
2362 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2363 		return 10;
2364 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2365 		return 11;
2366 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2367 		return 12;
2368 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2369 		return 13;
2370 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2371 		return 14;
2372 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2373 		return 15;
2374 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2375 		return 16;
2376 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2377 		return 8;
2378 	}
2379 
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2383 
2384 /**
2385  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2386  * values supported by the DSC sink.
2387  * @dsc_dpcd: DSC capabilities from DPCD
2388  * @dsc_bpc: An array to be filled by this helper with supported
2389  *           input bpcs.
2390  *
2391  * Read the DSC DPCD from the sink device to parse the supported bits per
2392  * component values. This is used to populate the DSC parameters
2393  * in the &struct drm_dsc_config by the driver.
2394  * Driver creates an infoframe using these parameters to populate
2395  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2396  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2397  *
2398  * Returns:
2399  * Number of input BPC values parsed from the DPCD
2400  */
2401 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2402 					 u8 dsc_bpc[3])
2403 {
2404 	int num_bpc = 0;
2405 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2406 
2407 	if (color_depth & DP_DSC_12_BPC)
2408 		dsc_bpc[num_bpc++] = 12;
2409 	if (color_depth & DP_DSC_10_BPC)
2410 		dsc_bpc[num_bpc++] = 10;
2411 	if (color_depth & DP_DSC_8_BPC)
2412 		dsc_bpc[num_bpc++] = 8;
2413 
2414 	return num_bpc;
2415 }
2416 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2417 
2418 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2419 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2420 				  u8 *buf, int buf_size)
2421 {
2422 	/*
2423 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2424 	 * corrupted values when reading from the 0xF0000- range with a block
2425 	 * size bigger than 1.
2426 	 */
2427 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2428 	int offset;
2429 	int ret;
2430 
2431 	for (offset = 0; offset < buf_size; offset += block_size) {
2432 		ret = drm_dp_dpcd_read(aux,
2433 				       address + offset,
2434 				       &buf[offset], block_size);
2435 		if (ret < 0)
2436 			return ret;
2437 
2438 		WARN_ON(ret != block_size);
2439 	}
2440 
2441 	return 0;
2442 }
2443 
2444 /**
2445  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2446  * @aux: DisplayPort AUX channel
2447  * @dpcd: DisplayPort configuration data
2448  * @caps: buffer to return the capability info in
2449  *
2450  * Read capabilities common to all LTTPRs.
2451  *
2452  * Returns 0 on success or a negative error code on failure.
2453  */
2454 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2455 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2456 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2457 {
2458 	return drm_dp_read_lttpr_regs(aux, dpcd,
2459 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2460 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2461 }
2462 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2463 
2464 /**
2465  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2466  * @aux: DisplayPort AUX channel
2467  * @dpcd: DisplayPort configuration data
2468  * @dp_phy: LTTPR PHY to read the capabilities for
2469  * @caps: buffer to return the capability info in
2470  *
2471  * Read the capabilities for the given LTTPR PHY.
2472  *
2473  * Returns 0 on success or a negative error code on failure.
2474  */
2475 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2476 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2477 			       enum drm_dp_phy dp_phy,
2478 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2479 {
2480 	return drm_dp_read_lttpr_regs(aux, dpcd,
2481 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2482 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2483 }
2484 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2485 
2486 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2487 {
2488 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2489 }
2490 
2491 /**
2492  * drm_dp_lttpr_count - get the number of detected LTTPRs
2493  * @caps: LTTPR common capabilities
2494  *
2495  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2496  *
2497  * Returns:
2498  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2499  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2500  *   otherwise the number of detected LTTPRs
2501  */
2502 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2503 {
2504 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2505 
2506 	switch (hweight8(count)) {
2507 	case 0:
2508 		return 0;
2509 	case 1:
2510 		return 8 - ilog2(count);
2511 	case 8:
2512 		return -ERANGE;
2513 	default:
2514 		return -EINVAL;
2515 	}
2516 }
2517 EXPORT_SYMBOL(drm_dp_lttpr_count);
2518 
2519 /**
2520  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2521  * @caps: LTTPR common capabilities
2522  *
2523  * Returns the maximum link rate supported by all detected LTTPRs.
2524  */
2525 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2526 {
2527 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2528 
2529 	return drm_dp_bw_code_to_link_rate(rate);
2530 }
2531 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2532 
2533 /**
2534  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2535  * @caps: LTTPR common capabilities
2536  *
2537  * Returns the maximum lane count supported by all detected LTTPRs.
2538  */
2539 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2540 {
2541 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2542 
2543 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2544 }
2545 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2546 
2547 /**
2548  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2549  * @caps: LTTPR PHY capabilities
2550  *
2551  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2552  * voltage swing level 3.
2553  */
2554 bool
2555 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2556 {
2557 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2558 
2559 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2560 }
2561 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2562 
2563 /**
2564  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2565  * @caps: LTTPR PHY capabilities
2566  *
2567  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2568  * pre-emphasis level 3.
2569  */
2570 bool
2571 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2572 {
2573 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2574 
2575 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2576 }
2577 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2578 
2579 /**
2580  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2581  * @aux: DisplayPort AUX channel
2582  * @data: DP phy compliance test parameters.
2583  *
2584  * Returns 0 on success or a negative error code on failure.
2585  */
2586 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2587 				struct drm_dp_phy_test_params *data)
2588 {
2589 	int err;
2590 	u8 rate, lanes;
2591 
2592 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2593 	if (err < 0)
2594 		return err;
2595 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2596 
2597 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2598 	if (err < 0)
2599 		return err;
2600 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2601 
2602 	if (lanes & DP_ENHANCED_FRAME_CAP)
2603 		data->enhanced_frame_cap = true;
2604 
2605 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2606 	if (err < 0)
2607 		return err;
2608 
2609 	switch (data->phy_pattern) {
2610 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2611 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2612 				       &data->custom80, sizeof(data->custom80));
2613 		if (err < 0)
2614 			return err;
2615 
2616 		break;
2617 	case DP_PHY_TEST_PATTERN_CP2520:
2618 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2619 				       &data->hbr2_reset,
2620 				       sizeof(data->hbr2_reset));
2621 		if (err < 0)
2622 			return err;
2623 	}
2624 
2625 	return 0;
2626 }
2627 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2628 
2629 /**
2630  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2631  * @aux: DisplayPort AUX channel
2632  * @data: DP phy compliance test parameters.
2633  * @dp_rev: DP revision to use for compliance testing
2634  *
2635  * Returns 0 on success or a negative error code on failure.
2636  */
2637 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2638 				struct drm_dp_phy_test_params *data, u8 dp_rev)
2639 {
2640 	int err, i;
2641 	u8 link_config[2];
2642 	u8 test_pattern;
2643 
2644 	link_config[0] = drm_dp_link_rate_to_bw_code(data->link_rate);
2645 	link_config[1] = data->num_lanes;
2646 	if (data->enhanced_frame_cap)
2647 		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2648 	err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, link_config, 2);
2649 	if (err < 0)
2650 		return err;
2651 
2652 	test_pattern = data->phy_pattern;
2653 	if (dp_rev < 0x12) {
2654 		test_pattern = (test_pattern << 2) &
2655 			       DP_LINK_QUAL_PATTERN_11_MASK;
2656 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2657 					 test_pattern);
2658 		if (err < 0)
2659 			return err;
2660 	} else {
2661 		for (i = 0; i < data->num_lanes; i++) {
2662 			err = drm_dp_dpcd_writeb(aux,
2663 						 DP_LINK_QUAL_LANE0_SET + i,
2664 						 test_pattern);
2665 			if (err < 0)
2666 				return err;
2667 		}
2668 	}
2669 
2670 	return 0;
2671 }
2672 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2673 
2674 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2675 {
2676 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2677 		return "Invalid";
2678 
2679 	switch (pixelformat) {
2680 	case DP_PIXELFORMAT_RGB:
2681 		return "RGB";
2682 	case DP_PIXELFORMAT_YUV444:
2683 		return "YUV444";
2684 	case DP_PIXELFORMAT_YUV422:
2685 		return "YUV422";
2686 	case DP_PIXELFORMAT_YUV420:
2687 		return "YUV420";
2688 	case DP_PIXELFORMAT_Y_ONLY:
2689 		return "Y_ONLY";
2690 	case DP_PIXELFORMAT_RAW:
2691 		return "RAW";
2692 	default:
2693 		return "Reserved";
2694 	}
2695 }
2696 
2697 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2698 					   enum dp_colorimetry colorimetry)
2699 {
2700 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2701 		return "Invalid";
2702 
2703 	switch (colorimetry) {
2704 	case DP_COLORIMETRY_DEFAULT:
2705 		switch (pixelformat) {
2706 		case DP_PIXELFORMAT_RGB:
2707 			return "sRGB";
2708 		case DP_PIXELFORMAT_YUV444:
2709 		case DP_PIXELFORMAT_YUV422:
2710 		case DP_PIXELFORMAT_YUV420:
2711 			return "BT.601";
2712 		case DP_PIXELFORMAT_Y_ONLY:
2713 			return "DICOM PS3.14";
2714 		case DP_PIXELFORMAT_RAW:
2715 			return "Custom Color Profile";
2716 		default:
2717 			return "Reserved";
2718 		}
2719 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2720 		switch (pixelformat) {
2721 		case DP_PIXELFORMAT_RGB:
2722 			return "Wide Fixed";
2723 		case DP_PIXELFORMAT_YUV444:
2724 		case DP_PIXELFORMAT_YUV422:
2725 		case DP_PIXELFORMAT_YUV420:
2726 			return "BT.709";
2727 		default:
2728 			return "Reserved";
2729 		}
2730 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2731 		switch (pixelformat) {
2732 		case DP_PIXELFORMAT_RGB:
2733 			return "Wide Float";
2734 		case DP_PIXELFORMAT_YUV444:
2735 		case DP_PIXELFORMAT_YUV422:
2736 		case DP_PIXELFORMAT_YUV420:
2737 			return "xvYCC 601";
2738 		default:
2739 			return "Reserved";
2740 		}
2741 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2742 		switch (pixelformat) {
2743 		case DP_PIXELFORMAT_RGB:
2744 			return "OpRGB";
2745 		case DP_PIXELFORMAT_YUV444:
2746 		case DP_PIXELFORMAT_YUV422:
2747 		case DP_PIXELFORMAT_YUV420:
2748 			return "xvYCC 709";
2749 		default:
2750 			return "Reserved";
2751 		}
2752 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2753 		switch (pixelformat) {
2754 		case DP_PIXELFORMAT_RGB:
2755 			return "DCI-P3";
2756 		case DP_PIXELFORMAT_YUV444:
2757 		case DP_PIXELFORMAT_YUV422:
2758 		case DP_PIXELFORMAT_YUV420:
2759 			return "sYCC 601";
2760 		default:
2761 			return "Reserved";
2762 		}
2763 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2764 		switch (pixelformat) {
2765 		case DP_PIXELFORMAT_RGB:
2766 			return "Custom Profile";
2767 		case DP_PIXELFORMAT_YUV444:
2768 		case DP_PIXELFORMAT_YUV422:
2769 		case DP_PIXELFORMAT_YUV420:
2770 			return "OpYCC 601";
2771 		default:
2772 			return "Reserved";
2773 		}
2774 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2775 		switch (pixelformat) {
2776 		case DP_PIXELFORMAT_RGB:
2777 			return "BT.2020 RGB";
2778 		case DP_PIXELFORMAT_YUV444:
2779 		case DP_PIXELFORMAT_YUV422:
2780 		case DP_PIXELFORMAT_YUV420:
2781 			return "BT.2020 CYCC";
2782 		default:
2783 			return "Reserved";
2784 		}
2785 	case DP_COLORIMETRY_BT2020_YCC:
2786 		switch (pixelformat) {
2787 		case DP_PIXELFORMAT_YUV444:
2788 		case DP_PIXELFORMAT_YUV422:
2789 		case DP_PIXELFORMAT_YUV420:
2790 			return "BT.2020 YCC";
2791 		default:
2792 			return "Reserved";
2793 		}
2794 	default:
2795 		return "Invalid";
2796 	}
2797 }
2798 
2799 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2800 {
2801 	switch (dynamic_range) {
2802 	case DP_DYNAMIC_RANGE_VESA:
2803 		return "VESA range";
2804 	case DP_DYNAMIC_RANGE_CTA:
2805 		return "CTA range";
2806 	default:
2807 		return "Invalid";
2808 	}
2809 }
2810 
2811 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2812 {
2813 	switch (content_type) {
2814 	case DP_CONTENT_TYPE_NOT_DEFINED:
2815 		return "Not defined";
2816 	case DP_CONTENT_TYPE_GRAPHICS:
2817 		return "Graphics";
2818 	case DP_CONTENT_TYPE_PHOTO:
2819 		return "Photo";
2820 	case DP_CONTENT_TYPE_VIDEO:
2821 		return "Video";
2822 	case DP_CONTENT_TYPE_GAME:
2823 		return "Game";
2824 	default:
2825 		return "Reserved";
2826 	}
2827 }
2828 
2829 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2830 			const struct drm_dp_vsc_sdp *vsc)
2831 {
2832 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2833 	DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2834 		   vsc->revision, vsc->length);
2835 	DP_SDP_LOG("    pixelformat: %s\n",
2836 		   dp_pixelformat_get_name(vsc->pixelformat));
2837 	DP_SDP_LOG("    colorimetry: %s\n",
2838 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2839 	DP_SDP_LOG("    bpc: %u\n", vsc->bpc);
2840 	DP_SDP_LOG("    dynamic range: %s\n",
2841 		   dp_dynamic_range_get_name(vsc->dynamic_range));
2842 	DP_SDP_LOG("    content type: %s\n",
2843 		   dp_content_type_get_name(vsc->content_type));
2844 #undef DP_SDP_LOG
2845 }
2846 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2847 
2848 /**
2849  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2850  * @dpcd: DisplayPort configuration data
2851  * @port_cap: port capabilities
2852  *
2853  * Returns maximum frl bandwidth supported by PCON in GBPS,
2854  * returns 0 if not supported.
2855  */
2856 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2857 			       const u8 port_cap[4])
2858 {
2859 	int bw;
2860 	u8 buf;
2861 
2862 	buf = port_cap[2];
2863 	bw = buf & DP_PCON_MAX_FRL_BW;
2864 
2865 	switch (bw) {
2866 	case DP_PCON_MAX_9GBPS:
2867 		return 9;
2868 	case DP_PCON_MAX_18GBPS:
2869 		return 18;
2870 	case DP_PCON_MAX_24GBPS:
2871 		return 24;
2872 	case DP_PCON_MAX_32GBPS:
2873 		return 32;
2874 	case DP_PCON_MAX_40GBPS:
2875 		return 40;
2876 	case DP_PCON_MAX_48GBPS:
2877 		return 48;
2878 	case DP_PCON_MAX_0GBPS:
2879 	default:
2880 		return 0;
2881 	}
2882 
2883 	return 0;
2884 }
2885 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2886 
2887 /**
2888  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2889  * @aux: DisplayPort AUX channel
2890  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2891  *
2892  * Returns 0 if success, else returns negative error code.
2893  */
2894 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2895 {
2896 	int ret;
2897 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2898 		 DP_PCON_ENABLE_LINK_FRL_MODE;
2899 
2900 	if (enable_frl_ready_hpd)
2901 		buf |= DP_PCON_ENABLE_HPD_READY;
2902 
2903 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2904 
2905 	return ret;
2906 }
2907 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2908 
2909 /**
2910  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2911  * @aux: DisplayPort AUX channel
2912  *
2913  * Returns true if success, else returns false.
2914  */
2915 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2916 {
2917 	int ret;
2918 	u8 buf;
2919 
2920 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2921 	if (ret < 0)
2922 		return false;
2923 
2924 	if (buf & DP_PCON_FRL_READY)
2925 		return true;
2926 
2927 	return false;
2928 }
2929 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2930 
2931 /**
2932  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2933  * @aux: DisplayPort AUX channel
2934  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2935  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2936  * In Concurrent Mode, the FRL link bring up can be done along with
2937  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2938  * the DP Link training.
2939  *
2940  * Returns 0 if success, else returns negative error code.
2941  */
2942 
2943 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2944 				u8 frl_mode)
2945 {
2946 	int ret;
2947 	u8 buf;
2948 
2949 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
2950 	if (ret < 0)
2951 		return ret;
2952 
2953 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
2954 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
2955 	else
2956 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
2957 
2958 	switch (max_frl_gbps) {
2959 	case 9:
2960 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
2961 		break;
2962 	case 18:
2963 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
2964 		break;
2965 	case 24:
2966 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
2967 		break;
2968 	case 32:
2969 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
2970 		break;
2971 	case 40:
2972 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
2973 		break;
2974 	case 48:
2975 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
2976 		break;
2977 	case 0:
2978 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
2979 		break;
2980 	default:
2981 		return -EINVAL;
2982 	}
2983 
2984 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2985 	if (ret < 0)
2986 		return ret;
2987 
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
2991 
2992 /**
2993  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
2994  * @aux: DisplayPort AUX channel
2995  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
2996  * @frl_type : FRL training type, can be Extended, or Normal.
2997  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
2998  * starting from min, and stops when link training is successful. In Extended
2999  * FRL training, all frl bw selected in the mask are trained by the PCON.
3000  *
3001  * Returns 0 if success, else returns negative error code.
3002  */
3003 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3004 				u8 frl_type)
3005 {
3006 	int ret;
3007 	u8 buf = max_frl_mask;
3008 
3009 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3010 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3011 	else
3012 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3013 
3014 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3015 	if (ret < 0)
3016 		return ret;
3017 
3018 	return 0;
3019 }
3020 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3021 
3022 /**
3023  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3024  * @aux: DisplayPort AUX channel
3025  *
3026  * Returns 0 if success, else returns negative error code.
3027  */
3028 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3029 {
3030 	int ret;
3031 
3032 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3033 	if (ret < 0)
3034 		return ret;
3035 
3036 	return 0;
3037 }
3038 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3039 
3040 /**
3041  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3042  * @aux: DisplayPort AUX channel
3043  *
3044  * Returns 0 if success, else returns negative error code.
3045  */
3046 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3047 {
3048 	int ret;
3049 	u8 buf = 0;
3050 
3051 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3052 	if (ret < 0)
3053 		return ret;
3054 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3055 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3056 			    aux->name);
3057 		return -EINVAL;
3058 	}
3059 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3060 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3061 	if (ret < 0)
3062 		return ret;
3063 
3064 	return 0;
3065 }
3066 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3067 
3068 /**
3069  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3070  * @aux: DisplayPort AUX channel
3071  *
3072  * Returns true if link is active else returns false.
3073  */
3074 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3075 {
3076 	u8 buf;
3077 	int ret;
3078 
3079 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3080 	if (ret < 0)
3081 		return false;
3082 
3083 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3084 }
3085 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3086 
3087 /**
3088  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3089  * @aux: DisplayPort AUX channel
3090  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3091  * Valid only if the MODE returned is FRL. For Normal Link training mode
3092  * only 1 of the bits will be set, but in case of Extended mode, more than
3093  * one bits can be set.
3094  *
3095  * Returns the link mode : TMDS or FRL on success, else returns negative error
3096  * code.
3097  */
3098 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3099 {
3100 	u8 buf;
3101 	int mode;
3102 	int ret;
3103 
3104 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3105 	if (ret < 0)
3106 		return ret;
3107 
3108 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3109 
3110 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3111 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3112 
3113 	return mode;
3114 }
3115 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3116 
3117 /**
3118  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3119  * during link failure between PCON and HDMI sink
3120  * @aux: DisplayPort AUX channel
3121  * @connector: DRM connector
3122  * code.
3123  **/
3124 
3125 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3126 					   struct drm_connector *connector)
3127 {
3128 	u8 buf, error_count;
3129 	int i, num_error;
3130 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3131 
3132 	for (i = 0; i < hdmi->max_lanes; i++) {
3133 		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3134 			return;
3135 
3136 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3137 		switch (error_count) {
3138 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3139 			num_error = 100;
3140 			break;
3141 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3142 			num_error = 10;
3143 			break;
3144 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3145 			num_error = 3;
3146 			break;
3147 		default:
3148 			num_error = 0;
3149 		}
3150 
3151 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3152 			aux->name, num_error, i);
3153 	}
3154 }
3155 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3156 
3157 /*
3158  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3159  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3160  *
3161  * Returns true is PCON encoder is DSC 1.2 else returns false.
3162  */
3163 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3164 {
3165 	u8 buf;
3166 	u8 major_v, minor_v;
3167 
3168 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3169 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3170 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3171 
3172 	if (major_v == 1 && minor_v == 2)
3173 		return true;
3174 
3175 	return false;
3176 }
3177 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3178 
3179 /*
3180  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3181  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3182  *
3183  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3184  */
3185 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3186 {
3187 	u8 slice_cap1, slice_cap2;
3188 
3189 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3190 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3191 
3192 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3193 		return 24;
3194 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3195 		return 20;
3196 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3197 		return 16;
3198 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3199 		return 12;
3200 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3201 		return 10;
3202 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3203 		return 8;
3204 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3205 		return 6;
3206 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3207 		return 4;
3208 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3209 		return 2;
3210 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3211 		return 1;
3212 
3213 	return 0;
3214 }
3215 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3216 
3217 /*
3218  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3219  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3220  *
3221  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3222  */
3223 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3224 {
3225 	u8 buf;
3226 
3227 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3228 
3229 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3230 }
3231 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3232 
3233 /*
3234  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3235  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3236  *
3237  * Returns the bpp precision supported by the PCON encoder.
3238  */
3239 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3240 {
3241 	u8 buf;
3242 
3243 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3244 
3245 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3246 	case DP_PCON_DSC_ONE_16TH_BPP:
3247 		return 16;
3248 	case DP_PCON_DSC_ONE_8TH_BPP:
3249 		return 8;
3250 	case DP_PCON_DSC_ONE_4TH_BPP:
3251 		return 4;
3252 	case DP_PCON_DSC_ONE_HALF_BPP:
3253 		return 2;
3254 	case DP_PCON_DSC_ONE_BPP:
3255 		return 1;
3256 	}
3257 
3258 	return 0;
3259 }
3260 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3261 
3262 static
3263 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3264 {
3265 	u8 buf;
3266 	int ret;
3267 
3268 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3269 	if (ret < 0)
3270 		return ret;
3271 
3272 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3273 
3274 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3275 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3276 		buf |= pps_buf_config << 2;
3277 	}
3278 
3279 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3280 	if (ret < 0)
3281 		return ret;
3282 
3283 	return 0;
3284 }
3285 
3286 /**
3287  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3288  * for DSC1.2 between PCON & HDMI2.1 sink
3289  * @aux: DisplayPort AUX channel
3290  *
3291  * Returns 0 on success, else returns negative error code.
3292  */
3293 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3294 {
3295 	int ret;
3296 
3297 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3298 	if (ret < 0)
3299 		return ret;
3300 
3301 	return 0;
3302 }
3303 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3304 
3305 /**
3306  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3307  * HDMI sink
3308  * @aux: DisplayPort AUX channel
3309  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3310  *
3311  * Returns 0 on success, else returns negative error code.
3312  */
3313 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3314 {
3315 	int ret;
3316 
3317 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3318 	if (ret < 0)
3319 		return ret;
3320 
3321 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3322 	if (ret < 0)
3323 		return ret;
3324 
3325 	return 0;
3326 }
3327 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3328 
3329 /*
3330  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3331  * override registers
3332  * @aux: DisplayPort AUX channel
3333  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3334  * bits_per_pixel.
3335  *
3336  * Returns 0 on success, else returns negative error code.
3337  */
3338 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3339 {
3340 	int ret;
3341 
3342 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3343 	if (ret < 0)
3344 		return ret;
3345 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3346 	if (ret < 0)
3347 		return ret;
3348 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3349 	if (ret < 0)
3350 		return ret;
3351 
3352 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3353 	if (ret < 0)
3354 		return ret;
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3359 
3360 /*
3361  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3362  * @aux: displayPort AUX channel
3363  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3364  *
3365  * Returns 0 on success, else returns negative error code.
3366  */
3367 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3368 {
3369 	int ret;
3370 	u8 buf;
3371 
3372 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3373 	if (ret < 0)
3374 		return ret;
3375 
3376 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3377 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3378 	else
3379 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3380 
3381 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3382 	if (ret < 0)
3383 		return ret;
3384 
3385 	return 0;
3386 }
3387 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3388 
3389 /**
3390  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3391  * @aux: The DP AUX channel to use
3392  * @bl: Backlight capability info from drm_edp_backlight_init()
3393  * @level: The brightness level to set
3394  *
3395  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3396  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3397  *
3398  * Returns: %0 on success, negative error code on failure
3399  */
3400 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3401 				u16 level)
3402 {
3403 	int ret;
3404 	u8 buf[2] = { 0 };
3405 
3406 	/* The panel uses the PWM for controlling brightness levels */
3407 	if (!bl->aux_set)
3408 		return 0;
3409 
3410 	if (bl->lsb_reg_used) {
3411 		buf[0] = (level & 0xff00) >> 8;
3412 		buf[1] = (level & 0x00ff);
3413 	} else {
3414 		buf[0] = level;
3415 	}
3416 
3417 	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3418 	if (ret != sizeof(buf)) {
3419 		drm_err(aux->drm_dev,
3420 			"%s: Failed to write aux backlight level: %d\n",
3421 			aux->name, ret);
3422 		return ret < 0 ? ret : -EIO;
3423 	}
3424 
3425 	return 0;
3426 }
3427 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3428 
3429 static int
3430 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3431 			     bool enable)
3432 {
3433 	int ret;
3434 	u8 buf;
3435 
3436 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3437 	if (!bl->aux_enable)
3438 		return 0;
3439 
3440 	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3441 	if (ret != 1) {
3442 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3443 			aux->name, ret);
3444 		return ret < 0 ? ret : -EIO;
3445 	}
3446 	if (enable)
3447 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3448 	else
3449 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3450 
3451 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3452 	if (ret != 1) {
3453 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3454 			aux->name, ret);
3455 		return ret < 0 ? ret : -EIO;
3456 	}
3457 
3458 	return 0;
3459 }
3460 
3461 /**
3462  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3463  * @aux: The DP AUX channel to use
3464  * @bl: Backlight capability info from drm_edp_backlight_init()
3465  * @level: The initial backlight level to set via AUX, if there is one
3466  *
3467  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3468  * restoring any important backlight state such as the given backlight level, the brightness byte
3469  * count, backlight frequency, etc.
3470  *
3471  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3472  * that the driver handle enabling/disabling the panel through implementation-specific means using
3473  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3474  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3475  * the EDP_BL_PWR GPIO.
3476  *
3477  * Returns: %0 on success, negative error code on failure.
3478  */
3479 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3480 			     const u16 level)
3481 {
3482 	int ret;
3483 	u8 dpcd_buf;
3484 
3485 	if (bl->aux_set)
3486 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3487 	else
3488 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3489 
3490 	if (bl->pwmgen_bit_count) {
3491 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3492 		if (ret != 1)
3493 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3494 				    aux->name, ret);
3495 	}
3496 
3497 	if (bl->pwm_freq_pre_divider) {
3498 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3499 		if (ret != 1)
3500 			drm_dbg_kms(aux->drm_dev,
3501 				    "%s: Failed to write aux backlight frequency: %d\n",
3502 				    aux->name, ret);
3503 		else
3504 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3505 	}
3506 
3507 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3508 	if (ret != 1) {
3509 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3510 			    aux->name, ret);
3511 		return ret < 0 ? ret : -EIO;
3512 	}
3513 
3514 	ret = drm_edp_backlight_set_level(aux, bl, level);
3515 	if (ret < 0)
3516 		return ret;
3517 	ret = drm_edp_backlight_set_enable(aux, bl, true);
3518 	if (ret < 0)
3519 		return ret;
3520 
3521 	return 0;
3522 }
3523 EXPORT_SYMBOL(drm_edp_backlight_enable);
3524 
3525 /**
3526  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3527  * @aux: The DP AUX channel to use
3528  * @bl: Backlight capability info from drm_edp_backlight_init()
3529  *
3530  * This function handles disabling DPCD backlight controls on a panel over AUX.
3531  *
3532  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3533  * that the driver handle enabling/disabling the panel through implementation-specific means using
3534  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3535  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3536  * the EDP_BL_PWR GPIO.
3537  *
3538  * Returns: %0 on success or no-op, negative error code on failure.
3539  */
3540 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3541 {
3542 	int ret;
3543 
3544 	ret = drm_edp_backlight_set_enable(aux, bl, false);
3545 	if (ret < 0)
3546 		return ret;
3547 
3548 	return 0;
3549 }
3550 EXPORT_SYMBOL(drm_edp_backlight_disable);
3551 
3552 static inline int
3553 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3554 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3555 {
3556 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3557 	int ret;
3558 	u8 pn, pn_min, pn_max;
3559 
3560 	if (!bl->aux_set)
3561 		return 0;
3562 
3563 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3564 	if (ret != 1) {
3565 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3566 			    aux->name, ret);
3567 		return -ENODEV;
3568 	}
3569 
3570 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3571 	bl->max = (1 << pn) - 1;
3572 	if (!driver_pwm_freq_hz)
3573 		return 0;
3574 
3575 	/*
3576 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3577 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3578 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3579 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3580 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3581 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3582 	 */
3583 
3584 	/* Find desired value of (F x P)
3585 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3586 	 * applied automatically. So no need to check that.
3587 	 */
3588 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3589 
3590 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3591 	 * satisfying the conditions below.
3592 	 * - Pn is in the range of Pn_min and Pn_max
3593 	 * - F is in the range of 1 and 255
3594 	 * - FxP is within 25% of desired value.
3595 	 *   Note: 25% is arbitrary value and may need some tweak.
3596 	 */
3597 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3598 	if (ret != 1) {
3599 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3600 			    aux->name, ret);
3601 		return 0;
3602 	}
3603 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3604 	if (ret != 1) {
3605 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3606 			    aux->name, ret);
3607 		return 0;
3608 	}
3609 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3610 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3611 
3612 	/* Ensure frequency is within 25% of desired value */
3613 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3614 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3615 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3616 		drm_dbg_kms(aux->drm_dev,
3617 			    "%s: Driver defined backlight frequency (%d) out of range\n",
3618 			    aux->name, driver_pwm_freq_hz);
3619 		return 0;
3620 	}
3621 
3622 	for (pn = pn_max; pn >= pn_min; pn--) {
3623 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3624 		fxp_actual = f << pn;
3625 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3626 			break;
3627 	}
3628 
3629 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3630 	if (ret != 1) {
3631 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3632 			    aux->name, ret);
3633 		return 0;
3634 	}
3635 	bl->pwmgen_bit_count = pn;
3636 	bl->max = (1 << pn) - 1;
3637 
3638 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3639 		bl->pwm_freq_pre_divider = f;
3640 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3641 			    aux->name, driver_pwm_freq_hz);
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static inline int
3648 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3649 			      u8 *current_mode)
3650 {
3651 	int ret;
3652 	u8 buf[2];
3653 	u8 mode_reg;
3654 
3655 	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3656 	if (ret != 1) {
3657 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3658 			    aux->name, ret);
3659 		return ret < 0 ? ret : -EIO;
3660 	}
3661 
3662 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3663 	if (!bl->aux_set)
3664 		return 0;
3665 
3666 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3667 		int size = 1 + bl->lsb_reg_used;
3668 
3669 		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3670 		if (ret != size) {
3671 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3672 				    aux->name, ret);
3673 			return ret < 0 ? ret : -EIO;
3674 		}
3675 
3676 		if (bl->lsb_reg_used)
3677 			return (buf[0] << 8) | buf[1];
3678 		else
3679 			return buf[0];
3680 	}
3681 
3682 	/*
3683 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3684 	 * the driver should assume max brightness
3685 	 */
3686 	return bl->max;
3687 }
3688 
3689 /**
3690  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3691  * interface.
3692  * @aux: The DP aux device to use for probing
3693  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3694  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3695  * @edp_dpcd: A cached copy of the eDP DPCD
3696  * @current_level: Where to store the probed brightness level, if any
3697  * @current_mode: Where to store the currently set backlight control mode
3698  *
3699  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3700  * along with also probing the current and maximum supported brightness levels.
3701  *
3702  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3703  * default frequency from the panel is used.
3704  *
3705  * Returns: %0 on success, negative error code on failure.
3706  */
3707 int
3708 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3709 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3710 		       u16 *current_level, u8 *current_mode)
3711 {
3712 	int ret;
3713 
3714 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3715 		bl->aux_enable = true;
3716 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3717 		bl->aux_set = true;
3718 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3719 		bl->lsb_reg_used = true;
3720 
3721 	/* Sanity check caps */
3722 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3723 		drm_dbg_kms(aux->drm_dev,
3724 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3725 			    aux->name);
3726 		return -EINVAL;
3727 	}
3728 
3729 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3730 	if (ret < 0)
3731 		return ret;
3732 
3733 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3734 	if (ret < 0)
3735 		return ret;
3736 	*current_level = ret;
3737 
3738 	drm_dbg_kms(aux->drm_dev,
3739 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3740 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3741 	if (bl->aux_set) {
3742 		drm_dbg_kms(aux->drm_dev,
3743 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3744 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3745 			    bl->lsb_reg_used);
3746 	}
3747 
3748 	return 0;
3749 }
3750 EXPORT_SYMBOL(drm_edp_backlight_init);
3751 
3752 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3753 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3754 
3755 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3756 {
3757 	struct dp_aux_backlight *bl = bl_get_data(bd);
3758 	u16 brightness = backlight_get_brightness(bd);
3759 	int ret = 0;
3760 
3761 	if (!backlight_is_blank(bd)) {
3762 		if (!bl->enabled) {
3763 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3764 			bl->enabled = true;
3765 			return 0;
3766 		}
3767 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3768 	} else {
3769 		if (bl->enabled) {
3770 			drm_edp_backlight_disable(bl->aux, &bl->info);
3771 			bl->enabled = false;
3772 		}
3773 	}
3774 
3775 	return ret;
3776 }
3777 
3778 static const struct backlight_ops dp_aux_bl_ops = {
3779 	.update_status = dp_aux_backlight_update_status,
3780 };
3781 
3782 /**
3783  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3784  * @panel: DRM panel
3785  * @aux: The DP AUX channel to use
3786  *
3787  * Use this function to create and handle backlight if your panel
3788  * supports backlight control over DP AUX channel using DPCD
3789  * registers as per VESA's standard backlight control interface.
3790  *
3791  * When the panel is enabled backlight will be enabled after a
3792  * successful call to &drm_panel_funcs.enable()
3793  *
3794  * When the panel is disabled backlight will be disabled before the
3795  * call to &drm_panel_funcs.disable().
3796  *
3797  * A typical implementation for a panel driver supporting backlight
3798  * control over DP AUX will call this function at probe time.
3799  * Backlight will then be handled transparently without requiring
3800  * any intervention from the driver.
3801  *
3802  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3803  *
3804  * Return: 0 on success or a negative error code on failure.
3805  */
3806 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3807 {
3808 	struct dp_aux_backlight *bl;
3809 	struct backlight_properties props = { 0 };
3810 	u16 current_level;
3811 	u8 current_mode;
3812 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3813 	int ret;
3814 
3815 	if (!panel || !panel->dev || !aux)
3816 		return -EINVAL;
3817 
3818 	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3819 			       EDP_DISPLAY_CTL_CAP_SIZE);
3820 	if (ret < 0)
3821 		return ret;
3822 
3823 	if (!drm_edp_backlight_supported(edp_dpcd)) {
3824 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3825 		return 0;
3826 	}
3827 
3828 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3829 	if (!bl)
3830 		return -ENOMEM;
3831 
3832 	bl->aux = aux;
3833 
3834 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3835 				     &current_level, &current_mode);
3836 	if (ret < 0)
3837 		return ret;
3838 
3839 	props.type = BACKLIGHT_RAW;
3840 	props.brightness = current_level;
3841 	props.max_brightness = bl->info.max;
3842 
3843 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3844 						  panel->dev, bl,
3845 						  &dp_aux_bl_ops, &props);
3846 	if (IS_ERR(bl->base))
3847 		return PTR_ERR(bl->base);
3848 
3849 	backlight_disable(bl->base);
3850 
3851 	panel->backlight = bl->base;
3852 
3853 	return 0;
3854 }
3855 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3856 
3857 #endif
3858